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ABSTRACT

Periasamy, Pradeep M.S., Purdue University, December 2019. Generative
Adversarial Networks for Lupus Diagnostics. Major Professor: Vetria L. Byrd.

The recent boom of Machine Learning Network Architectures like Generative

Adversarial Networks (GAN), Deep Convolution Generative Adversarial Networks

(DCGAN), Self Attention Generative Adversarial Networks (SAGAN), Context

Conditional Generative Adversarial Networks (CCGAN) and the development of

high-performance computing for big data analysis has the potential to be highly

beneficial in many domains and fittingly in the early detection of chronic diseases.

The clinical heterogeneity of one such chronic auto-immune disease like Systemic

Lupus Erythematosus (SLE), also known as Lupus, makes it di�cult for medical

diagnostics. One major concern is a limited dataset that is available for diagnostics.

In this research, we demonstrate the application of Generative Adversarial Networks

for data augmentation and improving the error rates of Convolution Neural

Networks (CNN). Limited Lupus dataset of 30 typical ’butterfly rash’ images is used

as a model to decrease the error rates of a widely accepted CNN architecture like

Le-Net. For the Lupus dataset, it can be seen that there is a 73.22% decrease in the

error rates of Le-Net. Therefore such an approach can be extended to most recent

Neural Network classifiers like ResNet. Additionally, a human perceptual study

reveals that the artificial images generated from CCGAN are preferred to closely

resemble real Lupus images over the artificial images generated from SAGAN and

DCGAN by 45 Amazon MTurk participants. These participants are identified as

’healthcare professionals’ in the Amazon MTurk platform. This research aims to

help reduce the time in detection and treatment of Lupus which usually takes 6 to 9

months from its onset.
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CHAPTER 1. INTRODUCTION

This chapter gives the synopsis to the current research and provides a

preliminary overview of the importance and the need which resulted in the research

question. It also delineates the scope of the study.

1.1 Background

The principal methods of this empirical research are based on Artificial

Intelligence, Machine Learning, and Medical Imaging. They lie in the intersection of

Generative Adversarial Networks and Medical Imaging where Machine Learning

enables researchers to gain a sense of what the image data represents. Our method

of using GAN in image classification could potentially impact critical functions

across Health-care, Education, Defense and Entertainment industries where there is

a need of making key decisions using Big Data but in a shorter time-frame.

Systemic Lupus Erythematosus (aka Lupus) has been identified as a model for the

proposed framework application of an automated visual intelligence approach to

data associated with a chronic disease. Lupus is a chronic autoimmune disease

characterized by clinical heterogeneity (Yu, Gershwin, & Chang, 2014), (Marion &

Postlethwaite, 2014) which adds an additional level of complexity to the problem

and a greater opportunity to advance Lupus research. One of the major concerns

that exist in the medical fraternity is that limited availability of annotated images

(Roth et al., 2016), (Litjens et al., 2017). The research community tries to

overcome this gap by using the traditional approaches like translation, rotation,

shearing, flipping and scaling that are commonly practiced within the deep learning

community (Krizhevsky et al., 2012). However, the recent advancements in Deep

Learning shows that Generative Adversarial Networks (GANs) (Goodfellow et al.,
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2014) can be used an approach to increase accuracy in medical image segmentation

(Frid-Adar et al., 2018). Drawing parallel from this prior research, GAN can be

used to increase the accuracy of the Neural Network Classifiers, using Lupus as a

model for Medical Diagnostics.

1.2 Significance

Applications of Generative Adversarial Networks (GANs)(Goodfellow et al.,

2014) are evident in research (Emami, Dong, Nejad-Davarani, & Glide-Hurst, 2018)

and in the industry (Karras, Aila, Laine, & Lehtinen, 2018). However, the

literature shows minimal work has been reported in the use of GANs in image

classification specific to Lupus diagnostics. One of the plausible potentials of GAN

lies in its application of data augmentation where it can generate realistic looking

data that looks authentic to the human eye. GAN has the potential to improve the

state-of-the-art image classification neural network. This work focuses on the use of

GAN in medical diagnostics. The idea is to use GAN to distinguish dermatological

manifestations of Systemic Lupus Erythematosus (SLE) from other diseases that

share similar symptoms. Prior knowledge shows that there are over 1 million people

in the United States affected by Lupus, with symptoms ranging from mild to lethal.

(Marshall, 2002). To summarize, an Automated Visual Intelligence (AVI) approach

is introduced where GAN is adapted to generate synthetic images from a small

sample dataset which is then used to train the classifier to distinguish cutaneous

Lupus from other diseases. A new hybrid neural network architecture is

demonstrated for image classification using a small training dataset.

1.3 Research Questions

In this study, simulated Butterfly rash images from normal photographs of

patients who have the potential of developing Lupus at a later stage is generated

and demonstrated. The goal of this research is to use simulated rash images to
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anticipate and inform treatment for Lupus patients. The research questions are as

follows.

1. Research Question 1 - Can the accuracy of the Neural Network classifier

Le-Net (LeCun et al., 1998) be increased by including GAN generated

synthetic images in the training dataset?

2. Research Question 2 - Can Conditional GAN (Mirza & Osindero, 2014) be

used to generate simulated images that resemble the cutaneous manifestations

of Lupus from normal images without Lupus?

Research Question 2.1 - Which among the state-of-art GANs is preferred

to generate artificial images including Context Conditional GAN

(CCGAN)(E. Denton, Gross, & Fergus, 2016), Deep Convolutional

GAN (DCGAN) (Radford, Metz, & Chintala, 2016), and Self-Attention

GAN (Zhang, Goodfellow, Metaxas, & Odena, 2019), by the Amazon

MTurk participants identified as ’healthcare professionals’?

The primary objectives of this research are

1. to test the accuracy of Le-Net classifier with the use of images generated from

GAN in the training dataset.

2. to demonstrate the use of Conditional GAN (Mirza & Osindero, 2014) in

generating the artificial images with cutaneous manifestations of Lupus from

normal face dataset.

3. to study human evaluation of the artificial images with cutaneous

manifestations of Lupus generated from the Context-Specific Conditional

GAN (CCGAN).
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1.4 Assumptions

Although GAN (Goodfellow et al., 2014) is a candidate for the application

of data augmentation, it is highly debated in the research community. It can

generate realistic looking data that looks authentic to the human eye, however it is

not much different from the traditional data augmentations methods like

translation, rotation, shearing, flipping and scaling as commonly practiced within

the deep learning community (Krizhevsky et al., 2012). Given a training dataset,

GAN generates the data, which have the same distribution of the training data with

additional random noise.

It is noteworthy to point out the relationship between the various parameters

including ’n’, ’k , α, ’M’, ’t’, E(ri) and ’i’. ’n’ is the number of images used for

training as true bucket, ’k’ is the number of false images for training, α is the ratio

between training and testing dataset, ’M’ is the number of images generated over ’t’

epochs, and the expected error rate over ’i’ iterations is E(ri). The relationship

between these parameters is highly researched and there is not enough clarity on the

ideal setting for such context of classification. All the above parameters will be

treated as hyper-parameters in the proposed experiment.

1.5 Limitations

The major limitation of the experiment involves using a limited number of

training images for classification of Lupus. The dataset for this experiment consists

of ’n’ = 30 images from different sources of publicly available images of Lupus

related facial lesions, majorly from the image library of American College of

Rheumatology (Image Library , n.d.). The authenticity of such images is not

individually verifiable. Furthermore, for easier implementation, Le-Net classifier

(LeCun et al., 1998) will be used for classification, though there are other more

accurate classifiers available to experiment. The ideal relationship of the various
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hyper-parameters is highly researched and there is no sufficient literature to know

the ideal setting specifically catering to Lupus research.

1.6 Delimitations

To narrow down the scope of the study, a binary variant of the Le-Net

classifier was adopted rather than the multi-class classifier. This is partly due to the

unavailability of the data set pertaining to all the similar diseases. To test our

hypothesis a sample Lupus dataset of 30 images was used to test the error rate of

the Le-Net Classifier from different sources of publicly available images of Lupus

related facial lesions. The classifier is further cross-validated by the MNIST dataset

(LeCun, 1998). For easier implementation on CPU, a simpler GAN variant -

HyperGAN (HyperGAN-Community, 2016) will be used for generating artificial

Lupus images from the sample distribution.

1.7 Definitions

Generative Adversarial Network (GAN) -

“A new framework for estimating generative models via an adversarial

process, in which we simultaneously train two models: a generative

model G that captures the data distribution, and a discriminative

model D that estimates the probability that a sample came from the

training data rather than G. The training procedure for G is to

maximize the probability of D making a mistake. This framework

corresponds to a mini-max two-player game. In the space of arbitrary

functions G and D, a unique solution exists, with G recovering the

training data distribution and D equal to 1/2 everywhere. In the case

where G and D are defined by multi-layer perceptrons, the entire

system can be trained with back propagation (Goodfellow et al.,

2014).
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Systemic Lupus Erythematosus(SLE) -

“An autoimmune disease that can affect many organs, including the

skin, joints, the central nervous system and the kidneys” (Kaul et al.,

2016).

Convolutional Neural Network(CNN) -

“Convolutional networks combine three architectural ideas to ensure

some degree of shift and distortion invariance: local receptive fields,

shared weights (or weight replication), and, sometimes, spatial or

temporal subsampling. The input plane receives images of characters

that are approximately size-normalized and centered. Each unit of a

layer receives inputs from a set of units located in a small

neighborhood in the previous layer” (LeCun et al., 1998).

Artificial Intelligence -

“The automation of activities that we associate with human thinking,

activities such as decision-making, problem solving, learning”

(Bellman, 1978).

1.8 Summary

This section gave an in-depth explanation of the assumptions, limitations,

delimitations, definitions, scope, significance, research question, and other

background information for the research project. It also addressed the various

boundaries that the study is limited by. It also gives a list of defined key terms that

have been used in the proposal. The next chapter is aimed at giving a literature

review that is relevant to “Generative Adversarial Networks for Lupus Diagnostics”.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This section provides the literature review of the prior work related to Lupus

diagnostics, recent advancements in GAN and its variants, and a review of relevant

neural network classifiers.

2.1 Lupus Diagnostics

SLE is a chronic autoimmune disease with heterogeneous presentation (Kaul

et al., 2016), that can affect any part of the body. It affects persons of all ages,

ethnic groups, and gender (Ferenkeh-Koroma, 2012). SLE symptoms vary widely

and often mimic symptoms of other diseases making it difficult to diagnose and

treat (Yu et al., 2014). Patients with SLE may present with various systemic

manifestations (Hiepe, 2014). Literature shows that the skin is frequently affected

among all the other organs affected by Lupus erythematosus (Hiepe, 2014). One

visible manifestation includes the malar rash, which is characterized by a rash over

the cheeks and nasal bridge on the face and is often referred to as a ”butterfly” rash.

The location of the rash in relation to facial landmarks and presence of these distinct

characteristics in photographs of patients diagnosed with cutaneous erythematosus

suggest an ideal starting point for the use of GAN as a diagnostic tool that could be

visually verified. Machine learning techniques applied to medical imaging research

include: noise reduction (Wolterink, Leiner, Viergever, & Išgum, 2017), evaluation

of PET images (Y. Wang et al., 2018), and the generation of CT images from MRI

images (Emami et al., 2018) to name a few. However, to the best of the author’s

knowledge, GAN techniques have not been utilized as a diagnostic tool for

determining the presence of cutaneous manifestations of Lupus. The heterogeneous

nature of the disease makes it an ideal candidate for GAN applications.
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2.2 GAN: State of Art

Generative methods in Machine Learning started to gain attention after the

invention of Generative Adversarial Networks by Ian Goodfellow (Goodfellow et al.,

2014). Prominent GAN approaches include using Variation Auto-encoders (Pu et

al., 2016), auto-regressive models (Akaike, 1969) and Generative Adversarial

Networks (Goodfellow et al., 2014). Generative methods are concerned with

distributions models where noise is introduced to create variations and at the same

time tries to find dependencies between similar data points.

Recent variants of GAN include Deep Convolutional Generative Adversarial

Networks (DCGAN) (Radford et al., 2016), Conditional GAN (Mirza & Osindero,

2014), BiGAN (Donahue & Darrell, 2017), Progressive Growing of GANs

(PGGAN) (Karras et al., 2018) to name a few. DCGAN replaces deterministic

pooling functions layers(such as max-pooling) with convolutions that are stridden

(Radford et al., 2016).

PGGAN grows the generator and discriminator progressively starting from

lower resolutions and modeling fine details with new layers while training progresses.

Another important variant of GAN is the Laplacian generative adversarial

networks (LAPGAN) where the models are primarily targeted to generate

up-sampled images in multiple steps (E. L. Denton, Chintala, Fergus, et al., 2015).

It is worthy to mention the Generative Multi-adversarial networks (GMAN)

(Durugkar, Gemp, & Mahadevan, 2017) which includes multiple discriminators

where each generated image from the Generator is being examined by N randomly

instantiated replicas of the discriminator. Layered Recursive Generative Adversarial

networks (LR-GAN) (Yang, Kannan, Batra, & Parikh, 2017) in a sequential

repetitive fashion simulates images where it first sequentially generates a

background followed by the foreground which is conditioned on the background.

LR-GAN uses a mask and affine transformation that collectively articulates the

complete final image. Info-GAN (X. Chen et al., 2016) breaks down the noise
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vector into a couple of parts: an incompressible noise z and a latent code c that

emphasizes the most important features of the data distribution G(z,c).

Energy-Based Generative Adversarial Networks (EBGAN) (Zhao, Mathieu,

& LeCun, 2017) assigns energy magnitude as per the data manifold by using the

discriminator as an energy function. The Boundary Seeking GAN (BGAN) (Hjelm

et al., 2018) generates images according to the decision boundary in each update of

the training process, therefore hoping to match a target distribution at the limit of

the better discriminator. Least square GAN (Mao et al., 2017) uses the

least-squared loss function for the discriminator.

The recent advancement in GAN involves using a conditional setting for the

generation of the fake images also known as CGAN (Mirza & Osindero, 2014). In

the common generative model which does not have any restriction, there is very

little power over the data that is being generated. In the Conditional GAN

(CGAN), the generator is learning to produce more artificial images with specific

constraints by using labeled classifications forehand.

Conditional adversarial networks has shown applications in Splenomegaly

Segmentation (Huo et al., 2018), generating phantom images that are used in the

quantification of Ki67 breast cancer images (Senaras et al., 2018), as well as

applications in image processing, graphics and computer vision (Isola, Zhu, Zhou, &

Efros, 2017). It is noteworthy to mention about NiftyNet which tries to improve

the collaborative efforts of researchers using a deep learning platform for medical

image analysis (Gibson et al., 2018).

The conditional setting need not be limited only to the Discriminator but

can also be extended to the Generator as well. Such a setting is demonstrated for

the convoluted generation of faces by the Conditional generative adversarial nets

(Gauthier, 2014). It is shown that “Identity-Preserving” optimization approach

preserves the persons identities with very high facial recognition score of 82.9% by

using Conditional GAN (Antipov, Baccouche, & Dugelay, 2017). Conditional GAN

finds its application in the synthesis of high-resolution images from the semantic
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label maps (T.-C. Wang et al., 2018). It can be seen that a novel stable adversarial

learning goal along with multi-scale generator and discriminator architectures, can

generate highly photo-realistic images. Such synthesized photo-realistic images are

more appealing than those generated by previous methods like Image-to-Image

translation (Isola et al., 2017) and Cascading refinement networks (Chen & Koltun,

2017). In the adverse scenario where there isn‘t enough labeled data-set, Image

Translation problems are addressed in an unsupervised setting (Liu, Breuel, &

Kautz, 2017). In such a setting, the marginal distributions in individual domains

are used to determine the joint distribution of images in similar domains (Liu et al.,

2017). In a similar setup, a mapping G: X → Y is made so that the data

determined from the pool of images from G(X) is indiscernible from the other

distribution Y using an adversarial loss. An inverse mapping F: Y → X is injected

by a cycle consistency loss to enforce F(G(X)) = X (and vice-versa) (Zhu, Park,

Isola, & Efros, 2017). Context-specific conditional GAN (CCGAN) is used in an

in-painting method for filling up the pixel information in the holes within pictures

which hinders labeling and the architecture. Such a contextual conditional GAN is

used to augment the pixel information and then tested for classification accuracy

(E. Denton et al., 2016).

Owing to the high accomplishment of Generative Adversarial Networks

(GANs), Conditional GANs provide a more meaningful directive to the data

generation process by limiting certain augmentative information. Generating image

data from textual inputs has been a primary focus area of research for years.

However, the images that are generated from the prior work does not reflect the

semantic meaning of input given as it is typically vague. Stack-GAN tries to address

this problem where photo-realistic images are generated conditioned on textual

descriptions (Zhang et al., 2017). Using GAN in medical image analysis is explored

in Liver Lesion Classification for data augmentation that improves the performance

of Convolutional Neural Networks (Frid-Adar et al., 2018).
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An important metric to measure the success of GAN is the Inception Score

(Salimans et al., 2016) which is widely accepted in the GAN community. This is

further improved by another metric proposed in the work done by Heusal et.al

(Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017) known as Fréchet

Inception Distance. According to these metrics, Big GAN (Brock, Donahue, &

Simonyan, 2019), and Self-Attention GAN (SAGAN) (Zhang et al., 2019) seems to

perform well on ImageNet Database (Deng et al., 2009). The next section provides

details about the recent state of the art Convolutional Neural Networks (LeCun et

al., 1998).

2.3 Convolutional Neural Network Classifiers - State of the Art

The first well-known Convolutional Neural Network classifier Le-Net (LeCun

et al., 1998) was used for document recognition to identify characters and read

documents.

It uses the MNIST database to classify handwritten digits. Convolutional

Neural Networks have a significant difference in the architecture when it is

compared to traditional Neural Networks. Regular Neural Networks consists of

several hidden layers. Through these hidden layers, the inputs are transformed.

Every layer is densely interconnected among every other layer. Finally, the output

layer represents the predictions. Convolutional Neural Networks work in a different

way. It has three major dimensions that include depth, width, and height.

Alternatively, all the neurons in any layer do not connect with each and every

neuron in the next layer but are only limited to a small segment. Finally, the

outcome is reduced to a one-dimensional quantity for easy manipulation. The

Convolution or the filter layers is an important aspect of any CNN architecture.

The ImageNet Database by Standford Vision Lab gave researchers access to

millions of images and thousands of labels of the data-sets which is often used for

training and testing. It is noteworthy to mention AlexNet (Krizhevsky et al., 2012)
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which is similar to Le-Net but marked by a non-linear approach with Rectified

Linear Units (ReLu) activation and max-pooling and is illustrated in Figure 2.1.

Figure 2.1. AlexNet Architecture, adopted from AlexNet (Krizhevsky et al., 2012).

Reprinted with permission from“ImageNet Classification with Deep Convolutional

Neural Networks” by Alex Krizhevsky et.al, 2012. Advances in Neural Information

Processing Systems 25 (NIPS2012), 1097-1105. 2012 by Alex Krizhevsky.

AlexNet proved that using a GPU implementation rather than CPU will

yield approximately 50 times faster results. The AlexNet is arguably one of the

most influential implementations of Deep CNNs till today. It was the first Deep

CNN that managed to beat more traditional object recognition approaches in the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Moreover, the

AlexNet proved the viability of DCNN approaches for object recognition tasks.

AlexNet is not much different from the LeNet, as it also consists of only the input

layer, a few convolutional layers with occasional pooling afterward, as well as some

fully-connected layers right before the output layer. However, the AlexNet has more

layers and neurons per layer and it also uses different hyperparameters.

VGGNet (Brock et al., 2019) used the concept of progressively training

deeper networks in a sequence. VGGNet scored second place in the ILSVRC and

influenced the deep learning scene in an important way, as they showed that using a
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deeper architecture does generally lead to better results. The VGGNet that was

submitted for the ILSVRC contained 19 parameterized hidden layers, which was

much more than what previous architectures had used. Apart from its size, the

VGGNet was very simple. It only consisted of convolutional layers with a 3 x 3

receptive field, which is the smallest size that can differentiate basic directions, as

well as 2 x 2 max-pooling layers, and three fully-connected layers at the end.

GoogleNet (Szegedy et al., 2015), in order to have more distinctive features

captured in the feature extraction maps, used parallel passages with receptive fields

of various sizes. GoogleNet used 1x1 convolutions for dimension reductions before

expensive convolutions and finally used filter concatenations to get back to its initial

state and is illustrated in Figure 2.2.

The authors also implemented the so-called Inception Modules, which enable

a network to recognize patterns of different sizes within the same layer. In order to

do so, the inception module performs several convolutions with different receptive

fields in parallel and combines the results by merging the depth slices of the

different filters into one single layer. The final GoogLeNet consisted of several such

inception modules stacked on top of each other with occasional pooling layers in

between, a few additional convolutional layers at the beginning of the network and a

few fully-connected layers right before the output layer. GoogLeNet also contained

additional output layers closer to the middle of the network and their outputs were

combined with the output of the final layer of the network to obtain the total

prediction. This had some minor influence on the overall result but was mainly

intended to accelerate the training of earlier layers. Inception-v4 is the fourth

iteration of the GoogLeNet and consisted of many more layers than the original

version. During the continuous improvements on the inception architectures, the

inception modules, have been vastly improved as well and the Inception-v4 uses

three different kinds of inception modules. In addition to the Inception-v4, the

corresponding paper also introduced a new type of network, named

Inception-Res-Net, which is a combination of an inception network and a ResNet,
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by combining the inception module and residual connection This makes the network

even more efficient, leading to much lower training times compared to a similarly

complex inception network. Both of these network architectures are hundreds of

layers deep and contain a wide variety of layers, inception modules, and residual

blocks.

The most recent Neural Network classifier is ResNet (He, Zhang, Ren, &

Sun, 2016) which has one of the lowest error rates at a minimal 3.57 percent trained

on ImageNet database. ResNets, convolutional layers are divided into Residual

Blocks and for each block, a Residual Connection is added, which is bypassing the

corresponding block. The output of input was then forwarded by the residual

connection. By adding these residual connections, the result of a training step can

be back-propagated to the earlier layers directly, without any interference from

subsequent layers. Therefore, residual connections enable the training of even deeper

networks. He et al. won both the The ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) localization and classification contests, and the COCO

detection and segmentation contests in 2015. They also managed to improve on the

previous error rates by a big margin. The residual block is merged by summation

with the original. The Res-Net version that was submitted to these contests was the

Res-Net101, which consists of 101 parametrized layers. These 101 layers consist of

an initial 77 convolutional layer with a 22 stride, 33 residual building blocks with

decreasing output size and increasing depth and a final 1000 neuron fully connected

layer. The Res-Net101 also includes one max pooling layer apart from the average

pooling layer before the final connected layer. The first convolutional layer of each

group of blocks uses stride two in order to achieve the output size reduction.

Dense-Net is a generic successor to ResNet and achieves 3.46% error on

CIFAR-10 and 17.18 on C-100. Dense-Nets (Huang, Liu, Van Der Maaten, &

Weinberger, 2017) combines the two outputs by depth-wise filter concatenation, as

performed in inception modules. Furthermore, Dense-Nets are adding one such

connection from each layer to all subsequent ones with matching input sizes. By
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doing so, the learned features of a layer can be reused by any of the following layers.

Therefore, later layers need to produce much fewer feature maps, resulting in less

complex architectures with fewer parameters. Since the width and height of layers

in the CNNs are gradually decreasing, connecting all compatible layers is dividing

the network into Dense Blocks. Between these blocks, pooling layers are used to

alter the sizes accordingly. These layers are referred to as Transition Layers. Due to

the high layer inter connectivity, Dense-Nets are easy to train and naturally scale

well with increasing depth and amount of parameters. The design of Dense-Nets

encourages the learning of new features, while Res-Net architectures are leading to

increased feature re-use. Since both architectures have advantages over each other,

(Chen et al.) combined the two architectures into a Dual Path Network (DPN),

with which they won first place in the 2017 ILSVRC localization challenge and

finished top three in both classification and detection. In order to combine the

networks, the output of a layer is split and one part is combined with a residual

connection, whereas the other is forwarded to all subsequent layers, as performed in

DenseNets (Y. Chen et al., 2017). Shake-shake (Gastaldi, 2017), Shake-drop

(Yamada, Iwamura, Akiba, & Kise, 2018) and possibly other variants are

regularization techniques which can be used any ResNet-like architectures, and

achieves 2.86/2.31% error on C-10 and 15.85/12.19% on C-100. These techniques

work only on multi-branch architectures, even though they are not strictly

architectures in themselves. Efficient Neural Architecture Search uses reinforcement

learning to search for architectures and finds a network which achieves 2.89% error

on C-10, using the cutout regularization technique (Pham, Guan, Zoph, Le, &

Dean, 2018). One of the most relevant work in bio-medical image segmentation is

U-Net architecture which uses elastic deformation for data augmentation

(Ronneberger, Fischer, & Brox, 2015).
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2.4 Summary

Though there has been significant progress in neural network classification

for large data-sets, little has been achieved if the data-set is very limited in size,

fittingly in the case of Lupus. Therefore, using data augmentation becomes a viable

step. Therefore, the major focus was to test the efficiency of Le-Net classifier with

the use of GAN generated images in the training data-set. Furthermore, the

research included the perceptual study of the qualitative evaluation of the artificial

images generated from the CCGAN.
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Figure 2.2. GoogleNet Architecture, adopted from GoogleNet (Szegedy et al., 2015).

Architecture continues from left to right. Reprinted with permission from “Going

Deeper with Convolutions” by Szegedy Christian et.al, 2014. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR2015), 1-9. 2015 by Szegedy

Christian.
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CHAPTER 3. FRAMEWORK AND METHODOLOGY

This chapter provides details about the frameworks and methods that were

used in the research study including the sample, the data collection, the variables

that were tested, and the data analysis.

3.1 AVI Architecture

The architecture of the network for this research is illustrated in Figure 3.1.

It consists of a combination of two deep neural network frameworks combined to

form a neural network. Figure 3.1a demonstrates GAN architecture. The neural

network consists of a Generator G and a Discriminator D which is trained from

images of chosen resolution 32 x 32 (Goodfellow et al., 2014). Figure 3.1b is the

Le-Net Classifier (LeCun et al., 1998) which takes the generated images from the

GAN as input in a predetermined timed fashion and trains the Le-Net classifier over

several epochs.

For easier implementation HyperGAN (HyperGAN-Community, 2016) was

used for the GAN implementation. HyperGAN, like any other GAN, consists of the

Generator, Discriminator, Encoder, Loss function, and the Trainer. The default

configuration of HyperGAN was used for training where it uses Least Squares Loss

function for both the discriminator and the generator given by the following

equations where a,b,c are hyper-parameters and δreal, δartificial are vector values of

real and artificially generated data respectively.

Discloss = [δreal − b]2 − [δartificial − a]2

Genloss = [δartificial − c]2
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Figure 3.1. AVI Architecture, Adopted from GAN (Goodfellow et al., 2014) and

Le-Net (LeCun et al., 1998). Reprinted with permission from Gradient based learning

applied to document recognition by Yann Lecun et.al, 1998. Proceedings of the

IEEE,86(11),2278-2324. doi: 10.1109/5.726791 by IEEE.
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The Le-Net framework consists of convolution filers which are then followed by the

ReLU activation. The ReLU activation is then succeeded by the 2x2 max pooling.

The max-pooling layer has a stride of 2. This is again followed by a larger

convolution filter that is succeeded by another ReLU activation and max-pooling

layers. The output of the last max pooling layer is then standardized to a single

vector. The single vector is used in a hidden layer. The last step involves using the

soft-max or the normalized exponential function to classify and output the true

model (p =1).

The Generator G constantly tends to deceive the Discriminator D whereas

the Discriminator tries not to be deceived. After training over a few epochs the

generated image which is classified as real by the Discriminator is used as an input

to train the output true model. Similarly, another Output False Model is trained

from non-Lupus sample images. The model, when tested with probability prediction

function from Keras (HyperGAN-Community, 2016), gives a labeled classifier.

3.2 Overview of CCGAN Architecture

The primary objective of a Generative Adversarial Network is to generate

synthetic data using the sample distribution provided to it. To accomplish this goal,

it has two major components. Firstly, a Generator G that will be trained to

produce synthetic images by introducing random noise in the distribution. Secondly,

a Discriminator D that is trained to classify the generated images as real or fake.

The loss functions serve as a two-player game where one player is competing against

the other to win the game. More formally, let X = x1, ..., xn be a dataset of images

of d dimensions. Let D describe a discriminative function that will take an image x

∈ R d as an input. The Discriminator D then gives a probability output of whether

the input x is real or not. The Generator G denotes a generative function that uses

a random vector z ∈ R z as an input. This input is derived from a noisy distribution

pNoise. The Generator gives a synthesized image x̂ = G(z) ∈ Rd as output. Ideally,
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D(x) = 1 when x ∈ X and D(x) = 0 when x was generated from G. The GAN

objective is given by:

min
G

max
D

Ex∼X [log(D(x))] + Ez∼pNoise[log(1−D(G(z)))]

The conditional generative adversarial network (Mirza & Osindero, 2014) is

a derivation of the GAN. A vector y which could be the label of a dataset can be

inputted as additional information to derive a conditional setting. The conditional

GAN objective is given by:

min
G

max
D

Ex,y∼X [log(D(x, y))] + Ez∼pNoise[log(1−D(G(z, y), x))]

The context-conditional generative adversarial networks (CCGANs) are

conditional GANs where the generator is trained to fill in a missing image patch and

the generator and discriminator are trained from the surrounding pixels. In

particular, the generator G receives as input an image with a randomly masked out

patch. The generator outputs an entire image. The missing patch is filled from the

generated output and then the completed image is passed into D. The completed

image is passed into D rather than the context and the patch as two separate

inputs. This is done to prevent D from simply learning to identify discontinuities

along the edge of the missing patch.

More formally, let m ∈ R d denote to a binary mask that will be used to drop

out a specified portion of an image. The generator receives as input m � x where �

denotes element-wise multiplication. The generator outputs xG = G(m � x, z) R d

and the inpainted image xI is given by:

xI = (1−m)� xG +m� x
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The CC-GAN objective is given by:

min
G

max
D

Ex∼X [log(D(x))] + Ex∼X,m∼M[log(1−D(xI))]

3.3 Hypotheses

This section describes two hypotheses. Section 3.3.1 describes the

quantitative evaluation of AVI architecture introduced to address the use of GAN

for data augmentation. Section 3.3.2 describes the perceptual study of CCGAN

using Lupus dataset for the qualitative evaluation.

3.3.1 AVI Hypothesis Testing

H0: There is no statistically significant difference in the classification

error rate of the Le-Net Classifier by including the GAN generated

synthetic images in the training dataset.

Hα: There is a statistically significant difference in the classification

error rate of the Le-Net Classifier by including the GAN generated

synthetic images in the training dataset.

3.3.2 Hypothesis Testing of the Perceptual Study on CCGAN

H0: There is no statistically significant difference in the preference of the

artificial images generated by CCGAN approach, over other state-of-art

baselines by healthcare professionals for Lupus Diagnostics.

Hα: There is statistically significant difference in the preference of the

artificial images generated by CCGAN approach, over other state-of-art

baselines by healthcare professionals for Lupus Diagnostics.
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3.4 AVI Experiments

The hypothesis was that by including artificially generated sample images

from GAN in the training dataset, the accuracy of the classifier should increase. To

test this hypothesis a sample Lupus dataset was used to test the error rate of the

Le-Net Classifier. The classifier was validated by the MNIST dataset.

3.4.1 Variables

The number of artificial images m generated by GAN is the independent

variable and the corresponding Expected Error Rate E(ri) of the Neural Network

classifier which is approximated over 100 iterations is the dependent variable for the

null hypothesis to be validated. It is noteworthy to call-out that the relationship

between the various parameters including ’n’ the number of images used for training

as true bucket, ’k’ the number of false images for training, α the ratio between

training and testing dataset, ’M’ the number of images generated over ’t’ epochs,

and the expected error rate E(ri) over ’i’ iterations is highly researched and there is

not enough clarity on the ideal setting for such context of classification. In order to

narrow the scope of the research, all other variables excluding m and E(ri) were

treated as control variables or hyper-parameters in Machine Learning terminology.

3.4.2 AVI Experiment on MNIST

The MNIST database (LeCun, 1998) is a database that consists of images of

handwritten digits. These handwritten digits are commonly used for training by

neural network classifiers primarily due to its small size and less training time. The

Deep Learning model as discussed earlier has two training sets labeled as ”Output

True” and ”Output False”. The MNIST dataset modified as JPEGs by Kaggle

(Kaggle: Digit Recognizer , n.d.) was used for the purpose of Image generation using

GAN. The total number of observations of the MNIST dataset was 43,510. Each
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digit had a training sample size of 4,351(N). However, only a binary classification of

digit ’3’ was used for simplified binomial classification. The classifier identified

number ’3’ as true and all other observations as false. The algorithm randomly

chose ’n’ observations from the ’N’ total number of observations. It then chose nα

observations and trained GAN to generate ’M’ images generated between 50 and 400

epochs which are hyper-parameters. α belongs to real numbers between 0 and 1.

The algorithm randomly chose ’m’ observations from ’M’ total number of

generated observations. The Le-Net classifier (LeCun et al., 1998) is trained with

’m+nα’ images first and then with just nα images as True. It had ’k’ equally

distributed digits randomly picked from MNIST dataset apart from number 3 as

False. The accuracy of both the trained models, one with the m GAN generated

images and the other without the m images was tested with n(1-α) observations.

The experiment was repeated ’i’ times and the expected error rate E(ri) of all the

iterations will be reported. The experiment will be carried out for different values of

n where m is the independent variable and E(ri) is the dependent variable and the

null hypothesis was validated.

3.4.3 AVI Experiment on Lupus dataset

The dataset for this experiment consists of ’n’ = 30 images from different

sources of publicly available images of Lupus related facial lesions, majorly from the

image library of American College of Rheumatology (Image Library , n.d.). Similar

to the previous experiment on the MNIST dataset, n number of observations were

chosen at random from this pool of images. The dataset used for training of AVI

had k random images from the UK Bench dataset (Nister & Stewenius, 2006).

These k images were used for training the classifier as false whereas nα images of

Lupus were used for training the classifier as true. The nα images were used to train

the GAN to generate M images trained between 50 and 400 epochs which are

hyper-parameters. From this image pool, m images were chosen at random. The
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accuracy of both the trained models, one with the m GAN generated images and

the other without the m images was tested with n(1-α) observations. The

experiment was repeated ’i’ times and the expected error rate E(ri) of all the

iterations were reported. The experiment was carried out for different values of n

where m is the independent variable and E(ri) is the dependent variable and the

null hypothesis was validated.

The causal effect of the ’m’ images on the accuracy of the Le-Net Classifier

was studied in a similar setting to the previous experiment with the only difference

being working with a different dataset.

3.5 Perceptual Study on the quality of CCGAN using Lupus dataset

Human observation plays an important role in the reliability of the quality of

the artificial images generated from GANs. The goal of this study was to compare

the performance metrics of CCGAN with other baselines on Lupus dataset.

Therefore the idea is to use the Amazon Mechanical Turk platform for the Human

Intelligence Task. The experiment used pair-wise A/B tests implemented and

demonstrated in the prior work (Chen & Koltun, 2017). The MTurk participants

were shown around 30 pairs of images which were randomly pooled from the equally

distributed database of different baselines that will be compared with CCGAN for

the same label of Lupus. There were sentinel pairs to make sure that the workers

were not falsely logging their entries without context. The workers were asked to

select the image that closely resembled Lupus in each pair. The images were all

shown at the same resolution (256 X 256). An example of the A/B tests that were

conducted on Amazon Mturk is illustrated in Figure 3.2.

The position of the image in the left-right sequence was randomly chosen.

The participants were allowed to choose their selection in unlimited time manner so

that they can carefully examine the pattern of the simulated images. However, the

time taken to complete all the comparisons was measured to know how quickly each
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Figure 3.2. Sample Question from the Perceptual Study.
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Table 3.1.

Hyper parameters used for training of CCGAN, DCGAN and SAGAN

Hyper-parameter Value

Images fed for generation 30 (Lupus Images)

Learning Rate 0.0002

Batch size 1

Dimension of Noise Vector 100

Image Size 256

Adam Optimizer Decay 0.5

Size of Random Mask for CCGAN 64

architecture is preferred over the other. It is noteworthy to mention that the

hyperparameter tuning was made the exact same for all the architecture to ensure

minimum confounding variables as summarized in Table 3.1. The hardware

configurations used for training CCGAN, SAGAN and DCGAN is tabulated in

Table 3.2.

3.5.1 Population

The population of this study was pathologists, general physicians,

radiologists, and health-care professionals.
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Table 3.2.

GPU Configurations used for Training CCGAN, SAGAN and DCGAN

Manufacturer NVIDIA

GPU Name NVIDIA GeForce GTX 1080 Ti

Chip Type GeForce GTX 1080 Ti

Digital To Analog (DAC) Type Integrated RAMDAC

Total Memory 19292 Mega Bytes

Display Memory (VRAM) 11127 Mega Bytes

Shared Memory 8165 Mega Bytes

3.5.2 Sample

The sample of the population was the healthcare professionals from Amazon

Mechanical Turk aka MTurk (Amazon MTurk , n.d.). Amazon Mechanical Turk is a

marketplace where human intelligence is required for classification and other

purposes. The MTurk service empowers researchers all around the world to

remotely conduct research studies. Participants were pre-recruited for such online

studies by Amazon and the rewards are determined by the investigators based on

the length and duration of the survey. The criterion for the recruitment was broadly

classified as ‘Employers in Healthcare’using the Premium recruiting options by

Amazon MTurk. The sample size was 45.
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3.5.3 Variables and Statistical Analysis

The preference of the images generated from CCGAN is compared with

other state-of-art baselines like DCGAN (Radford et al., 2016) and Self-Attention

GAN (Zhang et al., 2019). The Bradley-Terry model (Bradley & Terry, 1952) is

used for the statistical analysis to answer this research question. It is used to find

the probabilities of every item being chosen over another when compared with other

items in the set, based on repeated pairwise comparisons between the items within

the set (Bradley & Terry, 1952).

3.6 Perceptual Study to measure absolute realism

One of the major shortcomings of the above-proposed method is that it does

not reveal how realistic experts think the images are in an absolute sense. In order

to overcome this shortfall, another perceptual study was done where the experts

were asked to rate the absolute realism of the synthetic images generated from

CCGAN, SAGAN, and DCGAN. All the images were randomized to ensure a fair

comparison. A Likert scale of 4 values namely “Strongly Agree, Agree, Disagree,

Strongly Disagree” was used to find the absolute realism of the images. Similar to

the previous study, the survey was conducted using the Amazon MTurk participants

where 26 participants were asked to rate 10 synthetic images each from CCGAN,

SAGAN and DCGAN. The participants identified as ”Healthcare Professionals” had

unlimited time to make the judgment. Therefore 780 judgments were made on the

whole. An example of the sample study conducted is illustrated in Figure 3.3.

As it can be seen in Figure 3.3, random masked patches were chosen for

comparison in order to ensure fair judgement between CCGAN and other baselines

as CCGAN in-paints missing pixel information from the surrounding pixel.

One of the other shortcomings of the previous study was that the assumption

of the healthcare professionals from Amazon MTurk platform to have a fair

knowledge about Lupus. However, in order to mitigate the assumption, all the
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Figure 3.3. Sample Question from the Perceptual Study to measure absolute realism.
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participants were given a short brief about Lupus and were shown real images of

Lupus before starting the experiment. The brief and images shown are illustrated in

Figure 3.4.

3.6.1 Population

Similar to the previous perceptual study, the population of the additional

perceptual study was pathologists, general physicians, radiologists, and health-care

professionals.

3.6.2 Sample

Similar to the previous perceptual study, the sample of the population was

the healthcare professionals from Amazon Mechanical Turk (Amazon MTurk , n.d.).

The criterion for the recruitment was broadly classified as ‘Employers in

Healthcare’using the Premium recruiting options by Amazon MTurk. The sample

size was 26.

3.6.3 Variables and Statistical Analysis

The preference of the images generated from CCGAN is compared with

other state-of-art baselines like DCGAN (Radford et al., 2016) and Self-Attention

GAN (Zhang et al., 2019). The Likert scale gives absolute values on realism and

implicit comparison is made between the architectures.

3.7 Summary

This chapter provided details about the frameworks and methods that were

used in the research study including the sample, the data collection, the variables

and the data analysis.
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Figure 3.4. Introductory brief about Lupus (From Online Survey).
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CHAPTER 4. RESULTS

This chapter explains the findings from the experiments and the analysis of

the experiments conducted. This chapter has two sections. The first section

explains the findings of Research Question 1 and the second about Research

Question 2 correspondingly.

4.1 Findings from Research Question 1

The first research question that was put forth was whether the accuracy of a

Network classifier like Le-Net (LeCun et al., 1998) be increased by including GAN

generated synthetic images in the training dataset.

To test our hypothesis a sample Lupus dataset was used to test the error rate

of the Le-Net Classifier. The classifier is validated by the MNIST dataset.

4.1.1 Experiment on MNIST

The MNIST database (LeCun, 1998) is a large database of handwritten

digits that is commonly used for training by neural network classifiers. The Deep

Learning model as discussed earlier has two training sets labeled as ”Output True”

and ”Output False”. The MNIST dataset modified as JPEGs by Kaggle (Kaggle:

Digit Recognizer , n.d.) was used for the purpose of Image generation using GAN.

The total number of observations of the MNIST dataset used was 43,510. Each digit

had a training sample size of 4,351(N). However, only a binary classification of digit

’3’ was used for simplified calculation. The classifier identifies number 3 as true and

all other observations as false. The algorithm randomly chooses ’n’ observations

from the ’N’ total number of observations. It then chooses nα observations and
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Figure 4.1. GAN generated images from MNIST

trains GAN to generate ’M’ images where α belongs to real numbers between 0 and

1. The sample of the synthetic images is shown in Figure 4.1. The algorithm

randomly chooses ’m’ observations from ’M’ total number of generated observations.

The Le-Net classifier (LeCun et al., 1998) is trained with ’m+nα’ images first and

then with just nα images as True. It had ’k’ equally distributed digits randomly

picked from MNIST dataset apart from number 3 as False. The accuracy of both

the trained models,one with the m GAN generated images and the other without

the m images was tested with n(1-α) observations. The experiment is repeated ’i’

times and the expected error rate E(ri) of all the iterations was reported. The

experiment was done for different values of n where m is the independent variable

and E(ri) is the dependent variable. While training the Le-Net classifier, internal

validation is done where 75% of the training dataset is actually used for training

and the remaining 25% of the dataset is used for validation. The training loss,

training accuracy, validation loss and validation accuracy of one of the iterations
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Figure 4.2. Training Accuracy and Loss, Validation Accuracy and Loss

where N = 4351, M=1000, n=250,α = 0.8, m = 250, k = 450 is shown the Figure

4.2 comparing our approach with the traditional approach.

4.1.2 Experiment on Lupus Dataset

The dataset for this experiment consisted of ’n’ = 30 images from different

sources of publicly available images of Lupus related facial lesions. The data set

used for training of AVI had ’k’ random images from the UK Bench dataset (Nister

& Stewenius, 2006). These ’k’ images were used for training the classifier as false

where as ’nα’ images of Lupus was used for training the classifier as true. The ’nα’

images were used to train the GAN to generate M images from which ’m’ images

are chosen at random. A handful of the images generated are shown in Figure 4.3.

A two-step process was applied to the dataset. First, the Le-Net classifier

was trained with nα, excluding the m GAN images and the corresponding error rate

was recorded for the n(1-α) validation images. Second, the Le-Net classifier is

trained with ’m + nα’ images and the corresponding error rate was observed for the

same n(1-α) validation images. The experiment is repeated for i iterations to draw

inferences.
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Figure 4.3. GAN generated images from Lupus Dataset

4.1.3 Analysis of Results

The experiment was repeated with various parameters and the corresponding

expected error rates observed are summarized in Table 4.1.

The expected error rates are plotted in Figures 4.5, 4.6, 4.7, and 4.8.
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Figure 4.4. Classification Sample

Table 4.1.

Summary of Expected Error Rates Comparison between AVI and Traditional Approach
for different Parameters

n α k m i Le-Net E(ri) AVI E(ri)

30* 0.8 450 30 100 0.408 0.109

50 0.8 450 50 300 0.956 0.706

100 0.8 450 100 300 0.641 0.540

200 0.8 450 200 300 0.413 0.402
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Figure 4.5. Expected error rate comparing Le-Net and AVI for n=30 (Lupus Dataset)

For the Lupus experiment, the data shows there is a 73.22% decrease in the

error rate from 0.407 to 0.109 where the number of images is 30. The trend from the

Table 4.1 shows that as the number of images n increase, the difference in the error

rate becomes insignificant. The initial classification test results are summarized in

the illustrated in Figure 4.4 where it was tested with random available images from

the Image Library of American College of Rheumatology (Image Library , n.d.) 1.

1Accessed with permission from American College of Rheumatology.



39

Figure 4.6. Expected error rate comparing Le-Net and AVI for n=50 (MNIST

Dataset)

Figure 4.2 shows that there was a significant decrease in the cost function of the

validation data and the training loss denoted by val loss and train loss respectively.

Similarly, there was a prominent increase in the accuracy of the training dataset and
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Figure 4.7. Expected error rate comparing Le-Net and AVI for n=100 (MNIST

Dataset)

the validation dataset denoted by train acc and val acc correspondingly in Figure

4.2.

To answer the research question more concretely, a two-sample

MannWhitney U test with normal tables is used to find the statistical significance of

the relation between the dependent and independent variable since it is more robust
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Figure 4.8. Expected error rate comparing Le-Net and AVI for n=200 (MNIST

Dataset)

in case of presence of outliers within the dataset. To recall, the dependent variable

for the research question is the Error Rate ri and the independent variable is the

’m’ GAN generated synthetic images used for training. The control condition did

not have ’m’ images in training whereas the experimental condition had the ’m’

images in training. The number of observations for both the control group and the
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Table 4.2.

Experiments and corresponding p-values

Name of the Experiment p-values

Lupus Experiment (n=30, nc = 100, ne = 100) 0.00003 < 10−3

MNIST Experiment (n=50) , nc = 300, nc = 300) 0.000001 < 10−3

MNIST Experiment (n=100, nc = 300, nc = 300) 0.0002 < 10−3

MNIST Experiment (n=200, nc = 300, nc = 300) 0.391 > 10−3

experimental group is denoted by nc and ne respectively. The corresponding

p-values of all the experiments are summarized in Table 4.2.
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4.2 Findings from Research Question 2

The research question that was put forth was whether Context Conditional

GAN (CCGAN) (E. Denton et al., 2016) be used to generate simulated images that

show or contain manifestation of Lupus from normal images without Lupus. In

order to answer this research question, various state of the art GAN architectures

was experimented. The first and most influential architecture was the one proposed

by (Mirza & Osindero, 2014). It was found that conditional GAN can be used to

generate artificial images of Lupus.

The subsequent research question that was put forth was whether the

CCGAN generated images preferred to generate artificial images that appear like

Lupus over other state-of-art baselines like DCGAN (Radford et al., 2016) and

Self-Attention GAN (Zhang et al., 2019). To answer this research question an

online study was conducted using Amazon mTurk where 45 participants were asked

to compare and classify the images generated from these state-of-art architectures

based on how they closely resemble like Lupus. Since CC-GAN inpaints a masked

patch based on the surrounding pixel information, the participants were forced to

concentrate on the in-painted location by slightly masking the other pixel

information on both the images of comparison. The example of the fair comparison

is shown in Figure 4.9. Such an arrangement is inevitable in order to enforce fair a

judgment from the participant.

Table 4.5 showcases the results of randomly fashioned comparisons of images

generated by models trained from the Lupus dataset. It can be seen that images

generated from CCGAN architecture are preferred over the other state of the art

architectures.

While comparing CCGAN with SAGAN it was seen that CCGAN was

preferred 54% of the comparisons. Similarly while comparing with DCGAN,

CCGAN was preferred 53.8 % of the comparisons while the chance is at 50%.

Qualitative comparison of the architectures is shown in Figure 4.10. The preference
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Figure 4.9. Fair Comparison between CC-GAN and other architectures

Table 4.3.

Preference Comparison between CCGAN, DCGAN and SAGAN

CCGAN vs SAGAN CCGAN vs DCGAN DCGAN vs SAGAN

54% (CCGAN) 53.8% (CCGAN) 56.7% (DCGAN)

comparison between CCGAN, DCGAN and SAGAN is summarized in Table 4.3.

Using the Bradley Terry Model, the probability of choosing one architecture over

the other is summarised in Table 4.4.

4.2.1 Results from Perceptual Study for Research Question 2

As stated in earlier sections, to overcome the shortcomings of the first

perceptual study, an additional perceptual study was done in a similar setup where
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Table 4.4.

Probabilities of choosing one architecture over other based on the annotations by
’Healthcare Professionals’ in Amazon Mturk

CCGAN over SAGAN CCGAN over DCGAN SAGAN over DCGAN

0.540 0.538 0.433

26 Amazon Mturk participants were asked to rate the absolute realism of the

synthetic images generated from CCGAN, SAGAN, and DCGAN. It can be seen

that 17.31 % of all the judgements were ”Strongly Agree” in favor of CCGAN which

is relatively higher when compared to 11.9% of SAGAN. This is in-turn relatively

better than 8.46% of DCGAN. CCGAN was again a clear winner in case of ”Agree”

as a response. The results are summarised in Table 4.4 and are visualized using bar

graphs in Figure 4.11. The actual data from the perceptual study can be seen in

Appendix B in Table B.1, B.2 and B.3. The last column of each table represents the

sum of pair-wise comparisons for each participant number. From Table B.1,

CCGAN was chosen 54% of all the comparisons while comparing with SAGAN.

From Table B.2, CCGAN was chosen 53.8% of all the comparisons while comparing

with DCGAN. From Table B.3, SAGAN was chosen 43.3% of all the comparisons

while comparing with DCGAN.
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Table 4.5.

Responses count comparing CCGAN, SAGAN and DCGAN

Name Strongly Agree Agree Disagree Strongly Disagree Total Judgements

CCGAN 45 132 68 15 260

SAGAN 31 118 91 20 260

DCGAN 22 118 94 26 260
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Figure 4.10. Qualitative Comparison between CC-GAN and other architectures
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Figure 4.11. Bar Graph comparing CCGAN, DCGAN and SAGAN
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CHAPTER 5. DISCUSSION

This chapter gives holistic discussions and conclusions. This chapter also

projects useful recommendations to the research community that would enhance

lupus research and diagnostics.

5.1 Discussion

The discussion section has been divided into two sections for research

questions 1 and 2, respectively.

5.1.1 Discussion about Research Question 1

The hypothesis that was put forward was that there is a statistically

significant difference in the classification error rate of the Le-Net Classifier by

including the GAN generated synthetic images in the training dataset. Various

parameters and the corresponding results are discussed in the Results Chapter.

Form Table 4.2, it can be seen that for all the experiments except for the last

experiment where n= 200 (is sufficiently large), the results are statistically

significant with p < 10−3 confidence interval. Therefore the null hypothesis H0 can

be rejected for all the experiments where n = 30 (Lupus), n = 50 and 100 (MNIST).

An important trend to be noticed is that as the number of samples used for training

increases, the difference in the corresponding error rates of the experiments tends to

be nullified and hence the null hypothesis holds true for last experiment n=200.

Hence, the trials for n = 250 or more does not have any impact on the findings of

the experiment. Therefore, GAN significantly helps to improve the classification of

smaller datasets but not larger datasets which have abundant data. However, the
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primary motive of this research is to improve the diagnostics of diseases which does

not have large data to work with. Therefore using GAN in such context proves to

be highly beneficial. Moreover, the classifier trained with Lupus images showed that

Lupus can be differentiated from diseases with similar manifestations like Melasma,

Rosacea and Sunburn as shown in Figure 4.4. This research has used Lupus as a

model. However, the research can be extended to other diseases with similar

symptoms and manifestations.

5.1.2 Discussion about Research Question 2

To recall, the research question that was put forth was whether Context

Conditional GAN (CCGAN) (E. Denton et al., 2016)could be used to generate

simulated images that show or contain manifestation of Lupus from normal images

without Lupus. Subsequently, whether the CCGAN generated images are preferred

to generate artificial images that appear like Lupus over other state-of-art baselines

like DCGAN (Radford et al., 2016) and Self-Attention GAN (Zhang et al., 2019).

Results showed that conditional GAN is capable of producing images that resemble

images with cutaneous manifestations of Lupus and examples are shown in the

Results chapter. However, as stated earlier, human observation and annotation are

really important in determining the best architecture that could be used for

diagnostics for heterogeneous diseases like Lupus. The online perceptual study

revealed that CCGAN is indeed preferred over the other state of the art

architectures. However, analyzing using the Bradley Terry model (Bradley & Terry,

1952), the statistical significance still needs closer introspection as CCGAN wins

over the other baselines by a narrow margin. Therefore, the null hypothesis cannot

be rejected. To recall, the null hypothesis that was articulated was that there is no

statistically significant difference in the preference of the artificial images generated

by CCGAN approach, over other state-of-art baselines by healthcare professionals

for Lupus Diagnostics. Qualitatively analyzing the preference of CCGAN reveals
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that CCGAN takes advantage of the surrounding pixels information while providing

an estimation of the masked patch. Some of the useful attributes include the

preservation of the identity of the faces in the images used for training, retaining the

same color tone of the images that help in simulating ’butterfly rash’ of a similar

color tone, and easier projection of the simulated rashes on the images fed for

training.

Qualitatively observing, synthetic images that had red-colored rashes on the

faces were preferred over other the compared images agnostic to the architecture

that was used for training. Therefore, the color tone can be explored as one of the

conditions for the generation of synthetic images in future experiments. From the

additional perceptual study, it is evident that CCGAN performs better when

absolute realism is measured using the Likert scale. It clearly provides a potential

direction for future research direction to know why is CCGAN is preferred over

other architectures.

Mapping back to the primary research objectives, the following statements

can be made.

1. The accuracy of Le-Net classifier with the use of images generated from GAN

in the training dataset has significantly increased. To be more specific, for

dataset with limited training images (n < 200) with p < 10−3 confidence

interval.

2. Conditional GAN (Mirza Osindero, 2014) can be used to generate artificial

images with cutaneous manifestations of Lupus from normal face dataset.

3. Human evaluation of the artificial images with cutaneous manifestations of

Lupus generated from the Context-Specific Conditional GAN (CCGAN) is

preferred over SAGAN, and DCGAN.
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CHAPTER 6. RECOMMENDATIONS AND CONCLUSION

6.1 Recommendations

The future scope of this research will include using the synthetic images

generated from GAN for other neural network classifiers like ResNet, AlexNet,

Inception, VGGNet. The significant result evident by performing the experiment on

the MNIST dataset has shown that GAN has the potential to increase the accuracy

of other neural network classifiers. Potential domain applications of GAN include

Medical Imaging where synthetic CTs, synthetic Magnetic Resonance Images,

synthetic X rays could be generated even from a small dataset for image

segmentation and classification purposes (Emami et al., 2018). Further work could

be done by exploring the use of GAN in real-time for object detection where the

model learns new labels and artificially generates more similar training images. For

example, using real-time object detection models like Yolo(Redmon, Divvala,

Girshick, & Farhadi, 2016) as a model to simulate real-time medical diagnostics in

hospitals and other public places. Therefore GAN as a machine learning approach

has tremendous use in a varied context specific to Medical Imaging and Diagnostics.

6.2 Conclusion

This research was the first step towards unlocking the potential strength of

applying GAN to Lupus related image data by using it to generate artificial images

with cutaneous manifestations of Lupus which can be used for various research

purposes.
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Therefore the medical research community need not be limited to what is

publicly available and use it to generate synthetic data for classification, testing and

training apart from the traditional data augmentation methods.
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CHAPTER A. CODE USED

The following open-source python code is accessed from HyperGAN

community (HyperGAN-Community, 2016) on Jan 10, 2019.

1. Generator Model

from hypergan.gan_component import GANComponent

class BaseGenerator(GANComponent):

def __init__(self, gan, config, name="BaseGenerator",

input=None, reuse=False):

self.input = input

self.name = name

GANComponent.__init__(self, gan, config,

name=name, reuse=reuse)

"""

Superclass for all Generators.

Provides some common functionality.

"""

def create(self):

"""

Create graph

"""

self.sample = self.build(self.input)

APPENDIX
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return self.sample

def add_progressive_enhancement(self, net):

ops = self.ops

gan = self.gan

config = self.config

if config.progressive_enhancement:

split = ops.slice(net, [0, 0, 0, 0], [-1, -1, -1,

gan.channels()])

if config.final_activation:

split = config.final_activation(split)

print("[generator] adding

progressive enhancement", split)

gan.skip_connections.set(

’progressive_enhancement’, split)

def layer_filter(self, net, layer=None, total_layers=None):

"""

If a layer filter is defined, apply it.

Layer filters allow for adding information

to every layer of the network.

"""

ops = self.ops

gan = self.gan

config = self.config

if config.layer_filter:

print("[base generator] applying layer filter",

config[’layer_filter’])
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fltr = config.layer_filter(gan, self.config, net)

if fltr is not None:

net = ops.concat(axis=3, values=[net, fltr])

return net

def project_from_prior(self, primes, net, initial_depth,

type=’linear’, name=’prior_projection’):

ops = self.ops

net = ops.reshape(net, [ops.shape(net)[0], -1])

new_shape = [ops.shape(net)[0], primes[0], primes[1],

initial_depth]

net = ops.linear(net,

initial_depth*primes[0]*primes[1])

print("projection ", net)

net = ops.reshape(net, new_shape)

return net

2. Discriminator Model

from hypergan.gan_component import GANComponent

import tensorflow as tf

class BaseDiscriminator(GANComponent):

def __init__(self, gan, config, name=None, input=None,

reuse=None, features=None):

self.input = input

self.name = name
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self.features = features

GANComponent.__init__(self, gan, config,

name=name, reuse=reuse)

def create(self, net=None):

config = self.config

gan = self.gan

ops = self.ops

net = net or self.input

net = self.build(net)

self.sample = net

return net

def reuse(self, net=None, **opts):

config = self.config

gan = self.gan

ops = self.ops

self.ops.reuse()

net = self.build(net, **opts)

self.ops.stop_reuse()

return net

def add_noise(self, net):

config = self.config

if not config.noise:
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return net

print("[discriminator] adding noise", config.noise)

net += tf.random_normal(net.get_shape(), mean=0,

stddev=config.noise, dtype=tf.float32)

return net

def resize(self, config, x, g):

if(config.resize):

# shave off layers >= resize

def should_ignore_layer(layer, resize):

return int(layer.get_shape()[1])

> config[’resize’][0] or \

int(layer.get_shape()[2])

> config[’resize’][1]

xs = [px for px in xs if not should_ignore_layer(px,

config[’resize’])]

gs = [pg for pg in gs if not should_ignore_layer(pg,

config[’resize’])]

x = tf.image.resize_images(x,config[’resize’], 1)

g = tf.image.resize_images(g,config[’resize’], 1)

else:

return x, g

def layer_filter(self, net, layer=None, total_layers=None):

config = self.config

gan = self.gan
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ops = self.ops

concats = [net]

closest = gan.skip_connections.get_closest

(’progressive_enhancement’, ops.shape(net))

if closest is not None:

enhancers = gan.skip_connections.get_array

(’progressive_enhancement’, ops.shape(closest))

# progressive enhancement

new_shape = [ops.shape(net)[1], ops.shape(net)[2]]

x = self.add_noise(self.gan.inputs.x)

x = tf.image.resize_images(x,new_shape, 1)

#TODO what if the input is user defined? i.e. 2d test

size = [ops.shape(net)[1], ops.shape(net)[2]]

enhancers = [tf.image.resize_images(enhance,

size, 1) for enhance in enhancers]

enhance = tf.concat(axis=0, values=[x]+enhancers)

# progressive growing

if config.progressive_growing:

pe_layers = self.gan.skip_connections.get_array(

"progressive_enhancement")

step_index = len(pe_layers)//len(enhancers)-layer-1

if step_index >= 0:

print("Adding progressive growing mask ",

step_index)

mask =

self.progressive_growing_mask(step_index)
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enhance *= mask

concats.append(enhance)

if ’layer_filter’ in config and

config.layer_filter is not None:

print("[discriminator] applying layer filter",

config[’layer_filter’])

filters = []

stacks = self.ops.shape(net)[0] // gan.batch_size()

for stack in range(stacks):

piece = tf.slice(net,

[stack * gan.batch_size(), 0,0,0],

[gan.batch_size(), -1, -1, -1])

filters.append(config.layer_filter(gan,

self.config, piece))

layer = tf.concat(axis=0, values=filters)

concats.append(layer)

if len(concats) > 1:

net = tf.concat(axis=3, values=concats)

return net

3. Le-Net- Open source code accessed from (PyImageSearch, n.d.) Last

Retrieved on Jan 10, 2019.

# import the necessary packages
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from keras.models import Sequential

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.layers.core import Activation

from keras.layers.core import Flatten

from keras.layers.core import Dense

from keras import backend as K

class LeNet:

@staticmethod

def build(width, height, depth, classes):

# initialize the model

model = Sequential()

inputShape = (height, width, depth)

# if we are using "channels first", update the input shape

if K.image_data_format() == "channels_first":

inputShape = (depth, height, width)

# first set of CONV => RELU => POOL layers

model.add(Conv2D(20, (5, 5), padding="same",

input_shape=inputShape))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# second set of CONV => RELU => POOL layers

model.add(Conv2D(50, (5, 5), padding="same"))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
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# first (and only) set of FC => RELU layers

model.add(Flatten())

model.add(Dense(500))

model.add(Activation("relu"))

# softmax classifier

model.add(Dense(classes))

model.add(Activation("softmax"))

# return the constructed network architecture

return model

4. Le-Net training. Open source code accessed from (PyImageSearch, n.d.)

Last Retrieved on Jan 10, 2019.

# USAGE

# python train_network.py --dataset

#images --model santa_not_santa.model

# set the matplotlib backend so figures

#can be saved in the background

import matplotlib

matplotlib.use("Agg")

# import the necessary packages

from keras.preprocessing.image import ImageDataGenerator

from keras.optimizers import Adam

from sklearn.model_selection import train_test_split

from keras.preprocessing.image import img_to_array
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from keras.utils import to_categorical

from pyimagesearch.lenet import LeNet

from imutils import paths

import matplotlib.pyplot as plt

import numpy as np

import argparse

import random

import cv2

import os

# construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-d", "--dataset", required=True,

help="path to input dataset")

ap.add_argument("-m", "--model", required=True,

help="path to output model")

ap.add_argument("-p", "--plot", type=str, default="plot.png",

help="path to output loss/accuracy plot")

args = vars(ap.parse_args())

# initialize the number of

# epochs to train for, initial learning rate,

# and batch size

EPOCHS = 25

INIT_LR = 1e-3

BS = 32

# initialize the data and labels

print("[INFO] loading images...")



64

data = []

labels = []

# grab the image paths and randomly shuffle them

imagePaths = sorted(list(paths.list_images(args["dataset"])))

random.seed(42)

random.shuffle(imagePaths)

# loop over the input images

for imagePath in imagePaths:

# load the image, pre-process it, and store it in the data list

image = cv2.imread(imagePath)

image = cv2.resize(image, (28, 28))

image = img_to_array(image)

data.append(image)

# extract the class label from the image path and update the

# labels list

label = imagePath.split(os.path.sep)[-2]

label = 1 if label == "santa" else 0

labels.append(label)

# scale the raw pixel intensities to the range [0, 1]

data = np.array(data, dtype="float") / 255.0

labels = np.array(labels)

# partition the data into training and testing

# splits using 75% of

# the data for training and the remaining 25% for testing
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(trainX, testX, trainY, testY) = train_test_split(data,

labels, test_size=0.25, random_state=42)

# convert the labels from integers to vectors

trainY = to_categorical(trainY, num_classes=2)

testY = to_categorical(testY, num_classes=2)

# construct the image generator for data augmentation

aug = ImageDataGenerator(rotation_range=30,

width_shift_range=0.1,

height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,

horizontal_flip=True, fill_mode="nearest")

# initialize the model

print("[INFO] compiling model...")

model = LeNet.build(width=28, height=28, depth=3, classes=2)

opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)

model.compile(loss="binary_crossentropy", optimizer=opt,

metrics=["accuracy"])

# train the network

print("[INFO] training network...")

H = model.fit_generator(aug.flow(trainX,

trainY, batch_size=BS),

validation_data=(testX, testY),

steps_per_epoch=len(trainX) // BS,

epochs=EPOCHS, verbose=1)

# save the model to disk
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print("[INFO] serializing network...")

model.save(args["model"])

# plot the training loss and accuracy

plt.style.use("ggplot")

plt.figure()

N = EPOCHS

plt.plot(np.arange(0, N), H.history["loss"],

label="train_loss")

plt.plot(np.arange(0, N), H.history["val_loss"],

label="val_loss")

plt.plot(np.arange(0, N), H.history["acc"],

label="train_acc")

plt.plot(np.arange(0, N), H.history["val_acc"],

label="val_acc")

plt.title("Training Loss and Accuracy on Santa/Not Santa")

plt.xlabel("Epoch #")

plt.ylabel("Loss/Accuracy")

plt.legend(loc="lower left")

plt.savefig(args["plot"])

4.Le-Net Testing. Open source code accessed from (PyImageSearch, n.d.)

Last Retrieved on Jan 10, 2019.

# USAGE

# python test_network.py

# --model santa_not_santa.model --image images/examples/santa_01.png

# import the necessary packages

from keras.preprocessing.image import img_to_array
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from keras.models import load_model

import numpy as np

import argparse

import imutils

import cv2

# construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-m", "--model", required=True,

help="path to trained model model")

ap.add_argument("-i", "--image", required=True,

help="path to input image")

args = vars(ap.parse_args())

# load the image

image = cv2.imread(args["image"])

orig = image.copy()

# pre-process the image for classification

image = cv2.resize(image, (28, 28))

image = image.astype("float") / 255.0

image = img_to_array(image)

image = np.expand_dims(image, axis=0)

# load the trained convolutional neural network

print("[INFO] loading network...")

model = load_model(args["model"])

# classify the input image
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(notSanta, santa) = model.predict(image)[0]

# build the label

label = "Lupus" if santa > notSanta and

# santa > 0.9 else "Not Lupus"

proba = santa if santa > notSanta else notSanta

label = "{}: {:.2f}%".format(label, proba * 100)

# draw the label on the image

output = imutils.resize(orig, width=400)

cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,

0.7, (0, 255, 0), 2)

# show the output image

cv2.imshow("Output", output)

cv2.waitKey(0)
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CHAPTER B. COLLECTED DATA FROM THE PERCEPTUAL STUDY

p1, p2..., p45 represent the participant numbers. C1, C2..., C10 represent

the number of pair-wise comparisons.

In Table B.1 ’0 ’ represent selections in favor of SAGAN over CCGAN and

’1 ’ represent selections in favor of CCGAN over SAGAN. The last column in the

Table B.1 represents the sum of pair-wise comparisons for each participant number.

It can be seen that ’243 ’ selections were made in favor of CCGAN out of 450 total

comparisons.

In Table B.2 ’0 ’ represent selections in favor of DCGAN over CCGAN and

’1 ’ represent selections in favor of CCGAN over DCGAN. The last column in the

Table B.2 represents the sum of pair-wise comparisons for each participant number.

It can be seen that ’242 ’ selections were made in favor of CCGAN out of 450 total

comparisons.

In Table B.3 ’0 ’ represent selections in favor of DCGAN over SAGAN and

’1 ’ represent selections in favor of SAGAN over DCGAN. The last column in the

Table B.3 represents the sum of pair-wise comparisons for each participant number.

It can be seen that ’195 ’ selections were made in favor of SAGAN out of 450 total

comparisons.

APPENDIX
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Table B.1.

Pairwise comparison results between CCGAN and SAGAN

No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
p1 0 0 0 0 0 0 0 0 0 0 0
p2 0 0 0 1 0 1 1 1 1 1 6
p3 1 1 1 0 1 1 1 1 1 0 8
p4 0 0 0 1 0 0 0 0 1 0 2
p5 0 1 1 1 1 1 1 0 1 1 8
p6 1 1 1 1 1 1 1 0 1 0 8
p7 0 0 0 0 0 0 0 0 0 0 0
p8 1 0 0 1 1 0 1 0 1 1 6
p9 0 1 1 0 1 0 1 0 0 0 4
p10 0 0 0 0 0 0 0 0 0 0 0
p11 1 1 0 0 1 1 1 0 0 0 5
p12 0 0 0 1 1 0 1 0 0 1 4
p13 1 1 1 1 1 1 0 0 1 1 8
p14 1 0 0 1 1 1 1 1 1 1 8
p15 1 0 0 1 1 0 0 0 1 1 5
p16 0 1 1 1 0 1 1 0 1 1 7
p17 1 0 0 1 0 0 0 0 0 1 2
p18 0 0 1 0 0 0 0 0 0 0 1
p19 1 0 1 1 0 1 1 1 1 1 8
p20 1 1 1 1 1 1 1 1 1 1 10
p21 1 0 1 1 1 1 0 0 0 1 6
p22 0 0 1 1 0 1 1 1 1 1 7
p23 0 0 0 0 1 1 0 1 1 1 5
p24 1 1 1 1 1 1 1 1 1 1 10
p25 0 0 1 1 1 1 1 1 1 1 8
p26 1 0 1 1 1 0 1 0 0 0 5
p27 0 1 0 0 1 0 1 0 1 0 4
p28 0 1 0 1 1 1 0 0 0 0 4
p29 0 0 1 1 0 0 0 1 0 0 3
p30 0 0 0 0 0 0 0 0 1 1 2
p31 0 0 0 0 0 0 1 0 0 0 1
p32 1 1 1 1 1 1 1 1 1 1 10
p33 1 1 1 1 1 1 1 1 1 0 9
p34 1 1 1 1 1 1 1 1 1 1 10
p35 0 1 1 1 1 1 1 0 0 1 7
p36 0 0 0 0 0 0 1 0 1 0 2
p37 1 1 0 1 0 1 1 0 1 1 7
p38 0 0 1 1 0 0 1 1 1 1 6
p39 0 0 0 1 0 0 0 0 0 0 1
p40 0 0 0 1 1 0 1 1 1 1 6
p41 0 0 0 1 1 0 1 0 1 0 4
p42 0 1 0 1 1 1 1 0 1 1 7
p43 0 0 1 1 1 1 1 1 0 1 7
p44 0 0 0 1 1 0 1 1 1 1 6
p45 0 0 1 1 0 0 1 1 1 1 6

Total 243
% 54
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Table B.2.

Pairwise comparison results between CCGAN and DCGAN

No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
p1 0 1 0 1 0 0 1 0 0 0 3
p2 0 1 1 1 0 1 1 1 0 1 7
p3 1 0 1 0 0 0 1 1 1 1 6
p4 0 0 0 1 0 0 0 0 0 0 1
p5 1 1 1 1 1 1 0 0 1 1 8
p6 1 0 0 0 1 1 1 1 1 1 7
p7 0 0 1 1 1 0 1 0 0 0 4
p8 0 0 0 0 1 0 1 0 0 1 3
p9 1 0 0 0 0 0 0 1 1 1 4
p10 0 1 0 1 1 0 1 0 0 0 4
p11 1 0 0 0 1 1 0 0 0 0 3
p12 0 0 1 1 1 0 1 0 0 1 5
p13 0 1 0 0 0 1 0 0 1 1 4
p14 0 0 0 1 1 1 1 0 0 1 5
p15 1 0 1 1 1 1 1 0 1 1 8
p16 0 1 0 1 0 1 1 1 1 1 7
p17 0 1 0 1 0 0 1 0 0 0 3
p18 0 0 1 0 1 0 1 0 0 0 3
p19 1 0 0 1 0 1 1 1 1 1 7
p20 1 1 1 0 1 1 0 1 0 1 7
p21 1 0 0 1 0 1 1 1 0 1 6
p22 0 0 1 1 1 1 1 1 1 1 8
p23 0 0 0 1 1 1 0 1 1 1 6
p24 1 1 1 0 0 1 0 1 1 1 7
p25 0 1 0 1 1 1 1 1 1 1 8
p26 1 0 1 1 1 0 1 0 0 1 6
p27 0 1 0 1 1 0 0 0 0 0 3
p28 0 0 1 1 1 1 1 1 1 1 8
p29 1 1 1 0 1 1 0 1 1 1 8
p30 0 1 0 1 1 0 0 0 0 0 3
p31 0 1 0 1 0 0 1 0 0 0 3
p32 1 0 1 0 0 0 1 1 1 1 6
p33 1 0 0 0 1 1 1 1 1 0 6
p34 1 1 1 0 1 1 0 0 1 1 7
p35 0 1 1 1 1 1 1 1 1 0 8
p36 0 1 1 1 1 0 1 0 0 0 5
p37 0 1 0 1 1 1 1 0 1 1 7
p38 0 1 0 1 1 0 1 0 1 1 6
p39 0 0 0 1 1 0 1 0 0 0 3
p40 0 0 0 1 0 1 1 1 0 1 5
p41 0 0 0 1 1 0 0 0 0 1 3
p42 0 0 0 1 0 0 1 0 1 1 4
p43 0 1 1 1 0 1 1 1 0 1 7
p44 0 1 1 1 0 0 1 0 0 0 4
p45 0 1 0 1 1 0 1 0 1 1 6

Total 242
% 53.8
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Table B.3.

Pairwise comparison results between SAGAN and DCGAN

No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
p1 1 1 1 1 1 1 1 0 0 0 7
p2 1 0 0 0 0 1 0 1 0 1 4
p3 0 0 0 0 0 0 1 0 0 0 1
p4 0 1 1 0 1 0 1 0 0 0 4
p5 1 0 0 0 0 1 0 0 0 1 3
p6 1 0 0 1 0 1 0 1 1 1 6
p7 1 0 1 1 0 1 1 0 0 1 6
p8 0 0 0 0 0 1 1 0 0 1 3
p9 0 0 0 1 0 0 0 1 0 1 3
p10 1 1 1 1 1 1 1 0 0 0 7
p11 0 0 1 0 1 0 0 0 0 0 2
p12 0 0 0 0 0 1 1 1 0 1 4
p13 0 0 0 0 0 1 0 0 0 1 2
p14 1 0 1 0 1 1 1 0 0 1 6
p15 1 1 0 0 0 1 1 0 0 0 4
p16 0 0 0 0 0 1 0 0 0 1 2
p17 1 1 1 1 0 0 1 0 0 1 6
p18 1 1 1 1 1 1 1 0 0 0 7
p19 0 1 0 0 0 0 0 1 1 1 4
p20 1 0 0 0 1 0 0 0 0 1 3
p21 0 0 0 0 0 0 1 1 1 1 4
p22 0 0 1 0 1 1 0 1 1 0 5
p23 1 0 0 0 1 1 1 1 1 1 7
p24 1 1 0 0 0 0 0 1 0 1 4
p25 0 0 0 0 0 0 0 0 0 1 1
p26 0 1 1 0 0 1 1 0 0 0 4
p27 1 1 1 1 1 1 1 0 0 0 7
p28 0 0 1 0 0 1 1 1 1 1 6
p29 1 0 1 0 1 1 0 0 0 1 5
p30 1 1 1 1 1 1 1 0 0 0 7
p31 1 1 1 1 1 1 1 0 0 0 7
p32 0 0 0 0 0 0 0 1 1 1 3
p33 0 0 0 0 0 1 1 1 0 1 4
p34 0 0 1 0 0 1 0 0 1 1 4
p35 0 0 1 0 0 1 0 0 0 0 2
p36 0 1 1 1 1 0 1 0 0 0 5
p37 0 1 1 1 1 0 1 0 0 0 5
p38 0 0 0 1 0 1 0 1 0 1 4
p39 0 1 1 0 0 1 1 0 0 1 5
p40 0 1 0 0 0 1 0 0 0 1 3
p41 0 0 0 0 0 1 0 1 0 1 3
p42 0 1 0 0 0 0 1 0 0 1 3
p43 1 1 0 0 0 1 0 1 1 1 6
p44 0 0 0 0 0 1 1 0 0 1 3
p45 0 0 0 1 0 1 0 1 0 1 4

Total 195
% 43.3
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CHAPTER C. IRB APPROVALAPPENDIX
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Figure C.1. IRB Approval Protocol 1902021817
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Figure C.2. IRB Approval Amendment for Perceptual study
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CHAPTER D. SAMPLE SURVEY RESPONSES

Figure D.1. Sample survey responses of pairwise comparisons of images from 1-2.

APPENDIX
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Figure D.2. Sample survey responses of pairwise comparisons of images from 3-5.
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Figure D.3. Sample survey responses of pairwise comparisons of images from 6-7.
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Figure D.4. Sample survey responses of pairwise comparisons of images from 8-10.
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Figure D.5. Sample survey responses of pairwise comparisons of images from 11-12.
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Figure D.6. Sample survey responses of pairwise comparisons of images from 13-15.
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Figure D.7. Sample survey responses of pairwise comparisons of images from 16-17.
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Figure D.8. Sample survey responses of pairwise comparisons of images from 18-20.
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Figure D.9. Sample survey responses of pairwise comparisons of images from 21-22.
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Figure D.10. Sample survey responses of pairwise comparisons of images from 23-25.
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Figure D.11. Sample survey responses of pairwise comparisons of images from 26-28.
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Figure D.12. Sample survey responses of pairwise comparisons of images from 28-30.
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