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ABSTRACT

Wang, Xiran Ph.D., Purdue University, August 2019. Plug-and-Play ADMM for
Image Restoration. Major Professor: Stanley H. Chan.

The alternating direction method of multiplier (ADMM) is one of the most widely

used optimization algorithms in image restoration. Among many features, e.g., prov-

ably convergent under mild conditions, its modular structure is particularly appeal-

ing to model based image reconstruction problems. In particular, one can separate

the log-likelihood and the log-prior in a maximum-a-posteriori formulation using the

ADMM algorithm. However, such approach does not allow us to incorporate likeli-

hood or priors that are not expressible as proximal maps (a particular type of op-

timization involving a convex function regularized by a quadratic penalty). Deep

neural network based image denoisers are some of the better known examples. They

have demonstrated very promising image restoration results, yet they cannot be ex-

pressed as proximal maps. The question to pursue in this thesis is how to integrate

non-optimization likelihood or priors using the ADMM algorithm.

The Plug-and-Play (P&P) ADMM is a generalization of the ADMM algorithm

that allows non-optimization based models to be used. Since its introduction in 2013,

the method has demonstrated promising performance for various imaging problems,

e.g., tomography. Its convergence has also been proven under some restrictive condi-

tions where the denoiser is non-expansive and has a symmetric Jacobian. However,

many problems remain unsolved. First, existing work has been focusing on a range of

medical imaging problems in tomography while the applications of the Plug-and-Play

framework for more general problems have not been explored. Second, even though

study on the global convergence analysis has been done, it restricts the compatible

denoisers to a class of symmetric smoothing filters that are rarely adopted in state-
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of-the-art competitive denoisers. Third, due to its ad-hoc nature, the performance of

Plug-and-Play ADMM is sensitive to the choice of internal parameters of the algo-

rithm. A more robust version is desirable in order for the framework to be applicable

for a wide range of problems. Fourth, the current Plug-and-Play framework still relies

on a well-defined forward model of the imaging system, which means it is still an opti-

mization based approach. However, as well-defined models are sometimes unavailable

for more complicated imaging problems, a non-optimization based version is desired.

In this thesis, we address the above issues by studying both the theoretical and

practical aspects of the algorithm. First, we study the applications of the Plug-and-

Play framework for a wide range of general image restoration problems, such as super-

resolution, deblurring, inpainting, single-photon imaging and even a video segmen-

tation problem used for virtual reality content creation. Efficient implementations

of the Plug-and-Play ADMM for these applications are introduced and outperforms

state-of-the-art existing algorithms for every task. For superresolution specifically,

we derived a closed-form solution for the inversion step that is previously unavailable

and potentially applicable for other optimization frameworks. Second, to tackle the

Plug-and-Play ADMM’s sensitivity on internal parameters, we draw insights from the

generalized approximate message passing to design an automatic update scheme for

the internal parameters achieving robust performance across different tasks. Third, a

new convergence analysis is presented proving a fixed-point convergence for a much

wider range of denoisers compared to previous work. With the recent introduction of

Multi-agent consensus equilibrium (MACE), a generalized Plug-and-Play framework

that can work with an arbitrary number of operators to solve a common problem,

this work also introduces the application and design of a MACE algorithm for solving

video segmentation which is outside the scope of classical image restoration prob-

lems. The proposed MACE algorithm, unlike Plug-and-Play ADMM, does not rely

on a well-defined forward model and is capable of including an arbitrary number of

operators instead of just two.
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The Plug-and-Play ADMM algorithms studied in this thesis have significantly

advanced our image restoration capability by allowing non-optimization procedures

to be used in the framework. We demonstrated applications in super-resolution,

inpainting, deblurring, and single-photon reconstruction, with superior performance

than the previous state-of-the-art. The algorithm has also enabled a new line of

applications in segmenting foreground masks for virtual reality content creation that

is fully automatic and does not require human interactions.
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1. INTRODUCTION

1.1 Image Restoration

Image restoration is one of the fundamental problems in image processing, involv-

ing a wide range of topics that aims to recover an original image from a corrupted

or altered observation. In most cases, some original image serves as an input to an

imaging system, either physically defined like MRI devices or conceptually defined by

some process on the software side. The system, described by a degradation model,

then produces an altered or corrupted output image which will be observed. The pro-

cess of retrieving the original clean image is called image restoration. There is a wide

range of practical problems within image restoration such as: image deblurring where

the observed image is blurry caused by motions or optics, image inpainting where

parts of the input image is corrupted or removed, image super resolution where the

input image is downsampled to a smaller resolution, etc. For all these applications in

image restoration, we are only given an altered version of the original latent image

and want to recover the original image from the observed image and knowledge about

the forward imaging system.

Often time a mathematical model can be found for the imaging system. The

model that captures the nature of the corruption or alteration is often called the

forward model, which is determined by the specific problem and imaging system at

hand. Specifically, we are interested in the following linear model for image restoration

problems.

y = Ax+ ϵ, (1.1)
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where x is the input or latent image that serves as the input to the imaging system, A

is an operator describing the operation done by the forward system, y is the observed

output of the system, and ϵ is a noise term present inside the system often time

modeled as Gaussian. For image restoration problems, we are focusing on a linear

system where A can be expressed by a single matrix.

1.2 Examples of Image Restoration

In this section, we will introduce several image restoration problems and discuss

the forward models associated with them.

1.2.1 Image Deblurring

Image deblurring is a process of recovering the original clear and noise-free image

when a blurry and noisy observation is available. Image deblurring is widely used

in many applications including medical imaging, microscopy, astronomy, etc. Fig-

ure 1.1 shows its application for astronomy and spiral CT images. In the case of

deblurring,we assume the forward model A ∈ Rn×n to be a circular convolution ma-

trix that represents a global blur kernel which could be caused by either motions or

optics in the physical world. The blur kernel often corresponds to a filter that cause

information loss especially in the high frequency part of the spectrum when applied to

an image. At the same time, noise is also induced during the forward process. In our

case, the goal of image deblurring algorithm is then to recover the lost information

under noisy system conditions when the blur kernel itself is known.

1.2.2 Image Inpainting/Interpolation

Image inpainting/interpolation is the process of reconstructing lost/unsampled

parts of the original image, and in most practical cases noise is also induced during

the forward process. In this case, the A ∈ Rm×n matrix is a binary sampling matrix
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(a) Deblurring of astronomical photo
from Hubble [1]

(b) Deblurring of CT images [2]

Fig. 1.1.: Application of image deblurring.

of which each row has only one nonzero element being one. More specifically, S =

squeeze(S̃), where S̃ is an n×nmatrix with Sii = 1 if pixel i is sampled, the Sij = 0 for

all other (i, j). The function squeeze(·) : Rn×n → Rm×n discards rows with all zeros.

A is also a fat matrix with more columns than rows representing the ’loss’ present in

the forward model. The most classical application of this process is in the photography

and cinema where the film or picture are deteriorated. Inpainting and interpolation

also widely used in many modern applications such as HDR imaging with multiple

exposure and video compression. It is also recently used in other applications that

aims to recover unsampled data. In depth detection, depth detectors such as lidar

can only obtain a very sparse and noisy depth measurement of the scene, which is not

directly usable. This type of problems fits the model of image interpolation and with

the assumption of local smoothness of depth field, a reasonable estimate of the real

depth information can be obtained by a model based method such as P&P ADMM.

Different from image deblurring, the information loss during the forward process is in

the time/spatial domain as directly reflected in the resolution change in the observed

image. An example of depth reconstruction using image inpainting/interpolation can

be seen in Figure 1.2.
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(a) input uniform (b) output (c) input random (d) output

Fig. 1.2.: (a) Uniformly sampled depth data, (b) reconstructed depth map from (a)
using the Plug-and-Play framework, (c) randomly sampled depth data, (d) recon-
structed depth map from (c) using the Plug-and-Play framework.

1.2.3 Single image super resolution

Super resolution is a process of enhancing the resolution of an input image. In this

case, the forward model contains two parts A = SH , where S ∈ Rm×n and m < n

, represents a K-fold sampling matrix just like the one in the case of interpolation,

and H ∈ Rn×n is an anti-aliasing kernel which is the same as the forward model in

the deblurring case. We assume both S and H are known, and in this formulation a

single-image super-resolution approach can be developed. Super-resolution techniques

are often used in image quality enhancement, medical imaging and hyper-spectral

imaging. The problem can be thought of as a combination of image deblurring(anti-

aliasing kernel) and image inpainting/interpolation(downsampling). To handle the

loss of information, multiple low resolution observations are often obtained in order

to recover a single frame of high resolution image. However, we focus on the single

image approach in our work.

The difficulty for this super-resolution problem lies in the fact that the A operator

is neither a diagonal matrix as in the inpainting/interpolation case nor a diagonaliz-

able matrix as in the case of the deblurring problem. As a result, traditional model-

based iterative methods usually adopt an approximation approach such as conjugate

gradient for solving the inversion step since a direct closed form solution is not avail-

able. This makes the inversion step more time consuming and less accurate at the
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same time. In this work, a closed-form solution for the inversion step is proposed

assuming the anti-aliasing filter is applied circularly followed by a standard K-fold

downsampling. An example of super-resolution is shown in Figure 1.3.

}

Fig. 1.3.: Illustration of probabilistic pixel recursive super-resolution model by [3]

1.2.4 Single photon imaging

In single-photon imaging, each pixel of the latent image would corresponds to

multiple jots on a quanta image sensor, the pixel value of the latent image would

determine the photon arrival rate for these jots. The photon count can be be mod-

eled with a Poisson distribution, and a conditional distribution of photon count given
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the latent pixel value can be obtained. Then the goal would be to find the latent

pixel value that best explains these photon counts of these corresponding jots. For

this problem, even though the forward model cannot be represented by single ma-

trix, a closed form MAP solution can still be obtained. Since, each latent pixel is

independent from each other under our formulation, the pixel value of the latent im-

age can be optimized independently. The optimization problem turns out to be a

one-dimensional root finding problem. Then during the second denoising step, local

smoothness/correlation will be taken into consideration. An simulation of single-

photon imaging is shown in Figure 1.4.

(a) Binary uniform (b) Output

Fig. 1.4.: (a) Binary input image from quanta image sensor (b) Reconstructed color
image using Plug-and-Play framework [4]
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1.2.5 Single pixel camera

Another interesting application within image restoration is the single pixel camera

using compressed sensing [5]. Different from traditional cameras with mega-pixel

camera sensors, the single pixel camera has only a single pixel as indicated by its

name. The camera works by using an array of N mirrors to reflect light from the

scene to the single pixel sensor. These mirrors are either ’On’ or ’Off’. As a result,

each configuration corresponds to a binary sampling matrix we introduced in previous

sections. By using M random mirror configurations that corresponds to M samples

of the scene, the forward model A can be described as a randomly generated, fat,

binary sampling matrix. The number of samples M = O(K log(N/K)) ≪ N when

the scene being imaged is compressible by a compression algorithm. An example is

shown.

(a) (a) (b) (b) (c) (c)

Fig. 1.5.: (a) A image being captured by the single pixel camera. (b) Reconstructed
image from the camera. (c)Color reconstruction of printout of Mandrill test image.

1.3 Contribution

Efficient implementation: We studied the applications of the Plug-and-Play

framework for multiple image restoration problems, such as image deblurring, image

inpainting/interpolation, image super-resolution and single photon imaging. Efficeint
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implementations for each of the problems are also proposed. For the case of image

super-resolution, we derived a fast closed form solution for the x sub-problem of the

Plug-and-Play ADMM, and compared its performance with commonly used conjugate

gradients methods which only output an approximation of the real solution. Our

closed form solution can not only find the exactly solution of the x sub-problem but

also executes faster than even a single iteration of the conjugate gradient method.

Fixed-point convergence: We also studied the convergence properties of the

Plug-and-Play ADMM. We proposed a modified version of the Plug-and-Play algo-

rithm with a continuation scheme that guarantees a fixed point convergence for a

wider variety of denoisers compared to existing work. Our fixed point convergence

with a wider range of denoisers complements the existing work on a global conver-

gence with a relatively smaller range of denoisers. With the modifications, we also

show the algorithm is more robust compared to the original Plug-and-Play ADMM

for certain applications.

Internal parameter update: To make the Plug-and-Play algorithm more prac-

tical and robust for a wide range of different applications, we introduce the parameter-

free version of the Plug-and-Play ADMM. This algorithm is derived from the perspec-

tive of the generalized approximate message passing method where a weighted norm

is used instead of the standard norm due to the introduction of the variance of each

independent random variable. Similarly to generalized approximate message passing,

we use the gradient information of the proximal maps of the optimization process,

but instead of using the gradient vector, we use the divergence of the proximal maps

which is a scalar value that enables the use of any arbitrary off-the-shelf denoisers.

To calculate the divergence of the denoiser, denoising is done twice for each itera-

tion, and the divergence is found through the Monte Carlo scheme. Although the

parameter-free version has many unknowns about its convergence properties, it does

provide a practical and robust alternative for many applications in image restoration

problems.
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MACE on foreground extraction: Our study then extends to a more general-

ized framework called multi-agent consensus equilibrium. Each agent of the algorithm

is like a single step of the Plug-and-Play ADMM, except that MACE can have an ar-

bitrary number of agents while Plug-and-Play ADMM only have two steps. Different

from Plug-and-Play ADMM, MACE also does not rely on setting up an optimization

function which means it is not within the same category of the standard optimization

methods. The algorithm can simply guarantee a fixed-point convergence as long as

each agent is non-expansive, while if an agent does correspond to some proximal map

then the MACE result would be the solution to the original optimization problem

defined by those proximal maps. We developed a three-agent MACE algorithm for

solving the foreground extraction problem involved in the virtual reality content cre-

ation pipeline. Utilizing the power of MACE, we are able to achieve state-of-the-art

performance combining different agents’ horsepower together.
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2. PLUG-AND-PLAY ADMM

In this section we will introduce the Plug-and-Play framework for ADMM which is a

model-based iterative approach for optimization problems. Although there is a wide

range of applications for optimization methods, we will focus on image restoration

problems, and thus most variables in the following sections are used to represent

images or operators that operates on images.

2.1 ADMM

ADMMwas first introduced by [6,7] around 1975, which was originally about using

Augmented Lagrangian functional to decouple cost functions with possibly ill-posed

linear operator. A number of other papers analyzed the properties of the algorithm: [8]

studied convergence for several proposed algorithms, [9] proposed different algorithms

for the numerical solution that can be thought as descent methods on the dual formu-

lation, [10–12] presented decomposition algorithms for solving convex problem with

a separable structure. The convergence properties of ADMM has also been analyzed,

where [13] generalized the Augmented Lagrangian method to the method of multi-

pliers which does not generally involve a Lagrangian and demonstrated equivalence

between these methods and some well-known algorithm in nonlinear analysis. [14]

showed the Douglas-Rachord splitting method, such as method of multipliers, is a

special case of the proximal point algorithm and derived a generalized ADMM for

convex programming. Various studies have been focused on applying ADMM on a

number of statistical problems such as [15] that proposed a fast iterative conver-

gent algorithm using forward-backward and Douglas-Rachford splitting for sparse

signal recovery in linear inverse problems, [16–18] which discussed general optimiza-

tion frameworks for solving image restoration problems with the help of some priors,
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and [19, 20] showed applications in some signal processing tasks such as distributed

estimation and smoothing of random signals.

In our work, we are focused on applying optimization on a set of image restoration

problems, where a hidden/nonobservable image x ∈ Rn is fed into a system either

physical or algorithmic such that an observable image y ∈ Rm is obtained as the out-

put of the system. The goal is then to find the best estimate x that best explains the

observation y. Using maximum-a-posteriori (MAP), we can formulate the problem

as a optimization of a conditional probability:

x̂ = argmax
x

p(x|y) (2.1)

= argmin
x
− log p(y|x)− log p(x) (2.2)

where p(x|y) is a conditional probability that defines the forward model of the imaging

system, p(x) is a prior distribution defined based on some prior knowledge of the latent

image x. Often time, as the forward model of a specific problem is well defined, most

of the design effort of the optimization problem is put into the prior formulation.

Many prior distribution have been well studied in the literature such as L1 norm that

prefers a sparse solution for the optimization, L2 norm that is similar to L1 but does

not zero out values in the solution and also total variation which is a slightly more

complicated prior that prefers a smooth solution. The choice of prior should depend

on the specific problem or the preference and understanding of the latent image x.

The solution to (2.2) can be found through a variety of optimization approaches

such as the sparse reconstruction by separable approximation (SpaRSA) [21], the

fast iterative shrinkage thresholding algorithm (FISTA) [22], the two-step iterative

shrinkage thresholding (TwIST) [23] or the alternating direction method of multipliers

(ADMM) [24], which recently has become the power horse of many applications using

the optimization approach. In this work, we mainly focus on the ADMM framework

as it is the most versatile method that allows decoupling and shows competitive

convergence properties.
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The general procedure of applying ADMM starts by turning (2.2) into a con-

strained optimization problem:

argmin
x,v

f(x) + λg(v)

subject to x = v (2.3)

where f(x) corresponds to the forward imaging model, g(v) corresponds to the prior

term, and with the constraint x = v such that the solution to the constrained problem

should be the same as that of the original problem. Based on the constrained problem

formulation, we can write out the corresponding augmented Lagrangian:

L(x,v,u) = f(x) + λg(v) + uT (x− v) +
ρ

2
∥x− v∥22 (2.4)

where u is called the Lagrangian multiplier and ρ is an internal parameter of the aug-

mented Lagrangian. ADMM then proceeds by decoupling the augmented Lagrangian

into three parts with each part corresponding to a step of the iterative algorithm as

the following:

xk+1 = argmin
x

L(x,vk,uk)

vk+1 = argmin
v

L(xk+1,v,uk) (2.5)

uk+1 = uk + ρ(x− v)

Under certain conditions, e.g., when both the forward model term f(x) and the prior

term g(v) are closed, proper and convex, and there exists a saddle point for L, then

it’s proven that these iterative steps will reach a convergence which is the solution

of the original optimization problem stated in (2.2). The ADMM method has good

robustness of the more general method of multipliers and also supports decomposition

of the optimization problem.
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2.2 Plug-and-Play framework

The Plug-and-Play framework was originally introduced in [25] as a framework

that allows both the forward models of general imaging systems and state-of-the-art

denoisers. Following that, an initial convergence analysis was done by [26] as the

convergence properties of the Plug-and-Play framework was largely unknown. This

work demonstrated the global convergence of the Plug-and-Play framework, and just

like the classical ADMM algorithms when the denoiser can be represented using a

doubly stochastic matrix or in other words a symmetric smoothing filter. Although

global convergence is perhaps the strongest form of convergence possible, restricting

the denoiser to be a simple symmetric smoothing filter weakens the key concept of

the Plug-and-Play framework, which is being flexible enough to be compatible with

a wide range of state-of-the-art denoisers. To tackle this issue, the work by [4] is

done through introducing a modified version of the Plug-and-Play framework with a

continuation scheme such that a wider range of denoisers can be used however with

a trade-off being that only a fixed convergence is guaranteed.

Some variations of the Plug-and-Play framework are also proposed such as [27]

that embedded a class-adapted denoiser using GMM so that simultaneous restoration

and semantic segmentation can be done. [28] proposed a regularization by denoising

(RED) algorithm claiming it is capable of incorporating any denoisers and guarantees

a global convergence. However, this work is rebutted by [29] stating the proof for

RED is only true when the denoiser has a symmetric Jacobian which is not the case

for most common state-of-the-art denoisers, and RED algorithms seek a consensus

equilibrium solution. At the same time they proposed a different variation called

Score-Matching by Denoising (SMD) which aims to match the gradient of a log-prior.

Tight connection between SMD and kernel density estimation can be shown. Another

variation is proposed by [30] based the fast iterative shrinkage/threshold algorithm

(FISTA) for Fourier ptychographic microscopy.
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Although many work has been focusing the application of the Plug-and-Play

framework, few have addressed why the framework works so well. For this purpose, a

recent work by [31] provides an analysis on the Plug-and-Play framework by using the

concept of consensus equilibrium and shows an equivalent MAP optimization exists

for a Plug-and-Play algorithm when the denoiser is a symmetric smoothing filter.

For the following section, we will provide a brief introduction of the key concept

behind the Plug-and-Play framework. We start by expressing (2.5) more explicitly as

below:

xk+1 = argmin
x

f(x) +
ρ

2
∥x− x̃k∥2 (2.6)

vk+1 = argmin
v

λg(v) +
ρ

2
∥v − ṽk∥2 (2.7)

ûk+1 = ûk + (xk+1 + vk+1) (2.8)

where x̃k = vk − ûk, ṽk = xk + ûk and ûk = 1
ρ
uk. A key feature of the ADMM

algorithm is its decoupling and modular structure. (2.6) can be seen as an inversion

step trying to find the latent image that fits the forward imaging model f(x) the

best. Let σ =
√

λ
ρ
, we can rewrite (2.7) into:

vk+1 = argmin
v

g(v) +
1

2σ2
∥v − ṽk∥2 (2.9)

If we think ṽk as a noisy image, (2.9) is essentially trying to minimize the difference

between v and ṽk while enforcing a prior term g(v). If we have g(v) = ∥v∥TV , then

(2.9) becomes a standard total variation denoising problem aiming to remove the

noise in ṽk.

Seeing (2.7) as a denoising module, [25] propose a variation of ADMM where any

off-the-shelf denoiser can be used to replace this denoising step without the need to
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specify the prior term g(v) in the original optimization problem. As a result, (2.7)

will become:

vk+1 = Dσ(ṽ
k) (2.10)

where Dσ is some off-the-shelf denoiser with noise level specified as σ. This is why

this newly proposed framework is coined P&P ADMM. Numerous studies have found

its performance to be very promising for a wide range of applications [4, 25, 26]. In

this work, we address the applications of P&P ADMM in several image restoration

problems, provide convergence analysis for the algorithm and propose an automatic

update scheme for internal parameters.

To ensure global convergence of the ADMM algorithm, classical results require

g(v) to be closed, proper and convex. Although new results have demonstrate the

performance of ADMM for nonconvex problems [32], little work is done considering an

implicitly defined g(v) through Dσ. The only work containing convergence analysis

for the P&P ADMM is done by [26] for Dσ that is a symmetric smoothing filter [33].

In our work, by adopting a continuation scheme we are able to show the algorithm

is guaranteed to converge for a much broader range of denoisers called bounded de-

noisers that approaches the identity operator as the denoising parameter (noise level)

vanishes. Bounded denoisers are weaker than the non-expansive denoisers in [26], as

a result a weaker form of fixed point convergence can be achieved instead of a global

one.

Although assurance of convergence is nice, tuning internal parameter of the al-

gorithm can be difficult in the practice as not only the performance can be quite

sensitive to these parameters but also the rate of convergence can be largely depen-

dent on them. As a result, it would be undesirable in the practice for users to tune

these parameters for different optimization problems. In this work, we also offer an

parameter-free version of the P&P ADMM in exchange of the guarantee of conver-

gence. In this variation of the P&P ADMM, the internal parameters are updated
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as part of the iterative optimization process. This algorithm is derived from the

perspective of the generalized approximate message passing [34] with multiple modi-

fications. Although the vanilla P&P ADMM with fine tuned parameters can still out

performs the PAMP, we find the proposed PAMP to achieve solutions along a reliable

and fast convergence path without users having to worry about tuning the internal

parameters.

2.3 Parameter-free Plug-and-Play Framework

Although we discuss the promising performance of the Plug-and-Play framework

for various applications, the behavior of the algorithm is largely unknown especially

in terms of the internal parameters which controls the rate of convergence of the

algorithm and also the quality of the final output. In practice, it is also not desirable

for users to hand tune parameters from time to time on different applications. As a

result, we propose a parameter-free variation of the P&P ADMM derived from the

perspective of the generalized approximate message passing (GAMP) [34].

Just like ADMM, GAMP considers the same constrained optimization problem

in (2.3). GAMP then treats f(x) and g(v) as two different nodes, the output node

and the input node, and passes intermediate parameters (messages) between the two

nodes both forward and backward. However, different from ADMM, the intermediate

parameters are vectors used to calculate weighted norms of data and prior terms.

These intermediate parameters are calculated using the gradient of the proximal maps

of f(x) and (v).

In this work, in deriving the parameter-free version of the P&P ADMM we make

several modifications: we change the vectorized parameters into a scalar parameter

so that the algorithm would still work for an arbitrary denoiser with non-separable

cost; we replace the second step of the GAMP with an off-the-shelf denoiser so that

the obtained new algorithm fits the Plug-and-Play framework. In order to replace



17

vectorized parameter with scalar parameter, we also adopt divergence which is a

scalar instead of the vector of gradients as in GAMP.

The divergence of the inversion step is relatively straight forward, but a general

closed-form for the divergence of some arbitrary denoiser is impossible. To alleviate

the issue, we use the Monte Carlo scheme to numerically approximate the divergence

of the off-the-shelf denoiser. The denoising step has to be performed twice as a trade

off: one for D(ṽ) and one for D(ṽ + ϵb), where ϵb is a small random noise.

Intuitively, the divergence of a function measures the sensitivity of the function

with respect to the input. Essentially, PAMP attenuates the influence of the denoiser

when solving the inversion step if the denoiser has a high divergence and is sensitive

to v. And if the denoiser is quite stable for some v with low divergence, PAMP puts

more emphasis on the denoised image when solving subsequent inversion step.

Although the convergence of PAMP remains an open question, empirical studies

in our work have shown relatively stable performance for multiple image restoration

problems. The goal of PAMP is to update the internal parameters of P&P ADMM

so that the algorithm is more practical and robust for different problems.

2.4 MACE

Multi-agent consensus equilibrium (MACE) [35] is a generalization of the ADMM

framework. The goal of the algorithm is to minimize a cost function that contains

an arbitrary number of terms instead of just two in the case of a standard ADMM.

In this section, we will discuss the application of MACE on foreground extraction for

videos.
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2.4.1 Introduction on MACE

General optimization algorithms focuses on finding a minimizer for a sum of aux-

iliary functions defined perhaps by a multi-modal system:

minimize
f

(x) =
N∑
i=1

fi(x) (2.11)

where x ∈ Rn. In consensus optimization, a set of separate variables are introduced

with the constraint that these separate variables must be equal. This type of prob-

lem is solvable through frameworks such as ADMM. However, due to the emergence

of deep neural networks and other non-optimization based algorithms that are not

captured by traditional optimization, there exists a substantial gap between the clas-

sical optimization based approach and the state-of-the-art operators such as a deep

learning based denoiser. The goal of MACE is to generalize traditional optimization

framework to emcompass models and algorithms not associated with an optimization

problem. Free from optimization cost functions, the solution of MACE is defined as

follows:

Fi(x
∗ + u∗

i ) = x∗ , i = 1, ..., N

û∗
µ = 0 (2.12)

where Fi’s are N vector-valued maps. To show MACE can generalize the consensus

optimization problem, [35] presents a proof showing when the Fi’s are proximal maps

with corresponding fi’s being proper, closed and convex functions, then the solution

as defined in (2.12) is the same as the solution of the optimization problem stated by

(2.11). Certainly, the goal of MACE is not to just generalize the traditional consensus

optimization problem, but to be able to include non-optimization based operators.

The solution of MACE can be found by finding the fixed point of the map:

(2Gµ − I)(2F − I)v∗ = v∗ (2.13)
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where

F (v) =


F1(v1)

F2(v2)
...

FN(vN)

 and Gµ(v) =


v̂µ

v̂µ

...

v̂µ

 (2.14)

with v̂µ being the average of the set of vectors vi’s in v. When T = (2Gµ−I)(2F−I)

is non expansive the the fixed point of the map T can be found through anistropic

preconditioned Mann iterations:

vk+1 = (1− ρ)vk + ρT (vk) (2.15)

By treating CE as a root finding problem, Newton’s method can also be used to find

the MACE solution. However, this is beyond the scope of this work.

Intuitively, MACE can be thought of as a system containing two major parts: one

consists of multiple agents each could correspond to a term in the objective function;

the other one is a consensus unit that gathers outputs from each agent in the first

part to calculate a ’consensus’ and then distributes the ’consensus’ back to each

agent again. Similar to constrained optimization, each agent can be run in parallel

which is an advantage over standard ADMM algorithms. As a result, each MACE

algorithm is only bottle-necked by the slowest agent in the framework. Another major

advantage of MACE is that it is not only a framework for standard optimization

problems. Although MACE can have a well-defined global convergence when each

agent corresponds to a convex and proper function, MACE is able to achieve a fixed

point convergence even when arbitrary agents such as a neural network denoiser are

used as long as each agent is non-expansive. This feature liberates the algorithm

and enables a much broader range of applications. In our work, we design a MACE

algorithm for foreground extraction which is not a nicely formulated problem as the

more common image restoration problems. But with the flexibility of the MACE
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framework, we are able to achieve promising performance even compared to state-of-

the-art competing algorithms.

2.4.2 Foreground extraction

Foreground extraction is one of the most studied topics in computer vision. In

this work, we focus on foreground extraction in the image processing pipeline of a

virtual reality system. The standard mathematical formulation of the problem is as

below:

I = αF + (1−α)B (2.16)

where I is the image we observe, α is a grey scale mask, F is the latent foreground

image, and B is the latent background image. Under this formulation, we are es-

sentially saying the observed image is a convex combination of a foreground image

and a background image. The goal of standard foreground extraction algorithm is to

find α given the observed image I. The problem is obviously under-determined. To

tackle this problem, a standard approach called alpha matting [36–39] is developed,

where user need to provide additional information in the form of a trimap or scribbles

indicating foreground and background areas in I.

Although alpha matting alleviates the problem, large amount of human efforts

are needed in order to process a huge volume of image data, which is the common

situation of virtual reality content creation. On the other hand, we tackle the problem

from a different perspective with different assumptions about the problem that are

more friendly for the VR content creation setting. First, instead of having a trimap

for each frame of a video, we assume a single plate image containing pure background

is available. This is very feasible in most filming shooting environment where camera

can simply capture a single frame before the objects enter the scene. This approach

is almost effortless compared to drawing trimaps for all frames in a video. Second,
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we only focus on the major boundaries as fine details can always be improved using

state-of-the-art alpha matting algorithms as a post-processing.

2.4.3 Agents for foreground extraction

We develop three agents for the MACE algorithm for foreground extraction. The

first agent is inspired by closed-form matting [36] that uses a linear model for α,

which is a generalization of the problem formulation in (2.16). Under this linear

model, closed-form-matting is able to derive a Laplacian matrix that contains inter-

pixel information which can used used for solving α. The original closed-form matting

requires a trimap as input like most alpha matting algorithms. The proposed agent

takes the plate image as input instead and does not require any user input. A new

dual-layer Laplacian matrix is derived to accommodate the additional plate image.

The original objective function of closed-form-matting also has a term that enforces

the trimap input on the result. This is replaced by a softer enforcement based on

thresholding an operation on the input to the agent.

The second agent draws both the color and texture cues from the plate and input

frames. In using the color cue, the frame difference is calculated between the plate

and the image and is then smoothed with a bilateral filter guided by the input image.

As a result, when plate and input images are similar in color for a region, the result

using color cue will have very small values for this region. However, color cue only is

not enough when the foreground and background have similar colors. To tackle this

issue, texture information also needs to be explored. The input image is segmented

using super-pixel algorithm [40], and the same segmentation is placed on the plate

image. Texture information is then calculated for each super-pixel on both plate and

input image. Then super-pixels on plate and input images are compared to make a

soft decision on whether a super-pixel on the input image belongs to foreground or

background. The final estimate is simply the pixel-wise product between the color cue

and texture cue results. And this final estimate is then fed into an objective function
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so that it can be used iteratively within the MACE framework. An additional term

that prefers binary pixel values is also added to the objective function of the second

agent.

Perhaps not surprisingly, the third agent is an off-the-shelf denoiser just like Plug-

and-Play ADMM. Using different denoisers for this agent will produce different fi-

nal results for MACE. We tested on several denoisers such as Total variation [41],

BM3D [42] and a deep learning denoiser trained for iterative algorithms. Overall,

total variation denoiser offers the best balance among performance, robustness and

computational complexity.

Because of the flexibility of MACE, other agent designs for foreground extraction

could also be explored, but it would be beyond the scope of this work. In our work,

we show the proposed three agents achieve promising performance. In ablation study,

the performance degrades largely when any one of them is absent in MACE with the

rest unchanged.
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3. PLUG-AND-PLAY ADMM FOR IMAGE

RESTORATION:
FIXED POINT CONVERGENCE AND APPLICATIONS

3.1 Introduction

3.1.1 MAP and ADMM

Many image restoration tasks can be posted as the following inverse problem:

Given an observed image y ∈ Rn corrupted according to some forward model and

noise, find the underlying image x ∈ Rn which “best explains” the observation.

In estimation, we often formulate this problem as a maximum-a-posteriori (MAP)

estimation [43], where the goal is to maximize the posterior probability:

x̂ = argmax
x

p(x | y)

= argmin
x

− log p(y | x)− log p(x), (3.1)

for some conditional probability p(y |x) defining the forward imaging model, and

a prior distribution p(x) defining the probability distribution of the latent image.

Because of the explicit use of the forward and the prior models, MAP estimation is also

a model-based image reconstruction (MBIR) method [44] which has many important

applications in deblurring [18,45,46], interpolation [41,47,48], super-resolution [49–52]

and computed tomography [26], to name a few.

It is not difficult to see that solving the MAP problem in (3.1) is equivalent to

solving an optimization problem

x̂ = argmin
x

f(x) + λg(x), (3.2)
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with f(x)
def
= − log p(y |x) and g(x)

def
= −(1/λ) log p(x). The optimization in (3.2) is

a generic unconstrained optimization. Thus, standard optimization algorithms can

be used to solve the problem. In this work, we focus on the alternating direction

method of multiplier (ADMM) [24], which has become the workhorse for a variety of

problems in the form of (3.2).

The idea of ADMM is to convert (3.2), an unconstrained optimization, into a

constrained problem

(x̂, v̂) = argmin
x,v

f(x) + λg(v), subject to x = v, (3.3)

and consider its augmented Lagrangian function:

L(x,v,u) = f(x) + λg(v) + uT (x− v) +
ρ

2
∥x− v∥2. (3.4)

The minimizer of (3.3) is then the saddle point of L, which can be found by solving

a sequence of subproblems

x(k+1) = argmin
x∈Rn

f(x) +
ρ

2
∥x− x̃(k)∥2, (3.5)

v(k+1) = argmin
v∈Rn

λg(v) +
ρ

2
∥v − ṽ(k)∥2, (3.6)

ū(k+1) = ū(k) + (x(k+1) − v(k+1)), (3.7)

where ū(k) def
= (1/ρ)u(k) is the scaled Lagrange multiplier, x̃(k) def

= v(k) − ū(k) and

ṽ(k) def
= x(k+1) + ū(k). Under mild conditions, e.g., when both f and g are closed,

proper and convex, and if a saddle point of L exists, one can show that the iterates

(5.2a)-(5.2c) converge to the solution of (3.3) (See [24] for details).
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3.1.2 Plug-and-Play ADMM

An important feature of the ADMM iterations (5.2a)-(5.2c) is its modular struc-

ture. In particular, (5.2a) can be regarded as an inversion step as it involves the

forward imaging model f(x), whereas (5.2b) can be regarded as a denoising step as

it involves the prior g(v). To see the latter, if we define σ =
√

λ/ρ, it is not difficult

to show that (5.2b) is

v(k+1) = argmin
v∈Rn

g(v) +
1

2σ2
∥v − ṽ(k)∥2. (3.8)

Treating ṽ(k) as the “noisy” image, (3.8) minimizes the residue between ṽ(k) and

the “clean” image v using the prior g(v). For example, if g(x) = ∥x∥TV (the total

variation norm), then (3.8) is the standard total variation denoising problem.

Building upon this intuition, Venkatakrishnan et al. [25] proposed a variant of the

ADMM algorithm by suggesting that one does not need to specify g before running

the ADMM. Instead, they replace (5.2b) by using an off-the-shelf image denoising

algorithm, denoted by Dσ, to yield

v(k+1) = Dσ

(
ṽ(k)

)
. (3.9)

Because of the heuristic nature of the method, they called the resulting algorithm

as the Plug-and-Play ADMM. An interesting observation they found in [25] is that

although Plug-and-Play ADMM appears ad-hoc, for a number of image reconstruction

problems the algorithm indeed performs better than some state-of-the-art methods.

A few recent reports have concurred similar observations [26, 53–55].

3.1.3 Challenges of Plug-and-Play ADMM

From a theoretical point of view, the main challenge of analyzing Plug-and-Play

ADMM is the denoiser Dσ. Since Dσ is often nonlinear and does not have closed
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form expressions, the analysis has been very difficult. Specifically, the following three

questions remain open:

1. Convergence of the Algorithm. Classical results of ADMM require g to be

closed, proper and convex in order to ensure convergence [24]. While newer

results have extended ADMM for nonconvex problems [32], there is little work

addressing the case when g is defined implicitly through Dσ. To the best of

our knowledge, the only existing convergence analysis, to date, is the one by

Sreehari et al. [26] for the case when Dσ is a symmetric smoothing filter [56,57].

However, for general Dσ the convergence is not known.

2. Original Prior. Since Dσ is an off-the-shelf image denoising algorithm, it is un-

clear what prior g does it correspond to. In [58], Chan addresses this question

by explicitly deriving the original prior g when Dσ is a symmetric smoothing

filter [58]. In this case, the author shows that g is a modified graph Lapla-

cian prior, with better restoration performance compared to the conventional

graph Laplacian [33]. However, beyond symmetric smoothing filters it becomes

unclear if we can find the corresponding g.

3. Implementation. The usage of Plug-and-Play ADMM has been reported in a

few scattered occasions, with some work in electron tomography [26], compres-

sive sensing [53], and some very recent applications in Poisson recovery [54]

and super-resolution [55]. However, the common challenge underpinning these

applications is whether one can obtain a fast solver for the inversion step in

(5.2a). This has not been a problem for conventional ADMM, because in many

cases we can use another variable splitting strategy to replace v = x in (3.3),

e.g., using v = Bx when g(x) = ∥Bx∥1 [45].
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3.1.4 Related Works

Plug-and-Play ADMM was first reported in 2013. Around the same period of

time there is an independent series of studies using denoisers for approximate mes-

sage passing (AMP) algorithms [42, 59–61]. The idea was to replace the shrinkage

step of the standard AMP algorithm with any off-the-shelf algorithm in the class

of “proper denoisers” – denoisers which ensure that the noise variance is sufficiently

suppressed. (See Section 3.2.3 for more discussions.) However, this type of denoise-

AMP algorithms rely heavily on the Gaussian statistics of the random measurement

matrix A in a specific forward model f(x) = ∥Ax−y∥2. Thus, if f(x) departs from

quadratic or if A is not random, then the behavior of the denoise-AMP becomes

unclear.

Using denoisers as building blocks of an image restoration algorithm can be traced

back further, e.g., wavelet denoiser for signal deconvolution [62]. Of particular rel-

evance to Plug-and-Play ADMM is the work of Danielyan et al. [63], where they

proposed a variational method for deblurring using BM3D as a prior. The idea

was later extended by Zhang et al. to other restoration problems [64]. However,

these algorithms are customized for the specific denoiser BM3D. In contrast, the pro-

posed Plug-and-Play ADMM supports any denoiser satisfying appropriate assump-

tions. Another difference is that when BM3D is used in [63] and [64], the grouping of

the image patches are fixed throughout the iterations. Plug-and-Play ADMM allows

re-calculation of the grouping at every iteration. In this aspect, the Plug-and-Play

ADMM is more general than these algorithms.

A large number of denoisers we use nowadays are patch-based denoising algo-

rithms. All these methods can be considered as variations in the class of univer-

sal denoisers [65, 66] which are asymptotically optimal and do not assume external

knowledge of the latent image (e.g., prior distribution). Asymptotic optimality of

patch-based denoisers has been recognized empirically by Levin et al. [67, 68], who

showed that non-local means [69] approaches the MMSE estimate as the number
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of patches grows to infinity. Recently, Ma et al. [70] made attempts to integrate

universal denoisers with approximate message passing algorithms.

3.1.5 Contributions

The objective of this work is to address the first and the third issue mentioned in

Section 3.1.3. The contributions of this work are as follows:

First, we modify the original Plug-and-Play ADMM by incorporating a continua-

tion scheme. We show that the new algorithm is guaranteed to converge for a broader

class of denoisers known as the bounded denoisers. Bounded denoisers are asymptot-

ically invariant in the sense that the denoiser approaches an identity operator as the

denoising parameter vanishes. Bounded denoisers are weaker than the non-expansive

denoisers presented in [26]. However, for weaker denoisers we should also expect a

weaker form of convergence. We prove that the new Plug-and-Play ADMM has a

fixed point convergence, which complements the global convergence results presented

in [26].

Second, we discuss fast implementation techniques for image super-resolution and

single photon imaging problems. For the super-resolution problem, conventional

ADMM requires multiple variable splits or an inner conjugate gradient solver to solve

the subproblem. We propose a polyphase decomposition based method which gives

us closed-form solutions. For the single photon imaging problem, existing ADMM

algorithm are limited to explicit priors such as total variation. We demonstrate how

Plug-and-Play ADMM can be used and we present a fast implementation by exploit-

ing the separable feature of the problem.

The rest of the chapter is organized as follows. We first discuss the Plug-and-Play

ADMM algorithm and the convergence properties in Section 3.2. We then discuss the

applications in Section 3.3. Experimental results are presented in Section 3.4.
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3.2 Plug-and-Play ADMM and Convergence

In this section we present the proposed Plug-and-Play ADMM and discuss its

convergence property. Throughout this chapter, we assume that the unknown image

x is bounded in an interval [xmin, xmax] where the upper and lower limits can be

obtained from experiment or from prior knowledge. Thus, without loss of generality

we assume x ∈ [0, 1]n.

3.2.1 Plug-and-Play ADMM

The proposed Plug-and-Play ADMM algorithm is a modification of the conven-

tional ADMM algorithm in (5.2a)-(5.2c). Instead of choosing a constant ρ, we increase

ρ by ρk+1 = γkρk for γk ≥ 1. In optimization literature, this is known as a continua-

tion scheme [71] and has been used in various problems, e.g., [72, 73]. Incorporating

this idea into the ADMM algorithm, we obtain the following iteration:

x(k+1) = argmin
x

f(x) + (ρk/2)∥x− (v(k) − u(k))∥2 (3.10)

v(k+1) = Dσk
(x(k+1) + u(k)) (3.11)

u(k+1) = u(k) + (x(k+1) − v(k+1)) (3.12)

ρk+1 = γkρk, (3.13)

where Dσk
is a denoising algorithm (called a “denoiser” for short), and σk

def
=
√

λ/ρk

is a parameter controlling the strength of the denoiser.

There are different options in setting the update rule for ρk. In this work we

present two options. The first one is a monotone update rule which defines

ρk+1 = γρk, for all k (3.14)
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Algorithm 1 Plug-and-Play ADMM
Input: ρ0, λ, η < 1, γ > 1.
while Not Converge do

x(k+1) = argmin
x

f(x) + (ρk/2)∥x− (v(k) − u(k))∥2

v(k+1) = Dσk
(x(k+1) + u(k)), where σk =

√
λ/ρk

u(k+1) = u(k) + (x(k+1) − v(k+1))
if ∆k+1 ≥ η∆k then
ρk+1 = γρk

else
ρk+1 = ρk

end if
k = k + 1.

end while

for a constant γ > 1. The second option is an adaptive update rule by considering the

relative residue:

∆k+1
def
=

1√
n

(
∥x(k+1) − x(k)∥2 + ∥v(k+1) − v(k)∥2

+ ∥u(k+1) − u(k)∥2
)
. (3.15)

For any η ∈ [0, 1) and let γ > 1 be a constant, we conditionally update ρk according

to the followings:

• If ∆k+1 ≥ η∆k, then ρk+1 = γρk.

• If ∆k+1 < η∆k, then ρk+1 = ρk.

The adaptive update scheme is inspired from [74], which was originally used to ac-

celerate ADMM algorithms for convex problems. It is different from the residual

balancing technique commonly used in ADMM, e.g., [24], as ∆k+1 sums of all primal

and dual residues instead of treating them individually. Our experience shows that

the proposed scheme is more robust than residual balancing because the denoiser

could potentially generate nonlinear effects to the residuals. Algorithm 1 shows the

overall Plug-and-Play ADMM.
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Remark 1 (Comparison with [25]) In the original Plug-and-Play ADMM by [25],

the update scheme is ρk = ρ for some constant ρ. This is valid when the denoiser Dσ

is non-expansive and has symmetric gradient. However, for general denoisers which

could be expansive, the update scheme for ρk becomes crucial to the convergence. (See

discussion about non-expansiveness in Section 3.2.2.)

Remark 2 (Role of σk) Many denoising algorithms nowadays such as BM3D and

non-local means require one major parameter 1, typically an estimate of the noise

level, to control the strength of the denoiser. In our algorithm, the parameter σk in

(3.11) is reminiscent to the noise level. However, unlike BM3D and non-local means

where σk is directly linked to the standard deviation of the i.i.d. Gaussian noise, in

Plug-and-Play ADMM we treat σk simply as a tunable knob to control the amount of

denoising because the residue (v − ṽ(k)) at the kth iterate is not exactly Gaussian.

The adoption of the Gaussian denoiser Dσk
is purely based on the formal equivalence

between (3.8) and a Gaussian denoising problem.

Remark 3 (Role of λ) In this work, we assume that the parameter λ is pre-defined

by the user and is fixed. Its role is similar to the regularization parameter in the

conventional ADMM problem. Tuning λ can be done using external tools such as

cross validation [75] or SURE [76].

3.2.2 Global and Fixed Point Convergence

Before we discuss the convergence behavior, we clarify two types of convergence.

We refer to the type of convergence in the conventional ADMM as global con-

vergence, i.e., convergence in primal residue, primal objective and dual variables. To

ensure global convergence, one sufficient condition is that g is convex, proper and

closed [24]. For Plug-and-Play ADMM, a sufficient condition is that Dσ has sym-

metric gradient and is non-expansive [26]. In this case, g exists due to a proximal
1A denoising algorithm often involves many other “internal” parameters. However, as these internal
parameters do not have direct interaction with the ADMM algorithm, in this work we keep all
internal parameters in their default settings to simplify the analysis.
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mapping theorem of Moreau [77]. However, proving non-expansive denoisers could

be difficult as it requires

∥Dσ(x)−Dσ(y)∥2 ≤ κ∥x− y∥2

for any x and y, with κ ≤ 1. Even for algorithms as simple as non-local means, one

can verify numerically that there exists pairs (x,y) that would cause κ > 1. In the

Appendix we demonstrate a counter example.

Since Dσ can be arbitrary and we do not even know the existence of g, we consider

fixed point convergence instead. Fixed point convergence guarantees that a nonlin-

ear algorithm can enter into a steady state asymptotically. In nonlinear dynamical

systems, these limit points are referred to as the stable-fixed-points. For any initial

guess lying in a region called the basin of attraction the algorithm will converge [78].

For Plug-and-Play ADMM, we conjecture that fixed point convergence is the best we

can ask for unless further assumptions are made on the denoisers.

3.2.3 Convergence Analysis of Plug-and-Play ADMM

We define the class of bounded denoisers.

Definition 3.2.1 (Bounded Denoiser). A bounded denoiser with a parameter σ is a

function Dσ : Rn → Rn such that for any input x ∈ Rn,

∥Dσ(x)− x∥2/n ≤ σ2C, (3.16)

for some universal constant C independent of n and σ.

Bounded denoisers are asymptotically invariant in the sense that it ensures Dσ →

I (i.e., the identity operator) as σ → 0. It is a weak condition which we expect most

denoisers to have. The asymptotic invariant property of a bounded denoiser prevents

trivial mappings from being considered, e.g., Dσ(x) = 0 for all x.
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Remark 4 It would be useful to compare a bounded denoiser with a “proper denoiser”

defined in [59]. A proper denoiser D̃σ is a mapping that denoises a noisy input x+σϵ

with the property that

E
[
∥D̃σ(x+ σϵ)− x∥2/n

]
≤ κσ2, (3.17)

for any κ < 1, where ϵ ∼ N (0, I) is the i.i.d. Gaussian noise. Note that in (3.17),

we require the input to be a deterministic signal x plus an i.i.d. Gaussian noise.

Moreover, the parameter must match with the noise level. In contrast, a bounded

denoiser can take any input and any parameter.

Besides the conditions on Dσ we also assume that the negative log-likelihood

function f has bounded gradients:

Assumption 1 We assume that f : [0, 1]n → R has bounded gradients. That is, for

any x ∈ [0, 1]n, there exists L <∞ such that ∥∇f(x)∥2/
√
n ≤ L.

Example 1 Let f(x) = ∥Ax− y∥22 for A ∈ Rn×n with eigenvalues bounded between

0 and 1. The gradient of f is ∇f(x) = 2AT (Ax− y) and

∥∇f(x)∥2/
√
n ≤ 2λmax(A)2(∥x∥2 + ∥y∥2)/

√
n.

The main convergence result of this work is as follows.

Theorem 3.2.1 (Fixed Point Convergence of Plug-and-Play ADMM). Under As-

sumption 1 and for any bounded denoiser Dσ, the iterates of the Plug-and-Play ADMM

defined in Algorithm 1 demonstrates a fixed-point convergence. That is, there exists

(x∗,v∗,u∗) such that ∥x(k) − x∗∥2 → 0, ∥v(k) − v∗∥2 → 0 and ∥u(k) − u∗∥2 → 0 as

k →∞.

Proof See Appendix B.
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Intuitively, what Theorem 5.2.1 states is that as k →∞, the continuation scheme

forces ρk → ∞. Therefore, the inversion in (3.10) and the denoising in (3.11) have

reducing influence as ρk grows. Hence, the algorithm converges to a fixed point.

Theorem 5.2.1 also ensures that x(k) → v(k) which is an important property of the

original Plug-and-Play ADMM algorithm [26]. The convergence of x(k) → v(k) holds

because u(k+1) = u(k) + (x(k+1) − v(k+1)) converges. In practice, experimentally we

observe that if the algorithm is terminated early to reduce the runtime, then v(k)

tends to provide a slightly better solution.

3.2.4 Stopping Criteria

Since we are seeking for fixed point convergence, a natural stopping criteria is to

determine if ∥x(k+1) − x(k)∥2, ∥v(k+1) − v(k)∥2 and ∥u(k+1) − u(k)∥2 are sufficiently

small. Following the definition of ∆k+1 in (3.15), we choose to terminate the iteration

when

∆k+1
def
=

1√
n

(
∥x(k+1) − x(k)∥2 + ∥v(k+1) − v(k)∥2

+ ∥u(k+1) − u(k)∥2
)
≤ tol (3.18)

for some tolerance level tol. Alternatively, we can also terminate the algorithm when

max
{
ϵ1, ϵ2, ϵ3

}
≤ tol/3,

where ϵ1 = ∥x(k+1) − x(k)∥2/
√
n, ϵ2 = ∥v(k+1) − v(k)∥2/

√
n and ϵ3 = ∥u(k+1) −

u(k)∥2/
√
n.

In practice, the tolerance level does not need to be extremely small in order to

achieve good reconstruction quality. In fact, for many images we have tested, setting

tol ≈ 10−3 is often sufficient. Figure 3.1 provides a justification. In this experiment,

we tested an image super-resolution problem for 10 testing images (See Configuration

3 in Section 3.4.1 for details). It can be observed that the PSNR becomes steady
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when tol drops below 10−3. Moreover, size of the image does not seem to be an

influencing factor. Smaller images such as Cameraman256, House256 and Peppers256

shows similar characteristics as bigger images. The more influencing factor is the

combination of the update ratio γ and the initial value ρ0. However, unless γ is close

to 1 and ρ0 is extremely small (which does not yield good reconstruction anyway),

our experience is that setting tol at 10−3 is usually valid for γ ∈ (1, 2) and ρ0 ∈

(10−5, 10−2).
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Fig. 3.1.: Stopping criteria. The PSNR drops as the tolerance level increases. How-
ever, regardless of the size of the images, the PSNR becomes steady when tol ≈ 10−3.

3.2.5 Initial Parameter ρ0

The choice of the initial parameter ρ0 requires some tuning but is typically good for

ρ0 ∈ (10−5, 10−2). Figure 3.2 shows the behavior of the algorithm for different values

of ρ0, ranging from 100 to 10−4. We compare the original Plug-and-Play ADMM (i.e.,

with constant ρk = ρ0, the red lines), monotone update rule (i.e., ρk+1 = γρk, the

blue lines), and the adaptive update rule (the black lines). We make two observations
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regarding the difference between the proposed algorithm and the original Plug-and-

Play ADMM [26]:

• Stability: The original Plug-and-Play ADMM [26] requires a highly precise ρ0.

For example, in Figure 3.2 the best PSNR is achieved when ρ0 = 1; When ρ0 is

less than 10−2, the PSNR becomes very poor. The proposed algorithm works for

a much wider range of ρ0.

• Final PSNR: The proposed Plug-and-Play ADMM is a generalization of the

original Plug-and-Play ADMM. The added degrees of freedom are the new pa-

rameters (ρ0, γ, η). The original Plug-and-Play ADMM is a special case when

γ = 1. Therefore, for optimally tuned parameters, the proposed Plug-and-Play

ADMM is always better than or equal to the original Plug-and-Play ADMM.

This is verified in Figure 3.2, which shows that the best PSNR is attained by the

proposed method.

iteration number, k

0 10 20 30 40 50 60 70 80 90 100

P
S

N
R

 (
d
B

)

22.5

23

23.5

24

24.5

25

25.5

26

26.5

ρ
0
 = 1e-0

ρ
0
 = 1e-0.5

ρ
0
 = 1e-1

ρ
0
 = 1e-1.5

ρ
0
 = 1e-2

ρ
0
 = 1e-2.5

ρ
0
 = 1e-3

ρ
0
 = 1e-3.5

ρ
0
 = 1e-4

Fig. 3.2.: Influence of ρ0. Red curves represent the original method in [26]; Blue curves
represent the monotone update rule; Black curves represent the adaptive update rule.
Note the diversified behavior of the red curve, which implies that a precise ρ0 is
required. The blue and black curves are more robust.
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Fig. 3.3.: Influence of the initial point x(0). We start the algorithm with 100 differ-
ent initial guesses x(0) where each is a uniformly random vector drawn from [0, 1]n.
Over these 100 random realizations we plot the average (red line). Note the small
fluctuation of the PSNR at the limit.

3.2.6 Initial Guesses

The initial guesses x(0), v(0) and u(0) have less impact to the final PSNR. This can

be seen from Figure 3.3. In this experiment, we randomly draw 100 initial guesses x(0)

from a uniform distribution in [0, 1]n. The auxiliary variable is set as v(0) = x(0), and

the Lagrange multiplier u(0) is 0. As shown in Figure 3.3, the initial guesses do not

cause significant difference in term of PSNR at the limit. The standard deviation at

the limit is 0.0059 dB, implying that with 99.7% probability (3 standard deviations)

the PSNR will stay within ±0.0176 dB from its average.

3.3 Applications

As we discussed in the introduction, Plug-and-Play ADMM algorithm has a wide

range of applications. However, in order to enable the denoising step, Plug-and-Play

ADMM uses a specific variable splitting strategy. The challenge it brings, therefore, is

whether we can solve the subsequent subproblems efficiently. The purpose of this sec-
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tion is to address this issue by presenting two applications where fast implementation

can be achieved.

3.3.1 Application 1: Image Super-resolution

Image super-resolution can be described by a linear forward model with two op-

erations: an anti-aliasing filter and a subsampling process. The function f(x) is

quadratic in the form

f(x) = ∥SHx− y∥2, (3.19)

where the matrix H ∈ Rn×n is a circulant matrix representing the convolution for

the anti-aliasing filter. The matrix S ∈ Rm×n is a binary sampling matrix, where the

rows are subsets of the identity matrix. By defining G def
= SH we recognize that when

substituting (3.19) into (5.2a), the f -subproblem becomes (we dropped the iteration

number k to simplify notation)

x̂ = argmin
x∈Rn

∥Gx− y∥2 + ρ

2
∥x− x̃∥2. (3.20)

Consequently, the solution is the pseudo-inverse

x̂ = (GTG+ ρI)−1(GTy + ρx̃). (3.21)

For special cases of H and S, (3.21) has known efficient implementation as follows.

Example 2 (Non-blind deblurring [18,45,73]) Non-blind deblurring is a special

case when S = I. In this case, since H is circulant which is diagonalizable by the

discrete Fourier transform matrices, (3.21) can be efficiently implemented by

x̂ = F−1

{
F(h)F(y) + ρF(x̃)
|F(h)|2 + ρ

}
, (3.22)
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where F(·) is the Fourier transform operator, h is the finite impulse response filter rep-

resenting the blur kernel, (·) is the complex conjugate, and the multiplication/division

are element-wise operations.

Example 3 (Interpolation [41,47,48,79]) Image interpolation is a special case

when H = I. In this case, since STS is a diagonal matrix with binary entries, (3.21)

can be efficiently implemented using an element-wise division:

x̂ = (STy + ρx̃)./(s+ ρ), (3.23)

where s = diag
{
STS

}
.

3.3.2 Polyphase Implementation for Image Super-Resolution

WhenG = SH , solving the f -subproblem becomes non-trivial becauseHTSTSH

is neither diagonal nor diagonalizable by the Fourier transform. In literature, the

two most common approaches are to introduce multi-variable split to bypass (3.21)

(e.g., [45,80]) or use an inner conjugate gradient to solve (3.21) (e.g., [55]). However,

multi-variable splitting requires additional Lagrange multipliers and internal param-

eters. It also generally leads to slower convergence than single-variable split. Inner

conjugate gradient is computationally expensive as it requires an iterative solver.

In what follows, we show that when S is the standard K-fold downsampler (i.e.,

sub-sample the spatial grid uniformly with a factor K along horizontal and vertical

directions), and whenH is a circular convolution, it is possible to derive a closed-form

solution 2.
2We assume the boundaries are circularly padded. In case of other types boundary conditions or
unknown boundary conditions, we can pre-process the image by padding the boundaries circularly.
Then, after the super-resolution algorithm we crop the center region. The alternative approach is
to consider multiple variable split as discussed in [81].
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Our closed form solution begins by considering the Sherman-Morrison-Woodbury

identity, which allows us to rewrite (3.21) as

x̂ = ρ−1b− ρ−1GT (ρI +GGT )−1Gb, (3.24)

where b
def
= GTy + ρx̃. Note that if S ∈ Rm×n and H ∈ Rn×n with m < n, then

(3.24) only involves a m×m inverse, which is smaller than the n×n inverse in (3.21).

The more critical step is the following observation. We note that the matrix GGT

is given by

GGT = SHHTST .

Since S is a K-fold downsampling operator, ST is a K-fold upsampling operator.

Defining H̃ = HHT , which can be implemented as a convolution between the

blur kernel h and its time-reversal, we observe that SH̃ST is a “upsample-filter-

downsample” sequence. This idea is illustrated in Figure 3.4.

We next study the polyphase decomposition [82] of Figure 3.4. Polyphase decom-

position allows us to write

H̃(z) =
K−1∑
k=0

z−kH̃k(z
K), (3.25)

where H̃(z) is the z-transform representation of the blur matrix H̃ = HHT , and

H̃k(z
K) is the kth polyphase component of H̃(z). Illustrating (3.25) using a block

diagram, we show in Figure 3.5 the decomposed structure of Figure 3.4. Then, using

Noble identity [82], the block diagram on the left hand side of Figure 3.5 becomes the

one shown on the right hand side. Since for any k > 1, placing a delay z−k between an

upsampling and a downsampling operator leads to a zero, the overall system simplifies

to a finite impulse response filter H̃0(z), which can be pre-computed.

We summarize this by the following proposition.



41

K H(z) H(z) K

GT G

≡ K H̃(z) K

Fig. 3.4.: [Left] Block diagram of the operation GGT . [Right] The equivalent system,
where H̃(z) = H(z)H(z).

Algorithm 2 Compute the 0th polyphase component.
Input: h: the blur kernel, and K: downsampling factor
Let h̃ = F−1(F(h)F(h)) be the convolved filter.
Output: h̃0 = (↓K)(h̃).

Proposition 3.3.1 The operation of SHHTST is equivalent to applying a finite

impulse response filter H̃0(z), which is the 0th polyphase component of the filter

HHT .

K H̃0(z
K) K

K z−1 H̃1(z
K) K

...

K z−(K−1) H̃K−1(z
K) K

H̃0(z) K K

H̃1(z) K z−1 K

...

H̃K−1(z) K z−(K−1) K

≡

Fig. 3.5.: [Left] Polyphase decomposition of H̃(z). [Right] Equivalent representation.

To implement the 0th polyphase component, we observe that it can be done

by downsampling the convolved filter H̃ = HHT . This leads to the procedure

illustrated in Algorithm 2.

The implication of Proposition 3.3.1 is that since GGT is equivalent to a finite

impulse response filter h̃0, (3.24) can be implemented in closed-form using the Fourier

transform:

x = ρ−1b− ρ−1GT

(
F−1

{
F(Gb)

|F(h̃0)|2 + ρ

})
, (3.26)

where we recall that b = GTy + ρx̃.
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The effectiveness of the proposed closed-form solution can be seen from Figure 3.6.

In this figure, we compare with a brute force conjugate gradient method presented

in [55]. When H satisfies periodic boundary conditions, the closed-form solution is

exact. If the boundaries are not periodic, alternative solutions can be considered,

e.g., [83].

iteration
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Conjugate gradient

Closed form

Fig. 3.6.: Runtime of conjugate gradient for solving a x-subproblem. Note the non-
iterative nature of the closed-form solution.

3.3.3 Application 2: Single Photon Imaging

The second application is a single photon imaging problem using quanta image

sensors (QIS) [84]. Using ADMM for QIS was previously reported in [85]. Here, we

show how the Plug-and-Play ADMM can be used for the problem.

QIS is a spatial oversampling device. A QIS is composed to many tiny single

photon detectors called jots. In each unit space, K jots are used to acquire light

corresponding to a pixel in the usual sense (e.g., a pixel in a CMOS sensor). Therefore,

for an image of n pixels, a total number of nK jots are required. By assuming

homogeneous distribution of the light within each pixel, we consider a simplified QIS
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imaging model which relates the underlying image x ∈ Rn and the actual photon

arrival rate at the jots s ∈ RnK as

s = αGx,

where the matrix G ∈ RnK×n is

G =
1

K


1K×1 0K×1 . . . 0K×1

0K×1 1K×1 . . . 0K×1

... ... . . . ...

0K×1 0K×1 . . . 1K×1

 , (3.27)

and α is a sensor gain. Given s, the photons arriving at the sensors follow a Poisson

distribution with a rate given by s. Let Zi be the random variable denoting the

number of photons at jot i, we have

p(zi) =
s−zi
i e−si

zi!
, i = 1, . . . , nK. (3.28)

The final QIS output, Yi, is a binary bit resulted from truncating Zi using a threshold

q. That is,

Yi =

1, if Zi ≥ q,

0, if Zi < q.

When q = 1, the probability of observing Yi = yi given si is

p(yi | si) =

e−si , if yi = 0,

1− e−si , if yi = 1.
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The recovery goal is to estimate x from the observed binary bits y. Taking the

negative log and summing over all pixels, the function f is defined as

f(x)
def
= p(y | s) =

nK∑
i=1

− log p(yi | si)

=
nK∑
i=1

− log
(
(1− yi)e

−si + yi
(
1− e−si

))
=

n∑
j=1

−K0
j log(e

−
αxj
K )−K1

j log(1− e−
αxj
K ), (3.29)

where K1
j =

∑K
i=1 y(j−1)K+i is the number of ones in the jth unit pixel, and K0

j =∑K
i=1(1−y(j−1)K+i) is the number of zeros in the jth unit pixel. (Note that for any j,

K1
j +K0

j = K.) Consequently, substituting (3.29) into (3.10) yields the f -subproblem

min
x

n∑
j=1

−K0
j log(e

−
αxj
K )−K1

j log(1− e−
αxj
K ) +

ρ

2
(xj − x̃j)

2. (3.30)

Since this optimization is separable, we can solve each individual variable xj indepen-

dently. Thus, for every j, we solve a single-variable optimization by taking derivative

with respect to xj and setting to zero, yielding

Ke−
αxj
K (α + ρ(xj − x̃j)) = αK0

j + ρK(xj − x̃j),

which is a one-dimensional root finding problem. By constructing an offline lookup

table in terms of K0, ρ and x̃j, we can solve (3.30) efficiently.

3.4 Experimental Results

In this section we present the experimental results. For consistency we use BM3D

in all experiments, although other bounded denoisers will also work. We shall not

compare Plug-and-Play ADMM using different denoisers as it is not the focus of the

work.
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3.4.1 Image Super-Resolution

We consider a set of 10 standard test images for this experiment as shown in

Figure 3.7. All images are gray-scaled, with sizes between 256× 256 and 512× 512.

Four sets of experimental configurations are studied, and are shown in Table 3.1.

Fig. 3.7.: 10 testing images for the experiment.

Table 3.1.: Configurations and parameters.

Config Description
1 K = 2, H = bicubic, Noise = 0
2 K = 4, H = bicubic, Noise = 0

ρ0 = 1.3× 10−5, γ = 2.5, λ = 10−5

3 K = 2, H = Gaussian of std 1, Noise = 5/255
4 K = 4, H = Gaussian of std 1, Noise = 5/255

ρ0 = 1× 10−5, γ = 1.2, λ = 10−4

We compared the proposed algorithm with several existing super-resolution al-

gorithms. These methods include the deep convolutional neural network method

(DCNN) by Dong et al. [49], the statistical patch-based sparse representation method

(SPSR) by Peleg and Elad [50], the transformed self-exemplar method (TSE) by

Huang et al. [86], the classical sparse representation method for super-resolution (SR)

by Yang et al. [52], and the Gaussian process regression method (GPR) by He and

Siu [51]. Among these methods, we note that TSE and GPR are single image meth-
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Table 3.2.: Image Super Resolution Results. When noise is present, the PSNR val-
ues are averaged over 5 random realizations of the noise pattern. Gray color rows
represent external database methods.

Images
1 2 3 4 5 6 7 8 9 10 Dataset Avg STD

Size 5122 5122 2562 5122 5122 5122 2562 5122 5122 2562 Avg per image
Factor: ×2; Anti-aliasing Filter: Bicubic; Noise: 0

DCNN [49] 25.71 31.83 28.79 31.13 32.73 32.60 35.11 36.34 33.10 33.05 32.04 –
SR [52] 25.87 31.51 27.92 30.94 33.02 32.46 34.79 36.14 32.80 32.67 31.81 –

SPSR [50] 25.71 31.49 27.85 31.00 33.30 32.35 34.37 36.18 32.67 32.66 31.76 –
TSE [86] 25.66 31.64 28.17 31.01 32.88 32.45 34.78 36.22 32.88 33.29 31.90 –
GPR [51] 24.99 29.99 26.44 29.50 30.36 31.33 33.08 34.19 31.09 30.98 30.20 –
Ours - M 25.87 31.85 28.81 31.42 33.63 32.56 35.30 36.45 32.86 33.06 32.18 –
Ours - A 25.74 31.68 28.44 31.27 33.49 32.39 35.20 36.02 32.65 32.65 31.95 –

Factor: ×4; Anti-aliasing Filter: Bicubic; Noise: 0
DCNN [49] 23.93 26.84 23.76 26.08 24.18 28.32 29.48 30.45 28.17 27.88 26.91 –
SR [52] 23.91 26.39 23.43 26.02 24.44 28.17 29.15 30.19 27.94 27.42 26.71 –

SPSR [50] 23.90 26.49 23.42 26.02 25.11 28.14 29.22 30.24 27.85 27.62 26.80 –
TSE [86] 23.90 26.62 23.83 26.10 24.70 28.06 30.03 30.29 28.03 27.97 26.95 –
GPR [51] 23.55 25.47 22.54 25.27 22.33 27.79 27.61 28.74 26.76 25.79 25.58 –
Ours - M 23.99 26.87 23.82 26.32 25.54 28.35 30.16 30.74 28.17 28.26 27.22 –
Ours - A 23.99 26.87 23.83 26.33 25.58 28.29 30.48 30.62 28.12 28.22 27.23 –

Factor: ×2; Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 5/255
DCNN [49] 23.61 26.30 23.75 26.21 23.79 27.50 27.84 28.15 27.05 26.07 26.03 0.0219
SR [52] 23.61 26.25 23.71 26.15 23.80 27.41 27.71 28.07 26.99 26.10 25.98 0.0221

SPSR [50] 23.75 26.57 23.88 26.47 23.91 27.80 28.19 28.58 27.33 26.39 26.29 0.0208
TSE [86] 23.57 26.22 23.65 26.12 23.79 27.34 27.55 28.00 26.93 26.11 25.93 0.0238
GPR [51] 23.82 26.81 23.91 26.63 24.05 28.38 29.16 29.54 27.78 26.76 26.68 0.0170
Ours - M 24.64 29.41 26.73 29.22 28.82 29.82 32.65 32.76 29.66 30.10 29.38 0.0267
Ours - M* 24.01 27.09 24.17 27.00 25.03 28.46 29.32 29.78 27.85 26.99 26.97 0.0178

Factor: ×4; Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 5/255
DCNN [49] 20.72 21.30 18.91 21.68 16.10 23.39 22.33 22.99 22.46 20.23 21.01 0.0232
SR [52] 20.67 21.30 18.86 21.51 16.37 23.15 22.19 22.85 22.26 20.33 20.95 0.0212

SPSR [50] 20.85 21.58 19.18 21.85 16.59 23.52 22.42 23.05 22.53 20.50 21.21 0.0217
TSE [86] 20.59 21.24 18.80 21.49 16.40 23.14 22.21 22.78 22.21 20.30 20.92 0.0252
GPR [51] 21.55 22.68 19.90 22.77 17.70 24.57 23.51 24.37 23.63 21.35 22.20 0.0313
Ours - M 23.62 25.75 23.06 25.30 24.48 27.17 29.14 29.42 26.86 26.86 26.17 0.0223
Ours - M* 21.21 22.12 19.43 22.43 16.90 24.37 23.13 23.95 23.39 21.13 21.81 0.0253
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ods whereas DCNN, SPSR and SR require training using external databases. The

Fig. 3.8.: Image Super Resolution Results. [Top](from left to right). Ground truth;
The low resolution input; Bicubic interpolation; DCNN [49] (24.19dB). [Bottom](from
left to right). SPSR [50] (22.44dB); TSE [86] (22.80dB); GPR [51] (20.81dB); Ours-M
(23.49dB).

results of the experiment are shown in Table 4.3. For the proposed algorithm, we

present the two update rules as Ours-M (for monotone update rule), and Ours-A (for

adaptive update rule). When noise is present in the simulation, we conduct a Monte-

Carlo simulation over 5 random realizations. In this case, the reported PSNR values

are the average over the random realizations. The per image standard deviation is

reported in the last column of Table 4.3 (if applicable).

For configurations 3 and 4 when we use a Gaussian anti-aliasing filter, we observe

that not all existing methods can handle such case as the training part of those

algorithms was performed on a bicubic model. Therefore, for fair comparison, we

present two versions of the proposed algorithm. The first version Ours-M assumes

the correct knowledge about the Gaussian filter, whereas the second version Ours-M*

ignores such assumption and use the bicubic model for reconstruction.

From the PSNR results shown in Table 4.3, we observe very similar performance

of the competing methods. For configurations 1 and 2, the proposed algorithm shows

the best performance overall, although in some occasions the deep neural network [49]
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is better. For configurations 3 and 4, we observe a significant gap between Ours-M

and the competing methods. This is caused by the model mismatch of the competing

methods as the implementations provided by the authors only support the bicubic

model. For fairness, we consider Ours-M* by pretending that the anti-aliasing filter is

bicubic. In this case, Ours-M* still performs better than the others for configuration

3, but slightly worse than GPR [51] for configuration 4.

For visual comparison we conduct a color image experiment. In this experiment,

we simulate a low resolution image by downsampling the color image by a factor 4

using a bicubic anti-aliasing filter. Then, we apply the proposed algorithm to the three

color channels individually to recover the image. The result is shown in Figure 3.8.

As seen, the proposed method produces better results than SPSR [50], TSE [86] and

GPR [51], with slightly sharper edges and less halo artifacts. We also observe that the

deep neural network [49] shows better results than that in Table 4.3. One possibility

is that the training data used to train the neural network are natural images that

have better correlation to Figure 3.8. However, considering the training-free nature

of the proposed Plug-and-Play algorithm, losing to a well-trained neural network is

not surprising.

3.4.2 Single Photon Imaging

We next consider the single-photon imaging problem. In this experiment, we

consider four sets of experiments for K = 4, 6, 8, 10 (along horizontal and vertical

directions). The sensor gain is set as α = K2. For comparison, we choose the

two existing algorithms. The first one is the maximum likelihood estimation (MLE)

method by Yang et al. [87]. For our specific choice of G in (3.27), the MLE solution

has a closed-form expression. The second method is a total variation method by Chan

and Lu [85,88]. This method utilizes the ADMM algorithm when solving the problem.

We are aware of other existing Poisson denoising methods such as [16, 54]. However,

none of these methods are directly applicable to the quantized Poisson problem.



49

Since for this problem the observed binary pattern is a truncated Poisson random

variable, we perform a Monte-Carlo simulation by repeating each case for 8 inde-

pendent trials. We then report the average and the standard deviation of these 8

independent trials. As shown in Table 3.3, the standard deviation is indeed insignif-

icant compared to the average PSNR. Here, we report the dataset average over the

10 images to ensure sufficient variability of the test. To visually compare the per-

formance, in Figure 3.9 we show the result of a color image. In this experiment, we

process the 3 color channels individually. For each channel, we simulate the photon

arrivals by assuming K = 8. Then, we reconstruct the image using different algo-

rithms. The result in Figure 3.9 shows that visually the proposed algorithm produces

images with less noise.

Table 3.3.: Single Photon Imaging Results. The PSNR values are averaged over 8
random realizations of the photon arrivals.

Images
1 2 3 4 5 6 7 8 9 10 Dataset Avg STD

Size 5122 5122 2562 5122 5122 5122 2562 5122 5122 2562 Avg per image
K = 4

Yang et al. [87] 14.80 14.18 14.68 14.39 14.28 14.90 14.21 14.48 14.78 14.59 14.53 0.0157
Chan-Lu [85] 22.59 24.76 23.63 24.74 21.47 25.65 25.38 26.42 25.35 24.78 24.48 0.0425

Ours-M 25.99 25.72 25.58 26.03 23.54 26.60 28.15 28.17 26.17 26.10 26.20 0.0821
Ours-A 26.06 25.75 25.64 26.10 23.59 26.66 28.27 28.27 26.18 26.16 26.27 0.0801

K = 6

Yang et al. [87] 17.94 17.27 17.67 17.61 17.29 18.22 17.22 17.62 18.00 17.65 17.65 0.0147
Chan-Lu [85] 23.97 26.25 25.53 26.26 24.47 26.66 26.75 27.32 26.58 26.40 26.02 0.0339

Ours-M 28.34 27.76 27.60 27.91 25.66 28.30 30.34 30.06 27.75 28.15 28.19 0.0451
Ours-A 28.34 27.72 27.61 27.84 25.62 28.25 30.28 29.86 27.71 28.16 28.14 0.0472

K = 8

Yang et al. [87] 20.28 19.68 20.00 20.05 19.53 20.64 19.49 19.99 20.42 19.97 20.01 0.0183
Chan-Lu [85] 25.14 27.09 26.56 27.24 25.75 27.55 27.17 27.89 27.49 27.07 26.90 0.0325

Ours-M 29.79 29.07 29.14 29.25 27.19 29.55 31.70 31.43 28.99 29.52 29.56 0.0527
Ours-A 29.74 29.00 29.09 29.16 27.14 29.51 31.54 31.35 28.94 29.43 29.49 0.0520

K = 10

Yang et al. [87] 22.14 21.60 21.89 21.98 21.32 22.51 21.32 21.86 22.35 21.83 21.88 0.0198
Chan-Lu [85] 26.20 27.57 27.26 27.70 26.41 27.99 27.64 28.16 27.95 27.66 27.46 0.0264

Ours-M 30.88 30.19 30.34 30.31 28.29 30.48 32.68 32.29 29.97 30.56 30.60 0.0386
Ours-A 30.81 30.12 30.31 30.22 28.22 30.41 32.51 32.17 29.90 30.47 30.51 0.0397

3.5 Conclusion

We presented a continuation scheme for Plug-and-Play ADMM. We showed that

for any bounded denoisers (denoisers that asymptotically converges to the identity op-
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(a) Binary input (b) Yang et al. [87] 20.16dB (c) Chan and Lu [85] 26.74dB (d) Ours-C 28.81dB

Fig. 3.9.: Single photon imaging results. The bottom row is a zoomed-in figure of the
top row.

erator), the new Plug-and-Play ADMM has a provable fixed point convergence. We

demonstrated two applications of the new algorithm for single image super-resolution

and the single photon imaging problem. For the single image super-resolution prob-

lem, we presented a closed-form approach to solve one of the two subproblems in

the ADMM algorithm. The closed-form result allows significantly faster implementa-

tion than iterative methods. Experimentally, we found that Plug-and-Play ADMM

performs better than several existing methods.
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3.6 Appendix

3.6.1 Counter Example of Non-Expansive Denoiser

As mentioned in Section II.B, showing non-expansiveness of a denoiser could be

difficult. Here we provide a counter example for the non-local means [69].

To show that non-local means are expansive, we only need to find a pair (x,y)

such that

κ = ∥Dσ(x)−Dσ(y)∥2/∥x− y∥2 > 1.

To construct such example, we show in Figure 3.10 a pair of (x,y) obtained through

an inpainting problem using Plug-and-Play ADMM with constant ρ, i.e., γ = 1. (In

fact, it does not matter how we obtain this pair of (x,y). All we need to show is that

there exists (x,y) which makes κ > 1.)

The non-local means is a weighted average operation with weights

Wij = exp{−∥xi − xj∥2/(2σ2)},

where xi is the ith patch of the image x. To further ensure that W is doubly

stochastic so that its eigenvalues are bounded between 0 and 1, we apply Sinkhorn-

Knopp [89] to W until convergence. Define this doubly stochastic matrix as W̃ .

Then, the denoised output is given by

x̃ = Dσ(x)
def
= W̃x.

Therefore, the ratio we need to check is

κ = ∥W̃ x(x)− W̃ y(y)∥2/∥x− y∥2,

where the subscript (·)x specifies the dependency of W̃ on x (or y). The denoised

results are shown in Figure 3.10 (c) and (d). Although it may look subtle, one can

verify that κ = 1.1775 which violates the requirement of non-expansiveness. This
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happens because W̃ x ̸= W̃ y for x ̸= y. The dependency on x and y makes the

operators nonlinear, and hence makes non-expansiveness difficult to validate.

Readers at this point may wonder why the proposed Plug-and-Play ADMM can

alleviate the expansive issue. In a nutshell, the reason is that we force ρ→∞ so that

σ → 0. Consequently, the weight W → I as ρ→∞. For the original Plug-and-Play

ADMM in [25], W ↛ I because ρ is fixed.

(a) x (b) y (c) x− y (d) Dσ(x) (e) Dσ(y) (f) Dσ(x)−Dσ(y)

Fig. 3.10.: Counter example showing non-local means is expansive. κ = ∥Dσ(x) −
Dσ(y)∥2/∥x− y∥2 = 1.1775.

3.6.2 Proof of Theorem 1

To simplify the notations we first define a triplet θ(k) def
= (x(k), v(k), u(k)). Let Θ

be the domain of θ(k) for all k. On Θ we define a distance function D : Θ×Θ→ R

such that

D(θ(k),θ(j)) =
1√
n

(
∥x(k) − x(j)∥2 + ∥v(k) − v(j)∥2

+ ∥u(k) − u(j)∥2
)
.

It then follows that ∆k+1 = D(θ(k+1),θ(k)). Since Θ ⊆ R3n and R3n is a complete

metric space, as long as we can show that {θ(k)}∞k=1 is a Cauchy sequence in Θ with

the distance function D, then θ(k) should converge.

The Plug-and-Play ADMM involves two cases of the parameter update:

• Case 1: If ∆k+1 > η∆k, then ρk+1 = γρk.

• Case 2: If ∆k+1 ≤ η∆k, then ρk+1 = ρk.
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At iteration k, if Case 1 holds, then by Lemma 1, θ(k+1) satisfies

D(θ(k+1),θ(k)) ≤ C ′
√
ρk

, (3.31)

for some universal constant C ′ > 0 independent of k. On the other hand, if Case 2

holds, then since ∆k+1 = D(θ(k+1),θ(k)) we have

D(θ(k+1),θ(k)) ≤ ηD(θ(k),θ(k−1)). (3.32)

As k →∞, one of the following situations will happen:

(S1) : Case 1 occurs infinitely many times but Case 2 occurs finitely many times;

(S2) : Case 2 occurs infinitely many times but Case 1 occurs finitely many times;

(S3) : Both Case 1 and Case 2 occur infinitely many times.

These three cases can be analyzed as follows. When (S1) happens, there must

exists a K1 such that for k ≥ K1 only Case 1 will be visited. Thus,

D(θ(k+1),θ(k)) ≤ C ′

√
ρK1−1

√
γk−K1

.

When (S2) happens, there must exists a K2 such that for k ≥ K2 only Case 2 will be

visited. Thus, we have

D(θ(k+1),θ(k)) ≤ ηk−K2D(θ(K2),θ(K2−1))

≤ ηk−K2
C ′

ρK2−1

.

(S3) is a union o the (S1) and (S2). Therefore, as long as we can show under (S1) and

(S2) the sequence {θ(k)}∞k=1 converges, the sequence will also converge under (S3).

To summarize, we show in Lemma 2 that regardless which of (S1)-(S3), for any k we

have

D(θk+1,θ(k)) ≤ C ′′δk,
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for some constants C ′′ and 0 < δ < 1. Therefore,

D(θ(k+1),θ(k))→ 0, (3.33)

as k →∞.

To prove {θ(k)}∞k=1 is a Cauchy sequence, we need to show

D(θ(m),θ(k))→ 0, (3.34)

for all integers m > k and k →∞. This result holds because for any finite m and k,

D(θ(m),θ(k)) ≤
m∑

n=k+1

C ′′δn

=
m−k∑
ℓ=1

C ′′δℓ+k

= C ′′δk
1− δm−k+1

1− δ
.

Therefore, as k → ∞, D(θ(m),θ(k)) → 0. Hence, {θ(k)}∞k=1 is a Cauchy sequence.

Since a Cauchy sequence in R3n always converges, there must exists θ∗ = (x∗,v∗,u∗)

such that

D(θ(k),θ∗)→ 0. (3.35)

Consequently, we have ∥x(k) − x∗∥2 → 0, ∥v(k) − v∗∥2 → 0 and ∥u(k) − u∗∥2 → 0.

This completes the proof.

Lemma 1 At iteration k, if Case 1 holds, then

D(θ(k+1),θ(k)) ≤ C ′
√
ρk

, (3.36)

for some universal constant C ′ > 0 independent of k.
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Proof Following the definition of D(θ(k+1),θ(k)), it is sufficient to show that

1√
n

∥∥x(k+1) − x(k)
∥∥
2
≤ C1√

ρk
,

1√
n

∥∥v(k+1) − v(k)
∥∥
2
≤ C2√

ρk
,

1√
n

∥∥u(k+1) − u(k)
∥∥
2
≤ C3√

ρk
,

for some universal constants C1, C2 and C3.

Let us consider

x(k+1) = argmin
x

f(x) +
ρk
2
∥x− (v(k) − u(k))∥2.

The first order optimality implies that

x− (v(k) − u(k)) = − 1

ρk
∇f(x).

Since the minimizer is x = x(k+1), substituting x = x(k+1) and using the fact that

∇f is bounded yields

1√
n

∥∥x(k+1) − (v(k) − u(k))
∥∥
2
=
∥∇f(x)∥2
ρk
√
n
≤ L

ρk
. (3.37)

Next, let ṽ(k) = x(k+1) + u(k) and σk =
√

λ/ρk. Define

v(k+1) = Dσk
(ṽ(k)).

Since Dσk
is a bounded denoiser, we have that

1√
n

∥∥v(k+1) − (x(k+1) + u(k))
∥∥
2
=

1√
n

∥∥∥v(k+1) − ṽ(k)
∥∥∥
2

=
1√
n

∥∥∥Dσk
(ṽ(k))− ṽ(k)

∥∥∥
2
≤ σk

√
C =

√
λ
√
C

√
ρk

. (3.38)
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We can now bound
∥∥v(k+1) − v(k)

∥∥
2
as follows.

1√
n

∥∥v(k+1) − v(k)
∥∥
2
≤ 1√

n

∥∥v(k+1) − (x(k+1) + u(k))
∥∥
2

+
1√
n

∥∥(x(k+1) + u(k))− v(k)
∥∥
2
.

Using (3.37) and (3.38), we have

1√
n

∥∥v(k+1) − v(k)
∥∥
2
≤
√
λ
√
C

√
ρk

+
L

ρk
(3.39)

=
1
√
ρk

(√
λ
√
C +

L
√
ρk

)
≤ 1
√
ρk

(√
λ
√
C +

L
√
ρ0

)
.

Similarly, we can show that

1√
n

∥∥u(k+1)
∥∥
2
=

1√
n

∥∥u(k) + (x(k+1) − v(k+1))
∥∥
2

=
1√
n

∥∥∥u(k) + x(k+1) −Dσk
(ṽ(k))

∥∥∥
2

=
1√
n

∥∥∥u(k) + x(k+1) − (Dσk
(ṽ(k))− ṽ(k))− ṽ(k)

∥∥∥
2

(a)
=

1√
n

∥∥∥Dσk
(ṽ(k))− ṽ(k)

∥∥∥
2
≤
√
λ
√
C

√
ρk

, (3.40)

where (a) holds because ṽ(k) = u(k) + x(k+1). Thus,

1√
n

∥∥u(k+1) − u(k)
∥∥
2
≤ 1√

n

(∥∥u(k+1)
∥∥
2
+
∥∥u(k)

∥∥
2

)
≤ 2
√
λ
√
C

√
ρk

.
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Finally, since u(k+1) = u(k) + (x(k+1) − v(k+1)), we have

1√
n

∥∥x(k+1) − x(k)
∥∥
2

=
1√
n

∥∥(u(k+1) − u(k) + v(k+1)
)
−
(
u(k) − u(k−1) + v(k)

)∥∥
2

≤ 1√
n

(∥∥u(k+1) − u(k)
∥∥
2
+
∥∥u(k) − u(k−1)

∥∥
2

+
∥∥v(k+1) − v(k)

∥∥
2

)
≤ 2
√
λ
√
C

√
ρk

+
2
√
λ
√
C

√
ρk−1

+
1
√
ρk

(√
λ
√
C +

L
√
ρk

)
≤
(
(3 + 2

√
γ)
√
λ
√
C +

L
√
ρ0

)
1
√
ρk

. (3.41)

Lemma 2 The sequence {θ(k)}∞k=1 always satisfies

D(θk+1,θ(k)) ≤ C ′′δk, (3.42)

for some constants C ′′ and 0 < δ < 1.

Proof At any iteration k, it holds that

D(θk+1,θ(k)) ≤ max

(
C ′

√
ρK1−1

√
γk−K1

, ηk−K2
C ′

ρK2−1

)

≤ max

(
C ′

1

(
1
√
γ

)k

, C ′
2η

k

)
,

where C ′
1 = C ′

√
γK1

ρK1−1
and C ′

2 =
C′η−K2

ρK2−1
. Therefore, by letting

C ′′ = max (C ′
1, C

′
2), and δ = max (1/

√
γ, η),

we obtain the desired result, as γ > 1.
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4. PARAMETER-FREE PLUG-AND-PLAY ADMM FOR
IMAGE RESTORATION

4.1 Introduction

4.1.1 Plug-and-Play ADMM

With the astonishing number of applications of the alternating direction method

of multiplier (ADMM, [24]), it is reasonably safe to say that ADMM is almost the

workhorse of most, if not all, image restoration algorithms we use nowadays [18,45,46].

ADMM is a generic algorithm that solves optimization problems in the form

minimize
x

f(x) + λg(x) (4.1)

for some cost function f and regularization function g. In model-based image pro-

cessing, f is called the data fidelity term, and g is called the prior term [44].

ADMM has many attractive features. Apart from its simple implementation and

broad applicability, the variable splitting nature of the algorithm offers additional

degrees of freedom in designing the steps of the algorithm. In particular, if we use

ADMM to solve (4.1), the algorithm proceeds by solving a sequence of subproblems

in the following modules:

x(k+1) = argmin
x∈Rn

f(x) +
ρ

2
∥x− x̃(k)∥2, (4.2)

v(k+1) = argmin
v∈Rn

λg(v) +
ρ

2
∥v − ṽ(k)∥2, (4.3)

u(k+1) = u(k) + ρ(x(k+1) − v(k+1)), (4.4)
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where x̃(k) def
= v(k) − (1/ρ)u(k), ṽ(k) def

= x(k+1) + (1/ρ)u(k), and u(k) is called the

Lagrange multiplier. In this set of equations, subproblem (5.2a) is an inversion module

that minimizes f using a quadratic regularization, whereas subproblem (5.2b) is a

denoising module that denoises ṽ(k) using a regularization function g.

Recognizing the inversion-denoising modules of the ADMM allows us to re-design

the steps. One possibility is to replace the denoising module by an off-the-shelf image

denoising algorithm, i.e.,

v(k+1) = Dσ

(
ṽ(k)

)
, (4.5)

for some denoiser Dσ with a noise level σ def
=
√

λ/ρ. The resulting algorithm is called

the Plug-and-Play ADMM, with the name attributed to Venkatakrishnan et al. [25].

Since the introduction of Plug-and-Play ADMM, many applications have been

developed, e.g., X-ray computed tomography [26], image interpolation [58], super-

resolution [4, 55], Poisson denoising [54], and single photon imaging [4]. In [90], the

same framework was used in camera processing, with a named coined flexible ISP.

To provide readers a quick comparison between Plug-and-Play ADMM and con-

ventional ADMM algorithms, we show in Figure 4.1 a deblurring result using Plug-

and-Play ADMM with BM3D [91] as the denoiser and the same result using conven-

tional ADMM with the total variation regularization. As can be seen in the figure,

when both algorithms are tuned to their best parameter λ, Plug-and-Play demon-

strates more than 1dB improvement over the total variation.

4.1.2 Problem of Plug-and-Play

While Plug-and-Play ADMM offers promising image restoration results, it has a

significant problem due to the parameter ρ. ρ controls the strength of the intermediate

regularization, and is typically assigned by the user. If ρ is set too large, the quadratic

regularization in (5.2b) dominates and so the denoiser is weak. If ρ is set too small,

the denoiser is strong but the subproblem (5.2a) becomes ill-conditioned. Therefore,

finding an optimal ρ is essential to the convergence of the algorithm.
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(a) Input (b) Ground Truth

(c) Total Variation [18] 29.97dB (d) Plug-Play [4] 31.29dB

Fig. 4.1.: Image deblurring using Plug-and-Play ADMM with BM3D denoiser com-
pared to conventional ADMM with total variation (TV) prior. In this example,
the regularization parameter is optimally tuned to λ = 10−4 for Plug-Play, and
λ = 5 × 10−3 for TV. The internal parameter of Plug-Play is ρ = 1. The blur in
this example is Gaussian of size 9× 9 with radius σ = 1. The noise level is 5/255.

If f is convex and if the denoiser Dσ has a doubly stochastic gradient, Sreehari

et al. [26] showed that Dσ is a non-expansive proximal operator and so ρ does not

affect the final solution. As a rule-of-thumb, our experience shows that ρ = 1 is often
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a reliable choice. However, for the broader class of bounded denoisers, Dσ could be

expansive and so the convergence depends on ρ. In this case, one possible solution

is to define a sequence of increasing ρ’s such that ρk+1 = γρk for some constant

γ > 1 [4]. This will ensure that the iterates x(k) and v(k) can converge to a fixed

point. However, we now have to choose the initial value ρ0 and the update constant

γ. Therefore, if we like to choose ρ properly, an automatic update scheme within the

algorithm would be desirable.

4.1.3 Related Work and Contributions

The contribution of this work is a parameter-free Plug-and-Play ADMM. Here,

by parameter-free we mean that the internal parameter ρ is updated as part of the

ADMM algorithm, thus is free of tuning. It does not, however, mean that the reg-

ularization parameter λ is automatically tuned. Should λ be tuned automatically,

a few existing methods can be considered, e.g., SURE [76] and cross validation [75],

etc.

Our key idea behind the parameter-free Plug-and-Play ADMM is the Generalized

Approximate Message Passing (GAMP) in the compressive sensing literature [34,

92–94]. GAMP is a generic algorithm that solves problems in the form of (4.1),

typically for f(x) = ∥Ax−y∥2 with a random matrixA and a regularization function

g(x) = ∥x∥1. In GAMP, the internal parameters are self-updated, which is a feature

this work attempts to obtain. Another piece of related work is the Denoiser-AMP

by Metzler et al. [59], where a denoiser was used to replace the shrinkage step in the

classical AMP. Convergence of Denoiser-AMP is known for i.i.d. Gaussian matrix A

but not for general matrices.

The goal of this chapter is to derive a parameter-free Plug-and-Play ADMM from

GAMP. In Section II we provide a brief introduction to the GAMP algorithm. Then in

Section III, we show how the GAMP algorithm can be modified into a parameter-free

Plug-and-Play ADMM. Experimental results are shown in Section IV.
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4.2 Generalized Approximate Message Passing

In this section we provide a brief introduction to the generalized approximate

message passing (GAMP) algorithm. For full discussions of GAMP, we refer the

readers to [93]. Among all image restoration problems, we are particularly interested

in the deblurring problem with f in the form

f(x) =
1

2
∥Ax− y∥2,

where x ∈ Rn is the unknown variable, A ∈ Rn×n a convolution matrix, and y ∈ Rn

is the observed signal. The regularization function g is unimportant for Plug-and-

Play ADMM, because we will later replace it by a denoiser. However, since the

conventional GAMP requires an explicit g, we will keep the function g in this section

with the assumption that it is separable. We will remove g in Section III.

4.2.1 GAMP

The GAMP algorithm begins by considering the following problem

minimize
x,v

1
2
∥Ax− y∥2 + λg(v)

subject to x = v.
(4.6)

Clearly, at the optimal point, (4.6) has the same solution as the original unconstrained

problem.

The next step GAMP does is to separately consider f(x) and g(v) as the output

node and the input node of a bipartite graph, respectively. Then the algorithm seeks

the equilibrium of the two sides, by passing intermediate variables (called messages)
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forward and backward between the nodes. Specifically, by initializing two vectors

τ
(0)
x = 1n×1 and u(0) = 0n×1, the computation on the output node involves:

x̃(k+1) = x(k) − τ (k)
x · u(k), (4.7)

x(k+1) = prox
τ
(k)
x f

(x̃(k)), (4.8)

π(k+1)
x = τ (k)x ·

∂

∂x̃
prox

τ
(k)
x f

(x̃)
∣∣∣
x̃=x̃(k)

, (4.9)

τ (k+1)
v = (τ (k)

x − π(k+1)
x )./(τ (k)

x )2, (4.10)

u(k+1) = (x(k+1) − x̃(k+1))./τ (k)
x . (4.11)

In this set of equations, the function proxτf is the proximal operator, defined as

proxτf (x̃) = argmin
x

1

2
∥Ax− y∥2τ +

1

2
∥x− x̃∥2, (4.12)

where the norm ∥ · ∥2τ is a weighted norm given by ∥x∥2τ =
∑n

i=1 τix
2
i . The variable

τ x can be regarded as a vector version of the internal parameter ρ in ADMM, and

πx can be regarded as a measure of the variance x conditioned on u.

The computation on the input node involves

ṽ(k+1) = v(k) + τ (k+1)
v · u(k+1), (4.13)

v(k+1) = prox
τ
(k+1)
v λg

(ṽ(k)), (4.14)

π(k+1)
v = τ (k+1)

v · ∂

∂ṽ
prox

τ
(k)
v λg

(ṽ)
∣∣∣
ṽ=ṽ(k)

, (4.15)

τ (k+1)
x = π(k+1)

v . (4.16)

For separable g(v) =
∑n

i=1 gi(vi), the proximal operator proxτg(ṽ) reads as

proxτiλg(i) = argmin
v

τiλgi(v) +
1

2
(v−i)

2. (4.17)
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4.2.2 Equivalence between GAMP and ADMM

In the above input and output computation, if we ignore Equations (4.9)–(4.10)

and (4.15)–(4.16), we will arrive at an ADMM algorithm with vector-valued param-

eters τ x and τ v, instead of a common scalar parameter ρ. More specifically, GAMP

and ADMM are related according to the following theorem [92]:

Theorem 4.2.1 The iterates of the GAMP satisfy

v(k+1) = argmin
v

L(x(k),v,u(k)) +
1

2
∥v − v(k)∥2

τ
(k)
v
,

x(k+1) = argmin
x

L(x,v(k+1),u(k)) +
1

2
∥x− v(k+1)∥2

τ
(k)
x
,

u(k+1) = u(k) +
1

τ
(k)
x

(x(k+1) − v(k+1)),

where L(x,v,u) = f(x) + λg(v) + uT (x− v) is the Lagrangian function.

Therefore, the key difference between GAMP and ADMM is the parameters τ (k)
v and

τ
(k)
x . This suggests that if we want to derive a Plug-and-Play ADMM from GAMP,

we must first define the parameters τ (k)
v and τ

(k)
x .

4.3 Parameter-Free Plug-and-Play

We now derive the parameter-free Plug-and-Play using the GAMP formulation

above. There are two major modifications we need for the derivation.

• The vector-valued parameters τ x and τ v should become scalars τx and τv. This

would allow us to consider arbitrary denoisers which are not-necessarily sepa-

rable.

• The proximal operator in (4.14) is replaced by an off-the-shelf denoiser as de-

fined in (4.5) so that it fits the Plug-and-Play framework.
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With these two modifications we can consider the output and the input nodes. We also

note that among the equations (4.7)-(4.16), the biggest challenges are the proximal

operators. The following two subsections will address these operators.

4.3.1 Output Node

For a convolution matrix A, the proximal operator can be shown as

proxτxf (x̃) = argmin
x

τx
2
∥Ax− y∥2 + 1

2
∥x− x̃∥2

=
(
τxA

TA+ I
)−1 (

τxA
Ty + x̃

)
. (4.18)

Taking derivative with respect to x̃ yields

∂

∂x̃
proxτxf (x̃) =

(
τxA

TA+ I
)−1

1 (4.19)

Note that this is a vector of gradients. Since we are looking for a scalar, one option

is to consider the divergence. This yields

div
{
proxτxf (x̃)

}
=

1

n
1T
(
τxA

TA+ I
)−1

1 (4.20)
(a)
=

1

n
1TF T

(
τx|Λ|2 + I

)−1
F1

(b)
= (τx|λ1,1|2 + 1)−1 = (τx + 1)−1,

where in (a) we used the fact that a convolution matrix A is diagonalizable by the

Fourier transform matrix F to yield A = F TΛF , and in (b) we observe that F1 =
√
n[1, 0, . . . , 0]T . The scalar λ1,1 is the first entry of the eigenvalue matrix Λ, which

is 1 for convolutional matrices. Substituting this result into (4.9), we have

π(k+1)
x = τ (k)x /(τ (k)x + 1). (4.21)
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4.3.2 Input Node

On the input node, we have to replace the proximal operator by a denoiser Dσ.

Here, the noise level of the denoiser, σ, should be defined as σ =
√
τxλ. This explains

(4.14).

For the derivative in (4.15), we note that since τv is now a scalar, we have to

replace the derivative by its divergence (which is the sum of gradients). This gives

π(k+1)
v = τ (k+1)

v divDσ(ṽ
(k)). (4.22)

Calculating the divergence can be performed numerically using a Monte Carlo scheme.

More specifically, the divergence of the denoiser at ṽ can be approximated by

divDσ(ṽ) = lim
ϵ→0

Eb

{
bT
(
Dσ(ṽ + ϵb)−Dσ(ṽ)

ϵ

)}
≈ bT

(
Dσ(ṽ + ϵb)−Dσ(ṽ)

nϵ

)
, (4.23)

where b ∼ N (0, I) is a random vector, and ϵ ≪ 1 is a small constant (typically

ϵ = 10−3). The approximation of the expectation generally holds for large n due to

concentration of measure [76].

Numerically, computing (4.23) only requires evaluating the denoiser twice: once

for Dσ(ṽ), and the other time for Dσ(ṽ + ϵb).

4.3.3 Final Algorithm

The final algorithm can be derived by substituting (4.18) into (4.8), (4.21) into

(4.9) for the output nodes, and (4.5) into (4.14), (4.22) into (4.15) for the input nodes.

Moreover, we can simplify steps by defining

ρx = 1/τx, ρv = 1/τv. (4.24)
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Fig. 4.2.: PSNR of PAMP compared to Plug-and-Play ADMM using a fixed ρ. (a)
using total variation denoising as the denoiser; (b) using BM3D as the denoiser. In
this figure, all PSNR values are averaged over 10 testing images.

Then we can show that the GAMP algorithm can be simplified to Algorithm 3. We

call the resulting algorithm Plug-and-Play generalized approximate message passing

(PAMP).

As shown in Algorithm 3, the difference between PAMP and Plug-and-Play ADMM

is the parameters ρx and ρv. In Plug-and-Play, the parameters share the same value

ρ and is fixed throughout the iterations. In PAMP, ρx and ρv are automatically

updated as part of the algorithm. Therefore, PAMP is a parameter-free algorithm.

4.4 Experimental Results

In this section we present experimental results to evaluate the performance of the

proposed PAMP algorithm. We focus on the image deblurring problem, although the

method can easily be extended to image interpolation and image super-resolution.

We test the algorithm using 10 standard gray-scale images. Each image is blurred

by a spatially invariant Gaussian blur kernel of size 9 × 9 and standard deviation

1. Additive i.i.d. Gaussian noise of zero mean and standard deviation σ = 5/255 is

added to the blurred image. Two denoisers Dσ are considered in this experiment: total

variation denoising [95], and BM3D [91]. For total variation, we use the MATLAB



68

Algorithm 3 Proposed Algorithm: PAMP

1: Initialize u(0) = x(0) = 0, ρ(0)v = 1.
2: for k = 0, 1, . . . , kmax do
3: % (v-subproblem)
4: ṽ = x(k) + (1/ρ

(k)
v )ut

5: v(k+1) = Dσ(ṽ), where σ =

√
λ/ρ

(k)
v

6: ρ
(k+1)
x = ρ

(k)
v /divDσ(ṽ)

7:
8: % (x-subproblem)
9: x̃ = v(k+1) − (1/ρ

(k+1)
x )u(k)

10: x(k+1) = (ATA+ ρ
(k+1)
x I)−1(ATy + ρ

(k+1)
x x̃)

11: ρ
(k+1)
v = ρ

(k+1)
x /(ρ

(k+1)
x + 1)

12:
13: % (Multiplier update)
14: u(k+1) = u(k) + ρ

(k+1)
x (x(k+1) − v(k+1))

15: end for

implementation in [18], whereas for BM3D, we use the code available on author’s

website. When total variation is used, we set the regularization parameter λ = 10−2.

When BM3D is used, we set λ = 10−3. These values are selected as they produce the

best overall result for the entire dataset.

Since the objective of PAMP is to automatically select ρ, we compare PAMP with

Plug-and-Play ADMM which uses a fixed ρ. We select 10 values of ρ from 10−2 to 102

in the logarithmic scale. For each ρ, we run Plug-and-Play ADMM for 50 iterations

and record the PSNR values. For PAMP, we initialize the algorithm with ρ
(0)
v = 1

and let the algorithm to update ρx and ρv internally.

The results are shown in Figure 4.2. In this figure, the PSNR values are averaged

over the 10 testing images. As can be observed, the parameter ρ has important

influence to the Plug-and-Play ADMM algorithm where large ρ tends to converge

slower and approaches a solution with low PSNR. If ρ is too small, e.g., ρ = 0.01

in the BM3D case, the PSNR actually drops rapid after the first iteration. As for

PAMP, we observe that in both denoisers the solution picks a rapid convergence path

with almost the highest PSNR.
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Additional results, including other types of blur and other noise levels, can be

found at https://engineering.purdue.edu/ChanGroup/

4.5 Discussion and Conclusion

Why it works? Line 6 and Line 11 of Algorithm 3 reveals that there are two

opposite forces in updating ρv and ρx:

ρx ← ρv/divDσ(ṽ), (4.25)

ρv ← ρx/(ρx + 1) = ρx div
{
prox(1/ρx)f (x̃)

}
. (4.26)

Divergence of a function is an indicator of the sensitivity with respect to the input.

When divDσ is large, the denoiser Dσ behaves sensitively at ṽ and so the denoised

output is less reliable. Thus, PAMP makes ρx small to attenuate the influence of

the denoiser when solving the inversion. Now, since ρx becomes small, the inversion

is weak and so in the next iteration a strong denoiser is needed. This is achieved

by decreasing ρv in (4.26). These two opposite forces form a trajectory of the pair

(ρx, ρv). As k →∞, one can show that (ρx, ρv) approaches a steady state where the

two divergence terms coincides: divDσ(ṽ) = div
{
prox(1/ρx)f (x̃)

}
.

Convergence? Convergence of GAMP is an open problem. The best result we know

so far is that with appropriately designed damping strategies, GAMP converges for

strictly convex functions f and g [96]. However, when damping is not used, there

are examples where GAMP diverges [97]. Moving from an explicit g to an implicit

denoiser Dσ will cause additional challenges yet to be studied.

Conclusion. Plug-and-Play generalized approximate message passing (PAMP) is a

new algorithm that automatically updates the internal parameters of a conventional

Plug-and-Play ADMM. The update rules are based on the measure of the divergence

of the subproblems, and are derived from the generalized approximate message pass-

ing (GAMP). At the current stage, numerical results show that PAMP is a promising
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algorithm as it generates solutions through a rapid convergence path. Intuitive ar-

guments of the algorithm are made. Future work should focus on the convergence

analysis.

Table 4.1.: Image Super Resolution Results.
Images

Barbara Boat Cameraman Couple Fingerprint Hill House Lena Man Peppers Dataset Avg STD
Size 5122 5122 2562 5122 5122 5122 2562 5122 5122 2562 Avg per image

Factor: ×2; Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 0.05; λ:10−3

3 PAMP 23.93 27.20 25.10 27.04 25.83 27.85 29.36 29.53 27.52 26.51 26.99 –
VanillaPP 24.00 27.26 24.95 27.06 25.74 28.04 30.04 30.08 27.62 26.23 27.10 –

Factor: ×2; Anti-aliasing Filter: Gaussian 9× 9, σ = 1: 0; λ:10−6

3 PAMP 25.80 30.99 27.29 30.65 32.95 32.08 33.72 35.53 32.18 28.30 30.95 –
VanillaPP 25.35 30.32 26.49 29.97 31.23 31.48 32.90 34.34 31.30 27.73 30.11 –

Factor: ×4; Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 0.05; λ:10−2

3 PAMP 23.02 24.53 22.31 24.13 22.26 25.87 26.94 27.32 25.26 23.06 24.47 –
VanillaPP 22.45 23.41 21.41 23.28 19.43 25.00 25.27 26.00 24.14 21.81 23.22 –

Factor: ×4; Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 0; λ:10−3

PAMP 23.78 25.82 23.15 25.52 23.53 27.41 28.84 29.88 27.19 24.59 25.97 –
VanillaPP 23.11 24.55 22.07 24.45 20.96 26.14 26.53 27.59 25.63 23.03 24.41 –

Table 4.2.: Image Inpainting Results.
Images

Barbara Boat Cameraman Couple Fingerprint Hill House Lena Man Peppers Dataset Avg STD
Size 5122 5122 2562 5122 5122 5122 2562 5122 5122 2562 Avg per image

Missing Pixels: 80%; Noise: 0; λ:10−2

3 PAMP 26.81 26.32 23.49 26.36 24.19 27.47 30.17 29.54 26.82 25.47 26.66 –
VanillaPP 23.90 25.76 24.13 25.66 22.79 26.90 29.62 28.59 26.09 24.64 25.81 –

Missing Pixels: 80%; Noise: 0.05; λ:10−2

3 PAMP 26 25.65 23.00 25.69 23.77 26.83 29.55 28.66 26.23 24.74 26.01 –
VanillaPP 23.66 25.52 23.94 25.32 22.62 26.57 29.31 28.31 25.81 24.26 25.53 –

Missing Pixels: 60%; Noise: 0; λ:10−3

3 PAMP 32.15 30.45 26.50 30.67 30.81 31.13 34.71 33.13 30.38 30.27 31.02 –
VanillaPP 31.93 30.89 27.47 31.09 29.89 31.09 34.62 33.90 30.69 29.60 31.12 –

Missing Pixels: 60%; Noise: 0.1; λ:10−2

PAMP 27.65 26.88 25.67 26.77 24.93 27.44 30.47 29.42 27.04 26.94 27.32 –
VanillaPP 26.91 26.68 25.46 26.61 24.37 27.27 30.55 29.31 26.82 26.60 27.06 –

Table 4.3.: Image Deblurring Results.
Images

Barbara Boat Cameraman Couple Fingerprint Hill House Lena Man Peppers Dataset Avg STD
Size 5122 5122 2562 5122 5122 5122 2562 5122 5122 2562 Avg per image

Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 0.05; λ:10−3

3 PAMP 24.98 29.30 27.06 29.17 28.23 29.66 32.09 32.19 29.52 27.68 28.99 –
VanillaPP 24.69 29.25 26.90 29.12 28.24 29.60 32.02 32.19 29.49 27.46 28.90 –

Anti-aliasing Filter: Gaussian 9× 9, σ = 1; Noise: 0.1; λ:10−2

3 PAMP 23.99 27.20 25.15 27.02 25.60 28.02 30.17 29.98 27.62 26.36 27.11 –
VanillaPP 23.93 27.18 25.11 27.01 25.54 28.01 30.20 29.98 27.61 26.27 27.08 –

Anti-aliasing Filter: Gaussian 9× 9, σ = 2; Noise: 0.1; λ:10−2

3 PAMP 23.40 25.33 23.11 25.08 23.18 26.65 28.35 28.15 26.22 23.85 25.33 –
VanillaPP 23.35 25.29 23.06 25.05 23.08 26.61 28.28 28.11 26.21 23.78 25.28 –

Motion Filter: Gaussian [20, 45]; Noise: 0.05; λ:10−3

PAMP 23.03 24.04 21.77 23.71 19.39 25.43 24.79 26.97 25.05 22.13 23.63 –
VanillaPP 23.00 23.98 21.71 23.65 19.29 25.36 24.76 26.91 25.00 22.03 223.57 –
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5. FOREGROUND EXTRACTION FOR VIRTUAL
REALITY FILMING USING MULTI-AGENT

CONSENSUS EQUILIBRIUM

5.1 Introduction

5.1.1 Motivation and Scope

The proliferation of virtual reality displays and rendering technology over the

past decade is rapidly changing the landscape of cinematography [98–101]. From the

traditional motion pictures to the recent 3D animation, it is safe to argue that the

next wave in the film-making industry is immersive experience, e.g., head-mounted

virtual reality displays. In order to offer sufficient content to these displays, data

has to be acquired in special ways, e.g., using 360-degree volumetric imagers [102].

Typically, such videos are high-definition 8192×4320, full frame rate at 60 fps, and are

captured using as many as 100 cameras simultaneously. This is an enormous amount

of data: A five-minute video sequence using the above configuration is already equal to

more than one million images. Efficient image processing of these images is therefore

critical.

The goal of this work is to extract foreground masks from a video so that virtual

background can be substituted to create a virtual scene. Foreground extraction is

one of the most labor-intensive tasks in virtual reality filming. The demand on the

quality and the number of images makes the problem significantly challenging than

conventional video segmentations. In virtual reality filming industry, the standard

approach is to recruit professional artists to manually label foreground objects for

every frame. However, even with the help of industry-grade production softwares,

e.g., NUKE, producing high quality masks in large volume is non-trivial. The problem
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(a) Alpha matting (b) Background subtraction

(c) Video segmentation (d) Ours

Method Alpha Matting Bkgnd Subtraction Video Segmentation Ours
Goal foreground object saliency foreground

estimation detection detection estimation
Input image+trimap video video image+plate

Accuracy high low (binary) medium high
Automatic semi full full full
Supervised semi no no semi

Fig. 5.1.: Objective and Assumptions. (a) Alpha matting (e.g., [103]) uses a high-
quality trimap to refine the uncertain regions of the boundaries. (b) Background
Subtraction (e.g., [104]) aims at locating objects in a video. The results are usually
low-quality. (c) Unsupervised Video Segmentation (e.g., [105]) aims at identifying the
salient objects. Unsalient foreground objects, e.g., the box, will be missed. (d) This
work assumes a plate image. The goal is to extract high quality foreground objects.

can be alleviated by means of chroma-keying [106], i.e., using green screens. However,

green screens limit the filming environment which is not always allowed. In this

chapter, we present a fully automatic method to extract high-quality foreground masks

from videos. The assumption made here is that a static background image, called the

plate image, is available. Discussions about the feasibility and challenges of the plate

will be presented shortly.
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(a) Input (b) Frame difference (c) Trimap (d) Closed-form (e) Spectral matting
matting [36] [37]

(f) Learning-based (g) K-nearest (h) Comprehensive (i) DCNN [103] (j) Ours
matting [107] neighbors [108] sampling [109] (without trimap)

Fig. 5.2.: Comparison with existing alpha-matting algorithms on real images with a
frame-difference based trimap. (a) Input image. (b) Frame difference. (c) Trimap
generated by morphographic operation (dilation / erosion) of the binary mask. (d) -
(i) Alpha matting algorithms available on alphamatting.com. (j) Proposed method.
This sequence is from the dataset of [110].

5.1.2 Related Work

The problem studied in this chapter has a subtle but important difference with

the existing foreground / background segmentation methods in the literature, as

illustrated in Figure 5.1. At the high level, these differences can be summarized

in three forms: (1) Quality of the output masks. (2) Requirement of the input

(3) Automation and supervision. We briefly describe the comparison with existing

methods.
• Alpha Matting a [36,38,39,103,111–116]. Alpha matting is a semi-supervised

method. Given a user labeled “trimap”, the algorithm uses a linear color model

to predict the likelihood of a pixel being foreground or background as shown in

Figure 5.1(a). The biggest limitation is that the trimaps have to be error-free.

As soon there is a false alarm of miss in the trimap, the resulting mask will

be severely distorted. Figure 5.4 shows the performance of several state-of-the-

art alpha matting algorithms applied to a multi-object-moving scene. In video

setting, methods such as [117–119] suffer similar issues of error-prone trimaps

due to temporal propagation. Two-stage methods such as [120] requires initial

segmentation [121] to provide the trimap and suffer the same problem. Other
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methods [122, 123] require additional sensor data, e.g., depth, which is not

always available.

• Background Subtraction [104, 124–127]. Background subtraction is a fully

automatic and unsupervised method. Existing background subtraction meth-

ods range from the simple frame difference method to the more sophisticated

mixture models [124]. Most background subtraction methods are used to track

objects instead of extracting the alpha mattes. They are fully-automated and

are real time, but the foreground masks generated are usually of low quality.

• Unsupervised Video Segmentation [105, 128–137]. Unsupervised video

segmentation, as it is named, is unsupervised and fully automatic. The idea

is to use different saliency cues to identify objects in the video, and then seg-

ments them out. Early approaches such as [132] and [128, 130, 138] use motion

boundary, motion-trajectory and objectness as cues. More recent works such

as [105, 136, 137] use visual attention, optical flows and leverages the strength

of deep neural networks. See [139] for additional discussions of the state-of-the-

art. With post-processing methods such as conditional random field [129], the

output masks can achieve reasonably good quality. However, saliency detection

fails to extract foreground objects that are not salient. Figure 5.1(c) shows an

example where the foreground box is missed.

The biggest difference of the present work is the availability of a plate image.

The plate is a unique character of filming. In filming, it is almost always possible to

capture the plate image before the subjects enter the scene. This is very different from

conventional video recording where we do not have the same level of controllability,

e.g., using cell phones to record a street event. Therefore, although the assumption

does not hold in general, the specific application in filming justifies the need.
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I

II

III
(a) Input (b) Plate (c) Frame diff. (d) Trimap (e) DCNN [103] (f) Ours

Fig. 5.3.: Three common issues of automatic foreground extraction. Case I: Vibrating
background. Notice the small vibration of the leaves in the background. Case II.
Similar foreground / background color. Notice the missing parts of the body of
the man, and the excessive large uncertainty region of the trimap. Case III. Auto-
exposure. Notice the false alarm in the background of the frame difference map.
We compare our method with DCNN [103], a semi-supervised alpha matting method
using the generated trimaps. The video data of Case III is from [110].

5.1.3 Challenges of the Plate Images

Readers at this point may argue that the plate assumption is strong: If the plate

is available, it seems that a standard frame difference with morphographic operations

(e.g., erosion / dilation) would be enough to provide a trimap, and thus a sufficiently

powerful alpha matting algorithm would work. However, except for synthetic videos,

plate images are never perfect. Below are three typical problems:

[leftmargin=*]Background vibration. While we assume that the plate does

not contain large moving objects, small vibration of the background generally

exists. Figure 5.3 Case I shows an example where the background tree vibrates.

Color similarity. When foreground color is very similar to the background

color, the trimap generated will have false alarms and misses. Figure 5.3 Case

II shows an example where the cloth of the man has a similar color to the

wall. Auto-exposure. If auto-exposure is used, the background intensity will

change over time. Figure 5.3 Case III shows an example where the background

cabinet becomes dimmer when the man leaves the room.
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(a) Input (b) Frame difference (c) Trimap (d) Closed-form (e) Spectral matting
matting [36] [37]

(f) Learning-based (g) K-nearest (h) Comprehensive (i) DCNN [103] (j) Ours
matting [107] neighbors [108] sampling [109] (without trimap)

Fig. 5.4.: Comparison with existing alpha-matting algorithms on real images with a
frame-difference based trimap. (a) Input image. (b) Frame difference. (c) Trimap
generated by morphographic operation (dilation / erosion) of the binary mask. (d) -
(i) Alpha matting algorithms available on alphamatting.com. (j) Proposed method.
This sequence is from the dataset of [110].

As shown in the examples, error in frame difference can be easily translated to false

alarms and misses in the trimap. While we can increase the uncertainty region of the

trimap to rely more on the color constancy model of the alpha matting, in general the

alpha matting performs worse when the uncertainty region grows. We have also tested

more advanced background estimation algorithms, e.g., [104] in OpenCV. However,

the results are similar or sometimes even worse.

5.1.4 Contributions

This work contributes to the literature in three ways.

•••• We present the first fully automatic foreground extraction method where a

plate image is present. The problem is unique for filming and the solution is

new. Under five different metrics and for 14 video sequences, our method shows

a consistently better performance compared to state-of-the-art unsupervised

video segmentation, background subtraction, and alpha matting algorithms.

• Our solution leverages multi-agent consensus equilibrium (MACE) [35]. MACE

is a principled and provably convergent framework for integrating multiple
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sources of experts. MACE has been proven an effective method for image

restoration, e.g., deblurring and denoising. This work is the first demonstration

of MACE for non image-restoration tasks.

• We collect and release a dataset which contains raw input video sequences,

ground truth masks, and plate images. The dataset is the first of the kind in

the literature.

In order to explain all the essential concepts, we organize the chapter in a way

that the general framework and the specific components are addressed in two differ-

ent sections. In Section 2 we describe the MACE framework. We will discuss its

derivation, the intuition, and the algorithm. Then in Section 3 we go deep into the

details of each component of the MACE framework that are specific to foreground

extraction. Experimental results are presented in Section 4.

5.2 Multi-Agent Consensus Equilibrium

Our proposed method is based on the Multi-Agent Consensus Equilibrium (MACE),

recently developed by Buzzard et al. [35]. In this section, we describe the key com-

ponents of MACE and briefly discuss why it works.

5.2.1 ADMM

The starting point of MACE is the alternating direction method of multipliers

(ADMM) algorithm [24]. The ADMM algorithm aims at solving a constrained mini-

mization:

minimize
x1,x2

f1(x1) + f2(x2), subject to x1 = x2, (5.1)
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where xi ∈ Rn, and fi : Rn → R are mappings, typically a forward model describing

the image formation process and a prior distribution of the latent image. ADMM

solves the problem by solving a sequence of subproblems as follows:

x
(k+1)
1 = argmin

v∈Rn

f1(v) +
ρ

2
∥v − (x

(k)
2 − u(k))∥2, (5.2a)

x
(k+1)
2 = argmin

v∈Rn

f2(v) +
ρ

2
∥v − (x

(k+1)
1 + u(k))∥2, (5.2b)

u(k+1) = u(k) + (x
(k+1)
1 − x

(k+1)
2 ). (5.2c)

In the last equation (5.2c), the vector u(k) ∈ Rn is the Lagrange multiplier associated

with the constraint. Under mild conditions, e.g., when f1 and f2 are convex, close,

and proper, global convergence of the algorithm can be proved [26]. Recent studies

show that ADMM converges even for some non-convex functions [4].

When f1 and f2 are convex, the minimizations in (5.2a) and (5.2b) are known as

the proximal maps of f1 and f2, respectively [140]. If we define the proximal maps as

Fi(z) = argmin
v∈Rn

fi(v) +
ρ

2
∥v − z∥2, (5.3)

then it is not difficult to see that at the optimal point, (5.2a) and (5.2b) become

F1(x
∗ − u∗) = x∗, (5.4a)

F2(x
∗ + u∗) = x∗, (5.4b)

where (x∗,u∗) are the solutions to the original constrained optimization in (5.1).

(5.4a) and (5.4b) shows that the solution (x∗,u∗) can now be considered as a fixed

point of the system of equations.

Rewriting (5.2a)-(5.2c) in terms of (5.4a) and (5.4b) allows us to consider agents

Fi that are not necessarily proximal maps, i.e., fi is not convex or Fi may not be

expressible as optimizations. One example is to use an off-the-shelf image denoiser
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for Fi, e.g., BM3D, non-local means, or neural network denoisers. Such algorithm is

known as the Plug-and-Play ADMM [4,25, 26] (and variations thereafter [35, 141]).

5.2.2 MACE and Intuition

MACE generalizes the above ADMM formulation. Instead of minimizing a sum

of two functions, MACE minimizes a sum of N functions f1, . . . , fN :

minimize
x1,...,xN

N∑
i=1

fi(xi), x1 = . . . = xN . (5.5)

In this case, the equations in (5.4a)-(5.4b) are generalized to

Fi(x
∗ + u∗

i ) = x∗, for i = 1, . . . , N∑N
i=1 u

∗
i = 0.

(5.6)

What does (5.6) buy us? Intuitively, (5.6) suggests that in a system containing N

agents, each agent will create a tension u∗
i ∈ Rn. For example, if F1 is an inversion

step whereas F2 is a denoising step, then F1 will not agree with F2 because F1 tends

to recover details but F2 tends to smooth out details. The agents F1, . . . , FN will

reach an equilibrium state where the sum of the tension is zero. This explains the

name “consensus equilibrium”, as the the algorithm is seeking a consensus among all

the agents.

How does the equilibrium solution look like? The following theorem, shown in [35],

provides a way to connect the equilibrium condition to a fixed point of an iterative

algorithm.
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Theorem 5.2.1 (MACE solution [35]) Let u∗ def
= [u∗

1; . . . ;u
∗
N ]. The consensus

equilibrium (x∗,u∗) is a solution to the MACE equation (5.6) if and only if the points

v∗
i

def
= x∗ + u∗

i satisfy

1

N

N∑
i=1

v∗
i = x∗ (5.7)

(2G − I)(2F − I)v∗ = v∗, (5.8)

where v∗ def
= [v∗

1; . . . ;v
∗
N ] ∈ RnN , and F ,G : RnN → RnN are mappings defined as

F(z) =


F1(z1)

...

FN(zN)

 , and G(z) =


⟨z⟩
...

⟨z⟩

 , (5.9)

where ⟨z⟩ def
= 1

N

∑N
i=1 zi is the average of z.

Algorithm 4 MACE Algorithm
Initialize vt = [vt

1, . . . ,v
t
N ]. t = 1, . . . , T % Perform agent updates, (2F − I)(vt)z

t
1
...

zt
N

 =

 2F1(v
t
1)− vt

1
...

2FN(v
t
N)− vt

N

 (5.10)

% Perform the data aggregation (2G − I)(zt)v
t+1
1
...

vt+1
N

 =

2⟨z
t⟩ − zt

1
...

2⟨zt⟩ − zt
N

 (5.11)

Output ⟨vT ⟩.

Theorem 5.2.1 provides a full characterization of the MACE solution. The opera-

tor G in Theorem 5.2.1 is a consensus agent that takes a set of inputs z1, . . . , zN

and maps them to their average ⟨z⟩. In fact, we can show that G is a projec-

tion and that (2G − I) is its self-inverse [35]. As a result, (5.8) is equivalent to
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(2F−I)v∗ = (2G−I)v∗. That is, we want the individual agents F1, . . . , FN to match

with the consensus agent G such that the equilibrium holds: (2F−I)v∗ = (2G−I)v∗.

The algorithm of the MACE is illustrated in Algorithm 4. According to (5.8), v∗

is a fixed point of the set of equilibrium equations. Finding the fixed point can be

done by iteratively updating v(t) through the procedure

v(t+1) = (2G − I)(2F − I)v(t). (5.12)

Therefore, the algorithmic steps are no more complicated than updating the individual

agents (2F − I) in parallel, and then aggregating the results through (2G − I).

The convergence of MACE is guaranteed when T is non-expansive [35]summarized

in the proposition below.

Proposition 5.2.1 Let F and G be defined as (5.9), and let T def
= (2G −I)(2F −I).

Then the following results hold:

(i) F is firmly non-expansive if all Fi’s are firmly non-expansive.

(ii) G is firmly non-expansive.

(iii) T is non-expansive if F and G are firmly non-expansive.

Proof See Appendix.

5.3 Designing MACE Agents

After describing the MACE framework, in this section we discuss how each agent

is designed for our problem.
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5.3.1 Agent 1: Dual-Layer Closed-Form Matting

The first agent we use in MACE is a modified version of the classic closed-form

matting. More precisely, we define the agent as

F1(z) = argmin
α

αTα+ λ1(α− z)TD̃(α− z), (5.13)

where L̃ and D̃ are matrices, and will be explained below. The constant λ1 is a

parameter.

Review of Closed-Form Matting. To understand the meaning of (5.13), we recall

that the classical closed-form matting is an algorithm that tries to solve

J(α,a, b)

=
∑
j∈I

∑
i∈wj

(
αi −

∑
c

acjI
c
i − bj

)2

+ ϵ
∑
c

(acj)
2

 . (5.14)

Here, (ar, ag, ab, b) are the linear combination coefficients of the color line model αi ≈∑
c∈{r,g,b} a

cIci +b, and αi is the alpha matte value of the ith pixel [36]. The weight wj

is a 3× 3 window of pixel j. With some algebra, we can show that the marginalized

energy function J(α)
def
= mina,b J(α,a, b) is equivalent to

J(α)
def
= min

a,b
J(α,a, b) = αTLα, (5.15)

where L ∈ Rn×n is the so-called matting Laplacian matrix. When trimap is given,

we can regularize J(α) by minimizing the overall energy function:

α̂ = argmin
α

αTLα+ λ(α− z)TD(α− z), (5.16)
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where D is a binary diagonal matrix with entries being one for pixels that are labeled

in the trimap, and zero otherwise. The vector z ∈ Rn contains specified alpha values

given by the trimap. Thus, for large λ, the minimization in (5.16) will force the

solution to satisfy the constraints given by the trimap.

Dual-Layer Matting Laplacian L̃. In the presence of the plate image, we have

two pieces of complementary information: I ∈ Rn×3 the color image containing the

foreground object, and P ∈ Rn×3 the plate image. Correspondingly, we have alpha

matte αI for I , and the alpha matte αP for P . When P is given, we can redefine

the color line model as αI
i

αP
i

 ≈ ∑
c∈{r,g,b}

ac

Ici
P c
i

+ b. (5.17)

In other words, we ask the coefficients (ar, ag, ab, b) to fit simultaneously the actual im-

age I and the plate image P . When (5.17) is assumed, the energy function J(α,a, b)

becomes

J̃(αI ,αP ,a, b) =
∑
j∈I

{∑
i∈wj

(
αI
i −

∑
c

acjI
c
i − bj

)2

+η
∑
i∈wj

(
αP
i −

∑
c

acjP
c
i − bj

)2

+ ϵ
∑
c

(acj)
2

}
, (5.18)

where we added a constant η to regulate the relative emphasis between I and P .

Theorem 5.3.1 The marginal energy function

J̃(α)
def
= min

a,b
J̃(α,0,a, b) (5.19)
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can be equivalently expressed as J̃(α) = αT L̃α, where L̃ ∈ Rn×n is the modified

matting Laplacian, with the (i, j)th element

L̃i,j =
∑

k|(i,j)∈wk

{
δij −

1

2|wk|

(
1 + (I i − µk)

T

(
Σk − n(1 + η)µkµ

T
k

)−1
(Ij − µk)

)}
. (5.20)

Here, δij is the Kronecker delta, I i ∈ R3 is the color vector at the ith pixel. The

vector µk ∈ R3 is defined as

µk =
1

2|wk|
∑
j∈wk

(Ij + P j), (5.21)

and the matrix Σk ∈ R3×3 is

Σk =
1

2

{
1

|wk|
∑
j∈wk

(Ij − µk)(Ij − µk)
T

+
1

|wk|
∑
j∈wk

(P j − µk)(P j − µk)
T

}
. (5.22)

Proof See Appendix.

Because of the plate term in (5.18), the modified matting Laplacian L̃ is positive

definite. See Appendix for proof. The original L in (5.15) is only positive semi-

definite.

Dual-Layer Regularization D̃. The diagonal regularization matrix D̃ in (5.13) is

reminiscent to the binary matrix D in (5.16), but D̃ is defined through a sigmoid

function applied to the input z. To be more precise, we define D̃
def
= diag(d̃i), where

d̃i = diag
{

1

1 + exp{−κ(zi − θ)}

}
∈ Rn×n, (5.23)
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and zi is the i-th element of the vector z ∈ Rn, which is the argument of F1. The

scalar constant κ > 0 is a user defined parameter specifying the stiffness of the sigmoid

function, and 0 < θ < 1 is another user defined parameter specifying the center of the

transient. Typical values of (κ, θ) for our MACE framework are κ = 30 and θ = 0.8.

A closer inspection of D and D̃ reveals that D is performing a hard-threshold

whereas D̃ is performing a soft-threshold. In fact, the matrix D
def
= diag(di) has

diagonal entries

di =

0, θ1 < zi < θ2,

1, otherwise.
(5.24)

for two cutoff values θ1 and θ2. This hard-threshold is equivalent to the soft-threshold

in (5.23) when κ→∞.

There are a few reasons why (5.23) is preferred over (5.24), especially when we

have the plate image. First, the soft-threshold in (5.23) tolerates more error present

in z, because the values of D̃ represent the probability of having foreground pixels.

Second, the one-sided threshold in (5.23) ensures that the background portion of the

image is handled by the plate image rather than the input z. This is usually beneficial

when the plate is reasonably accurate.

5.3.2 Agent 2: Background Estimator

Our second agent is a background estimator, defined as

F2(z) = argmin
α

∥α− r0∥2 + λ2∥α− z∥2 + γαT (1−α). (5.25)

The reason of introducing F2 is that in F1, the matrix D̃ is determined by the current

estimate z. While D̃ handles part of the error in z, large missing pixels and false

alarms can still cause problems especially in the interior regions. The goal of F2 is to

complement F1 for these interior regions.
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Initial Background Estimate r0. Let us take a look at (5.25). The first two terms

are quadratic. The interpretation is that given some fixed initial estimate r0 and the

current input z, F2(z) returns a linearly combined estimate between r0 and z. The

initial estimate r0 consists of two parts:

r0 = rc ⊙ re, (5.26)

where ⊙ means elementwise multiplication. The first term rc is the color term,

measuring the similarity between foreground and background colors. The second term

re is the edge term, measuring the likelihood of foreground edges relative background

edges. In the followings we will discuss these two terms one by one.

Defining the Color Term rc. We define rc by measuring the distance ∥Ij−P j∥2 =∑
c∈{r,g,b}(I

c
j −P c

j )
2 between a color pixel Ij ∈ R3 and a plate pixel P j ∈ R3. Ideally,

we would like rc to be small when ∥Ij − P j∥2 is large.

In order to improve the robustness of ∥Ij − P j∥2 against noise and illumination

fluctuation, we modify ∥Ij−P j∥2 by using the bilateral weighted average over a small

neighborhood:

∆i =
∑
j∈Ωi

wij∥Ij − P j∥2, (5.27)

where Ωi specifies a small window around the pixel i. The bilateral weight wij is

defined as

wij =
w̃ij∑
j w̃ij

, (5.28)

where

w̃ij = exp

{
−∥xi − xj∥2

2h2
s

}
exp

{
−∥I i − Ij∥2

2h2
r

}
. (5.29)

Here, xi denotes the spatial coordinate of pixel i, I i ∈ R3 denotes the ith color pixel

of the color image I, and (hs, hr) are the parameters controlling the bilateral weight

strength. The typical values of hs and hr are both 5.
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Fig. 5.5.: Illustration of how to construct the estimate rc. We compute the distance
between the foreground and the background. The distance has a bilateral weight to
improve robustness. The actual r0 represents the probability of having a foreground
pixel.

We now need a mapping which maps the distance ∆ def
= [∆1, . . . ,∆n]

T to a vector

of numbers rc in [0, 1]n so that the term ∥α − r0∥2 makes sense. To this end, we

choose a simple Gaussian function:

rc = 1− exp

{
−∆2

2σ2
δ

}
, (5.30)

where σδ is a user tunable parameter. We tested other possible mappings such as the

sigmoid function and the cumulative distribution function of a Gaussian. However,

we do not see significant difference compared to (5.30). The typical value for σδ is 10.

Defining the Edge Term re. The color term rc is able to capture most of the

difference between the image and the plate. However, it also generates false alarms

if there is illumination change. For example, shadow due to the foreground object is

often falsely labeled as foreground. See the shadow near the foot in Figure 5.5.
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In order to reduce the false alarm due to minor illumination change, we first create

a “super-pixel” mask by grouping similar colors. Our super-pixels are generated by

applying a standard flood-fill algorithm [142] to the image I. This gives us a partition

of the image I as

I → {IS1 , IS2 , . . . , ISm}, (5.31)

where S1, . . . , Sm are the m super-pixel index sets. The plate image is partition using

the same super-pixel indices, i.e., P → {P S1 ,P S2 , . . . ,P Sm}.

While we are generating the super-pixels, we also compute the gradients of I

and P for every pixel i = 1, . . . , n. Specifically, we define ∇I i = [∇xI i,∇yI i]
T and

∇P i = [∇xP i,∇yP i]
T , where ∇xI i ∈ R3 (and ∇yI i ∈ R3) are the two-tap horizontal

(and vertical) finite difference at the i-th pixel. To measure how far I i is from P i,

we compute

θi = ∥∇I i −∇P i∥2. (5.32)

Thus, θi is small for background regions because I i ≈ P i, but is large when there is

a foreground pixel in I i. If we set a threshold operation after θi, i.e., set θi = 1 if

θi > τθ for some threshold τθ, then shadows can be removed as their gradients are

weak.

Now that we have computed θi, we still need to map it back to a quantity similar

to the alpha matte. To this end, we compute a normalization term

Ai = max (∥∇I i∥2, ∥∇P i∥2) , (5.33)

and normalize 1{θi > τθ} by

(re)i
def
=

∑
j∈Si

1{Ai > τA}1{θi > τθ}∑
j∈Si

1{Ai > τA}
, (5.34)

where 1 denotes the indicator function, and τA and τθ are thresholds. In essence,

(5.34) says in the i-th super-pixel Si, we count the number of edges 1{θi > τθ} that
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Fig. 5.6.: Illustration of how to construct the estimate re.

(a) rc (b) re (c) r0

Fig. 5.7.: Comparison between rc, re, and r0.

have strong difference between I i and P i. However, we do not want to count every

pixel but only pixels that already contains strong edges, either in I or P . Thus, we

take the weighted average using 1{Ai > τA} as the weight. This defines re, as the

weighted average (re)i is shared among all pixels in the super-pixel Si. Figure 5.6

shows a pictorial illustration.
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Why is re helpful? If we look at rc and re in Figure 5.7, we see that the foreground

pixels of rc and re coincide but background pixels roughly cancel each other. The

reason is that while rc creates weak holes in the foreground, re fills the gap by ensuring

the foreground is marked.

Regularization αT (1 − α). The last term αT (1 − α) in (5.25) is a regularization

to force the solution to either 0 or 1. The effect of this term can be seen from the

fact that αT (1 − α) is a symmetric concave quadratic function with a value zero

for α = 1 or α = 0. Therefore, it introduces penalty for solutions that are away

from 0 or 1. For γ ≤ 1, one can show that the Hessian matrix of the function

f2(α) = ∥α− r0∥2+ γαT (1−α) is positive semidefinite. Thus, f2 is strongly convex

with parameter γ.

5.3.3 Agent 3: Total Variation Denoising

The third agent we use in this work is the total variation denoising:

F3(z) = argmin
α

∥α∥TV + λ3∥α− z∥2, (5.35)

where λ3 is a parameter. The norm ∥ · ∥TV is defined in space-time:

∥v∥TV
def
=
∑
i,j,t

√
βx(∇xv)2 + βy(∇yv)2 + βt(∇tv)2, (5.36)

where (βx, βy, βt) controls the relative strength of the gradient in each direction. In

this work, for spatial total variation we set (βx, βy, βt) = (1, 1, 0), and for spatial-

temporal total variation we set (βx, βy, βt) = (1, 1, 0.25).

A denoising agent is used in the MACE framework because we want to ensure

smoothness of the resulting matte. The choice of the total variation denoising op-

eration is a balance betweeen complexity and performance. Users can use stronger

denoisers such as BM3D. However, these patch based image denoising algorithms rely
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on the patch matching procedure, and so they tend to under-smooth repeated pat-

terns of false alarm / misses. Neural network denoisers are better candidates but they

need to be trained with the specifically distorted alpha mattes. From our experience,

we do not see any particular advantage of using CNN-based denoisers. Figure 5.8

shows some comparison.

(a) Input (b) TV (c) BM3D (d) IRCNN
[18] [91] [143]

Fig. 5.8.: Comparison of different denoisers used in MACE. Shown are the results
when MACE converges. The shadow near the foot is a typical place of false alarm,
and many denoisers cannot handle.

5.3.4 Parameters and Runtime

The typical values for parameters of the proposed method are presented in Ta-

ble 5.1. λ1 and λ2 are rarely changed, while λ3 determines the denoising strength

of Agent 3. γ has a default value of 0.05. Inceasing γ causes more binary results

with clearer boundaries. τA and τθ determine the edge term re in Agent 2 and are

fixed. σδ determines the color term rc in Agent 2. Large σδ produces less false neg-

ative but more false positive. Overall, the performance is reasonably stable to these

parameters.
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Table 5.2.: Description of the video sequences used in our experiments.

time/Fr indoor/ lighting Backgrd green ground
resolution FGD % (sec) outdoor shadow issues vibration camouflage screen truth

Book 540x960 19.75% 231 outdoor ✓ ✓ ✓
Building 632x1012 4.03% 170.8 outdoor ✓ ✓ ✓ ✓
Coach 790x1264 4.68% 396.1 outdoor ✓ ✓ ✓

Purdue Studio 480x270 55.10% 58.3 indoor ✓
Dataset Road 675x1175 1.03% 232.9 outdoor ✓ ✓ ✓ ✓

Tackle 501x1676 4.80% 210.1 outdoor ✓ ✓ ✓ ✓
Gravel 790x1536 2.53% 280.1 outdoor ✓ ✓ ✓ ✓
Office 623x1229 3.47% 185.3 indoor ✓ ✓ ✓

Bootstrap 480x640 13.28% 109.1 indoor ✓ ✓ ✓ ✓
Cespatx 480x640 10.31% 106.4 indoor ✓ ✓ ✓ ✓

Public DCam 480x640 12.23% 123.6 indoor ✓ ✓ ✓ ✓
Dataset Gen 480x640 10.23% 100.4 indoor ✓ ✓ ✓ ✓
[110] Multipeople 480x640 9.04% 99.5 indoor ✓ ✓ ✓ ✓

Shadow 480x640 11.97% 115.2 indoor ✓ ✓ ✓

Table 5.1.: Typical values for parameters

Parameter λ1 λ2 λ3 γ τA τθ σδ

Value 0.01 2 4 0.05 0.01 0.02 10

In terms of runtime, the most time-consuming part is Agent 1 because we need

to solve a large-scale sparse least squares problem. Its runtime is determined by the

number of foreground pixels. Table 5.2 shows the runtime of the sequences we tested.

In generating these results, we used an un-optimized MATLAB code on a Intel i7-

4770k. The typical runtime is about 1-3 minutes per frame. From our experience

working with professional artists, even with professional film production software,

e.g., NUKE, it takes 15 minutes to label a ground truth label using the plate and

temporal cues. Therefore, the runtime benefit offered by our algorithm is substantial.

The current runtime can be significantly improved by using multi-core CPU or GPU,

because our algorithm handles each frame independently.

5.4 Experimental Results

5.4.1 Dataset

To evaluate the proposed method, we create a Purdue dataset containing 8 video

sequences using the HypeVR Inc. 360 degree camera as shown in Figure 5.9. The
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original image resolution is 8192×4320 at a frame rate of 48fps, and these images are

then downsampled and cropped to speed up the matting process. In addition to these

videos, we also include 6 videos sequences from a public dataset [110], making a total

of 14 video sequences. Snapshots of the sequences are shown in Figure 5.10. All video

sequences are captured without camera motion. Plate images are available, either

during the first or the last few frames of the video. To enable objective evaluation,

for each video sequence we randomly select 10 frames and manually generate the

ground truths. Thus totally there are 140 frames with ground truths.

Fig. 5.9.: [Left] The camera system we used for this work. [Right] Display and headset
to view the processed content.

The characteristics of the dataset is summarized in Table 5.2. The Purdue dataset

has various resolution, and the Public dataset has one resolution 480 × 640. The

foreground percentage for the Purdue dataset videos ranges from 1.03% to 55.10%,

whereas that public dataset has similar foreground percentage around 10%. The

runtime of the algorithm (per frame) is determined by the resolution and the fore-

ground percentage. In terms of content, the Purdue dataset focuses on outdoor scenes

whereas the public dataset are only indoor. The shadow column indicates the pres-

ence of shadow. Lighting issues include illumination change due to auto-exposure

and auto-white-balance. The background vibration only applies to outdoor scenes

where the background objects have minor movements, e.g., moving grass or tree
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Building Coach Studio Road Tackle Gravel Office Book

(a) Snapshots of the Purdue Dataset

Bootstrap Cespatx Dcam Gen MP Shadow

(b) Snapshots of a public dataset [110]

Fig. 5.10.: Snapshots of the videos we use in the experiment. Top row: Building,
Coach, Studio, Road, Tackle, Gravel, Office, Book. Bottom row:Bootstrap, Cespatx,
Dcam, Gen, MP, Shadow.

Table 5.3.: Description of the competing methods.

Methods Supervised Key idea

Unsupervised
Video

Segmentation

NLVS [133] no non-local voting
AGS [105] no visual attention
MOA [137] no 2-stream adaptation
PDB [136] no pyramid ConvLSTM

Alpha Matting [144] trimap Trimap generation
matting + alpha matting

Background ViBe [127] no pixel model based
subtraction Pbas [104] no non-parametric

Other BSVS [117] key frame bilateral space
Grabcut [121] plate iterative graph cuts

branches. The camouflage column indicates the similarity in color between the fore-

ground and background, which is a common problem for most sequences. The green

screen column shows which of the sequences have green screens to mimic the common

chroma-keying environment.

5.4.2 Competing methods

We categorize the competing methods into four different groups. The key ideas

are summarized in Table 5.3.
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• Video Segmentation: We consider four unsupervised video segmentation

methods: Visual attention (AGS) [105], pyramid dilated bidirectional ConvL-

STM (PDB) [136], motion adaptive object segmentation (MOA) [137], non-local

consensus voting (NLVS) [133]. These methods are fully-automatic and do not

require a plate image. All algorithms are downloaded from the author’s websites

and are run under default configurations.

• Background Subtraction: We consider two background subtraction algo-

rithms Pixel-based adaptive segmenter (Pbas) [104], Visual background extrac-

tor (ViBe) [127]. Both algorithms are downloaded from the author’s websites

and are run under default configurations.

• Alpha matting: We consider one of the state-of-the-art alpha matting algo-

rithm using CNN [103]. The trimaps are generated by applying frame difference

between the plate and color images, followed by morphological and thresholding

operations.

• Others: We consider the bilateral space video segmentation (BSVS) [117] which

is a semi-supervised method. It requires the user to provide ground truth labels

for key frames. We also modified the original Grabcut [121] to use the plate

image instead of asking for user input.

5.4.3 Metrics

The following four metrics are used.

• Intersection-ver-union (IoU) measures the overlap between the estimate mask

and the ground truth mask:

IoU =

∑
i min (x̂i, xi)∑
imax (x̂i, xi)

,

where x̂i is the i-pixel of the estimated alpha matte, and xi is that of the ground

truth. Higher IoU score is better.
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Table 5.4.: Average results comparison with competing methods: AGS [105],PDB
[136],MOA [137], NLVS [133], Trimap + DCNN [103], Pbas [104], ViBe [127], BSVS
[117], Grabcut [121]. Higher intersection-over-union (IoU), higher Contour accuracy
(F) [145], higher Structure measure (S) [146], lower MAE and lower Temporal insta-
bility (T) [145] indicate better performance.

Unsupervised Video Segmentation Matting Bkgnd Subtract. Others

Metric Our AGS [105] PDB [137] MOA [137] NLVS [133] Tmap [144] Pbas [104] ViBe [127] BSVS [117] Gcut [121]

IoU 0.9321 0.8781 0.8044 0.7391 0.5591 0.7866 0.5425 0.6351 0.8646 0.6574

MAE 0.0058 0.0113 0.0452 0.0323 0.0669 0.0216 0.0842 0.0556 0.0093 0.0392

F [145] 0.9443 0.9112 0.8518 0.7875 0.6293 0.7679 0.6221 0.5462 0.8167 0.6116

S [146] 0.9672 0.938 0.8867 0.8581 0.784 0.9113 0.7422 0.8221 0.9554 0.8235

T [145] 0.165 0.1885 0.2045 0.1948 0.229 0.1852 0.328 0.2632 0.2015 0.232

• Mean-absolute-error (MAE) measures the average absolute difference between

the ground truth and the estimate. Lower MAE is better.

• Contour accuracy (F) [145] measures the performance from a contour based

perspective. Higher F score is better.

• Structure measure (S) [146] simultaneously evaluates region-aware and object-

aware structural similarity between the result and the ground truth. Higher S score

is better.

• Temporal instability (T) [145] that performs contour matching with polygon

representations between two adjacent frames. Lower T score is better.

5.4.4 Results

• Comparison with video segmentation methods: The results are shown in

Table 5.4, where we list the average IoU, MAE, F, S and T scores over the datasets.

In this table, we notice that the deep-learning solutions AGS [105], MOA [137] and

PDB [136] are significantly better than classical optical flow based NLVS [133] in

all the metrics. However, since the deep-learning solutions are targeting for saliency

detection, foreground but unsalient objects will be missed. AGS performs the best
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among the three with a F measure of 0.91, S measure of 0.94 and T measure of 0.19.

PDB performs better than MOA in most metrics other than the T measure, with

PDB scoring 0.2 while MOA scoreing 0.19.

We should also comment on the reliance on conditional random field of these

deep learning solutions. In Figure 5.11 we show the raw outputs of AGS [105] and

PDB [136]. While the salient object is correctly identified, the masks are coarse.

Only after the conditional random field [129] the results become significantly better.

In contrast, the raw output of our proposed algorithm is already high quality.

• Comparison with trimap + alpha-matting methods: In this experiment we

compare with several state-of-the-art alpha matting algorithms. The visual compari-

son is shown in Figure 5.4, and the performance of DCNN [103] is shown in Table 5.4.

In order to make this method work, careful tuning during the trimap generation stage

is required.

Figure 5.4 and Table 5.4 show that most alpha matting algorithms suffer from

false alarms near the boundary, e.g., spectral matting [37], closed-form mating [36],

learning-based matting [107] and comprehensive matting [109]. The more recent

methods such as K-nearest neighbors matting [108] and DCNN [103] have equal

amount of false alarm and miss. Yet, the overall performance is still worse than

the proposed method and AGS. It is also worth noting that the matting approach

achieves the second lowest T score (0.19), which is quite remarkable considering it is

only a single-image method.

•Comparison with background subtraction methods: Background subtraction

methods Pbas [104] and ViBe [127] are not able to obtain a score higher than 0.65 for

IoU. Their MAE values are also significantly larger than the proposed method. Their

temporal consistency is lagging by larger than 0.25 for T measure. Qualitatively, we

observe that background subtraction methods perform most badly for scenes where

the foreground objects are mostly stable or only have rotational movements. This

is a common drawback of background subtraction algorithms, since they learn the

background model in a online fashion and will gradually include non-moving objects
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(a) Image (b) AGS [105], before (c) PDB [136], before

(d) Ours (e) AGS [105], after (f) PDB [136], after

Fig. 5.11.: Dependency of conditional random field. (a) Input. (b) Raw output of
the neural network part of AGS [105]. (c) Raw output of neural network part of
PDB [136]. (d) Our result without post-processing. (e) Post-processing of AGS using
conditional random field. (f) Post-processing of PDB using conditional random field.
Notice the rough raw output of the deep neural network parts.

into the background model. Without advanced design to ensure spatial and temporal

consistency, the results also show errors even when the foreground objects are moving.

•

textbfComparison with other methods: Semi-supervised BSVS [117] requires ground

truth key frames to learn a model. After the model is generated, the algorithm will
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Table 5.5.: Ablation study of the algorithm. We show the performance by eliminating
one of the agents, and replacing the denoising agent with other denoisers. Higher
intersection-over-union (IoU), higher Contour accuracy (F) [145], higher Structure
measure (S) [146], lower MAE and lower Temporal instability (T) [145] indicate better
performance.

Metric Our w/o F1 w/o F2 w/oF3 BM3D IrCNN

IoU 0.9321 0.7161 0.7529 0.7775 0.8533 0.8585

MAE 0.0058 0.0655 0.0247 0.0368 0.0128 0.0121

F [145] 0.9443 0.7560 0.9166 0.6510 0.7718 0.8506

S [146] 0.9672 0.8496 0.9436 0.8891 0.9334 0.9320

T [145] 0.165 too large 0.1709 too large 0.1911 0.1817

overwrite the key frames with the estimates. When conducting this experiment, we

ensure that the key frames used to generate the model are not used during testing.

The result of this experiment shows that despite the key frames, BSVS [117] still per-

forms worse than the proposed method. It is particularly weak when the background

is complex where the key frames fail to form a reliable model.

The modified Grabcut [121] uses the plate image as a guide for the segmentation.

However, because of the lack of additional prior models the algorithm does not per-

form well. This is particularly evident in images where colors are similar between

foreground and background. Overall, Grabcut scores badly in most metrics, only

slightly better than the background subtraction methods.

5.4.5 Ablation study

Since the proposed framework contains three different agents F1, F2 and F3, we

conduct an ablation study to verify the relative importance of the individual agents.

To do so, we remove one of the three agents while keeping the other two fixed. The

result is shown in Table 5.5. For T score, results for w/o F1 and w/o F3 are omitted,
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Fig. 5.12.: Office sequence results. (a) Input. (b) Ground truth. (c) Ours. (d)
AGS [105]. (e) PDB [136]. (f)MOA [137] (g)NLVS [133]. (h) Trimap + DCNN [103].
(i) Pbas [104]. (j) ViBe [127]. (k)BSVS [117]. (l)Gcut [121].
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as their results have many small regions of false alarms rendering untrackable amount

of points on the polygon contours used in calculating T measure.

The matting agent F1 has the most impact on the performance, followed by back-

ground estimator and denoiser. The drop in performance is most significant for hard

sequences such as Book as it contains moving background, and Road as it contains

strong color similarity between foreground and background. On average, we observe

significant drop in IoU from 0.93 to 0.72 when the matting agent is absent. The F

measure decreases from 0.94 to 0.76 as the boundaries are more erroneous without the

matting agent. The structure measure also degrades from 0.97 to 0.85. The amount

of error in the results also cause the T measure to become untrackable.

In this ablation study, we also observe spikes of error for some scenes when F2

is absent. This is because, without the αT (1 − α) term in F2, the result will look

grayish instead of close-to-binary. This behavior leads to the error spikes. One thing

worth noting is that the results obtained without F2 do not drop significantly for S,

F and T metric. This is due to the fact that IoU and MAE are pixel based metrics,

whereas F, S and T are structural similarity. Therefore, even though the foreground

becomes greyish without F2, the structure of the labelled foreground is mostly intact.

For F3, we observe that the total variation denoiser leads to the best performance

for MACE. In a visual comparison shown in Figure 5.8, we observe that IRCNN

[143] produces more detailed boundaries but fails to remove false alarms near the

feet. BM3D [91] removes false alarms better but produces less detailed boundaries.

TV on the other hand produces a more balanced result. As shown in Table 5.5,

BM3D performs similarly as IRCNN scoring similar values for most metrics except

that IrCNN scores 0.93 in F measure with BM3D only scoring 0.77 meaning more

accurate contours. In general, even with different denoisers, the proposed method

still outperforms most competing methods.



102

5.5 Limitations and Discussion

While the proposed method demonstrates superior performance than the state-

of-the-art methods, it also has several limitations.

• Quality of Plate Image. The plate assumption may not hold when the back-

ground is moving substantially. When this happens, a more complex back-

ground model that includes dynamic information is needed. However, if the

background is non-stationary, additional designs are needed to handle the local

error and temporal consistency.

• Loss of Fine Details. In our proposed method, fine details such as hairs

are compromised for robustness. Figure 5.13 illustrates an example. In some

videos, the color difference between foreground and background is similar. This

creates holes in the initial estimate r0, can be filled by a strong denoiser such

as total variation. However, total variation is known to oversmooth fine details.

To mitigate this issue, an additional post-processing step using alpha matting

could bring back the details around the boundary.

• Strong Shadows. Strong shadows are sometimes treated as foreground, as

shown in Figure 5.14. This is caused by the lack of shadow modeling in the

problem formulation. The edge based initial estimate re can resolve the shadow

issue to some extent, but not when the shadow is very strong. We tested a few

off-the-shelf shadow removal algorithms [147–149], but generally they do not

help because the shadow in our dataset can cast on the foreground object which

should not be removed.

An open question here is whether our problem can be solved using deep neural

networks since we have the plate. While this is certainly a feasible task because we can

use the plate to replace the guided inputs (e.g., optical flow in [137] or visual attention

in [105]), an appropriate training dataset is needed. In contrast, the proposed method

has the advantage that it is training-free. Therefore, it is less susceptible to issues
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(a) (b) (c) (d)

Fig. 5.13.: Limitation 1: Loss of fine details. (a) Color input. (b) Our result. (c)
Improving our result by generating a trimap from (b). (d) post-processed result by
alpha matting using (b).

Fig. 5.14.: Limitation 2: Strong shadows. When shadows are strong, they are easily
misclassified as foreground.

such as overfit. We should also comment that the MACE framework allows us to use

deep neural network solutions. For example, one can replace F1 with a deep neural

network, and F2 with another deep neural network. MACE is guaranteed to find a

fixed point of these two agents if they do not agree.

5.6 Conclusion

This chapter presents a new foreground extraction algorithm based on the multi-

agent consensus equilibrium (MACE) framework. MACE is an information fusion

framework which integrates multiple weak experts to produce a strong estimator.

Equipped with three customized agents: a dual-layer closed form matting agent, a

background estimation agent and a total variation denoising agent, MACE offers



104

substantially better foreground masks than state-of-the-art algorithms. MACE is a

fully automatic algorithm, meaning that human interventions are not required. This

provides significant advantage over semi-supervised methods which require trimaps

or scribbles. In the current form, MACE is able to handle minor variations in the

background plate image, illumination changes and weak shadows. Extreme cases can

still cause MACE to fail, e.g., background movement or strong shadows. However,

these could potentially be overcome by improving the background and shadow models.
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5.8 Appendix

5.8.1 Proof of Theorem 2

Proof We start by writing (5.18) in the matrix form

J̃(αI ,αP ,a, b) =
∑
k∈I

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


Hk 1
√
ηGk

√
η1

√
ϵI3×3 0


ak

bk

−

αI

k

αP
k

0


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2
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where

Hk =


... ... ...

Iri Igi Ibi
... ... ...

 , Gk =


... ... ...

P r
i P g

i P b
i

... ... ...

 ,

ak =


ark

agk

abk

 , αI
k =


...

αI
i

...

 , αP
k =


...

αP
i

...

 ,

and i denotes the index of the i-th pixel in the neighborhood wk. The difference with

the classic closed-form matting [36] is the new terms Gk, 1 and αP
k (i.e., the second

row of the quadratic function above.)

Denote

Bk
def
=


Hk 1
√
ηGk

√
η1

√
ϵI3×3 0

 , (5.37)

and use the fact that αP = 0, we can find out the solution of the least-squares

optimization:

ak

bk

 = (BT
kBk)

−1BT
k


αI

k

0

0

 (5.38)

We now need to simplify the term BT
kBk. First, observe that

BT
kBk =

HT
kHk + ηGT

kGk + ϵI3×3 HT
k 1+ ηGT

k 1

(Hk1+ ηGT
k 1)

T n(1 + η)


=

Σk µk

µT
k c


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where we define the terms Σk
def
= HT

kHk + ηGT
kGk + ϵI, µk

def
= HT

k 1 + ηGT
k 1 and

c
def
= n(1 + η). Then, by applying the block inverse identity, we have

(BT
kBk)

−1 =

 T−1
k −T−1

k µ̂k

−(T−1
k µ̂k)

T 1
c
+ µ̂kT

T
k µ̂k

 (5.39)

where we further define T k = Σk −
µkµ

T
k

c
and µ̂k =

µk

c
.

Substituting (5.38) back to , and using (5.39), we have

(αI) =
∑
k

∣∣∣∣∣∣∣∣∣
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TLkα
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where
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(
HkT

−1
K HT
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T

− 1T (T−1
k µ̂k)
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1

c
1T µ̂kT

−1
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(5.40)

The (i, j)-th element of Lk is therefore

Lk(i, j) =δij − (IT
kiT

−1
k Ikj − IT

kiT
−1
k µ̂k

− µ̂T
kT

−1
k Ikj +

1

c
+ µ̂T

kT
−1
k µ̂k)

=δij − (
1

c
+ (Iki − µ̂k)

TT−1
k (Ikj − µ̂k)) (5.41)

Adding terms in each wk, we finally obtain

L̃i,j =
∑

k|(i,j)∈wk

{
δij − (

1

c
+ (Iki − µ̂k)

TT−1
k (Ikj − µ̂k))

}
.
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5.8.2 Proof: L̃ is positive definite

Proof Recall the definition of J̃(αI ,αP ,a, b):

J̃(αI ,αP ,a, b) =
∑
j∈I

{∑
i∈wj

(
αI
i −

∑
c

acjI
c
i − bj

)2

+η
∑
i∈wj

(
αP
i −

∑
c

acjP
c
i − bj

)2

+ ϵ
∑
c

(acj)
2

}

Based on Theorem 2 we have,

J̃(α)
def
= min

a,b
J̃(α,0,a, b) = αT L̃α. (5.42)

We consider two cases: (i) acj = 0 ∀j and ∀c, (ii) there exists some j and c such

that acj ̸= 0. For the second case, is larger than 0. For the first case, can be reduced

into

J̃(α, 0,a, b) =
∑
j∈I

{∑
i∈wj

(
(αi − bj)

2 + η (−bj)2
)}

(5.43)

For any vector α ̸= 0, there exists at least one αi ̸= 0. Then by completing squares

we can show that

(αi − bj)
2 + ηb2j

= α2
i − 2αibj + (1 + η)b2j

=

(√
1

1 + η
αi −

√
1 + ηbj

)2

+
η

1 + η
α2
i > 0

Therefore, J̃(α, 0,a, b) > 0 for any non-zero vector α. As a result, J̃(α, 0,a, b) =

αT L̃α > 0 for both cases, and L̃ is positive definite.
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5.8.3 Proof of Proposition 1

Proof Let x ∈ RnN and y ∈ RnN be two super-vectors.

(i). If the Fi’s are non-expansive, then

∥F(x)−F(y)∥2 + ∥x− y − (F(x)−F(y))∥2

=
N∑
i=1

(
∥Fi(xi)− Fi(xi)∥2 + ∥xi − yi − (Fi(xi)− Fi(yi))∥2

)
(c)

≤
N∑
i=1

∥xi − yi∥2 = ∥x− y∥2

where (c) holds because each Fi is firmly non-expansive. As a result, F is also firmly

non-expansive.

(ii). To prove that G is firmly non-expansive, we recall from Theorem 1 that 2G−I is

self-inverse. Since G is linear, it has a matrix representation. Thus, ∥(2G − I)x∥2 =

xT (2G − I)T (2G − I)x. Because G is an averaging operator, it has to be symmetric,

and hence GT = G. As a result, we have ∥(2G − I)x∥2 = ∥x∥2 for any x, which

implies non-expansiveness.

(iii). If F and G are both firmly non-expansive, we have

∥(2G − I)[(2F − I)(x)]− (2G − I)[(2F − I)(y)]∥2

(a)

≤ ∥(2F − I)(x)− (2F − I)(y)∥2
(b)

≤ ∥x− y∥2

where (a) is true due to the firmly non-expansiveness of G and (b) is true due to the

non-expansiveness of G. Thus, T def
= (2G − I)(2F − I) is non-expansive. This result

also implies convergence of the MACE algorithm, due to [35].
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6. SUMMARY

In this work, we proposed multiple applications of the Plug-and-Play ADMM on image

deblurring, image inpainting/interpolation, image super-resolution and single-photon

imaging and discussed their efficient implimentations. For the case of super-resolution

we proposed a closed form solution for the x subproblem of the ADMM algorithm that

beats alternative methods like conjugate gradients on both performance and runtime.

We introduced a modofied version of the Plug-and-Play ADMM with a continua-

tion scheme that updates the internal parameter ρ of the ADMM automatically and

proved fixed point convergence for the proposed alsogirhtm when the denoiser falls

under a class called ”bounded denoisers”. Our definition for the ”bounded denoiser”

is weaker than the known ”proper denoiser” but excludes trivial ones like Dσ(x) = 0.

Compared to existing convergence analysis for Plug-and-Play ADMM that guarantees

global convergence with symmetric smoothing filter, we compromise the convergence

type to a fixed-point convergence but broaden the range of denoisers to ”bounded

denoisers”.

We studied the relation between ADMM and the generalized approximate message

passing. A parameter-free version of the Plug-and-play ADMM is proposed. Instead

of using a vectorized weight norm as in generalized approximate message passing, we

adopt a scalar parameter for the data term. The scalar is derived using the divergence

of the previous subproblem so that the current subproblem will adapt based on the

reliability of the previous subproblem. When calculating the divergence of the off-

the-shelf denoiser, we use the Monte Carlo scheme that performs denoising twice.

We further extend our study to a variant of the Plug-and-Play ADMM called

consensus equiblirum, and developed a system for video foreground extraction used in

the virtual reality content creation pipeline. We design one dual-layer alpha matting

agent, one background estimator using both color and edge cues, and adaopt the
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off-the-shelf total variation denoiser. Through experimental results, we show that

the proposed multi-agent concensus equilibrium algorihtm outperforms other state-

of-the-art competing background subtraction and video segmentation algorithms.

In the future, we will explore more operators for the MACE framework. One

potential operator we would like to try is to include the NLSV [133] as one of the op-

erator of our system. Our current system does not exploit any information regarding

the temporal consistency in the image sequence. Although this might enable us to

process frames in a parallel manner, but the quality of our results could suffer from

temporal inconsistency such as flickering, etc. The NLVS method associates super

pixels accross frames based on their similarities. At the same time, since NLVS does

not require a stable background image, we can also potentially lift the requirement

for a stationary camera so that our algorithm can be used for the more general cases.

Another solution for improving temporal consistency is to calculate optical flow

across frames and apply warping followed by a 3D denoiser that remove both spatial

and temporal noise. However, we suspect that optical flow could do more bad than

good when its results are not accurate enough. Another approach is to use a camera

that can capture videos with high frame rate so that direct application of 3D denois

ers is reasonable due to the high temporal resolution, however this might limit the

application of our algorithms for videos. However, we suspect that optical flow could

do more bad than good when its results are not accurate enough. Another approach is

to use a camera that can capture videos with high frame rate so that direct application

of 3D denoisers is reasonable due to the high temporal resolution, however this might

limit the application of our algorithms for videos.

Our current assumption is that the alpha matte should be locally constant so that

the total variational denoiser makes sense. However in reality the alpha mattes can

sometimes be spatially inconsistent, especially when the object has unclear boundaries

such as hair or fur. In these cases, our algorithm can overly smooth the the fuzzy

boundaries of the object. However, removing the denoiser will cause the results to

suffer from noise. One solution is to keep the denoiser and add an additional stage of
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post processing after the CE algorithm to enhance the details along the boundaries.

Once the we know the locations of boundaries based on CE solutions we can target

specifically on these area.

Our current foreground probability operator requires a user defined parameter to

convert the difference between the plate and target frames to a probability with the

range [0,1]. Based on experiments, the parameter that can achieve the best results

can vary among different scenes. As a result, it is highly preferable that we design an

automatic scheme for determine the value if this parameter based on each video. One

solution is to reference the results of a background subtraction algorithm. Background

subtraction algorithms build a background model based on the scene, often times

these algorithms have consistent performance for difference scenes. We think it might

be reasonable to determine the value of the parameter in our foreground probability

operator based on the difference between the result from a background subtraction

algorithm and the probability map we can obtain with a specific parameter value. In

this way, we can even find the best parameter per frame in case the scene are complex

and varies largely at difference sections.
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