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ABSTRACT

Lee, Jooyoung Ph.D., Purdue University, August 2019. Stochastic Hybrid Systems
Modeling and Estimation with Applications to Air Traffic Control. Major Professor:
Inseok Hwang.

Various engineering systems have become rapidly automated and intelligent as

sensing, communication, and computing technologies have been increasingly advanced.

The dynamical behaviors of such systems have also become complicated as they need

to meet requirements on performance and safety in various operating conditions. Due

to the heterogeneity in its behaviors for different operating modes, it is not appro-

priate to use a single dynamical model to describe its dynamics, which motivates the

development of the stochastic hybrid system (SHS). The SHS is defined as a dynami-

cal system which contains interacting time-evolving continuous state and event-driven

discrete state (also called a mode) with uncertainties. Due to its flexibility and ef-

fectiveness, the SHS has been widely used for modeling complex engineering systems

in many applications such as air traffic control, sensor networks, biological systems,

and etc.

One of the key research areas related to the SHS is the inference or estimation

of the states of the SHS, which is also known as the hybrid state estimation. This

task is very challenging because both the continuous and discrete states need to be

inferred from noisy measurements generated from mixed time-evolving and event-

driven behavior of the SHS. This becomes even more difficult when the dynamical

behavior or measurement contains nonlinearity, which is the case in many engineering

systems that can be modeled as the SHS.

This research aims to 1) propose a stochastic nonlinear hybrid system model

and develop novel nonlinear hybrid state estimation algorithms that can deal with

the aforementioned challenges, and 2) apply them to safety-critical applications in
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air traffic control systems such as aircraft tracking and estimated time of arrival

prediction, and unmanned aircraft system traffic management.
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1. INTRODUCTION

1.1 Background and Motivations

Many systems have been increasingly automated and complicated as they have

been equipped with advanced sensing, communication, and computing components.

In order to assure its safe and efficient operation, it is very important to infer the

accurate knowledge of the system’s state from various types of noisy measurements,

and this requires to develop appropriate dynamical models for the system and corre-

sponding state estimation methods.

One of motivating examples is air traffic management system where aircraft’s

state information such as position, velocity, flight mode, etc. are crucial for safe

operation of the national airspace system. Under the development of the advanced

communication, navigation, and surveillance systems, various types of real-time data

can be exchanged and shared among controllers and aircraft, which include aircraft’s

on-board sensing data, flight intent information, airspace and weather conditions,

etc [1]. This information is then integrated to precisely extract the state informa-

tion for the complex behavior of aircraft with navigation uncertainties. This task is,

however, very challenging due to 1) interacting physical and logical behaviors of the

aerospace systems (e.g., the characteristics of aircraft’s physical behavior change ac-

cording to different flight modes) and 2) heterogeneity of measurement data consisting

of descriptive (e.g., published flight plan), categorical (e.g., binary sensors) and con-

tinuous (e.g., barometric pressure) information. These challenges have received much

attention not only in aerospace systems but also in complex systems in other engi-

neering fields such as chemical process systems, robotic systems, etc. As illustrated,

many systems have heterogeneity in its dynamical behaviors and/or measurements,

and therefore it is difficult to describe them by using only a single dynamical model,
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which motivates the development of multiple model dynamical system also known as

hybrid system (or stochastic hybrid system if uncertainties are considered).

The stochastic hybrid system (SHS) is defined as a dynamical system which con-

tains interacting time-evolving continuous state and event-driven discrete state (also

called a mode) with uncertainties [2]. The discrete state represents which operat-

ing condition the system is running on, and its transition is usually modeled by the

Markov process. The continuous state describes the physical motion of the system

given an operating mode (i.e., discrete state), and its evolution over time is char-

acterized by stochastic difference or differential equations. Due to its flexibility and

effectiveness, the SHS has been widely used for modeling complex engineering systems

in many applications such as air traffic control [3, 4], sensor networks [5], biological

systems [6], human-machine interaction [7], space surveillance [8], and etc.

In general, the estimation of the state of the SHS (called hybrid state estimation)

is not straightforward due to the following reasons. First, since the exact discrete

state (i.e., which mode the system is operating at a given time) is usually not known,

multiple hypotheses need to be maintained over all possible histories of the discrete

state to obtain the optimal solution, which is impractical due to the exponentially

increasing number of hypotheses over time. Second, the nonlinearity and/or non-

Gaussianity in the continuous state dynamics would make the estimation problem

even more difficult as well-known approximate filters (e.g., single Gaussian approxi-

mation filters) could not accurately represent the actual non-Gaussian distribution.

Lastly, the discrete state transition can be in general dependent on the continuous

state. When computing discrete state transition probabilities, the dependency causes

numerical integration that is intractable to compute.

Recalling the fact that the estimation of state is crucial for safe and efficient

operation of the system, it is necessary to develop hybrid state estimation algorithms

that can effectively handle the challenges discussed above.
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1.2 Objectives and Contributions

The contributions of this research are twofold: 1) theoretical development of new

nonlinear hybrid state estimation algorithms that can deal with the aforementioned

difficulties, and 2) application of the developed algorithms to various state estimation

problems in air traffic control systems.

1.2.1 Algorithm Development

First, a nonlinear state estimation algorithm for the jump Markov system, which

is a type of the SHS that considers the discrete mode transition with constant prob-

abilities irrespective of the continuous state evolution, is proposed using Gaussian

sum approximation that can approximate any probability density function (pdf) ac-

curately with a set of Gaussians. Gaussian components reduction techniques based on

pruning and merging are applied to the mixed posterior pdf in order to deal with an

exponentially increasing number of Gaussian mixture components while minimizing

information loss. It has been demonstrated that the proposed algorithm produces the

better approximation of the posterior pdf of the state and thus improves the state

estimation accuracy.

Second, the proposed hybrid state estimation algorithm based on Gaussian sum

approximation is extended to a class of nonlinear stochastic hybrid systems where

the discrete state transitions are governed by stochastic guard conditions dependent

on the continuous state. Finding an exact solution to the corresponding hybrid state

estimation problem is very challenging because the discrete state transition proba-

bilities need to be computed by integrating the probability density function of the

continuous state which is non-Gaussian in general due to the nonlinearity in the sys-

tem. To deal with the difficulty, it is proposed to use the Gaussian mixture that

can effectively approximate the non-Gaussian distribution while preserving the ele-

gant analytical properties of Gaussians. Based on those properties, a succinct and

closed-form expression is derived for the discrete state transition probabilities that
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account for the continuous-state-dependent guard conditions. In addition, to avoid

the exponentially growing number of hypotheses in the discrete state history, the in-

teracting multiple model approach is used where a mixing technique is implemented

to keep the number of hypotheses constant. It has been shown that the evolution

of the probability density function, which is non-Gaussian due to the nonlinearity

and continuous-state-dependent mode transition, can be accurately described by the

proposed algorithm.

1.2.2 Applications

The proposed hybrid state estimation algorithms have been applied to safety-

critical applications in air traffic control systems: 1) aircraft tracking and estimated

time of arrival prediction, and 2) unmanned aircraft system traffic management.

First, an aircraft trajectory estimation and estimated time of arrival (ETA) pre-

diction algorithm is proposed based on the SHS modeling and hybrid state estimation.

Given a flight plan or procedure, the behavior of an aircraft in the descent phase can

be described by both discrete transitions between flight modes and the aircraft’s con-

tinuous motion corresponding to a specific flight mode. In this sense, the proposed

algorithm uses a stochastic nonlinear hybrid system to accurately model the aircraft’s

dynamics during the descent phase along its flight plan. In the proposed stochastic

hybrid system, nonlinear dynamics including wind disturbance for the aircraft’s con-

tinuous motion are derived for each flight mode, and a continuous state-dependent

transition model is developed for the flight mode transitions. Using the proposed

stochastic hybrid system model, an algorithm which can solve both the trajectory

estimation and ETA prediction in a unified framework is proposed based on the

State-Dependent-Transition Hybrid Estimation approach. The proposed algorithm is

then demonstrated with several ETA prediction examples.

Second, a Unmanned Aircraft Systems (UAS) tracking algorithm is proposed

based on the SHS modeling to improve the safety and efficiency of UAS operation
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under the UAS traffic management (UTM). To account for the complex behavior

of UAS with predefined flight plans and geofence (virtual boundary), a constrained

stochastic hybrid system model is proposed, in which the continuous motions of a UAS

with geofence can be described using a set of stochastic continuous state dynamics

with state constraints and its flight plan can be incorporated as the continuous-state-

dependent discrete mode transitions. Using the proposed model, the constrained

state-dependent-transition hybrid estimation (CSDTHE) algorithm is developed for

UAS tracking, which can explicitly incorporate the constraints on the motion of UAS

imposed by geofence into the hybrid state estimation. The proposed UAS tracking

algorithm is demonstrated with an illustrative UTM example for the tracking of a

UAS used for delivery in the urban area.

1.3 Outline of Thesis

The thesis is organized as follows. In Chapter 2, a class of nonlinear SHS is intro-

duced, where the discrete state transitions are based on constant transition probabil-

ities, and the corresponding nonlinear hybrid state estimation algorithm is proposed

based on Gaussian sum approximation and Gaussian components reduction. In Chap-

ter 3, the work in Chapter 2 is extended to a more general class of nonlinear SHS,

where the discrete state evolves based on stochastic guard conditions dependent on

the continuous state. In Chapters 4 and 5, the proposed nonlinear SHS modeling and

hybrid state estimation algorithms are applied to 1) aircraft tracking and ETA predic-

tion and 2) unmanned aircraft system traffic management, respectively. A summary

and future works are discussed in Chapter 6.
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2. NONLINEAR HYBRID STATE ESTIMATION FOR

JUMP MARKOV SYSTEMS USING GAUSSIAN SUM

FILTERS

In this chapter, a mathematical model for a class of stochastic nonlinear hybrid sys-

tems, called jump Markov systems, is first introduced. The hybrid state estimation is

then discussed and the corresponding estimation algorithm based on Gaussian sum

approximation is proposed.

2.1 Background and Motivations

The jump Markov system (JMS) is a dynamical system which involves interaction

of time-evolving states and event-driven modes in a Markov process [2]. The JMS has

been widely used to describe practical systems with multiple modes in various fields

such as target tracking [9], air traffic management [3], sensor networks [5], biological

processes [6], etc. The state estimation task for the JMS is challenging due to the

need to jointly estimate the state and mode from a set of noisy measurement data,

so it demands a more sophisticated approach than that for systems with a single

dynamic model. The standard approaches to solve this problem are the multiple

model approaches based on Bayesian framework [10] that are further categorized into

two classes depending on the type of the JMS considered in their formulations.

The first class is the linear state estimation for the JMS in which the system

behavior is described by multiple linear dynamic models switched according to a

Markov chain and observed through linear measurements. Many state estimation

algorithms in this class have been developed based on the multiple model Kalman

filters approach where the state estimates and associated covariances are computed
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from a bank of Kalman filters, each of which matches to each mode history, and then

combined by applying the total probability theorem, yielding the posterior probabil-

ity density function (pdf) of the state as a Gaussian mixture [10]. However, as the

number of the mode histories grows with time, this approach needs an exponentially

increasing number of Kalman filters, which makes the optimal estimation impractical.

Hence, the suboptimal techniques such as hypothesis pruning and merging were in-

troduced to reduce the number of hypotheses (i.e., the number of mode histories) and

successfully applied to infer the sufficiently accurate states. The representative subop-

timal algorithms are the first-order generalized pseudo-Bayesian (GPB1) algorithm,

the second-order generalized pseudo-Bayesian (GPB2) algorithm, and the interacting

multiple model (IMM) algorithm [10]. The GPBn algorithm (n = 1, 2) considers the

possible mode histories only in the last n time steps. The IMM algorithm considers

the possible mode histories in the two most recent time steps and merges the hypothe-

ses by applying the mixing technique at the beginning of each filtering cycle, which

achieves comparable performance as the GPB2 algorithm with efficient computation

as the GPB1 algorithm. The IMM algorithm has received significant attention in

many applications [8, 11–14] because of its good compromise between accuracy and

computational cost.

The second class is the nonlinear state estimation for the JMS in which nonlinear-

ities are exhibited in the system dynamics and/or measurement model. In general,

for the most nonlinear state estimation problems, it is difficult to explicitly determine

the posterior pdf of the state in a closed form, which led to the development of ap-

proximate nonlinear filters that use the approximate description of the state with a

tractable form. Many nonlinear state estimation algorithms in this class have been

developed in the IMM algorithm framework by employing the approximate nonlinear

filters as the mode-matched filters. The most common algorithms are the IMM-EKF

algorithm [15] and the IMM-UKF algorithm [16] that substitute the Kalman filters

in the IMM algorithm scheme with the extended Kalman filters (EKFs) or the un-

scented Kalman filters (UKFs) which approximate the posterior pdf of the state as
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a single Gaussian density [17]. However, these algorithms might suffer from perfor-

mance degradation under high nonlinearities as the single Gaussian approximation

could result in significant loss of the information contained in the true non-Gaussian

pdf. A filtering algorithm that could work for highly nonlinear systems is the particle

filter (PF) which uses numerical approximations of the pdf of the state represented

by a set of random particles with associated weights [18]. The PF can be directly

applied to the JMS by having a single particle represent both the state and mode [19].

However, this algorithm might confront the problem of numerical instability in com-

putations caused by particle shortage as the number of the particles resided in each

mode is not controlled. To remedy this problem, the algorithms that maintain a fixed

number of particles in each mode have been proposed by adopting the PFs in the IMM

algorithm framework (called the IMM-PF) [20, 21]. However, these algorithms still

have the major disadvantage of extensive computational requirements, which makes

them computationally infeasible for high-dimensional systems.

The Gaussian sum filter (GSF), a well-known approximate nonlinear filter, has

been developed based on the idea of approximating the pdf of the state with a weighted

sum of Gaussian density functions, i.e., Gaussian sum approximation [22]. It has been

successful in representing any complex distributions (e.g., multimodal pdfs) as closely

as desired. Whereas several researches on the GSF have been carried out in the ar-

eas of nonlinear filtering, data association, localization and mapping, etc. [23–25],

only one study [26] has focused on the state estimation problem for the JMS so far.

In [26], a Gaussian sum filtering algorithm for the jump Markov nonlinear systems

was developed within the framework of the IMM algorithm. The authors proposed a

minor Gaussian-set design (MGSD) technique to deal with the issue of an exponen-

tially growing number of the Gaussian mixture components of the mixed posterior pdf

over iterations. By the MGSD technique, the mixed posterior pdf represented as a

Gaussian mixture with a large number of components is approximated using moment

matching and then a new Gaussian sum pdf with a reduced number of the Gaussian

components is generated, which effectually limits computational complexity of the
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algorithm. However, while this algorithm achieves a balance between computational

complexity and performance, it poses a distinct drawback that the MGSD technique

involves significant loss of meaningful information held in the original mixed poste-

rior pdf. In addition, the new Gaussian sum pdf is restricted to having a constant

number of Gaussian components depending on the dimension of the state and they

are deterministically chosen without considering the physical meaning propagated

through the previous mode transitions. This research is motivated to improve the

existing algorithm by developing novel Gaussian components reduction techniques in

the mixing step of the IMM algorithm. The proposed techniques control the number

of the Gaussian mixture components by pruning and merging based on the weight of

each Gaussian component, in a way that most informative components are preserved

to minimize the loss of meaningful information in the original probability distribution.

Detailed description of the proposed techniques will be discussed in a later algorithm

section.

2.2 Problem Formulation

We consider a discrete-time jump Markov system which is composed of the state

x(k) = [x1(k), . . . , xn(k)]T ∈ Rn, the mode q(k) ∈ Q = {1, 2, . . . , r}, and the mea-

surement vector z(k) = [z1(k), . . . , zp(k)]T ∈ Rp, where k is the discrete-time index.

For each mode q(k), the system dynamics and the measurement equation are given

by

x(k + 1) = fq(k)(x(k)) + wq(k)(k)

z(k) = hq(k)(x(k)) + vq(k)(k)
(2.1)

where fq(k) : Rn → Rn and hq(k) : Rn → Rp are (piecewise) smooth bounded nonlinear

functions, and wq(k)(k) and vq(k)(k) are zero-mean white Gaussian noises with co-

variances Qq(k) and Rq(k), respectively. The mode evolution is modeled by a Markov
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chain with constant mode transition probabilities. The mode transition probability

from q(k − 1) = i to q(k) = j is defined by

λij := p(q(k) = j|q(k − 1) = i,Zk−1) (2.2)

where p(·|·) denotes a conditional probability and Zk−1 ≡ {z(1), z(2), . . . , z(k − 1)}

denotes a set of measurements up to time k− 1. Figure 2.1 depicts an example of the

described jump Markov system.

Figure 2.1. An illustration of the jump Markov system with two modes

The state estimation task of the jump Markov system involves computations of

the posterior probability distribution of both the state p(x(k)|Zk) and the mode

p(q(k)|Zk). Using the total probability theorem, p(x(k)|Zk) can be computed by

p(x(k)|Zk) =
r∑
i=1

p(x(k)|q(k) = i,Zk)p(q(k) = i|Zk) (2.3)

where p(x(k)|q(k) = i,Zk) is the mode-conditioned probability distribution of x(k)

and p(q(k) = i|Zk) is the mode probability for i = 1, 2, . . . , r. Then, using the

Bayesian framework and Eq. (2.3), the state estimation of the JMS is reformulated in

a recursive way that given p(x(k− 1)|q(k− 1) = i,Zk−1) and p(q(k− 1) = i|Zk−1) for

each mode i ∈ Q at time k−1, p(x(k)|q(k) = i,Zk) and p(q(k) = i|Zk) are computed

for all the modes i ∈ Q using the new measurement vector z(k) generated at time k.

Then, the state estimate and mode estimate can be computed by

x̂(k) := E[x(k)|Zk]

q̂(k) := argmax
j

p(q(k) = j|Zk)
(2.4)
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where E[·|·] denotes the conditional expectation of a random variable.

2.3 Nonlinear State Estimation Algorithms for Jump Markov System

based on Gaussian Sum Approximation

In this research, new nonlinear state estimation algorithms for the JMS are devel-

oped based on the IMM algorithm framework with mixing technique to achieve both

good performance and efficient computation. We approximate the non-Gaussian pdf

of the state with a weighted sum of Gaussian density functions based on the Gaus-

sian sum approximation and use a bank of Gaussian sum filters (GSFs) for mode-

conditioned filtering in order to effectively deal with nonlinearities in the system

dynamics and/or measurements. It should be noted that the direct use of the GSFs

along with the mixing operation causes an exponentially growing number of the Gaus-

sian mixture components, which brings a challenge on the computational load. To

overcome the challenge, we propose Gaussian components reduction techniques which

control the number of the components in a Gaussian mixture by pruning and merging

based on the facts that the Gaussian components with high weight have more con-

tribution to the mixture and the closely spaced Gaussian components carry similar

information. It is observed that the Gaussian components reduction techniques with

pruning and merging provide good approximation quality and achieve low computa-

tional cost. The details of the proposed algorithms formulated in a recursive way are

discussed as follows.

Let us assume that, from the last iteration at time k − 1, the mode probabilities

mi(k − 1) ≡ p(q(k − 1) = i|Zk−1), i = 1, 2, . . . , r, are computed and the mode-

conditioned posterior probability density functions of the state are obtained as:

p(x(k − 1)|q(k − 1) = i,Zk−1) = ΣN
α=1ξ

iα(k − 1)N (x(k − 1); x̂iα(k − 1),Piα(k − 1))

(2.5)

for i = 1, 2, . . . , r, where N is the number of the Gaussian components in the mixture,

N denotes the Gaussian distribution with the mean x̂iα(k − 1) and the covariance
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Piα(k − 1) which are computed from the α-th subfilter of the i-th GSF at time

k − 1, and ξiα(k − 1) denotes a weight of each Gaussian distribution which satisfies

ΣN
α=1ξ

iα(k − 1) = 1. Then, using the new measurement z(k) generated at time k,

we can compute p(x(k)|q(k) = j,Zk) and mj(k) for all the modes j = 1, 2, . . . , r as

shown in the following steps.

Step 1: Mixing

The mixing probability mi|j(k) is computed as:

mi|j(k) = p(q(k − 1) = i|q(k) = j,Zk−1)

=
p(q(k) = j|q(k − 1) = i,Zk−1)p(q(k − 1) = i|Zk−1)

p(q(k) = j|Zk−1)

=
λijm

i(k − 1)

Σr
l=1λljm

l(k − 1)

(2.6)

where λij is the mode transition probability defined in Eq. (2.2). Using the mixing

probability, the mixed posterior pdf for the GSF matched to mode j is obtained as:

p(x(k − 1)|q(k) = j,Zk−1) = Σr
i=1m

i|j(k)p(x(k − 1)|q(k − 1) = i,Zk−1)

= ΣN
α=1Σ

r
i=1m

i|j(k)ξiα(k − 1)N (x(k − 1); x̂iα(k − 1),Piα(k − 1))
(2.7)

To control the number of the Gaussian components, the mixed posterior pdf with

r × N Gaussian components in Eq. (2.7) is approximated as a Gaussian mixture

with a reduced number of Gaussians by applying the proposed Gaussian components

reduction techniques. We first prune insignificant Gaussian components based on the

weights by either keeping only a certain number of Gaussian components with the

highest weights or discarding Gaussian components with low weights (for the rest

of this research, we denote the algorithm using the former pruning as “Proposed I”

and the algorithm using the latter as “Proposed II”) and then merge them to the

remaining components based on distances. The detailed procedure of the Gaussian

components reduction techniques is described as follows.

By pruning, among the r×N Gaussian components in Eq. (2.7) (where the weight

of each Gaussian component is mi|j(k)ξiα(k − 1)), the Gaussian components with N
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highest weights are selected in the Proposed I algorithm (here N is a fixed number)

or the Gaussian components that have a weight greater than the value of a preset

threshold ε (e.g., ε = 0.2) are selected in the Proposed II algorithm (where the num-

ber of the resulting Gaussian components is denoted as N also, but it varies at each

iteration). If the sum of the N weights is greater than the value of a prespecified

threshold δ (e.g., δ = 0.7), which implies that they approximate the original r × N

Gaussians with less information loss, the weights are normalized and the selected N

Gaussian components become the final outcome. If the sum is below the threshold,

it might be necessary to consider more Gaussian components in addition to the ini-

tially selected N Gaussians to accurately describe the original mixed posterior pdf in

Eq. (2.7). In this case, the remaining (r − 1) × N Gaussian components are further

examined to be combined with the initially selected N components through merging.

For each of the remaining components with a weight greater than a specified threshold

κ (e.g., κ = 0.15), the distances to the initially selected N Gaussian components are

calculated to find the closest component with the minimum distance. If the minimum

distance is less than a preset threshold γ (e.g., γ = 0.02), the corresponding pair of

Gaussian components are merged by means of moment matching. The procedure

described above is summarized in Table 2.1.

After applying the Gaussian components reduction techniques with pruning and

merging, the initial condition for the GSF matched to mode j is obtained as a Gaus-

sian mixture with N components as:

p(x(k − 1)|q(k) = j,Zk−1) = ΣN
β=1ξ

jβ(k − 1)N (x(k − 1); x̂jβ(k − 1),Pjβ(k − 1))

(2.8)

where ξjβ(k − 1), β = 1, . . . , N , is a new set of Gaussian weights, and x̂jβ(k − 1)

and Pjβ(k − 1)) are the corresponding mean and covariance. The mode-conditioned

posterior pdf p(x(k)|q(k) = j,Zk) is computed in the j-th GSF using the initial con-

dition for mode j in Eq. (2.8) as described in the following step.

Step 2: Mode-conditioned estimation
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Table 2.1. Steps for the Gaussian components reduction techniques
with pruning and merging

1. Input

1) r ×N Gaussian components in Eq. (2.7)

2) Thresholds δ, κ, and γ in Proposed I

(Thresholds ε, δ, κ, and γ in Proposed II)

2. Pruning and Merging

Find N components with highest weights in Proposed I

(Find N components with weights ≥ ε in Proposed II)

if
∑
{weights of the N components} ≥ δ

re-normalize the weights

return the N components

else

for each of the remaining (r − 1)×N components

if weight ≥ κ

compute distances to the initially selected N components

find the closest component with minimum distance

if the minium distance ≤ γ

merge to the closest component by moment matching

end

end

end

return the merged N components (with weight re-normalization)

end

3. Output

A set of N Gaussian components
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In this research, a bank of r GSFs are used, each of which matches to the dynamics

of each mode. The GSF is composed of N subfilters and the subfilter propagates

and updates each Gaussian component of the initial condition in Eq. (2.8). The

nonlinear filters based on single Gaussian approximation (e.g., EKF, UKF, etc.) can

be considered as the subfilters.

For a given mode j, with the initial condition in Eq. (2.8), the mode-conditioned

prior distribution p(x(k)|q(k) = j,Zk−1) is computed through the j-th GSF as:

p(x(k)|q(k) = j,Zk−1) = ΣN
β=1ξ

jβ(k|k − 1)N (x(k|k − 1); x̂jβ(k|k − 1),Pjβ(k|k − 1))

(2.9)

where ξjβ(k|k − 1) is the same as ξjβ(k − 1). With the new measurement z(k), the

mode-conditioned posterior distribution p(x(k)|q(k) = j,Zk) is computed in the j-th

GSF as:

p(x(k)|q(k) = j,Zk) = ΣN
β=1ξ

jβ(k)N (x(k); x̂jβ(k),Pjβ(k)) (2.10)

where the weights are updated as:

ξjβ(k) =
1

c
ξjβ(k|k − 1)N (z(k)− hj(x̂

jβ(k|k − 1)); 0,Sjβ(k)) (2.11)

where c is a normalizing constant and N (z(k) − hj(x̂
jβ(k|k − 1)); 0,Sjβ(k)) is the

likelihood function of the β-th subfilter.

Step 3: Mode probability update

The mode probability for mode j is updated using Bayes’ rule as:

mj(k) = p(q(k) = j|Zk)

=
1

cn
p(z(k)|q(k) = j,Zk−1)p(q(k) = j|Zk−1)

(2.12)

where cn is a normalizing constant, p(z(k)|q(k) = j,Zk−1) is the mode-conditioned

likelihood function given by:

p(z(k)|q(k) = j,Zk−1) = ΣN
β=1ξ

jβ(k|k − 1)N (z(k)− hj(x̂
jβ(k|k − 1)); 0,Sjβ(k))

(2.13)
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and p(q(k) = j|Zk−1) is the prior mode probability for mode j obtained by:

p(q(k) = j|Zk−1) = Σr
i=1λijm

i(k − 1) (2.14)

Step 4: Output

Using the total probability theorem, the state estimate x̂(k) and its covariance

P(k) are obtained as:

x̂(k) = Σr
j=1m

j(k)x̂j(k)

P(k) = Σr
j=1m

j(k){Pj(k) + [x̂j(k)− x̂(k)][x̂j(k)− x̂(k)]T}
(2.15)

where the mode-conditioned state estimates x̂j(k) and covariance Pj(k) are computed

from the mode-conditioned posterior pdf in Eq. (2.10) as:

x̂j(k) = ΣN
β=1ξ

jβ(k)x̂jβ(k)

Pj(k) = ΣN
β=1ξ

jβ(k){Pjβ(k) + [x̂jβ(k)− x̂j(k)][x̂jβ(k)− x̂j(k)]T}
(2.16)

The discrete state estimate q̂(k) is then computed as:

q̂(k) = argmax
i

mi(k) (2.17)

The overall structure of the proposed algorithm is illustrated in Fig. 2.2.

2.4 Numerical Simulation

In this section, the proposed nonlinear state estimation algorithms for the jump

Markov system are demonstrated with an illustrative numerical example. We consider

a jump Markov system with two modes (q = 1, 2). For each mode q, the system

behavior [27,28] is described by:

ẋ(t) = ξq sin(ηqx(t)) + wq(t) (2.18)

where the system parameters are set as ξ1 = 1 and η1 = 1 for mode 1, and ξ2 = 2

and η2 = 1 for mode 2; and wq(t) is a zero-mean white Gaussian process noise with
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variance Qq = 1 for both modes. For simulation, we obtain the discrete-time dynamic

model for each mode q based on discretization of Eq. (2.18) using the Euler-Maruyama

method [29] with a sampling time ∆T = 0.25s. A single simulation is carried out for

60 time steps (0 ≤ k ≤ 59). The system switches from mode 1 to mode 2 at time step

k = 29. The mode transition is modeled as a Markov chain with a constant mode

transition matrix as

Λ =

λ11 λ12

λ21 λ22

 =

0.75 0.25

0.25 0.75

 (2.19)

The measurement equation is given for all the modes as

z(k) =
x(k)2

20
+ v(k) (2.20)

where v(k) is a white Gaussian measurement noise with zero mean and variance R = 1

which is independent of the process noise; and the measurement is taken at every time

step for state estimation. The initial state x(0) = x0 is independent of the noises. We

assume that the initial probability distributions of the state are set as p(x(0)|q(0) =

1) = 0.8N (−2, 1) + 0.2N (0.5, 1) and p(x(0)|q(0) = 2) = 0.4N (−1.5, 1) + 0.6N (2, 1).

The initial mode probabilities are assumed to be given as p(q(0) = 1) = 0.7 and

p(q(0) = 2) = 0.3.

Given the simulation example, the proposed algorithms are applied in order to

estimate the state of the JMS and evaluated by comparing the state estimate with

the true state at every time step. The performances of the proposed algorithms

(Proposed I and Proposed II) are compared with those of the existing nonlinear state

estimation algorithms for the JMS: 1) the IMM-UKF algorithm, 2) the Gaussian sum

filtering algorithm for the JMS (denoted as IMM-GSF) [26], and 3) the IMM-PF

algorithm [20]. The differences between the algorithms considered are represented in

the mixing step and the mode-conditioned estimation step.

The IMM-UKF algorithm approximates the mixed posterior pdf represented by a

Gaussian mixture as a single Gaussian density for the initial condition of the mode-
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conditioned filter and then propagates and updates the moments of the Gaussian

density using the mode-conditioned filter (i.e., UKF). For simulation, the unscented

transform parameters [17] that are applied to generate the sigma points are set as

ᾱ = 1, κ̄ = 0.6, and β̄ = 2. Unless otherwise stated, the same parameter values

are used for UKF in this simulation. In this example, the IMM-GSF algorithm ap-

proximates the mixed posterior pdf with a new Gaussian mixture with three Gaussian

components which are deterministically chosen by the minor Gaussian-set design tech-

nique [26]. Note that the number of the Gaussian mixture components is the same

for all the modes, since it depends on the dimension of the state. For simulation,

the parameters that are used to compute the covariances and weights of the Gaus-

sian mixture components in the MGSD technique are set as δ̄ = 0.9 and ξ̄j0 = 0.5,

respectively. The Proposed I algorithm and the Proposed II algorithm truncate the

number of the original Gaussian mixture components of the mixed posterior pdf by

applying the Gaussian reduction techniques with pruning and merging strategies. In

this example, the Proposed I algorithm keeps only the Gaussian mixture components

with two highest weights (N = 2) for each mode. The Proposed II algorithm retains

only the Gaussian mixture components that have a weight greater than the value of a

preset threshold ε, which yields a variable number of the Gaussian components in the

resulting Gaussian mixture at each time step. We set the pruning threshold at ε = 0.1

for mode 1 and ε = 0.3 for mode 2. Note that the number of the resulting Gaussian

mixture components in each mode can vary. For performance comparison with the

IMM-GSF algorithm, in this simulation, we set the upper and lower bounds on the

number of the Gaussian mixture components as Nu = 3 and Nl = 2 for all the modes.

In the both proposed algorithms, for the dropped Gaussian mixture components, the

merging strategy that combines the Gaussian components with very similar means is

used when they satisfy the conditions for merging in Table 2.1. The parameters of

the merging strategy are δ = 0.7, κ = 0.15, and γ = 0.02. In the IMM-GSF algorithm

and the proposed algorithms, the GSF is used as the mode-conditioned filter and the

UKFs are selected as the subfilters of the GSF. We run the IMM-PF algorithm with
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two different settings in which 100 and 1000 particles, respectively, are maintained

in each mode. In this simulation, 500 Monte Carlo runs are conducted and the root

mean square error (RMSE) is calculated to evaluate the state estimation accuracy of

the algorithms considered.

Figure 2.3 shows the RMSE of the state estimation for the respective algorithms

and the average RMSE over the entire time steps is listed in Table 2.2. As shown,

the simulation results clearly indicate that the proposed algorithms outperform the

IMM-UKF algorithm and the IMM-GSF algorithm and achieve the performances

close to that of the IMM-PF algorithm with 1000 particles. This is reasonable since

the proposed algorithms minimize the information loss resulting from the approxi-
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Figure 2.3. Comparison of state estimation performance (500 Monte Carlo runs)
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Table 2.2. Performance comparison (500 Monte Carlo runs)

Average RMSE Average computation time

for a single step (s)

Proposed I 2.78 5.03× 10−4

Proposed II 2.73 6.35× 10−4

IMM-UKF 3.00 2.29× 10−4

IMM-GSF 2.92 6.84× 10−4

IMM-PF (100) 2.97 1.02× 10−2

IMM-PF (1000) 2.72 1.03× 10−1

mation of the mixed posterior pdf and thus yield a better approximation of the true

posterior pdf of the state which determines the state estimates. In Fig. 2.4, at time

step k = 1, the resulting approximations of the original mixed posterior pdf by the

proposed algorithms (with the Gaussian components reduction techniques) and the

IMM-GSF algorithm (with the MGSD technique), respectively, are compared for each

mode. The original mixed posterior pdf in the form of a Gaussian mixture and its

Gaussian components for each mode are represented in Fig. 2.4(a) and Fig. 2.4(b),

and the approximation results are compared with the original mixed posterior pdf in

the rest subfigures. Also, the average number of the Gaussian mixture components

that are used for the approximation at each time step is computed for each mode over

500 Monte Carlo runs and compared in Table 2.3. From Fig. 2.4 and Table 2.3, it

is shown that the proposed Gaussian components reduction techniques with pruning

and merging are accurate and notably flexible in approximating the mixed posterior

pdf, while the MGSD technique is not. It is also observed that the better state esti-

mation accuracy can be achieved with the smaller number of the Gaussian mixture

components by using the proposed algorithms. Figure 2.5 shows the evolution of the

posterior pdf of the state by the proposed algorithms, the IMM-GSF algorithm, and

the IMM-PF algorithm, respectively, for a single run (where the posterior pdf of the
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Table 2.3. Average number of the Gaussian mixture components (500
Monte Carlo runs)

Mode 1 Mode 2

Proposed I 2.00 2.00

Proposed II 2.94 2.00

IMM-GSF 3.00 3.00

state computed by the IMM-PF algorithm is used as a proxy for the true posterior

pdf of the state). We can see that the proposed algorithms more accurately track the

true posterior pdf of the state with bimodal nature than the IMM-GSF algorithm.

In Table 2.2, the average computation time of each time step for the respective al-

gorithms is summarized. Through the simulation results, it is demonstrated that

the proposed algorithms achieve the increased state estimation accuracies with the

reduced computational efforts in solving the nonlinear state estimation problem for

the JMS.
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3. NONLINEAR HYBRID STATE ESTIMATION FOR A

GENERAL CLASS OF STOCHASTIC HYBRID SYSTEMS

USING GAUSSIAN SUM FILTERS

In this chapter, the proposed nonlinear hybrid state estimation algorithm based on

Gaussian sum approximation is extended to a more general class of the SHS where

the discrete state transitions are governed by stochastic guard conditions dependent

on the continuous state.

3.1 Background and Motivations

The nonlinear hybrid estimation algorithms mentioned in 2.1 only consider the

discrete mode transition with constant probabilities irrespective of the continuous

state evolution. However, in many cases, the mode transition is conditioned on the

continuous state. For example, an aircraft during descent phase along its flight plan

switches its flight mode (i.e., discrete state transition) near flight mode change points

that are determined by its continuous state such as the altitude and horizontal posi-

tion. Another example is a modern vehicle with advanced driver-assistance systems

whose behavior is a complex combination of multiple motions in different operating

modes driven by various subsystems such as an adaptive cruise control system and

a collision mitigating system. The transition between the subsystems is governed by

the vehicle’s continuous state such as speed and distance to adjacent objects. This

implies that the proposed nonlinear hybrid state estimation algorithm needs to be

improved to deal with the continuous state-dependent mode transition.

In this research, the nonlinear hybrid state estimation algorithm proposed in

Chapter 2 is improved to deal with both nonlinearity and state-dependent mode
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transition. First, to overcome the limitation in handling nonlinearity, we propose to

use the GSF [22] as the mode-conditioned filter that has been proven effective for

approximating a non-Gaussian distribution with low computational cost. Second, we

introduce stochastic guard conditions to model the continuous state-dependent mode

transition and derive a closed-form mode transition probability by analytically inte-

grating the continuous state probability distribution over the guard conditions. For

the analytic integration, the analytical properties of the Gaussian sum are exploited.

The proposed GSF and state-dependent mode transition probability are then inte-

grated into the IMM framework as an attempt to deal with the increasing number of

hypotheses on the discrete state history.

3.2 Problem Formulation

A class of nonlinear stochastic hybrid systems is considered in this paper as follows.

The discrete state denoted by s(k) represents the mode of the system at time k, where

the number of modes is q, i.e., s(k) ∈ S = {1, 2, . . . , q}. The continuous state and

measurement vectors are denoted by x(k) ∈ Rn and z(k) ∈ Rm, respectively. For

each mode s(k) ∈ S, the dynamic behavior of the continuous state is governed by

x(k + 1) = fs(k)(x(k)) + ωs(k)(k) (3.1)

where fs(k) is a smooth bounded nonlinear function and ωs(k)(k) is a zero-mean white

Gaussian process noise with covariance Qs(k). The measurement is generated by a

mode-specific nonlinear mapping gs(k) : Rn → Rm as

z(k) = gs(k)(x(k)) + νs(k)(k) (3.2)

where νs(k)(k) is a zero-mean Gaussian measurement noise with covariance Rs(k).

The discrete state also evolves over time and its transition is governed by a set of

stochastic linear guard conditions G(i, j), i, j = 1, 2, . . . , q such that, if s(k) = i and
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x(k) satisfies G(i, j) at time k, then the discrete state evolves to s(k+ 1) = j at time

k + 1. The guard conditions are modeled as linear inequalities as

G(i, j) = {x|Lx,ijx + Lη,ijη ≤ 0} (3.3)

where Lx,ij ∈ Rl×n and Lη,ij ∈ Rl×r are constant matrices that determine the shape

of the guard condition in Rn, and η ∈ Rr is a Gaussian random variable

η ∼ N (η; η̄,Ση) (3.4)

that accounts for uncertainties of the discrete state transition. It should be noted that

the guard conditions in Eq. (3.3) explicitly present the dependency of the discrete

state transitions on the continuous state x (i.e., state-dependent transition), and this

transition model can handle more general hybrid systems than those with constant

mode transition probabilities which are a special case of the proposed model.

Given the nonlinear stochastic hybrid system defined above, the hybrid state esti-

mation problem is formulated as computing the posterior probability distribution of

both the continuous state p(x(k)|Zk) and discrete state p(s(k)|Zk), where Zk repre-

sents a set of measurement vectors up to time k as Zk = {z(1), z(2), . . . , z(k)}. The

state estimates are then obtained by

x̂(k) := E[x(k)|Zk]

ŝ(k) := argmax
i

p(s(k) = i|Zk)
(3.5)

3.3 Nonlinear Hybrid State Estimation based on Gaussian Sum Approx-

imation

The main difficulties in solving the hybrid state estimation problem defined in

the previous section are twofold. First, since the exact discrete state (i.e., which

mode the system is operating in at time k) is not known to the estimator, multiple

hypotheses need to be maintained over all possible histories of the discrete state to

obtain the optimal solution, which is impractical due to the exponentially increasing
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number of hypotheses over time. Second, the computation of the state-dependent

mode transition probabilities governed by the guard conditions in Eq. (3.3) is not

straightforward as it involves the integration of the probability density function of

the continuous state x which is non-Gaussian in general due to the nonlinearity in its

dynamics in Eq. (3.1).

In this research, these difficulties are overcome as follows. First, we apply the

hypothesis merging approach proposed in the IMM to keep the number of hypotheses

constant and thus to avoid exponentially growing computational complexity. Second,

we propose to use the Gaussian mixture to effectively approximate the actual non-

Gaussian probability distribution of the continuous state. The analytical properties

of the Gaussian mixture are then used to derive a closed-form of the state-dependent

mode transition probabilities corresponding to the guard conditions. The derived

closed-form solution allows to compute the transition probabilities without computa-

tionally expensive numerical integration.

The proposed algorithm computes the posterior probability distributions recur-

sively using Bayes’ theorem. The details of the proposed approach recurring in each

iteration are discussed as follows. First, at the beginning of the iteration at time k,

the inputs to the proposed algorithm are the mode probabilities

mi(k − 1) ≡ p(s(k − 1) = i|Zk−1) (3.6)

and the mode-matched posterior continuous state pdfs

p(x(k − 1)|s(k − 1) = i,Zk−1)

=
N∑
α=1

ξiα(k − 1)N (x(k − 1); x̂iα(k − 1),Piα(k − 1))
(3.7)

for i = 1, 2, . . . , q, computed from the last iteration at time k − 1. As shown in

Eq. (3.7), for each mode i, the mode-matched pdf is approximated by a weighted sum

of N Gaussians, where ξiα(k − 1), x̂iα(k − 1), and Piα(k − 1) are respectively the

weight, mean, and covariance of the αth component of the Gaussian mixture. The

weights satisfy
∑N

α=1 ξ
iα(k − 1) = 1. Given these inputs and the new measurement
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z(k) generated at time k, the proposed algorithm uses a bank of q GSFs, each of

which is matched to the continuous dynamics of each mode, to compute the posterior

probability distributions p(x(k)|s(k) = j,Zk) and mj(k) for each mode j = 1, 2, . . . , q,

as follows:

Step 1: Mixing

Note that, for each mode j, the mode-matched posterior pdf p(x(k)|s(k) = j,Zk)

can be represented using Bayes’ theorem as

p(x(k)|s(k) = j,Zk) =
p(z(k)|x(k), s(k) = j,Zk−1)

p(z(k)|s(k) = j,Zk−1)
p(x(k)|s(k) = j,Zk−1) (3.8)

where the last term represents the prior pdf and can be further extended as

p(x(k)|s(k) = j,Zk−1) =

q∑
i=1

p(x(k)|s(k) = j, s(k − 1) = i,Zk−1)

× p(s(k − 1) = i|s(k) = j,Zk−1)

(3.9)

As shown, the prior pdf is the weighted sum of sub-priors, each of which is conditioned

on one of the possible modes at time k − 1. To compute the prior pdf, the weight

p(s(k − 1) = i|s(k) = j,Zk−1) (also called as the mixing probability and denoted by

mi|j(k)) needs to be calculated for each component as

mi|j(k) = p(s(k − 1) = i|s(k) = j,Zk−1)

=
p(s(k) = j|s(k − 1) = i,Zk−1)p(s(k − 1) = i|Zk−1)

p(s(k) = j|Zk−1)

=
λij(k − 1)mi(k − 1)∑q
l=1 λlj(k − 1)ml(k − 1)

(3.10)

where

λij(k − 1) ≡ p(s(k) = j|s(k − 1) = i|Zk−1) (3.11)

is the mode transition probability that needs to be computed using the guard con-

dition G(i, j) defined in Eq. (3.3). In this research, we provide a succinct, closed-

form expression for the mode transition probability through the following lemma

and theorem. To begin with, let Φl(µ,Σ) be the l-dimensional Gaussian cumulative
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density function defined as Φl(µ,Σ) ≡ p(a ≤ 0) for a Gaussian random variable

a ∼ N (a;µ,Σ).

Lemma 1 Given a constant vector a ∈ Rl, a constant matrix A ∈ Rl×n, a sym-

metric positive definite matrix B ∈ Rl×l, and a Gaussian random vector b ∈ Rn ∼

N (b; b̄,C), the following holds true:∫
Rn

Φl(Ab + a,B)N (b, b̄; C)db = Φl(Ab̄ + a,D) (3.12)

where

D = B + ACAT (3.13)

Proof The proof can be found in [30].

Theorem 3.3.1 Suppose that the mode-matched continuous state pdf p(x(k−1)|s(k−

1) = i,Zk−1) for the i-th mode at time k − 1 is given as Eq. (3.7) and the mode

transition from s(k − 1) = i to s(k) = j is governed by the guard condition in

Eq. (3.3). Then, the mode transition probability λij(k − 1) can be computed in the

following closed-form expression:

λij(k − 1) =
N∑
α=1

ξiα(k − 1)Φl(µ,Σ) (3.14)

where

µ = Lη,ijη̄ + Lx,ijx̂
iα(k − 1)

Σ = Lη,ijΣηLT
η,ij + Lx,ijP

iα(k − 1)LT
x,ij

(3.15)

Proof By the total probability theorem, λij(k − 1) can be extended as

λij(k − 1) =

∫
Rn

p(s(k) = j|s(k − 1) = i,x(k − 1) = x,Zk−1)

× p(x(k − 1) = x|s(k − 1) = i,Zk−1)dx

(3.16)

Using the Gaussian mixture in Eq. (3.7), Eq. (3.16) is further extended as

λij(k − 1) =
N∑
α=1

ξiα(k − 1)

{∫
Rn

p(s(k) = j|s(k − 1) = i,

x(k − 1) = x,Zk−1) ×N (x; x̂iα(k − 1),Piα(k − 1))dx
} (3.17)
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From the guard conditionG(i, j) in Eq. (3.3), the first term in the integral in Eq. (3.17)

is equivalent to

p(s(k) = j|s(k − 1) = i,x(k − 1) = x,Zk−1)

= Φl(Lη,ijη̄ + Lx,ijx,Lη,ijΣηLT
η,ij)

(3.18)

Then, using Lemma 1, we have∫
Rn

Φl(Lη,ijη̄ + Lx,ijx,Lη,ijΣηLT
η,ij)N (x; x̂iα(k − 1),Piα(k − 1))dx

= Φl(Lx,ijx̂
iα(k − 1) + Lη,ijη̄,Lη,ijΣηLT

η,ij + Lx,ijP
iα(k − 1)LT

x,ij)

(3.19)

Finally, Eqs. (3.17)-(3.19) complete the proof.

The initial conditions for the j-th GSF are computed using the mixing probability

as

p(x(k − 1)|s(k) = j,Zk−1) =

q∑
i=1

mi|j(k)p(x(k − 1)|s(k − 1) = i,Zk−1)

=
N∑
α=1

q∑
i=1

mi|j(k)ξiα(k − 1)

×N (x(k − 1); x̂iα(k − 1),Piα(k − 1))

(3.20)

To keep the number of the elements of the Gaussian mixture constant, the q × N

Gaussians in Eq. (3.20) is reduced to N . In this research, we first prune components

of small weights (where the weight of each component is mi|j(k)ξiα(k−1)), then merge

them to N components. The detailed procedure is described as follows.

To begin with, among q × N components, N components corresponding to the

highest N weights are selected. If the sum of the weights of the selected components is

greater than a threshold δ (e.g., δ = 0.8), the weights are normalized and the initially

selected N components become the final output. If the sum is less than the threshold,

which means the initially selected N components are not enough to account for the

information in the original pdf in Eq. (3.20), the remaining (q − 1)×N components

are further investigated to be merged to the initially selected N components. For

each of the remaining components with the weight greater than a threshold κ (e.g.,
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κ = 0.1), the distances to the initially selected N components are computed. If the

distance to the nearest component is less than a threshold γ (e.g., γ = 0.02), the

remaining component is merged to the nearest component by means of the moment

matching approximation (the procedure discussed above is summarized in Table 2.1

as Proposed I).

After the merging and pruning, the initial conditions are approximated by a new

set of N Gaussians as

p(x(k − 1)|s(k) = j,Zk−1)

=
N∑
β=1

ξjβ(k − 1)N (x(k − 1); x̂jβ(k − 1),Pjβ(k − 1))
(3.21)

where ξjβ(k−1), β = 1, 2, . . . , N is a new set of weights, and x̂jβ(k−1) and Pjβ(k−1)

are the corresponding mean and covariance, respectively. Given the initial conditions

in Eq. (3.21) for mode j, the j-th GSF computes the mode-conditioned posterior pdf

p(x(k)|s(k) = j,Zk) as explained in the following step.

Step 2: Mode-conditioned estimation

Each component of the Gaussian sum in Eq. (3.21) can be considered as the local

approximation of the actual non-Gaussian distribution. The mode-matched GSF

consists of the N Gaussian sub-filters, where each sub-filter predicts and updates each

Gaussian local approximation. In this research, the unscented Kalman filter is used

as the sub-filter. Using the j-th GSF, the prior pdf for mode j, p(x(k)|s(k) = j,Zk−1)

is obtained as

p(x(k)|s(k) = j,Zk−1)

=
N∑
β=1

ξjβ(k|k − 1)N (x(k); x̂jβ(k|k − 1),Pjβ(k|k − 1))
(3.22)
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where x̂jβ(k|k−1) and Pjβ(k|k−1) are the predicted mean and covariance computed

by the β-th UKF as

x̂jβ(k|k − 1) =
2n∑
ρ=0

εmρ χχχ
jβ
ρ (k|k − 1)

Pjβ(k|k − 1) =
2n∑
ρ=0

εcρ[χχχ
jβ
ρ (k|k − 1)− x̂jβ(k|k − 1)]

×[χχχjβρ (k|k − 1)− x̂jβ(k|k − 1)]T + Qj

(3.23)

where εmρ and εcρ, ρ = 0, 1, . . . , 2n+1 are the weights and the sigma point χχχjβρ (k|k−1)

is the transformation of the ρ-th column of an n× (2n+ 1) matrix χχχjβ(k − 1) as

χχχjβ(k − 1) =
[
x̂jβ(k − 1) x̂jβ(k − 1)±

√
(n+ λ̄)Pjβ(k − 1)

]
χχχjβρ (k|k − 1) = fj(χχχ

jβ
ρ (k − 1))

εm0 =
λ̄

n+ λ̄

εc0 = εm0 + (1− ᾱ2 + β̄)

εmρ = εcρ =
1

2(n+ λ̄)

where λ̄, ᾱ, and β̄ are the unscented transform parameters. The predicted weight

ξjβ(k|k − 1) is set as ξjβ(k|k − 1) = ξjβ(k − 1).

Given a measurement z(k), the posterior pdf for mode j, p(x(k)|s(k) = j,Zk), is

then computed as

p(x(k)|s(k) = j,Zk) =
N∑
β=1

ξjβ(k)N (x(k); x̂jβ(k),Pjβ(k)) (3.24)

where x̂jβ(k) and Pjβ(k) are the updated mean and covariance obtained by the β-th

UKF as

x̂jβ(k) = x̂jβ(k|k − 1) + Kjβ(k)(z(k)− ẑjβ(k|k − 1))

Pjβ(k) = Pjβ(k|k − 1)−Kjβ(k)Pzz
jβ(k|k − 1)Kjβ(k)T

(3.25)

where
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Z̄jβ
ρ (k|k − 1) = gj(χ̄χχ

jβ
ρ (k|k − 1))

ẑjβ(k|k − 1) =
2n∑
ρ=0

εmρ Z̄jβ
ρ (k|k − 1)

Pzz
jβ(k|k − 1) =

2n∑
ρ=0

εcρ[Z̄
jβ
ρ (k|k − 1)− ẑjβ(k|k − 1)]

×[Z̄jβ
ρ (k|k − 1)− ẑjβ(k|k − 1)]T + Rj

Pxz
jβ(k|k − 1) =

2n∑
ρ=0

εcρ[χ̄χχ
jβ
ρ (k|k − 1)− x̂jβ(k|k − 1)]

×[Z̄jβ
ρ (k|k − 1)− ẑjβ(k|k − 1)]T

Kjβ(k) = Pxz
jβ(k|k − 1)Pzz

jβ(k|k − 1)−1

(3.26)

The weights are updated as

ξjβ(k) =
1

cjβ
ξjβ(k|k − 1)

×N (z(k)− ẑjβ(k|k − 1); 0,Pzz
jβ(k|k − 1))

(3.27)

where N (z(k) − ẑjβ(k|k − 1); 0,Pzz
jβ(k|k − 1)) is the likelihood of z(k) in the β-th

UKF, and cjβ is a normalizing constant that imposes

N∑
β=1

ξjβ(k) = 1 (3.28)

Step 3: Mode probability estimation

First, the prior mode probability for mode j, p(s(k) = j|Zk−1), is computed as

p(s(k) = j|Zk−1) =

q∑
i=1

p(s(k) = j|s(k − 1) = i,Zk−1)

× p(s(k − 1) = i|Zk−1)

=

q∑
i=1

λij(k − 1)mi(k − 1)

(3.29)
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Then, based on Bayes’ theorem, the posterior mode probability is computed for mode

j as

mj(k) = p(s(k) = j|Zk)

=
1

cj
p(z(k)|s(k) = j,Zk−1)p(s(k) = j|Zk−1)

(3.30)

where cj is a normalizing constant and p(z(k)|s(k) = j,Zk−1) is the mode-conditioned

likelihood given by

p(z(k)|s(k) = j,Zk−1)

=
N∑
β=1

ξjβ(k|k − 1)N (z(k)− ẑjβ(k|k − 1); 0,Pzz
jβ(k|k − 1))

(3.31)

Step 4: Output

Using the total probability theorem, it is shown that

p(x(k)|Zk) =

q∑
i=1

p(x(k)|s(k) = i,Zk)p(s(k) = i|Zk) (3.32)

From Eqs. (3.5) and (3.32), the continuous state estimate and its covariance are

computed as

x̂(k) =

q∑
i=1

mi(k)x̂i(k)

P(k) =

q∑
i=1

mi(k)
{
Pi(k) + [x̂i(k)− x̂(k)][x̂i(k)− x̂(k)]T

} (3.33)

where the mode-conditioned state estimates x̂i(k) and covariance Pi(k) are computed

from the mode-conditioned posterior distributions in Eq. (3.24) as

x̂i(k) =
N∑
β=1

ξiβ(k)x̂iβ(k)

Pi(k) =
N∑
β=1

ξiβ(k)
{
Piβ(k) + [x̂iβ(k)− x̂i(k)][x̂iβ(k)− x̂i(k)]T

} (3.34)

The discrete state estimate ŝ(k) is computed as

ŝ(k) = argmax
i

mi(k) (3.35)

The overall structure of the proposed algorithm is illustrated in Fig. 3.1.
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3.4 Numerical Simulation

In this section, the effectiveness of the proposed algorithm is demonstrated using

an illustrative numerical example with a multimodal system. We consider a nonlinear

stochastic hybrid system with two modes (i.e., s ∈ {1, 2}) for which the continuous

dynamics is given as

ẋ(t) = ξsx(t)(1− ηsx(t)2) + ωs(t), s ∈ {1, 2} (3.36)

where ξs and ηs are system parameters that characterize the behavior of the system

for each mode, given as ξ1 = 1.25, η1 = 0.02 for s = 1 and ξ2 = 1.5, η2 = 0.01 for

s = 2; and ωs(t) is a zero-mean white Gaussian process noise with strength Qs = 0.5

for both s = 1, 2. In this example, Eq. (3.36) is discretized using the Euler-Maruyama

method [29] with a sampling time ∆T = 0.1 sec to obtain the corresponding discrete-

time dynamic model. The measurement equation is given for all the modes as

z(k) =
x(k)2

10
+ ν(k) (3.37)

where ν(k) is a white Gaussian measurement noise with zero mean and covariance

R = 0.2, which is independent of the process noise; and the measurement is taken at

every time step for state estimation. The system is initialized at mode 1 (s = 1) and

switches to mode 2 (s = 2) when the following guard condition is satisfied:

|x| ≤ 6.5 (3.38)

The parameters in Eqs. (3.3) and (3.4) corresponding to the guard condition are given

as

Lx = [−1, 1]T

Lη =

1 0

0 −1


η̄ = [−6.5, 6.5]T

Ση =

0.12 0

0 0.12


(3.39)
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The mode-conditioned GSFs of the proposed algorithm are initialized as (the number

of Gaussians, N , is set to 2, and the parameters for the pruning and merging are set

as δ = 0.7, κ = 0.15, and γ = 0.02)

p(x(0)|s(0) = 1) = 0.8 N (−1.2, 0.22) + 0.2 N (1.2, 0.22)

p(x(0)|s(0) = 2) = 0.4 N (−1.5, 0.22) + 0.6 N (1.5, 0.22)
(3.40)

with the initial mode probabilities given by

p(s(0) = 1) = 0.7

p(s(0) = 2) = 0.3
(3.41)

For performance evaluation, the proposed algorithm, called the state-dependent-

mode-transition hybrid estimation with the GSF (denoted as ‘SD-GSF’), is compared

to two other algorithms that also use the same proposed framework for the state-

dependent mode transition but use the EKF (denoted as ‘SD-EKF’) or UKF (denoted

as ‘SD-UKF’) as the mode-matched filter, respectively.

The actual history of x and corresponding measurements z are depicted in Fig. 3.2

for a single run where x(0) > 0 and the mode changes around k = 20 (when the

guard condition Eq. (3.38) is satisfied). All the three algorithms (SD-GSF, SD-EKF,

and SD-UKF) are applied and their performances are evaluated by calculating the

estimation error for both the continuous and discrete states.

The root mean square (RMS) estimation error of the continuous state x is com-

puted by the 500 Monte Carlo simulations as presented in Fig. 3.3. The mean of

the RMS over the simulation time is also computed and presented in Table 3.1. As

shown, the proposed algorithm produces more accurate estimation results than the

other two algorithms. The estimation performance is also compared for the discrete

state estimation as presented in Table 3.2 where the average, maximum, and mini-

mum number of mismatch between the actual and estimated modes (i.e., s(k) 6= ŝ(k))

are computed along the simulation time (50 steps) for the 500 Monte Carlo simula-

tions. It is shown that the proposed algorithm also outperforms the other algorithms

in discrete state estimation.
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Figure 3.2. Actual history of x and measurements z for a single run (x(0) > 0)

Table 3.1. Mean RMS error for x (500 Monte Carlo simulations)

Average RMS continuous

state estimation error

Proposed (SD-GSF) 7.42

SD-EKF 8.88

SD-UKF 8.46
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Figure 3.3. RMS estimation error for x (500 Monte Carlo simulations)

Table 3.2. Discrete state estimation mismatch (500 Monte Carlo simulations)

Average Min Max

Proposed (SD-GSF) 1.05 0 3

SD-EKF 1.09 0 3

SD-UKF 7.49 0 30
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4. APPLICATION TO AIR TRAFFIC CONTROL:

ESTIMATED TIME OF ARRIVAL PREDICTION

In this chapter, an aircraft trajectory estimation and estimated time of arrival (ETA)

prediction algorithm is proposed based on the hybrid system modeling and hybrid

state estimation presented in the previous chapters.

4.1 Background and Motivations

As the National Airspace System (NAS) has been facing the pressure of steadily

increasing air travel demand, air traffic congestion and flight delays around airports

have become major issues in air traffic management. To mitigate such issues, a new

framework known as the Next Generation Air Transportation System (NextGen) [1]

has been proposed, under which aircraft operate with reduced separation thresholds

and have the flexibility of changing their routes for the safe and efficient use of a

given airspace (e.g., 4D trajectory-based operations). Under NextGen, a key require-

ment for safe and efficient air traffic flow management in terminal airspace is accurate

knowledge of the aircraft’s states (e.g., position, velocity, and flight mode) and accu-

rate prediction of the aircraft’s estimated time of arrival (ETA). Using the accurate

state information of the aircraft, more efficient airborne spacing with reduced sepa-

ration thresholds can be achieved, and thereby, air traffic flow near an airport can be

effectively managed within its capacity. In addition, the accurate prediction of ETA

can play an important role in enhancing the efficiency of airport surface operations,

since it can reduce unnecessary delays in taxi times caused by inaccurate ETA of

arrival aircraft [31].

A lot of research has been done for aircraft tracking and trajectory prediction, and

[32] and [33] provide comprehensive literature reviews. In general, aircraft tracking
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and trajectory prediction can be performed in a unified framework, but one of the most

important differences between these tasks is that the aircraft tracking problem has

regularly updated observations to estimate the aircraft’s states, while the trajectory

prediction problem needs to predict the future trajectory without observations. So,

in most cases, the aircraft’s states are first estimated in the tracking step, and then

in the prediction step, the estimated state information is used as an initial condition

to compute the aircraft’s future trajectory. Many trajectory prediction algorithms

have been developed using kinematic models due to their simplicity [34–38]. In these

algorithms, the future trajectory is projected forward based only on the estimated

velocity and acceleration information. Since these models cannot accurately capture

the maneuver uncertainty of the aircraft, they could cause large errors and only work

for short look-ahead times. To improve the prediction accuracy, there have been

efforts to incorporate flight intent information into prediction models [39–42]. If a

specific flight intent is inferred from the current estimated states, then a specific

prediction model corresponding to the inferred flight intent is chosen to predict the

future trajectory. However, only short-term flight intents have been exploited in the

intent-based prediction models, and therefore, their prediction accuracy is degraded

for long look-ahead times. In addition, under the 4D trajectory-based operation

concept of NextGen, the aircraft’s intent could frequently change due to the air traffic

or weather conditions in the terminal airspace, which makes trajectory prediction

more challenging.

Due to the development of advanced flight data communication systems, long-

term flight intent information such as flight plans or airline procedures have become

available for more accurate trajectory prediction [43–45]. In particular, the long-term

flight intent information can benefit the trajectory prediction of the aircraft during

the descent phase. This is because the aircraft is subject to strictly follow its flight

procedure during descent for safe and efficient terminal airspace operation. In fact,

under NextGen, an aircraft’s onboard data including its flight management system

(FMS) setting information (i.e., flight plan) becomes available to air traffic controllers
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(ATC) and is frequently updated through data communication [1]. This implies that

a more accurate prediction model can be developed which can exploit the flight plan

information explicitly, and thereby predict future trajectories more accurately.

In this research, we propose a stochastic hybrid system model to describe the

behavior of an aircraft along its flight plan (with the focus on the descent phase as

related to ETA computation) since the aircraft’s behavior is composed of both dis-

crete transitions between a number of flight modes (discrete states) and continuous

motion corresponding to a specific flight mode (continuous states). In each flight

mode, we derive a nonlinear dynamic model of the aircraft’s continuous motion and

also derive a wind model to incorporate the effects of wind disturbance on the air-

craft’s motion. Then, we model the discrete transitions between the flight modes

by using the continuous state-dependent transition probabilities. This is reasonable

since the flight mode changes along a given flight plan are triggered when some con-

ditions on the continuous states (e.g., position and velocity) are satisfied. Based

on the obtained stochastic hybrid system model containing the nonlinear continuous

dynamics and multiple flight modes with continuous state-dependent transitions, we

then develop an algorithm for both aircraft tracking and ETA prediction based on

the nonlinear hybrid state estimation algorithm proposed in Chapters 2 and 3. The

proposed algorithm first estimates the aircraft’s continuous and discrete states using

available measurements (aircraft tracking) and then propagates the estimates using

the stochastic hybrid system model to predict the future trajectory and compute the

corresponding ETA (ETA prediction).

4.2 Stochastic Hybrid System Model for Aircraft in the Descent Flight

Procedure

The Federal Aviation Administration (FAA) has summarized the general flight

procedures in a typical flight as shown in Fig. 4.1. A flight typically consists of a col-

lection of different flight modes and trigger conditions that govern the switches from
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one flight mode to another. A typical medium-range fully procedured flight profile

is listed in Table 4.1, where the operational procedures Tmax, Tmin, M , CAS, and

PATH represent the maximum thrust procedure, the minimum thrust procedure,

the constant Mach procedure, the constant calibrated airspeed procedure, and the

constant flight path angle procedure, respectively [46]. In different flight modes, the

aircraft’s behaviors are governed by different continuous dynamics and subject to dif-

ferent constraints. The aircraft can also switch among different flight modes, which is

governed by the trigger conditions. Note that the trigger conditions are based on the

aircraft’s continuous states such as airspeed (V , VCAS) and altitude (h). So, given a

flight procedure or plan, the behavior of the aircraft can be described by a stochastic

hybrid system having interacting continuous states and discrete states (modes) with

continuous state-dependent mode transitions. In this section, the aircraft’s motion in

the descent stage along its flight plan is modeled as a stochastic hybrid system using

the hybrid system model introduced in Chapter 3.

Figure 4.1. Different phases during a flight (source: FAA)

From the general flight phases and their operational procedures shown in Table

4.1, the flight modes most relevant to the descent stage are Constant Mach, Con-

stant Calibrated Airspeed, Constant Deceleration, Approach, and Landing. These

flight modes are then connected as a mode sequence with trigger conditions (guard

conditions) which govern the timing of the switches between one flight mode and the
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following mode (see Fig. 4.2). In Fig. 4.2, TCs denote triggering conditions, for

example, TC1: VCAS = 300 kt, TC2: h = 10, 000 ft, TC3: VCAS = 250 kt, TC4:

h = 6, 000 ft, and TC5: h = 2, 000 ft, where VCAS is the calibrated airspeed and h

is the altitude of the aircraft. Note that the flight mode sequence and the trigger

conditions can vary according to specific flight plans or procedures. This variability

can be easily dealt with by the stochastic hybrid system by appropriately defining

the guard conditions in Eq. (3.3). In the following sections, we present the nonlinear

continuous dynamics for the aircraft’s continuous motion in each flight mode, and

derive a continuous state-dependent flight mode transition model using a set of guard

conditions.

Figure 4.2. Discrete mode sequence during the descent stage

4.2.1 Continuous State Dynamics of Aircraft

We consider the longitudinal motion of an aircraft in the vertical plane with the

assumptions of a flat earth and constant gravitational acceleration [47]. For the

wind disturbance, we assume the standard atmosphere where the atmospheric prop-

erties vary with altitude, and take into account along-track wind effects. Because

the vertical component of the wind along the track is relatively small compared to

the horizontal component, we consider only the horizontal component of the wind

along the track Wu in the equations of motion (the dynamic model for Wu will be

presented shortly). Assuming that the angle of attack and the angle of the engine



47

thrust relative to the aircraft’s body axis are small, the equations of the longitudinal

motion of an aircraft are obtained as follows [47]:

u̇ = V cos γ +Wu (4.1)

ḣ = V sin γ (4.2)

V̇ =
T −D
m

− g sin γ − Ẇucosγ (4.3)

γ̇ =
1

V
(
L

m
− g cos γ + Ẇusinγ) (4.4)

ṁ = −Qf (4.5)

where u denotes the horizontal position, h is the altitude, V is the true airspeed, γ is

the flight path angle, m is the mass of the aircraft, T denotes the thrust, D is the drag,

L is the lift, Qf is the fuel consumption rate, and g is the gravitational acceleration.

In general, to solve the above equations, T , L, and D need to be specified either

directly by operating constraints on themselves (such as idle thrust) or indirectly by

motion constraints such as motion at constant Mach (these constraints are derived

from the characteristics of each flight mode).

To describe the effect of wind disturbance, we consider a wind model W which

contains the deterministic Wd and stochastic Ws components as follow:

W = Wd + Ws (4.6)

The deterministic component of wind can be computed from the meteorological pre-

diction which is available in Rapid Update Cycle (RUC) data from the National

Oceanic and Atmospheric Administration (NOAA). The wind forecast data is up-

dated with a one hour assimilation cycle, thus we can consider them as time-invariant

during descent/approach flight phases. So, from the data, we can build a model de-

scribing deterministic wind profiles (both in speed and direction) for a given airport

and specific time. For example, for the one hour period between UTC 5:00 and UTC

6:00 on September 22, 2004 at the Louisville International Airport (KSDF), we build

a wind model where the wind direction is computed as constant (ϕW = 275◦ from
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true North), and the wind speed is represented as a linear or logarithmic function of

altitude h as (we will use this model in the simulation section) [48]:

Wd(h) =


40.6159
26000

h+ 8.7626 [kt], 10000 ft ≤ h ≤ 36100 ft

−11.4800 + 3.8939 ln(h) [kt], h < 10000 ft

(4.7)

For the stochastic component of the wind disturbance, we consider an integral-state

model [49] which has the stochastic wind component Ws and its time derivative Ẇs

as the states, under the assumption that the stochastic wind acceleration Ẅs is an

independent random process:Ẇs

Ẅs

 =

0 1

0 0

Ws

Ẇs

+

0

1

w(t) (4.8)

where w(t) is a zero-mean white Gaussian noise process with

E[w(t+ τ)w(t)] = Q(t)δ(t− τ)

(here E denotes the expectation and δ is the Dirac delta function). Then, based on

the deterministic and stochastic wind models, the along-track wind speed profile Wu

which we consider in this study can be computed as:

Wu = −(Wd +Ws) cos(ψ − ϕw) (4.9)

where ψ is the heading angle of the aircraft, which is usually constant in each flight

mode. In the following subsections, the constraints for each flight mode in the descent

and approach phase are specified, and the corresponding continuous dynamics of

the aircraft with wind disturbance are derived from the general equations of motion

(Eqs. (4.1)-(4.5)) [50, 51].

Constant Mach Mode

In this mode, the constant Mach number is used as a constraint. Using the

constant Mach constraint and the definition of the true airspeed V = Ma(h) (where
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M is the Mach number and a(h) is the speed of sound which varies with the altitude),

the time derivative of the true airspeed can be obtained as V̇ = M(da/dh)ḣ. The

equations of motion are then written as:

u̇ = V cos γ +Wu (4.10)

ḣ = V sin γ (4.11)

γ̇ =
1

V
(
L

m
− g cos γ + Ẇu sin γ) (4.12)

ṁ = −Qf (4.13)

with the equilibrium condition for the time derivative of the true airspeed V̇ :

T −D
m

− g sin γ − Ẇu cos γ =
da

dh
aM2 sin γ (4.14)

Constant Calibrated Airspeed (CAS) Mode

In this mode, the constant calibrated airspeed is used as a constraint. The time

derivative of the true airspeed is V̇ = (∂V/∂VCAS)V̇CAS + (∂V/∂h)ḣ, where VCAS

denotes the calibrated airspeed. Using V̇CAS = 0 and Eq. (4.2), the equations of

motion are obtained as:

u̇ = V cos γ +Wu (4.15)

ḣ = V sin γ (4.16)

γ̇ =
1

V
(
L

m
− g cos γ + Ẇu sin γ) (4.17)

ṁ = −Qf (4.18)

with the equilibrium condition for the time derivative of the true airspeed V̇ :

T −D
m

− g sin γ − Ẇu cos γ =
∂V

∂h
V sin γ (4.19)
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Constant Deceleration Mode

In this mode, the constant deceleration rate is used as a constraint. For the

constant deceleration constraint, we have V̇ = c, where c is a negative constant which

is determined by operating conditions when this mode is active. The corresponding

equations of motion are represented as:

u̇ = V cos γ +Wu (4.20)

ḣ = V sin γ (4.21)

γ̇ =
1

V
(
L

m
− g cos γ + Ẇu sin γ) (4.22)

ṁ = −Qf (4.23)

with the equilibrium condition for the time derivative of the true airspeed V̇ :

T −D
m

− g sin γ − Ẇu cos γ = c (4.24)

Horizontal Deceleration Mode

In this mode, the constant altitude is used as a constraint. For the constant

altitude constraint, we have ḣ = 0 and γ = 0 from Eq. (4.2). Thus, the time

derivative of the flight path angle, γ̇, is zero and the lift is L = mg from Eq. (4.4).

The corresponding equations of motion are written as:

u̇ = V cos γ +Wu (4.25)

ḣ = V sin γ (4.26)

V̇ =
T −D
m

− g sin γ − Ẇucosγ (4.27)

ṁ = −Qf (4.28)

with the equilibrium conditions for the flight path angle and the lift:

γ = 0, L = mg (4.29)
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Approach Mode

In this mode, the constant ground path angle γg is used as a constraint. The

ground path angle is represented as tan γg = V sin γ/(V cos γ + Wu), and from this,

we can derive the derivative of the flight path angle γ = γ(V,Wu, γg) as γ̇ = ∂γ
∂V
V̇ +

∂γ
∂Wu

Ẇu + ∂γ
∂γg
γ̇g. The corresponding equations of motion are written as:

u̇ = V cos γ +Wu (4.30)

ḣ = V sin γ (4.31)

V̇ =
T −D
m

− g sin γ − Ẇu cos γ (4.32)

ṁ = −Qf (4.33)

with the equilibrium condition for the time derivative of the flight path angle γ̇ (where

γ̇g = 0):

1

V
(
L

m
− g cos γ + Ẇu sin γ) =

∂γ

∂V
V̇ +

∂γ

∂Wu

Ẇu (4.34)

Let us define a continuous state vector x(t) as:

x = [u, h, V, γ, m, Ws Ẇs]
T (4.35)

and define a discrete state q as q = 1 : “Constant Mach Mode”, q = 2 : “Constant

Calibrated Airspeed Mode”, q = 3 : “Constant Deceleration Mode”, q = 4 : “Hor-

izontal Deceleration Mode”, and q = 5 : “Approach Mode”. Then, for each flight

mode q, the equations of motion under the wind disturbance can be represented as

the following mode-specific continuous dynamics:

ẋ(t) = f̃q(x(t)) + w̃q(t) (4.36)

where f̃q is given by the equations of motion corresponding to each mode (Eqs. (4.10)-

(4.34)) and the wind disturbance model (Eqs. (4.7)-(4.9)); and w̃q is a mode-dependent
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zero-mean white Gaussian noise whose spectral density is Q̃q. Then, through dis-

cretization using the Euler-Maruyama method with a sampling time T [29], we finally

get the discrete-time continuous dynamics for each mode q as:

x(k + 1) = fq(x(k)) + wq(k) (4.37)

where fq is the discretized dynamics of f̃q; wq(k) are now a zero-mean white Gaussian

noise with covariance Qq.

Under NextGen, ATC can access an aircraft’s onboard sensor data, such as GPS

measurements, through data communication, which implies that most of the aircraft’s

continuous state information is available for more accurate state estimation. In this

research, it is assumed that noise-corrupted measurements of u, h, V , and m are

available from the aircraft’s onboard sensors. The measurement vector z is then

defined for all the flight modes as:

z(k) = h(x(k)) + v(k) (4.38)

where

h(x(k)) := [u(k) h(k) V (k) m(k)]T (4.39)

and v(k) is a zero-mean white Gaussian noise with covariance R. Note that the

aircraft’s mode-specific continuous dynamics (Eq. (4.37)) and measurement model

(Eq. (4.38)) correspond to Eq. (2.1) in the general stochastic hybrid system model.

The next step to complete the stochastic hybrid system modeling is to mathemati-

cally describe the flight mode transitions (i.e., the discrete state transitions), which

correspond to the design of a set of guard conditions G(i, j) in Eq. (3.3).

4.2.2 Flight Mode Transitions

Given a flight plan or procedure, the flight usually consists of several different

flight modes and transitions. For example, Fig. 4.3 shows a typical flight profile for
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the descent, approach, and landing phases which are further divided into several flight

modes. The flight mode transitions occur at various points which are marked as flight

mode change points (FMCPs). The switching condition for each FMCP is determined

by the given flight plan, and is dependent on the aircraft’s continuous states such

as the altitude and horizontal position. These continuous state-dependent discrete

state transitions are then mathematically described by using guard conditions in the

stochastic hybrid system framework. As an example, we present how to construct

a guard condition corresponding to the flight mode transition at FMCP1 in Fig.

4.3 (even though the guard conditions can be described in the general structure

(Eq. (3.3)), its specific forms vary with specific flight plans). In this example, the

aircraft initially descends at M = 0.78 in Constant Mach Mode (q = 1) approaching

FMCP1. When the speed of the aircraft reaches VCAS = 300 knot calibrated airspeed

(the corresponding altitude h∗1 can be computed which satisfying both M = 0.78

and VCAS = 300 knot), i.e., when the aircraft reaches h∗1, the aircraft’s flight mode

changes to Constant Calibrated Airspeed Mode (q = 2). In addition to that, due

to a horizontal distance constraint imposed by FMCP1, the flight mode transition

(q = 1 to q = 2) is also triggered when the horizontal position of the aircraft reaches

a specific distance u∗1 from the airport. That is, if h < h∗1 or u < u∗1, then the flight

mode transition occurs, and the corresponding guard condition can be represented

as:

G(1, 1) = G(2, 1) = G(3, 1) = G(4, 1) =
{

[xT θT ]T |Lx,11x + Lθ,11θ ≤ 0
}

G(1, 2) = G(2, 2) = G(3, 2) = G(4, 2) = G(1, 1)c

G(1, 3) = G(2, 3) = G(3, 3) = G(4, 3) = ∅

G(1, 4) = G(2, 4) = G(3, 4) = G(4, 4) = ∅

(4.40)

where

Lx,12 =

−1 0 0 0 0 0

0 −1 0 0 0 0

 , Lθ,12 =

1 0

0 1

 , θ ∼ N (θ;

u∗1
h∗1

 ,Σθ) (4.41)
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∅ denotes the empty set; and G(·, ·)c denotes the complement of G(·, ·). Note that

due to the navigation uncertainty, there is probabilistic variation of the actual flight

profiles, and the actual FMCPs deviate from the nominal ones (e.g., h∗1 and u∗1 for

FMCP1). This uncertainty can be accounted for by the parameter θ in the guard

condition, which has a multivariate Gaussian pdf with mean θ̄ and covariance Σθ.

The mean θ̄ can be defined by the given nominal flight profile, and the covariance Σθ

can be determined from the aircraft’s navigation performance. Similarly to FMCP1

presented as an example, the guard conditions can be derived for other FMCPs using

the flight mode switching conditions imposed by the flight procedures.

4.3 Aircraft Tracking and ETA Prediction Algorithm

In this section, we propose an algorithm that solves both the aircraft tracking

problem and the ETA prediction problem in a unified framework. The ETA prediction

is based on the aircraft’s continuous states, flight mode, and a priori knowledge of

the future flight mode sequence. Since the mode sequence and switching conditions

are already defined in the stochastic hybrid system model with a given flight plan, we

only need to estimate the current aircraft’s states (e.g., position and flight mode), and

propagate the estimated states through the stochastic hybrid system model to predict

the descent trajectory and ETA. So, the first step of the proposed algorithm is the

hybrid state estimation where the pdfs of both the continuous states (e.g., position and

velocity) and the discrete state (flight mode) are computed using noisy measurement

data. Then, the state estimates obtained from the computed pdfs are propagated

using the stochastic hybrid system model along the time horizon of prediction without

measurement data.

It should be noted that the state estimates, x̂(k) and q̂(k), can be computed using

the nonlinear hybrid state estimation algorithm proposed in Chapter 3. In order

to predict the future trajectory of the aircraft, the state estimates (x̂(k) and q̂(k))
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obtained using the measurements up to the current time k need to be propagated

through the stochastic hybrid system model. The propagation (or prediction) can

be performed through a process similar to the hybrid state estimation presented

in the previous section. The only difference is that the propagation is performed

without measurements. So, there is no measurement update of the pdfs of both the

continuous states and the discrete state. That is, in the mode-conditioned estimation

(Step 2) and the mode probability update (Step 3) steps, the posterior distributions,

p(x(k′)|q(k′) = j,Zk′) and p(q(k′) = j|Zk′), are now computed as the same as the

prior distribution, p(x(k′)|q(k′) = j,Zk′−1) and p(q(k′) = j|Zk′−1), respectively for

time k′ > k. The estimated time of arrival teta is then computed by

teta = ketaTs (4.42)

where Ts is a sampling time used to obtain the discrete-time dynamics in Eq. (4.37)

(in this study, Ts is chosen as Ts = 1 sec, since 1 sec is one of the normal rates of

onboard sensors (e.g., GPS) in practice) and

keta = inf
{
k′|ĥ(k′) < hrunway, k

′ > k
}

(4.43)

where ĥ and hrunway are the altitude estimate and altitude of runway, respectively.

The overall structure of the proposed algorithm is illustrated in Fig. 4.4.

4.4 Numerical Simulations

In this section, the proposed aircraft tracking and ETA prediction algorithm

is demonstrated with two illustrative examples: 1) a continuous descend approach

(CDA) case and 2) a conventional approach (standard stair-case descending) case. In

both cases, the actual flight descent procedures at the Louisville International Air-

port [48] are considered. For comparison, we consider an algorithm consisting of the

IMM [52, 53] and dead reckoning [54, 55] which have been extensively used for the

aircraft tracking (i.e., hybrid state estimation) and ETA prediction, respectively (for
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Figure 4.4. Structure of the proposed algorithm

the rest of the paper, we denote this algorithm as “IMM-DR”). The performances

of the proposed algorithm and the IMM-DR algorithm are compared in terms of the

aircraft tracking accuracy and the ETA prediction accuracy. One of the traditional

approaches to aircraft tracking is a single EKF which uses a single dynamic model

to describe the motion of an aircraft along its flight profile. Since the single dynamic

model cannot accurately describe the different dynamics of the aircraft operating in

different flight modes, it can be easily expected that the resulting tracking and predic-

tion accuracies are worse than those of the IMM-based approach or of the proposed

approach. In this sense, we do not consider the single EKF-based approach in the

comparison study.

4.4.1 Example 1: CDA Procedure

In this example, the tracking and ETA prediction of a Boeing 767 following a

CDA procedure at the Louisville International Airport are considered. The aircraft

starts to descend at 36, 000 ft and 96 nautical miles (nm) from the airport with an

initial speed of 273 kt in Constant Mach mode. Then, the aircraft changes its flight
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mode at 8 different FMCPs during the descending procedure. The operational pro-

cedures and trigger conditions (i.e., guard conditions) corresponding to each mode

are summarized in Table 4.2 (also see Fig. 4.5 for the nominal trajectory along

the CDA procedure). For simulation, we use the proposed stochastic hybrid sys-

tem model where the parameters in the aircraft dynamics are obtained from the

aircraft performance model in the Base of Aircraft Data (BADA) [56]. For all the

modes, the covariance Q of the process noise for the continuous dynamics is set as

Q = diag[(10−3)2 ft2, (10−3)2 ft2, (0.2)2 (ft/s)2, (10−3)2 lb2], and the covariance of

measurement noise is set as R = diag[52 ft2, 52 ft2, 1.72 (ft/s)2, 63.62 lb2]. Then, the

proposed algorithm and the IMM-DR algorithm are applied to estimate the aircraft’s

states and predict the ETA using the simulated sensor measurements z. The tracking

and ETA prediction accuracies are compared in Fig. 4.6 and Table 4.3, respectively.

In Table 4.3, the ETA is predicted from the top of descent (TOD), meter fix (MF),

initial approach fix (IAF), and final approach fix (FAF).

It is shown that the proposed algorithm produces more accurate state estimates

and predicts more accurate ETA compared to the IMM-DR approach. In particular,
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the accuracy of the ETA prediction is significantly improved by using the proposed

algorithm. This is because the proposed algorithm can explicitly utilize the flight

procedure information (characterized by flight mode transitions and triggering con-

ditions) for future trajectory prediction. On the contrary, the flight procedure infor-

mation cannot be systematically incorporated in the IMM-DR approach. Since the

IMM assumes constant mode transition probabilities, information on the continuous

state-dependent mode transitions cannot be incorporated, and thus the algorithm

cannot accurately predict the mode transitions. The performance of the proposed

algorithm can also be indirectly compared to that of [53]. The result of the proposed

algorithm shows that the largest ETA error from the TOD is less than 17 sec for about

20 min duration, which is more accurate than the roughly 30 sec error for about 20

min duration obtained by [53]. The accurate state estimates and ETA of the aircraft

obtained from the proposed algorithm can play an important role in efficient terminal

airspace operation. With more accurate ETA information for aircraft near an airport,

the ATC can control the sequence and separation between the aircraft more tightly,

increasing the throughput of the airport [57].

4.4.2 Example 2: Conventional Approach Procedure

In this example, the tracking and ETA prediction of a Boeing 767 following a

conventional approach procedure (standard stair-case descending) at the Louisville

International Airport are considered. For each mode, the operational procedures and

mode transition conditions are summarized in Table 4.4, and the nominal trajectory

along the conventional approach procedure is illustrated in Fig. 4.7. The same values

of Q and R as in Example 1 are used for simulation. From the numerical simulation,

it is also found that the proposed algorithm outperforms the IMM-DR method in

terms of both tracking and ETA prediction (see Fig. 4.8 and Table 4.5). The ETA

prediction error is similar or slightly larger when compared to Example 1, which is
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Figure 4.7. Nominal trajectory of a Boeing 767 along a conventional
approach procedure

because the locations of the prediction points are similar for both examples, and

the numbers of planned flight mode transitions are similar. As illustrated in both

examples, the proposed algorithm can be applied to both the CDA procedure and

the conventional approach procedure by appropriately modeling those procedures

(i.e., the sequence of flight mode transitions and triggering conditions). Note that

even though the proposed aircraft tracking and ETA prediction algorithm has been

demonstrated with aircraft landing examples, it is general enough to be applied to

the other phases of flight.
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5. APPLICATION TO UAS TRAFFIC MANAGEMENT:

UAS SURVEILLANCE IN LOW-ALTITUDE AIRSPACE

WITH GEOFENCING

In this chapter, a UAS tracking algorithm is proposed to improve the safety and

efficiency of UAS operation under the UAS traffic management (UTM) based on the

hybrid system modeling and hybrid state estimation.

5.1 Background and Motivations

In the UTM system [58], a new concept called geofence has been proposed and

studied as a method to improve the safety and efficiency of UAS operation given an

increasing density of UAS in low-altitude airspace. The geofence [58, 59] represents

the boundary of a region in airspace assigned around a planned path of each UAS,

which restricts the UAS from deviating from its approved flight plan during a pre-

specified time interval (see Fig. 5.1). Once a flight plan is submitted to the UTM

system by a UAS operator, including the origin, destination, way points, flight time,

UAS type, operational capability, etc., the corresponding geofence is computed by

the UTM system to reserve a volume of airspace for the planned flight of the UAS.

When another UAS submits a request with its flight plan, the UTM system generates

a geofence for that UAS such that it does not intersect with the existing geofences

that were already assigned to other UAS currently operating in airspace. This allows

the UTM system to safely and effectively manage many UAS flights, reducing the

risk of potential collision.

In practice, due to many factors such as weather, traffic demand, control system

failure, change of flight intents, etc., the actual trajectory of a UAS can deviate from
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Figure 5.1. Illustration of geofence given a set of waypoints (WPs)

a predefined geofence and this may cause undesired use of airspace and/or conflicts

with other UAS, which degrades the safety and efficiency of the UTM system. This

implies that the actual trajectories of UAS should be accurately tracked in real-time

and monitored to check if they remain within the geofences assigned to them, which

leads to UAS tracking and conformance monitoring problems. In this research, our

efforts focus on the development of a UAS tracking problem and the technical details

will be discussed with illustrative numerical simulation results. The result will be

extended to solving the conformance monitoring problem as future work.

There are two key points to consider for the UAS tracking: 1) the motion of a UAS

is complex as it is composed of, for example, a sequence of straight flights and turning

motions along its planned trajectory connecting waypoints, and 2) the trajectory of a

UAS is restricted to be within a region in airspace bounded by an assigned geofence

as regulated by the UTM system. The goal of this research is to develop a UAS

tracking algorithm that can effectively account for these points so that it can produce

more accurate tracks of UAS than the existing tracking algorithms, and thus support

the safe and efficient operation of the UTM system.

Many tracking algorithms have been developed to estimate the position and ve-

locity of moving targets. A simplest way is to use a single Kalman filter based on

a single dynamics that assumes a certain type of behavior of the target. However,
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it could cause significant tracking errors as the single dynamics cannot effectively

describe the complex behavior of targets that can take various types of maneuvers.

To account for this, the multiple model algorithms [60] have been developed based

on the Bayesian framework, and they have been widely used in many applications

of maneuvering target tracking such as air traffic surveillance [52]. The interact-

ing multiple model (IMM) algorithm [10] is one of the most popular multiple model

algorithms, and it is well known to produce good performances and cause less com-

putational costs. However, the IMM algorithm models the discrete mode transitions

as a Markov process with constant mode transition probabilities, and therefore its

applications are limited to a certain type of the stochastic hybrid systems. In recent

years, a new hybrid state estimation algorithm, called the state-dependent-transition

hybrid estimation (SDTHE) [30], has been developed and applied to many aerospace

applications [3, 8]. The SDTHE algorithm is based on the IMM framework, but it

exploits the information of the discrete mode switching conditions dependent on the

continuous states of the stochastic hybrid systems and computes the continuous-state-

dependent mode transition probabilities explicitly, which is applicable to a more gen-

eral class of the stochastic hybrid systems compared to the IMM algorithm. However,

these approaches also have limitations in that they do not use additional information

(e.g., constraints on the state) that needs to be incorporated for more accurate state

estimation.

In this research, we first propose to model the behavior of a UAS as a stochastic

hybrid system in which a set of stochastic continuous dynamical models is used to

describe different physical motions of a UAS with uncertainties such as wind distur-

bance, and the transitions between these stochastic continuous dynamical models are

described by the discrete dynamics. We also propose to use the constrained Kalman

filtering technique [61] in hybrid state estimation framework as an attempt to explic-

itly incorporate the constraints on the motion of a UAS (imposed by geofence) into

state estimation (tracking). It is shown that successful UAS tracking is achieved by
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the effective extraction and incorporation of useful information about the UAS state.

5.2 Constrained Stochastic Hybrid System Model for UAS

Given a flight plan (e.g., a set of waypoints), a physically flyable trajectory can be

generated, which in general is composed of a set of flight modes, for example, constant

velocity mode, turning mode, constant acceleration mode, etc. Thus, the motion of a

UAS can be described by 1) the physical behavior corresponding to each flight mode

characterized by the continuous state dynamics and 2) discrete state (or mode) transi-

tions between the different flight modes that are usually dependent on the continuous

state of the UAS (e.g., a UAS is likely to begin a turning motion around the way-

points, i.e., based on the distance to waypoints). This nature of UAS behavior can

be well modeled by a stochastic hybrid system having interacting continuous states

and discrete states (modes) with continuous state-dependent mode transitions. In

this section, a class of stochastic hybrid systems called the stochastic linear hybrid

system (SLHS) is introduced, and its application to UAS behavior modeling is briefly

discussed.

5.2.1 Stochastic Linear Hybrid System with Continuous-state-dependent

Mode Transition

Consider the continuous state x(k) = [x1(k), . . . , xn(k)]T ∈ Rn, the discrete state

(mode) q(k) ∈ Q = {1, 2, . . . , r}, and the measurement vector z(k) = [z1(k) . . . zp(k)]T ∈

Rp, where k is the discrete-time index. In each mode q(k), the continuous state dy-

namics and the measurement equation are given by,

x(k + 1) = Aq(k)x(k) + Bq(k)wq(k)(k)

z(k) = Hq(k)x(k) + vq(k)(k)
(5.1)
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where Aq(k) ∈ Rn×n, Bq(k) ∈ Rn×m and Hq(k) ∈ Rp×n are the system, input and

measurement matrices, and wq(k)(k) ∈ Rm and vq(k)(k) ∈ Rp are the process and

measurement noises modeled as zero-mean white Gaussian noises with covariance

Qq(k) and Rq(k), respectively. The discrete state transitions are governed by a set

of guard conditions G(i, j), i, j = 1, 2, . . . , r, such that if the continuous state x(k)

satisfies G(i, j), the discrete state changes from q(k) = i to q(k + 1) = j. The guard

condition G(i, j) is mathematically represented by a set as:

G(i, j) =
{

[xT θT ]T |Lx,ijx + Lθ,ijθ ≤ 0
}

(5.2)

where Lx,ij ∈ Rl×n and Lθ,ij ∈ Rl×s are constant matrices characterizing the guard

condition (i.e., the corresponding transition), and θ ∈ Rs is a random vector describ-

ing the uncertainties in the guard condition modeled by the Gaussian distribution

θ ∼ N (θ; θ̄,Σθ) (5.3)

with the mean θ̄ and covariance Σθ. The discrete state transition from q(k) = i to

q(k + 1) = j happens when [x(k)T θT ]T ∈ G(i, j) (i.e., the transition is dependent

on the continuous state x(k)). The above stochastic hybrid system is called as the

stochastic linear hybrid system [30].

5.2.2 UAS Behavior Modeling using Stochastic Linear Hybrid System

In what follows, we will first present the continuous dynamics of a UAS which rep-

resents the continuous motion corresponding to each flight mode, and then illustrate

how the continuous-state-dependent mode transition model (i.e., a set of guard con-

ditions) can be derived for a given set of waypoints. For simplicity, we consider two-

dimensional motion and thus define the continuous state of a UAS as x = [ζ, η, ζ̇, η̇]T ,

where ζ and η are the Cartesian coordinates of the UAS’s position in a given local

frame. Note that this can be easily extended to the general three-dimensional motion.
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Continuous State Dynamics

As discussed, the UASs trajectory is composed of a set of flight modes [62]: 1)

Constant Velocity (CV) Mode (cruise mode):

x(k + 1) =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

x(k) +


T 2

2
0

0 T 2

2

T 0

0 T

w(k) (5.4)

where T is the sampling time, 2) Coordinated Turn (CT) Mode (turning mode):

x(k + 1) =


1 0 sinωT

ω
−1−cosωT

ω

0 1 1−cosωT
ω

sinωT
ω

0 0 cosωT − sinωT

0 0 sinωT cosωT

+


T 2

2
0

0 T 2

2

T 0

0 T

w(k) (5.5)

where ω is the turn rate of the UAS of which sign determines the turn direction

(left/right), and 3) Constant Acceleration (CA) Mode (along a straight line):

x(k + 1) =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

x(k) +


T 2

2
0

0 T 2

2

T 0

0 T

u(k) +


T 2

2
0

0 T 2

2

T 0

0 T

w(k) (5.6)

where u(k) = [aζ , aη]
T is the acceleration of which direction can be determined based

on the waypoint configuration.

In this research, it is assumed that noise-corrupted measurements of the posi-

tion of the UAS are available by a surveillance system (e.g., radar). Therefore, the

measurement vector z(k) is defined for all the flight modes as:

z(k) =

1 0 0 0

0 1 0 0

x(k) + v(k) (5.7)
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Continuous-state-dependent Flight Mode Transition

The flight path of the UAS can be considered as a sequence of waypoints, and the

waypoints are chosen such that the UAS has flight mode change points (FMCP) in

the area near the waypoints. The FMCP is stochastic due to uncertainties such as

navigation errors or wind, and for each nominal FMCP, there exists a set of guard

conditions G(i, j) for the flight mode transition from mode i to mode j. A general

structure of the flight mode transition model is shown in Fig. 5.2, and here, each

guard condition from mode i to mode j is denoted as Cij.

Figure 5.2. Flight mode transition [63]

We can consider the four different flight patterns of the UAS which are composed

of the flight mode transitions between two modes in a basic set of discrete modes

(CV, CT and CA): 1) left turn, 2) right turn, 3) acceleration, and 4) deceleration.

a. Left/Right Turn The left turn is corresponding to the mode transition between

CV mode to CT mode. Figure 5.3 shows the UAS entering a left turn along the

flight path bounded by the geofence and presents the parameters defining the guard

conditions for each FMCP. The unit direction vector of the predefined flight path is
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Figure 5.3. Left turn transition

denoted ai, the projected distance of the UAS from the waypoint along the dotted

predefined flight path (the center line of geofence) is noted as ds; d1
∗ and d2

∗ are

Gaussian random variables with a given mean and covariance, and they are defined

as the distance from each actual FMCP at which the UAS initiates or finishes the

left turn. The UAS remains in CT mode when the inequality condition (ds ≤ di
∗) is

satisfied, and the corresponding set of guard conditions for the left turn is given in

Table 5.1. The set of guard conditions for the right turn can also be defined in the

same way with that of the left turn.

Table 5.1. Set of guard conditions of left turn at FMCPij

C1i = C2i = C3i = ¬C1j

C1j = C2j = C3j = Lxx + Lθθ ≤ 0

C13 = C23 = C33 = ∅

Lx = [ai
T 0 0]

Lθ = −1

θ∗ = d1
∗ + ai

T [ζref ηref ]
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b. Acceleration/Deceleration For the acceleration/deceleration behavior of the UAS,

the mode transition for the acceleration consists of CV mode and CA mode: the UAS

in acceleration is likely to change the mode from CV mode to CA mode in the area

near the waypoint. Fig. 5.4 shows the parameters of guard conditions for the FMCP13,

and the set of guard conditions is set up similarly to the left turn in Table 5.2. The set

of guard conditions for the mode transition for deceleration can be defined similarly

with that of the acceleration behavior.

Figure 5.4. Mode transition of acceleration from CV (mode 1) to CA (mode 3)

Table 5.2. Set of guard conditions at FMCP13

C11 = C21 = C31 = ¬C13

C13 = C23 = C33 = Lxx + Lθθ ≤ 0

C12 = C22 = C32 = ∅

Lx = [a1
T 0 0]

Lθ = −1

θ∗ = d1
∗ + ai

T [ζref ηref ]
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Constraints on UAS Motion

As discussed, the assigned geofence provides constraints on the motion of a UAS

in each flight mode, since the UAS should remain within the geofence provided by the

UTM system. Also, we can access the performance data of the UAS and it can be used

as constraints on the state of UAS during flight. From the geofence configuration, we

can enforce the constraints on the direction of the velocity of the UAS to be aligned

with the center line of geofence and/or on the position of the UAS to be within the

boundary, which are represented in forms of an equality or an inequality condition

on the state of the UAS. From the performance data, we can use the cruise and/or

maximum speed as constraints in forms of an equality or an inequality condition of

the velocity state of the UAS. The equality and inequality constraints are defined as:

Deq(k)(k)x(k) = βeq(k)(k)

Diq(k)(k)x(k) ≤ βiq(k)(k)
(5.8)

where Deq(k)(k) ∈ Rh×n, Diq(k)(k) ∈ Rp×n, βeq(k)(k) ∈ Rh and βiq(k)(k) ∈ Rp form

the state constraints. In this research, we consider the velocity constraints for the

expected direction of the UAS from the assigned geofence configuration and focus

on the equality conditions. There are different constraints depending on the flight

mode. When the UAS is flying along a straight line (e.g., CA and CV modes), the

constraints are found by enforcing the velocity vector to be orthogonal to the unit

normal vector of the segment bi of the flight path in Fig. 5.5, which is represented

explicitly as

[0 0 bi
T ]x(k) = 0 (5.9)

The other case is the constraint for the turning mode. The center line of geofence is

modeled as the circle that is tangent to the current segment and the next segment of

flight path Fig. 5.5. The corresponding velocity constraints are obtained by requiring
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Figure 5.5. Circle between two segments

the velocity to be orthogonal to the gradient vector of the circle [64]. The equations

of the circle and the gradient vector ∇h are as follows:

h(x(k)) = (ζ − ζcent)2 + (η − ηcent)2 = R2

∇h(x(k)) = [2(ζ − ζcent) 2(η − ηcent)]
(5.10)

The equality constraint of the state of the UAS in the turning mode is defined as:

[0 0 ∇hT ]x(k) = 0 (5.11)

This constraint information is very useful for accurate UAS tracking, as our UAS

model can better represent the actual behavior of the UAS regulated by the UTM

system with geofencing, and thus produce more accurate tracking performance. So,

it is desirable to incorporate the constraint information into UAS tracking in a sys-

tematical way. To achieve this, we propose to use the constrained Kalman filtering

technique that can efficiently handle various types of state constraints. The technical

details of the constrained Kalman filter will be described when it is introduced as a

building block in the proposed UAS tracking algorithm that will be discussed in the
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following sections.

5.3 UAS Tracking Algorithm

To develop a hybrid estimation algorithm (i.e., UAS tracking algorithm) for the

constrained stochastic linear hybrid system model, we use a bank of constrained

Kalman filters, each of which is matched to the continuous dynamics with the state

constraints in each mode. Let Zk ≡ {z(1), z(2), . . . , z(k)} denote a set of measure-

ments up to time k. Let us assume that, from the last iteration at time k − 1, the

mode probabilities mi(k − 1) ≡ p(q(k − 1) = i|Zk−1), i = 1, 2, . . . , r, are computed

and the mode-matched continuous state probability distribution functions (pdfs) are

obtained Gaussian distributions as:

p(x(k − 1)|q(k − 1) = i,Zk−1) = N (x(k − 1); x̂i(k − 1),Pi(k − 1)) (5.12)

for i = 1, 2, . . . , r, where x̂i(k − 1) and Pi(k − 1)) are the mean and covariance com-

puted from the ith constrained Kalman filter at time k − 1. Then, using the new

measurement z(k) generated at time k, we can compute p(x(k)|q(k) = i,Zk) and

mi(k) for all the modes as shown in the following steps.

Step 1: Mixing

First, we compute the mixing probability mi|j(k) as:

mi|j(k) = p(q(k − 1) = i|q(k) = j,Zk−1)

=
p(q(k) = j|q(k − 1) = i,Zk−1)p(q(k − 1) = i|Zk−1)

p(q(k) = j|Zk−1)

=
λij(k − 1)mi(k − 1)

Σr
l=1λlj(k − 1)ml(k − 1)

(5.13)
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where λij(k − 1) := p(q(k) = j|q(k − 1) = i,Zk−1) is the mode transition probability

and computed as:

λij(k − 1) =

∫
Rn

p(q(k) = j|q(k − 1) = i,x(k − 1) = x,Zk−1)

× p(x(k − 1) = x|q(k − 1) = i,Zk−1)dx

=

∫
Rn

Φl(Lx,ijx + Lθ,ijθ̄, Lθ,ijΣθL
T
θ,ij)N (x; x̂i(k − 1),Pi(k − 1))dx

= Φl(Lx,ijx̂
i(k − 1) + Lθ,ijθ̄, Lθ,ijΣθL

T
θ,ij + Lx,ijP

i(k − 1)LTx,ij)

(5.14)

where Φl(µ,Σ) is the l-dimensional Gaussian cumulative density function for y ∼

N (µ,Σ) defined as Φl(µ,Σ) ≡ p(y ≤ 0). Using the mixing probability, the initial

conditions for the constrained Kalman filter matched to mode j are obtained as:

x̂0j(k − 1) = Σr
i=1m

i|j(k)x̂i(k − 1)

P0j(k − 1) = Σr
i=1m

i|j(k){Pi(k − 1)

+ [x̂i(k − 1)− x̂0j(k − 1)][x̂i(k − 1)− x̂0j(k − 1)]T}

(5.15)

Note that this mixing allows the exponentially growing computational complexity of

hybrid estimation to be constant, thus enabling online application.

Step 2: Mode-Conditioned Estimation (Constrained Kalman Filtering)

Typically, the mode-matched estimation can be performed using the traditional

Kalman filters. However, in this research, we need to incorporate the constraints

imposed on the state of the UAS, and thus will apply the constrained Kalman fil-

tering technique, where we incorporate the state constraints by restricting the prior

distribution of the traditional Kalman filters. For mode j, the well-known Kalman

filter has the following prediction equations:

x̂j(k|k − 1) = Ajx̂
0j(k − 1)

Pj(k|k − 1) = AjP
0j(k − 1)AT

j + BjQjB
T
j

(5.16)
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With the new measurement z(k), the prior mean and covariance are updated as:

x̂j(k) = x̂j(k|k − 1) + K(k)(z(k)−Hjx̂
j(k|k − 1))

Pj(k) = (I−K(k)Hj)P
j(k|k − 1)

(5.17)

where

K(k) = Pj(k|k − 1)Hj
T (HjP

j(k|k − 1)Hj
T + Rj)

−1 (5.18)

We impose the constraints by projecting the unconstrained state estimates onto the

constraint surface. If we consider only the equality constraints, this is identical to

solving the following minimization problem.

x̂c
j(k) = arg max

x

{
[x− x̂j(k)]TW[x− x̂j(k)] : Djx = βj

}
(5.19)

where W is a positive definite weighting matrix. The solution to this constrained

optimization problem can be obtained using the Lagrange multiplier approach. Let

Ψ(x) be a scalar cost function defined as follows:

Ψ(x) := [x− x̂j(k)]TW[x− x̂j(k)] + 2λT (Djx− βj) (5.20)

where λ ∈ Rh is a vector of Lagrange multipliers. Taking the partial derivatives and

setting them equal to zero yields

∂Ψ

∂x
= 2

(
x− x̂j(k)

)T
W + 2λTDj = 0

∂Ψ

∂λ
= Djx− βj = 0

(5.21)

After applying the constraints and rearranging, this yields

x̂jc(k) = x̂j(k)− Jj(Djx̂
j(k)− βj) (5.22)

where Jj is defined as:

Jj ≡W−1DT
j (DjW

−1DT
j )−1 (5.23)

The corresponding prior covariance is given by

Pj
c(k) = (I − JjDj)(AjP

j(k)AT
j + BjQ

jBT
j )(I − JjDj)

T (5.24)
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Step 3: Mode Probability Update

The mode probability which denotes how probable a mode is the true mode is

updated using Bayes rule as:

mj(k) = p(q(k) = j|Zk)

=
1

c
p(z(k)|q(k) = j,Zk−1)p(q(k) = j|Zk−1)

(5.25)

where c is a normalizing constant; p(z(k)|q(k) = j,Zk−1) is the mode-conditioned

likelihood function given by

p(z(k)|q(k) = j,Zk−1) = N (z(k)−Hjx̂
j(k|k − 1); 0,Sj(k)) (5.26)

where

Sj(k) = Hj(k)Pj(k|k − 1)Hj(k)T + Rj (5.27)

and p(q(k) = j|Zk−1) is the prior mode probability computed as:

p(q(k) = j|Zk−1) = Σr
i=1λij(k − 1)mi(k − 1) (5.28)

Step 4: Output

Using the mode-conditioned state estimates x̂jc(k), the covariance Pj
c(k), and the

mode probability mj(k) for j = 1, 2, . . . , r, the continuous state estimate x̂(k) and its

covariance P(k) are computed as:

x̂(k) = Σr
j=1x̂

j
c(k)mj(k)

P(k) = Σr
j=1{Pj

c(k) + [x̂jc(k)− x̂(k)][x̂jc(k)− x̂(k)]T}mj(k)
(5.29)

The discrete state estimate q̂(k) is then computed as:

q̂(k) = argmax
i

mi(k) (5.30)

The proposed algorithm is named as constrained state-dependent-transition hybrid

estimation (CSDTHE) and summarized in Figure 5.6.
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5.4 Numerical Simulation

In this section, the proposed UAS tracking algorithm is demonstrated with an

illustrative UTM example: the tracking of a UAS flying along the predefined flight

plan in the urban area. Figure 5.7 shows a two-dimensional 1.2 km flight path of the

UAS which consists of a series of waypoints (WP1, WP2, and WP3) from the origin

to the FedEx office center in Indianapolis, Indiana, U.S. Here, we focus on a left turn

example around the waypoint WP1 given in Fig. 5.8 to demonstrate the proposed

UAS tracking algorithm. The UAS starts to flight toward WP1 at a constant velocity

(about 10 m/s) from the origin, maintaining a constant altitude. Then, the UAS

changes its flight mode from CV mode to CT mode at the stochastic FMCP1 in the

area near WP1 to go to the next waypoint WP2, and complete the turn at the next

stochastic FMCP2, which corresponds to the flight mode transition from CT mode to

CV mode. To emulate the actual UAS trajectories, we generate 100 trajectories using

the UAS models discussed in Section 5.2.2, which are randomly distributed about the

center line of the geofence with 24 m width. These trajectories include uncertainties

of the UAS flight due to navigation error and wind. The sampling time is chosen to

be T = 1 sec, the nominal speed of UAS is 10 m/s, and its nominal turning rate

during a coordinated turn ω is 0.2 rad/s. The process noise covariance for each mode,

Figure 5.7. Flight plan of the UAS [65]
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Figure 5.8. A left turn example around WP1

the measurement noise covariance, and initial condition x0 ∼ N (µ0,Q0) are are set

as follows.

Qcv =

0.0032 0

0 0.0032

 ,Qct =

0.0012 0

0 0.0012

 ,R =

2.52 0

0 2.52

 (5.31)

µ0 =
[
0 m 7 m/s 0 m −7 m/s

]T
(5.32)

Q0 = diag
([

(1m)2 (0.01m/s)2 (1m)2 (0.01m/s)2
])

(5.33)

We compare the performance of the proposed CSDTHE algorithm with that of the

IMM algorithm which has been shown to give an excellent performance in aircraft

tracking applications and the SDTHE algorithm which can account for the state-

dependent transition but no constraint information. Since IMM cannot incorporate
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neither the state-dependent transition nor constraint information, we use the below

constant matrix to model the discrete mode transition in the IMM algorithm.

λij =

0.8 0.2

0.2 0.8

 (5.34)

Figure 5.9 shows the result of a single run including the true trajectory of the UAS

with the estimated trajectories obtained by each estimation method. In Fig. 5.10,

the discrete mode estimation accuracies of the algorithms are compared. Figure 5.11

shows the RMS position and velocity estimation errors of each method, respectively.

The other statistics of the estimation results are summarized in Table 5.3. It is obvious

that the proposed CSDTHE algorithm produces more accurate estimates compared to

both IMM and SDTHE. This is reasonable as the proposed CSDTHE algorithm can

systematically incorporate both the state-dependent transition and state constraint

Figure 5.9. Actual and estimated trajectories of the UAS (a single run)
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Figure 5.10. Comparison of mode-estimation accuracy (a single run)

Table 5.3. Comparison of estimation performance (100 Monte Carlo runs)

RMS position

error [m]

RMS velocity

error [m/s]

Average mode estimation error

(number of time steps)

IMM 2.22 1.31 9.56

SDTHE 1.12 0.10 2.00

CSDTHE 0.89 0.04 2.00

information, while the others cannot. These numerical simulation results demonstrate

that the proposed CSDTHE algorithm can enhance the UAS tracking performance

in the UTM with geofence, which is a crucial element of the UTM for highly dense

UAS operations in the urban environment.



87

F
ig

u
re

5.
11

.
R

M
S

p
os

it
io

n
an

d
ve

lo
ci

ty
es

ti
m

at
io

n
er

ro
rs

w
it

h
10

0
M

on
te

C
ar

lo
ru

n
s



88

6. SUMMARY

In this thesis, novel hybrid state estimation algorithms have been developed that can

effectively solve the complex state estimation problems of the stochastic hybrid sys-

tem. The developed hybrid state estimation algorithms have been applied to safety-

critical applications in air traffic control systems: 1) aircraft tracking and estimated

time of arrival prediction, and 2) unmanned aircraft system traffic management.

We have first developed new nonlinear state estimation algorithms for the jump

Markov system based on Gaussian sum approximation which effectively deal with

nonlinearities in the system dynamics and/or measurements. The proposed algo-

rithms address the problem of the exponential growth in the number of the Gaussian

mixture components through the Gaussian components reduction techniques devel-

oped in this research and successfully incorporate the Gaussian sum filters in the

interacting multiple model algorithm framework. It has been demonstrated in the

numerical simulation that the proposed algorithms improve the representation of the

non-Gaussian posterior probability density function of the state by minimizing the

loss of useful information and provide better state estimation performance with effi-

cient computation over the existing multiple model based nonlinear state estimation

algorithms for the jump Markov system.

The developed hybrid estimation algorithms have been extended to a more general

class of stochastic hybrid systems consisting of nonlinear mode-matched continuous

state dynamics with state-dependent mode transition. The Gaussian sum filter has

been integrated to the proposed hybrid estimation framework as the mode-matched

filter to cope with the nonlinearity of the continuous state dynamics. A closed-

form expression of the state-dependent mode transition probability has been derived

using the analytical properties of the posterior distribution represented by Gaussian

mixtures. The derived mode transition probability has been used to compute the
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mixing probability for merging of the hypotheses on the discrete state history. The

effectiveness of the proposed hybrid estimation algorithm has been demonstrated

using an illustrative hybrid state estimation problem.

We have investigated the flight phases and operational procedures of a typical

flight, summarized and abstracted different operational procedures into flight modes,

and derived a stochastic nonlinear hybrid model to describe the aircraft’s behavior

in the descent stage. Under the framework of the stochastic nonlinear hybrid model,

an aircraft tracking and estimated time of arrival (ETA) prediction algorithm has

been proposed based on the state-dependent-transition hybrid estimation algorithm

which can account for continuous state-dependent flight mode transitions. Since

the flight plan and procedure information can be effectively incorporated into the

proposed algorithm, more accurate ETA prediction can be achieved. The performance

of the proposed algorithm has been validated using two actual descending approach

scenarios.

A new UAS tracking algorithm has been also proposed as a supporting tool for safe

and efficient UAS traffic management (UTM) operation with geofence. The proposed

algorithm can explicitly exploit useful information derived from the geofence, one of

the key concepts of UTM, and effectively handle the complex behavior of a UAS with

the stochastic linear hybrid system model. The improvement of the tracking accuracy

obtained by the proposed algorithm has been demonstrated with an illustrative UTM

example. The future work is to extend the current research to conformance monitoring

of UAS operations, in which the position and velocity information estimated by the

proposed algorithm can be used to check whether the actual trajectories of UAS

satisfy the regulation imposed by the UTM system (e.g., planned waypoints, required

time of arrival, assigned geofence, planned airspeed profile, etc.).
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