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ABSTRACT

Cong, Shan Ph.D., Purdue University, December 2019. Morphometric Analysis of
Hippocampal Subfields. Major Professors: Maher Rizkalla, Edward J. Delp.

Alzheimer’s disease (AD) is an irreversible neurodegenerative brain disease distin-

guished by progressive impairment of memory and decline in cognitive abilities. The

hippocampus is widely recognized to play essential roles in forming and gradually

transferring information from short-term memory into long-term memory, and it is

involved in the onset of the neuropathological pathways of the brain to suffer neuron

loss in the rise of AD. Thus, hippocampal information obtained from magnetic res-

onance imaging (MRI) scans have been established as crucial AD biomarkers. The

hippocampus is composed of multiple subfields, and the neuron loss is not uniformly

distributed on the whole hippocampus. However, this critical subfield information

is not addressed by the existing surface-based morphometry (SBM) and voxel-based

morphometry (VBM) studies. Due to the size, complexity, heterogeneity, and fold-

ing anatomy of the hippocampus, acquiring volumetric and morphometric measures

of hippocampal subfields usually presents not only technical challenges in quantita-

tive neuroimaging but also analytical challenges. To address these challenges and

deeply understand the relationships between hippocampal shape changes and brain

disorders, especially to examine the degeneration of hippocampal subfields, this the-

sis focuses on constructing a hippocampal subfield morphometric analysis framework

including the following aspects: 1) hippocampal subfield segmentation; 2) 3D shape

modeling; 3) feature formulation; 4) diffeomorphic surface registration; 5) surface

shape reconstruction; and 6) association analytics. The goals include developing ac-
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curate hippocampal subfield guided registration methods, extracting useful features

and identifying significant subfields on the hippocampus that are highly related to

cognitive disabilities, and using such information to assist early detection of AD.



1

1. INTRODUCTION

1.1 Background and Motivation

Alzheimer’s disease (AD) is an irreversible neurodegenerative brain disease distin-

guished by progressive impairment of memory and decline in cognitive abilities. Pa-

tients with AD experience difficulty in memory, language, learning, problem-solving,

and other cognitive abilities, which can profoundly affect their daily lives. These

problems occur due to the damage or loss of nerve cells (neurons), which are involved

and associated with cognitive functions, including those that allow a person to carry

out fundamental bodily behaviors such as walking, vocal expression and swallowing.

Patients in the final stages of the illness are bed-ridden or chair-bound and require

around-the-clock care. AD is ultimately fatal, and there is currently no cure to slow

or stop the damage and destruction of neurons caused by AD. As summarized in Fig-

ure 1.1, which is based on the statistics from the 2019 Alzheimers disease facts and

figures [1], AD is the 6th leading cause of death in United States. Currently there are

more than 5 million Americans living with Alzheimer’s, and one thirds of seniors die

with Alzheimer’s or another dementia. In addition, this disease will cost the nation

290 billion in 2019. As the most common type of age-related dementia, AD is widely

studied using neuroimaging approaches with particular emphasis on critical memory

structures.

The hippocampus is a complex brain subcortical structure embedded deeply into

the temporal lobe. It is widely recognized to play essential roles in forming and grad-

ually transferring information from short-term memory into long-term memory, and

it is involved with the neuropathological pathways of the brain that suffer various

cognitive impairment diseases such as AD. Hippocampal information can be obtained

with magnetic resonance imaging (MRI, Figure 1.2) techniques such as structural
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Fig. 1.1.: A summary of the statistics from 2019 Alzheimer’s disease facts and figures.

MRI and functional MRI, and it has been widely studied in neuroimaging analysis

given the value of hippocampus in cognition and memory. The structural changes of

hippocampus observed from MRI scans are found to be sensitive/indicative to the pro-

gression of dementia, which makes it as a potential biomarker to detect brain disorders

such as AD, mild cognitive impairment (MCI) which is a prodromal stage of AD [2],

epilepsy [3, 4], and schizophrenia [5]. Thus, the hippocampus is widely analyzed to

discover the status of AD or MCI [6–9] and to infer cognitive status [10]. Furthermore,

hippocampal volumetry and morphometry have been employed to detect the presence

and progression of cognitive disorders in quantitative neuroimaging [11,12]. However,

the complex and heterogeneous folding anatomy of the hippocampus usually present

challenges in neuroimaging studies.

The hippocampus is composed of multiple subfields [13], and neuron loss is not

uniformly distributed on the whole hippocampus [14]. Many hippocampal studies

have indicated that subfields play an essential role in brain functions, e.g., the cornu

ammonis 1 (CA1) is selectively more vulnerable and related to autobiographical mem-
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(a) Axial view (b) Coronal view

(c) Sagittal view (d) Sagittal view

Fig. 1.2.: MRI scan with highlighted left (brown) and right (red) hippocampi.

ory retrieval [15], CA3 and dentate gyrus (DG) are involved in memory encoding and

early retrieval [13], and the subiculum and CA1 are predominantly affected in AD

patients [16]. However, this critical subfield information is typically not addressed

by the existing surface-based morphometry (SBM) and voxel-based morphometry
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(VBM) studies [7,10]. Due to the size, complexity, heterogeneity, and folding anatomy

of the hippocampus, acquiring detailed volumetric and morphometric measures of

hippocampal subfields usually presents not only technical challenges in quantitative

neuroimaging but also analytical challenges.

Currently, the most popular and widely used strategy for morphometric analy-

sis is volumetric analysis [17–20]. Since volume-based analysis can take the input

directly from the output of segmentation techniques, it is a convenient and efficient

way to conduct shape analyses. However, volumetric analyses only utilize hippocam-

pal volume measurements whereas detailed shape changes such as local deformation

are ignored in volumetric studies. Thus, volumetric analyses are not able to locate

the areas with most severe atrophy and cannot evaluate how severe the atrophy is for

a local region. To overcome this problem and conduct detailed hippocampal shape

analyses, surface-based analyses are adopted in this thesis. A surface-based repre-

sentation provides the capability of capturing detailed shape information, which can

be composed of geometric information such as curvatures and thickness, as well as

additional surface signals such as segmented labels and landmarks. These surface

features are helpful in localizing clinical biomarkers on the surface, which is typically

ignored in volumetric studies.

The major challenges and goals in this thesis are summarized as follows:

1) The creation of a reference (atlas) to enable group shape analyses and group

comparisons. The framework for generating a surface atlas is comprised of two major

steps: segmentation and 3D surface shape modeling. Segmentation is needed to

extract the hippocampal regions of interest, and surface shape modeling is used to

generate 3D surface models. In addition, a 3D model of the surface atlas allows visual

inspection of the hippocampal sub-regions.

2) As mentioned earlier, common volumetric analyses take the whole hippocampal

volume as the only measurement while ignoring local changes in shape. Thus, the

second goal of this study is to conduct surface-based analyses that can clearly indicate

where the atrophy is, and how severe it is.
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3) Important hippocampal subfields are not only ignored in most existing hip-

pocampal shape analyses, but also in shape modeling where most studies ignore

subfield measurements during the process of surface registration. With the goal of

achieving better alignment locally on hippocampal subfields, a surface registration

strategy is developed in this study.

4) The fourth challenge is to determine surface information, which typically char-

acterizes the local or global shape, and organize the extracted information into a

representation of the surface. A properly defined representation of surface features is

capable of describing hippocampal subfield information and ultimately guiding regis-

tration.

5) The fifth challenge is that existing surface registration methods are yet to be

fully explored. In this study we propose a new surface registration method and design

experiments to compare the registration results.

Another goal of this thesis is to understand the relationships between hippocampal

shape changes and brain disorders, especially the degeneration of hippocampal sub-

fields, through hippocampal surface shape analyses such that the correlations between

cognitive diseases and local deformation on hippocampal subfields can be revealed.

The framework of the analyses include the following components: 1) hippocampal

subfield segmentation and 3D shape modeling; 2) surface registration; 3) surface

shape reconstruction and building a surface atlas; and 4) morphometric analyses on

hippocampal subfields. As a result, the expected outcomes of this study include:

1. Utilizing hippocampal subfield information to guide surface registration instead

of solely using geometric information. Thus, a better alignment of subfields has to

be achieved. In addition, subfield information is an excellent feature that can guide

registration especially when the shape information is not complete due to the quality

of MRI scans.

2. Creating a 3D surface atlas of the hippocampus through surface modeling and

surface registration. In this case the deformation fields can be obtained by computing

the distance from each individual surface to the atlas.



6

3. Building a framework for hippocampal morphometric analysis and identifying

statistical significance of associations among hippocampal morphometry, diagnosis,

and genetic information.

1.2 Related Work

Given the importance of subcortical structural changes such as the atrophy of the

hippocampus in the progression of AD, there has been notably expanded interest in

recent literature in examining the subfields of the hippocampal structure using mag-

netic resonance imaging (MRI). As mentioned earlier, shape analysis is widely used

and contains several key steps such as segmentation, shape modeling, feature repre-

sentation, shape registration and statistical group analysis. In this section, current

hippocampal morphometric analyses are categorized and summarized based on these

steps, and each step will be explained individually.

1.2.1 Hippocampus Segmentation

The task of segmentation is to extract a target region from raw MRI scans, and

it is essential for any shape analyses. However, in our study the size, complexity,

heterogeneity and complex folding anatomy of hippocampus present analytical chal-

lenges, and due to the low resolution of regular T1-weighted MRI images at 1.5T

or 3T, the hippocampal subfield information is often hard to extract. Some existing

studies [21–26] use manually delineated hippocampi or semi-automated segmenta-

tion [6,27,28] for their studies. Manual labeling often requires tedious work by profes-

sionals with extended processing time, and thus do not apply to large-scale datasets.

One of the most popular methods for automated hippocampal subfield segmentation

is presented in [29]. As a subroutine integrated in the latest FreeSurfer 6.0 [30], it has

recently finished a major update that enables the possibility of handling either T1 or

T2-weighted MRI images individually, or both T1 and T2-weighted MRI scans at the

same time [30]. Another popular and validated method is Automatic Segmentation of
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Hippocampal Subfields (ASHS) [9]. Compared to the previous method [29] employed

in earlier versions (5.1 and 5.3) of Freesurfer, the new methods [30] and [9] the uti-

lization of high-resolution T2-weighted MRI scans, makes these methods effective in

evaluating particular hippocampal subfields as well as adjacent related cortices. The

use of this automated hippocampal segmentation with high-resolution T2-weighted

images may lead to better prognostic predictions and selections of treatment, and

a fuller understanding of cognitive disorders [31]. Other automated segmentation

methods and related work include multi-atlas and joint label fusion method [32, 33],

patch-based label fusion [34], and anatomically-guided EM [35].

1.2.2 Shape Descriptors

After segmentation and before any morphological studies, a proper representation

of data should be defined as they characterize local or global shape. The most direct

and convenient way to represent shape is based on the segmentation result which is a

3D volume [17–20]. Another common representation for shape analyses is to generate

3D surfaces [36–38].

Volumetric studies only utilize hippocampal volume measurements whereas the

detailed shape changes such as local deformation are ignored in volumetric studies.

Thus, volumetric analyses are not able to locate the areas with most severe atrophy,

also it cannot evaluate how severe the atrophy is for a local region. In this study, one

of the goals is to conduct detailed hippocampal shape analyses. Thus, surface-based

analysis is the main focus in this thesis. A surface represented shape can provide

more informative features compared to volumetric studies, and these features among

different subjects should be determined in the purposes of searching correspondences

and measuring differences between a pair of subjects or a subject and image tem-

plate. The surface features include but not limited to: 1) structural information such

as points (vertex), lines, faces [39], 2) geodesic information such as radial distance

(thickness), curvatures and manifolds [11, 40], 3) clustering information such as hip-
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pocampal subfield distributions and surface or volumetric clustering [41], 4) spectral

features obtained from eigenvalues of the Laplace-Beltrami operator [42, 43], and 5)

landmark information based on prior knowledge [44].

For computational convenience, 3D surfaces sometimes are required to be param-

eterized and reconstructed. The popular surface parameterization methods include

conformal mapping by holomorphic 1-forms [45] and spherical mapping using spheri-

cal harmonics [46,47]. By applying the surface parameterization techniques, it intro-

duces a common space across all objects, which makes registration easier to identify

correspondences across the groups.

1.2.3 Image and Shape Registration

Since the goal is to investigate degeneration occurring on hippocampal subfields, a

natural intuition is to investigate the deformation field between case group (patients)

and control group (healthy people). In order to compute the deformation field between

two 3D objects, we can use the feature information discussed in the earlier section

1.2.2 for image registration (alignment). A registration problem is a task of finding

spatial correspondences for two or more images. To achieve this goal, a registration

algorithm should apply a transformation on the source image to make it matches the

target image locally or globally. Registration techniques are widely used in computer

vision and medical imaging analyses, in order to numerically measure shape changes,

all of the objects are required to be well aligned.

Image registration algorithms can be categorized in many ways. For example,

when we consider the types of transformation, it can be classified into two major

categories: linear rigid transformations and elastic (non-rigid or deformable) trans-

formations. We can also categorize registration methods according to the types of

feature correspondences including landmark-based registration and landmark-free reg-

istration. Registration problems can also be categorized based on the types of image
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modalities such as surface registration and volumetric registration. As registration

is a major component in this thesis, and for a better understanding on registration

techniques, we further explain each category in the following paragraphs.

At first, we introduce the categories based on the types of transformations. The

linear transformation is a wide category, it applies uniform mapping between or among

objects including rotation, scaling, as well as other affine transforms. Since the lin-

ear transformations are global, this method cannot model local geometric differences

between images [48,49]. Elastic transformations are also known as non-rigid transfor-

mation or deformable transformation, which employs local warping that transforms

a source image to align with the target image (template or reference image). Elas-

tic transformations include radial basis functions [50], physical continuum models

(viscous fluids) [45,51], and large deformation models (diffeomorphisms) [37,52].

The second way to categorize registration methods is based on the types of fea-

tures. Usually, landmark-based registration requires some pre-knowledge of structural

or functional features, and landmarks should be placed on objects in advance of the

registration process. Studies such as [53, 54] take advantages of landmarks in shape

analyses. Compared to landmark-based methods, landmark free registration strate-

gies do not require any landmarks. The studies such as [37, 55] utilize geometric

features and define a registration problem as an optimization problem. These studies

try to resolve this optimization problem to minimize the differences between objects

in either Euclidean space or non-Euclidean geometry aspect (such as Riemannian

geometry), a smaller difference usually means a better correspondence between two

objects.

Another way to categorize registration methods is based on image modalities. The

most popular image modalities in medical imaging analyses are 2D medical imaging

scans and 3D shape models. The common 2D medical imaging techniques include

magnetic resonance imaging (MRI), functional MRI, computed tomography (CT),

positron emission tomography (PET) and ultrasound. Registration methods usually

extract imaging features from image intensities, a registration algorithm can handle



10

the image intensity directly [56,57] or reformulate these intensity features as geometric

features [58,59], spectrum [60] or diffusion tensor [61,62]. It is common for a patient to

have two or more different types medical imaging scans. Thus, there is a wide interest

focusing on multi-modality registration by taking the mutual information [63–65].

3D shape models have two major branches: voxel-based shape modeling and

surface-based shape modeling, both can be represented as polygon meshes. Sur-

face registration methods [51, 66–69] usually extract morphological and topological

measurements from anatomical structures such as the neocortex, and to redefine the

complex correspondence searching problem into a surface matching scheme. Sim-

ilar to 2D image registration, voxel-based registration [50, 70] usually extends the

registration methods from 2D into 3D, it applies a 3D transformation to obtain a

deformation or vector velocity field according to either voxel intensity or features

derived from intensity information of raw image.

To compare surface-based registration and volumetric registration, some existing

studies [71, 72] demonstrate that surface-based methods can achieve more accurate

registration results in aligning highly complex folded human brain cortex. Because

a higher quality of alignment leads to a better correspondence among objects, it re-

sults in getting functionally homologous regions across the groups. An obvious and

direct benefit in aligning functionally homologous regions is that the results of group

analyses show enhanced statistical power by identifying more sensitive biomarkers,

this motivated us in exploring a registration strategy of aligning hippocampal sur-

face based on subfield measurements as the functionality varies in each individual

subfield. Conversely, volumetric registration aims to find correspondences across the

whole brain instead of only considering the surface areas. Rather than ignoring, it

embraces the interior information in searching correspondences. However, geomet-

ric information and folding patterns are typically not easily handled in volumetric

registration studies.
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1.2.4 Morphometric Analysis of Hippocampal Shape

Morphometric analyses are ready to perform after all of the objects are well

aligned. As mentioned, the quality of registration can directly affect the power of sta-

tistical analysis. Statistical morphometric analysis is widely employed in biomedical

imaging studies with the goal of understanding physiological structures and identify-

ing pathological abnormalities associated with structural changes, demographics and

diagnosis information. Zhang et al. [73] defined and extracted surface multivariate

tensor-based morphometry and radial distance on each hippocampal surface vertex,

they then applied Hotelling’s T2 test in order to identify significant morphometric dif-

ferences in both hippocampus and lateral ventricle between normal and clinically de-

clining subjects. They found the left hemisphere was more severely affected than the

right during the early stage of cognitive disease. Shi et al. [74] explored pathological

abnormalities associated with genetics information, and showed that Apolipoprotein

E (APOE) e4 carriers exhibited accelerated hippocampal atrophy using Hotelling’s

T2 test. They concluded meaningful morphological atrophy in APOE e4 carriers

related to noncarriers in the whole cohort as well as in the nondemented (pooled

MCI and HC) subjects, that affects the left hippocampus more than the right, and

this conclusion was more pronounced in e4 homozygotes than heterozygotes . Gold

et al. [75] employed volumetric and surface shape analyses of the hippocampus to

characterize neuroanatomical correlates of depression in multiple sclerosis.

Chen et al. [76] performed volumetric analyses in posttraumatic stress disorder,

and they observed that neuron loss was not uniformly distributed on hippocampus

and indicated that smaller hippocampal CA1 had significantly statistical associations

with increased anxietylike behavior from repeated exposure to acute stress. There

are more studies focusing on hippocampal subfield using morphometric information.

Scher et al. [21] use radial distance as a feature, and suggest the AD pathology

involvement with the CA1 region, adjacent portions of CA2 and distal CA3, subicu-

lum (SUB), and additionally, with the dentate gyrus-hilar (DG) region. Haukvik et
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al. [77] concluded that patients with bipolar disorder and schizophrenia consistently

displayed smaller SUB volumes, and their evidence showed that these patients were

related to worse verbal memory. Yushkevich et al. [9] conclude that most significantly

different hippocampal subregions between amnestic MCI and healthy control (HC)

are observed mutually in the hippocampal subregion CA1 and the left Brodmann area

35 based on volumetric analyses. The volumetric study results from Mueller et al. [78]

show that subiculum, CA1, and CA2 are significantly affected in AD pathology.

Other than identifying group associations in morphometric analyses, functional

and structural information of hippocampus are also widely studied in the areas of

machine learning and data mining, the tasks include classifying and predicting the

diagnostic status of the subjects, especially for the prognostics to detect abnormalities

in the early stage of brain cognitive diseases. Costafreda et al. [79] predict the tran-

sition from MCI to AD based on hippocampal morphology, and they conclude that

the initial degeneration area associated with severe atrophy is CA1. In their study, a

Support Vector Machine (SVM) is employed with variants of normalized hippocampal

volume and radial distance. Hett et al. [39] adopt patch-based grading approach to

capture structural deformation of hippocampus, and build a graph of hippocampal

subfields grading to distinguish AD patients from clinically normal participants. Ning

et al. [80] adopt the popular convolutional neural network (CNN) framework, they

take both of single nucleotide polymorphism (SNP) information and structural MRI

images as predictors to identify AD risk factors.

1.3 Limitations

Given the awareness of the recent development of segmentation techniques (men-

tioned in Section 1.2.1), most methods mentioned in Section 1.2.4 are based on volu-

metric measurement. Volumetric analyses take the input directly from segmentation

outputs, and are a convenient way to conduct shape analyses. However, volumet-

ric analyses only takes hippocampal volume as one measurement, so it measures
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the global shape changes in nature. In the meanwhile, it ignores the local shape

changes. Conversely, surface-based analysis can capture and utilize detailed shape

information, which contains geometric information such as curvatures and thickness,

and additional surface signals such as regional subfield distribution and landmarks.

These surface feature descriptors characterize both local and global shape, and are

helpful in locating clinical biomarkers that are typically ignored in volumetric studies.

Another issue is, most existing studies employed regular T1-weighted MRI scans;

thus, they cannot clearly capture the critical hippocampal subfields as well as their

neighboring cortical subregions. With the goal of better subfield alignment, typical

registration methods which are based on geometric information may not be suffi-

cient. To the best of our knowledge, there is currently no image registration method

that is based on hippocampal subfield distribution information, while most of the

registration studies only focused on geometry information such as radial distance

and local patches. Since we model hippocampus with a smooth surface, it typically

provides limited geometric information. Thus, taking advantage of hippocampal sub-

field measurements will lead to a more accurate hippocampal surface registration.

Also, as mentioned previously, the functionality varies in each individual subfield, it

is important to align functionally homologous regions across the groups. This can

dramatically help to reduce errors in statistical group analyses, as well as to enhance

statistical power.

The last issue in the existing shape analyses is that identifying AD from HC is not

a challenging problem. The investigation of hippocampal morphometry as an early

biomarker for detecting early MCI (EMCI) is an important but yet under-explored

topic. Since the EMCI is a very early MCI in AD pathology, deformation signals

are too weak to be well captured. A computational framework that can address this

issue using hippocampus information is to be studied. Biomarkers on hippocampal

subfield are to be explored and validated in statistical analyses.
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1.4 Proposed Framework and Main Contributions

Based on the issues mentioned above, a novel computational framework is pro-

posed for group shape analysis in this thesis. As stated previously, shape analysis

is a wide concept containing several key image processing techniques such as target

segmentation, quantification and shape modeling, and they are essential areas in med-

ical image processing. By combining these techniques, researchers can find valuable

ways to extract and represent details on user-desired structures, which can function

as the basis for subsequent analyses such as feature classification, regression, and

prediction. This thesis presents a new framework for building a three-dimensional

(3D) hippocampal atlas model with subfield information mapped onto its surface,

with which hippocampal subfield guided surface registration can be performed, group

comparison and statistical analysis can be facilitated, and results can be clearly vi-

sualized.

Fig. 1.3.: Working procedures of the proposed approaches.

To deeply understand the relationships between hippocampal shape changes and

brain disorders, especially to examine the degeneration of hippocampal subfields,

this study focuses on constructing a hippocampal subfield morphometric analysis

framework including the following aspects: 1) hippocampal subfield segmentation;
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2) 3D shape modeling; 3) surface registration; 4) surface shape reconstruction and

building atlas; 5) association analytics. In this thesis, two frameworks that share the

same structure will be described as shown in Figure 1.3. The working procedures

start by taking raw MRI scans as inputs. Next hippocampal subfield segmentation

extracts subfield measures followed by surface modeling that models the segmentation

results as 3D surfaces, after which surface registration is applied to align all of the

surfaces together. By averaging the aligned surfaces from a control group, a surface

atlas of the hippocampus can be obtained. The framework treats this atlas as a

template and surface deformation field from each object surface to this template is

found. By obtaining the deformation field surface morphometric analysis can be

performed and correlations between surface shape changes and cognitive diseases

found. Tihis will allow for some vulnerable hippocampal sub-regions to be identified

as potential biomarkers for detecting AD. The major modifications of the second

approach compared to the first approach are circled in Figure 1.3.

The first framework shows our initial efforts in hippocampal subfield morphome-

tric analyses, and it has two major goals: building a surface atlas of hippocampal

subfields and identifying vulnerable hippocampal subfields in AD pathology. It is

composed of existing and powerful tools for automatic subcortical segmentation and

3D surface modeling. In particular, Freesurfer 5.3 and Functional magnetic resonance

imaging of the brain’s Integrated Registration and Segmentation Tool (FIRST) are

employed for hippocampal segmentation and quantification, while SPherical HAR-

Monics (SPHARM) is employed for parametric surface modeling. This framework is

shown to be effective in creating a hippocampal surface atlas using the Alzheimer’s dis-

ease Neuroimaging Initiative Grand Opportunity and phase 2 (ADNI GO/2) dataset.

The other framework adopted the same working scheme as shown in Figure 1.3.

The major differences and improvements include: 1) it is capable of capturing more

detailed hippocampal subfield changes with high-resolution MRI scans. Detailed com-

parisons of image quality will be shown in Chapter 5 and Figure 5.8. 2) Merging two

segmentation approaches in the first approach may introduce errors because their par-
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titions of the hippocampus are not exactly the same. Our solution is to replace FIRST

and FreeSurfer by a newly released and widely recognized package named Automatic

Segmentation of Hippocampal Subfields (ASHS), which can handle high resolution

T2-weighted MRI scans while T1-weighted MRI scans are treated as complementary

information. 3) Hippocampal subfield information is taken into consideration in the

surface registration process. It aims to match the subfield locally, while the regis-

tration strategy adopted in the first approach only applies a global transformation.

Spherical demons [37] and other demons algorithm variants [60, 81, 82] are employed

to perform landmark free registration.

The common parts of the two proposed approaches are: 1) SPHARM is kept

unchanged in the second framework for parametric surface modeling. 2) Same strate-

gies are adopted for association analyses. The experimental results of the second

framework demonstrate the feasibility of building a hippocampal surface atlas us-

ing high-resolution data by developing new methods and employing some recently

developed methods.

In summary this study is motivated by several goals including: 1) establishing a

computational framework to build a 3D hippocampal subfield surface atlas; 2) devel-

oping accurate hippocampal subfield guided registration methods, and 3) extracting

useful features and identifying statistically significant biomarkers such as identifying

sub-regions on the hippocampus that are highly related to cognitive disabilities.

The main contributions of this study as summarized in Table 1.1 fall into two

major categories, namely shape analyses and surface alignment. In the area of shape

analyses, as our goal is to perform group analyses, we need a reference for group

comparisons, so the first contribution of this study is to propose a novel compu-

tational framework that integrates several existing shape segmentation and surface

modeling methods to build surface atlas as a reference. The generated 3D surface

atlas can demonstrate detailed and accurate hippocampal subfield partitions for vi-

sual inspection. The second contribution in shape analysis is the utilization of each

individual surface vertex as a measurement that can clearly indicate the atrophy and
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severity level. The next major contribution of this study is in the area of surface

registration. In this regard the contribution of this study is alignment of hippocam-

pal subfields in the absence of informative surface geometric information. In this

study, we demonstrate the feasibility of the procedures for fast and accurate land-

mark free registration using hippocampal subfield information. Since hippocampal

subfield measures are obtained directly from segmentation results, and using integer

labels directly for registration can introduce errors, one contribution is to generate

proper surface feature representations such as binary maps, distance maps and prob-

ability maps. The final contribution is a new surface registration method based on

demons algorithm, and detailed experimental results will illustrate the advantages of

our methods compared to the classical methods.

1.5 Organization

The rest of the thesis is organized as follows, as illustrated in Figure 1.3: Chapter 2

introduces the processes of data preparation such as segmentation and surface shape

modeling, Chapter 3 describes the fundamental theories of several popular surface

registration methods and the proposed methods. In Chapter 4, we apply the meth-

ods mentioned in Chapter 2 and 3 with the goal of building a hippocampal surface

atlas. Morphometric analyses such as volumetric analyses, surface-based analyses,

and genetic analyses are discussed in Chapter 5. In Chapter 6, we summarize the

studies and discusses several possible future directions. A diagram shown in Figure 1.4

demonstrates the relations between Chapters 2-5 and the goals of this study.
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Fig. 1.4.: Organization and goals of the thesis.
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2. SURFACE SHAPE MODELING

2.1 Background

The goal of this chapter is to introduce several methods used in the initial data

preparation and processing such as segmentation of the hippocampus and 3D surface

modeling approaches that will be used to generate the hippocampus surface atlas.

The 3D surface model is a polygon representation that describes the geometric char-

acteristics of an object. It defines topological relations on the surface such as vertex,

face, and edge, which can provide a series of shape correspondences across different

objects. It makes geometric operations (such as Euclid geometry and Riemannian

geometry) feasible for surface shape analyses by numerically evaluating shape vari-

ations and structural differences among objects. This allows for a region of interest

such as a region with severe atrophy on the surfaces to be identified.

The 3D surface modeling process usually contains two major steps: the first step

is to extract a region of interest (ROI); the second step is to generate 3D polygon

representations. This strategy is widely applied and discussed in the areas of computer

graphics and computer vision, and widely applied in the areas of medical-imaging

analysis, 3D animation, industrial design and earth science [83–85].

As a focus of this study, the complex folding anatomy of the hippocampus of-

ten presents analytical challenges. In particular, the critical hippocampal subfield

information is usually ignored in hippocampal morphometric studies. Most existing

subfield studies employ high-field MR technologies, post-mortem data, and long scan

times for extracting hippocampal subfield information [25, 86–88], which can not be

applied to a large cohort. Automated extraction of hippocampal subfields from 1.5T
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or 3T MRI brain scans is still a challenging task [89] and there are very few tools avail-

able. In this section, several tools that fulfill automatic hippocampal and subfields

segmentation are introduced.

After the information of the hippocampus and its subfields are obtained, the

next step is to obtain morphometric changes. As voxel-based hippocampal objects

cannot be compared directly across subjects, the SPHARM method [90] is employed

to model the surfaces so that group analysis (e.g., computing an average shape) can

be facilitated. This work extends the analysis on single object cases to multiple

objects cases and allows the analysis not only on the individual shape information of

each object but also on spatial relations between or among objects. The SPHARM

parametric surface modeling was initially proposed by Brechbuhler et al. [91] to model

3D objects with arbitrary shape but required to be simply connected. It is basically

a parametric surface modeling method based on Fourier transform method, which

describes a 3D surface utilizing three spherical functions and transforms them into

three sets of Fourier coefficients in the frequency domain [92]. Three steps are involved

in our SPHARM processing framework: (1) spherical parameterization, (2) SPHARM

expansion, and (3) SPHARM registration.

2.2 Data and Materials

The data used in this study was downloaded from the ADNI database [93]. One

goal of ADNI has been to test whether serial MRI, positron emission tomography

(PET), computed tomography (CT), biological markers, and clinical and neuropsy-

chological evaluation can be combined to measure the progression of AD and MCI

(an early stage of AD).

We downloaded baseline 3T MRI scans of 172 HC, 267 early MCI (EMCI), 140

late MCI (LMCI), and 108 AD participants aging between 55 and 90, along with

demographic and diagnostic information. All the raw data are 3D T1-weighted scans

with 1.2ˆ 1.0ˆ 1.0mm3 voxel resolution, and dimension of 196ˆ 256ˆ 256.
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2.3 Image Segmentation and Quantification

Freesurfer and FIRST (published as a part of FSL) are automatic segmentation

tools based on Bayesian models, and they are widely recognized in the field of medical

imaging analyses. The automated segmentation technique in FreeSurfer [94] is based

on a statistical model of image formation around the hippocampal area using Bayesian

inference. It firstly builds an explicit computational model by incorporating a prior

which is based on a generalization of probabilistic atlases to describe the formation

around the hippocampal area in ultra-high resolution MRI scans, then a likelihood

distribution completes the model by predicting and assigning integer labels to each

voxel according to a maximum a posteriori estimate, which indicates a subfield it

belongs to. Thus, hippocampal subfield segmentations can be obtained.

For more specific details, in the first step, the goal of FreeSurfer algorithm is to

create a generative model that incorporates a prior distribution, which is learned

from manually labeled partition of hippocampal subfields. Assume a labeled im-

age L “ tli, i “ 1, . . . , Iu with a total of I voxels and K classes of subfield labels,

the region of interest (ROI) is covered by a tetrahedrical mesh with N mesh nodes

xr “ txrn, n “ 1, . . . , Nu and each node has K probability values for each label

li P t1, . . . , Ku, so we have α “ tαn , n “ 1, . . . , Nu and αn “
 

α1
n, . . . , α

K
n

(

with

the conditions that αkn ě 0 and
řK
k α

k
n “ 1 which counts the frequency a label li oc-

curs at a node xr in the training data. Then, the algorithm models the the probability

of having label k in an image pixel i with a mesh node x as the followings:

pipk|xq “
N
ÿ

n“1

αkn,Φn pxiq , (2.1)

where Φnp¨q is defined as the interpolation basis function for a mesh node n. With

the assumption of the conditional independence, the FreeSurfer algorithm models the

probability of obtaining label image L by

ppL|xq “
l

ź

i“1

pi pli|xq . (2.2)
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The second step is to employ a likelihood distribution to measure the mean and

variance of the normal distribution associated with different tissue categories. For an

intensity image Y “ tyi, i “ 1, . . . , Iu,

ppY |L,θq “
l

ź

i“1

pli pyi|θq , (2.3)

where θ is defined as likelihood distribution parameters, and the algorithm models

each of the distributions pkpy|θq as a normal distribution:

N
`

y|µ, σ2
˘

“
1

?
2πσ2

exp

˜

´
pyi ´ µq

2

2σ2

¸

. (2.4)

For tissue types Gpkq and k P tGM,WM,CSF,CPu, each of the distributions

pkpy|θq “ N
`

y|µGpkq, σ
2
Gpkq

˘

@k. (2.5)

The third step is to perform parameter optimization for the maximum a posteriori

(MAP) parameter estimate. The goal is to obtain parameters tx̂, θ̂u that can max-

imize ppx,θ|Y q9ppY |x,θqppxq using a generalized expectation maximization (EM)

algorithm [95].

The last step of FreeSurfer (v5.3) hippocampal subfield segmentation algorithm

is to assign anatomical labels to testing data with the trained MAP model. For each

voxel, the highest posterior probability is obtained by

pipk|y, x̂, θ̂q9N
`

y|µ̂Gpkq, σ̂
2
Gpkq

˘

pipk|x̂q. (2.6)

Similar to the FreeSurfer (v5.3), FIRST [96] is also a Bayesian model based ap-

proach for the hippocampus segmentation. The major differences are 1) FIRST is not

capable to provide any subfield estimation, and 2) FIRST algorithm introduces the

shape appearance in addition to the image intensity. The FIRST algorithm adopts

the shape and appearance models created from manually traced and labeled MRI

images partitioned by the Center for Morphometric Analysis in Boston, USA. Then

these labels are parameterized as vertices of tetrahedrical polygon meshes. The shape
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and appearance model within a Bayesian framework allows a full exploitation of prob-

abilistic relationships between image intensity and the shape of hippocampus. The

shape is described as a mean with singular value decomposed principal components.

Based on the MAP models learned from the training process, the segmentation al-

gorithm seeks through linear combinations of appearance modes of variation for the

most probable shape instance with the highest maximum a posteriori value given the

observed intensities in an input MRI image.

For more specific details, in the first step, the FIRST algorithm aims to model

the joint distribution p pxI ,xsq of intensity and shape appearance as a multivariate

normal distribution, where xI denotes image intensity and xs denotes the image shape

with Euclidean coordinates of vertices.

The second step is to calculate the conditional posterior probability p pxs|xI ,Zq,

given xI and Z:

p pxs|xI ,Zq “
p pxs,xI |Zq
p pxI |Zq

, (2.7)

where Z “ tX1 . . . Xnsu denotes a set of manually traced training data. MAP maxi-

mizes p pxs|xIq such that p pxs|xIq9p pxI |xsq p pxsq and this equation is solvable by

logarithm transformation:

´ ln p pxs|xIq “ ´ ln p pxI |xsq ´ ln p pxsq ` ln p pxIq . (2.8)

The third step of the FIRST algorithm is to model the shape partition by approx-

imating the testing image to training data using the shape and appearance models:

x̂ “ x`U
Dε
?
γv

a

pns ´ 1q
b, (2.9)

where U are the eigenvectors of the covariance matrix, b are model parameters that

weight the linear combination of eigenvectors, D2
ε is a diagonal matrix consisting of

the eigenvalues, γ is a scalar such that γ “ pns ´ n
´1
s q { pns ´ n

´1
s ´ 2q.

Given the intensities from a testing MRI scan, the final shape partition is modelled

using Equation 2.9. The parameters of the new shape instance bs can be estimated

from the posterior conditional distribution p pxs|xI ,Zq.
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We first perform an initial segmentation of the subfields of the hippocampus from

each MRI scan using FreeSurfer (see Figure 2.2). The result includes eight probability

maps, one for each subfield. Then, we use FIRST to extract the left and right

hippocampi, and the result is a 3D binary image (see Figure 2.4). As we can see

from Figure 2.4, FIRST yielded a less noisy boundary than FreeSurfer. Although

FreeSurfer can produce reliable hippocampal subfield volume measures, it tends to

yield noisy hippocampal boundary which is not suitable for detailed shape analysis.

Conversely, FIRST generates successful hippocampal boundary results, but it does

not offer the capability for segmenting subfields. So a strategy we will adopt in the

following sections is to combine these two segmentation approaches: for the same

subject, we take the segmentation result from FIRST as a binary mask, and apply it

on the results from FreeSurfer, it is a process of mapping subfield information from

FreeSurfer to FIRST segmentation results.

As the segmentation results cannot always be perfect, there may exist some un-

noticeable vacancies or discontinuities between image voxels, it is necessary to check

and eliminate the topological errors of the segmentation results. In the next step,

we perform a topology fix for the FIRST result (as it is the mask) to make sure

the hippocampal object is simply-connected, and its surface has a spherical topol-

ogy. A simply-connected object means: 1) each face contains four edges, and each

pair of vertices is connected by an edge; 2) each vertex can be connected by three

to six edges based on the local connectivity; 3) the total number of vertices should

be greater than the total number of faces by two, which follows the Euler’s rule of

relation: nvert “ nface ` 2 [47,91,97,98].

Topology fix is a crucial step required by spherical parameterization which will be

introduced in Section 2.6.1. We assume the segmentation results are binary images,

we assign values equal to one for the hippocampus and zero for the background, then

the topology fix corrects hippocampal topology in the following aspects: 1) for the

isolated or disconnected small components, they are removed changing their values

from 1 to 0; 2) for the holes inside the object which are zeros completely surrounded
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(a) An example of bad topology:

bad edge connectivity

(b) An example of bad topology:

bad vertex connectivity type I

(c) An example of bad topology:

bad vertex connectivity type II

Fig. 2.1.: Some examples of bad topology.
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by ones, they are removed by changing the values from 0 to 1; 3) for the bad edge

connectivity shown in Figure 2.1(a), the topology fix chooses one candidate from four

voxels and replaces the voxel value based on maximum number of different neighbours,

the result is either removing an existing voxel or adding a new voxel; 4) for the type I

bad vertex connectivity shown in Figure 2.1(b), a voxel may be removed by changing

the value from 1 to 0 based on maximum number of different neighbours; 5) for the

type II bad vertex connectivity shown in Figure 2.1(c), a voxel may be added by

changing the value from 0 to 1 based on maximum number of different neighbours.

After the topology correction, we use the fixed hippocampus to mask the 8 proba-

bility maps (i.e., values outside the mask are set to 0). We also identify “holes” in the

mask, where all the 8 probability maps have 0 values. We smooth each probability

map with a Gaussian kernel (Kernel size is [5 5 5] in our experiments) to get nonzero

values and assign these values to voxels in the holes. We denote these updated prob-

ability maps as P1´P8. Thus, for each hippocampus, the result of this step includes

(1) a binary object to represent the entire hippocampus (its surface has a spherical

topology), and (2) 8 probability maps P1 ´ P8, one for each subfield (see Figure 2.3

for mapping it onto the surface, where nonzero values are colored in red). These are

the input data to the next step.

2.4 Reproducibility Test

To test if FIRST and Freesurfer are reliable tools for our studies, in this section,

we perform a reproducibility analysis on hippocampal subfield segmentation using

FreeSurfer and FIRST, aiming for identifying reliable subfield measures for further

investigation. Thus, This study has two goals: (1) evaluating the reproducibility of

hippocampal subfields segmented by FreeSurfer; (2) examining whether combining

FreeSurfer and FIRST can yield reliable subfield measures with the potential for

further shape analysis.
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Fig. 2.2.: FreeSurfer subfield segmentation: example slices of the left hippocampus.

Histogram shows the number of voxels in each subfield.

Participants include 30 healthy controls from the Alzheimer’s disease Neuroimag-

ing Initiative (ADNI) GO/2 cohort, same scanning protocols are discussed in 2.2. Two

repeated baseline 3T magnetic resonance imaging (MRI) scans were downloaded for

each participant. Using these two sets of repeated MRI scans, intraclass correlation

coefficients (ICCs, more details can be found in section 4) were calculated to evalu-

ate the reproducibility of the volume measures of these extracted structures. Each

subfield map was further masked by the entire hippocampus generated by either

FreeSurfer or FIRST to obtain two new sets of subfield volume measures. After that,

two more sets of ICCs were calculated based on these new measures.

Comparing FIRST and FreeSurfer (Figure 2.4) segmentation results of the entire

hippocampus, we observed that FIRST yielded a less noisy boundary than FreeSurfer.

The reproducibility tests for measuring subfield volume resulted in ICCs ranging from

0.4 to 0.9, and using FIRST to mask the subfields produced ICCs higher or similar

to the original ones.

Although FreeSurfer can produce reliable hippocampal volume measures, it tends

to yield noisy hippocampal boundaries which are not suitable for detailed shape

analysis. While FIRST generates successful hippocampal segmentation results, yet it
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Fig. 2.3.: Subfields information measured using FreeSurfer is mapped on left hip-

pocampal surface segmented by FIRST. “L-others” is the tail region of the hippocam-

pus which contains “l-8th” and “l-undefined” on Figure 2.2.

does not offer the capability for segmenting subfields. Based on the reproducibility

measures, using FIRST to mask the subfields yields a set of ICCs that are better

than or similar to the original ones, while the most ICCs results of using FreeSurfer
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Fig. 2.4.: Hippocampal segmentation: FIRST versus FreeSurfer.

to mask subfields are similar or worse than the original ones. This promising result

suggests that FIRST-masked subfields may have the potential to be used in detailed

shape analysis, and guarantees the validation of the experimental results.

2.5 Surface Mesh Representations

Surface shape modeling is a major branch in computer vision and medical imag-

ing, which has proved valuable in the tasks of object representation, recognition,

classification, and registration. This part focuses on shape modeling of 3D surfaces

extracted from volumetric images.

Surface mesh is a polygon structure that describes a geometric shape by a set of

vertices, edges, and faces. Figure 2.5 gives two examples showing cortical [99] and

facial [100] surface meshes.
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As seen in Figure 2.6, a vertex is defined as a node or an intersection for two line

segment on the surface mesh. An edge is defined as a line segment that joins two

vertices. A face is defined as a closed area within edges. Representations of polygon

meshes have many variants; the surface models are usually represented by triangular

mesh, quadrilaterals mesh, or other simple convex polygons for different applications

and goals, or as a result of the simplification level of rendering.

As shown in Figure 2.6(a) and 2.6(b), we take 9 vertices from a surface with

N vertices, a vertex is a 1 ˆ 3 vector indicating its spatial coordinates x, y and z

(Figure 2.6(c)), while a face is described as a 1ˆ 3 vector (triangle mesh, as shown in

Figure 2.6(d)) or 1ˆ4 vector (quadrilaterals mesh), which indicates indices of vertex.

With a certain structure, the surface mesh can provide geometric information as each

vertex contains geometric coordinates in one space. This helps examine structural

deformation in group studies.

Other than simple geometric surface information, a polygon structure may contain

additional signals that can provide useful information. For example, when the medial

curve is calculated, the thickness can be defined as the shortest distance from a specific

vertex to the medial curve, this is also seen as an indicator of surface deformation

when performing group comparisons. Another example is surface curvature; it can

be evaluated along surface normal. By introducing the concept of surface curvature,

many mathematical tools such as differential geometry can be applied. More details

can be found in [101–104].

2.6 3D Hippocampal Surface Modeling

After hippocampi and subfields are extracted from segmentation tools such as

FIRST and Freesurfer, a procedure of hippocampal surface modeling is required for

surface-based morphometric analyses. This procedure includes two steps: (1) spheri-

cal parameterization, and (2) SPHARM expansion.
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(a) Cortical surface mesh (b) Facial surface mesh

(c) Shaded rendering for cortical

surface

(d) Shaded rendering for

facial surface

Fig. 2.5.: An example of surface mesh: (a) describes an example of cortical surface

mesh; (b) describes an example of facial surface mesh; (c) describes the shaded ren-

dering for cortical surface; and (d) describes the shaded rendering for facial surface.
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(b) Zoom-in view of spherical mesh

Face ID Vertex ID
f1 1 5 6
f2 1 2 5
f3 2 4 5
f4 2 3 4
f5 5 9 8
f6 5 4 9
f7 6 7 8
f8 6 5 8

(c) A list of faces

Vertex ID X Y Z
1 -0.76 -0.41 0.51
2 -0.71 -0.48 0.51
3 -0.66 -0.54 0.51
4 -0.64 -0.53 0.56
5 -0.69 -0.46 0.56
6 -0.73 -0.39 0.56
7 -0.71 -0.38 0.6
8 -0.67 -0.45 0.6
9 -0.62 -0.51 0.6

(d) A list of vertices

Fig. 2.6.: Structures of surface meshes: (a) describes the complete surface mesh; (b)

describes the zoom-in view of mesh structures; (c) describes the faces and vertices;

and (d) describes the spatial coordinates of surface vertices.
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2.6.1 SPHARM Parameterization

In order to describe a voxel-based hippocampal surface using spherical harmonics,

spherical parameterization was introduced. It embedded the voxel-based hippocampal

surface graph onto a surface of the unit sphere, and it created a continuous and

uniform mapping from the object surface to the surface of a unit sphere. Thus,

it resulted in a bijective mapping between each point v on a surface and a pair of

spherical coordinates θ and φ that matched the definition of spherical harmonics [105]:

vpθ, φq “ pxpθ, φq, ypθ, φq, zpθ, φqqT , (2.10)

where θ is defined as the polar (or co-latitudinal) coordinate with θ P r0, πs, and

φ is taken as the azimuthal (or longitudinal) coordinate with φ P r0, 2πq, as shown

in Figure 2.7. Thus, the north pole is defined as θ “ 0 and the south pole has

θ “ π. Figure 2.8 shows an example spherical parameterization. This closed-surface

parameterization is achieved through an area-preserving mapping by implementing

Brechbuhler’s method [91].

2.6.2 SPHARM Expansion

SPHARM expansion expands the object surface in a full set of spherical harmonic

basis functions Y m
l , where Y m

l indicates the spherical harmonic of degree l and order

m, and it is actually a Fourier basis function defined on the sphere. Each function is

independently decomposed in terms of SPHARM as:

xpθ, φq “
8
ÿ

l“0

l
ÿ

m“´l

cmlxY
m
l pθ, φq, (2.11)

ypθ, φq “
8
ÿ

l“0

l
ÿ

m“´l

cmlyY
m
l pθ, φq, (2.12)

zpθ, φq “
8
ÿ

l“0

l
ÿ

m“´l

cmlzY
m
l pθ, φq. (2.13)
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Fig. 2.7.: A spherical unit: θ is defined as the polar (or co-latitudinal) coordinate

with θ P r0, πs, and φ is taken as the azimuthal (or longitudinal) coordinate with

φ P r0, 2πq.

Fig. 2.8.: Hippocampal surface (left) and its spherical parameterization (right). Color

indicates the correspondence between the surface and parameterization.

The expansion can be bundled as a single vector-valued form:
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vpθ, φq “

¨

˚

˚

˚

˝

xpθ, φq

ypθ, φq

zpθ, φq

˛

‹

‹

‹

‚

“

8
ÿ

l“0

l
ÿ

m“´l

¨

˚

˚

˚

˝

cmxl

cmyl

cmzl

˛

‹

‹

‹

‚

“

8
ÿ

l“0

l
ÿ

m“´l

cml Y
m
l pθ, φq, (2.14)

where,

vpθ, φq “

¨

˚

˚

˚

˝

xpθ, φq

ypθ, φq

zpθ, φq

˛

‹

‹

‹

‚

, (2.15)

and,

cml “

¨

˚

˚

˚

˝

cmxl

cmyl

cmzl

˛

‹

‹

‹

‚

. (2.16)

z z
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y y
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Fig. 2.9.: An example of degree 1 reconstruction (an ellipsoid) and the degree 15

reconstruction of the same object.
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The prerequisite for SPHARM expansion is to finish spherical parameterization

in advance, as it was introduced in the last section. As the results of spherical

parameterization shown in Equation 2.6.2, xpθ, φq,ypθ, φq,zpθ, φq are functions that

define the location relationship between the voxel-based object and spherical unit.

Based on this theory, the object surface can be described through expanding these

three spherical functions using SPHARM, as shown in Equation 2.6.2.

The Fourier coefficients cml are determined using standard least-square estimation

and can be estimated by solving a linear system. To describe how to calculate it, we

can pick one dimension, xpθ, φq as an example. The goal is to compute the coefficients

cmlx up to a user-desired maximum degree Lmax. When an input spherical function

xpθ, φq is described by a set of spherical samples (θi, φi) and their function values

xi “ xpθi, φiq, for 1 ď i ď n. Based on Equation 2.6.2, a linear system can be

described as follows:

¨

˚

˚

˚

˚

˚

˚

˝

y1,1 y1,2 y1,3 ¨ ¨ ¨ y1,k

y2,1 y2,2 y2,3 ¨ ¨ ¨ y2,k

...
...

...
. . .

...

yn,1 yn,2 yn,3 ¨ ¨ ¨ yn,k

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1

a2

a3

...

ak

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x1

x2

x3

...

xn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.17)

where yi,j “ Y m
l pθi, φiq, j “ l2 ` l ` m ` 1, and k “ pLmax ` 1q2. For every pair

pl,mq, an indexing scheme j is the unique number assigned to these pairs. The above

system is solved by least square fitting for pa1, a1, ¨ ¨ ¨ , akq
T as for most cases n ‰ k.

As each aj ” ĉmlx is an estimation of the original coefficients cmlx, for the unique index

j “ l2 ` l `m` 1, the original function can be reconstructed as the form:

x̂pθ, φq “
8
ÿ

l“0

l
ÿ

m“´l

ĉmlxY
m
l pθ, φq « xpθ, φq. (2.18)

The object surface can be reconstructed utilizing these coefficients, and the more

degrees (i.e. larger values of Lmax) the user uses, the more coefficients are generated

and the more precise and detailed reconstruction x̂pθ, φq will be achieved. Applying
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least-squares estimation in a same way onto ypθ, φq and zpθ, φq, the results cmly and

cmlz are determined individually. Thus, a series of bundled coefficients cml can be used

for approximating the original surface and also used to represent and reconstruct an

approximated surface. Figure 2.9 shows the degree 1 remodeling and the degree 15

remodeling for the same object.

The SPHARM parametrization and expansion process is demonstrated in Fig-

ure 2.10, the surface of an object (hippocampus) was first bijectively mapped onto the

spherical surface (done by SPHARM parameterization), then this object was recon-

structed by applying spherical harmonic functions and using the calculated spherical

coefficients and user-desired degree (done by SPHARM expansion).

Fig. 2.10.: The object on left is the original hippocampus, the object in the middle

is the unit sphere, and the object on the right (FOE aligned, in Chapter 3 is the

reconstructed hippocampus using SPHARM expansion.

2.7 Summary of Chapter 2

In this section, we introduced two segmentation tools: FIRST for hippocampi seg-

mentation, and Freesurfer for hippocampal subfield segmentation. We also described

the procedures to parameterize a 3D object on a unit sphere, and then reconstruct

the 3D object surface using Fourier basis expansion. SPHARM expansion makes
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each object surface has the same number of vertices and faces under the same re-

construction degree level; thus, it makes all surface objects comparable. However,

the surfaces are still not comparable since they are not well aligned. An additional

step should be performed to align those surface-based objects together for the goal

of group comparisons. A reference or template (atlas) is required for such a step.
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3. SURFACE REGISTRATION

3.1 Background

Surface shape registration is an extension of image registration, which is also

known as image matching. It aims to discover the spatial correspondences between

two or more images of a scene by seeking an optimal global or local transformation

that best aligns the structures or functionalities of interested regions homogeneously

across the given images. By registering images, a correspondence can be determined

and the structural changes in the scene can be detected. This basic capability is

needed in various medical image analysis applications.

Image features can be extracted from 2D or 3D images as introduced in Chapter

1, and they are unique image properties that can describe geometric and other shape

features. This information can be useful to establish a correspondence between two

2D images or 3D surfaces. Surface registration is intended to align all surface shape

models in a common scheme of reference to enable the shape comparisons. It produces

a standardized geometric representation to describe the shape after standardizing

measurements of size, position, and orientation (i.e. excluding scaling, translation as

well as rotation).

While image registration is deemed as one of the most critical topics in image

processing and analysis, surface registration plays a likewise significant role in com-

puter graphics and shape analysis. One important application of surface registration

is surface-based morphometry (SBM); it is commonly used in biomedical imaging and

other fields to locate shape changes related to distinct conditions.

The registration of 3D surfaces represents an essential area of research in image-

based tasks, and it is widely studied in medical imaging literature as it is an es-

sential tool for surface analysis. To specifically explains this, surface registration is



41

fundamental in geometric modeling and 3D shape analytics that aims to find sur-

face correspondence between two objects in polygon mesh representation. Thus, a

transformation which best superposes one surface with another can be found. It is

extensively applied in medical imaging and analytics aspects such as human cere-

bral cortex analysis, cortical connectome analysis, and soft tissues analysis. Surface

registration in medical imaging employs anatomical information to achieve fast and

efficient registration.

Compared with point registration, surface registration features for more informa-

tive surface correspondences, which combines geometric information such as curva-

tures and thickness, and additional surface signals such as regional subfield distribu-

tion and landmarks. These features make surface registration as an identical tool to

find ideal correspondence (when no correspondences are pre-defined).

To manually pre-define correspondent points or trace landmark points frequently

requires professional pre-knowledge on anatomy and pathology. It often requires

heavy labor work; thus, it is a time-consuming, error-prone, and subjective process,

which makes manual landmarking impractical for the studies with a large scale of data

set. To overcome this limitation, some surface based automated registration methods

are proposed [106–108]. These methods usually utilize geometric features such as

radial distance and shape curvature, and this naturally makes surface boundaries and

surface regions distinct patterns in distinguishing different tissues or finding common

geometric features in group studies. As mentioned before, a registration problem is

essentially a problem that we try to find correspondence between subjects, surface

registration utilizing geometric information can resolve a medical image registration

problem in an automatic sense. However, the complex anatomy is often not only

provide geometric information but also brings challenges for accurate registration.

In this chapter, the goal is to introduce the basic theories for surface registration

and describe the proposed surface-guided registration strategy. It present a set of

effective surface registration methods that are suitable for SBM processing. Different

applications may require different registration methods and criteria for obtaining
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optimal registration results. The remainder of this section is organized into four

major parts. The first subsection aims to introduce surface registration theories,

algorithms, and variants. In the second subsection, four types of popular registration

quality evaluation methods will be discussed. In the third subsection, different surface

registration strategies will be tested on synthetic data. At the end of this section,

discussions, and conclusions will be summarized.

3.2 Methods

In this thesis, surface registration methods are categorized into two classes: one is

based on surface geometric information; the other is based on non-geometric features.

Geometry based methods benefit from the object’s spatial characteristics. Thus, the

algorithms can catch local or global geometric patterns. The most discussed non-

geometric features include landmarks and clusters, instead of matching geometric

features, these methods aim to match correspondent landmarks together or align

similar clusters.

3.2.1 Register Surface Meshes using Geometric Information

First Order Ellipsoid Registration

Section 2.6.1 and 2.6.2 described the working procedures of SPHARM parameter-

ization and expansion. As a result, a 3D hippocampal surface based on computing

coefficients and user-desired degrees is introduced. Since the goal is to compare differ-

ent subjects across groups, a method that can align all these objects into a common

reference system should be introduced; with the consideration of utilizing geometric

information, the registration task can be handled by First Order Ellipsoid (FOE).

It generates a shape descriptor (i.e., excluding translation, rotation, and/or scaling)

from a standardized set of SPHARM coefficients, which are comparable across ob-

jects.
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(a) original objects (b) aligned parameterizations (c) aligned objects

Fig. 5. SPHARM registration using first order ellipsoids (FOEs). Each row shows one sample

hippocampus. Each of (a-c) shows the FOE on left and degree 15 reconstruction on right. Param-

eterization is indicated by the lines on the surface, including equator θ = π/2 and four longitudinal

lines φ = −π/2, 0, π/2, π. The north and south poles and the point (π/2, 0) are shown as dots.

4.1. FOE Alignment

SPHARM registration is a common operation in shape analysis. It creates a nor-

malized set of SPHARM coefficients, which are comparable across objects, to form

a shape descriptor (i.e., excluding translation, rotation, and scaling). Scaling in-

variance can be achieved by adjusting the coefficients so that the object volume

is normalized. Ignoring the degree 0 coefficient results in translation invariance.

By design, the degree one reconstruction is an ellipsoid for any SPHARM model

(Fig. 1(b)). We call it the first order ellipsoid (FOE). Rotation invariance can be

achieved by aligning the FOE.13

Fig. 5 demonstrates the registration of SPHARM models by aligning the FOEs.

Each row shows the processing of one sample hippocampus. Each of (a-c) shows

the FOE on left and degree 15 reconstruction on right. In (a), the original pose and

parameterization are shown. Note that the correspondence between two SPHARM

models is implied by the underlying parameterization: two points with the same

parameter pair (θ, φ) on two surfaces are defined to be a corresponding pair. Thus,

in (b), the FOE is used to align the parameterization in the parameter space and

establish the surface correspondence: although the object pose stays the same, the

parameter net on each FOE is rotated to a canonical position such that the north

pole is at one end of the longest main axis, and the crossing point of the zero

meridian and the equator is at one end of the shortest main axis. In (c), the FOE

is used to adjust the object pose in the object space: the FOE is rotated to make

its main axes coincide with the coordinate axes, putting the shortest axis along x

and longest along z. Now we can see that these two hippocampi are aligned to a

canonical position in both parameter space and object space. Algorithmic details

about this method are available in Brechbühler et al.13,38

z z z z z z

zzzzzz

y y y y y

yyyyyy

y x x x x x x

xxxxxx

Fig. 3.1.: First order ellipsoid (FOE) registration. There is one identical sample

hippocampus on each row. The ellipsoids are FOE representations of the sample,

while the hippocampi are reconstructed using SPHARM expansion with degree of 15.

Parameterization correspondences (solid lines and dots) are indicated on each surface:

the Equator is defined as θ “ π{2, and each longitudinal line is separately defined as

φ “ ´π{2, 0, π{2, π. The north and south poles and the point (π{2, 0) are shown as

dots. (a) shows initial parameterization and pose of the two surfaces. (b) shows the

alignment in parameter space (parameter net adjustment). (c) shows the alignment

in subject space (pose adjustment).

Figure 3.1 illustrates the registration procedures for SPHARM models by aligning

the first order reconstruction of the hippocampus. There are two samples of the hip-

pocampus used in this test and each row demonstrates the exact procedures of shape

alignment. For each pair of (a-c), it demonstrates the reconstructed hippocampal sur-

faces: on the left side, it is the first degree reconstruction (an ellipsoid); and on the

right side, it is the 15th degree reconstruction (a more accurate approximation of hip-

pocampus). In this scenario, we assume surface parameterization is performed, and

spherical coefficients are calculated. Figure 3.1(a) shows one hippocampus’s original
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gesture(on the right side), surface parameterization (simplified as lines and crossing

points) and its first order reconstruction (FOE, on the left side). To further explain

this, the correspondence between two SPHARM models is intimated by the under-

lying parameterization on the surface: two surface dots with a pair of same surface

parameter pθ, φq on two different surfaces are identified to be a corresponding pair.

Thus, in Figure 3.1(b), the FOE algorithm is used to match the surface parameteri-

zation in the parameter space, it establishes the surface correspondence by rotating

parameter net: although the pose of the hippocampus stays unchanged, the surface

mesh on each FOE is rotated to a canonical position such that the north pole is at

one end of the longest primary axis, and the crossing point of the zero meridians and

the equator is at one end of the shortest primary axis. A transformation that aligns

the parameterization of FOE to a canonical position also aligns the degree 15 (or any

other degree) reconstruction to a canonical position correspondingly. Figure 3.1(c)

shows the final step of FOE. The FOE is applied to adjust the hippocampus’s orien-

tation in the object space: the FOE is rotated such that its main axes coincide with

the coordinate axes, putting the shortest axis along x and longest along z. Thus, We

can define the north pole as the point at one end of the longest main axis, and the

crossing point of the zero meridians and the equator is at one end of the shortest main

axis. By completing the above two steps, we successfully registered the two samples

of the hippocampus to a canonical position in both parameter space and object space.

More complete theories and implementation details of the algorithm can be found in

Brechbuhler et al. [91, 109].

However, this alignment technique works with a restriction that only when the

first order reconstruction is a real ellipsoid, as we showed the hippocampus data used

in this study. If this restriction is broken, for example, if our experimental object

is an ellipsoid of revolution or a sphere, FOE will be failed. There are also other

scenarios in which FOE registration may not work well. Even though this limitation

will not cause a problem in this thesis, a more general method that can be applied in

broader study scenarios is desired.
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3.2.2 Register Surface Meshes using Clustered Labels

Image Registration: demons Algorithm

Demons algorithm was widely used in 2D MRI and CT image registration, it was

proposed by Thirion et al. [110], which was inspired by Maxwell’s demons functions.

Then Vercauteren et al. [111] further validated theoretical basis of demons algorithm.

With the recent development of demons algorithm, several variants [36,60,81,82,112]

were proposed to improve the performance of demons algorithm, and Yeo et al. [37]

extended the 2D image-based demons algorithm to 3D spherical space.

Demons algorithm is based on a two-step optimization scheme, and it can be seen

as an optimization scheme on the whole space of displacement fields. In the first step,

it intends to search for the update direction of each node. While in the second step,

it seeks to regularize the generated displacement fields and form the new warp.

Given a fixed image F p.q and a moving image Mp.q, we assume they are scalar-

valued images. The transformation Γ p.q: p Ñ Γ ppq, models the spatial mapping

of vertices from the fixed image space to the moving image space. Spatial trans-

formations are represented by a displacement field Γ , which is added to an identity

transformation to get the transformation:

Γ : pÑ p` Γ ppq.

We define a similarity criterion Simp., .q, it measures the commonality of two

surfaces. In the following parts, we take the mean squared error to measure the

similarity between F p.q and Mp.q:

SimpF,M ˝ Γ q “
1

2
}F ´M ˝ Γ }2 “

1

Ωp

ÿ

pPΩP

}F ppq ´MpΓ ppqq}2, (3.1)

where ΩP is the area of intersection between F and M ˝ Γ . However, with no reg-

ularization, Equation 3.1 causes an ill-posed problem with unstable and non-smooth

solutions. To avoid this issue and apply to add some possible apriori knowledge, a
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regularization term Regpsq can be added to resolve this problem. Then we can define

the global energy:

EpΓ q “
1

σ2
i

SimpF,M ˝ Γ q `
1

σ2
T

RegpΓ q, (3.2)

where σ2
i states for the noise on the image intensity, and σ2

T adjusts the amount of

regularization we need. We further introduce a hidden transformation γ and formulate

an optimization objective function, it seeks:

pγ˚, Γ ˚q “ argmin
γ,Γ

}Σ´1
pF ´M ˝ Γ q}2

`
1

σ2
x

distpγ, Γ q `
1

σ2
T

Regpγq,

(3.3)

where:

distpγ, Γ q “ }γ ´ Γ }2, (3.4)

Regpγq “ }∇pγ ´ Idq}2, (3.5)

and σx and σT are parameters that control the trade-off between the image similarity

and regularity of the registration process. For a group registration issue, Σ is a

diagonal matrix that illustrates the variability of a feature at a particular vertex across

the group. Equation 3.4 suggests the geodesic distance from hidden transformation

to optimized transformation. Equation 3.5 indicates regularization penalization on

gradient magnitude of the displacement field γ ´ Id of γ. Algorithm 1 shows the

demons algorithm, where #»v is a stationary velocity field that indicates transformation

velocity. Detailed parameter explanations can be found in [37, 111]. The energy

function shown here can lead to a mathematically solid scheme to resolve the problem,

but it is intend to bring an intensive computational burden by mixing of the similarity

and the regularization terms and trying to optimize those two terms at the same time.

To summarize up, this computational scheme creates a two-step optimization

procedure that separately optimizes the similarity and regularity in first two (first and

second) and last two (second and third) terms of Equation 3.3. The first two terms are

formulated as a nonlinear least-squares problem, which can be efficiently optimized
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Algorithm 1 Demons Registration Algorithm

1: Input: A fixed image F and moving image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 = identity transformation

4: repeat

5: Step 1: Given γptq

6: Minimize the first two terms of 3.3

uptq “ argmin
u

}Σ´1
pF ´M ˝

 

γptq ˝ u
(

q}
2

`
1

σ2
x

distpγ, Γ q
(3.6)

7: Compute Γ ptq “ γptq ˝ uptq

8: Step 2: Given Γ ptq

9: Update γpt`1q by minimizing the last two terms of 3.3

Υpt`1q
“ arg min

Υ

1

σ2
x

dist
`

Υ,Γptq
˘

`
1

σ2
T

RegpΥq (3.7)

10: until Convergence
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via Gauss-Newton scheme; and last two terms can be resolved by a single convolution

of the displacement field Γ using a Gauss Kernel. As summarized in Algorithm 1, the

demons method begins with an identity transformation γ0 as the initial displacement

field, then it iteratively optimizes an update transformation, which can update the

current transformation by composing with the current estimate.

Spherical Demons Algorithm

With the basic idea of demons algorithm working procedures, we further explain

the extended work in 3D spherical space. We assume two unit spheres with identical

surface mesh distribution, one of both is fixed sphere F p.q and the other is moving

sphere Mp.q. Recall demons Algorithm in 2D image registration, each update is

calculated on individual vertex; now in Spherical demons Algorithm, a coordinate

chart is introduced for each surface vertex to update displacement field. Usually, at

least six coordinate charts are required to cover a sphere. With the considerations that

1) we hope to reduce formula complexity and simplify derivations; 2) SD algorithm

can update the velocity vector individually on each vertex, we choose N coordinate

charts to cover a spherical image, where N is the total number of vertices. So we can

obtain a set of N tangent vectors
!

~Γn

)N

n“1
that transforms N vertices txnu

N
n“1 to new

locations tΓ pxnqu
N
n“1.

Optimization of Step 1 in Algorithm 1: To more specifically explain this, let

TxnS
2 be the tangent space at xn, ~Γn P TxnS

2. The step 1 in Algorithm 1 formulates

a minimization problem for solving least-squares with respect to the velocity field
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~v fi t~vn P TxnS
2u
N
n“1. By substituting u “ expp~vq and distpΥ,Γq “

řN
n“1

›

›

›

~Υn ´ ~Γn

›

›

›

2

in Equation 3.6:

~vptq “ arg min
~v
fp~vq

“ arg min
~v

›

›Σ´1
`

F ´M ˝
 

Υptq
˝ expp~vq

(˘
›

›

2

`
1

σ2
x

dist
`

Υptq,
 

Υptq
˝ expp~vq

(˘

“ arg min
~v

N
ÿ

n“1

1

σ2
n

`

F pxnq ´M ˝
 

Υptq
˝ expp~vq

(

pxnq
˘2

`
1

σ2
x

N
ÿ

n“1

›

›

›

~Υptq
n `G2

n

 

Υptq
˝ expp~vq

(

pxnq
›

›

›

2

,

(3.8)

where ˝ denotes transformation vector composition. Equation 3.8 is a mapping from

the tangent bundle TS2 to the real numbers R. Each tangent vector ~vn is treated as a

3ˆ 1 vector in R3, and it is tangent to the spherical surface at a point xn. Therefore

~vn only have 2 directional constrains in the plane of TS2, which means it has 2 degrees

of freedom. Thus, Equation 3.8 can be seen as a constrained optimization problem,

which is not ideal in solving the problem. Rather than working with the constraints,

one possible solution is to introduce coordinate charts which are diffeomorphisms

between open sets in R2 and and open sets on S2, as important and nice properties

of diffeomorphisms, the mappings will be smooth and invertible. Refer to [37], let ~en1

and ~en2 be any two orthonormal 3 ˆ 1 vectors tangent to the sphere at xn, a local

coordinate chart Ψn : R2 ÞÑ S2 is defined as:

Ψn px
1
q “

xn ` Enx
1

}xn ` Enx1}
, (3.9)

where En “ r~e
n1 ~en2s.
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Let ~zn be a 2 ˆ 1 tangent vector at the origin of R2, the corresponding tangent

vector at xn is given by the differential of the mapping DΨnp¨q evaluated at x1 “ 0:

~vn “ DΨnp0q~zn

“
I3ˆ3 ´Ψnp0qΨ

T
n p0q

}Ψnp0q}
En~zn

“
I3ˆ3 ´ xnx

T
n

}xn}
En~zn

“ En~zn “
“

~en1 ~en2
‰

~zn.

(3.10)

The formulas above determines the mapping of a tangent vector ~zn at the origin

of R2 to the tangent vector ~vn at xn via coordinate chart DΨn at x1 “ 0.

Substituting Equation 3.10 into Equation 3.8, we obtain an unconstrained opti-

mization problem:

 

~zptqn
(

“ arg min
t~znu

N
ÿ

n“1

1

σ

2

n
pF pxnq´M ˝

 

Υptq
˝ exp ptEn~znuq

(

pxnqq
2

`
1

σ2
x

N
ÿ

n“1

›

›

›

~Υptq
n `G2

n

 

Υptq
˝ exp ptEn~znuq

(

pxnq
›

›

›

2

fi arg min
t~znu

N
ÿ

n“1

1

σ2
n

f 2
np~zq `

1

σ2
x

N
ÿ

n“1

}gn}
2
p~zq.

(3.11)

We can efficiently resolve the above nonlinear least-squares with Levenberg Mar-

quardt (LM) algorithm [113]. LM algorithm engages the best advantages of both

the gradient-descent and the Gauss-Newton methods to optimize and resolve a least

square problem. More specifically, the LM algorithm behaves more like a gradient-

descent algorithm when the parameters are far away from the optimal value. Con-

versely, it behaves more like the Gauss-Newton algorithm if the parameters are close

to the optimal value.
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Optimization of Step 2 in Algorithm 1: The optimization in Step 2 is to regu-

larize the transformation such that the transformation can be as smooth as possible,

which will directly reduce mesh distortion caused by registration. The following equa-

tion describes the process of the second step in the spherical demons algorithm:

~Υpt`1q
“ arg min

~Υ

1

σ2
x

N
ÿ

n“1

›

›

›

~Υn ´ ~Γ
ptq
n

›

›

›

2

`
1

σ2
T

}~Υ}V . (3.12)

As discussed earlier, it attempts to minimize the function such that a vector field

~Υ P V can smoothly approximates the tangent vectors
!

~Γ
ptq
n

)N

n“1
. Motivated by the

convolution methods to optimize the second step in the demons algorithm [110, 111,

114] and the fast fluid registration methods based on convolution in the Euclidean

space [115], In a recent work [36, 37], they adopted an step-by-step approximation

strategy to resolve the spherical vector spline interpolation problem by iterative

smoothing. In order to achieve the minimization with a convolution, the regular-

ization term Regp~Υq is typically taken as a norm of a differential operator. As a

well-known example, applying a Gaussian kernel of smoothing on the displacement

field can lead to a minimum of the harmonic energy in Rn. [116].

Thus, for the computational convenience and efficiency, in practice, this optimiza-

tion problem can be resolved by a single convolution of the displacement field Γ using

a Gauss Kernel [36,37].

Computation for Matrix Exponential: In practice, we adopted the scaling and

squaring method [117,118] to compute exp
`

~vptq
˘

for Γptq “ γptq ˝ exp
`

~vptq
˘

and uptq “

exp
`

~vptq
˘

. It employs Pade approximants to calculate u « ev. For ev “
`

ev{σ
˘σ

, where

v P Cnˆn and σ P C, it numerically integrates the smoothly interpolated velocity field

v and requires the following steps:
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1. v Ð v{2s so }v}8 « 1

2. rmpvq “ rm{ms Pade approximant to ev

3. u “ rmpvq
2s

where rmpxq “ pmpxq{qmpxq can be obtained by:

pmpxq “
m
ÿ

j“0

p2m´ jq!m!

p2mq!pm´ jq!

xj

j!
,

qmpxq “ pmp´xq.

(3.13)

To explain this, the first step is to choose σ an integral power of 2. Thus, σ “ 2s

and v{2s has norm of order 1. The second step is to calculate Pade approximant

to ev by ev{2
s
« rm pv{2

sq, where rm is a rm{ms Pade Approximant. Thus, in the

third step, we take ev « rm pv{2
sq

2s , then u “ rmpv{2
sq2

s
is obtained by s repeated

squarings.

Now the framework of the spherical demons method is fully introduced and can

be summarized as the following Algorithm 2:

Demons Variants

Other than the basic demons method and spherical demons, a variant of the

demons-based algorithms were proposed for a wide of application scenarios. For

example, the symmetric demons force was reported that it outperformed compositive

and additive demons forces in [111,119]; Han et al. demonstrated a momentum term

could help in convergence in [81]; Zhao et al. employed a deep learning framework

for demons registration [120]. In this section, the fundamental theories of different

types of regularization strategies and several demons forces will be introduced.

Two Types of Regularization: Regularization terms are usually employed to en-

sure the smoothness of the displacement field Γ and have a high impact on mesh

regularity and registration accuracy. In our framework, regularization is applied by

a single convolution of the displacement field Γ using a Gauss Kernel smoothing.

Common instances of regularization are modeling of physical processes. For exam-
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Algorithm 2 Spherical Demons Registration Algorithm

1: Input: A fixed spherical image F and moving spherical image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 = identity transformation

4: repeat

5: Step 1: Given γptq

6: for each vertex k do

7: Compute the velocity ~v
ptq
n stated in Equation 3.8

8: end for

9: Γ ptq “ γptq ˝ expp #»v ptqq using “scaling and squaring”.

10: Step 2: Given Γ ptq

11: for each vertex k do

12: Update γpt`1q using iterative smoothing.

13: end for

14: until Convergence
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ple, smoothing the accumulated displacement field usually leads to a “diffusion-like

regularization” and smoothing the update usually leads to a “fluid-like regulariza-

tion” [111,121].

Additive Demons: In the additive demons method showing in the Algorithm 3,

the demons algorithm is conducted within the whole space of transformation by

adding additive updates s ` u. This form is inspired by the classic update rules

employed in the Newton methods on vector spaces. However, this type of update

rules is abandoned in this thesis as we work on spatial transformations and adding

additive updates has no geometrical meanings. This method was adopted in sev-

eral studies of 2D non-rigid image registration [114,122] given the advantages of less

computationally expensive.

Algorithm 3 Additive Demons Algorithm

1: Input: A fixed image F and moving image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 = identity transformation

4: repeat

5: Given γptq, optimize the energy function:

uptq “ argmin
u

}Σ´1
pF ´M ˝

 

γptq ` uptq
(

q}
2

`
1

σ2
x

distpγptq, Γ ptqq `
1

σ2
T

Regpγptqq
(3.14)

6: For a fluid-like regularization, uptq “ Kfluid˚u
ptq. Typically Kfluid is a Gaussian

Kernel.

7: Compute Γ pt`1q “ γptq ` uptq

8: For a diffusion-like regularization, γpt`1q “ Kdiff ˚Γ
pt`1q. Typically Kdiff is a

Gaussian Kernel.

9: until Convergence
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Compositive Demons: The idea of compositive demons is similar to the additive

demons given the awareness that in a vector space, instead of addition, it is more

reasonable to iteratively composite the updates with the spatial transformations or

the displacement fields. The compositive demons algorithm can then be described in

Algorithm 4.

Algorithm 4 Compositive Demons Algorithm

1: Input: A fixed image F and moving image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 = identity transformation

4: repeat

5: Given γptq, optimize the energy function:

uptq “ argmin
u

}Σ´1
pF ´M ˝ γptq ˝

 

Id` uptq
(

q}
2

`
1

σ2
x

distpγptq, Γ ptqq `
1

σ2
T

Regpγptqq
(3.15)

6: For a fluid-like regularization, uptq “ Kfluid˚u
ptq. Typically Kfluid is a Gaussian

Kernel.

7: Compute Γ pt`1q “ γptq ˝ pId` uptqq

8: For a diffusion-like regularization, γpt`1q “ Kdiff ˚Γ
pt`1q. Typically Kdiff is a

Gaussian Kernel.

9: until Convergence

Diffeomorphisms in Demons Algorithm: In the work of [111] diffeomorphism

was introduced into demons algorithm. Assume there are two manifolds Sa and Sb, a

differentiable map f : Sa Ñ Sb is defined as a diffeomorphism if the mapping is bijec-

tive and the inverse mappinng f´1 : Sb Ñ Sa is also differentiable. To summarize it, a

diffeomorphic transformation is a continuously differentiable bijective and invertible
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mapping with inverse mapping is differentiable as well. Diffeomorphic registration is

a non-rigid registration method, it features for 1) no foldings, 2)topology preservation

and 3) sound assumption if no privileged direction.

Symmetric Demons Forces: Let Im0 be the target image and Im1 be a source

image. We can define the general form of global energy as the following function:

E pIm0, Im1, Γ, γq “
1

σ2
i

Sim pIm0, Im1, Γ q `
1

σ2
x

distpγ, Γ q2 `
1

σ2
T

Regpγq. (3.16)

Fig. 3.2.: A diagram of forward and backward transformations between Im0 and

Im1: the transformation γ “ exppvq, the inverse transformation is the backward

computation γ´1 “ expp´vq.

As we assume the transformation is diffeomorphic by applying the strategy intro-

duced in [37, 111]. There must exists an unique and differentiable inverse mapping

of the spatial transformation. As the transformation can be termed as γ “ exppvq,

the inverse transformation can be obtained from the backward computation γ´1 “

expp´vq. This process is illustrated in the Figure 3.2. A symmetric registration

framework tries to optimize the global energy regarding the forward and backward
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transformations at the same time. Thus, the combined transformation can be more

smooth:

“

γopt, γ
´1
opt

‰

“ arg min
rγ,γ´1s

E pIm0, Im1,Γ, γq ` E
`

Im1, Im0,Γ
´1, γ´1

˘

. (3.17)

We formulate it as a constrained optimization using two diffeomorphisms:

“

γopt, γ
´1
opt

‰

“ arg min
rγ,γ´1s

E pIm0, Im1, γq ` E
`

Im1, Im0, γ
´1
˘

. (3.18)

The symmetric force is defined by averaging the difference value of the forward

transformation and the backward transformation, Kdiff is typically a Gaussian kernel

to smooth the update:

v Ð
1

2
Kdiff ˚

`

Z
`

v, Kfluid ˚ u
forw

˘

´ Z
`

´v, Kfluid ˚ u
back

˘˘

. (3.19)

Algorithm 5 Symmetric Demons Algorithm

1: Input: A fixed image F and moving image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 = identity transformation

4: repeat

5: Given γptq

6: Compute the demons forces u forw to optimize E
`

I0, I1, exppvq,u forw
˘

7: Compute the demons forces uback to minimize E
`

I1, I0, expp´vq,u back
˘

8: For a fluid-like regularization, uptq “ 1
2
Kfluid ˚ pu

forw ´ u back q. Typically

Kfluid is a Gaussian Kernel.

9: Compute Γ pt`1q “ γptq ˝ pId` uptqq

10: For a diffusion-like regularization, γpt`1q “ Kdiff ˚ Γ
pt`1q else γpt`1q “ Γ pt`1q.

Typically Kdiff is a Gaussian Kernel.

11: until Convergence
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Momentum Term: Gradient descent optimization can be stimulated using a mo-

mentum term calculated from past updates as a predictive step for subsequent itera-

tions. The momentum-based strategy can accelerate convergence, damped oscillation,

and potentially avoid local optima [81].

The momentum term prns is based on the past update field urn´1s and adjusts the

current iteration rns according to:

prns “ αurn´1s,

urns Ð urns ˝ prns,
(3.20)

where α is a parameter managing the force (“amount”) of momentum in the current

iterationa constant ranging between r0, 1s that balances the update field. As shown

in the Algorithm 6, the momentum term p increases the step size when the previous

update has the same direction as the current update, and it inhibits sudden changes

that can be generated by noise or artifact. Since the momentum term is a diffeo-

morphic transformation multiplied by a scalar, composing it with the current update

maintains diffeomorphism.

3.2.3 Stopping Criteria

A fundamental argument in deformable image registration and shape alignment

is to perform a robust matching result at an inexpensive computational cost. Given

the iterative nature of the optimization scheme, a well-designed algorithm must auto-

matically detect convergence and stop the iterative process when most appropriate.

The most basic and commonly used strategy is to terminate the algorithm after a

predetermined number of iterations. It is a straightforward idea adopted by many

Gauss-Newton (GN) based algorithms as GN features for the fast convergence. How-

ever, this method is only weakly related to the actual convergence, especially when

a trade-off between image similarity and mesh distortion is considered, unnecessarily

additional iterations may increase mesh distortion rapidly, but image similarity does

not reduce visibly. Other than assigning a constant number of iterations, the com-
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Algorithm 6 Momentum-Based Demons Algorithm

1: Input: A fixed image F and moving image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 and p = identity transformation

4: repeat

5: Given γptq, optimize the energy function:

uptq “ argmin
u

}Σ´1
pF ´M ˝

 

γptq ` uptq
(

q}
2

`
1

σ2
x

distpγptq, Γ ptqq `
1

σ2
T

Regpγptqq
(3.21)

6: Apply momentum to uptq using Equation 3.20

7: For a fluid-like regularization, uptq “ Kfluid˚u
ptq. Typically Kfluid is a Gaussian

Kernel.

8: Compute Γ pt`1q “ γptq ` uptq

9: For a diffusion-like regularization, γpt`1q “ Kdiff ˚Γ
pt`1q. Typically Kdiff is a

Gaussian Kernel.

10: Update momentum p

11: until Convergence
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monly used stopping criteria are: 1) velocity field update step size, 2)mean squared

error of the distance between two subjects, and 3) harmonic energy. Each stopping

condition should be numerically formulated so that a threshold can be defined and ad-

justed. A properly chosen stopping criterion will help in keeping a proper convergent

rate and saving computational power.

Quantity of Update

The first stopping criteria is based on quantity of update (QU) between current

iterative step and last step. It measures the difference in step sizes between current

warp and previous warp. The QU we used in this study is modified from the method

defined by Yang et al. [123] as:

QUi “

ř

|Uwi|
ř

|wi´1|
, (3.22)

where i indicates the “ith” iteration, wi´1 is the step size of the warp in the previous

iteration and Uwi is the updated step size of the warp at current iteration. As QUi

decreases with convergence, we can compute:

ˇ

ˇ

ˇ

ˇ

QUi´1 ´QUi

QU0

ˇ

ˇ

ˇ

ˇ

ă εQU . (3.23)

We expect that the difference between current update QUi and previous update

QUi´1 normalized by the original update QU0 can decrease with convergence. Thus,

it stops the algorithm when this ratio below the threshold εQU .

Root Mean Squared Error

An alternative convergence criterion is based on pixel intensity (in 2D) or voxel

value (in 3D) disparity between the warp in current iteration with respect to the warp

in the previous step. We set root mean square error (RMSE) as a sufficiently small

threshold εRMSE , quantifying the error reduction between iterations, this process is

formulated as the following equation:
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RMSEpF,Mq “

g

f

f

e

1

k

k
ÿ

i“1

}F pxiq ´Mpxiq}2 (3.24)

where k is the total vertex number for each interpolated surface, and F pxiq and Mpxiq

are the corresponding label values at vertex xi of template and individual respectively.

RMSEn ´ RMSEn´1

RMSE0

ą εRMSE, (3.25)

where n indicates the “nth” iteration. On the left side of the equation, values close

to zero represent convergence; hence, a positive ratio indicates divergence. In this

situation, the registration can be allowed to continue provided that non-convergence

remains below the user-defined threshold εRMSE.

Harmonic Energy

The last condition to examine is harmonic energy (HE), it is also called Dirichlet

Energy [124]. Given a function F “ pf1, . . . , fmq : D Ă Rn Ñ Rm, the Dirichlet

Energy is a measure of how much the function F changes over D:

EpF q “

ż

D

|dF ppq|2dp “
m
ÿ

i“1

ż

D

|∇fippq|2 dp. (3.26)

In our case of discrete vertices on surfaces, HE is defined as the average over all

vertices of the squared Frobenius norm of the vector field Jacobian and is correlated

to the smoothness of the field [125]. In this study, we adopted the method proposed

in [126] and implemented HE using the following equations:

HE “
ÿ

ru,vsPK

θuv}Γpuq ´ Γpvq}2, (3.27)

where u and v are two vertices that define an edge, K is the triangle that contains

u and v, and Γ is a transformation of current warp. Coefficients θuv “ cotα ` cot β,

where α and β are the angles opposite to the edge ru, vs.
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If the registration is converging, HEi would than be greater than HEi´1 and as

such the escape condition becomes:

HEi ´ HEi´1

HEi´1

ă εHE. (3.28)

The harmonic energy was found to give the best trade-off between robustness and

convergent rate for the analyzed registration method at coarse registration but was

outperformed by mean squared error when using all the original voxel information

in [127]. HE will be treated as an important parameter to evaluate the quality of

registration in this thesis.

3.2.4 The Proposed Method

With the awareness of the benefits brought from different demons methods, a

surface registration method that combines all of the benefits and extends the 2D

demons Algorithm to 3D spherical domain is demanded. Thus, a method is designed

to align surface labels usually returned from segmentation tools and can be applied

in a wide range of surface-based morphometric studies.

As shown in Figure 3.3, it demonstrates the work flow of the proposed registration

method based on demons algorithm. The whole process is organized into 4 parts: data

preparation, initial processing, update calculating and regularization. In the data

preparation, we extract surface features such as binary maps and distance maps.

Then in the initial processing, we firstly adopt a multi-level interpolation scheme

which interpolates both F and M to a subdivided icosahedron meshes, from coarsest

to finest. To increase the efficiency of the algorithm, we do a rotation in the beginning

of each level to roughly match F and M. Then we calculate the symmetric demons

force, and apply the momentum term on it. Lastly, we apply regularization terms

on both the update u and the final deformation field capital gamma. We keep this

iterative process until it converges. The detailed working procedures are described in

Algorithm 7.
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Fig. 3.3.: Structure of the proposed registration algorithm.

From Figure 3.3 we can see, the proposed surface registration method adopted a

multiscale scheme from coarsest to finest. At the beginning of the multiscale scheme,

a downsampling interpolation is applied on the original surface meshes to reduce res-

olution of the surface vertices to “ic4”. This strategy is motivated by the assumption

that large deformations on the surface mesh are usually related to coarse geometric

information. Then beginning from the second level, an upsampling interpolation is

applied on the original surface meshes to increase resolution of the surface vertices to

“ic5”,“ic6”,“ic7” respectively at each level. With a higher resolution of surface mesh,

finer details of geometric information such as a more precise local shape change can

be better captured with a higher scaled interpolation. By combining both coarse and

fine scaled registration, the multiscale registration scheme tackles the registration

problem in both macroscopic and microcosmic views.
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To demonstrate the advantages of employing a multi-resolution scheme, we de-

signed a test to compare the registration results of multi-resolution and single res-

olution (highest resolution, “ic7”) scheme. We applied both methods to register 80

hippocampal surfaces with same parameters including stopping criteria, the only dif-

ference is about the resolution: in the multi-resolution scheme, surface vertices were

interpolated to “ic4”, “ic5”, “ic6” and “ic7” gradually, while in the single resolution

scheme, surface vertices were interpolated to “ic7” directly. We compared the dice

similarity coefficient (DSC, it will be explained in Chapter 4.) and root mean square

error (RMSE) between two methods, the results with group mean and variance are

shown in Figure 3.4. As we can see from the results, the multi-resolution based

method scored lower RMSEs and higher DSCs in general, which means it achieved

better registration results.

Fig. 3.4.: Comparisons between multi-resolution based method and single resolution

based method. DSC: dice similarity coefficient; RMSE: root mean square error.
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Algorithm 7 Label-guided Spherical Demons Registration Algorithm

1: Input: A fixed spherical image F and moving spherical image M .

2: Output: Transformation Γ so that min distpF ´M ˝ Γ q achieved.

3: Initialize γ0 = identity transformation

4: while t ă max iteration number AND
}F´M˝Γ pt´1q}

2

2
´}F´M˝Γ ptq}

2

2

}F´M˝Γ p0q}
2

2

ą tol. do

5: Step 1: Given γptq

6: for each vertex k do

7: Optimize u forw for the first two terms in E
`

F,M, expp #»v ptqq,u forw
˘

stated

in Equation 3.16

8: Optimize u back for the first two terms in E
`

M,F, expp´ #»v ptqq,u back
˘

stated in Equation 3.16

9: end for

10: Let uptq “ 1
2
pu forw ´ u back q, apply momentum term using Equation 3.20

11: For a fluid-like regularization, uptq “ Kfluid˚u
ptq. Typically Kfluid is a Gaussian

Kernel.

12: Γ ptq “ γptq ˝ expp #»v ptqq using “scaling and squaring”.

13: Step 2: Given Γ ptq

14: for each vertex k do

15: Update γpt`1q by minimizing:

γpt`1q
“ arg min

γ

1

σ2
x

dist
`

γptq,Γptq
˘

`
1

σ2
T

Regpγptqq (3.29)

16: end for

17: For a diffusion-like regularization, γpt`1q “ Kdiff ˚Γ
pt`1q. Typically Kdiff is a

Gaussian Kernel.

18: Update momentum p

19: end while

20: Convergence
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3.3 Evaluation Measurements

It is common that registration results are never perfect. This is why we need

to quantitatively measure the quality of registration. There are several properties

of triangular or quadrilateral surface mesh to measure, such as the length of the

edge, triangular or quadrilateral area and angle. Root mean square error (RMSE) is

commonly used for distance measurement in Euclidean space. It measures the spatial

distance between two surfaces or the distance of surface signals on two corresponding

meshes. It can be used in measuring line distortion. For deformable models, an

objective function is typically used to evaluate registration results. It measures the

overall cost or energy of the predefined objective function and aims to achieve a local

or global minimum in an optimization sense.

To better explain this, we assume several landmarks are pre-defined. Registration

methods aim to match the landmark points of an individual object in a spatial domain

to the corresponding landmark points of the reference object and subsequently trans-

form the underlying parametric mesh of the individual object. Non-rigid registration

distorts the surface mesh of the individual object, for a SPHARM implementation

mentioned in Chapter 2.6.2, some severe and irregular mesh distortion caused by

improper registration can introduce additional errors to the SPHARM reconstructed

shape of the original object. Therefore, we define a mesh distortion cost function C,

it is seen as an ideal reference for mesh quality control.

Mesh distortion cost function C can be measured by calculating the area distortion

cost (ArDC), the length distortion cost (LDC) and the angle distortion cost (AnDC).

Length Distortion Measures: To measure length distortion introduced by a reg-

istration process, the stretch concept proposed by Sander et al. [128] is adopted and

modified in this study. They considered the case of mapping from a 2D planar do-

main to 3D surface, while our case is to map a 3D surface to another 3D surface. Two

singular values of the 3 ˆ 3 Jacobian matrix were computed to represent the largest

and smallest length distortions caused by this transformation. In our case, the length
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distortion cost (LDC) Cs with respect to a given mesh mapping Γ from M to M ˝Γ ,

is defined as follows:

ΨpMq “M ˝ Γ, (3.30)

ClpM,ΨpMqq “

d

ř

tiPM
pσ1ptiq2 `

1
σ2ptiq2

qApΨptiqq

2ApΨpMqq
, (3.31)

CW
l pM,ΨpMqq “ max

"

max

ˆ

σ1ptiq,
1

σ2ptiq

˙

|ti PM

*

, (3.32)

where σ1ptiq and σ2ptiq are the largest and smallest length distortions for a triangle

ti, Ap¨q is used to denote the area of a triangular or quadrilateral mesh. More details

on calculating σ1ptiq and σ2ptiq are discussed in [128].

In the above definitions, ClpM,Ψq measures the average length distortion cost

(LDC) for the whole mesh M , while CW
l pM,Ψq represents for the worst LDC. The

largest and smallest length distortions are directly computed from the length of three

corresponding sides between ti and Ψptiq. In the definitions, contraction and expan-

sion are equally treated. Even though in the original method of [128], they claimed

the transformation Γ as an affine, this method can also be extended for deformable

mappings.

Another way to measure length distortion is to use Harmonic Energy mentioned

in 3.2.3 as it evaluates the total stretching of the transformation. Another critical

reason we adopted HE as length distortion criterion is because HE works well in

deformable registration cases and Riemann space.

Area Distortion Measures: Ap¨q is used to denote the area of a triangle or a

mesh. The area distortion cost (ArDC) Car with respect to the mapping ΨpMq is

defined as follows:

For each triangle ti PM , it measures the local ArDC of a single triangle. For each

mesh vertex v in M , we have:

Carpti,ΨpMqq “
ApΨptiqq

Aptiq
. (3.33)
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For each mesh vertex v in M , we have:

Carpv,ΨpMqq “

ř

tiPMv
ApΨptiqq

ř

tiPMv
Aptiq

, (3.34)

where Mv is the set of triangle incident upon v. This measures the local ArDC around

a single vertex.

For the whole warped mesh ΨpMq, it measures the overall ArDC for the whole

mesh:

CarpM,ΨpMqq “

ř

tiPM
maxpCarpti,ΨpMqq,

1
Carpti,ΨpMqq

qApΨptiqq

ApΨpMqq
. (3.35)

By taking max
´

Carpti,ΨpMqq,
1

Carpti,ΨpMqq

¯

as the ArDC contribution from each tri-

angle, we treat contraction and expansion equally, and so always have CapM,Ψq ě 1.

Similar to the LDC, the worst ArDC is defined as below:

CW
ar pM,Ψq “ max

"

max

ˆ

Carpti,Ψq,
1

Carpti,Ψq

˙

|ti PM

*

. (3.36)

Angle Distortion Measures: Preserving angles is also crucial in control of mesh

quality. Assume a surface mesh contains vertex u, v, w. Thus, edges are ru, vs, rv, ws

and rw, us, angle =uvw is opposite to edge rv, ws, angle =uwv is opposite to edge

ru, vs, angle =wvu is opposite to edge rw, us.

For each angle aj in triangle ti and ti PM , it measures the local AnDC of a single

angle:

Canpaj,ΨpMqq “
=pΨpajqq

=pajq
. (3.37)

For each mesh vertex v in M , we have:

Canpv,ΨpMqq “

ř

ajPMv
=pΨpajqq

ř

ajPMv
=pajq

,

where Mv is the set of triangle incident upon v. This measures the local AnDC around

a single vertex.

For the whole mesh M containing triangle ti:

Canpti,ΨpMqq “

d

ř

tiPM,ajPti
pCanpaj,ΨpMqq2 `

1
Canpaj ,ΨpMqq2

qApΨptiqq

2ApΨpMqq
. (3.38)
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The worst AnDC is defined as below:

CW
anpM,Ψq “ max

"

max

ˆ

Canpti,Ψq,
1

Canpti,Ψq

˙

|ti PM

*

. (3.39)

At each step of the proposed algorithm in Chapter 3.2.4, the averaged and worst

ArDCs, AnDcs and LDCs are evaluated, defined by Equations 3.31, 3.32, 3.35, 3.36,

3.38 and 3.39 respectively. These standards are used to avoid extreme contraction or

expansion due to severe mesh distortion. Thus, it helps in monitoring and maintaining

the reasonable angle and area distortion as well as length distortion.

3.4 Tests on Synthetic Data

To validate our proposed method, we generated synthetic data based on three

categories: 1) Diffusion-like Spherical demons, 2) fluid-like Spherical demons, and 3)

Combined Spherical demons. In each category, five tests are performed: compositive

demons, diffeomorphic demons, momentum-based demons, symmetric demons, and

momentum-based symmetric demons.

3.4.1 Data and Materials

Spherical meshes are obtained from subdividing an icosahedron mesh, and it gives

us the flexibility to achieve a multi-resolution scheme for registration. The number of

mesh vertices quadruples with the number of subdivisions, so for an “ic4” (shown in

Figure 3.5), “ic5” (shown in Figure 3.6) and “ic6” (shown in Figure 3.7) icosahedron

meshes, they respectively contain 2562, 10242 and 40962 mesh vertices.

We perform the classic registration task “circle to C” by generating a circle and a

shape of “C” on a “ic5” spherical surface. As shown in Figure 3.8, we define a sphere

in Cartesian coordinates. In order to generate a circle, we can simply set a threshold

θx for x coordinates, any x larger than θx1 are marked as circle. Similarly, if we want

to further generate a shape of “C”, we set another θx2 such that θx2 ą θx1, then mark

x larger than θx2 as background, then find an area satisfy both following conditions:
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Fig. 3.5.: Subdivided icosahedron meshes at level 4.

´θy ă y ă θy and θz1 ă z ă θz2, this area is marked as a square area on Figure 3.8(b).

Both “circle” and “C” are binary spherical images. At this point, we have generated

synthetic data for surface registration. The synthetic data is generated in four levels

of resolution, they are shown in Figure 3.9.

3.4.2 Experiments

Based on the regularization types, experiments are classified into three categories:

diffusion-like demons, fluid-like demons, and regularization-combined demons. In

each category, different demons forces are tested; it includes basic SD, compositive SD,

momentum-based SD, symmetric SD, and momentum-based symmetric SD. In the

experiments, we set a maximum iteration number to be one hundred, tol. “ ´10´4.
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Fig. 3.6.: Subdivided icosahedron meshes at level 5.

Our registration adopted a multi-resolution scheme that during the four iterations,

the first iteration is a coarse registration which downsampled the object surface, then

for the remaining three iterations, the resolution increased level by level for more

precise registrations.

Experimental results are summarized in Figures 3.10 - Figures 3.17. Harmonic

Energy measures the smoothness of the transformation. Thus, it can be seen as an

indicator for metric distortion between the spherical representation and the original

cortical surface. With the idea of combining the definitions of HE in Chapter 3.2.3

and the stopping criterion defined in Equation 3.28, we examine distortion using the

HE with the following strategy:

HE “
ÿ

rvi,vjsPK

θvivj}Γpviq ´ Γpvjq}
2, i ‰ j, (3.40)
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Fig. 3.7.: Subdivided icosahedron meshes at level 6.

where vi and vj are two vertices that define an edge, K is the triangle that contains

vi and vj, and Γ is a transformation of current warp. Coefficients θuv “ cotα` cot β,

where α and β are the angles opposite to the edge rvi, vjs.

Distortion “
HEn ´ HE1

T
, (3.41)

where n is the current warp of the image, and the numerator measures the overall

length changes between the original vertices and the warped surface vertices, and

the denominator T is a normalization term that represents for the total number of

neighbours for all the vertices belongs to a surface.
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x

y

z

(a) A demonstration of generating a “circle” on sphere

x

y

z

(b) A demonstration of generating a “C” on sphere

Fig. 3.8.: A demonstration of generating synthetic data for “circle to C” task.

We can see from the results, fluid-like demons achieved best results in RMSE,

followed by combined demons and diffusion-like demons. However, it also scored

the highest value for the harmonic energy, which means it has more severe mesh

irregularity.

When we look deeper into each category, we firstly discuss the results from

diffusion-like demons. In the coarse registration level (the 1st iteration) and “ic5”

resolution level, compositive demons achieved distinct lower RMSE values while no
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(a) “C” on “ic4” resolution (b) “C” on “ic5” resolution

(c) “C” on “ic6” resolution (d) “C” on “ic7” resolution

Fig. 3.9.: The generated “C” on spherical surface, we treat it as a template in regis-

tration.

noticeable HE differences to other methods. However, in a much higher resolution

environment, the performance of compositive demons reduced rapidly, and it became

the worst in RMSE at the end of the 4th iteration. The proposed method in this study
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Fig. 3.10.: Root mean square error (RMSE) for synthetic warp results at level 1.

RMSE is plotted against iteration.

achieved best RMSE values at the end of registration, during the meanwhile, its HE

is only obviously higher than the compositive demons which scored the worst RMSE.

The detailed warping paths for each experimental group are shown in Figure 3.19.

Secondly, we discuss the results from fluid-like demons. Compared to diffusion-

like demons, the fluid-like demons features for less regularization; thus, it scored very

low RMSE in all of four iterations; as a result, the surface mesh is exceptionally

irregular. The meshes are shown in Figure 3.18. It is noteworthy that the stopping

criteria we set in momentum-based demons, symmetric demons and momentum-based
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Fig. 3.11.: Root mean square error (RMSE) for synthetic warp results at level 2.

RMSE is plotted against iteration.

symmetric demons prevented the extreme mesh distortion, and kept the RMSE in an

ideal range. The detailed warping paths for each experimental group are shown in

Figure 3.20.

Lastly, we discuss the results from combined demons. We applied a 3-level multi-

resolution scheme, smoothing the surface features and regularizing the registration

more at the first level, then we reduce regularization to relax the rest of subsequent

levels, we removed regularization for displacement field and only kept regularization

on updates in the last iteration. As a result, we can observe from Figure 3.10- 3.13,
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Fig. 3.12.: Root mean square error (RMSE) for synthetic warp results at level 3.

RMSE is plotted against iteration.

the RMSE results of combined demons were approaching to fluid-like demons, while

HE was reserved in a proper range. In this experimental set, our proposed methods

(symmetric demons and MS demons) achieved the best RMSE results while keeping

low HE values. The detailed warping paths for each experimental group are shown

in Figure 3.21.



78

Fig. 3.13.: Root mean square error (RMSE) for synthetic warp results at level 4.

RMSE is plotted against iteration.

3.4.3 Summary

In the experimental tests we compared the diffusion-like spherical demons with

many other demons variants including the proposed methods, the comparison results

suggest the proposed methods Symm SD and Symm-Momen SD are promising in

aligning local regions on the spherical surfaces. Thus, the next stage of our study is

to further applied on a set of real data in the subsequent studies.
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Fig. 3.14.: Harmonic energy (HE) for synthetic warp results at level 1. HE is plotted

against iteration.

3.5 Summary of Chapter 3

Surface registration can be viewed as an extension of image registration, while

additional geometric information and label information are provided to perform sur-

face registration using a plentiful of mathematical tools. In this chapter, we intro-

duced several widely used surface registration methods, discussed stopping criteria

and evaluation strategies, we also tested our proposed method on a set of synthetic

data. As the results showed in Chapter 3.4.2, our proposed methods (Symm SD and
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Fig. 3.15.: Harmonic energy (HE) for synthetic warp results at level 2. HE is plotted

against iteration.

Symm-Momen SD) are promising in achieving best registration results while keeping

relatively reasonable mesh distortion, also, the stopping criteria we chose was proved

to be helpful in preventing the divergence of harmonic energy.
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Fig. 3.16.: Harmonic energy (HE) for synthetic warp results at level 3. HE is plotted

against iteration.
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Fig. 3.17.: Harmonic energy (HE) for synthetic warp results at level 4. HE is plotted

against iteration.
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(a) Fluid-like Registration at level 1 (b) Fluid-like Registration at level 2

(c) Fluid-like Registration at level 3 (d) Fluid-like Registration at level 4

Fig. 3.18.: Example results of fluid-like registration.



84

Fig. 3.19.: Registration results for diffusion-like methods using synthetic data. First

row: basic diffeomorphic SD (BSD); second row: compositive SD (CSD); third

row: momentum-based SD (MSD); fourth row: symmetric SD (SSD); fifth row:

momentum-based symmetric SD (SMSD). Columns 1 to 4 represent resolution levels;

the resolution increases with the increase of level numbers.
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Fig. 3.20.: Registration results for fluid-like methods using synthetic data. First

row: basic diffeomorphic SD (BSD); second row: compositive SD (CSD); third

row: momentum-based SD (MSD); fourth row: symmetric SD (SSD); fifth row:

momentum-based symmetric SD (SMSD). Columns 1 to 4 represent resolution levels;

the resolution increases with the increase of level numbers.
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Fig. 3.21.: Registration results for combined methods using synthetic data. First

row: basic deffeomorphic SD (BSD); second row: compositive SD (CSD); third

row: momentum-based SD (MSD); fourth row: symmetric SD (SSD); fifth row:

momentum-based symmetric SD (SMSD). Columns 1 to 4 represent resolution levels,

the resolution increases with the increasing of level numbers.
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4. BUILDING SURFACE ATLAS

4.1 Background

This section demonstrates the process of constructing a computational anatomical

hippocampal atlas with subfield information on the surface. A detailed atlas of the

hippocampal subfields is helpful in understanding and demonstrating the anatomy of

hippocampal structures. It is proved to be highly complementary to morphological

studies and essential for group comparisons. In the studies, our primary focus is

to estimate atrophy on each subfield and identify significant subregions on the hip-

pocampus that are profoundly affected by brain diseases (MCI and AD). An averaged

synthetic template (atlas) is derived from the samples of clinically normal by shape

averaging.

4.2 T1-Weighted Scans Only

4.2.1 Data and Materials

The magnetic resonance imaging (MRI) data were downloaded from the ADNI

database. In this work, we analyzed the baseline MRI scans of 26 randomly selected

healthy controls from the ADNI GO/2 cohort, where each subject had a pair of

repeated scans (say A and B).

4.2.2 First Order Ellipsoid Registration

We introduced SPHARM parameterization and expansion in Sections 3.2.1 and

2.6.2, we also introduced FOE registration in Section 3.2.1. Based on the first order

expansion of the SPHARM coefficients, FOE was introduced to perform a surface
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registration task by employing geometric information of hippocampi. It aligns both

of the spherical parametrizations in parameter space and orientations in object space;

thus, it can establish correspondence across all hippocampal surfaces. In this section,

we apply FOE to align all of the surfaces of objects to canonical positions by aligning

both of surface parameterization in parameter space and object pose in object space.

4.2.3 Building Hippocampal Surface Atlas

After all of the surfaces are well aligned, given n hippocampal SPHARM models,

we can calculate a mean SPHARM model and use that as our surface atlas. Now

we describe our approach to map the subfield information onto the mean surface.

The main idea is to apply the spherical harmonic basis functions to expand each

subfield probability map. After that, for each surface location, we can assign it with

the subfield label which has the largest probability among all eight subfields. In

order to compute a SPHARM expansion for each probability map, we need to map

a probability value to each vertex on the original voxel surface (see the left side of

Figure 2.8). Note that each original probability value is defined for each voxel, and

each face on the original surface has a unique probability value. Based on this, we

can calculate a probability value for each vertex by averaging the probability values

of its adjacent faces.

4.2.4 Experiments

Figure 1.2 shows the axial, coronal, and sagittal views of an example MRI scan.

Left and right hippocampi are colored in brown and red separately. Figure 2.3 il-

lustrates the probability distribution (red regions indicate nonzero probability) of

each subfield on an example hippocampus. The probability maps were generated by

Freesurfer, and mapped onto the surface of the hippocampus segmented by FIRST.

Figure 2.8 shows the voxel surface of an example hippocampus segmented by FIRST

and its spherical parameterization. In order to map the surface to a spherical ob-
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ject, disconnected small components were removed, bad edge connectivity problem

and bad vertex connectivity problem were fixed, and 3D holes were filled during the

topology fix process.

Figure 2.8 shows an example spherical parameterization. The hippocampal sur-

face is mapped to a unit sphere. The color indicates the correspondence between the

surface and the sphere. The goal of parameterization is to create a continuous and uni-

form (bijective) mapping from the hippocampus surface to a unit sphere to establish

surface correspondences across subjects. Figure 4.1 shows the steps of FOE registra-

tion process. Figure 2.10 shows the subfield mapping of an individual hippocampus,

where subfields are mapped on the original mesh (left), its spherical parameterization

(middle), and SPHARM reconstruction after FOE registration (right).

Figure 4.2 shows surface atlases of hippocampal subfields created from MRI scans

of 26 healthy controls, where each individual has two repeated scans (A and B): (a)

Atlas generated from using both scans, (b) atlas generated from using Scan A only,

and (c) atlas generated from using Scan B only. Each of (a-c) visualizes the atlas

from two different views. We can see the results are pretty consistent, demonstrating

decent reproducibility of the proposed method.

4.2.5 Summary

In this section, we have proposed a method for building a surface atlas of hip-

pocampal subfields from T1 weighted MRI scans using methods and tools including

FreeSurfer, FIRST, and SPHARM. Using FreeSurfer, we have obtained valuable hip-

pocampal subfield information. Using FIRST, we have extracted reliable hippocampal

surface information. Using SPHARM, we have developed an approach to creating an

atlas by mapping interpolated subfield information onto an average surface. The ex-

perimental result using ADNI data demonstrates good reproducibility of the proposed

method.
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4.3 T1 and T2-Weighted High Resolution Scans

In the last section, we proposed a method for hippocampal subfield morphometry

by integrating FreeSurfer, FSL, and SPHARM tools. However, this method had some

limitations, including the analysis of T1-weighted MRI scans without detailed subfield

information and hippocampal registration without considering important subfield in-

formation. To bridge these gaps, in this work, we propose a new framework for build-

ing a surface atlas of hippocampal subfields from high-resolution T2-weighted MRI

scans, and the proposed framework integrates variants of state-of-the-art methods

for automated segmentation of hippocampal subfields and landmark-free, subfield-

aware registration of hippocampal surfaces. Our experimental results have shown the

promise of the new framework.

4.3.1 Data and Materials

We included two groups of data in our studies, and they were respectively ac-

quired from Indiana Alzheimer’s Disease Center (IADC) and Alzheimer’s Disease

Neuroimaging Initiative (ADNI). The two mentioned data centers are reputable for

providing raw MRI data with high quality and relatively complete demographic and

diagnostic information of patients. In our study, we initially applied the revised

framework on the data from IADC, and we obtained promising results. With the

consideration of the limited size of IADC data, we downloaded recently published

ADNI 2 and 3 data set for further validation on our methods.

The sample in the initial tests includes 12 healthy control (HC) participants re-

cruited at IADC. MRI scans were acquired on a Siemens MAGNETOM Prisma 3T

MRI scanner. The scanning protocols include a T1-weighted (MPRAGE) whole-brain

scan and a T2-weighted (TSE) partial-brain scan and an oblique coronal slice orienta-

tion (positioned orthogonally to the main axis of the hippocampus). Same protocols

were adapted in [9, 78].



91

With the awareness of the limited data size, we downloaded 81 high-resolution

data from ADNI 2 and ADNI 3. This data set contains 31 participants in the healthy

control group, 30 participants in the MCI group, and 20 participants in the AD group.

All of the imaging data comes with a T1-weighted regular 3T MRI scan and a T2-

weighted high-resolution data; the T2-weighted high-resolution data does not cover

the whole brain, it only covers the hippocampal regions in the left and right brain

hemisphere to examine structural and functional changes in hippocampal regions.

The scanning protocols and scanning procedures are the same as used at IADC.

4.3.2 Segmentation

Automatic Segmentation of Hippocampal Subfields (ASHS) is a software tool de-

veloped by Paul A Yushkevich, et al. [9] for automatically segmenting hippocampal

subfields and their adjoining structures in the medial temporal lobe (MTL). The

software has been used in several prior studies [129, 130]. This technique uses T1-

weighted and high resolution T2-weighted MRI scans as inputs, and performs multi-

atlas segmentation by implementing Joint Label Fusion method [33] and Corrective

Learning [131]. ASHS has been shown to be able to produce accurate and reliable

segmentation results in previous studies [9,129,132]. In this study, ASHS was used to

segment the following hippocampal subfields and their adjoining regions from the un-

accelerated and accelerated high resolution T2-weighted MRI scans coupled with the

corresponding T1-weighted MRI scans (Figure 4.3): cornu ammonis 1 (CA1), CA2,

CA3, dentate gyrus (DG), subiculum (SUB), entorhinal cortex (ERC), Brodmann

areas 35 and 36 (BA35 and BA36, which together form the perirhinal cortex), and

collateral sulcus (CS).
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4.3.3 Spherical Parameterization

SPHARM PDM [47] Topology fix was performed on segmentation results to en-

sure a spherical topology for each hippocampus. The hippocampal surface was con-

structed from a voxel-based binary volume, and subfields were assigned to surface

locations as “Cornu Ammonis (CA, including CA1-3)”, “Dentate Gyrus (DG)”, or

“Subiculum + Miscellaneous (SUB+MISC)”, using the strategy shown in [9]. Fol-

lowing section 2.6.1, spherical parametrization was performed to establish a bijective

mapping between each surface location v “ px, y, zqT and a pair of spherical coor-

dinates pθ, φq while minimizing area distortion. This mapping can be represented

as: vpθ, φq “ pxpθ, φq, ypθ, φq, zpθ, φqqT . Figure 4.4(a-c) shows two example results of

spherical parameterization with initial alignment.

4.3.4 Surface Signal Formulation

In our previous work, we directly utilized the subfield information returned from

ASHS segmentation. Even though it worked, the method we discussed in previous

studies were not sufficiently well proposed. The reason is, taking a label map from a

segmentation tool as an input for registration brings inequality for different subfields.

The label numbers returned from a segmentation tool only have literal meanings,

but when we throw them directly into a registration algorithm, we treat them as

numerical meanings. This leads to a problem of inequality.

For a more specific explanation, we assume the label for subfield CA is “1”, the

label for subfield DG is “2”, and the label for subfield SUB is “3”. When a registra-

tion algorithm tries to align the hippocampal surface based on these subfield label

information, the algorithm will think the gap between CA and DG is smaller than

the gap between CA and SUB, since the difference between CA and DG is 1, while

the difference between CA and SUB is 2. To overcome this problem of inequality, we

proposed three methods to vectorize the integer label map.
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Binary Maps

The first idea is to binarize the integer labels. Instead of using one integer to

represent a label, we use a r3ˆ 1s vector that binarize the integer. For example, the

integeral label “1” can be binarized as r 0 0 1 s, similarly the labels “2” and “3”

can be binarized as r 0 1 0 s and r 1 0 0 s respectively.

Distance Maps

The second strategy is to calculate a distance map for each subfield. We define

the distance map by two steps: 1) identifying boundaries for each subfield, and 2)

calculating the distance from each vertex to its nearest boundary point.

We first search through all the faces, we define a vertex which has at least one

neighbor with different vertex label as a boundary vertex. Then for each subfield, we

generate a boundary map, we assign value equals to one for the subfield, assign value

equals to two for the boundaries and set the rest of vertices as zero. The results are

shown in Figure 4.6.

For a vertex v P Li, Li is the ith subfield returned from a segmentation tool. We

calculate the distance from v to the nearest boundary of this subfield region. Thus,

we have a 1ˆ n feature vector, where n is the total number of surface mesh vertices.

It assigns the weights a vertex belongs to a subfield, while the vertices outside of the

region are given weights equals to zero. So for a total number of m subfields, we can

formulate a mˆ n feature vector, and we name it as a distance map.

To better organize the surface signals across the whole data set, we further nor-

malized the distance map and set the subfield regions as p0, 1s, the background regions

as “´1”, and the boundaries as zero. The results are shown in Figure 4.7.
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Probability Maps

The last method to formulate surface signals is to utilize the probability maps

directly from segmentation results. As the two of most popular hippocampi segmen-

tation tools, FreeSurfer and ASHS are based on probability distributions, both of

the tools returned probability maps for each hippocampal subfield. So we take each

probability map of each subfield as a 1ˆn feature vector, so we can formulate a mˆn

vector as surface signals. The results of the probability maps are shown in Figure 4.8.

We should note that the probability maps are not the final segmentation results, as

each probability map indicates the probability of one single vertex belongs to the

subfield, the final segmentation results were obtained by picking the largest probabil-

ity from multiple probability maps of hippocampal subfields, it also compared them

with a background map, which indicates the probability of one vertex belongs to the

background. This means that the region of each probability map is larger than the

actual segmented region.

As CA2 and CA3 were relatively small regions on the hippocampus, we combined

the subfields of CA, and we calculated the combined probability of CA in the following

way:

PCA “ 1´ p1´ PCA1qp1´ PCA2qp1´ PCA3q (4.1)

4.3.5 Spherical Registration using The Proposed Methods

As an indispensable component of the revised framework, one of the major differ-

ence is in the proposed framework; each surface will be aligned with the consideration

of hippocampal subfield distributions. So we adopted the spherical demons registra-

tion mentioned in the Section 3.2.2. In the Section 3.2.2, we introduced the basic

spherical demons (BSD) algorithm and its variants, and we also discussed the stop-

ping criteria and distortion measurements. Then we proposed the improved method

by taking the advantages of these concepts.
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To illustrate the working procedures and compare different spherical registration

techniques, we designed our experiments based on three categories: 1) diffusion-like

spherical demons, 2) fluid-like spherical demons, and 3) combined spherical demons.

In each category, five tests are performed: compositive spherical demons (CSD),

basic diffeomorphic spherical demons (BSD), momentum-based spherical demons

(MSD), symmetric spherical demons (SSD), and momentum-based symmetric spher-

ical demons (SMSD). We also applied all of the mentioned fifteen methods on three

types of surface features, which are binary maps, distance maps, and probability

maps. In total, we performed forty-five registration tasks on the data set, and our

goals are to identify 1) the best strategy to perform subfield-aware surface registration

and 2) the best surface signal that can achieve best registration results.

4.3.6 Experiments

We separate our experiments into two parts. In the first part, we show some

initial efforts to implement basic spherical demons (BSD) algorithm for spherical

registrations, then a hippocampal subfield atlas on a spherical surface can be obtained.

In the second part, we implement the proposed method introduced in Section 3.2.2.

Initial Efforts to Build Surface Atlas on Sphere: In order to demonstrate

the SD algorithm can work well on a sphere using real hippocampal data, we first

performed a simple test using spherical demons algorithm. The spherical demons

algorithm took a multi-resolution scheme that it registered each onto an averaged

template; the variance of the data set measured the registration results. As each

individual surface was registered in each iteration, the group variance reduced.

In our experiments, the goal is to register five pairs of left and right hippocampi

together. The registration scheme includes four iterations of multi-resolution align-

ment; it is the same strategy as we described in Section 3.2.2. The difference is in

this set of tests, and we register all five subjects onto an averaged template. During

each iteration, we first average all subjects as a template, then register each to this
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template. Figure 4.4(d-e) showed registered 3D spherical surfaces and expanded 2D

signal maps. However, the deformation on surface mesh is not obvious in this figure,

so we take a deeper look at the registration process.

At the beginning of this process, we can observe blurred boundaries in the coarse

registration as we demonstrate this in Figure 4.9, the boundaries of averaged template

become more clear iteration by iteration when the algorithm achieves convergence,

all of the individuals are well aligned, so the boundaries of the averaged template are

clear.

The root mean square error (RMSE) is computed to evaluate the results of the

SD registration:

RMSEpF,Mq “

g

f

f

e

1

k

k
ÿ

i“1

}F pxiq ´Mpxiq}2 (4.2)

where k is the total vertex number for each interpolated surface, and F pxiq and Mpxiq

are the corresponding label values at vertex xi of template and individual respectively.

Figure 4.9 shows the mean spherical images at each iteration of the SD regis-

tration. These images are visualized using the interpolated results at Level 3 (i.e.,

containing 40,962 vertices). Figure 4.9(a) shows that subfields are roughly aligned at

the beginning so that boundaries among them are blurred. Figure 4.9(b-e) show that

boundaries on the mean spherical images are sharpened in each iteration since sub-

fields are warped and better aligned by implementing SD algorithm as we presented

in Algorithm 7. Figure 4.9(f) shows a 2D unfolded version of spherical images in

Figure 4.9(e). The mean spherical images shown in Figure 4.9(e-f) are the converging

results of SD method and chosen to be our hippocampal subfield atlas.

Figure 4.10 shows the RMSE at each iteration for each subject. The mean RMSEs

of 12 subjects are 0.49 and 0.52 respectively for left and right hippocampi at the

initial stage. They reduce to 0.32 and 0.34 after 1st iteration, then keep reducing

until reaching 0.18 and 0.20 at the convengence.
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Comparisons of Different Types of Registration Methods: Recall our goals

are to identify the best strategy to perform subfield-aware surface registration and

the best surface signal that can achieve best registration results. We have already

demonstrated the success a basic SD (BSD) algorithm can achieve in spherical reg-

istration, and now we hope to further examine the improvements of our proposed

methods can get by implementing the algorithms on a real hippocampal data set. We

introduced the theoretical background of each algorithm in Section 3.2.2. In this sec-

tion, different SD registration algorithms are implemented and compared in several

aspects of registration quality and regularization on mesh distortion.

Based on the regularization types we discussed in Chapter 3, we categorize our

experiments into three types: diffusion-like demons, fluid like demons, and regular-

ization combined demons. In each category, five different demons forces are tested;

it includes basic SD (BSD), compositive SD (CSD), momentum-based SD (MSD),

symmetric SD (SSD), and momentum based symmetric SD (SMSD). We also applied

all of the mentioned fifteen methods on three types of surface features, which are

binary maps, distance maps, and probability maps. In total, we performed forty five

registration tasks on the data set.

In the experiments, we set maximum iteration number to be 30, and tolerance of

the updated step size to be tol. “ ´10´4. Our registration adopted a multi-resolution

scheme that during the four iterations, the first iteration is a coarse registration

which downsampled the object surface, then for the remaining three iterations, the

resolution increased level by level for more precise registrations. We adopted an all-

to-one registration strategy that all of the individual surfaces are registered to one

single template. The way we select the template is that we randomly pick one subject

from the group of health control.

We evaluate our experimental results in three aspects: 1) the dice similarity be-

tween moving image and fixed image (shown in Figure 4.11), 2) the root mean square

error (RMSE) between two images (shown in Figure 4.12), and 3) harmonic energy

for mesh quality control (shown in Figure 4.13).
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As shown in Figure 4.11, we calculated the dice similarity coefficients, which is

defined as the followings equation: For a fixed image F and a moving image M :

DSC “
2|VF X VM |

|VF | ` |VM |
, (4.3)

where VF X VM is the overlap between fixed image and moving image, |VF | ` |VM | is

the total number of vertices on both surface meshes.

Root mean square error (RMSE) is defined in Section 4.3.6 as the following equa-

tion:

RMSEpF,Mq “

g

f

f

e

1

k

k
ÿ

i“1

}F pxiq ´Mpxiq}2, (4.4)

where k is the total vertex number for each interpolated surface, and F pxiq and Mpxiq

are the corresponding label values at vertex xi of template and individual respectively.

From the Equation 4.4 we can see, the RMSE measures the distance between

the fixed image and the moving image in each iteration. We recorded the RMSE

iteratively and it is shown in Figure 4.12.

Harmonic Energy measures the smoothness of the transformation. Thus, it can

be seen as an indicator for metric distortion between the spherical representation and

the original cortical surface. In the Section 3.4.2, it has been defined in Equation 3.27

and 3.28. In the experiments, we examine HE and evaluate the mesh distortion with

HE by combining the following two equations:

HE “
ÿ

rvi,vjsPK

θvivj}Γpviq ´ Γpvjq}
2, i ‰ j, (4.5)

where vi and vj are two vertices that define an edge, K is the triangle that contains

vi and vj, and Γ is a transformation of current warp. Coefficients θuv “ cotα` cot β,

where α and β are the angles opposite to the edge rvi, vjs.

Distortion “
HEn ´ HE1

T
, (4.6)
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where n is the current warp of the image, and the numerator measures the overall

length changes between the original vertices and the warped surface vertices, and

the denominator T is a normalization term that represents for the total number of

neighbours for all the vertices belongs to a surface. The results of evaluating HE in

each iteration are demonstrated in the Figure 4.13.

Experiments Based on Binary Maps: In the first division of the experiments,

we hope to check the spherical surface registration methods using the binary maps

formulated in Section 4.3.4. As an overview, We can see the iterative results on

Figures 4.11 4.12 4.13, they showed three major categories and five sub-divisions in

each category, totally fifteen methods we compared in our studies. From the results,

we can directly observe that fluid-like demons (color in green) achieved best results

in RMSE, followed by combined demons (color in blue), the diffusion-like demons

(color in red) scored the worst dice similarity and RMSE. However, achieving the

best DSC and RMSE is not necessary to conclude, because we need to consider the

tradeoffs between image similarity and mesh regularization. Thus, we also need to

evaluate the level of mesh distortion. As we can see from the Figure 4.13, fluid-like

demons achieved the highest values of the harmonic energy; these results indicated

more severe mesh distortion using fluid-like demons. The severe mesh distortion may

cause mesh irregularity in the process of mesh reconstruction, and bring errors in

further statistical analyses since our analyses are based on shape changes.

When we look deeper in each of the three major categories, we can find that due

to the nice properties of second derivative LM algorithm, our algorithms converged

fast in each category. Even though we set 30 iterations on each resolution level, we

realized this number was far than enough for the convergence. However, by keeping

the iter “ 30, we hope to illustrate the behavior of the algorithm without a stopping

criterion, and compare the results with the algorithms with stopping criteria.
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We start the group comparisons by discussing the results from diffusion-like spher-

ical demons. We can see from the red lines in Figure 4.11 and Figure 4.12, they

demonstrated the results of DSC and RMSE respectively, our experiments did not

benefit from diffeomorphic as we can see, the compositive demons achieved better

results in reducing RMSE than the basic diffeomorphic spherical demons (BSD). The

proposed methods Symm SD (SSD) and Symm-momen SD (SMSD) achieved best

results in RMSE and DSC, and a conclusion is derived from this set of experiments

that the momentum term played a positive role in reducing RMSE. We can also ob-

serve from the Figure 4.13, the diffusion-like registrations achieved the lowest scores

in the evaluations of HE. We can also validate this by checking the mesh visually.

Secondly, we illustrate the results from fluid-like demons. Compared to diffusion-

like demons, the fluid-like demon’s features for less regularization. Thus, it scored

very low RMSE in all of four levels. As a result, the surface mesh is extremely

irregular due to large deformation in a lower resolution as shown in Figure 3.18(a-b).

Lastly, we demonstrate the results from combined demons. We applied a 3-level

multi-resolution scheme, smoothing the surface features and regularizing the regis-

tration more at the first level, then we reduce regularization to relax the rest of

subsequent levels, we removed regularization for displacement field and only kept

regularization on updates at the last level of registration. As a result, we can observe

from Figure 4.12, the RMSE results of combined demons were approaching to fluid-

like demons, while HE was reserved in a proper range. In this experimental set, our

proposed methods (SSD and SMSD) achieved the best RMSE results while keeping

low HE values.

An example of the final registration results using binary maps is demonstrated in

Figure 4.14. Each surface mesh has the same resolution with the original surface of

the subject, which means the final registration result is interpolated from “ic7” (the

4th level of registration) to the original resolution of the subject’s surface mesh. As

we can see from the results, the proposed method works well in aligning the moving

surface to match the template.
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Experiments Based on Distance Maps: In the second division of the experi-

ments, we hope to check the spherical surface registration methods using the distance

maps formulated in Section 4.3.4.

We start the group comparisons by examining the results from diffusion-like spher-

ical demons. We can see from the red lines in Figure 4.15 and Figure 4.16, our ex-

periments did not benefit from diffeomorphic as we can see, the compositive demons

achieved equal or better results in reducing RMSE than the basic diffeomorphic spher-

ical demons (BSD). The proposed methods Symm SD (SSD) and Symm-momen SD

(SMSD) achieved best results in RMSE and DSC. Thus, in this set of experiments,

the momentum term played a positive role in reducing RMSE. We can also observe

from FigureFigure 4.17, the diffusion-like registrations achieved the lowest scores in

the evaluations of HE. We can also validate this by checking the mesh visually.

Secondly, we discuss the results from fluid-like demons. Similar to our previous

tests using binary maps, the fuild-like registration methods scored very low RMSE

in all of four levels, it also achieved high HE scores. The proposed methods Symm

SD (SSD) and Symm-momen SD (SMSD) achieved best results in RMSE and DSC,

while the rest of the three methods achieved similar registration results.

Lastly, we discuss the results from combined demons. we can observe from Fig-

ure 4.15, Figure 4.16, and Figure 4.17, the RMSE results of combined demons were

approaching to fluid-like demons, while HE was reserved in a proper range. In this

experimental set, our proposed methods (SSD and SMSD) achieved the best RMSE

results while keeping low HE values.

Experiments Based on Probability Maps: In the third division of the experi-

ments, we hope to check the spherical surface registration methods using the proba-

bilistic maps formulated in Section 4.3.4.
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As we can see from the Figure 4.18, 4.19 and 4.20 the probability maps returned

from ASHS segmentation results are not well regularly distributed. Even though the

yellow and cyan colored regions provided a relatively stable pattern for hippocampal

subfield distributions, the probability values within the region are not well regularized.

This type of pattern severely affected the accuracy of the registration.

We start the group comparisons by examining the results from diffusion-like

spherical demons. We can see from the red lines in Figure 4.18 and Figure 4.19,

our experiments were not benefit from deffeomorphic as we can see the compositive

demons achieved better results in reducing RMSE than the basic deffeomorphic spher-

ical demons (BSD). The proposed methods Symm SD (SSD) and Symm-momen SD

(SMSD) achieved best results in RMSE and DSC. Thus, in this set of experiments

the momentum term played a positive role in reducing RMSE. We can also observe

from the Figure 4.20, the diffusion-like registrations achieved the lowest scores in the

evaluations of HE. We can also validate this by checking the mesh visually.

Secondly, we discuss the results from fluid-like demons. Compared to the other

two groups, the five methods using fluid-like demons scored overall lowest RMSE and

highest DSC in all of four registration levels, similar to the previous comparisons, the

methods in this category achieved overall highest HE. The proposed methods Symm

SD (SSD) and Symm-momen SD (SMSD) achieved best results in DSC, and Symm

SD (SSD) achieved the lowest scores in RMSE.

Lastly we discuss the results from combined demons. we can see from Fig-

ure 4.18, 4.19 and 4.20, the RMSE, DSC and HE results of combined demons were

in between of fluid-like methods and diffusion-like demons. The combined demons

take a good compromise between registration similarity and mesh regularity. Our

proposed methods (SSD and SMSD) achieved the best RMSE results while keeping

relatively low HE values.
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Discussions on Comparison Results: In the previous parts we compared the

basic spherical demons (BSD) algorithm with other variants, the results shown in

Figures 4.11, 4.12, 4.13, 4.15, 4.16, 4.17, 4.18, 4.19 and 4.20 demonstrated the pro-

posed methods achieved improvements compared to the original spherical demons.

However, the improvement is meaningless if it is too small. So we performed some

further analyses on the experimental results to examine if the improvement is statis-

tically significant.

In Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 and 4.29, we demonstrated

the DSC, RMSE, and HE values of each subject, while the individual subjects are

grouped based on the surface features we used and the regularization types. We also

calculated the mean and variance of each experimental group. We can see from the

figures, Symm SD (SSD) and Symm-Momen SD (SMSD) achieved the best RMSE

and DSC in the comparisons for both left and right hippocampi. Symm SD (SSD)

usually can achieve lower HE scores compared with Symm-Momen SD (SMSD).

For the comparisons among surface signals binary maps, distance maps, and prob-

ability maps, we can see the tests using binary maps achieved best DSC and RMSE

results. Even though we realized that using binary maps lead to a higher HE score,

we find the mesh quality was acceptable.

For three types of surface signals and three regularization methods, The initial

intend is to perform t-test on the evaluations of the registration results such as DSC,

RMSE and HE to see if these measurements are significantly different for different

demons registration strategies. As t-test requires an assumption that the data should

obey a normal distribution, we performed Lilliefors test [133, 134] to check the nor-

mality of the evaluation results. Even though we assumed the evaluation results were

normally distributed or at least normally-like distributed, we found some of the data

were not strictly normally distributed (but visually normal-like) due to the sizes of

the data sets. So we performed a Box-Cox transformation [135, 136] on the data

that were not strictly normal, it transforms non-normally distributed variables into

a normal distribution. Then we performed t-test on the transformed data sets: the
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transformed data were used for both groups in comparisons when at least one group

of data was non-normal. Similarly, as we treated BSD as the benchmark in the com-

parisons, the transformed data were used in all of the comparisons (BSD vs. CSD,

BSD vs. SSD, BSD vs. MSD and BSD vs. SMSD) as long as the original data set of

BSD was non-normal. The statistical results for DSC, RMSE, and HE measures are

summarized in the Tables 4.1, 4.2 and 4.3. The results marked with a star indicates

they were obtained from transformed data sets. Conversely, the results without a star

were from original measures. From the results we can see, compared to the basic SD

(BSD) algorithm, our proposed Symm SD (SSD) and Symm-Momen SD (SMSD) im-

proved on DSC and RMSE significantly, while few significant differences were noticed

on the measurements of HE.

4.3.7 Building Hippocampal Surface Atlas

After the surface signals are well aligned in parameter space, our next step is to

align them in the object space. We still use FOE to align the spatial orientation of

each subject by utilizing their first order reconstruction. Then we reconstruct each

hippocampal surface with a degree of 15 reconstruction. Each reconstructed surface

contains 2562 vertices and 5120 faces. At the last step, we averaged all subjects from

the healthy control group and obtained a surface atlas based on healthy people. The

averaged left, and the right atlas is shown in Figure 4.30.

4.3.8 Summary

A novel computational framework has been presented to build a surface atlas of

hippocampal subfields from high-resolution T2-weighted MRI scans. Compared with

previous studies, the major contributions of this work are fourfold: (1) it demonstrates

detailed and accurate hippocampal subfield partitions by using high-resolution T2-

weighted data. (2) It maps complex surface anatomical topology onto a sphere to

establish surface correspondence across individuals. (3) It formulates different types
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Table 4.1.: t-test results to examine the improvements on dice similarity coefficient

(DSC). A Box-Cox transformation was applied to transfer the non-normally dis-

tributed data to normal distribution. Comparisons based on the transformed data

are marked with a star.

Dice Similarity Coefficient
Study

BSD vs.CSD BSD vs.SSD BSD vs.MSD BSD vs.SMSD

Binary comb r 1.00E+00 4.04E-24 3.31E-01 3.47E-27

Binary comb 1.00E+00* 1.13E-04* 1.00E+00* 9.09E-01*

Binary fluid r 1.00E+00 8.48E-13 7.41E-02 1.34E-14

Binary fluid 7.85E-01 1.20E-13 1.18E-03 1.02E-13

Binary diff r 1.70E-02 2.16E-28 5.80E-01 5.59E-37

Binary diff 3.37E-02 1.51E-26 3.19E-01 4.15E-56*

DistMap comb r 1.00E+00 2.63E-25 4.93E-01 9.69E-32

DistMap comb 1.00E+00 5.63E-29 8.42E-01 3.11E-29

DistMap fluid r 9.99E-01 4.01E-24* 3.40E-01 4.82E-26*

DistMap fluid 6.52E-19* 4.20E-23* 1.00E+00* 2.78E-31*

DistMap diff r 1.00E+00 1.89E-31 9.80E-01 2.33E-40

DistMap diff 9.97E-01 1.05E-32 8.43E-01 9.24E-43

ProbMap comb r 9.38E-01 2.94E-10 7.93E-01 5.79E-13

ProbMap comb 8.29E-01 4.79E-19 1.21E-01 3.49E-24

ProbMap fluid r 9.75E-01 1.00E+00* 8.27E-01 7.35E-01

ProbMap fluid 1.00E+00* 1.00E+00* 2.28E-23* 1.00E+00*

ProbMap diff r 3.13E-03 1.67E-14 8.02E-01 4.18E-19

ProbMap diff 2.69E-01 8.40E-27 1.00E+00 4.26E-35
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Table 4.2.: t-test results to examine the improvements on root mean square error

(RMSE). A Box-Cox transformation was applied to transfer the non-normally dis-

tributed data to normal distribution. Comparisons based on the transformed data

are marked with a star.

Root Mean Square Error
Study

BSD vs.CSD BSD vs.SSD BSD vs.MSD BSD vs.SMSD

Binary comb r 9.97E-01 9.53E-27 1.00E+00 2.16E-37

Binary comb 9.99E-01* 1.93E-21 4.61E-01 7.26E-31

Binary fluid r 7.48E-02 1.06E-07 9.99E-01 1.31E-05

Binary fluid 2.59E-04 1.10E-06 3.66E-04 1.01E-07

Binary diff r 7.38E-07 4.12E-28 5.12E-01 1.23E-35

Binary diff 4.63E-04* 2.63E-32* 3.03E-01* 2.05E-42*

DistMap comb r 9.05E-01 3.83E-30 4.45E-01 4.85E-39

DistMap comb 9.18E-01* 9.13E-34 5.43E-01 1.44E-38

DistMap fluid r 7.94E-01 8.49E-14 3.96E-01 7.37E-20

DistMap fluid 6.20E-01* 6.90E-19* 8.54E-01* 6.55E-24*

DistMap diff r 1.76E-01 3.04E-31 9.71E-01 1.37E-40

DistMap diff 1.39E-01* 1.04E-37* 6.64E-01* 1.64E-49*

ProbMap comb r 9.39E-01 2.25E-21* 8.56E-01 1.95E-28

ProbMap comb 5.98E-01* 4.17E-22* 6.81E-02* 5.22E-27*

ProbMap fluid r 9.90E-01 1.56E-01 5.82E-01 6.56E-01*

ProbMap fluid 6.68E-01 3.77E-01 2.29E-01 3.59E-01*

ProbMap diff r 8.30E-02 3.93E-24 8.03E-01 1.66E-30

ProbMap diff 4.48E-01* 1.69E-30 9.86E-01 3.82E-43*
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Table 4.3.: t-test results to examine the significant difference on harmonic energy

(HE). A Box-Cox transformation was applied to transfer the non-normally distributed

data to normal distribution. Comparisons based on the transformed data are marked

with a star.

Harmonic Energy
Study

BSD vs.CSD BSD vs.SSD BSD vs.MSD BSD vs.SMSD

Binary comb r 8.49E-11 1.00E+00* 4.81E-01 1.00E+00*

Binary comb 9.57E-08* 1.00E+00* 7.90E-01* 1.00E+00*

Binary fluid r 8.90E-02* 1.00E+00 9.93E-01* 1.00E+00*

Binary fluid 1.44E-01 1.00E+00 1.00E+00 1.00E+00

Binary diff r 1.30E-23 1.00E+00 4.70E-09 1.00E+00

Binary diff 6.66E-17* 1.00E+00* 3.16E-04* 1.00E+00*

DistMap comb r 9.54E-11 1.00E+00* 7.09E-02 1.00E+00*

DistMap comb 4.99E-05* 1.00E+00* 9.84E-02* 1.00E+00*

DistMap fluid r 1.67E-01 1.00E+00 7.70E-02 1.00E+00

DistMap fluid 6.69E-01* 1.00E+00* 9.49E-01* 1.00E+00*

DistMap diff r 4.55E-19 1.00E+00 1.58E-09 1.00E+00

DistMap diff 2.11E-18* 1.00E+00* 4.69E-08* 1.00E+00*

ProbMap comb r 9.91E-06 1.00E+00 6.02E-01 1.00E+00

ProbMap comb 7.67E-05 1.00E+00* 6.46E-01* 1.00E+00*

ProbMap fluid r 2.26E-01 1.00E+00 4.03E-01 1.00E+00

ProbMap fluid 9.09E-02 1.00E+00 2.16E-01 1.00E+00

ProbMap diff r 1.43E-13* 1.00E+00* 3.28E-05* 1.00E+00*

ProbMap diff 1.28E-05* 1.00E+00* 9.88E-05* 1.00E+00*
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of surface signals that can better describe the subfield distributions than using label

maps directly. And (4) it provides a pathway for fast and accurate landmark free

registration that embraces, rather than ignores, the precious subfield information.

We have demonstrated its effectiveness by applying it to both of the IADC and

ADNI data. Instead of identifying landmarks on subfield boundaries, the landmark

free registration makes use of surface label information to guide registration.

4.4 Summary of Chapter 4

In this section, we introduced our initial efforts on building a framework based

on traditional T1-weighted MRI scans. This framework showed the feasibility of

surface morphometric analyses and gave us the confidence for further explorations.

After those initial efforts, we were aware that recently released high-resolution MRI

scans could provide more detailed information for hippocampal subfields and adja-

cent regions. Also, these high-resolution data got widely recognized and appreciated

in recent year studies. The quality of alignment has a high effect on group studies.

Based on our goals of research, we are aiming to examine the structural changes

of hippocampal subfields; this motivated us to develop a registration method based

on hippocampal subfield information. So we performed some preliminary work on

processing these high-resolution data using IADC data and applied basic Spherical

demons (BSD) methods for hippocampal subfield guided registration. The experi-

mental results showed to be more promising compared with our work only based on

T1-weighted data. Then we applied the proposed methods Symm SD (SSD) and

Symm-Momen SD (SMSD) on a more extensive data set from ADNI. We compared

our proposed methods with popular registration strategies, in most of the tests us-

ing different surface signals, our proposed outperformed the basic spherical demons

(BSD) algorithm, our proposed methods achieved higher subfield matching rate and

lower RMSE, in the meanwhile they kept the harmonic energy in a proper range. We
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also validated that the improvements were statistically significant. This encourages

us to work on a more in-depth investigation of hippocampal subfield morphometric

analyses based on high-resolution MRI scans.
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(a) using both scans (b) using Scan A (c) using Scan B

Fig. 4.2.: Surface atlases of hippocampal subfields created from MRI scans of 26

healthy controls, where each individual was scanned twice. (a) Atlas generated from

using both scans, (b) atlas generated from using Scan A only, and (c) atlas generated

from using Scan B only. Each of (a-c) visualizes the atlas from two different views.
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(a) Binary map for CA

(b) Binary map for DG

(c) Binary map for SUB

Fig. 4.5.: Some examples of generated binary maps for each hippocampal subfield.

The regions with yellow color have values equal to one, the regions with blue color

have values equal to zero.
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(a) Boundary map for CA

(b) Boundary map for DG

(c) Boundary map for SUB

Fig. 4.6.: Some examples of generated boundary maps for each hippocampal subfield.

The regions with cyan color have values equal to one, the regions with blue color have

values equal to zero, and the regions with yellow color have values equal to 2.
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(a) Distance map for CA

(b) Distance map for DG

(c) Distance map for SUB

Fig. 4.7.: Some examples of normalized distance maps for each hippocampal subfield.

The subfield regions are marked value between p0, 1s, the background regions are

marked value equals as ´1, and the boundaries are marked as zero.
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(a) Probability map for CA

(b) Probability map for DG

(c) Probability map for SUB

Fig. 4.8.: Some examples of probability maps for each hippocampal subfield. The

subfield regions are marked as yellow and cyan; the background regions are marked

as blue.
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Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8 Subj9 Subj10Subj11Subj12

Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8 Subj9 Subj10 Subj11 Subj12

Fig. 4.10.: Root mean square error (RMSE) at each iteration for each subject.
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Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD

Fluid-MSD

Fluid-SMSD

Combined-CSD

Combined-SSD

Combined-MSD

Combined-SMSD

Fig. 4.11.: Summary of comparisons using binary maps: dice similarity coefficients

(DSC). DSC is plotted against iteration.
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Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD

Fluid-MSD

Fluid-SMSD

Combined-CSD

Combined-SSD

Combined-MSD

Combined-SMSD

Fig. 4.12.: Summary of comparisons using binary maps: root mean square error

(RMSE). RMSE is plotted against iteration.
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Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD

Fluid-MSD

Fluid-SMSD

Combined-CSD

Combined-SSD

Combined-MSD

Combined-SMSD

Fig. 4.13.: Summary of comparisons using binary maps: harmonic energy (HE). HE

is plotted against iteration.
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(a) Template: CA (b) Template: DG (c) Template: SUB

(d) Before registration: CA (e) Before registration: DG (f) Before registration: SUB

(g) After registration: CA (h) After registration: DG (i) After registration: SUB

Fig. 4.14.: An example of registration using binary maps.
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Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD

Fluid-MSD

Fluid-SMSD

Combined-CSD

Combined-SSD

Combined-MSD

Combined-SMSD

Fig. 4.15.: A summary of comparison results using distance maps: dice similarity

coefficients (DSC). DSC is plotted against iteration.
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Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD

Fluid-MSD

Fluid-SMSD

Combined-CSD

Combined-SSD

Combined-MSD

Combined-SMSD

Fig. 4.16.: A summary of comparison results using distance maps: root mean square

error (RMSE). RMSE is plotted against iteration.
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Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD
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Fig. 4.17.: A summary of comparison results using distance maps: harmonic energy

(HE). HE is plotted against iteration.



127

Diffusion-BSD Fluid-BSD Combined-BSD

Diffusion-CSD

Diffusion-SSD

Diffusion-MSD

Diffusion-SMSD

Fluid-CSD

Fluid-SSD

Fluid-MSD

Fluid-SMSD

Combined-CSD

Combined-SSD

Combined-MSD

Combined-SMSD

Fig. 4.18.: A summary of comparison results using probabilistic maps: dice similarity

coefficients (DSC).
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Fig. 4.19.: A summary of comparison results using probabilistic maps: root mean

square error (RMSE).
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Fig. 4.20.: A summary of comparison results using probabilistic maps: harmonic

energy (HE).
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(a) Left hippocampal surface atlas (b) Right hippocampal surface atlas

Fig. 4.30.: The averaged left and right hippocampal surface atlas. Each of the subfig-

ure (a) and (b) shows two orientations. For example, the latter one in (a) is flipped

180 degree by vertical axis from the first one. Color blue represents for subfield CA,

color yellow represents for subfield SUB, color cyan represents for subfield DG.
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5. MORPHOMETRIC ANALYSES OF HIPPOCAMPAL

SUBFIELDS

5.1 Background

Morphometrics analysis is one type of quantitative analysis, a concept that en-

compasses size and shape. Morphometric analyses are useful in analyzing both devel-

opmental and degeneration changes, correlations between shape changes and related

variants, as well as relationships between brain structural changes and genetic varia-

tions or cognitive score measurements. A major goal of the morphometric analysis is

to statistically test hypotheses on the factors which affect the shape.

We compute the surface morphometric difference of the hippocampus pair-wisely

between health control (HC), early MCI (EMCI), late MCI (LMCI) and AD groups.

We also compute the volumetric morphometric difference of the hippocampus pair-

wisely between HC, subjective cognitive decline (SCD), MCI and AD groups to eval-

uate the degeneration affection of cognitive decline to hippocampal subfields.

5.2 Surface-Based Morphometric Analyses

5.2.1 Data and Materials

The data used in this study were downloaded from the ADNI database [93] as

discussed in Section 2.2. For this study, we downloaded baseline 3T MRI scans of 172

HC, 267 EMCI, 140 LMCI and 108 AD participants aging between 55 and 90, along

with demographic and diagnostic information. All the raw data are 3D T1-weighted

scans with voxel resolution of 1.2 ˆ 1.0 ˆ 1.0 mm3 and dimension of 196 ˆ 256 ˆ

256.
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We also performed statistical analyses on high resolution MRI scans, the data were

downloaded from ADNI 2 and 3. Each subject contains two MRI scans, namely one

T1-weighted and one T2-weighted MRI scans. The data set we used for this study

included 30 HC, 30 MCI and 20 AD participants aging from 58 to 94, along with

demographic and diagnostic information. The T1-weighted MRI scan (MPRAGE)

had an acquisition matrix of 240 ˆ 256 ˆ 176 and voxel size of 1.05 ˆ 1.05 ˆ 1.2

mm3; the T2-weighted scan had an acquisition matrix of 448 ˆ 448 ˆ 30 or 448 ˆ

448 ˆ 24, where the differences were caused by different imaging sites. The voxel size

for high resolution T2-weighted scans is 0.4 ˆ 0.4 ˆ 2 mm3 with TR/TE 8020/50

ms, 24 or 30 interleaved slices with no gap.

5.2.2 Feature Extraction

In neuroimaging, morphometric features include summary statistics of imaging

measures (e.g., volume, thickness, gray matter density), surface deformations, and

detailed voxel-wise measures. Dealing with different morphometric features, mor-

phometric studies can be categorized to “traditional” morphometry, surface-based

morphometry (SBM), and voxel-based morphometry (VBM). They have been used

in biomedical imaging and other domains to identify significant patterns related to

certain conditions, assisting with diagnosis and treatment.

In modeling the surface deformation, we take the L2-norm for the difference be-

tween two corresponding vertices on a test subject and the template. The way to

compute surface deformation on each vertex is described as follows:

δpxq “ }px´ xtq}
2 , (5.1)

where δpxq describes the deformation field, x and xt are individual subject surface

and atlas respectively.
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5.2.3 General Linear Model

Tests using T1-weighted scans only

We use xt to denote the atlas, and x to denote an individual surface registered

to the atlas. Although the deformation field δpxq “ x´ xt can be used to describe

the individual shape, there are three related elements (corresponding to x, y, z coor-

dinates) in δpxq that are needed to capture local shape changes. For simplicity, we

look at only the deformation signal along the surface normal direction to decrease

the number of variables considered for each surface position. We apply heat kernel

smoothing, which generalizes Gaussian kernel smoothing to arbitrary Riemannian

manifolds [137], to smooth the surface signals and increase the signal-to-noise ratio.

We use a kernel size of 5mm full-width-half-max (FWHM) in the smoothing.

We perform statistical surface analysis to detect: (a) age or gender effect on surface

deformation, and (b) group difference (HC vs. EMCI, HC vs. LMCI, and HC vs.

AD) on surface deformation after removing the age and gender effects. We consider

the following general linear model (GLM):

y “ XΨ` ZΦ` ε, (5.2)

where the dependent variable y is our surface signal; X “ px1, ¨ ¨ ¨ , xpq are the vari-

ables of interest such as group; Z “ pz1, ¨ ¨ ¨ , zkq are the variables whose effects we

want to exclude, such as age and gender; and Ψ “ pψ1, ¨ ¨ ¨ , ψkq
T , Φ “ pφ1, ¨ ¨ ¨ , φpq

T

and ε are the coefficients. The goal is to test if X is significant (i.e., Ψ ‰ 0) for some

y P BΩ, where BΩ indicates the atlas surface manifold. We use SurfStat [138] to test

our GLMs. SurfStat is a Matlab toolbox that applies linear mixed effects models

and random field theory (RFT, for multiple comparison correction) for the statistical

analysis of univariate and multivariate surface and volumetric data [138,139].

RFT Surface Analysis employs random field theory (RFT) implemented in Surf-

stat, the surface signals Ni,j are analyzed using the regression model:

Ni,j “ β0 ` β1,jIi ` β2,jagei ` β3,jgenderi ` εi,j, i “ 1, ..., n, j “ 1, ...,m (5.3)
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Fig. 5.1.: Hippocampal surface atlas: five subfields color mapped on to the mean

hippocampal surface of all HC participants in the studied cohort.

where Ii is the group indicator (e.g., 1 if EMCI and 0 if HC), n is the number

of subjects and m is the number of surface vertices. The SPM consisting of the t

statistics for testing H0 : β1,j “ 0, j “ 1, . . . ,m, is then analyzed using both peak

amplitude and cluster size statistics as implemented by Surfstat.

The GLM is employed to estimate the parameters that can describe the data in the

same way as in the conventional analysis of discrete data. RFT is employed to tackle

the multiple comparison problem to control the type I error, or the statistical results

would not be sufficiently convincing when making inferences over a surface mesh of

the brain. RFT theory provides a method for correcting p values for the search surface

vertex and plays the same role for continuous data (i.e., images) as the Bonferroni

correction for the number of discontinuous or discrete statistical tests [140].
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Shown in Figure 5.1 is the resulting surface atlas color-mapped with five hip-

pocampal subfields. Shown in Figure 5.2 are example T-maps (maps of t statistics)

and P-maps (maps of p values, only significant p-values shown, corrected by RFT

at both vertex and cluster levels) of selected analyses. Shown in Table 5.1 are the

numbers of significant surface vertices in each of five analyses.

Below we briefly review the results of three diagnostic effects (covaried for age and

gender) on surface signals. (1) HC vs EMCI: there was no significant shape change on

the entire surface. (2) HC vs LMCI: LMCI demonstrated significant atrophy patterns

in 25% of Tail, 38% of CA1, 30% of CA2-3, 32% of CA4-DG, and 55% of SUB. (3)

HC vs AD: AD demonstrated significant atrophy patterns in 49% of Tail, 87% of

CA1, 50% of CA2-3, 94% of CA4-DG, and 84% of SUB. While SUB was among the

top atrophy regions at both LMCI and AD stages, CA1 and CA4-DG showed modest

atrophy at the LMCI stage but severe atrophy at the AD stage.

Regarding the age, it affected 83% of SUB, 50-56% of Tail, CA1 and CA2-3, and

39% of CA4-DG. The overall pattern was similar to diagnostic effects of LMCI and

AD. As to the gender, it affected 47-62% of Tail and CA1, 14-16% of CA2-3 and SUB,

and 5% of CA4-DG.

Tests using T1- and T2-weighted high resolution scans

Similar to the previous section, we performed statistical analyses on the high reso-

lution data, and the deformation fields were captured by calculating the deformation

between each subject and the template, where the template was generated based on

the pipeline described in Section 4.3.7.

Figure 5.3 demonstrates the t statistics and p statistics from the comparisons

between HC and MCI groups. As we can see from the figure, not many subfield surface

regions are marked as “significant” (marked as yellow) in Figure 5.3(b). However, we

still can see from Figure 5.3(a), CA and SUB showed a trend of atrophy.
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Figure 5.4 summarizes the t statistics and p statistics from the comparisons be-

tween HC and AD groups. As we can see from the figure, CA and SUB are the most

affected regions by the progression of AD. The “significant” regions in Figure 5.4(b)

are corresponded to the red regions in Figure 5.4(a), which means these regions are

significantly related to the disease.

Based on the statitical results, we again validated our statistical findings in Sec-

tion 5.2.3 using a different data set. The promising statistical results proved the

feasibility and advantages of the proposed framework described in Chapter 3 and 4.

5.2.4 Statistical Parametric Mapping Distribution Analysis

Investigation of hippocampal morphometry as an early biomarker for detecting

EMCI is a significant but yet under-explored topic. We have discussed this topic

using random field theory [138, 139] and surface-based morphometry in last section,

but identified no significant difference between HC and EMCI participants.

To bridge this gap, in this section, we propose a novel and powerful image anal-

ysis framework for hippocampal morphometry in EMCI. We create a hippocampal

surface atlas with subfield information using the method described in Chapter 3. We

model each hippocampus using the SPHARM techniques and register it to the at-

las for subsequent analyses. We propose a new alternative to standard random field

theory (RFT) and permutation image analysis methods, Statistical Parametric Map-

ping (SPM) Distribution Analysis or SPM-DA, to perform statistical shape analysis

and compare its performance with that of RFT methods on both simulated and real

hippocampal surface data. The major strengths of this framework are twofold: (a)

SPM-DA is designed to be more powerful than current RFT and permutation meth-

ods for detecting low signal-to-noise ratio signals and (b) the framework embraces,

rather than ignores, the important hippocampal subfield information for improved

interpretation of the identified pattern.



148

T
ab

le
5.

2.
:

S
ta

ti
st

ic
al

re
su

lt
s

fo
r

gr
ou

p
co

m
p
as

is
io

n
s

H
em

is
p
h
er

e
L

ef
t

R
ig

h
t

S
u
b
fi
el

d
s

C
A

D
G

S
U

B
T

ot
al

C
A

D
G

S
U

B
T

ot
al

N
u
m

b
er

of
V

er
ti

ce
s

17
03

21
7

64
2

25
62

16
97

23
2

63
3

25
62

S
ig

n
ifi

ca
n
t

R
eg

io
n

(N
u
m

b
er

of
V

er
ti

ce
s)

H
C

v
s.

M
C

I
12

0
31

10
8

25
9

23
0

1
51

28
2

H
C

v
s.

A
D

24
2

42
15

6
44

0
48

5
0

61
54

6

P
er

ce
n
ta

ge
of

th
e

si
gn

ifi
ca

n
t

ve
rt

ic
es

H
C

v
s.

M
C

I
7.

05
14

.2
9

16
.8

2
10

.1
1

13
.5

6
0.

43
8.

06
11

.0
1

H
C

v
s.

A
D

14
.2

1
19

.3
6

24
.3

17
.1

7
28

.5
8

0
9.

64
21

.3
1



149

We demonstrate the effectiveness of our method through an application to the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, where the proposed SP-

MDA can identify subtle hippocampal shape difference between HC and EMCI that

cannot be detected by standard RFT methods.

SPM Distribution Analysis (SPM-DA): SPM-DA begins by estimating the distri-

bution of the SPM statistics with a frequency histogram. The histogram bin bound-

aries are chosen so that each bin is equally likely under the null distribution, here

the t distribution. The bin frequencies are then analyzed to detect departures from

count uniformity. In these analyses, two regression models are employed:

Fi “ βµxµ,i ` εi, i “ 1, . . . , n, (5.4)

Fi “ βlxl,i ` εi, i “ 1, . . . , n, (5.5)

where Fi denotes the frequency of the i-th of n = 12 bins. see Figure 5.6 for a

few examples bin counts computed from the real hippocampal data (i.e., the “¨”

values) and predictor data (i.e., the solid line). The first model in Equation 5.4, with

x1µ “ p0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5q1 be our predictor. Thus, the coefficient µ will be

positive when there is an overabundance of positive SPM statistics (right-tail values)

indicating a positive relationship between image values and the predictor of interest.

Similarly, for the second model in Eq (5.5), we let x1l “ p5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0q
1 be

our predictor. Thus, the coefficient l will be positive when there is an overabundance

of negative (left-tail) values indicating a negative relationship.

To detect a relationship between the image and the predictor of interest generating

the SPM, the following com-positive hypotheses are tested:

H0 “ βµ ď 0 and βl ď 0 versus H1 “ βµ ą 0 and βl ą 0. (5.6)

Let β̂µ and β̂l denote the least squares estimates of βµ and βl from the un-permuted

data. The corresponding one-sided p-values, pu “ P pβµ ě β̂µq and pl “ P pβl ě

β̂lq, are combined using Bonferroni to get the p-value for testing H0 vs. H1, p “
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2minppl, puq. Simulation is used to compute pu and pl by randomly permuting the

predictor (after it’s orthogonalized with respect to covariates if they are present [139])

with respect to the surface data, recomputing the SPM, and then computing the

corresponding permutation coefficient estimates ˆβµ˚ and β̂l˚ . This process is repeated

N times and then pu is estimated by:

pµ “
pNumber of β̂˚µ

1
s ě β̂µq

N
. (5.7)

And pl is estimated similarly. The only requirement for p-values pu and pl to be valid

is the usual permutation assumption of exchangeability. Exchangeability is satisfied

much more readily than the stringent RFT assumptions [139].

If, in addition, the distributions of the permutation coecient estimates ˆβµ˚ and

β̂l˚ are normal, as will often be the case for large samples [141] (e.g., those shown in

Figure 5.3(a-b)) then pu and pl can be computed using the t distribution:

pµ “ P ptN´1 ě
β̂µ ´ X̂

S
b

1` 1
N

q, (5.8)

in which X̂ and S are the sample mean and sample standard deviation of the N β̂˚µ
1
s.

The factor
b

1` 1
N

in the denominator is needed since V arrβ̂µ´X̂s “ σ2p1` 1
N
q under

the null hypothesis. Using this approach small p-values can be accurately estimated

with N as small as 30 or so. This procedure, implemented in R, is also used to analyze

the hippocampal surface normals and the results compared with the Surfstat RFT

results.

Simulation Studies: SPM-DA and RFT peak and cluster methods are compared

using two simulation studies. For both studies random data on a hippocampal tem-

plate surface with 652 vertices are generated for 72 subjects according to the model:

Si,j “ βxi ` εi,j, i “ 1, . . . , 72, j “ 1, . . . , 126, (5.9)

“ εi,j, i “ 1, . . . , 72, j “ 127, . . . , 652, (5.10)

in which Si,j represents the surface value at location j for subject i. Both studies

simulate two-sample data with xi equal to ´1 for i “ 1, . . . , 36 and 1 for i “ 37, . . . , 72.

Thus, the signal which extends across 126 contiguous locations is constant with a
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magnitude determined by β. For both studies, values for are 0, 1/12, 1/6, and 1/3. In

the first study the random errors εi,j are independent standard normal (µ “ 0, σ2 “ 1)

pseudorandom numbers. In the second study the εi,j are also independent standard

normals (µ “ 0, σ2 “ 1) but are smoothed prior to the signal being added using the

heat kernel smoothing method [142] applied to the hippocampal surface atlas. The

resulting data sets are analyzed using SPM-DA (programmed in R) and RFT peak

and cluster statistics as implemented by Surfstat [138,139]. For each combination of

and choice of unsmoothed or smoothed random errors, 100 data sets were constructed

and analyzed by SPM-DA and RFT methods to compare their power.

Table 5.3.: Simulation study results: the number of rejections (out of 100 runs)

based on SPM-DA, RFT peak, and RFT cluster p-values. The null is rejected when

p ď 0.05.

Signal

Strength

Unsmoothed Data Smoothed Data

SPM-DA RFT Peak
RFT

Cluster
SPM-DA RFT Peak

RFT

Cluster

0 5 1 0 3 2 0

1/12 92 7 1 83 10 0

1/6 100 57 6 100 47 51

1/3 100 100 5 100 100 49

In our simulation study, the distribution of the permutation coefficient estimates

by SPM-DA is always normal (see Figure 5.5(a-b) for a couple of examples). Thus,

the pu and pl are computed using a fast approach shown in Equation 5.8. However,

in the real data study, the distribution of the permutation coefficient estimates by

SPM-DA is no longer normal (see Figure 5.5(c) for one example). In this case, we

compute pu and pl based on Equation 5.7 using 10,000 permutation tests.

Table 5.3 presents the results of our simulation studies by providing the number of

rejections (out of 100 runs) of the SPM-DA, RFT Peak, and RFT Cluster methods for

the various scenarios. All tests have significance level α “ 0.05. For the null (signal
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Table 5.4.: Statistical analysis results on real data using three approaches: SPM-DA,

RFT Peak and RFT Cluster. P values are shown for pairwise comparison among

three groups HC, EMCI and LMCI. N.S. indicates not significant.

Comparison P from SPM-DA
Smallest P

RFT Peak RFT Cluster

HC vs EMCI 9.20E-03 1.51E-01 N.S.

EMCI vs LMCI <2E-04 9.46E-08 N.S.

HC vs LMCI <2E-04 1.72E-08 N.S.

strength = 0) scenarios none of the three methods have type I error rates exceeding

α “ 0.05 although the RFT methods appear conservative. For all non-null scenarios

the SPM-DA method dominates the RFT Cluster method, exhibiting substantially

greater power at all signal strengths. It also dominates the RFT Peak method in all

but the strongest signal case. In particular, its power is about eight times greater

than RFT Peak for the weakest signals.

Table 5.4 presents the results of analyzing the three hippocampal pairwise com-

parisons using the three methods. The SPM-DA method was the most powerful,

detecting shape differences at level α “ 0.05 for all three comparisons in contrast to

RFT Peak which detected two and RFT cluster which detected none. We believe

that SPM-DA would yield smaller p-values than RFT Peak for the EMCI vs LMCI

and HC vs LMCI comparisons if sufficient permutations (e.g., 109) were used. The

encouraging fact that the SPM-DA method was able to detect HC vs EMCI shape

differences demonstrates the promise of SPM-DA for detecting early biomarkers in

AD studies.

Figure 5.6 shows the Equation 5.4 predictor data (i.e., the solid line) and the bin

counts generated by SPM-DA for each of the three comparisons. It is obvious that

the shape differences were detected by the first regression model (see Equation 5.4)

in each case. In other words, SPM-DA detected trends toward an overabundance of
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SPM values in the upper tail of the distribution, indicating hippocampal atrophy in

EMCI compared with HC, in LMCI compared with EMCI, and in LMCI compared

with HC.

Figure 5.6(b) shows the surface map of the SPM values for HC vs EMCI, where the

red color indicates the atrophy region in EMCI compared with HC. For comparison,

Figure 5.7(a) shows the t-map of the SurfStat analysis (p-map not shown due to

lack of signal). Although capturing a similar pattern, the RFT methods used by

SurfStat cannot claim the group differences between HC and EMCI are significant.

However, the RFT Peak method used by SurfStat was able to identify statistical shape

differences between EMCI and LMCI (t-map and p-map shown in Figure 5.7(c-d))

and between HC and LMCI (t-map and p-map similar to Figure 5.7(c-d) and thus

not shown).

Given that we have a surface atlas of hippocampal subfields, Table 5.5 shows

the signal region size in each subfield using RFT Peak and SPM-DA methods, i.e.,

number of vertices with p ă 0.05 and number of vertices with bin value (bv) = 12

respectively. Below we summarize the amount of the subfield atrophy region detected

by SPM-DA. (1) HC vs EMCI: EMCI demonstrated atrophy patterns compared with

HC in 27% of Tail, 51% of CA1, 36% of CA2-3, 79% of CA4-DG and 51% of SUB.

(2) EMCI vs LMCI: LMCI demonstrated atrophy patterns compared with EMCI in

66% of Tail, 91% of CA1, 61% of CA2-3, 70% of CA4-DG and 90% of SUB. (3) HC

vs LMCI: LMCI demonstrated atrophy patterns compared with HC in 70% of Tail,

100% of CA1, 69% of CA2-3, 99% of CA4-DG and 98% of SUB.

In summary, We have proposed a novel and powerful image analysis method, Sta-

tistical Parametric Mapping (SPM) Distribution Analysis or SPM-DA, and applied

it to statistical shape analysis in hippocampal morphometry coupled with subfield

information. We have compared its performance with that of standard random field

theory (RFT) in surface-based morphometry. Empirical studies on both simulated

and real hippocampal data have shown that the proposed SPM-DA outperformed

both RFT Peak method and RFT Cluster method. SPM-DA, by making more ex-
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tensive use of the information provided by the SPM distribution, was more powerful

than either of the standard RFT methods. It dominated the other methods in the

simulation power studies and was able to detect meaningful HC vs. EMCI differences

missed by them. The key idea behind the new method is to make better use of the in-

formation provided by the distribution of the General Linear Model (GLM) statistics

in the SPM. Standard RFT methods just look at the distribution maximum (vertex

peak) or the number of contiguous supra threshold vertices (clusters) and thus ignor-

ing much information. This approach avoids all that. In this work, we constructed a

histogram to capture the distribution information. One future direction is to explore

other ways of using the distribution information. Given that the proposed method is

generic, another future direction is to apply it to other image and/or shape analysis

studies.

We also performed the statistical analyses using high resolution data set. The sta-

tistical results were not promising enough because (1) the data set was relatively too

small (50 subjects for HC vs AD and 60 subjects for HC vs MCI), this could reduce

the statistical power dramatically, and (2) the process of surface parameterization in-

troduced errors that reduced the sensitivity of surface analysis. For the second point,

we will conduct a new study to design a better surface parameterization strategy to

overcome the current issue. However, the statistical results proved the feasibility of

the proposed framework to build hippocampal surface atlas and the followed surface

morphometric analyses.

5.3 Volume-Based Morphometric Analyses

In this section, statistical group analyses are performed to identify if any dis-

criminative patterns can be discovered from high-resolution scans. All the statistical

analyses were performed using IBM SPSS 23 (SPSS Statistics 23, IBM Corporation,

Somers, NY).
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In our analyses, we examined primary hippocampal subfields and adjoining regions

segmented directly from the ASHS software, as well as several composite regions of

interest (ROIs). Specifically, we included the following nine primary regions: CA1,

CA2, CA3, DG, SUB, ERC, BA35, BA36, and CS. Also, we examined the follow-

ing three composite regions: cornu ammonis (CA) containing CA1, CA2, and CA3,

hippocampus (HIPP) containing CA, DG and SUB, and perirhinal cortex (PRC)

containing BA35 and BA36.

5.3.1 Data and Materials

The sample (n=35) included research subjects from four categories: cognitively

normal (CN, n=10), subjective cognitive decline (SCD, n=9), mild cognitive im-

pairment (MCI, n=10), and Alzheimer’s disease (AD, n=6). All participants were

recruited from the Clinical Core of the Indiana Alzheimer’s Disease Center (IADC).

All procedures were approved by the Indiana University Institutional Review Board.

All subjects signed a written informed consent form. Participant characteristics are

shown in Table 5.6.

5.3.2 Image Acquisition

MRI scans were acquired on a Siemens MAGNETOM Prisma 3T MRI scanner.

The scanning protocols included a T1-weighted MPRAGE sequence with whole-brain

coverage and a T2-weighted TSE sequence with partial-brain coverage and an oblique

coronal slice orientation (positioned orthogonally to the main axis of the hippocam-

pus). The following MRI sequence parameters were used: the MPRAGE had an

acquisition matrix of 240 ˆ 256 ˆ 176 and voxel size of 1.05 ˆ 1.05 ˆ 1.2 mm3; the

T2 scan had an acquisition matrix of 448 ˆ 448 ˆ 30 and voxel size of 0.4 ˆ 0.4 ˆ

2 mm3 with TR/TE 8020/50 ms, 30 interleaved slices with no gap. The acquisition

time of the conventional protocol is 8 minutes and 11 seconds.
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5.3.3 Statistical Group Analyses

Segmentation was performed based on the methods discussed in Section4.3.2. We

performed volumetric analyses to evaluate differences between diagnostic groups using

SPSS General linear model (GLM). Specifically, our goal was to investigate whether

there were significant regional volume differences between CN, SCD, MCI, and AD

participants. Further, we evaluated whether the pattern of differences between groups

using subfield volumetric estimates from ASHS. In our experiments, we employed a

multivariate regression model with diagnosis (DX) as a fixed factor; age, sex, and

total intracranial volume (ICV) as covariates; and primary and composite regional

volumes as dependent variables.

To further examine the volume based morphometric differences between diagnostic

groups, pairwise comparisons of effect sizes were performed for CN, SCD, MCI, and

AD groups. Effect sizes were calculated using Cohen’s d [143]. The effect size of each

group difference was computed after covarying for age, gender and ICV.

5.3.4 Results

Figure 5.9 shows mean volume for each sub-region adjusted by age, sex and ICV

by DX group, where error bars indicate standard error. Table5.7 shows the p-values

of pairwise group comparison covaried for age, sex, and ICV for high resolution MRI

scan data. Given our modest sample size, we used the nominal p ă 0.05 as the

threshold to identify significant regions (see red cells in Table 5.7).

Table 5.8 show the effect size results (Cohen’s d) for each pairwise comparison

among four diagnosis groups (CN, SCD, MCI and AD). According to [144], an effect

size with d = 1.2 is considered to be “very large”, and thus is colored in red in Table

5.8. The effect size pattern shown in Table 5.8 is very similar to the significance

pattern described in Table 5.7. Graphical effect size results are shown in Figure 5.10.
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Table 5.7.: P value of diagnosis effect on subfield volume covaried for age, gender and

ICV.

Subfield
CN vs

SCD

CN vs

MCI

CN vs

AD

SCD vs

MCI

SCD

vs AD

MCI

vs AD

L CA1 0.115 0.147 0.006 0.003 0.000 0.140

R CA1 0.106 0.260 0.024 0.006 0.010 0.259

L CA2 0.420 0.413 0.045 0.163 0.443 0.669

R CA2 0.641 0.473 0.098 0.033 0.918 0.731

L CA3 0.793 0.589 0.025 0.255 0.340 0.358

R CA3 0.311 0.949 0.613 0.255 0.978 0.897

L DG 0.153 0.236 0.021 0.001 0.036 0.161

R DG 0.030 0.105 0.040 0.000 0.015 0.521

L SUB 0.194 0.118 0.049 0.004 0.018 0.324

R SUB 0.107 0.232 0.229 0.014 0.115 0.791

L ERC 0.397 0.248 0.026 0.012 0.154 0.213

R ERC 0.112 0.788 0.237 0.004 0.332 0.602

L BA35 0.716 0.642 0.115 0.476 0.178 0.020

R BA35 0.035 0.654 0.152 0.034 0.016 0.062

L BA36 0.836 0.320 0.051 0.278 0.019 0.087

R BA36 0.457 0.302 0.083 0.089 0.030 0.160

L CS 0.848 0.165 0.683 0.169 0.617 0.402

R CS 0.785 0.809 0.511 0.766 0.835 0.987

L CA 0.123 0.142 0.006 0.002 0.000 0.123

R CA 0.094 0.280 0.029 0.006 0.014 0.273

L HIPP 0.117 0.143 0.011 0.001 0.002 0.130

R HIPP 0.046 0.202 0.040 0.000 0.014 0.372

L PRC 0.929 0.457 0.047 0.275 0.020 0.047

R PRC 0.236 0.393 0.069 0.033 0.009 0.080
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Table 5.8.: Effect size of diagnosis effect on subfield volume covaried for age, gender

and ICV, where |cohen’s d| ą 1.2 is shown as red, indicating “very large” effect size.

Subfield
CN vs

SCD

CN vs

MCI

CN vs

AD

SCD vs

MCI

SCD

vs AD

MCI

vs AD

L CA1 -0.43 1.11 2.21 1.79 3.98 0.98

R CA1 -0.56 0.93 1.68 1.59 2.71 0.66

L CA2 0.04 0.84 1.22 0.78 1.14 0.53

R CA2 -0.04 0.94 0.91 1.12 0.99 0.28

L CA3 -0.19 0.55 1.25 0.63 1.17 0.43

R CA3 -0.30 0.12 0.16 0.56 0.56 0.09

L DG -0.67 1.19 1.70 1.94 2.28 0.82

R DG -1.10 1.42 1.47 3.05 2.70 0.36

L SUB -0.32 1.08 1.49 1.71 2.18 0.74

R SUB -0.50 0.82 0.86 1.45 1.35 0.23

L ERC -0.13 1.05 1.38 1.46 1.67 0.83

R ERC -0.59 0.56 0.69 1.55 1.38 0.31

L BA35 -0.20 0.20 1.19 0.45 1.50 1.27

R BA35 -1.10 0.17 1.17 1.18 2.07 0.90

L BA36 0.19 0.65 1.36 0.60 1.55 1.07

R BA36 0.06 0.59 1.09 0.79 1.51 0.95

L CS 0.13 0.56 0.15 0.62 0.06 -0.43

R CS 0.28 0.02 0.09 -0.24 -0.15 0.07

L CA -0.43 1.14 2.20 1.86 3.92 1.01

R CA -0.57 0.91 1.59 1.62 2.61 0.64

L HIPP -0.52 1.19 1.97 2.14 3.31 0.98

R HIPP -0.78 1.08 1.48 2.21 2.66 0.53

L PRC 0.11 0.59 1.42 0.62 1.74 1.23

R PRC -0.19 0.57 1.21 1.14 1.98 1.10
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To detect significant volumetric differences between diagnostic groups, we applied

the general linear model (GLM) to examine the regional volume changes related to

diagnosis while covarying for age, sex, and ICV. This pair-wise comparison study was

performed among four diagnostic groups: CN, SCD, MCI and AD.

Given the small sample size in this study, we adopted a nominal significance level of

p ă 0.05 to evaluate the group differences. While comparing CN and SCD, a majority

of regions demonstrate a trend of increased volume in the SCD group (Figure 5.9),

some of which were statistically significant (i.e., right DG, right BA35, and right

HIPP; see the CN vs SCD column in Table 5.7). These findings suggest that this

group might demonstrate increased regional volumes, potentially as a compensatory

mechanism to delay the process of conversion into MCI for this group of subjects with

relatively high risk. Similar statistical patterns were observed in [145].

The major affected regions in AD include CA1, dentate gyrus, left subiculum, and

left entorhinal cortex, as well as the composite CA, hippocampus and left perirhinal

cortex. No regional significance between CN and SCD was identified. Also, we

did not detect any regional significance between CN and MCI, unlike in [9], which

demonstrated significant volumetric reductions in the dentate gyrus. Our lack of

replication may be due to the small sample size of our study, making it under-powered

to detect subtle changes.

Compared with previous results [9,78,146], our analyses confirmed the importance

of CA1, BA35, subiculum, and dentate gyrus as AD biomarkers. For example, in our

study, BA35 turned out to be the only marker showing large difference between MCI

and AD. This region was reported in [146, 147] as the first cortical site affected by

neurofibrillary tangle pathology. Also, we found that CA1 and the left subiculum

could distinguish AD from CN and SCD, which is in accordance with the findings

in [78]. In addition, we identified the dentate gyrus as a marker that distinguishes

AD from CN and SCD. The dentate gyrus was identified in [9] as a marker showing

differences between CN and MCI and the present results indicate sensitivity of this

region to early through later stages. One potential application of a time efficient
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and robust scan acquisition enabling hippocampal subfield investigation is the area

of MRI markers related to adult neurogenesis, a process that interacts with AD

pathophysiology [148].

5.4 Genome-Wide Association Studies

5.4.1 Background

Genetics has played an important role in AD research over the past few decades.

Studies have demonstrated the genetic factors impact AD pathogenesis, Where the

cognitive phenotypes are thought to have substantial heritability (up to 80%) based

on twin studies [149]. It is critical to understand the genetic molecular mechanisms

underlying the AD. The hippocampus have attracted the most attention in the AD

study, as it is the one of the first areas in the brain affected in AD. Imaging genetic

analysis of the hippocampus, typically focusing on the whole region, have identified

a few of genetic risk factors associated with hippocampal lobe atrophy [150], while

there is still substantial portion of missing heritability.

Given the heterogeneous structure of the human hippocampal complex and its

relevance to AD, we proposed to characterize the hippocampal subfields’ genetic

architecture, to help improve the molecular interpretation of AD. We performed a

genome-wide association study (GWAS) of hippocampal subfield volumes as well as

those of neighboring cortical structures using high-resolution MRI data, for determin-

ing genetic contributions to structural changes in this important region.

5.4.2 Data and Materials

Data used in the preparation of hippocampal subfields’ GWAS were obtained from

the ADNI database. The ADNI was launched in 2003 as a public-private partnership,

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
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has been to test whether serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early AD.

Participants included 136 non-Hispanic Caucasian subjects from the ADNI cohort

with both high-resolution MRI scans and genotype data available, including 42 HC,

45 EMCI, 23 LMCI and 26 AD participants. Detailed characteristic information and

the number of subjects in each sub-group are shown in Table 5.9. MRI data included

T1-weighted MPRAGE scans with an acquisition matrix of 240ˆ256ˆ176 and voxel

size 1.05 ˆ 1.05 ˆ 1.2 mm3 and T2-weighted scans containing 24 or 30 coronal slices

with an acquisition matrix of 448ˆ 448 and voxel size 0.39ˆ 0.39ˆ 2 mm3.

Genotyping data were obtained from the ADNI database. They were quality-

controlled, imputed and combined as described in [151]. Briefly, genotyping was

performed on all ADNI participants following manufacturer’s protocol using blood

genomic DNA samples and Illumina GWAS arrays (610-Quad, OmniExpress, or

HumanOmni2.5-4v1) [149]. Quality control was performed in PLINK v1.90 [152]

using the following criteria: 1) call rate per marker ě 95%, 2) minor allele frequency

(MAF) ě 5%, 3) Hardy Weinberg Equilibrium (HWE) test P ě 1.0E-6, and 4) call

rate per participant ě 95%.

5.4.3 Methods

Automatic Segmentation of Hippocampal Subfields (ASHS) software [153] was

employed to segment 14 primary labeled regions including hippocampal subfields and

neighboring cortical structures. Associations between 565,373 SNPs and 14 volumet-

ric measures on these subfields and structures were examined by performing GWAS

using PLINK [152], where a linear regression model with age, gender, education, ICV

and diagnosis as covariates.
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5.4.4 Results

We identified a novel locus rs2968869 in ERC1 on Chromosome 12 (p = 3.43E-9;

Bonferroni corrected p = 2.71E-2) significantly associated with right BA36 volume

(Figure 5.11). Right BA36 volume was previously reported to be associated with tau

deposition in right temporal lobe [154]. Perirhinal cortex (PRC), formed by BA35

and BA36, is a part of the memory system and has shown a significant correlation

with broad tau deposition [154]. This evidence indicates that BA36 might play a role

in AD pathology. The minor allele C of rs2968869 was associated with greater right

BA36 volume, suggesting a protective effect for AD. This aligns well with the IGAP

finding [155] that rs2968869 is a protective locus for AD (p = 4.47E-2). Our study

demonstrated that high-resolution MRI provided more detailed neuroanatomical in-

formation that could promote the identification of disease relevant molecular factors.

GWAS of these quantitative neuroimaging phenotypes identified a novel protective

locus in the ERC1 gene which is implicated in regulation of neurotransmitter release

and the NF-κB signaling pathway. After independent replication, ERC1 could be

explored as a potential therapeutic target.

5.5 Summary of Chapter 5

In summary, this section demonstrates the work procedures to perform our group

analyses in two aspects: surface based and volume based hippocampal subfield mor-

phometric analyses. Our work shows that statistical significant hippocampal subfields

and adjacent regions between cognitively normal older adults and those with MCI

(EMCI, LMCI) and/or AD are detected.

A more powerful statistical analysis method named SPM-DA is discussed and

proved to be more powerful by successfully detecting the overall statistical significance

between HC and EMCI participants. This method will be tested in our further studies

for statistical analyses for the contributions on early AD detection.
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(a) T statistics
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(b) P statistics

Fig. 5.3.: Results of t tests for the comparisons between HC and MCI: (a) is t statistics

and (b) is p statistics.
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(a) T statistics
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(b) P statistics

Fig. 5.4.: Results of t tests for the comparisons between HC and AD: (a) is t statistics

and (b) is p statistics.
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Fig. 1. Normal Q-Q plot of standardized betas for (a-b) example unsmoothed and
smoothed simulations and (c) HC vs EMCI comparison.

accurately estimated with N as small as 30 or so. This procedure, implemented
in R, is used to analyze the hippocampal surface normals and the simulated data
described below. The results are compared with the SurfStat RFT results.

Simulation Studies: SPM-DA and RFT peak and cluster methods are
compared using two simulation studies. For both studies random data on a
hippocampal template surface with 652 vertices are generated for 72 subjects
according to the model

Si,j = βxi + εi,j , i = 1, . . . , 72, j = 1, . . . , 126,

= εi,j , i = 1, . . . , 72, j = 127, . . . , 652,

in which Si,j represents the surface value at location j for subject i. Both studies
simulate two-sample data with xi equal to -1 for i = 1, . . . , 36 and 1 for i =
37, . . . , 72. Thus the signal, which extends across 126 contiguous locations, is
constant with a magnitude determined by β. For both studies, values for β are
0, 1/12, 1/6, and 1/3. In the first study the random errors εi,j are independent
normal (µ = 0, σ2 = 1) pseudorandom numbers. In the second study the εi,j
are also independent normal (µ = 0, σ2 = 1) but are smoothed prior to the
signal being added using the heat kernel smoothing method [1] applied to the
hippocampal surface atlas. The resulting data sets are analyzed using SPM-
DA (programmed in R) and RFT peak and cluster statistics as implemented
by SurfStat [11, 12]. For each combination of β and choice of unsmoothed or
smoothed random errors, 100 data sets are constructed and analyzed by SPM-
DA and RFT methods to compare their power.

3 Results

In our simulation studies, the distributions of the permutation coefficient esti-
mates by SPM-DA are always normal (see Figure 1(a-b) for a couple of exam-
ples). Thus, pu and pl are computed using the fast approach of Eq (4). However,
in the real data study, the distributions of the permutation coefficient estimates

Fig. 5.5.: Normal Q-Q plot of standardized betas for (a-b) example unsmoothed and

smoothed simulations, and (c) HC vs EMCI comparison.
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Fig. 2. Bin counts for (a) HC vs EMCI, (b) EMCI vs LMCI, and (c) HC vs LMCI.
Our linear model in Eq (1) aims to use the values on the solid line to predict the “+”
values (for permuted data) or the “•” values (for real data). Note that the count scales
on the y-axis are different across these three cases, and the significance of the group
difference is driven mainly by the “•” value on the 12th bin in each case.

atrophy in EMCI compared with HC, in LMCI compared with EMCI, and in
LMCI compared with HC.

Table 3. Comparison between RFT Peak and SPM-DA on the signal region size (i.e.,
number of vertices with p < 0.05 and number of vertices with bin value (bv) = 12
respectively) in each subfield. No data is shown for RFT Cluster method, since no
signals were identified in any RFT cluster analysis on real data.

Hemisphere Left Right
Subfield Tail CA1 CA2-3 CA4-DG SUB Tail CA1 CA2-3 CA4-DG SUB

Total # of vertices 398 389 728 91 956 405 362 735 119 941
RFT Peak: HC vs EMCI 0 0 0 0 0 0 0 0 0 0
# of vertices EMCI vs LMCI 48 15 39 0 92 15 0 49 3 351
with p < 0.05 HC vs LMCI 64 92 204 27 501 94 116 184 28 450
SPM-DA: HC vs EMCI 87 113 260 85 572 128 273 263 80 393

# of vertices EMCI vs LMCI 291 389 441 49 896 242 295 450 97 805
with bv = 12 HC vs LMCI 283 389 507 91 914 278 362 509 117 903

Figure 3(b) shows the surface map of the SPM values for HC vs EMCI,
where the red color indicates the atrophy region in EMCI compared with HC.
For comparison, Figure 3(a) shows the t-map of the SurfStat analysis (p-map
not shown due to lack of signal). Although capturing a similar pattern, the RFT
methods used by SurfStat cannot claim the group differences between HC and
EMCI are significant. However, the RFT Peak method used by SurfStat was
able to identify statistical shape differences between EMCI and LMCI (t-map
and p-map shown in Figure 3(c-d)) and between HC and LMCI (t-map and
p-map similar to Figure 3(c-d) and thus not shown).

Given that we have a surface atlas of hippocampal subfields, Table 3 shows
the signal region size in each subfield according to RFT Peak and SPM-DA
methods, i.e., number of vertices with p < 0.05 and number of vertices with bin
value (bv) = 12 respectively. Below we summarize the amount of the subfield

Fig. 5.6.: Bin counts for (a) HC vs EMCI, (b) EMCI vs LMCI and (c) HC vs LMCI.

Our linear model in Eq (1) aims to use the values on the solid line to predict the

“+” values (for permuted data) or the “¨” values (for real data). Note that the count

scales on the y-axis are di erent across these three cases, and the signi cance of the

group difference is driven mainly by the “¨” value on the 12th bin in each case.
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(a) SurfStat (b) SPM-DA

(c) SurfStat (d) SurfStat

Fig. 3. (a) The SurfStat t-map of the diagnostic effect (HC-LMCI) on surface signals
after removing the effects of age and gender. (b) The SPM-DA bin value map for
the comparison of HC vs EMCI after removing effects of age and gender. (c-d) The
SurfStat t-map and p-map of the diagnostic effect (EMCI-LMCI) on surface signals
after removing the effects of age and gender.

atrophy region detected by SPM-DA. (1) HC vs EMCI: EMCI demonstrated
atrophy patterns compared with HC in 27% of tail, 51% of CA1, 36% of CA2-3,
79% of CA4-DG, and 51% of SUB. (2) EMCI vs LMCI: LMCI demonstrated
atrophy patterns compared with EMCI in 66% of tail, 91% of CA1, 61% of
CA2-3, 70% of CA4-DG, and 90% of SUB. (3) HC vs LMCI: LMCI demonstrated
atrophy patterns compared with HC in 70% of tail, 100% of CA1, 69% of CA2-3,
99% of CA4-DG, and 98% of SUB.

4 Discussion

We have proposed a novel and powerful image analysis approach, Statistical
Parametric Mapping (SPM) Distribution Analysis or SPM-DA, and applied it
to statistical shape analysis in hippocampal morphometry coupled with sub-
field information. We have compared its performance with that of standard ran-
dom field theory (RFT) in surface-based morphometry. Our empirical studies
on both simulated and real hippocampal data demonstrate that the SPM-DA

Fig. 5.7.: (a) The SurfStat t-map of the diagnostic effect (HC-LMCI) on surface

signals after removing the effects of age and gender. (b) The SPM-DA bin value map

for the comparison of HC vs EMCI after removing effects of age and gender. (c-d) The

SurfStat t-map and p-map of the diagnostic effect (EMCI-LMCI) on surface signals

after removing the effects of age and gender.
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(a)     (b)    (c) 

         
(d)    (e)    (f) 

     
(g)    (h)    (i) 

 

Fig. 5.8.: Coronal views: (a-c) Conventional MRI, high resolution MRI, and repeated

high resolution MRI. (d-f) Left hippocampal area on conventional MRI, high res-

olution MRI, and repeated high resolution MRI. (g-i) Right hippocampal area on

conventional MRI, high resolution MRI, and repeated high resolution MRI.
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Fig. 5.9.: Group comparison for each of primary labels and compound labels. Mean

and standard error (as error bar) are shown for each group (HC, SCD, MCI and AD).
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(a) Effect Size of Subfield Volumes for CN vs SCD
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Fig. 5.10.: Effect sizes (Cohen’s d) of the pair-wised comparisons between four diag-

nosis groups (CN, SCD, MCI and AD) evaluated for hippocampal subfield volumes.

Subfield volumes are adjusted by age, gender and ICV by DX group.
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Fig. 5.11.: Manhattan plot for genome-wide association studies (GWAS) results: We

identified a novel locus rs2968869 in ERC1 on Chromosome 12 significantly associated

with right BA36 volume. Blue and red lines correspond to the p-value of 5E-6 and

5E-8, respectively.
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6. DISCUSSIONS AND CONCLUSIONS

In this study, we have proposed two computational frameworks to build a surface

atlas of hippocampal subfields from T1, and T2 weighted MRI scans using FreeSurfer,

FIRST, ASHS and SPHARM methods and tools. Using FreeSurfer, we have obtained

valuable hippocampal subfield information. Using FIRST, we have extracted reliable

hippocampal surface information. Using ASHS, we can extract accurate hippocampal

shape and subfield information at the same time, which provides the possibility to

demonstrate detailed and accurate hippocampal subfield partitions by using high-

resolution T2-weighted data. Using SPHARM, it maps complex surface anatomical

topology onto a sphere to establish surface correspondence across individuals. We

have developed an approach to creating an atlas by mapping interpolated subfield

information onto an average surface.

We have proposed and implemented an improved surface registration strategy

based on demons method for fast and accurate landmark free registration that em-

braces, rather than ignores, the very valuable subfield information. We have demon-

strated its effectiveness by applying it to the IADC and ADNI data, as well as the

synthetic data. Instead of identifying landmarks on subfield boundaries, the landmark

free registration makes use of surface label information to guide registration. With

the awareness of the limitation of using labels directly, we formulated three types of

surface features from subfield labels and used the generated features for the registra-

tion tests. Based on the experimental results illustrated in Section 4.3.6, we chose

binary maps as the surface features to build the final atlas and used our proposed

method Symm-Momen SD for spherical registration.
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Surface-based and volumetric-based morphometric analysis of hippocampal sub-

fields has been performed. Our studies identified statistically significant areas related

to cognitive brain disorders, which match clinical evidence. We also identified genetic

associations with subfield volume loss and Alzheimer’s. Those findings can be seen

as good biomarkers to detect AD, especially in the very early stage of AD.

The major strengths of this study are as follows:

1) We proposed a novel computational framework that integrates the high qual-

ity data cohorts and latest image processing techniques for building a hippocampal

surface atlas. The generated 3D surface atlas can be seen as a reference in group anal-

yses and it can demonstrate detailed and accurate hippocampal subfield partitions

for visual inspection.

2) The popular volumetric studies usually measured global shape changes which

ignores the local shape variations. The proposed methods in this study bridged this

issue by taking each individual surface vertex as a measurement so it can numerically

and visually indicate the degree of atrophy.

3) With the goal of achieving a better alignment for hippocampal subfields and

examining local shape deformations, we demonstrated the feasibility of fast and ac-

curate landmark free registration using hippocampal subfield information.

4) As the subfield measures are obtained directly from segmentation results, and

using integer labels directly for registration can introduce errors, we resolved this

problem by generating proper surface feature representations such binary maps, dis-

tance maps and probability maps.

5) With awareness of several limitations of current registration works, we proposed

a new surface registration method that takes advantages of invertible transformation

and momentum term. We designed detailed experiments to illustrate that the pro-

posed methods achieved more accurate subfield matching results while keeping mesh

regularity in control.
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However, we are aware that there are some limitations and possible extensions of

the study, some interesting future directions are described below to better achieve

the goals introduced in Chapter 1. As a reminder, there are three major goals in this

study: 1) taking hippocampal subfield information to guide registration; 2) creating

a 3D surface atlas of the hippocampus as a reference; 3) building a framework for

hippocampal morphometric analysis and identifying statistically significant regions of

the hippocampus.

1-1. For the first goal of developing a subfield-guided registration method, cur-

rently only three combined subfields are used for registration. More specifically parti-

tioned subfields can be used in both processes of the registration and shape analysis.

1-2. Another direction of the first goal is to further optimize the shape similarity

while maintaining mesh regularity.

1-3. The surface registration methods ignore the interior information of the hip-

pocampus as they only measure surface features. A volume-based registration method

that considers interior information of the hippocampus can potentially be a promising

study direction.

2-1. For the second goal of generating a reference, creating a reference for group

analyses is one way to perform morphometric analyses, while another way to be

explored is reference-free, which may lead to a different result in pair-wised group

analyses.

3-1. For the third goal of building a framework for shape analyses, as the proposed

approaches in this study can be generally applied in a wide range of surface analysis

tasks, we hope to seek for more applications in medical imaging analysis.

3-2. Another direction in the third goal is that we only performed several simple

analyses in this study, but more complicated association analyses can be conduct with

the proposed framework such as longitudinal analyses, genetic association and brain

connectivity analyses.
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3-3. In this study, we examined the significant subfield regions and developed the

AD biomarkers that were highly related to cognitive diseases. The next extension in

the third goal is to classify and predict the patients given a data set.
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