
 
 

HUMAN ACTIVITY RECOGNITION USING WEARABLE INERTIA 

SENSOR DATA AND MACHINE LEARNING 

by 

Xiaoyu Yu 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science 

 

School of Engineering Technology 

West Lafayette, Indiana 

August 2019 

  

 

 



2 
 

THE PURDUE UNIVERSITY GRADUATE SCHOOL  

STATEMENT OF COMMITTEE APPROVAL 

Dr. Suranjan Panigrahi, Chair 

 School of Electrical Engineering Technology 

Dr. Frederick Berry 

 School of Mechanical Engineering Technology 

Professor Robert J. Herrick 

 School of Electrical Engineering Technology 

 

Approved by: 

 Dr. Duane D. Dunlap 

  Head of the Graduate Program 

 

 

 



3 
 

ACKNOWLEDGEMENTS 

I would like to express my thank Dr. Suranjan Panigrahi, my advisor, for his constant support 

and guidance. I acknowledge my thesis committee members, Professor Robert J. Herrick and Dr. 

Frederick Berry, for their insightful comments and guidance. Also, I want thank lab partners, Ke 

Xu and Ridhi Deo for their helps and advises with my work. I want to thank the staffs in School 

of Engineering Technology and the staffs from IRB office at Purdue, for their direct and indirect 

helps to my work. Finally, I want to thank my parents for their support and encouragement.



4 
 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 6 

LIST OF FIGURES ........................................................................................................................ 7 

LIST OF ABBREVIATIONS ....................................................................................................... 11 

GLOSSARY ................................................................................................................................. 12 

ABSTRACT .................................................................................................................................. 13 

  INTRODUCTION ................................................................................................ 14 

1.1 Scope  ............................................................................................................................... 14 

1.2 Significance....................................................................................................................... 14 

1.3 Objectives ......................................................................................................................... 15 

REVIEW OF LITERATURE ............................................................................... 16 

2.1 HAR Technologies overview ............................................................................................ 16 

2.2 Different designs of wearable inertia sensor system ......................................................... 16 

2.3 Methodologies for data analysis ....................................................................................... 18 

2.3.1   Unsupervised learning ................................................................................................. 18 

2.3.2  Supervised learning using traditional machine learning .............................................. 18 

2.3.3  Artificial Neural Network ............................................................................................ 20 

2.3.3.1  Introduction to Artificial Neural Network and its terminologies ........................... 20 

2.3.3.2  Introduction to Convolution Neural Network ........................................................ 21 

2.3.3.3  Related work on using CNN for HAR ................................................................... 22 

2.3.3.4  Introduction to Recurrent Neural Network ............................................................ 23 

2.4 Conclusion for methodology............................................................................................. 24 

2.5 Description of a publicly available dataset ....................................................................... 25 

RESEARCH METHODOLOGY ......................................................................... 29 

3.1 Data description ................................................................................................................ 29 

3.2 Initial inspection on dataset .............................................................................................. 31 

3.3 Prediction model development ......................................................................................... 36 

3.3.1  Data preprocessing ....................................................................................................... 36 

3.3.2  Convolution Neural Network ...................................................................................... 42 

3.3.2.1  How 2D convolution work ..................................................................................... 42 



5 
 

3.3.2.2  Data preparation for 2D CNN ................................................................................ 46 

3.3.2.3  Structure of 2D CNN .............................................................................................. 48 

3.3.3  Recurrent Neural Network ........................................................................................... 56 

3.3.3.1  How long short term memory work (LSTM) ......................................................... 56 

3.3.3.2  Data preparation ..................................................................................................... 59 

3.3.3.3  LSTM model with convolution layers ................................................................... 61 

3.3.3.4  LSTM with convolution transformation ................................................................ 62 

3.3.4  Neural Network Training, Validation and Testing ...................................................... 63 

RESULTS ............................................................................................................. 65 

4.1 Convolution Neural Network ............................................................................................ 65 

4.1.1  Comparison between different sensor setups ............................................................... 65 

4.1.1.1  Comparison between different number of sensors ................................................. 65 

4.1.1.2  Comparison between different locations for single location input ......................... 81 

4.1.2 Comparison between different window sizes ............................................................ 83 

4.1.3  Comparison between different number of filters ......................................................... 84 

4.1.4  Test on fall prediction capability ................................................................................. 89 

4.2 Recurrent Neural Network ................................................................................................ 90 

4.3 Discussion ......................................................................................................................... 93 

4.4 Theoretical design of a complete fall-prediction system .................................................. 94 

4.4.1  Design based on microprocessor ................................................................................. 95 

4.4.2  Design based on smart phone ...................................................................................... 96 

SUMMARY, CONCLUSIONS, and RECOMENDATIONS .............................. 99 

5.1 Conclusion ........................................................................................................................ 99 

5.2 Limitation .......................................................................................................................... 99 

5.3 Future work ..................................................................................................................... 100 

APPENDIX A: FIGURES .......................................................................................................... 101 

APPENDIX B: SOURCE CODE ............................................................................................... 107 

APPENDIX C: IRB CERTIFICATE .......................................................................................... 126 

LIST OF REFERENCES ............................................................................................................ 127 

  



6 
 

LIST OF TABLES 

Table 4.1 Experiment with data of 10 window size, from waist sensor ....................................... 66 

Table 4.2 Experiment with data of 20 window size, from waist sensor ....................................... 67 

Table 4.3 Experiment with data of 10 window size, from waist sensor & thigh sensor ............... 68 

Table 4.4 Experiment with data of 20 window size, from waist sensor & thigh sensor ............... 69 

Table 4.5 Comparison between different numbers of sensor locations. Model used is 16-filter 

model with window size of 10 input. ............................................................................................ 73 

Table 4.6 Comparison between different numbers of sensor locations. Model used is 32-filter 

model with window size of 10 input. ............................................................................................ 74 

Table 4.7 Comparison between 2D CNN and 3D CNN for 2-location input. .............................. 80 

Table 4.8 Comparison between different locations when single location input is used. .............. 82 

Table 4.9 Comparison between 16-filter model and 32-filter model using 10-fold cross validation

....................................................................................................................................................... 88 

Table 4.10 Test result on performance of fall prediction .............................................................. 89 

Table 4.11 Test result on LSTM with Convolution layer model (LSTM1) .................................. 90 

Table 4.12 Test result on LSTM with convolution transformation (LSTM2) .............................. 90 

 

 

 

 

  



7 
 

LIST OF FIGURES 

Figure 2.1. Structure of Simulated Falls and Daily Living Activities dataset (Ozdemir & Barshan, 

2014) ............................................................................................................................................. 27 

Figure 3.1. Structure of “Falls and Daily Living Activities” dataset ............................................ 29 

Figure 3.2. Example data from the “Simulated Falls and Daily Activities” dataset: one volunteer, 

one activity, one trial, and one location. ....................................................................................... 31 

Figure 3.3. Data sample of falling right-sideway and falling left-sideway (fall activities), subject1, 

trial1 .............................................................................................................................................. 33 

Figure 3.4. Data sample of falling right-sideway and falling left-sideway (fall activities), subject2, 

trial1 .............................................................................................................................................. 33 

Figure 3.5. Data sample of falling right-sideway and falling left-sideway (fall activities), subject1, 

trial2 .............................................................................................................................................. 34 

Figure 3.6. Data sample of lying-bed and rising-bed (non-fall activities), subject1, trial1 .......... 34 

Figure 3.7. Data sample of lying-bed and rising-bed (non-fall activities), subject2, trial1 .......... 35 

Figure 3.8. Data sample of lying-bed and rising-bed (non-fall activities), subject1, trial2 .......... 35 

Figure 3.9. Sample acceleration data. x-aixs is time(number of data sample), and y-axis is 

acceleration(m/s2) ......................................................................................................................... 37 

Figure 3.10.Sample data divided in to winodws of 10 ................................................................. 37 

Figure 3.11.  Variance sequence ................................................................................................... 38 

Figure 3.12.  Activity window ...................................................................................................... 38 

Figure 3.13 min_start window and min_end window .................................................................. 39 

Figure 3.14. Flow chart of preprocessing algorithm ..................................................................... 41 

Figure 3.15. Convolution layer 1 .................................................................................................. 43 

Figure 3.16. Convolution layer 2 .................................................................................................. 44 

Figure 3.17. Convolution layer 3 .................................................................................................. 44 

Figure 3.18. Convolution layer, with zero-padding ...................................................................... 45 

Figure 3.19. Sample data from the Simulated Falls and Daily Activities dataset. ....................... 46 



8 
 

Figure 3.20. Example of input data structure for Keras 2D CNN ................................................ 48 

Figure 3.21. CNN structure used in this work .............................................................................. 49 

Figure 3.22. Example fully connected layer (two hidden nodes, input size of 3) ........................ 49 

Figure 3.23. Plot of ReLU function .............................................................................................. 50 

Figure 3.24. Structure of first convolution group for 16-filter model, when window_size = 10 . 52 

Figure 3.25. Structure of second convolution group for 16-filter model, when window_size = 10 .  

  ..................................................................................................................................................... 53 

Figure 3.26. Max-pooling-layer 1 ................................................................................................. 54 

Figure 3.27. Max-pooling-layer 2 ................................................................................................. 54 

Figure 3.28. Max-pooling-layer 3 ................................................................................................. 54 

Figure 3.29. Structure of fully connected layers for 16-filter model ............................................ 56 

Figure 3.30. Figure for “tanh” function ........................................................................................ 58 

Figure 3.31. Plot of sigmoid function ........................................................................................... 58 

Figure 3.32. LSTM at one recurrent step ...................................................................................... 59 

Figure 3.33. RNN data preparation algorithm .............................................................................. 60 

Figure 3.34. Structure of LSTM with Convolution layers ............................................................ 62 

Figure 3.35. Structure of LSTM model with convolution transformation .................................... 62 

Figure 4.1. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist only ...................................................................................................................................... 70 

Figure 4.2. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist and thigh .............................................................................................................................. 71 

Figure 4.3. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist, thigh & wrist ....................................................................................................................... 76 

Figure 4.4. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist, thigh, wrist & chest ............................................................................................................. 77 

Figure 4.5. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist, thigh, wrist, chest, and head ............................................................................................... 78 



9 
 

Figure 4.6. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

all six locations ............................................................................................................................. 79 

Figure 4.7. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist and thigh, using 3D convolution ......................................................................................... 81 

Figure 4.8. Accuracy and loss plot during training process, when filter = 8, window_size = 10, 

waist sensor only. .......................................................................................................................... 85 

Figure 4.9. Accuracy and loss plot during training process, when filter = 16, window_size = 10, 

waist sensor only. (Same as figure 4.1) ........................................................................................ 86 

Figure 4.10. Accuracy and loss plot during training process, when filter = 32, window_size = 10, 

waist sensor only. .......................................................................................................................... 87 

Figure 4.11 Accuracy and loss plot during training process for LSTM with convolution layers 

(LSTM1) ....................................................................................................................................... 91 

Figure 4.12 Accuracy and loss plot during training process for LSTM with convolution 

transformation (LSTM2) ............................................................................................................... 92 

Figure 4.13 Design of system based on microprocessor ............................................................... 96 

Figure 4.14 Design of system based on Android cell-phone ........................................................ 98 

Figure A.1. Data sample of falling right-sideway and falling left-sideway, subject1, trial1, 

gyroscope. (Fall activity 13 and fall activity 15. Descriptions are in page 22) .......................... 101 

Figure A.2. Data sample of falling right-sideway and falling left-sideway, subject1, trial1, compass. 

(Fall activity 13 and fall activity 15. Descriptions are in page 22) ............................................. 101 

Figure A.3. Data sample of falling right-sideway and falling left-sideway, subject2, trial1, 

gyroscope. (Fall activity 13 and fall activity 15. Descriptions are in page 22) .......................... 102 

Figure A.4. Data sample of falling right-sideway and falling left-sideway, subject2, trial1, compass. 

(Fall activity 13 and fall activity 15. Descriptions are in page 22) ............................................. 102 

Figure A.5. Data sample of falling right-sideway and falling left-sideway, subject1, trial2, 

gyroscope. (Fall activity 13 and fall activity 15. Descriptions are in page 22) .......................... 103 

Figure A.6. Data sample of falling right-sideway and falling left-sideway, subject1, trial2, compass. 

(Fall activity 13 and fall activity 15. Descriptions are in page 22) ............................................. 103 

Figure A.7. Data sample of lying onto bed and rising from bed, subject1, trial1, gyroscope. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) ............................................... 104 

Figure A.8. Data sample of lying onto bed and rising from bed, subject1, trial1, compass. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) ............................................... 104 



10 
 

Figure A.9. Data sample of lying onto bed and rising from bed, subject2, trial1, gyroscope. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) ............................................... 105 

Figure A.10. Data sample of lying onto bed and rising from bed, subject2, trial1, compass. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) ............................................... 105 

Figure A.11. Data sample of lying onto bed and rising from bed, subject1, trial2, gyroscope. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) ............................................... 106 

Figure A.12. Data sample of lying onto bed and rising from bed, subject1, trial2, compass. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) ............................................... 106 

 

 

  



11 
 

LIST OF ABBREVIATIONS 

HAR:   Human Activity Recognition 

ADL:   Activity of Daily Livings 

SVM:   Support Vector Machine 

ANN:   Artificial Neural Network 

CNN:   Convolution Neural Network 

MTF:   Markov Transition Fields 

RNN:   Recurrent Neural Network 

LSTM:  Long-Short Term Memory 

PCA:   Principle Component Analysis 

ReLU:   Rectified Linear Units 

  



12 
 

GLOSSARY 

Training data: The data that are used to train classification models.  

Validation data: The data that are used to test the performance of the classification model 

during the training process. Validation data are used to fine tune parameters in the 

classification model and the data should not be part of the training data. 

Testing data: The data that are used to test the performance of the trained classification model 

(after training process). Testing data are used to evaluate the final performance of the 

classification model. Testing data should not be part of training data or validation data. 

No fine tune should be made based on the result of testing data. 

Overfitting: The classification model performs consistently better on training data than on 

validation data and testing data.  
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Falling in indoor home setting can be dangerous for elderly population (in USA and globally), 

causing hospitalization, long term reduced mobility, disability or even death. Prevention of fall 

by monitoring different human activities or identifying the aftermath of fall has greater 

significance for elderly population. This is possible due to the availability and emergence of 

miniaturized sensors with advanced electronics and data analytics tools. This thesis aims at 

developing machine learning models to classify fall activities and non-fall activities. In this 

thesis, two types of neural networks with different parameters were tested for their capability in 

dealing with such tasks. A publicly available dataset was used to conduct the experiments. The 

two types of neural network models, convolution and recurrent neural network, were developed 

and evaluated. Convolution neural network achieved an accuracy of over 95% for classifying fall 

and non-fall activities. Recurrent neural network provided an accuracy of over 97% accuracy in 

predicting fall, non-fall and a third category activity (defined in this study as 

“pre/postcondition”). Both neural network models show high potential for being used in fall 

prevention and management activity. Moreover, two theoretical designs of fall detection systems 

were proposed in this thesis based on the developed convolution and recurrent neural networks. 
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 INTRODUCTION 

1.1 Scope 

As the number of elderly population is rapidly growing, the need of palliative care is 

increasing. As a part of that, human activities are critical to be monitored to help patients and 

their supporters to provide proper services at the right time. This process is called human activity 

recognition (HAR) and is widely used in healthcare in various applications including tracking 

elderly people’s daily activities (Chen, Nugent, & Wang, 2012), estimating energy expenditure for 

obesity prevention (Sazonov, Fulk, Hill, Schutz, & Browning, 2011), monitoring abnormal 

conditions for cardiac patients (Katoch & Augustyniak, 2012), and also fall detection and 

intervention for elderly people (Nghiem, Auvinet, & Meunier, 2012). This research focused on 

developing system to predict undesirable event (i.e., fall down) and to characterize different 

activities of daily living (ADLs). 

The system mainly consisted of two components: data collection and data analysis. For 

data collection, wearable inertia sensors were used. We used publicly available dataset with 

appropriate IRB approval process. The dataset consisted of data collected from variety of 

wearable inertia sensors. Based on the dataset, an intelligent activity recognition model was 

developed. And based on further analysis of the classification model, a frame work of a complete 

HAR system was designed and validated. 

1.2 Significance 

With increasing number of elderly people, the health status of these people has become a 

big concern around the world. Especially for those elderly people who have trouble in taking 

care of themselves or even reporting their health problem, a system that can monitor their 

activities in real time while not violating their privacy too much is needed.  

If the system framework proposed in this research can be successfully implemented, it 

should be able to help elderly people avoid harmful events (i.e., fall down) from happening in a 

lot of cases, so that the chance of these elderly people getting injured in daily activities can be 

greatly reduced, and thus improve their life quality. 
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1.3 Objectives 

1. Develop a computational model for human activity recognition. 

2. Analyze the computation model to better understand the important features for falling 

activities. Based on this understanding, validate and further improve the performance 

of the model on fall detection. 

3. Based on the result of the computation model, develop a theoretical design for a fall 

detection system. 
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 REVIEW OF LITERATURE 

Elderly people’s health status has been a bigger and bigger concern nowadays. Lots of 

undesirable activities like falling down can be big threats to their health. In 2014, falls are the 

first leading cause of death and injuries for elder people (over 65 years old) in United States 

(Bergen, 2016). To reduce the possibility of elderly people getting injured from undesirable 

harmful activities, effective HAR systems are needed. This literature review will provide an 

overview of the popular techniques that have been applied in HAR. 

2.1 HAR Technologies overview 

There are mainly three different sensing technologies for HAR right now, including RGB 

camera, depth sensors, and wearable sensors (Ann & Theng, 2014). RGB camera method is to 

develop a vision system to capture human movement and use feature extraction and supervised 

learning to recognize human activities; depth sensor method is to use infrared sensor or camera 

to measure the distance between the sensor and human body parts and use these distances to 

recognize human activities; Wearable sensor method uses sensors like accelerometer and 

gyroscopes which can be mounted on human bodies to collect data and then do HAR. In spite of 

the lack of accuracy compared to depth sensors and RGB camera, wearable sensors have been 

the most popular choice for HAR in recent years because of its flexibility, low cost and low 

power consumption (Ann & Theng, 2014). 

2.2 Different designs of wearable inertia sensor system 

Although it is widely agreed that wearable inertia sensor is most suitable choice for data 

collection, the number of sensors and the location where the sensors should be mounted are still 

in debate. As for the number of sensors, it is no doubt that more sensors can give higher 

accuracy. In the work done by Bao and Intille (2004), five bi-axial accelerometers were used for 

data collection to study 20 different activities, and the five sensors were mounted on left arm, 

right wrist, left thigh, and hip (waist). Similar configuration was used in quite a few later 

researches. In the work done by Ozdemir and Barshan (2014), six 9-axis inertia sensors were 

used for data collection to study 16 daily activities and 20 different fall actions. The 9-axis 
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sensor can measure 3-axis acceleration, 3-axis angular velocity and 3-axis magnetism, and the 

six sensors were mounted on head, chest, waist, right thigh, right wrist and right ankle. Yet it is 

not hard to imagine that it is very inconvenient for the user to wear sensors all over his/her body. 

Although each individual sensor is not big in size, a sensor system with five or six of 

them is still not a user-friendly design. As a result, researches started to focus on using less 

sensors for data collection. In the work done by Reiss and Stricker (2012), three inertia sensors 

are used to study 18 different activities. The sensors are mounted on chest, wrist on dominant 

arm, and dominant ankle. In the work done by T. Zhang, Wang, Liu, and Hou (2006), the 

possibility of using just one sensor for data collection was explored. One tri-axial accelerometer 

was used in the experiment to recognize five categories of activities including two categories of 

fall activities. The sensor is mounted on the back of a cellphone, and the cellphone is put inside 

the pocked of clothes or hanged on the neck. In the work done by M. Zhang and Sawchuk 

(2012), one inertia sensor was used to study nine different activities. The sensor contains a tri-

axis accelerometer and a tri-axis gyroscope, and the sensor is mounted on the waist of subjects. 

Because more and more cellphone models in recent years have embedded inertia sensors, and 

cellphone is the kind of device that most people would carry around all the time no matter what, 

researchers start to explore the possibility of using the sensor embedded in cellphones to collect 

data for HAR. In the work done by Lee and Choi (2012), built-in sensors of Google nexus phone 

were used to detect fall action while the volunteers were holding the phone in four different 

position. In the work done by Anguita, Ghio, Oneto, Llanas Parra, and Reyes Ortiz (2013), the 

accelerometer embedded in Samsung Galaxy S2 smart phone was used to study six different 

ADLs. Besides cellphones, smart devices like smart watches have also been tested for HAR task 

(Tian, Xu, Tao, & Wang, 2017). 

Yet although using the embedded sensor in smart phones or other smart devices for data 

collection is very convenient for the users, Stisen et al. (2015) argued that the heterogeneity of 

the embedded sensors in the smart devices can cause big problems for the sensor system. The 

heterogeneities can be caused by sensor biases, sampling rate heterogeneity and sampling rate 

instability (which can be very serious when the CPU is multitasking). The effect of 

heterogeneities can significantly lower the recognition accuracy. Yet it seems that the problems 

caused by the heterogeneities of sensors can be resolved by up-sampling or down-sampling the 

data (Stisen et al., 2015). 
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2.3 Methodologies for data analysis 

In the past researches, various techniques have been applied for analyzing the data 

collected from wearable inertia sensors. Most of the techniques can be categorized into 

supervised learning including traditional machine learning techniques, and artificial neural 

network. Yet because it is very difficult to collect large amount of data of human activity, some 

researches also tried utilizing unsupervised learning for HAR. 

2.3.1 Unsupervised learning 

For unsupervised learning, the acceleration data are normally divided into fixed-length 

time window, and different features can be extracted for each of window. Then cluster methods 

like k-mean cluster, or other matrix based cluster methods like Ward-Linkage can be used to 

cluster data samples into different activities based on the distances between the feature vectors of 

each time window (Mejia-Ricart, Helling, & Olmsted, 2017; Wang, Lu, Wang, Liu, & Zhou, 

2017). 

2.3.2 Supervised learning using traditional machine learning 

For supervised learning, machine learning is a widely used technique in HAR. The work 

done by Bao and Intille (2004) is one of the earliest works that use machine learning for HAR. In 

this work, the data are collected at a sampling frequency of 76.25Hz, and the data were divided 

into fixed-length sampling window with each window consisting of 512 samples. That means 

each window has 6.7 seconds of data. Between each adjacent window, there are 256 samples 

overlapping with each other. Then features like mean acceleration, energy, and some frequency 

domain features were extracted for each sampling window. These feature values of each window 

were put into one vector which means each sampling window has one feature vectors. These 

vectors were divided into training set and testing set and were used as input to machine learning 

algorithms. The machine learning algorithms tested in this work included Decision Table, 

Instance-Based Learning, C4.5 decision tree and Naive Bayes. Among the four algorithm, C4.5 

decision tree achieved the highest accuracy which is 84.26% (Bao & Intille, 2004). Although the 

accuracy of this work is not great, it sets up a frame work for lots of latter works. 

Up to today, machine learning has been a dominant methodology for data analysis in 

HAR. Most of the work that use machine learning follow a similar logic as is presented by Bao 
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and Intille (2004): divide the acceleration data into fixed-length window, extract features from 

each window to form feature vectors, input the feature vectors into machine learning model for 

training and validations. The windows length is mostly larger than four seconds, and the machine 

learning models include the models that are mentioned by Bao and Intille (2004), which are 

Decision table, Instance-Based Learning (including k-nearest-neighbor and Radio-based-

network), decision table and Naive Bayes, and also some other algorithms like Support Vector 

Machine (SVM). In fact SVM has been one of the most popular choice in HAR. The work done 

by Sun, Zhang, Li, Guo, and Li (2010) used SVM for classification to recognize human activity 

when the acceleration sensor is mounted in different orientation. The work done by Y. Chen, 

Guo, and Wang (2016) used an improved SVM algorithm called Fuzzy Least Square Support 

Vector Machine while using Ensemble Empirical Mode Decomposition for feature extraction 

and Sparse Multinomial Logistic Regression for feature selection. In the work done by Anguita 

et al. (2013), a more energy efficient, hardware-friendly SVM algorithm was developed so that it 

can be easily implemented on a cell phone. In the work done by De Leonardis et al. (2018). A 

comparison was made on the performance of real time HAR between the popular machine 

learning algorithms that are mentioned earlier including K-nearest neighbor, Decision Tree, 

SVM, and Naive Bayes. Also, a shallow Feed Forward Neural Network was tested. Data were 

collected from fifteen subjects on nine different daily activities, and 38 different features were 

extracted from 5-second sampling window as input to the machine learning or neural network 

algorithm that are mentioned above. It turns out that K-nearest Neighbor has the best 

performance and achieves 97% accuracy; Feed Forward Neural Network, Naive Bayes and SVM 

all get a similar accuracy which is around 96%; and Decision tree has the worst performance in 

this experiment, whose accuracy was 91%, which is still acceptable. Yet although the result of 

this comparison shows that K-Nearest-Neighbor has the best accuracy, the performances of the 

five algorithms are actually very close and the result can be different if the test was done on a 

different dataset. 

There are some other algorithms that deploy very big improvements based on the 

framework proposed by Bao and Intille (2004). Like in the work done by T. Zhang et al. (2006). 

In this work, a data analysis model that can predict fall activities in real time was developed. In 

this work, if the total acceleration stays near gravity for more than one second, it is considered to 

be a sign of motionless activity, and 192 data points (1.5 seconds) before the point where the 
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acceleration gets near gravity will be further analysis using one class SVM to divide the data into 

two categories which are doubtful fall event and activity of daily, and then Kernel Fisher 

discriminant algorithm and was used to further separate the data which are categorized as 

doubtful fall event for more precise classification, and k-nearest-neighbor was used to control the 

fall alarm rate. In the work done by M. Zhang and Sawchuk (2012), an algorithm called Bag-of-

Feature was introduced. The method is inspired by natural language processing, as acceleration 

data on time domain can be divided into small time window just like an English word can be 

divided into multiple letters. While a word is a combination of different letters, an activity is a 

combination of different type of time window. The data collected in this work were divided into 

fix-length time windows, whose sizes are under two seconds, which are much smaller than the 

time window proposed by Bao and Intille (2004). Then 10 different features were extracted for 

each window and K-mean Clustering and Gaussian Mixture Model were used to categorize the 

windows into different ”letters.” Then vectors were created using these letters and were used to 

do activity classification using SVM 

2.3.3 Artificial Neural Network 

In recent years, with the availability of big data and computing power become stronger 

and stronger, artificial neural network and deep learning has become more and more popular for 

classification problems such as disease diagnostic (Hosseini-Asl, Keynton, & El-Baz, 2016). As 

a result, researchers have started to explore the possibility of using such a tool for HAR.  

2.3.3.1 Introduction to Artificial Neural Network and its terminologies 

Artificial Neural Network (ANN) is a man created computing system that simulates the 

structure of a biological computing system like human brain. An ANN consists of an input layer, 

an output layer and multiple hidden layers in between. Each layer consists of multiple nodes 

which represent neurons in human brain. Each nodes is a number with a weight and sometimes a 

bias assigned to it, and the nodes on one layer are connected the nodes on adjacent layers by 

linear or nonlinear transformation. This linear or nonlinear transformation is called activation 

function.  

Data in ANN can flow in two direction, forward and backward. When the data flow 

forward, the process is called feed forward phase. Data flow into input layer, through hidden 
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layer, and finally reaches output layer and gives an output. Feed forward phase happens when the 

ANN is actually implemented in application, being tested or validated, or during training when 

error needs to be calculated; when the data flow backward, the process is called backward 

propagation. It means when an error is calculated through a feed forward phase, the error will be 

fed back into the ANN and update all the weights and biases in the network using certain 

algorithms to minimize the error and optimize the performance of the ANN. There are multiple 

algorithms for this optimization process, and gradient based learning like Stochastic Gradient 

Descent, is the most popular and successful algorithm (Lecun, Buttou, Bengio, & Haffner, 1998) 

When training the neural network, in order to save time, input data are normally divided groups, 

and instead of training one data sample at a time, all the data in one group are trained together. 

Each group is called a mini-batch, and the number of data in each mini-batch are called batch 

size. The total number of mini-batch that are trained during the training process is called 

iteration, and the number of times that the whole dataset is trained during the training process is 

called epoch.  

While ANN has been widely used in lots of different applications, people did not start 

using ANN for HAR until recent years, and not a lot of researches have been done on this topic 

yet. And among these few researches, Convolution Neural Network (CNN) is a pretty popular 

structure to classify human activities. Also, some of the researches chose to use Recurrent Neural 

Network (RNN) because of its capability to deal with data sequence. 

2.3.3.2 Introduction to Convolution Neural Network  

CNN has become one of the most popular classification algorithms in recent years. A 

CNN means that the network use convolution layer for feature extraction. For each convolution 

layer, the nodes are convolved with a certain a certain number of filters. The filter number is 

predefined based on the complexity of the problem. The filters normally have the same size, and 

consists of random weights initially, and these weights will be updated through learning process. 

The output of the convolution is an array or matrix that have the same size with the convolution 

layer, and will be fed into the next layer as input. CNN was initially developed to deal with 

“variability of 2D shapes” (LeCun et al., 1998, p. 1). It is often used in applications like image 

processing where building an accurate pattern recognition system is very challenging. One of the 

popular CNN structure developed in early year is called LeNet5 (LeCun et al., 1998), which was 
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originally designed to recognize handwritten character. In recent years, deeper CNN model like 

Alex-net has been developed to deal with more complicated image classification problems and 

larger dataset (Krizhevsky, Sutskever, & Hinton, 2012). 

2.3.3.3 Related work on using CNN for HAR  

Although HAR based on wearable inertia sensors has always been considered to be a 1D 

signal processing problem, Jiang and Yin (2015) proposed to transform the 1D acceleration 

signal into a 2D image-like signal so that CNN can be applied to do the feature extraction and 

classification. The signal collected in this study is a 6-axis inertia data including 3-axis 

acceleration and 3-axis angular velocity. The multiple channels of 1D signals were mapped into 

a single-channel 2D signal in a way that every signal channel has a chance to be adjacent with 

every other channels. 

The 2D single-channel 2D signal was used as input like an image to a CNN. The 

structure of the CNN is similar to LeNet5 (LeCun et al., 1998), which includes two convolution 

layer groups, one fully-connected layer and one soft-max layer. Each convolution layer group 

includes a convolution layer and a subsampling layer. The algorithm was tested on three different 

datasets, and the result showed that if the CNN structure were used along with a 2D Discrete 

Fourier Transform, it could give a minimum accuracy of over 97%, which is over 1% higher than 

SVM while the computation cost is only one third of SVM (Jiang & Yin, 2015). 

Similarly, in the work done by Fakhrulddin, Fei, and Li (2017), 2D CNN was used to 

process the data collected from two 3-axis accelerometer. The 1D time series data were mapped 

into 2D image-like data using the Markov transition fields (MTF) algorithm proposed by Z. 

Wang and Oates (2015). The 2D signal was then put into LeNet (LeCun et al., 1998) based CNN 

structure for classification. 

CNN is normally considered as a powerful tool to handle 2D signal processing problem. 

But because convolution is an often-used operation in 1D digital signal processing for feature 

extraction, people also use 1D CNN for 1D signal processing.  

In the work done by Li, Zhang, Zhang, and Wei (2017), CNN was used to analyze 

electrocardiogram signal and diagnose cardiovascular disease. An accuracy of 97.5% was 

achieved in this study, which proves the feasibility of using CNN for 1D signal processing. 
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The work done by Lee, Yoon, and Cho (2017) used 1D CNN based method for HAR. 

The data were collected from a single embedded accelerometer on a Google Nexus Phone at 1Hz 

sampling frequency, which means the quality of the data can be considered very poor. The 

structure of the network contains one convolution layer with 128 filters for feature extraction, 

one max-pooling layer for feature selection, and a dropout layer with a rate of 0.5 to accelerate 

training process while increasing the generalizing ability of the network. The accuracy of the 

model based on CNN was compared with the accuracy based on random forest, and the result of 

CNN (91.32% and 92.71%) outperformed the result of random forest (85.72% and 89.10%) (Lee 

et al., 2017). Considering the poor quality of the data collected in this study, the result of this 

study proves the feasibility of CNN in HAR application. 

In the work done by Hammerla, Halloran, and Ploetz (2016), a comparison was made 

between three types of ANN on their performance on HAR. The three types of ANN includes 

deep-forward neural network, CNN, and recurrent neural network (RNN). In this work, these 

three ANN were tested on three different datasets, including PAMAP2 dataset (Reiss & Stricker, 

2012a), Opportunity dataset (Roggen et al., 2010), and Daphnet Gait dataset (Bachlin et al., 

2010). The overall result showed that CNN and RNN have very similar performance, with RNN 

performing better on Daphet Gait dataset and Opportunity dataset, and CNN performing better 

on PAMAP2 dataset. Both of these two ANN structure have better performance than Deep-

forward Neural Network on all the three datasets. Also, the result indicates that for CNN, if the 

raw data are fed directly into the network without any preprocessing, shallow structure has better 

performance than deep structure. But the research group did not do any research on what effect 

would adding preprocessing to the algorithm bring to the result yet. This is one of the few 

researches that used RNN for HAR, and the result shows that RNN have a very big potential on 

dealing with HAR dataset. 

2.3.3.4 Introduction to Recurrent Neural Network  

Recurrent neural network (RNN) has become more and more popular recently as a 

Neural Network model to deal with application that involves sequential data, like natural 

language processing (Karpathy, Johnson, & Fei-Fei, 2015). Take Natural Language processing 

as an example, the RNN takes each words in a sentence as one input. For each input, the RNN 

will produce the an output, and also a hidden state which serves like a memory to remember the 
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data in the early stage of the data sequence; then the RNN will use the hidden state and the new 

input to produce the next output and a new hidden state, and this process will continue until the 

end of the data sequence. Because of the existence of the hidden state, RNN has a very strong 

capability to deal with data on time domain. As a result, RNN is one of the most popular 

algorithm for natural language processing nowadays (Karpathy et al., 2015). Also for this reason, 

RNN should be able to handle HAR dataset very well. 

In addition to the work done by Hammerla et al. (2016), Steven Eyobu and Han (2018) 

also used RNN for HAR. In this work, data were collected from a 6-axis accelerometer. 100-

feature vectors and 200-feature vectors were generated from 3 second slicing windows. These 

feature vectors were used as input to RNN.  

2.4 Conclusion for methodology 

In the field of HAR, wearable inertia sensors are now the most popular choice for data 

collection as compared to other sensors like RGB cameras or depth sensors (infrared sensors) 

because of its flexibility (Ann & Theng, 2014). Yet given that wearable inertia sensor is the best 

choice of sensor, the number of sensors that should be used and where the sensor should be 

mounted is still in debate. 

As wearable inertia sensor is used for data collection, multichannel 1D data on time 

domain will be used as input to categorize human activities. Most researches in the past use 

traditional machine learning technique for data analysis, and follow the framework that was 

proposed by Bao and Intille (2004). While SVM seems to be the most popular choice, other 

machine learning techniques like decision tree, K-nearest-neighbor, Naive Bayes, random forest 

have also been tested, and they all have pretty similar performance (Hammerla et al., 2016).  

In recent years, with artificial neural network becoming more and more popular, 

researchers start to explore the possibility of using ANN for HAR. Quite a lot of works have 

been done on using feed-forward network, and it has similar performance with traditional 

machine learning techniques (De Leonardis et al., 2018). Recently, some researchers start to 

explore the possibility of using CNN and RNN for HAR, and they seem to better performance 

than Feed-Forward Network and other traditional machine learning techniques (Jiang & Yin, 

2015; Lee et al., 2017). 
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2.5  Description of a publicly available dataset 

As in this thesis, data will not be collected from volunteers, publicly available datasets was 

used for data analysis. The data that used are collected by Ozdemir and Barshan (2014). These 

data were collected at Erciyes University Clinical Research and Technology Center and is 

publicly available on UCI Machine Learning Repository (Dua & Graff, 2019). The data were 

collected from 10 male volunteers and seven female volunteers. Six MTx sensor units were 

placed on each volunteers, with one on the neck, one on the chest, one on the waist, one on the 

wrist of dominant arm, one the dominant thigh and one on the dominant ankle. Each MTx sensor 

unit is able to collect 3-axis acceleration data, 3-axis angular velocity data, 3-axis magnetometer 

and atmosphere pressure, and the sampling frequency of the sensor is 25Hz. The test collected 

data on 20 different fall activities and 16 activities of daily living. Below are description of the 

36 activities. These description are copied directly from the dataset information obtained from 

Ozdemir and Barshan.  

 

The 20 fall activities included: 

“1. Front-lying: from vertical falling forward to the floor. 

2. Front-protecting-lying: from vertical falling forward to the floor with arm protection  

3. Front-knees: from vertical falling down on the knees 

4. Front-knees-lying: from vertical falling down on the knees and then lying on the floor. 

5. Front-quick-recovery: from vertical falling on the floor and quick recovery 

6. Front-slow-recovery: from vertical falling on the floor and slow recovery.  

7. Front-right: from vertical falling down on the floor, ending in right lateral position. 

8. Front-left: from vertical falling down on the floor, ending in left lateral position.  

9. Back-sitting: from vertical falling on the floor, ending sitting 

10. Back-lying: from vertical falling on the floor, ending lying 

11. Back-right: from vertical falling on the floor, ending lying in right lateral position.  

12. Back-left: from vertical falling on the floor, ending in lying in left lateral position. 

13. Right-sideway: from vertical falling on the floor, ending lying. 

14. Right-recovery: from vertical falling on the floor with subsequent recovery. 

15. Left-sideway: from vertical falling on the floor, ending lying. 

16. Left-recovery: from vertical falling on the floor with subsequent recovery. 
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17. Rolling-out-bed: from lying, rolling out of bed and going on the floor  

18. Podium: from vertical standing on a podium going on the floor 

19. Syncope: from standing falling on the floor following a vertical trajectory  

20. Syncope-wall: from standing falling down slowly slipping on a wall 

 

The sixteen Activities of Daily Lives include: 

1. Walking-fw: walking forward. 

2. Walking-bw: walking backward. 

3. Jogging: running.  

4. Squatting-down: squatting, then standing up. 

5. Bending: bending about 90 degrees. 

6. Bending-pick-up: bending to pick up an object on the floor. 

7. Limp: walking with a limp. 

8. Stumble: stumbling with recovery. 

9. Trip-over: bending while walking and then continue walking.  

10. Coughing-sneezing: coughing or sneezing 

11. Sit-chair: from vertical, to sitting with a certain acceleration on to a chair (hard 

surface) 

12. Sit-sofa: from vertical, to sitting with a certain acceleration on to a sofa (soft surface) 

13. Sit-air: from vertical, to sitting in the air exploiting the muscles of legs 

14. Sit-bed: from vertical, to sitting with a certain acceleration on to a bed (soft surface) 

15. Lying-bed: from vertical lying on the bed  

16. Rising-bed: from lying to sitting” 

 

 (Ã–zdemir, A.T.; Barshan, B. â€œDetecting Falls with Wearable Sensors Using Machine 

Learning Techniques.â€•, Sensors 2014, 14, 10691-10708.) 

For each volunteer, each activity was repeated for five times. For each trial, there are data 

on time domain with 25 data points in every seconds. The structure of the data can be seen in 

Figure 2.1: 
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Figure 2.1. Structure of Simulated Falls and Daily Living Activities dataset (Ozdemir & 

Barshan, 2014) 

 

Based on this dataset, several studies have been conducted on doing fall detection using 

different machine learning algorithms including k-nearest neighbor, Bayesian decision making, 

Support Vector Machine, Least Square method, Dynamic Time Warping, ANN (Ozdemir, 2016; 

Ozdemir & Barshan, 2014), K-Nearest Neighbor, Random Forest and Random Committee 

(Ntanasis, Pippa, Ozdemir, Barshan, & Megalooikonomou, 2016). The input is the 9-axis inertia 

data from one or multiple different sensors. For each trial of data, a peak was determined based 

on total acceleration. Then 2 seconds of data before and after the peak point, which is 4 seconds 

of data in total, was used for further analysis. Seven different types of features including 

minimum, maximum, variance, skewness, kurtosis, autocorrelation sequence and Discrete 

Fourier Transform peaks were extracted from the 4 seconds of data, and these features were put 

into one 1404 ×1 feature vector. Principal component analysis (PCA) was used to reduce the size 

of the feature vector to 30 × 1, and the new feature vector was input into the machine learning 

model for classification. The output of the model is binary class pair, being fall-activity or non-

fall activity. The performance of the model was measured by accuracy, sensitivity and 

specificity. The result shows that: 
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When only one sensor is used, data from thigh sensor give the highest accuracy, being 

99.48% when SVM classifier is used; data from waist sensor have a similar performance, which 

can give an accuracy of 99.28% when Random Forest is used Committee (Ntanasis et al., 2016). 

When multiple sensors are used, the accuracy would increase when the number of sensors are 

increased. The increase rate is relatively low, especially for those sensors that already have a 

good performance on their own (Ntanasis et al., 2016). Among all the different machine learning 

classifier, K-nearest neighbor has the best performance, with an overall accuracy of 99.21% 

when only one sensor is used, and ANN has the worst performance, with an accuracy of 94.92% 

(Ozdemir, 2016). Different from the works that have been done on this dataset, this thesis will 

use different algorithms for feature extraction and classification, including CNN and RNN. Also 

this thesis will try to develop a model that has the capability of doing real time fall prediction. 
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 RESEARCH METHODOLOGY  

3.1 Data description 

To build a computation model for human activity recognition, inertia data of different 

human activities are needed. Considering the limitation on time and resource, the data were not 

collected from human subjects. Instead, a public dataset was used during this process. (Ozdemir 

& Barshan, 2014) 

The dataset that was mainly used to build the computation model is the Simulated Falls 

and Daily Activities dataset (Ozdemir & Barshan, 2014), which is introduced in Chapter 2.2.1.  

The data in this dataset (Ozdemir & Barshan, 2014) were collected from 17 human 

subjects. The 17 human subjects include 10 males and seven females. They were all randomly 

selected healthy subjects. Each volunteer was asked to perform 20 fall activities and 16 activities, 

and each activity was performed for five to six trials. The data were collected from MTw sensor 

unit produced by Xsens (2009). Six MTw sensor units were mounted on six different body 

locations for each volunteers for data collection. The six body locations include: head, chest, 

wrist, waist, thigh, and ankle. Data collected for each location were recorded in a data file. 

(Ozdemir & Barshan, 2014). Figure 3.1 is an illustration of the structure of the dataset.  

 

Figure 3.1. Structure of “Falls and Daily Living Activities” dataset 
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The experimental design of the data as reported by prior research (Ozdemir & Barshan, 

2014), is as follow: 

 

 

 

 

Sensor readings were collected at 25 Hz, which means the sensor unit collected 25 data 

samples every second (one data sample is collected every 0.04 second). Figure 3.2 is an example 

of the “Simulated Falls and Daily Activities” dataset. This example is the data collected from one 

location of one trial of one volunteer performing one activity. This example data file contains 

616 data samples, but different data files may contain different number of data samples. The data 

are 2D data. One dimension is the nine readings, and the second dimension is time (data 

samples). This 2D data in each data file are collected from a single location. When data from 

multiple locations are used, the data become 3D data, with different locations becoming the third 

dimension.  

  

𝑠𝑒𝑛𝑠𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠

𝑠𝑒𝑛𝑠𝑜𝑟
×
3𝑎𝑥𝑖𝑠

𝑠𝑒𝑛𝑠𝑜𝑟
×
3𝑠𝑒𝑛𝑠𝑜𝑟𝑠

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
×  
6𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑡𝑟𝑖𝑎𝑙
×
5 − 6𝑡𝑟𝑖𝑎𝑙𝑠

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
×
36𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟
× 17𝑣𝑜𝑙𝑢𝑛𝑡𝑒𝑒𝑟 
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Figure 3.2. Example data from the “Simulated Falls and Daily Activities” dataset: one 

volunteer, one activity, one trial, and one location. 

 

The dataset provides the possibility for comparing different sensors at different locations. 

A total of 36 activities (20 fall activities and 16 daily activities) were collected in this dataset, 

which means that the model developed from this dataset has a better capability to deal with the 

complicated situation in a real-world scenario. 

3.2 Initial inspection on dataset 

Figures 3.3-3.8 show some of the examples of the data plotted on time domain. In Figure 

3.3 for example, acceleration data on x, y and z axis on right-sideway and left-sideway activities 

are plotted. (Detail description of activities can be found in Chapter 2.5) It can be seen that data 

of these two activities have similar patterns on x axis and z axis; but on y axis, the direction of 

peak (located in 10sec-15sec) is opposite, which means the two activities can be distinguished 

using the data on y axis. Figure 3.8 is a comparison of another pair of activities. In this figure, x, 
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y, z acceleration of lying-bed and rising-bed activities are plotted. (Detail description of activities 

can be found in chapter 2.5) In this activity pair, acceleration on y axis have similar patterns, but 

acceleration on x and z axis have different starting acceleration and ending acceleration.  

Figures 3.3-3.5 are plots of two fall activities; Figures 3.6-3.8 are plots of two non-fall 

activities. Comparing the plots of fall activities (in Figures 3.3-3.5) and non-fall activities (in 

Figures 3.6-3.8), it can be seen that both plots of the two falling activities have one noticeable 

peak, while the plots for the two non-fall activities do not have such characteristic. This means 

that with these given example activities, fall activities and non-fall activities can be distinguished 

by peak. 

Between different activities, very noticeable differences are observed. They can be used 

to distinguish different activities. Plots in Figures 3.3 and 3.4 and Figure 3.6 and 3.7 show the 

same activity performed by different human subjects. Plots from Figures 3.3 through 3.8 show 

the same activity performed by the same human subjects on different trials. Take the plots from 

Figures 3.6 and 3.7 for example. These two figures show the comparison of lying-bed activity 

and rising-bed activity conducted by two different human subjects. The accelerations on accel-x 

and accel-z have very similar patterns, but on accel-y, there is observable difference between the 

starting acceleration for rising-bed activity, and between the ending acceleration for lying-bed 

activity.  

From these comparisons, it can be seen that between different activities, data have 

different patterns. But sometimes the patterns are significant, sometimes they are not. Between 

the same activities, the data usually have similar patterns, but there can still be exceptions like 

the example shown in the previous paragraph. 

There are a total of 36 different activities in the dataset, and much more unique 

characteristics are needed to distinguish them from each other. Some of those characteristics can 

be visualized just like the examples mentioned above, while some of characteristics can only be 

extracted from certain mathematical operations; some of the characteristics can be found in the x, 

y, z acceleration data, while some of them may lie in data from gyroscope and compass. To deal 

with the complexity of the problem, I proposed using machine learning was chosen to do feature 

extraction, selection and classification. Two types of models including CNN and RNN were 

tested and compared in this thesis. 
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Figure 3.3. Data sample of falling right-sideway and falling left-sideway (fall activities), 

subject1, trial1 

 

Figure 3.4. Data sample of falling right-sideway and falling left-sideway (fall activities), 

subject2, trial1 
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Figure 3.5. Data sample of falling right-sideway and falling left-sideway (fall activities), 

subject1, trial2 

 

Figure 3.6. Data sample of lying-bed and rising-bed (non-fall activities), subject1, trial1 
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Figure 3.7. Data sample of lying-bed and rising-bed (non-fall activities), subject2, trial1 

 

 

Figure 3.8. Data sample of lying-bed and rising-bed (non-fall activities), subject1, trial2 
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3.3 Prediction model development 

3.3.1 Data preprocessing 

Looking at the data plotted in Figures 3.3-3.8, it can be observed that there is a long flat 

data sequence at the beginning and at the end of every trial of data. This similarity is shared 

among the rest of the dataset. 

The dataset (Ozdemir & Barshan, 2014) had two types of data files. One group represents 

fall activities, and the other group represents non-fall activities. Each data file involve other 

activities (i.e. standing still, sitting, lying down) before fall or non-fall activities, we call it 

precondition. Also, in each data file, the fall or non-fall activities were proceeded by other 

activities (i.e. standing still, sitting, lying down). We call these activities postcondition. 

In this study, one of the objective was to develop a model to clarify if the data belongs to 

fall or non-fall category. To achieve that goal, it was considered necessary to separate a given 

data file into precondition, activity and postcondition regions. 

The basic logic is to use variance and first order derivative to mark the actual activity. 

The reason is that ideally, when the human subject is standing still, lying or sitting, the variance 

should be close to zero; when the human subject is doing activities, the variance should be a 

considerably large number. This difference in variance can be used to differentiate actual activity 

and pre/postcondition. Yet in reality, considering the environment noise, the variance of the flat 

sequences can become quite significant. The algorithm shown below is developed to remove the 

flat sequences (This algorithm is applied to the data in each data file individually, and the 

algorithm is developed based on waist sensor, and acceleration data): 

 

1. Calculate the total acceleration for every data points. Total acceleration is defined as: 

 

𝐴𝑐𝑐𝑇 = √𝐴𝑐𝑐𝑋
2 + 𝐴𝑐𝑐𝑌

2 + 𝐴𝑐𝑐𝑍
2                                (1) 

 

𝐴𝑐𝑐_𝑇 is total acceleration, 𝐴𝑐𝑐_𝑋 is x-axis acceleration, 𝐴𝑐𝑐_𝑇 is y-axis acceleration, 

and 𝐴𝑐𝑐_𝑍 is z-axis acceleration. Figure 3.9 is an example of total acceleration. 
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Figure 3.9. Sample acceleration data. x-aixs is time(number of data sample), and y-axis is 

acceleration(m/s2) 

 

2. The given dataset was divided into multiple windows such that each window contains 

10 observations. Based on the number observation in each data file, the number of 

windows may vary. Figure 3.10 shows an example data file with 400 observations 

and it is divided into 40 windows. 

 

Figure 3.10.Sample data divided in to winodws of 10 

 

3. Calculate the variance of acceleration for each windows to create a variance vector. 

Run the variance vector through a (1, 3) average filter, which means that the output 

for xi is the average of xi, xi-1 and xi+1. The average filter will not be applied to the 
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first data point (x1) or the last data point (xn) due to the edge effect of average filter. 

x1 is replaced by the average of x1 and x2, and similarly, xn is replaced by the average 

of xn and xn-1. Figure 3.11 is a plot of the variance sequence. 

 

Figure 3.11.  Variance sequence 

 

4. Find out the window with the maximum variance. This window will be refereed as 

“activity window” in this work. In Figure 3.12, the window marked with red line is 

the activity window. 

 

Figure 3.12.  Activity window 

 

5. Find out the windows with the minimum variance before and after the activity 

window. The standard deviation of this two windows are considered to be the system 

noise before and after the actual activity. (See step4 in appendix B4) The window 
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before the activity window will be refereed as “min_start window” (given by variable 

min_index_start in the program, appendix B4), and the window after the activity 

window will be refereed as “min_end window” (given by variable min_index_end in 

the program, appendix B4). The mean of the two window will be used as the base 

acceleration in later steps. In Figure 3.13, the window marked with yellow lines is the 

min_start window (Same as min_index_start); the window marked with orange line is 

the min_end window (Same as min_index_end). Then, calculate the average value of 

min_start window (given by variable mean_start in the program, appendix B4), and 

calculate the average value for min_end window (given by variable mean_end in the 

program, appendix B4). 

6.  

 

Figure 3.13 min_start window and min_end window 

 

7. System noise is the standard deviation of the “min_start” window and “min_end” 

window (the yellow window, and orange window). In some cases (in some data files), 

the system noise is too low that even very small movement can be considered as 

actual activity. If the system noises that are lower than 0.01, they are set to 0.01. 0.01 

is an empirical value which is drawn from experiments and proved to be the most 

effective for this work. 

8. Scan from the “min_start window” to activity window (left to center), and from 

“min_end window” to activity center (right to center). For each new point, take this 

point and the next four points, then calculate the differences between these 5 points 

and mean_start/mean_end. A sequence of five difference values can be obtained 
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(given by variable diff_list_start/diff_list_end in the program, appendix B4). Diff1 = 

minimum of the sequence. Diff2 = mean of the sequence. (Diff1 refers to both 

Diff1_start and Diff1_end in appendix B4, and Diff2 refers to both Diff2_start and 

Diff2_end in appendix B4            ) 

9. Diff1 and Diff2 are used to be compared with the scaled system noise. The scaled 

system noise is defined using the following equations: 

 

Diff1: 𝑠𝑦𝑠_𝑛𝑜𝑖𝑠𝑒/(4 − 3 ∗ 𝑑𝑖𝑠𝑡/𝑙𝑒𝑛)                         (2) 

 

Diff2: 𝑠𝑦𝑠_𝑛𝑜𝑖𝑠𝑒/(10 − 9 ∗ 𝑑𝑖𝑠𝑡/𝑙𝑒𝑛)                       (3) 

 

In the two equations, 𝑑𝑖𝑠𝑡 refers to the distance between the current data point and the 

“min_start window”/“min_end window,” and 𝑙𝑒𝑛 refers to the distance between 

min_start window/min_end windows to activity window. These two equations are 

heuristic equations. They are proved to be able to efficiently differentiate 

pre/postcondition data and actual data throughout preliminary exam. 

10. When both Diff1 and Diff2 are smaller than the scaled system noise, the data point is 

considered to be part of the pre/postcondition. If either Diff1 or Diff2 is larger than 

the scaled system noise, the data point is considered to be part of the activity. Based 

on the result from experiments, the following two scaled system noise are proved to 

be most effective for this work. 
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Figure 3.14. Flow chart of preprocessing algorithm 
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The source code of preprocessing is provided in Appendix B4. 

The output of the preprocessing algorithm are two indices per data file. The indices mark 

the starting observation and ending observation of the actual activity. 

Before applying the algorithm to the dataset, five activities were removed from the 

dataset because: for these five activities, the variance of the system noise and the variance for the 

actual activity are so close to each other that the algorithm mentioned above could not effectively 

distinguish one from another. The five removed activities include: (a) rolling out of bed (fall 

activity), (b) from standing to sitting in the air (daily activity), (c) coughing (daily activity), (d) 

squatting down (daily activity) and (e) bending over 90 degrees (daily activity). 

After removing the five activities, 31 activities (12 daily activities and 19 fall activities) 

with 2842 data files are left in the dataset. When applying the algorithm to these 2842 data files, 

all but nine data files were relabeled properly. These nine data files were manually relabeled. 

(Program for manually relabeling can be found in appendix B5) 

3.3.2 Convolution Neural Network 

For this study, a 2D CNN was used. Convolution is the most commonly used 

mathematical operation to extract features from digital signals like the inertia data (Nielsen, 

2015). For this study, nine different features (Ozdemir & Barshan, 2014), including 3-axis 

acceleration, 3-axis angular velocity and 3-axis magnetism were used. As mentioned in Chapter 

3.1, the data collected by each sensor are 2D data, which is why 2D CNN is used in this study.  

3.3.2.1 How 2D convolution work 

2D convolution can be defined using the equation below (Proakis, 2001): 

 

∑ ∑ 𝑓(𝜏𝑢, 𝜏𝑣)ℎ(𝑥 − 𝜏𝑢, 𝑦 − 𝜏𝑣)
𝜏𝑣=+∞
𝜏𝑣=−∞

𝜏𝑢=+∞
𝜏𝑢=−∞

             (4) 

 

For this equation, h() is the data that need to be processed, and f() is filter/kernel that is 

used to process the data. The output is a 2D data array. 

The convolution operation used in convolution neural network is not exactly the same as 

defined in the equation above, but it is very similar. Figures 3.15-3.17 show how convolution 
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layer works for single channel input. In these figures, filter of size (3, 3) is used; the data to be 

processed have a size of (10, 10).  

The filter slides through the data from left to right, top to bottom. In Figure 3.15, the filter 

is on its first step. The output value can be calculated using the following equation: 

𝑜𝑢𝑡𝑝𝑢𝑡 = (∑ 𝑓𝑛 × ℎ𝑛) + 𝑏
9
𝑛=1                 (5) 

 

Figure 3.15. Convolution layer 1 

 

In this equation, 𝑓𝑛 are parameters in the filter, ℎ𝑛 are the input data, and 𝑏 is the bias 

term. These parameters (𝑓𝑛and bias) are initially randomly generated, and will be optimized 

through the training process. 

The output is stored in at the center pixel. Then the filter moves one step to the right, as is 

shown in Figure 3.16.  
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Figure 3.16. Convolution layer 2 

 

The output is calculated using equation (5), and the output is stored in the center pixel 

(ℎ5). The filter start moving from left to right, top to bottom, until it reaches the right bottom 

corner of the data, as shown in Figure 3.17. The number of steps that the filter moves every time 

is called stride. In the example shown in Figures 3.15-3.17, the filter moves one step every time, 

which means stride is equal to 1.  

 

Figure 3.17. Convolution layer 3 

 

At each step, an output is calculated using equation (2). These output forms a new feature 

map of size (9, 9).  
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Normal convolution procedure will reduce the size of the data by 1 when stride is equal 

to 1. In the example shown in Figure 3.17, the size of the input data is (10, 10), and the size of 

the output is (9, 9). In most of the CNN structure, the output size and the input size for a 

convolution layer should be the same. To achieve that, padding mechanism is used. As shown in 

Figure 3.18, one column of zeros and one row of zeros are added to surround the original data, so 

that the input size is increased from (10, 10) to (11, 11), and the size of the output becomes (10, 

10), which is the same as the size of the original input data.  

 

 

Figure 3.18. Convolution layer, with zero-padding 

 

Take (3, 3) filter for example. There are nine parameters in the filter. These parameters, 

as well as the bias term, are consistent when the filter slides from the beginning to the end of the 

input data. For each filter of size (3, 3), there are 9 + 1 = 10 parameters that need to be optimized 

through the training process. 

Normally, one filter is not sufficient to extract enough features from the input data. So 

multiple filters are used in a single convolution layer. Each filter has independent trainable 

parameters and bias. When each filter slides through the input data, a 2D feature map is produced 

as output. The number of feature maps is the same as the number of filters, and this number will 

be refereed as channel in this work. For example, when eight (3, 3) filters are used in a single 

convolution layer with zero-padding, and the input data is (10, 10), there will be eight channels 
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of 2D feature maps with a size of (10, 10) produced as output. Because each convolution layer 

has more filters, the layer has the capability to extract more features from the input data, but also 

the layer requires more computational power.  

3.3.2.2 Data preparation for 2D CNN 

As was mentioned at the end of Chapter 3.3.1, the output of the preprocessing algorithm 

are two indices that mark the start and end of the actual activity. Figure 19 is an example 3-axis 

acceleration data from the Simulated Falls and Daily Activities dataset.  

 

Figure 3.19. Sample data from the Simulated Falls and Daily Activities dataset. 

 

The output for this example data from the preprocessing algorithm is [170, 250]. That 

means in this data file, observation 1-169 and observation 251-414(end) belong to pre-\condition 

and postcondition; observation 170-250 belong to actual activity. The actual activity 

observations are divided into fix-length windows. Two different window size are tested in this 

work, including 10 and 20. Take the data in Figure 3.19 for example, 80 samples belong to actual 

activity. When window size is 10, these 80 observations are divided into eight windows, with 

each window containing 10 observations; when window size is 20, these 80 observations are 

divided into four windows, with each window containing 20 observations. These fix-length 

windows will be used as input to CNN. 

The CNN model was built using Tensorflow (version 1.10.0) (Abadi et al., 2015) with 

Keras back-end (Chollet, 2015). The code was written in python language (version 3.6.5) using 
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Anaconda platform (Version 5.2.0) (Anaconda Software Distribution, 2016), Spyder IDE 

(version 3.2.8). The program was run on PC. 

The Keras’ 2D CNN structure requires the input to be a 4D tensor with shape: [batch, 

rows, columns, channels] (Chollet, 2015). For the data used in this work, “batch” refers to fix-

length windows; “rows” refers to observations within each window; “columns” refers to the nine 

readings; “channels” refers to different locations. In this work, there are 52,444 batches in 

training set, 16,532 batches in testing set and 3,895 batches in validation set. Number of row is 

10 and 20 for windows size of 10 and 20 respectively. Number of columns is always nine. 

Number of channels depend on how many locations are used in the experiment. In this work 

different configurations of locations were tested including: 

1. Waist alone (one location) 

2. Head alone (one location) 

3. Chest alone (one location) 

4. Wrist alone (one location) 

5. Thigh alone (one location) 

6. Ankle alone (one location) 

7. Waist + thigh (two locations) 

8. Waist + thigh + wrist (three locations) 

9. Waist + thigh + wrist + chest (four locations) 

10. Waist + thigh + wrist + chest + head (five locations) 

11. All six locations 

 

Figure 3.20 is an example input data. This example contains one batch (window) of data, 

when window size is 10, and number of channels is two. This example data have a shape of [1, 

10, 9, 2].  
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Figure 3.20. Example of input data structure for Keras 2D CNN 

(one volunteer, one activity, one trial, one window, two channels (locations) 

 

The output of the model is the activity group (fall or non-fall). The output is a “one-hot 

vector” with two values in it. Both values are binary numbers. One of the value refers to fall 

activity and the other one refers to ADLs. When the activity belongs to fall activity, the “one-hot 

vector” is [1, 0]; when the activity belongs to ADLs, the “one-hot vector” is [0, 1].  

3.3.2.3 Structure of 2D CNN 

The CNN structure used in this thesis is developed based on LeNet (LeCun, Bottou, 

Bengio, & Haffner, 1998) with some simple modification.  

LeNet was a CNN structure proposed by LeCun et al. (1998) to recognize hand written 

numbers. In LeNet, there are two convolution groups and three fully connected layers. Each 

Convolution groups consists of one convolution layer and one subsampling layer.  

Compared to simple CNN models which only has one or multiple convolution layers 

connected in series followed by a couple of fully-connected layers, LeNet has the capability of 

doing more complicated feature extraction and better generalization. Meanwhile, LeNet is a 

fairly simple structure as compared to deeper CNN like VGG16 (Simonyan & Zisserman, 2014). 

Because the dataset used in this work is fairly simple as compared to large images that very 

complicated feature space, LeNet should have the proper complexity to deal with this dataset. 
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The structure of the CNN used in this work is shown in Figure 3.21.  

 

Figure 3.21. CNN structure used in this work 

 

This model is a sequential model that mainly consists of two convolution groups and two 

fully connected layers. Convolution layer has been described in Chapter 3.3.2.1. Fully connected 

layer is another type of layer in neural network. In fully connected layers, each hidden nodes is 

connected every input. Figure 3.22 is an example of a fully connected layer. This example layer 

has two hidden nodes, and the input size to the layer is three. 

 

Figure 3.22. Example fully connected layer (two hidden nodes, input size of 3) 
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Between the first convolution group and the second convolution group, there is a drop-

out layer with 25% dropout rate (Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov, 

2014). Dropout is a concept developed to deal with overfitting effect and increase neural 

network’s capability on generalization rate (Srivastava et al., 2014).  

During the training process of neural network, it happens a lot that some parameters have 

dominant influence on the output as compared to the other parameters. In this case, the neural 

network can achieve good result as long as the dominant parameters are close to the ground 

truth. If one or some of these dominant parameters do not have as much influence to new data as 

to the training data, very serious overfitting effect will occur. As a result, dropout is implemented 

to force the neural network to ignore a certain percentage of parameters at each training epoch to 

avoid certain parameters overly influencing the output of the neural network. The percentage of 

the ignored parameters is called dropout rate (Srivastava et al., 2014). Between the two fully 

connected layers, there is drop-out layer with 50% drop-out rate, and also, there is an activation 

function. The activation functions used in CNN is called rectified linear unit (ReLU). It is 

defined by the equation (6), and a plot of ReLU function is shown in Figure 3.22 (Nair & Hinton, 

2010). 

𝑦 = max⁡(0, 𝑥)                              (6) 

 

Figure 3.23. Plot of ReLU function  
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After the two fully connected layers, there is a soft max layer to convert the output of 

fully connected layer into probability distribution, all the output from soft max layer are floating 

numbers between 0 and 1, and the sum of these numbers is 1. Soft max can be defined using the 

following equation: 

𝑓(𝑠𝑖) =
𝑒𝑠𝑖

∑ 𝑒
𝑠𝑗𝐶

𝑗

                                    (7) 

 

In this equation, C stands for number of classes. 

 

Finally, output layer used “argmax” function to convert the probability distribution from 

soft max layer to prediction labels. In this work, there are only two different classes for CNN 

(fall and non-fall), so the output is 0 for non-fall and 1 for fall. 

 

The structure of the two convolution groups are shown in Figures 3.24 and 3.25. 
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Figure 3.24. Structure of first convolution group for 16-filter model, when 

window_size = 10
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Figure 3.25. Structure of second convolution group for 16-filter model, when 

window_size = 10 

 

Each convolution group consists of two convolution layers and one max-pooling layer. 

Max-pooling layer is used to reduce the size of feature maps (Nielsen, 2015). Take filter size = 

(2, 2), stride = two max-pooling layer for example, Figures 3.23-3.25 show such max-pooling 

layer applied to an 8 x 8 feature map:  
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Figure 3.26. Max-pooling-layer 1 

 

Figure 3.27. Max-pooling-layer 2 

 

Figure 3.28. Max-pooling-layer 3 

 

Max-pooling layer is essentially a maximum filter. At the first step, as is shown in Figure 

3.26, the max filter is at the top left corner of the feature map. The max-pooling layer finds out 
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the maximum value of x1, x2, x3 and x4, and use that max value as output of the first step. At 

the second step, as is shown in Figure 3.26, the max filter moves two steps to the right because 

stride equals 2, and again, max-pooling layer finds out the maximum value of x1, x2, x3 and x4. 

The max-pooling layer continues repeating this process until the max filter reaches the right 

bottom corner of the feature map as is shown in Figure 3.28. For the 8*8 feature map as is shown 

in Figures 3.26-3.28, this process is repeated for 4*4 = 16 times, and the 16 output value forms a 

4*4 new feature map. This new feature map is the output of max-pooling layer. In the example 

above, there are even number of rows and columns. In the case that there are odd number rows or 

columns, a column/row of −∞ will be padded to the original data so that the number of rows and 

columns are even number (Nielsen, 2015). The max-pooling layer used in this work, uses filter 

of size (2, 2), and stride of 2.  

The convolution layers implemented in this work use (3 3) kernel with stride equals to 1. 

Models with different number of filters were tested in this work, including 8-filter model, 16-

filter model, 32-filter model and 64-filter model. Eight-filter model means that eight filters are 

used in the first convolution layer in the model. Similarly, for 16-filter model, 16 filters are used 

in the first convolution layer; for 32-filter model, 32 filters are used in the first convolution layer; 

for 64-filter model, 64 filters are used in the first convolution layer. Figures 3.24 and 3.25 show 

the structure of the two convolution groups for a 16-filter model. In Figure 3.23, the two 

convolution layers in the first convolution group have 16 filters of size (3, 3). Because the max-

pooling layer in the first convolution group reduces the size of feature map from (9 10) to (5 5), 

the convolution layers in the second convolution group need to have more filters to compensate 

for the information loss caused by small feature map. So for 16-filter model, 16*2 = 32 filters 

were used for the convolution layers in the second convolution group. The max-pooling layer in 

the second convolution group again reduce the size of the feature map from (5 5) to (3 3). 

The structure of the fully connected layers are shown in Figure 3.29. The first fully 

connected layer needs to have the number of hidden nodes that roughly matches the number of 

features extracted from the convolution layers. Normally, the number of hidden nodes is 4 times 

the number of filters in the last convolution layer. So for a 16-filter model, as is shown in Figure 

3.29, the first fully connected layer contains 16*2*4 = 32*4 = 128 hidden nodes. The second 

fully connected layer needs to have the number of hidden nodes that equals to the number of 
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classes in the classification problem. In this work, the model is only designed to distinguish fall 

and non-fall activities. So there are two hidden nodes in the second fully connected layer.  

 

Figure 3.29. Structure of fully connected layers for 16-filter model  

 

3.3.3  Recurrent Neural Network 

The RNN structure used in this work is called “long short term memory (LSTM).”  

3.3.3.1 How long short term memory work (LSTM) 

LSTM is a type structure developed based on vanilla RNN. In vanilla RNN, the 

parameters of the neural network are multiplied by themselves repeatedly during 

backpropagation in training process. This will cause exploding gradient in the case when the 

parameter is larger than 1, and vanishing gradient in the case when the parameter is smaller than 

1. Long short term memory/LSTM is developed to resolve the vanishing/exploding gradient 

problem. (Hochreiter & Schmidhuber, 1997) 
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LSTM can be expressed mathematically using the following equations (Hochreiter & 

Schmidhuber, 1997): 

{
 

 
𝑖𝑡 = 𝜎𝑖(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)
𝑓𝑡 = 𝜎𝑓(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓)

𝑜𝑡 = 𝜎𝑜(𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜)
𝑔𝑡 = 𝜎𝑔(𝑊𝑔ℎℎ𝑡−1 +𝑊𝑔𝑥𝑥𝑡 + 𝑏𝑔)

               (8) 

 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡                                           (9) 

 

ℎ𝑡 = 𝑜𝑡𝜎𝑐(𝑐𝑡)                                                 (10) 

 

𝑦𝑡 = 𝜎𝑦(𝑊𝑦ℎ𝑡 + 𝑏𝑦)                                      (11) 

 

In LSTM, there are two hidden structures. One is called hidden states, which is 

represented as ℎ𝑡 in equations (8)-(11). Both vanilla RNN and LSTM have this hidden structure 

to store information from previous data samples. The second structure is called hidden cell, and 

is represented as “c” in equation (8) – (11). Hidden cell is unique structure that LSTM has. This 

structure is created so that the recurrent network has a more straight forward gradient flow 

during training process, so that neither exploding gradient nor vanishing gradient would happen. 

Also, in LSTM, there are four hidden gates, which are represented using i, f, o and g in equation 

(8) - (11). This four gates decide: 

1. Whether data from new input should be stored in hidden cell. 

2. Whether the information stored in current hidden structure should be carried onto the 

next hidden structure. 

3. Whether the information stored in the hidden cell should be used for the output. 

Equation (5) is used to calculate the four gates. 𝜎 represents activation function. Among 

these four activation functions, 𝜎𝑔 is tanh, and the other three are sigmoid. Figure 3.30 is a plot 

of tanh function; Sigmoid function is defined in the equation (12), and Figure 3.31 is a plot of a 

sigmoid function: 

𝑦(𝑥) =
1

1+𝑒−𝑥
                           (12) 
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Figure 3.30. Figure for “tanh” function  

 

 

 

 

Figure 3.31. Plot of sigmoid function  
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This 4-gate structure gives LSTM a better capability to select useful information as 

compared to simple RNN. Figure 3.32 is a demonstration of the LSTM structure at one recurrent 

step. 

 

Figure 3.32. LSTM at one recurrent step  

 

3.3.3.2 Data preparation 

Like CNN, RNN was built using Tensorflow with Keras backend. The code was written 

in python language using anaconda platform, spyder IDE. 

The input format for RNN is different from the one for CNN. For RNN, each data sample 

should be a sequence of data. For the dataset used in this work, one data sequence is one trial of 

activity performed by one volunteer. Each data sequence should consist of a sequence of fixed 

length slicing window, and each window is a 2D data for single sensor input, and multichannel 

2D data for multi-sensor input. 

In RNN, each input data sample needs to have the same size. But the lengths of each data 

file are different. Before inputting the data into RNN, some cropping were used to make the 

length of each data file consistent. In this work, all the data file were truncated to 150 data 

samples using the following algorithm: 

1. Read in the dataset, and read in the relabel index. The relabel index is generated by 

the data preprocessing algorithm which is mentioned in Chapter 3.3.1.  

2. If index_end < 150: The first 150 data samples in the data file are kept. 
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3. Else if (index_end – index_start) < 150: data from (index_end – 150) to index_end 

are kept 

4. Else: data from index_start to (index_start + 150). 

5. The 150 data samples within each data file were divided into 15 windows so that each 

window has 10 data samples.  

6.  

Figure 3.33 shows the flow chart of the data preparation algorithm: 

 

Figure 3.33. RNN data preparation algorithm 
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Part of the data that are kept belong to the “pre/postcondition” which was mentioned in 

earlier chapter. The pre/postcondition include activities like standing still, sitting and lying down. 

These activities were considered as the third category other than fall activity and non-fall 

activity. These activities will be referred as “pre/postcondition” later on. As a result, output of 

the RNN are one-hot vectors that have three values. Each one-hot vector is a prediction for one 

data window. [1,0,0] refers to “pre/postcondition”,  [0,1,0] refers to “fall-activity,” and [0,0,1] 

refers to “non-fall activities.” The reason that 150 is chosen to be the length of each data file is 

that when each data file is cropped to 150, the number of data in each of the three classes are 

balanced. 

 

3.3.3.3 LSTM model with convolution layers 

One of the RNN models tested in this work used LSTM combined with convolution 

layers 

The convolution structure used in this model is the same with the one used in 2D CNN 

which is mentioned in 3.3.2.1. It consists of two convolution layers. Each convolution layers has 

two convolution layers to extract features and one max-pooling layers to reduce the size of 

feature space. For each convolution groups, there is a dropout layer with 50% drop out rate to 

reduce the effect of overfitting. Because the size of the feature map in the second convolution 

group is half of the one in the first convolution group due to the max-pooling layer, the 

convolution layers in the second convolution group have twice as many filters as the convolution 

layers in the first convolution group.  

The 2D output of the two convolution groups is flattened into a 1D vector and used as 

input to a single LSTM layer. Within the LSTM layer, there is a 50% drop off rate for the 

recurrent parameters. And for each RNN layers, different number of hidden nodes were tested. 

After the RNN layers, there is a fully connected layer with three hidden nodes, and a soft-

max layer to convert possibility distribution into one-hot vector.  

The structure of this RNN model is shown in Figure 3.34. This figure shows the model 

with one layer of simple RNN. When multiple RNN layers are used, the additional RNN layers 

are connected in serious between the first RNN layer and fully connected layer. 
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Figure 3.34. Structure of LSTM with Convolution layers 

 

3.3.3.4 LSTM with convolution transformation 

The other RNN structure used in this work is LSTM with convolution transformation. In 

this structure, only one LSTM layer and one fully-connected layer are used. The input data is fed 

directly into LSTM layer. After the LSTM layer, there is one fully-connected layer and one soft-

max layer. Yet different from normal LSTM layer, the LSTM layer in this structure uses 

convolution transformation instead of linear transformation for input and recurrent 

transformation. The structure of this model is shown in Figure 3.35.  

 

 

Figure 3.35. Structure of LSTM model with convolution transformation 
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3.3.4 Neural Network Training, Validation and Testing 

Neural network models in this work use the following training setup: 

1. Number of epochs: 100 

2. Batch size = 30 

3. Optimizer: Stochastic Gradient Descent  

4. Loss function: Categorical cross-entropy 

5. Learning rate used in this work is different for CNN and RNN. For CNN, the learning 

rate is 0.005 with no decay; for RNN, the learning rate is 0.002 with no decay. 

The loss function used in this work is Categorical cross-entropy. It is a type of loss 

function is normally used in classification problems when only one result is correct. The loss 

function is defined as: 

 

𝐶𝐸 = ∑ 𝑡𝑖log⁡(𝑓(𝑠𝑖))
𝐶
𝑖                           (13) 

 

In equation (13), 𝐶𝐸 stands for cross-entropy loss, 𝐶 stands for number of classes, 𝑡𝑖 is 

ground truth value and 𝑠𝑖 is the score from the model. 𝑓(𝑠𝑖) is soft max function, and was 

defined early in equation (7). The optimization algorithm used in this work is Stochastic 

Gradient Descent. Gradient Descent is one of the most commonly used algorithm for optimizing 

mathematical models. This algorithm calculates the loss at every training step, then calculate the 

gradients of every parameter within the neural network with respect to the loss, and then update 

the parameters based on the gradients and loss. As compared to normal gradient descent, 

Stochastic Gradient Descent uses a small batch of data to calculate the loss instead of the whole 

dataset. As a result, when dealing with large dataset, Stochastic Gradient Descent has a faster 

computation speed than normal Gradient Descent. (Bottou, 2010) 

As mentioned in Chapter 3.3.1, the dataset was divided into training set, validation set 

and testing set. The training set has data from 12 volunteers; testing set has data from four 

volunteers; validation set has data from one volunteer. For CNN model, the training set contains 

52444 data samples (23969 fall samples, 28475 non-fall samples); testing set has data from four 

volunteers, containing 16532 data samples (7120 fall samples, 9412 non-fall samples); validation 

set has data from one volunteer, containing 3895 (1812 fall samples, 2070 non-fall samples). For 

RNN, the training set contains 2056 data samples/sequences, 30840 windows (9568 non-fall 
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windows, 11610 fall windows, and 9662 pre/postcondition windows); the testing set contains 

632 data samples/sequences, 9480 data windows (3046 non-fall windows, 3482 fall windows and 

2952 non-fall windows); the validation set contains 154 data samples/sequences, 2310 data 

windows (731 non-fall windows, 893 fall windows, and 686 pre/postcondition windows).  

Initially, all the models are trained using the training set, and a training accuracy and loss 

are generated in real time; meanwhile, for each training epoch, the model is tested using 

validation set to generate a validation accuracy and loss. Both training accuracy/loss and 

validation accuracy/loss are generated during the training process, and these four values are 

plotted on training curves. After training for 100 epochs, the trained model is tested using the test 

set, and generate a test accuracy, a test loss, and a test result which contains a table of 

predictions. Based on the test result, sensitivity and specificity can be calculated using the 

following equations: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑓𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                  (14) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑢𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑢𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑓𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                  (15) 

 

Test accuracy, sensitivity and specificity are used to make initial comparison between 

models.  

In the experiments, two CNN models were found to have close performance based on 

these three parameters, and these two models were further compared using 10-fold cross 

validation. 

In 10-fold cross validation process, the training set is divided evenly into 10 groups, and 

each group is called one fold. At each step, one fold is used for validation, and the other nine 

folds are used for training, and a validation accuracy can be obtained. This step is repeated for 10 

times so that each fold is used for validation one time. For 10-fold cross validation, 10 validation 

accuracy can be obtained. The average of the 10 validation accuracies is used to compare the 

performance of different models. 
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 RESULTS 

4.1 Convolution Neural Network 

This chapter includes the results for all the experiment, and also the analysis and 

conclusion based on these results. All the accuracy on testing set, along with the sensitivity and 

specificity are recorded in Tables 4.1-4.10; all the training accuracy/loss and validation 

accuracy/loss are plotted and shown in Figures 4.1-4.10.  

4.1.1 Comparison between different sensor setups 

4.1.1.1 Comparison between different number of sensors 

Theoretically, data from more locations contain more adequate and complete information. 

As a result, the model should have a better performance when more locations are used. Yet from 

real world application prospective, more locations means less convenience for the patients.  

In this work, data from one location were tested initially. The locations that was used is 

waist because waist is normally considered to be the body part that has the least redundant 

movements. The result can be seen in Tables 4.1 and 4.2. The accuracy of the CNN ranges from 

94.02% (8-filter model, window size is 10), to 96.65% (64-filter model, window size is 20).  
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Table 4.1 Experiment with data of 10 window size, from waist sensor 

a. 8-filter model 

8filter_10window_1location 

  TRUE FALSE 

Fall 6849 271 

non_fall 8695 717 

Accuracy Sensitivity Specificity 

94.02% 96.19% 92.38% 

b. 16-filter model 

16filter_10window_1location 

  TRUE FALSE 

Fall 6901 219 

non_fall 8856 556 

Accuracy Sensitivity Specificity 

95.31% 96.92% 94.09% 

c. 32-filter model 

32filter_10window_1location 

  TRUE FALSE 

Fall 6899 221 

non_fall 9014 398 

Accuracy Sensitivity Specificity 

96.25% 96.89% 95.77% 

d. 64-filter model 

64filter_10window_1location 

  TRUE FALSE 

Fall 6886 234 

non_fall 8967 445 

Accuracy Sensitivity Specificity 

95.89% 96.71% 95.27% 
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Table 4.2 Experiment with data of 20 window size, from waist sensor 

a. 8-filter model 

8filter_20window_1location 

  TRUE FALSE 

Fall 3236 134 

non_fall 4346 234 

Accuracy Sensitivity Specificity 

95.37% 96.02% 94.89% 

b. 16-filter model 

16filter_20window_1location 

  TRUE FALSE 

Fall 3226 144 

non_fall 4398 182 

Accuracy Sensitivity Specificity 

95.90% 95.3% 96.03% 

c. 32-filter model 

32filter_20window_1location 

  TRUE FALSE 

Fall 3221 149 

non_fall 4437 143 

Accuracy Sensitivity Specificity 

96.33% 95.58% 96.88% 

d. 64-filter model 

64filter_20window_1location 

  TRUE FALSE 

Fall 3292 78 

non_fall 4392 188 

Accuracy Sensitivity Specificity 

96.65% 97.69% 95.90% 

 

Then two locations input were tested. In addition to waist, data from thigh was used, 

because thigh contains additional information from the movement on legs, which can be useful 

for activity recognition. The result can be seen in Tables 4.3 and 4.4.  
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Table 4.3 Experiment with data of 10 window size, from waist sensor & thigh sensor 

a. 8-filter model 

8filter_10window_2location 

  TRUE FALSE 

Fall 6510 610 

non_fall 8635 777 

Accuracy Sensitivity Specificity 

91.61% 91.43% 91.75% 

b. 16-filter model 

16filter_10window_2location 

  TRUE FALSE 

Fall 6672 448 

non_fall 8961 451 

Accuracy Sensitivity Specificity 

94.56% 93.71% 95.21% 

c. 32-filter model 

32filter_10window_2location 

  TRUE FALSE 

Fall 5845 1275 

non_fall 9193 219 

Accuracy Sensitivity Specificity 

90.96% 82.09% 97.67% 

d. 64-filter model 

64filter_10window_2sensor 

  TRUE FALSE 

Fall 6742 378 

non_fall 8981 431 

Accuracy Sensitivity Specificity 

95.11% 94.69% 95.42% 
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Table 4.4 Experiment with data of 20 window size, from waist sensor & thigh sensor 

a. 8-filter model 

8filter_20window_2location 

  TRUE FALSE 

Fall 3221 149 

non_fall 4282 298 

Accuracy Sensitivity Specificity 

94.38% 95.58% 93.49% 

b. 16-filter model 

16filter_20window_2location 

  TRUE FALSE 

Fall 3255 115 

non_fall 4286 294 

Accuracy Sensitivity Specificity 

94.86% 96.59% 93.58% 

c. 32-filter model 

32filter_20window_2location 

  TRUE FALSE 

Fall 3219 151 

non_fall 4405 175 

Accuracy Sensitivity Specificity 

95.90% 95.52% 96.18% 

d. 64-filter model 

64filter_20window_2location 

  TRUE FALSE 

Fall 3214 156 

non_fall 4416 164 

Accuracy Sensitivity Specificity 

95.97% 95.37% 96.42% 

 

It is expected 2-location input can provide better performance to the model as compared 

to 1-location input. But when comparing Tables 4.3 and 4.4 to Tables 4.1 and 4.2, it can be seen 

that models with 2-location input have worse performances. In most cases, the accuracy for 2-

location input is about 1% lower than that of 1-location input. For the 8-filter model with 

window size of 10, and the 32-filters with window size of 10, the accuracies for 2-location input 

are approximately 2.5% lower those for 1-location input. 
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This decrease on performance is most possibily caused by overfitting. The reason can be 

seen from the training and validation plot in Figures 4.1 and 4.2.  

 

a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.1. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist only
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a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.2. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist and thigh 

 

Figure 4.1 shows the training and validation curve for 16-filter model with window size 

of 10, waist location only.` Figure 4.2 shows the training and validation curve for16-filter model 

with window size of 10, waist and thigh locations. In Figure 4.1, at around the 30th epochs, 

validation performance stops increasing, but there is no obvious decreasing trend either. That 

means for the 1-location model, from the 30th epoch, overfitting starts to appear, but it is so 

minor that it does not affect the performance of the model a lot. In Figure 4.2 however, at around 

15th epoch, validation performance stops increasing, and a decreasing trend can be observed 
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from the figure. It can be concluded that overfitting in 2-location model happened a lot earlier 

than it happened in 1-location model. The overfitting is big enough to affect the performance of 

the model.  

To further prove that using input data from more locations cannot help increase the 

performance of the model, 3-location, 4-location, 5-location and 6-location input were tested. 

Locations used for 3-location input were waist, thigh and wrist. Locations used for 4-location 

input were waist, thigh, wrist and chest. Locations used for 5-location input were waist, thigh, 

wrist, chest, and head. The models used for this test are 16-filter model with window size of 10, 

and 32-filter model with window size of 10, because these two models have the best performance 

for single sensor input, which will be discussed later on. The result of the test is recorded in 

Tables 4.5 and 4.6. 
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Table 4.5 Comparison between different numbers of sensor locations. Model used is 16-

filter model with window size of 10 input. 

a. 1 location 

16filter_10window_1location 

  TRUE FALSE 

Fall 6901 219 

non_fall 8856 556 

Accuracy Sensitivity Specificity 

95.31% 96.92% 94.10% 

b. 2 location 

16filter_10window_2location 

  TRUE FALSE 

Fall 6672 448 

non_fall 8961 451 

Accuracy Sensitivity Specificity 

94.56% 93.71% 95.21% 

c. 3 location 

16filter_10window_3location 

  TRUE FALSE 

Fall 8845 567 

non_fall 6688 432 

Accuracy Sensitivity Specificity 

93.96% 93.98% 93.93% 

d. 4 location 

16filter_10window_4location 

  TRUE FALSE 

Fall 8877 535 

non_fall 6669 451 

Accuracy Sensitivity Specificity 

94.04% 94.32% 93.67% 

e. 5 location 

16filter_10window_5location 

  TRUE FALSE 

Fall 5961 1159 

non_fall 8801 611 

Accuracy Sensitivity Specificity 

89.29% 83.72% 93.51% 
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Table 4.5 continued 

f. 6 location 

16filter_10window_6location 

  TRUE FALSE 

Fall 5143 1977 

non_fall 9075 337 

Accuracy Sensitivity Specificity 

86.00% 72.23% 96.42% 

 

Table 4.6 Comparison between different numbers of sensor locations. Model used is 32-

filter model with window size of 10 input. 

a. 1 location 

32filter_10window_1location 

  TRUE FALSE 

Fall 6899 221 

non_fall 9014 398 

Accuracy Sensitivity Specificity 

96.26% 96.90% 95.77% 

b. 2 location 

32filter_10window_2location 

  TRUE FALSE 

Fall 6672 448 

non_fall 8961 451 

Accuracy Sensitivity Specificity 

94.56% 93.71% 95.21% 

c. 3 location 

32filter_10window_3location 

  TRUE FALSE 

Fall 8798 614 

non_fall 6813 307 

Accuracy Sensitivity Specificity 

94.43% 93.48% 95.69% 
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Table 4.6 continued 

d. 4 location 

32filter_10window_4location 

  TRUE FALSE 

Fall 8761 651 

non_fall 6603 517 

Accuracy Sensitivity Specificity 

92.93% 93.08% 92.74% 

e. 5 location 

32filter_10window_5location 

  TRUE FALSE 

Fall 5719 1401 

non_fall 8853 559 

Accuracy Sensitivity Specificity 

88.14% 80.32% 94.06% 

f. 6 location 

32filter_10window_6location 

  TRUE FALSE 

Fall 6103 1017 

non_fall 8829 483 

Accuracy Sensitivity Specificity 

90.87% 85.72% 94.81% 

 

As shown in Tables 4.5 and 4.6, models with data from 1 location input provided 

accuracies above 95%. Models with 2-location, 3-location, and 4-location input had similar 

performances, with accuracies between 92.9% and 94.6%. 5-location and 6-location on the other 

hand, had the worst performance, with an accuracy around or even lower than 90%.  

Figure 4.3-4.6 show the training and validation curves when three to six locations were 

used. 
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a) Accuracy plot 

 

 

b) Loss plot 

 

Figure 4.3. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist, thigh & wrist
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a) Accuracy plot 

 

 

 

 

b) Loss plot 

 

Figure 4.4. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist, thigh, wrist & chest 
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a) Accuracy plot 

 

 

 

 

b) Loss plot 

 

Figure 4.5. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist, thigh, wrist, chest, and head
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a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.6. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, all six locations 

 

When comparing Figures 4.3-4.6 to Figures 4.1 and 4.2, it can be seen that when more 

locations were used, the accuracy plot and loss plot converged faster, but the gaps between the 

training curve and validation curve became bigger. It can be concluded that when more locations 

of input were used, the overfitting effect became more serious, and the accuracy of the model 

became worse. 

Considering the possibility that 2D convolution network cannot fully comprehend 3D 

data, 3D convolution neural network was tested on 2-location input and 3-location input. The 
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performances of both model are shown in Table 4.7. The training and validation curves for 2-

location input is shown in Figure 4.7. 

As can be seen in Table 4.7, 3D model has an accuracy of 95.42%, which is 0.57% higher 

than the 2D model, but still lower than single location model; also, according to the loss plot 

shown in Figure 4.7, big gap between training curve and validation curve can be observed. The 

3D model cannot effectively solve the problem caused by overfitting. 

As a result, with the CNN structure used in this work, adding data from more locations 

does not help increase the performance of the model. The possible reason for that is, for the 

given CNN structure, most of the additional information added by sensors other than waist 

sensor are not useful information that can help the model do better recognition. Thus, CNN tried 

to fit these “useless” information and leads to overfitting, which cause the performance of the 

model to decrease.  

 

Table 4.7 Comparison between 2D CNN and 3D CNN for 2-location input.  

a. 16-filter, 20 window size, 2D model 

16filter_20window_2sensor 

  TRUE FALSE 

Fall 3255 115 

non_fall 4286 294 

Accuracy Sensitivity Specificity 

94.86% 96.59% 93.58% 

 

b. 16-filter, 20 window size, 3D model 

16filter_20window_2sensor_3d 

  TRUE FALSE 

Fall 3199 171 

non_fall 4387 193 

Accuracy Sensitivity Specificity 

95.42% 94.93% 95.79% 
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a) Accuracy plot 

 

 

b) Loss plot 

 

Figure 4.7. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist and thigh, using 3D convolution 

4.1.1.2 Comparison between different locations for single location input 

From the discussion in 4.1.1.1, single location input data was favored to be the best 

choice. It still required to know which location is the best among the six locations (ankle, chest, 

head, waist, wrist, and thigh). 

Each of the six locations was used individually as the input to a 16-filter, 10-window-size 

CNN. The result is shown in Table 4.8. 
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Table 4.8 Comparison between different locations when single location input is used.  

a. Waist 

16filter_10window_waist 

  TRUE FALSE 

Fall 6901 219 

non_fall 8856 556 

Accuracy Sensitivity Specificity 

95.31% 96.92% 94.09% 

b. Ankle 

16filter_10window_ankle 

  TRUE FALSE 

Fall 6457 663 

non_fall 8288 1124 

Accuracy Sensitivity Specificity 

89.19% 90.69% 88.06% 

c. Chest 

16filter_10window_chest 

  TRUE FALSE 

Fall 6640 480 

non_fall 8612 800 

Accuracy Sensitivity Specificity 

92.26% 93.26% 91.50% 

d. Head 

16filter_10window_head 

  TRUE FALSE 

Fall 5275 1845 

non_fall 8464 948 

Accuracy Sensitivity Specificity 

83.11% 74.09% 89.93% 

e. Thigh 

16filter_10window_thigh 

  TRUE FALSE 

Fall 6795 325 

non_fall 8582 830 

Accuracy Sensitivity Specificity 

93.01% 95.44% 91.18% 
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Table 4.8 continued 

f. Wrist 

16filter_10window_wrist 

  TRUE FALSE 

Fall 6600 520 

non_fall 8355 1057 

Accuracy Sensitivity Specificity 

90.46% 92.70% 88.77% 

 

As can be seen in Table 4.8 (f), the model achieved 95.3% accuracy when waist sensor 

was used. This is the highest accuracy among the six locations. So it can be concluded that 

mounting the sensor on waist is the best choice.  

 

4.1.2 Comparison between different window sizes 

Size of the window reflect the amount of information on time domain that is contained 

within each data sample. When the window size is bigger, it should be easier for the model to 

identify the type of activity.  

Meanwhile, bigger window size means the model requires more data on time domain to 

make a decision. That indicates that the model has slower reflection speed when predicting fall 

events. 

In this work, window size of 10 (0.4s/window) and window size of 20 (0.8s/window) 

were tested. The result are shown in Tables 4.1 and 4.2.  

Because window size of 20 can already yield an accuracy up to almost 96.7%, larger 

window size were not tested in this work. Also, the CNN structure used in this work utilize (3,3) 

kernel to extract features, and max-pooling layers were used to reduce the size of the data by 

half, so window size smaller than 10 were not tested in this work either. 

The highest accuracy for 10 window size input obtained by 32-filter model was 96.26% 

(Table 4.1(c)). The highest accuracy for 20 window size input obtained by 64-filter model, was 

96.65% (Table 4.2(d)). Both models showed comparable accuracies. However, 10 window size 

is preferable because it provides a response time of 0.4 second as compared to the 0.8 second for 

20 window size. 
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4.1.3 Comparison between different number of filters 

For a given CNN structure, the number of filters used in the convolution layers represent 

the complexity of the model. More complex model has higher capability to extract features and 

do classification to high dimension data, but it also has higher chance of overfitting and requires 

larger computation power. 

In this work, 8-filter model, 16-filter model, 32-filter model and 64-filter model were 

tested to find out the most suitable model for the given problem. As can be seen in Table 4.1, 8-

filter models have the lowest accuracy among the four types of models, more than 1% less than 

the second worst model (16-filter model). The reason can be found in Figure 4.8 (a). This figure 

shows the accuracy plot for 8-filter model with window size of 10. In this figure, the training 

accuracy can barely reach 95% at the end of the training process. Compared to the other three 

models, this training accuracy is very low, which means that 8-filter model is too simple to 

extract enough features and do proper classification.  
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a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.8. Accuracy and loss plot during training process, when filter = 8, window_size 

= 10, waist sensor only.  

 

Among the other three models, 64-fitler model has the highest computational complexity, 

but the accuracy of 64-filter model is even lower than 32-filter model, only 0.5% higher than 16-

filter model. The reason can be seen in Figure 4.7. There is a big gap between training curves 

and validation curves in both accuracy plot and loss plot, which means that there is a serious 

overfitting effect for 64-filter model. This overfitting effect is most possibly caused by the overly 

complexed structure of 64-filter model, which means that the complexity of 64-filter model is 

excessive for this given dataset. 
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For the 16-filter and 32-filter model, the training and validation curves in Figures 4.8 and 

4.9 show that none of them have serious overfitting. The 32-filter model have better performance 

than 16-filter model, but the increase is only about 0.7%, which can be caused by random 

factors. Further comparison between 16-filter model and 32-filter model was made using 10-fold 

cross validation to eliminate the possible effect of random factors. The result is shown in Table 

4.9. 

a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.9. Accuracy and loss plot during training process, when filter = 16, window_size 

= 10, waist sensor only. (Same as figure 4.1) 
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a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.10. Accuracy and loss plot during training process, when filter = 32, 

window_size = 10, waist sensor only.  
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Table 4.9 Comparison between 16-filter model and 32-filter model using 10-fold cross validation 

a. 16-filter model 

10-fold cross validation                                                   

(win_size=10, 16 filter, learning rate = 0.05) 

  Loss Accuracy 

1 0.07627 96.99% 

2 0.06422 97.43% 

3 0.06783 97.33% 

4 0.06582 97.31% 

5 0.0715 97.24% 

6 0.06884 97.16% 

7 0.07172 97.29% 

8 0.09037 96.55% 

9 0.06567 97.35% 

10 0.06291 97.43% 

Average accuracy 97.21% 

Epoch 100 

32-fitler model 

10-fold cross validation                                                   

(win_size=10, 32 filter, learning rate = 0.05) 

 Loss Accuracy 

1 0.0511 98.17% 

2 0.05037 98.13% 

3 0.06173 97.52% 

4 0.04516 98.38% 

5 0.04471 98.34% 

6 0.05884 97.73% 

7 0.05224 98.13% 

8 0.05354 97.88% 

9 0.04637 98.21% 

10 0.04182 98.42% 

Average accuracy 98.09% 

Epoch 100 

 

As can be seen in Table 4.9, 32-filter model has an average accuracy of 98.09%, about 

0.8% higher than the 16-filter model. Yet considering the fact that 32-filter model has a higher 

computational complexity than 16-filter model, 16-filter model is a better choice for this given 

dataset. 
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4.1.4 Test on fall prediction capability 

The result shown in Table 4.1 shows the performance of the models on recognizing fall 

and non-fall activity based on data starting from the beginning of the activity to the end of the 

activity. Yet it is possible that the models perform better on data in the middle and at the end of 

an activity, but perform not as well on data at the beginning of the data. In that case, the models 

do not have the capability of predicting fall activity before the fall happens. 

In order to test the models’ performance on predicting fall, the first 1second of data (4 

windows, window size = 10) were extracted from each data file. These data represent the start of 

activities. For fall activities, most these data represent the data before the fall events happen. 

These data were used as input to 16-filter model. The result is shown in Table 4.10. 

Table 4.10 Test result on performance of fall prediction 

16filter_10window_1sensor 

  TRUE FALSE 

Fall 929 79 

non_fall 1490 30 

Accuracy Sensitivity Specificity 

95.69% 92.16% 98.03% 

 

As can be seen in Table 4.10, there is no obvious drop on accuracy as compared to the 

accuracy in Table 4.1(b), which means that the model is able to predict falling event before it 

happens.  
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4.2 Recurrent Neural Network 

LSTM with convolution layers model and LSTM with convolution transformation model 

were tested in this work. In this work, waist location only is the only sensor configuration tested 

for RNN. The results are shown in tables 4.11 and 4.12. Training and validation curves are 

shown in figures 4.11 and 4.12. (LSTM with convolution layers model will be referred as 

LSTM1, and LSTM with convolution transformation will be referred as LSTM2 in later 

discussion)  

Table 4.11 Test result on LSTM with Convolution layer model (LSTM1) 

LSTM with convolution layers(LSTM1 model) 

  
Predicted Label 

Fall Pre/postcondition Non-fall 

True 

Label 

Fall 3377 100 5 

Pre/postcondition 83 2854 15 

Non-fall 24 32 2990 

  In-class accuracy 96.93% 95.58% 99.34% 

  Overall accuracy 97.24% 

 

Table 4.12 Test result on LSTM with convolution transformation (LSTM2) 

LSTM with convolution transformation (LSTM2 model) 

  
Predicted Label 

Fall Pre/postcondition Non-fall 

True 

Label 

Fall 3226 221 35 

Pre/postcondition 35 2869 48 

Non-fall 74 56 2916 

  In-class accuracy 96.73% 91.20% 97.23% 

  Overall accuracy 95.02% 
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a) Accuracy plot 

 

 

 

b) Loss plot 

 

Figure 4.11 Accuracy and loss plot during training process for LSTM with convolution 

layers (LSTM1)
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a) Accuracy plot 

 

b) Loss plot 

 

Figure 4.12 Accuracy and loss plot during training process for LSTM with convolution 

transformation (LSTM2) 

 

As shown in table 4.11 and 4.12, LSTM1 model had an accuracy of 97.24%; LSTM2 

model had an accuracy of 95.02%. LSTM1 provided very similar performance to that by LSTM2 

model (LSTM1 is 2% higher). The difference of performance between the models can be more 

clearly observed from training and validation curves in figure 4.11 and 4.12. Training curves of 

both models converged to an accuracy of approximately 96% (figure 4.11a and 4.12a) and a loss 

of 0.1 (figure 4.11b and 4.12b). Comparison of training and validation curves of LSTM1 and 

LSTM2 model (figure 4.11 and 4.12) shows a noticeable gap between the training and validation 
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curves at later stage of epochs (>20) for LSTM2 model as compared to that in LSTM1 model. 

This indicates that LTM1 model has much less overfitting effect as compared to LSTM2.  

It was observed from in-class accuracies (in table 4.11 and 4.12) that for both models, 

non-fall class has the highest accuracy (99.34% for LSTM1 model and 97.23% for LSTM2 

model), and pre/postcondition class has the lowest accuracy (95.58% for LSTM1 model and 

91.2% for LSTM2 model). The low accuracy for pre/postcondition class is largely caused by 

misclassifying pre/postcondition into fall activity. In LSTM1 model, 100 misclassification cases 

out of 132 were found in “fall activity” class. In LSTM2 model, 221 misclassification cases out 

of 277 were found in “fall activity” class. This means the transition point between precondition 

and fall activity is difficult for RNN to identify. Also, this result might be caused by any error in 

identifying the boundary between precondition and actual activity of the preprocessing 

algorithm. However, the RNN in this work tends to classify pre-condition into fall activity.  Thus 

in real world application, the RNN would detect fall activities before it happens.  

Compared to CNN model, the accuracy for LSTM1 model is very comparable to the 

highest accuracy of CNN (approximately 0.7% higher). Although this difference is very small, 

LSTM1 model achieved its accuracy using window size of 10 as input, while the highest 

accuracy of CNN was provided when input window size was 20. The result follows an expected 

pattern. Because for CNN, when the input window size was smaller, the time domain 

information contained in each window decreased. As CNN doesn’t have the capability to find 

correlations between each window, the performance for CNN is lower when the window size is 

smaller. However, RNN has the capability to “remember” the information from the previous 

window because of the hidden unit structure. As a result, the performance of RNN doesn’t get 

affected much by the decrease of window size. For conclusion, RNN (as compared to CNN) can 

provide high classification accuracy while increasing the speed of response of the system.  

4.3 Discussion 

Based on the result from the experiments, it can be concluded that 16-filter CNN model, 

when input is from waist only, and when input window size is 10, is the best choice for this 

dataset. This model set up has an accuracy of 95.31% on testing set. With the same sensor 

configuration and input setup, LSTM with convolution layers model achieves an accuracy of 

97.24%.  
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In the work done by Ozdemir & Barshan (2014), over 99% accuracy was achieved by 

using machine learning algorithms including support vector machine, k-nearest-neighbor and etc. 

In their work, a time index AT was found for each trial of activity. This index is the peak of total 

acceleration of waist location (total acceleration was defined in Chapter 3.2). Data of 2 seconds 

before and after AT (25Hz*2second*2+1 = 101 data samples) were used as input, and all the 

other data samples were ignored. This input window was applied to all the nine sensor readings 

and all six locations. For each input window, there are six 101*9 arrays. The following features 

were extracted for each input window: minimum, maximum, mean, variance, skewness, kurtosis, 

first 11 values of autocorrelation sequence, and first five peaks of discrete Fourier transform. 

There are 234 feature values extracted from each location, which means 234*6 = 1404 feature 

values were extracted from each trial of activity. These 1040 feature values were put into 

principle component analysis, and 30 new values were generated. Each trial of activity has a 

feature vector that contains 30 values in it, and 2520 activity trials in total (1400 falls, 1120 non-

falls) were used their work. These 2520 feature vectors were used as input to machine learning 

model. The accuracy was obtained by 10-fold cross validation.  

When comparing the models developed in this work to the models developed by Ozdemir 

and Barshan, it can be seen that Ozdemir and Barshan’s mode has much higher accuracy. Yet 

based on their method of creating input data, it can be safely concluded that their model does not 

have the capability to predict fall activities. 

Yet for both CNN and RNN models developed in this work, they can use small data 

windows (0.4s) as input, and make classification at an interval of 0.2 seconds for CNN/0.4 

second for RNN. So with additional modification, both RNN and CNN models developed in this 

work have the potential to predict falling events. 

4.4 Theoretical design of a complete fall-prediction system 

The systems proposed in this work should be able to read values from inertia sensors, use 

neural network to process the data and recognize when the patient is about to fall, and then give 

alarm to the patient. Two designs are proposed in this work: one is based on cell phone and the 

other one is based on microprocessor. 
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4.4.1 Design based on microprocessor 

Sensors used for data collection in this system would include: an accelerometer, a 

gyroscope, and a compass. According to the conclusion drawn from the previous part, the system 

has the best performance when the sensors are only mounted on the waist. Each sensor has three 

axis. Nine different readings can be collected from the sensors at each time step. These nine 

readings will be referred as one data sample later on. The data will be stored as floating number 

which occupies 32 bits (4 bytes). The data should be collected at a frequency of 25Hz. A data 

sample will be collected every 0.04s (40ms).  

A microprocessor will be used to collect and process data. Data collection and data 

processing may be done in parallel within the microprocessor depending on the capability of the 

processor. According to the conclusion from the previous part, both CNN and RNN take data 

with window size of 10 as input. For CNN, each adjacent window has 50% overlap, which 

means that in each input window, there are five new data samples and five old data samples. 

These 10 data samples (one window) will be fed into CNN directly without any preprocessing. 

The system will process one set of input every 0.04*(10*50%) = 0.2 second. So the processor 

that run CNN should be able to finish one forward phase within 0.2 second. Only 10 data 

samples will be stored in microprocessor’s memory. For each new data samples that comes in, 

the oldest data sample will be erased from memory. The processor that run CNN should be able 

to finish one forward phase within 0.2 second. For RNN, there is no overlapping between each 

adjacent window. So, an input window can be formed for every 10 new data samples. These 10 

data samples (one window) can be fed into RNN directly without any preprocessing. The system 

will process one set of input every 0.04*10=0.4 second.  So the processor that run RNN should 

be able to finish one forward phase within 0.4 second. Like CNN, 10 data samples will be stored 

in the memory. For each new data samples that comes in, the oldest data sample will be erased 

from the memory. 

The output for both neural network is a binary output. The number 1 indicates that the 

patient is about to fall down, and 0 indicates that the patient is doing daily activities 

(pre/postcondition in RNN will be categorized into daily activity). When the output is 1, the 

microprocessor will activate the actuator through GPIO. The choice of actuator will be decided 

in future work. The microprocessor will use Ubuntu as operating system. The system will be 

stored in a micro-SD card. Both python IDE and Tensorflow package will be installed in the 
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Ubuntu system. The implementation of neural network will use Tensorflow package with Keras 

backend. Sensors, the microprocessor and the actuator will be powered by batteries. The design 

of the system is shown in Figure 4.13. 

 

Figure 4.13 Design of system based on microprocessor 

 

4.4.2 Design based on smart phone 

The overall design for the system based on smart phone is very similar to the one based 

on microprocessor. Nowadays, most of the smart phones have in-built accelerometer (3-aixs), 
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gyroscope (3-axis), and compass (3-axis). However, for implementing model for any smart 

phones, the following factors needs to be considered: 

1. The resolution and data collection rate of the smart phone in-build sensor needs to be 

the same or higher than the sensor mentioned in this study at all situation. 

2. Chosen smart phone needs to have 3-axis accelerometer, 3-axis gyroscope and 3-axis 

compass. 

3. The processor in the smart phone should be able to finish 1 forward phase of CNN 

within 0.2 second, or 1 forward phase of RNN within 0.4 second. 

 

So the system will collect data from in-built accelerometer, gyroscope, and compass. 

Because each sensor has three axis, nine readings will be collected at each time step. The smart 

phone-embedded CPU/GPU will be used to process the data. The neural network model will be 

converted to cell phone app using Tensorflow Lite package. This app should read data from 

smart-phone in-built sensors, process the data using CNN/RNN model, and control an actuator to 

give alarm to the patient. The choice of actuator will be decided in future works. Figure 4.12 is a 

simple diagram of an Android cell phone-based pre-fall detection system.
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Figure 4.14 Design of system based on Android cell-phone 
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 SUMMARY, CONCLUSIONS, AND 

RECOMENDATIONS 

5.1 Conclusion 

In this work, a CNN model and a RNN mode were developed. According to the results of 

the experiments, both neural networks provided good performances regarding the “Simulated 

Falls and Daily Living Activities” dataset. All the CNN setups that were tested in this work 

could achieve an accuracy of over 85%. 16-filter model, with the input from waist location only, 

and with the window size of 10, proved to be the best setup for this given dataset. This model has 

an accuracy of 95.31% on testing set, and 97.21% based on 10-cross validation. Given that the 

data collection rate of the sensor is 25Hz, this mode can take 0.4 second input data window, and 

make prediction every 0.2 second. The input to the model is the data directly obtained from the 

sensor, and these data do not required any preprocessing. Two RNN models were tested in this 

work. The LSTM with convolution layers model (LSTM1 model) achieved an accuracy of 

97.24% on testing set, using input from waist location and the window size of being 10. Given 

the data collection rate of the sensor is 25Hz, the model can take 0.4 second input data window 

and make prediction every 0.4 second. Based on the conclusion from the experiment result, two 

fall-prediction system framework designs were proposed.  

5.2 Limitation 

1. The data available did not have clear label for duration and transition of human 

activities. Therefore, certain assumptions were made during the development of 

preprocessing algorithm for labeling the activities. 

2. The preprocessing algorithm used in this work used several heuristic equations. For 

other dataset, these equations might need modification. 

3. This model is only tested for the dataset mentioned. The performance may vary on 

other dataset. 

4. In this work, only one CNN structure (described in chapter 3.3.2.3) and two RNN 

structures (described in chapter 3.3.3.3 and 3.3.3.4) were tested because of the 



100 
 

limitation of computational power. There might be other neural network structures 

that might be more efficient for this given problem. 

5.3 Future work 

The following are recommended for future work: 

1. The preprocessing algorithm could be further fine-tuned. 

2. The developed models needs to be further validated on different datasets. 

3. Other types of neural networks might be tested on this dataset. 

4. Additional work can be made to prepare the neural network models for real world fall 

prediction application. 

5. Additional investigations is needed to further evaluate RNN model on different 

parameters of this and other datasets. 
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APPENDIX A: FIGURES 

 

Figure A.1. Data sample of falling right-sideway and falling left-sideway, subject1, trial1, 

gyroscope. (Fall activity 13 and fall activity 15. Descriptions are in page 22) 

 

 

Figure A.2. Data sample of falling right-sideway and falling left-sideway, subject1, trial1, 

compass. (Fall activity 13 and fall activity 15. Descriptions are in page 22) 
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Figure A.3. Data sample of falling right-sideway and falling left-sideway, subject2, trial1, 

gyroscope. (Fall activity 13 and fall activity 15. Descriptions are in page 22) 

 

 

Figure A.4. Data sample of falling right-sideway and falling left-sideway, subject2, trial1, 

compass. (Fall activity 13 and fall activity 15. Descriptions are in page 22) 
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Figure A.5. Data sample of falling right-sideway and falling left-sideway, subject1, trial2, 

gyroscope. (Fall activity 13 and fall activity 15. Descriptions are in page 22) 

 

 

Figure A.6. Data sample of falling right-sideway and falling left-sideway, subject1, trial2, 

compass. (Fall activity 13 and fall activity 15. Descriptions are in page 22) 
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Figure A.7. Data sample of lying onto bed and rising from bed, subject1, trial1, gyroscope. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) 

 

 

Figure A.8. Data sample of lying onto bed and rising from bed, subject1, trial1, compass. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) 
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Figure A.9. Data sample of lying onto bed and rising from bed, subject2, trial1, gyroscope. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) 

 

Figure A.10. Data sample of lying onto bed and rising from bed, subject2, trial1, compass. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) 
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Figure A.11. Data sample of lying onto bed and rising from bed, subject1, trial2, gyroscope. 

(Non-fall activity 15 and fall activity 16. Descriptions are in page 23) 

 

Figure A.12. Data sample of lying onto bed and rising from bed, subject1, trial2, compass. (Non-

fall activity 15 and fall activity 16. Descriptions are in page 23) 
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APPENDIX B: SOURCE CODE 

1. Program that read data input 

"""  
@author: yu492 

File name: data_read 

Input: Simulated falls and Daily living activities dataset 

Output: two npy files that stores the data set and labels 

Description: This program is to read data from text files,  

and export the data into python work space(.npy file) 

""" 

import numpy as np 

from tempfile import TemporaryFile 

data_load = np.load('U:\Thesis\CNN_py\\data_test.npy') 

 

import os,sys 

 

data_x = []#Variable to store data 

data_y = []#Variable to store labels 

dir_root = 'U:\\Thesis\\Dataset\\Tests' 

#Directory of root folder 

files_sub = os.listdir(dir_root) 

#List all folders under root directory(human subject folders) 

for sub in range(len(files_sub)): 

#Scan through all human subject folders 

    dir_sub = dir_root+'\\'+files_sub[sub]+'\\'+'Testler Export' 

 #Create directory for each human subjects 

    files_act = os.listdir(dir_sub) 

 #List all files under human subjects' folder(activity folders) 

    print('reading data from subject', sub) 

    for act in range(len(files_act)): 

    #Scan through all activity folders 

        dir_act = dir_sub + '\\' + files_act[act] 

        #Create directory for activities 

        files_trial = os.listdir(dir_act) 

        #List all fiels under activity folders(trial folders) 

        for trial in range(len(files_trial)): 

        #Scan through all trial folders 

            dir_file = dir_act + '\\' + files_trial[trial] 

            #Create directory or trials 

            files_data = os.listdir(dir_file) 

            #List all files under trial folders(data files) 

            for sensor in range(len(files_data)): 

            #Scan through all data files within each trial folders 

                dir_data = dir_file + '\\' + files_data[sensor] 

 #Create directory for each data file 

                data_file = [] 

 #Variable to store data from each data file 

                with open(dir_data, 'r') as f:   

 #Open text file 

                    j = 0  

     #Number of lines 

                    for line in f: 

                        j = j+1 

                        if j > 5:                               

         #Get rid of the first 5 lines in each file(intro) 

                            line = line.split('\t')             

             #split data based on "space" 
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                            data_line = []                      

             #Data for one observation 

                            for i in range(len(line)-1):        

             #Get rid of '\n' at the end of the line 

                                if line[i] == '':               

      #Check problematic data 

                                    break 

                                data_line.append(float(line[i])) 

                            if len(data_line) == 23:            

            #Get rid of missing data 

            #(If there is no missing data, each observation has 23 characters) 

                                data_file.append(data_line[9:18])  

  #Extract acc, gyro and compass(3*3) 

                data_x.append(data_file) 

                data_y.append([act, int(files_act[act][0:3]), dir_data])#Store the activity number as GT 

np.save('U:\Thesis\CNN_py\\data_x',data_x)#Save data as data_x.npy 

np.save('U:\Thesis\CNN_py\\data_y',data_y)#Save label as data_y.npy 
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2. Program that extract waist data 

""" 

Created on Tue Jan 29 14:30:27 2019 

 

@author: Xiaoyu Yu 

File name: Waist_extract 

Input: Complete dataset 

Output: Data from waist location 

Description: This program is to extract data from waist sensor from the whole data set. 

Also, the program excludes 5 activities from the data set. 

The 5 activities include: 

1. rolling out of bed 

2. squating down 

3. bending 

4. coughing 

5. sit-air 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

data_x = np.load('data_x.npy') #Read in complete data set 

data_y = np.load('data_y.npy') #Read in Ground Truth 

data_waist_x = [] #Data to store waist data 

data_waist_y = [] #Data to store waist label 

count = 0 

 

for i in range(len(data_x)): #Scan through the dataset 

    a = data_y[i][2] #Directory of data file 

    lenth = len(a) #Number of data files 

    sensor = int(a[lenth-7:lenth-4]) #Sensor index 

    act = data_y[i][1] #Activity index 

    if sensor == 535 and int(act) != 917 and int(act)!=813 and int(act)!= 810 and int(act)!= 804 and int(act)!= 805: 

 #If waist sensor, if activity is not rolling out of bed, squating down, bending coughing sit-air 

        data_waist_x.append(data_x[i])#Store data 

        data_waist_y.append(data_y[i])#Store label 

 

 

data_waist_x = np.delete(data_waist_x, 243,0) #Delete outlier 

data_waist_y = np.delete(data_waist_y, 243,0) #Delete outlier 

np.save('U:\Thesis\CNN_py\\data_waist_x',data_waist_x) 

#Save waist data as data_waist_x.npy 

np.save('U:\Thesis\CNN_py\\data_waist_y',data_waist_y) 

#save waist labels as data_waist_y.npy 

 

 

 

 

 

 

 

  



110 
 

 

3. Program that calculate total acceleration 

""" 

Created on Tue Feb  5 15:49:47 2019 

#Input: Waist data, waist label 

#Output:Total acceleration 

@author: Xiaoyu Yu 

File name: Acc_waist_Total 

This program is to calculate total acceleration for waist data 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

data_x = np.load('data_waist_x.npy') #Load waist data 

data_y = np.load('data_waist_y.npy') #Load waist label 

Acc_T = [] #Variable to store total acceleration 

 

for j in range(len(data_x)): #Scan through the data set 

    Acc_file = [] #Variable to store total acceleration in each file 

    data_test = data_x[j] #Variable to store data in each data file 

     

    for i in range(len(data_test)): #Scan through the data file 

        Acc_file.append((data_test[i][0]**2+data_test[i][1]**2+data_test[i][2]**2)**0.5) 

  #Calcualte total acceleration at each observation 

    Acc_T.append(Acc_file)#Append the new total acceleration to the end of Acc_T 

np.save('Acc_waist_T', Acc_T) #Save data 
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4. Program that preprocess raw data 

""" 

Created on Wed Jan  9 15:34:32 2019 

Input: Data labels, total acceleration 

Output: 2 indices for each data file 

@author: Xiaoyu Yu 

File name: data_preprocess 

Description: This program is to do preprocessing before the data is fed into CNN/RNN 

The preprocessing aims to get rid of the no-movement data for each data file. 

This program can find out the boundary index for no-movement data and actual activity data. 

The index values are recorded. 

""" 

import numpy as np 

import matplotlib.pyplot as plt 

 

win_size = 10 #Each window has 10 observations 

 

data_y = np.load('U:\Thesis\CNN_py\\data_waist_y.npy') #Load data_waist_y.npy 

Acc_T = np.load('U:\Thesis\CNN_py\\Acc_waist_T.npy')   #Load Acc_waist_T.npy 

index_relabel = []                   #Used to store new label 

 

var_start_T = [] 

var_end_T = [] 

 

''' 

Scan through the whole dataset 

Each data file is processed individually 

Acc_T(total acceleration) is used to do pre-processing 

Angular velocity(Gyro) and Magnitism(Mag) are not used in pre-processing 

Acceleration x, y, z are transformed into total acceleration(in Acc_waist_Total.py)  

''' 

for j in range(len(Acc_T)):  

    varT = []                         #Empty string to store variance for Total Acceleration 

    meanT = []                        #Empty string to store mean for Total Acceleration  

    AccT = Acc_T[j]                   #Total acceleration in 1 data file 

         

    lenth = len(AccT)                 #Lenth of the current data file 

     

    '''Step2 & 3''' 

    num_win = int(lenth/win_size)     #Calcualte the number of windows for each data file    

    for i in range(num_win):                                   

        varT.append(np.var(AccT[i*win_size:(i+1)*win_size]))    #Calculate variance string for Total Acc 

        meanT.append(np.mean(AccT[i*win_size:(i+1)*win_size]))  #Calculate mean string for Total Acc 

          

    #Let variance string run through average filter with size of (3,1) 

    varT_avg = [] 

    for i in range(len(varT)): 

        #Take care of special cases for the first and the last data point 

        if i == 0: 

            varT_avg.append((varT[i] + varT[i+1])/2) 

        elif i == len(varT)-1: 

            varT_avg.append((varT[i] + varT[i-1])/2) 

        #Calcualte the average of itself and its two adjacent points 

        else: 

            varT_avg.append((varT[i-1] + varT[i] + varT[i+1])/3) 

  #Size of varT_avg is length/10 

      

    '''Step4 '''    

    max_index = varT_avg.index(max(varT_avg))                    

    #Find out the max variance in VarT_avg, related to fall/non-fall activity 
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    '''Step5''' 

    min_index_start = varT.index(min(varT[0:max_index]))         

    #Find out the min variance in varT before the actual activity, related to precondition   

    min_index_end = varT.index(min(varT[max_index:len(varT)])) 

    #Find out the min variance in varT after the actual activity, related to postcondition 

     

    mean_start = meanT[min_index_start] #Mean of the min_start window (before the activity) 

    mean_end = meanT[min_index_end]     #Mean of the min_end window (after the acitivity) 

    sys_var_start = varT[min_index_start]   #Var of the min_start (before the acivity) 

    sys_var_end = varT[min_index_end]       #Var of the min_end window (after the activity) 

     

    '''Step 6''' 

    sys_noise_start = max(sys_var_start**0.5,0.01) #sys_nosie before activity 

    sys_noise_end = max(sys_var_end**0.5,0.01)     #sys_nosie after activity 

     

     

    ''' 

    Consider the windows before min_index_start as no-movement 

    Consider the windows after min_index_end as no-movement 

    Scan from the min_start window to activity window, find the breaking point for actual activity and precondition 

    Scan from the min_end window to activity window, find the breaking point for actual activity and postcondition 

 

    ''' 

     

    '''step7(before activity)''' 

    #Find out the break point between the actual activity and no-movement before the actual activity 

    count = 0 

    for i in range(win_size*(min_index_start+1), win_size*(max_index)):  

        count = count + 1 

        len_start = win_size*(max_index)-win_size*(min_index_start+1)   

       #Lenth of the data between sys_var_start and var_max 

        diff_list_start = []                                           #List of break point before activity  

        for k in range(5):                                             #Calcualte 1st order derivative, diff_list 

            diff_list_start.append(abs(mean_start - AccT[i+k])) 

        diff1_start = min(diff_list_start)                             #Min of diff_list 

        diff2_start = np.mean(diff_list_start)                         #Mean of diff_list 

         

        '''step8-10(before activity)''' 

        #Compare diff1. diff2 to scaled sys_noise. 

        #scaler is determined by the distance between current point and activity window 

        #max_scaler for diff1 is 4, and max_scaler for diff2 is 10.  

       #These values are empirical values and proves to be most effective 

        if (diff1_start < (4-3*count/len_start)*sys_noise_start) and (diff2_start < (10-9*count/len_start)*sys_noise_start): 

            #Condition not met 

            mean_start = np.mean(AccT[0:i])        #update base acceleration 

            sys_var_start = np.var(AccT[0:i])      #update system noise 

            sys_noise_start = max(sys_var_start**0.5,0.01) 

  #Condition met, mark as start of actual activity 

        else: 

            index_start = i 

            break 

    

    '''step7(before activity)''' 

    #Find out the break point between the actual activity and no-movement after the actual activity 

    count = 0         

    for i in range(len(AccT)-min_index_end*win_size, len(AccT)-max_index*win_size): 

        count = count + 1 

        len_end = len(AccT)-max_index*win_size - (len(AccT)-min_index_end*win_size)  

       #Lenth of the data between sys_var_end and var_max 

        diff_list_end = []                                                          #List of break point before activity  

        for k in range(5):                                                          #Calcualte 1st order derivative, diff_list  

            new_data = AccT[len(AccT)-i-k] 
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            diff_list_end.append(abs(mean_end - new_data)) 

        diff1_end = min(diff_list_end)                                              #Min of diff_list 

        diff2_end = np.mean(diff_list_end)                                       #Mean of diff_list 

         

        '''step8-10(before activity)''' 

        #Compare diff1. diff2 to scaled sys_noise. 

        #scaler is determined by the distance between current point and activity window 

        #max_scaler for diff1 is 4, and max_scaler for diff2 is 10.  

        #These values are empirical values and proves to be most effective 

        if (diff1_end < (4-3*count/len_end)*sys_noise_end) and (diff2_end < (10-9*count/len_end)*sys_noise_end): 

        #Condition not met 

            mean_end = np.mean(AccT[len(AccT)-i:len(AccT)])      #update base acceleration 

            sys_var_end = np.var(AccT[len(AccT)-i:len(AccT)])    #update system noise 

            sys_noise_end = max(sys_var_end**0.5,0.01) 

            #Condition met, mark as end of actual activity 

        else: 

            index_end = len(AccT)-i    

            break 

             

 

 

    var_start_T.append(varT[min_index_start]) 

    var_end_T.append(varT[min_index_end]) 

     

    index_relabel.append([index_start, index_end]) 

    #np.save('index_relabel', index_relabel) 
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5. Program that manually modify outliers 

""" 

Created on Thu Mar 21 11:05:05 2019 

 

@author: Xiaoyu Yu 

File Name: outlier_mod 

Input: Relabeling indices 

Output: Modified relabeling indices 

Description: This code is to make modification to outlier data samples. 

The data_preprocessing can take care of most of the data samples except for 9. 

This program is to manually modify the 9 outliers. 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

index_relabel = np.load('index_relabel.npy') #Load relabeling index 

Acc_T = np.load('Acc_waist_T.npy') #Load total acceleration(obtained from Acc_waist_total) 

 

''' 

The indices below are found by manually inspecting 

the data file 

''' 

index_relabel[1205] = [160,355]#Manually define relabeling indices 

index_relabel[1373] = [55,300] #Manually define relabeling indices 

index_relabel[1586] = [155,448]#Manually define relabeling indices 

index_relabel[1598] = [192,270]#Manually define relabeling indices 

index_relabel[1652] = [105,600]#Manually define relabeling indices 

index_relabel[1653] = [135,635]#Manually define relabeling indices 

index_relabel[2315] = [145,390]#Manually define relabeling indices 

index_relabel[2411] = [175,273]#Manually define relabeling indices 

index_relabel[2660] = [215,680]#Manually define relabeling indices 

 

np.save('index_relabel', index_relabel)#Save modified relabeling indices 

  



115 
 

6. Program that do data preparation for CNN model 

""" 

Created on Tue Feb 19 13:57:32 2019 

Input: Waist data, waist labels 

Output: Trainng data/labels, testing data/labels, validation data/labels 

@author: Xiaoyu Yu 

File name: Create_window_waist 

Description: This program is to divide data into small windows,  

and format the data in the way that it can be read by Keras CNN structure. 

Also the program divide data into test set, validation set and training set. 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

index_relabel = np.load("index_relabel.npy") #Load relabeled indices 

data_x = np.load('data_waist_x.npy') #Load waist data 

data_y = np.load('data_waist_y.npy') #Load waist labels 

len_data = []  #length of data 

 

overlap = 5   #number of overlab between adjacent winodw 

win_size = 10 #window size 

input_x = []   

input_y = [] 

data_info = [] 

lenth = len(index_relabel) #Number of data files 

 

train_x = [] #Training data 

train_y = [] #Training labels 

train_info = [] #Training data info 

test_x = [] #Testing data 

test_y = [] #Testing labels 

test_info = [] #Testing data info 

vali_x = [] #Validation data 

vali_y = [] #Validation labels 

vali_info = [] #Validation data info 

 

''' 

Round the indices to integer times of 10. 

Because the windows size to be test are 10, 20 with 50% overlap 

''' 

for i in range(lenth): 

    index_start = index_relabel[i][0] #Index of starting boudary 

    index_end = index_relabel[i][1]   #Index of ending boundary 

    index_start = int(index_start/10)*10 #Round down start index 

    index_end = int(index_end/10+1)*10   #Round up end index 

 

 

for i in range(lenth): 

    len_data_mod = index_end - index_start #Number of data between two indices 

    win_num = int(len_data_mod/overlap-1) #Calculate number of winodws 

    data_relabel = data_x[i][index_start:index_end] 

 #Extract actual activity data from each data file 

     

    ''' 

    The following for loop is to label data with fall or non-fall 

    and divide data into small windows 

    ''' 

    for j in range(win_num): #Scan through dataset 

        act = int(data_y[i][1])  #Activity index for one data file 

        if act < 900:               #If fall activities 
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            input_x.append(data_relabel[j*overlap:j*overlap+win_size]) 

            #Divide data into windows 

            input_y.append(0) 

            #Label data as "0" 

        elif act > 900:             #If non-fall activities  

            input_x.append(data_relabel[j*overlap:j*overlap+win_size]) 

            #Divide data into windows 

            input_y.append(1) 

            #Label data as "0" 

        data_info.append(data_y[i][1:3]) 

         

''' 

The following for loop is to divide data into: 

training, testing, and validation sets 

'''         

for i in range(len(input_x)):#Scan through the dataset 

    sub = int(data_info[i][1][24:27]) #Extract human subject info 

    if sub == 101 or sub == 102 or sub == 203 or sub == 204: 

 #If the data is performed by these human subjects 

        test_x.append(input_x[i])#Store the data into testing set 

        test_y.append(input_y[i])#Store labels 

        test_info.append(data_info[i])#Store other data infos 

         

    elif sub == 103:  

 #If the data is performed by this human subjects  

        vali_x.append(input_x[i])#Store the data into validation set 

        vali_y.append(input_y[i])#Store labels 

        vali_info.append(data_info[i])#Store other data infos 

    else:            

 #The rest of the data are training data 

        train_x.append(input_x[i])#Store the dat into training set 

        train_y.append(input_y[i])#Store labels 

        train_info.append(data_info[i])#Store other data infos 

      

np.save('U:\Thesis\CNN_py\\train_x_waist', train_x) 

#Store train data as train_x_waist.npy 

np.save('U:\Thesis\CNN_py\\test_x_waist', test_x) 

#Store test data as test_x_waist.npy 

np.save('U:\Thesis\CNN_py\\train_y_waist', train_y) 

#Store train label as train_y_waist.npy 

np.save('U:\Thesis\CNN_py\\test_y_waist', test_y) 

#Store train label as test_y_waist.npy 

np.save('U:\Thesis\CNN_py\\train_info_waist', train_info) 

#Store train label as train_info_waist.npy 

np.save('U:\Thesis\CNN_py\\test_info_waist', test_info) 

#Store train label as test_info_waist.npy 

np.save('U:\Thesis\CNN_py\\vali_x_waist', vali_x) 

#Store train label as vali_x_waist.npy 

np.save('U:\Thesis\CNN_py\\vali_y_waist', vali_y) 

#Store train label as vali_y_waist.npy 

np.save('U:\Thesis\CNN_py\\vali_info_waist', vali_info) 

#Store train label as vali_info_waist.npy 
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7. Program that build, train and save CNN model 

""" 

Created on Wed Feb 27 15:25:00 2019 

Input: Training data, validation data, training labels, validation labels, testing data, testing labels 

Output: Trained CNN models, testing accuracy 

@author: Xiaoyu Yu 

File Name: CNN_test 

Description: This program is to train the CNN once, save the models, and test on test set. 

""" 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras import layers 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Conv1D, MaxPooling1D, Activation, 

Dropout 

from tensorflow.keras import optimizers 

from tensorflow.keras.utils import plot_model 

from tensorflow.keras.callbacks import ModelCheckpoint 

from sklearn.model_selection import StratifiedKFold 

import matplotlib.pyplot as plt 

 

 

''' 

Load data 

''' 

train_x = np.load('train_x.npy') #Load training data 

train_y = np.load('train_y.npy') #Load training label 

train_info = np.load('train_info.npy') #Load training info 

 

test_x = np.load('test_x.npy') #Load testing data 

test_y = np.load('test_y.npy') #Load testing label  

test_info = np.load('test_info.npy') #Load testing info 

 

vali_x = np.load('vali_x.npy') #Load validation data 

vali_y = np.load('vali_y.npy') #Load validation label 

vali_info = np.load('vali_info.npy') #Load validation info 

 

 

train_x = train_x[:,:,:,np.newaxis]#Add a dimension for channel 

train_y = tf.keras.utils.to_categorical(train_y, 2)#Convert into 1-hot vector 

test_x = test_x[:,:,:,np.newaxis]#Add a dimension for channel 

test_y = tf.keras.utils.to_categorical(test_y, 2)#Convert into 1-hot vector 

vali_x = vali_x[:,:,:,np.newaxis]#Add a dimension for channel 

vali_y = tf.keras.utils.to_categorical(vali_y, 2)#Convert into 1-hot vector 

 

''' 

Start of model 

''' 

model = tf.keras.Sequential() #Create sequential model 

 

''' 

Covolution group1 

''' 

model.add(Conv2D(32, kernel_size = (3,3), activation = 'relu', name = 'Conv1',padding = 'same')) 

#Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

model.add(Conv2D(32, kernel_size = (3,3), activation = 'relu', name = 'Conv2',padding = 'same')) 

#Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

model.add(MaxPooling2D(pool_size = (2,2), strides = None, padding = 'same', data_format = None)) 

#Add max-pooling layer, pooling size (2,2), stride = 1, output size =input size 

model.add(Dropout(0.25)) 

#Add dropout, dropout rate = 0.25 
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''' 

Convolution group 2 

''' 

model.add(Conv2D(64, kernel_size = (3,3), activation = 'relu', name = 'Conv3',padding = 'same')) 

#Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

model.add(Conv2D(64, kernel_size = (3,3), activation = 'relu', name = 'Conv4',padding = 'same')) 

#Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

model.add(MaxPooling2D(pool_size = (2,2), strides = None, padding = 'same', data_format = None)) 

#Add max-pooling layer, pooling size (2,2), stride = 1, output size =input size 

model.add(Dropout(0.25)) 

#Add dropout, dropout rate = 0.25 

 

''' 

Fully connected layers 

''' 

model.add(Flatten()) 

#Convert multi-dimension data into 1-D 

model.add(Dense(128)) 

#Add Fully connected layer, 128 hidden nodes 

model.add(Activation('relu')) 

#Add Relu activation function 

model.add(Dropout(0.5)) 

#Add dropout layer, dropout rate = 0.5 

model.add(Dense(2)) 

#Add Fully connected layer, 2 hidden nodes 

model.add(Activation('softmax')) 

#Add softmax layer 

''' 

End of model 

''' 

sgd = optimizers.SGD(lr=0.005) 

#Define schocastic gradient descent as optimizer, learning rate = 0.05 

model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy']) 

#Compile model, optimizer is SGD, loss function is categorical crossentropy, evaluation method: accuracy 

 

filepath="U:\Thesis\\CNN_py\\CNN model\\weights-improvement-{epoch:02d}.hdf5" 

#Directory to save model 

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose = 0, save_best_only = True, save_weights_only = 

True, mode='auto') 

#Save model when accuracy is best, save weight only 

callback_list = [checkpoint] 

acc_history = model.fit(train_x, train_y, epochs = 5, shuffle = 1, batch_size = 30, 

callbacks=callback_list,validation_data = (vali_x, vali_y)) 

model.save_weights("U:\Thesis\\CNN_py\\CNN model\\16filter_10window_withact\\Final_model.hdf5") 

#Save final model 

 

plt.plot(acc_history.history['acc']) #Plot training acc 

plt.plot(acc_history.history['val_acc'])#Plot validation acc 

plt.show() #Show figure 

 

plt.plot(acc_history.history['loss']) #Plot training loss 

plt.plot(acc_history.history['val_loss']) #Plot validation loss 

plt.show() #Show figure  

score = model.evaluate(test_x, test_y)#Calculate model performance 
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8. Program that build CNN model, and train with 10-fold-cross-validation 

""" 

Created on Tue Feb 19 15:57:57 2019 

Input: Training set and trainign labels 

Output: A table with the accuracies for 10-fold cross validation 

@author: Xiaoyu Yu 

File name: CNN_crossval 

Description: This program is to train the CNN, and use 10-fold cross validation on the model. 

""" 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras import layers 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Conv1D, MaxPooling1D, Activation, 

Dropout 

from tensorflow.keras import optimizers 

from tensorflow.keras.utils import plot_model 

from tensorflow.keras.callbacks import ModelCheckpoint 

from sklearn.model_selection import StratifiedKFold 

 

 

seed = 7 #RNG seed for generating validation set 

train_x = np.load('train_x.npy') #Load training data 

train_y = np.load('train_y.npy') #Load training label 

train_info = np.load('train_info.npy') #Load training info 

 

train_x = train_x[:,:,:,np.newaxis]  

#Create new dimension for training data. This step is not needed when multiple locations are used 

 

 

 

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) 

#Generate indices for 10 validation sets 

 

score = [] #Variable to store accuracy for each fold 

 

for train, test in kfold.split(train_x, train_y): 

 ''' 

 Start of model 

 ''' 

    model = tf.keras.Sequential() 

 ''' 

 Covnolution group1 

 ''' 

    model.add(Conv2D(32, kernel_size = (3,3), activation = 'relu', name = 'Conv1',padding = 'same')) 

 #Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

    model.add(Conv2D(32, kernel_size = (3,3), activation = 'relu', name = 'Conv2',padding = 'same')) 

 #Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

    model.add(MaxPooling2D(pool_size = (2,2), strides = None, padding = 'same', data_format = None)) 

 #Add max-pooling layer, pooling size (2,2), stride = 1, output size =input size 

    model.add(Dropout(0.25)) 

 #Add dropout, dropout rate = 0.25 

     

 ''' 

 Convolution group2 

 ''' 

    model.add(Conv2D(64, kernel_size = (3,3), activation = 'relu', name = 'Conv3',padding = 'same')) 

 #Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

    model.add(Conv2D(64, kernel_size = (3,3), activation = 'relu', name = 'Conv4',padding = 'same')) 

 #Add convolution layer, 32 filter, kernel size (3,3), relu activation function, output size =input size 

    model.add(MaxPooling2D(pool_size = (2,2), strides = None, padding = 'same', data_format = None)) 
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 #Add max-pooling layer, pooling size (2,2), stride = 1, output size =input size 

    model.add(Dropout(0.25)) 

 #Add dropout, dropout rate = 0.25 

     

 ''' 

 Fully connected layers 

 ''' 

    model.add(Flatten()) 

 #Convert multi-dimension data into 1D 

    model.add(Dense(128)) 

 #Add Fully connected layer, 128 hidden nodes 

    model.add(Activation('relu')) 

 #Add Relu activation function 

    model.add(Dropout(0.5)) 

 #Add dropout layer, dropout rate = 0.5 

    model.add(Dense(2)) 

 #Add Fully connected layer, 2 hidden nodes  

    model.add(Activation('softmax')) 

 #Add softmax layer 

 ''' 

 End of mdoel 

 ''' 

    sgd = optimizers.SGD(lr=0.005) 

 #Define schocastic gradient descent as optimizer, learning rate = 0.05 

    model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy']) 

 #Compile model, optimizer is SGD, loss function is categorical crossentropy, evaluation method: accuracy 

    filepath="weights-improvement-{epoch:02d}.hdf5" 

 #Directory to save model 

    checkpoint = ModelCheckpoint(filepath, monitor='val_accuracy', verbose = 0, save_best_only = True, 

save_weights_only = True, mode='auto') 

 #Save model when accuracy is best, save weight only 

    callback_list = [checkpoint] 

    train_y_train=train_y[train] 

 #Training label 

    train_y_train = tf.keras.utils.to_categorical(train_y_train) 

 #Convert training label to 1-hot vector 

    train_y_val = train_y[test] 

 #Validation label 

    train_y_val = tf.keras.utils.to_categorical(train_y_val) 

 #Convert validation label to 1-hot vector 

    model.fit(train_x[train], train_y_train, epochs = 100, shuffle = 1, batch_size = 30, callbacks=callback_list) 

    #Train model, 100 epochs, 30 batch size, save model 

    score.append(model.evaluate(train_x[test], train_y_val)) 

 #Calculate validation accuracy 
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9. Program that do data preparation for RNN model 

""" 

Created on Wed Mar 27 15:51:22 2019 

Input: waist data, relabeling indices 

Output: training set, validation set, testing set for RNN 

@author: Xiaoyu Yu 

File name: create_window_waist_RNN 

Description: This program is to format the data in the way that 

it can be fed into Keras RNN. 

Also this program divide the data into training set, validation set and testing set. 

""" 

import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

 

index_relabel = np.load("U:\Thesis\\CNN_py\\index_relabel.npy") 

#Load relabeling indices 

data_x = np.load('U:\Thesis\\CNN_py\\data_waist_x.npy') 

#Load waist data 

data_y = np.load('U:\Thesis\\CNN_py\\data_waist_y.npy')  

#Load waist labels 

 

 

 

file_len = 150 #150 data in each sequence (All data files are longer than 150) 

overlap = 5    #overlap between adjacent windows 

win_size = 10  #window size 

input_x = []#Variable to store 150 data samples 

input_y = []#Variable to store labels for each data file 

train_x = []#Traning data 

train_y = []#Training label 

train_info = []#Training data info 

test_x = []#Testing data 

test_y = []#Testing label 

test_info = []#Testing data info 

vali_x = []#Validation data 

vali_y = []#Validation label 

vali_info = []#validation data info 

count = 0 

 

for i in range(len(data_x)): 

    data_info = data_y[i][1:3] 

    index_start = index_relabel[i][0]#activity start index 

    index_end = index_relabel[i][1]  #activity end index 

    len_data_mod = index_end - index_start #length of activity 

    act = int(data_y[i][1]) 

     

    #fall = 1 indicate fall activity;fall = -1 indicate non-fall activity 

    if act > 900: 

        fall = 1 

    else: 

        fall = -1     

         

    ''' 

    The following code is to crop each data files 

    so that the length of each data file is 150 

    ''' 

    input_y = np.zeros(len(data_x[i]))  

    #Create all zero vector, length equal to the length of the data file 

    #Zero represent precondition and postcondition 

    input_y[index_start:index_end] = fall 
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    #Change the label between two indices to 1(fall activity) or 0(non-fall activity) 

    if index_end < file_len:  #[start, end of activity] is shorter than 150 

        input_x= data_x[i][0:file_len] #Keep data [0, 150] 

        input_y = input_y[0:file_len]  #Keep labels [0, 150] 

    elif len_data_mod < file_len: #else if activity length is shorter than 150 

        input_x = data_x[i][index_end-file_len:index_end] 

        #Keep data[activity end -150, activity end] 

        input_y = input_y[index_end-file_len:index_end] 

  #Keep label[activity end -150, activity end] 

    else: #else if activity length is longer than 150 

        input_x = data_x[i][index_start:index_start+file_len] 

        #Keep the first 150 data in activity 

        input_y = input_y[index_start:index_start+file_len] 

  #Keep the first 150 labels in activity 

         

    num_window = int(file_len/win_size)#Calculate number of windows 

    input_x_win = []#Variable to store data in each data file 

    input_y_win = []#Variable to store labels in each data file 

    for j in range(num_window): 

        input_x_win.append(input_x[win_size*j:win_size*(j+1)]) 

        #Data of 1 data file consists of 15 windows, each window has 10 observations 

        input_y_win.append(fall*(sum(input_y[win_size*j:win_size*(j+1)])!=0)) 

        #Label of 1 data file consists of 15 windows, each window has 10 labels 

         

    sub = int(data_info[1][24:27])#Human subject information 

     

    if sub == 101 or sub == 102 or sub == 203 or sub == 204: 

    #If data is from these four human subjects, data belogns to testing set 

        test_x.append(input_x_win)#Store testing data 

        test_y.append(input_y_win)#Store testing labels 

        test_info.append(data_info)#Store other testing infos 

    elif sub == 103: 

 #If data is from this human subject, data belongs to testing set 

        vali_x.append(input_x_win)#Store validation set 

        vali_y.append(input_y_win)#Store validation labels 

        vali_info.append(data_info)#Store other validation infos 

    else:  

 #Data from all other human subject belongs to training set 

        train_x.append(input_x_win)#Store training data 

        train_y.append(input_y_win)#Store training labels 

        train_info.append(data_info)#Store other training infos 

     

train_max = max(max(max(train_x)))#Find out max value for training data 

test_max = max(max(max(test_x)))#Find out max value for testing data 

vali_max = max(max(max(vali_x)))#Find out max value for validation data 

 

train_x = np.asarray(train_x)#Convert training data type from list to numpy array 

train_x=train_x/train_max#Scale training data to [-1,1] 

train_x = train_x[:,:,:,:,np.newaxis]#Add an additional dimension to training data 

train_y_oh = np.zeros((len(train_y), num_window,3))#Create variable to store training labels 

 

test_x = np.asarray(test_x)#Convert testing data type from list to numpy array 

train_x=train_x/train_max#Scale training data to [-1,1] 

test_x = test_x[:,:,:,:,np.newaxis]#Add an additional dimension to testing data 

test_y_oh = np.zeros((len(test_y), num_window,3))#Create variable to store testing labels 

 

vali_x = np.asarray(vali_x)#Convert validation data type from list to numpy array 

train_x=train_x/train_max#Scale training data to [-1,1] 

vali_x = vali_x[:,:,:,:,np.newaxis]#Add an additional dimension to validation data 

vali_y_oh = np.zeros((len(vali_y), num_window,3))#Create variable to store valdation labels 

 

''' 
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Convert labels to one-hot vectors 

''' 

for i in range(len(train_x)):#Scan through training data 

    for j in range(num_window):#Scan through each data file 

        x = train_y[i][j]#Activity label 

        train_y_oh[i][j] = tf.keras.utils.to_categorical(x, 3) 

        #Convert categorical data into one-hot vector 

 

for i in range(len(test_x)):#Scan through testing data 

    for j in range(num_window):  #Scan through each data file       

        y = test_y[i][j]#Activity label 

        test_y_oh[i][j] = tf.keras.utils.to_categorical(y, 3) 

        #Convert categorical data into one-hot vector 

   

for i in range(len(vali_x)):#Scan through validation data 

    for j in range(num_window): #Scan through each data file 

        z = vali_y[i][j]#Activity label 

        vali_y_oh[i][j] = tf.keras.utils.to_categorical(z, 3) 

        #Convert categorical data into one-hot vector 

   

np.save('U:\Thesis\RNN_py\\train_x.npy', train_x)#Save training data 

np.save('U:\Thesis\RNN_py\\train_y.npy', train_y_oh)#Save training labels 

np.save('U:\Thesis\RNN_py\\train_info', train_info)#Save training infos 

np.save('U:\Thesis\RNN_py\\test_x.npy', test_x)#Save testing data 

np.save('U:\Thesis\RNN_py\\test_y.npy', test_y_oh)#Save testing labels 

np.save('U:\Thesis\RNN_py\\test_info', test_info)#Save testing infos 

np.save('U:\Thesis\RNN_py\\vali_x.npy', vali_x)#Save validation data 

np.save('U:\Thesis\RNN_py\\vali_y.npy', vali_y_oh)#Save validation labels 

np.save('U:\Thesis\RNN_py\\vali_info', vali_info)#Save validation infos 

 

 

  



124 
 

10. Program that build, train and save RNN model 

""" 

Created on Tue Apr 30 15:48:19 2019 

Input: training set, validation set, testing set 

Output: trained RNN model, testing result, training/validation curve 

@author: Xiaoyu Yu 

File name: RNN_test 

Description: This program is to train the RNN model, save the model and test with test set. 

""" 

import matplotlib.pyplot as plt 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Activation, Flatten, TimeDistributed, Dropout, Conv2D, MaxPooling2D, 

GRU, LSTM, ConvLSTM2D 

from tensorflow.keras.callbacks import ModelCheckpoint 

from tensorflow.keras import optimizers 

import numpy as np 

 

train_x = np.load('U:\Thesis\RNN_py\\train_x.npy') 

train_y = np.load('U:\Thesis\RNN_py\\train_y.npy') 

train_info = np.load('U:\Thesis\RNN_py\\train_info.npy') 

 

test_x = np.load('U:\Thesis\RNN_py\\test_x.npy') 

test_y = np.load('U:\Thesis\RNN_py\\test_y.npy') 

test_info = np.load('U:\Thesis\RNN_py\\test_info.npy') 

 

vali_x = np.load('U:\Thesis\RNN_py\\vali_x.npy') 

vali_y = np.load('U:\Thesis\RNN_py\\vali_y.npy') 

vali_info = np.load('U:\Thesis\RNN_py\\vali_info.npy') 

 

#Start of neural network structure 

''' 

Convolution layers 

''' 

#Structure for convolution layers 

#This part is used in LSTM with convolution layers 

#This part is not used in LSTM with convolution transformation 

CNN = Sequential() 

CNN.add(Conv2D(16, kernel_size = (3,3), activation = 'relu', name = 'Conv1_1',padding = 'same')) 

CNN.add(Conv2D(16, kernel_size = (3,3), activation = 'relu', name = 'Conv1_2',padding = 'same')) 

CNN.add(MaxPooling2D(pool_size = (2,2), strides = None, padding = 'same', data_format = None)) 

CNN.add(Dropout(0.5)) 

CNN.add(Conv2D(32, kernel_size = (3,3), activation = 'relu', name = 'Conv2_1',padding = 'same')) 

CNN.add(Conv2D(32, kernel_size = (3,3), activation = 'relu', name = 'Conv2_2',padding = 'same')) 

CNN.add(MaxPooling2D(pool_size = (2,2), strides = None, padding = 'same', data_format = None)) 

CNN.add(Dropout(0.5)) 

CNN.add(Flatten()) 

#End of convolution layers 

 

#Structure RNN model 

model = Sequential()#Build a sequential model 

 

''' 

Model that use LSTM with convolution transformation 

This part is used for LSTM with convolution transformation 

This part is not used for LSTM with convolution layers 

''' 

#model.add(ConvLSTM2D(16, kernel_size = [3,3], padding = 'same', data_format = 'channels_last',  return_sequences 

= True, recurrent_dropout = 0.5, name = 'lstm1')) 

#model.add(ConvLSTM2D(16, kernel_size = [3,3], padding = 'same', data_format = 'channels_last',  return_sequences 

= True, name = 'lstm2')) 
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''' 

Model that use LSTM along with CNN layers 

This part is used for LSTM with convolution layers 

This part is not used for LSTM with convolution transformation 

''' 

model.add(TimeDistributed(CNN))#Add CNN part into the model 

model.add(LSTM(32, return_sequences = True, recurrent_dropout = 0.5, name = 'RNN1')) 

#Add a LSTM layer 

model.add(TimeDistributed(Flatten()))#Convert multi-dimension data into 1-D 

model.add(TimeDistributed(Dense(3, name = 'FC1')))#Fully connected layer 

model.add(Activation('softmax', name = 'softmax'))#Soft-max Layer 

#End of neural network struture 

 

sgd = optimizers.SGD(lr=0.002) 

#Define optimizer, use stochastic gradient descent as optimizer, 0.02 as learning rate 

 

 

model.compile(loss = 'categorical_crossentropy', 

              optimizer = sgd, 

               metrics = ['accuracy']) 

#Compile data, use categorical crossentropy as loss, sgd as optimizer, accuracy as evaluation parameter 

 

 

filepath="U:\Thesis\\RNN_py\\RNN model\\Simple RNN with Conv1\\32-nodes-RNN-1-layer-{epoch:02d}-

{val_acc:.2f}.hdf5" 

#Directory to save models 

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose = 0, save_best_only = True, save_weights_only = 

True, mode='auto') 

#Save best model based on validation accuracy, save weights only 

callback_list = [checkpoint] 

acc_history = model.fit(train_x, train_y, epochs = 100, shuffle = 1, batch_size = 1, 

callbacks=callback_list,validation_data = (vali_x, vali_y)) 

#Train model for 100 epochs, shuffle for every training epochs, batch size is 1, save training history 

model.save_weights("U:\Thesis\\RNN_py\\RNN model\\Simple RNN with Conv1\\Final_model.hdf5") 

#Save final model 

 

#Plot training/validation acc&loss 

plt.plot(acc_history.history['acc'])#Plot training accuracy 

plt.plot(acc_history.history['val_acc'])#Plot validation accuracy 

plt.show() 

 

plt.plot(acc_history.history['loss'])#Plot validation accuracy 

plt.plot(acc_history.history['val_loss'])#Plot validation loss 

plt.show() 

 

score = model.evaluate(test_x, test_y) 

#Run trained model on testing set 
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APPENDIX C: IRB CERTIFICATE 

Email from Purdue IRB: 

Dear Professor Panigrahi, 

Thank you for your submission. We have reviewed the above-referenced project and 

determined that it does not meet the definition of human subjects research as defined by 

45 CFR 46. This determination is the Purdue 

HRPP assessment of regulations related only to human subjects research protections. This 

determination does not constitute approval from any other Purdue campus department or 

outside agency. The Principal Investigator 

and all researchers are required to affirm that the research meets all applicable local, 

state, and federal laws that may apply. 

  

You are required to retain a copy of this letter for your records. We appreciate your 

commitment towards ensuring the ethical conduct of human subjects research and wish 

you luck with your project. 
  

Best, 
  
Angelina 
  
  
Angelina Riggs 
Project Assistant 
Purdue University 
Human Research Protection Program 
Young Hall – Rm. 1032 
irb@purdue.edu  
Phone: 494-7090 
For more information, visit our website at www.irb.purdue.edu 
 

 

 

 

  

mailto:irb@purdue.edu
http://www.irb.purdue.edu/
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