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ABSTRACT

Wang, Xiao PhD, Purdue University, August 2019. Electron Correlation and Field
Pulse Ionization in Atoms. Major Professor: Francis Robicheaux.

Quantum mechanics and atomic, molecular, optical (AMO) physics have been

widely studied in the past century. This dissertation covers several topics in the

field of AMO physics that were the focus of my Ph.D. studies, both theoretical and

computational.

The first topic is related to trapping of Rydberg atoms inside an optical trap. The

study focuses on the trapping energy and state mixing of Rydberg atoms based on

different angular momentum state and spin-orbit coupling of the Rydberg electron.

The second topic is the two-electron correlations in an atom, especially double

Rydberg wave packets. We have focused on the rapid autoionization and angular

momentum exchanges between the double Rydberg wave packets. Then, the study of

two-electron correlation is extended to the post-collision interaction (PCI) in Auger

decay and a sequential ionization model. Quantum interference patterns can be found

in the final correlated distributions. In the PCI study, quantum calculations and semi-

classical calculations are performed to interpret the interference patterns.

The last topic is the ionization behavior of one-electron Rydberg atoms from

a terahertz single-cycle pulse. We investigate and compare the different ionization

probabilities of a Rydberg electron from an initial stationary state and a wave packet.

Also, studies of the ionization behavior are extended to scaled parameters, where all

physical parameters of the electron and field pulses are scaled.
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1. INTRODUCTION

1.1 Background

In quantum mechanics, the Schrödinger equation is widely used to study the prop-

erties of atomic electrons. One of the most well-known solutions to the Schrödinger

equation is that for a hydrogen atom. With the three degrees of freedom of a sin-

gle electron, the solutions for a hydrogen atom contain three quantum numbers: the

principal quantum number n, the azimuthal quantum number ℓ, and the magnetic

quantum number m. The principal quantum number describes the energy 1 of a

hydrogen atom which is En = −1/(2n2). The other two quantum numbers describe

the angular distribution of the electronic wave function which is a spherical harmonic

Yℓm. In the early 20th century, when Pauli introduced the exclusion principle, he

stated that electrons should have a “two-valued quantum degree of freedom”. Later

in 1925, Uhlenbeck and Goudsmit introduced the 1/2-spin of electrons, which is also

the fourth quantum number ms of the solution.

Coincidentally, eigenenergies of a hydrogen atom treated quantum mechanically

are exactly the same as that described with Bohr’s semi-classical model. The Bohr

model originates from the solar system with planets orbiting the Sun in nearly spher-

ical orbits. In a Kepler problem, the total energy of a planet can be calculated as its

kinetic energy plus the gravitational potential energy with the following formula:

E =
1

2
mv2 − GMm

r
, (1.1)

where m is the mass of the planet, v is the velocity, r is the distance between the

planet and the Sun, GM is the proportionality constant in the gravitational potential

energy. In Kepler’s law of motion, the orbit of a planet is an ellipse with the Sun

1Atomic units (a.u.) are used to describe quantum systems in the whole dissertation, except Chap. 2,
unless specified otherwise. Details about the atomic units can be found in Appendix A.
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at one of the two foci. Since the 1/r potential is a conservative potential, the total

energy of the planet is conserved, which is

E =
−GMm

2a
, (1.2)

where a is the length of semi-major axis of the ellipse. The period of this orbit can

also be calculated from the Kepler’s third law which is

T 2 = a3 · 4π2

GM
. (1.3)

Bohr proposed that the electron in a hydrogen atom can only be in those circular

orbits with angular momentum L = n, where n is a positive integer and, coinciden-

tally, the principal quantum number we introduced in the previous paragraph. Using

appropriate units, we may replace GMm by 1. This is equivalent to saying that

the radius 2, a, of an electronic circular orbit can only be these discrete values with

a = n2. In these orbits, the energy of the electron is also discrete and can be written

as

En = − 1

2n2
. (1.4)

The orbital period is T = 2πn3. The Bohr model and Kepler’s solar system give us

a first insight into the electron’s motion inside a hydrogen atom. Within the Bohr

model, the relation of energy, period, and characteristic length scale of an electron in

a hydrogen atom with the principal quantum number n can be found in Table 1.1.

The Bohr model is very similar to Kepler’s solar system, but it’s not a correct

description of a hydrogen atom. The main difference of a hydrogen atom from the

solar system is the Heisenberg uncertainty principle in quantum mechanics. The

uncertainty principle states that the position and momentum of an electron cannot

be obtained precisely at the same time, which is

δx · δp ⩾ 1

2
. (1.5)

2Since circle is a specialization of ellipse, the radius of a circle can also be expressed using the length
of semi-major axis in an ellipse.
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Table 1.1.
Relations of the physical quantities with the principal quantum num-
ber in a hydrogen atom

physical quantities relation with n

total energy E −1/(2n2)

orbital period T 2πn3

length of semi-major axis a n2

In non-relativistic quantum mechanics, this is equivalent to

δE · δt ⩾ 1

2
. (1.6)

Combining the Eq. (1.6) and Table 1.1 gives the relative uncertainty, which is

δE

|E|
· δt
T

⩾ (2πn)−1. (1.7)

Equation 1.7 shows that the relative uncertainty of an electron decreases as the prin-

cipal quantum number n increases. Thus, the concept of Rydberg electron can be

introduced, which is an electron with a large principal quantum number n.

A Rydberg electron usually has a much longer radiative life time, and larger

electric dipole moment than a low-lying electron. Also, a coherent superposition of

Rydberg wave packets behaves more classically than a low-lying electron [1, 2].

1.2 Dynamics of two Rydberg electrons

The dynamics of an atom with two electrons is a much harder problem than that

of a one-electron atom. The study of correlations between two bound electrons has re-

mained an interesting topic since the development of quantum mechanics in the early

20th century. The Coulomb interaction is a prototype of coupled degrees of freedom

in atomic physics. Thus, understanding the correlations between two electrons can

help us understand more complicated atoms and molecules. In recent years, numer-

ous experiments have been performed using ultrafast laser pulses to observe, create,
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and control different two-electron processes [3–7], where most of the experiments are

focused on resonant transitions in low-lying states. In contrast to low-lying states,

the novel properties of highly excited Rydberg states make them attractive targets of

study. Many experimental and theoretical investigations of Rydberg electrons have

been conducted in the past century. We will introduce some of them related to this

dissertation.

It is well-known in astronomy that the general three-body problem with the 1/r

potential and comparable masses is non-integrable and chaotic. It’s also hard to find

analytic solutions to the Schrödinger equation for a two-electron atom. Various non-

perturbative numerical methods have been developed to solve for the wave function

of a two-electron atom, including time-dependent close coupling [8], R-matrix [9],

multiconfigurational time-dependent Hartree-Fock (MCTDH) [10], complex rotation

[11], hyperspherical [12], and other methods [2]. However, most quantum mechanical

methods face computational power issues when dealing with highly excited Rydberg

electrons due to the large spatial range, long time scale of substantial interactions,

and strong mixing among enormous numbers of basis functions.

Early research showed that Rydberg electrons behave more classically than elec-

trons in low-lying states [1,2]. This suggests the use of well-studied classical mechan-

ics to investigate two-electron atoms. The classical trajectory Monte Carlo (CTMC)

method will be used in this dissertation.

Since the CTMC method uses classical trajectories of particle-like electrons to

study the dynamics, the method gives no phase information of the wave functions.

If a method cannot compute the interferences between electronic wave functions, it

can give wrong answers on spatial distributions and other physical quantities. In an

example of the coherent state of a quantum harmonic oscillator, the localized spatial

and momentum distributions also satisfy the classical Hamilton equations. A particle

in the coherent state behaves classically, and its motion can be described with the

classical Hamilton equations. Similarly, we use Rydberg wave packets with a spread

of energies instead of Rydberg states with definite energies in the experimental and
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theoretical model. Thus, the CTMC method can give results that well approximate

the quantum calculations.

Rydberg states can be superposed to generate spatially localized Rydberg wave

packets [13, 14]. Studies of dynamics of a single Rydberg wave packet were started

in the 1980s. Some early experimental results are in [14–18], that mainly focused on

the generation, detection, and manipulation of these Rydberg wave packets. Several

later experiments generated a one electron Rydberg wave packet, and observed time-

dependent autoionization of its interaction with the inner ionic core [19,20]. There are

also several studies of interactions between Rydberg wave packets and external electric

fields [21, 22]. However, there are only a few experimental studies on the dynamics

of double Rydberg wave packets [23–26]. Recently, experiments done by Zhang et al.

in Ref. [26] studied the time evolution of two highly excited Rydberg wave packets.

Their experimental and numerical results were in good agreement and showed that

substantial energy and angular momentum exchanges between the two electrons can

happen in just a few Rydberg periods. This motivates us to theoretically study the

time-dependent dynamics of two Rydberg wave packets where only a few numerical

methods [27,28] have been introduced, and the dynamics has not been systematically

studied before. We will use a grid of points for the radial part of the wave function;

the additional electron introduces extra dimensions in the spatial grids. For a one-

electron problem with cylindrical symmetry (for example, an atom in an electric field),

the spatial grid is two-dimensional including the radial coordinate and the angular

channels with different ℓ, since the magnetic quantum number m is conserved. For

a two-electron problem with no external fields, the spatial grid is four-dimensional

including radial coordinates r1, r2, total angular momentum L, and coupled angular

channels |(ℓ1, ℓ2)L⟩. As a special case of L = 0, which means ℓ1 = ℓ2, the spatial grid

would be three-dimensional. The additional dimensions in a finite difference method

can greatly increase the memory needed to store wave functions, and the number

of steps to propagate the whole wave function. Several numerical studies have been

performed with basis expansion techniques and coordinate transformations [27]. A
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method [28] based on the time-dependent close coupling method [8] will be used in

this dissertation to propagate wave functions and to study dynamics of two Rydberg

wave packets.

1.3 Outline of dissertation

This dissertation covers three major topics. In Chap. 2, the energy shift and state

mixing of Rydberg atoms in ponderomotive optical traps are studied. In Chap. 3,

we focus on the rapid autoionization and angular momentum exchanges between two

Rydberg wave packets in an atom. In Chaps. 4 and 5, the dynamics of two Rydberg

electrons are extended to the post-collision interaction (PCI) model. Chapter 4 intro-

duces the PCI in a below-threshold photo-excitation followed by Auger decay model,

while Chap. 5 introduces the PCI in a sequential photo-ionization model. Finally,

in Chap. 6, the ionization behavior of Rydberg atoms and wave packets by scaled

terahertz single-cycle pulses are studied. All of these studies are based on theoretical

derivations and numerical calculations.

In Chap. 2, we present a degenerate perturbation analysis in the spin-orbit coupled

basis for Rydberg atoms in an optical trap. The perturbation matrix is found to be

nearly the same for two states with the same total angular momentum j, and orbital

angular momentum number l differing by 1. The same perturbation matrices result in

the same state-mixing and energy shift. We also study the dependence of state mixing

and energy shift on the periodicity and symmetry of the ponderomotive potentials

induced by different optical traps. State mixing in a one-dimensional lattice formed

with two counter-propagating Gaussian beams is studied and yields a state-dependent

trap depth. We also calculate the state-mixing in an optical trap formed by four

parallel, separated, and highly focused Gaussian beams.

In Chap. 3, fully quantum and classical calculations on a helium atom with two

excited, radially localized Rydberg wave packets are performed. The differences be-

tween classical and quantum methods are compared for a wide range of principal
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quantum numbers to study the validity of the classical method for low-lying states.

The effects of fast terahertz single-cycle pulses on an atomic system with one or two

Rydberg wave packets are also studied using classical equations of motion. These

results suggest that single-cycle pulses can be used as time-resolved probes to detect

motion of the wave packets and to investigate autoionization properties

In Chap. 4, the two-electron correlation model is further extended to the post-

collision interaction (PCI) in Auger decay. We focus on the post-collision interaction

in Auger processes where the photoelectron energy is near or below the ionization

threshold. Time-dependent quantum and classical calculations are performed. When

the photoelectron is more deeply bound, interference patterns can be seen in the

angular and photoelectron energy distributions. These interference patterns are visi-

ble in quantum calculations, but not in purely classical calculations. A semiclassical

analysis using the actions from two-path trajectories gives the relative locations of

the interference maxima very close to those from the full quantum calculations.

In Chap. 5, the post-collision interaction (PCI) is also studied in the two-electron

sequential ionization model. Similar interferences are also found in double continuum

wave packets from a two-step time-delayed photoionization of a two-electron atom.

Properties of the interferences are studied in detail with respect to laser pulse time

widths, laser frequency chirping, and ionization time delay. The effects of these

physical quantities on the resulting interferences are discussed.

Finally, in Chap. 6, we focus on the strong field ionization behavior when a one-

electron Rydberg atom is exposed to a terahertz single-cycle pulse. Fully three-

dimensional time-dependent Schrödinger equation and classical trajectory Monte Carlo

calculations are performed. Ionization from stationary eigenstates and Rydberg wave

packets are focused, and it is found that the ionization properties can be different

for the two cases. All of the pulse parameters and physical quantities are scaled

versus the principal quantum number, n. The ionized electron’s radial, energy, and

angular distributions are investigated for different n, and the quantum results are in-
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terpreted using a semiclassical method. The scaling relations of quantum interference

amplitudes are discussed.
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2. ENERGY SHIFT AND STATE MIXING OF RYDBERG

ATOMS IN PONDEROMOTIVE OPTICAL TRAPS

This chapter is directly taken from J. Phys. B, 49, 164005 (2016) [29] with minor

differences, where the original draft was written by Xiao Wang.

2.1 Introduction

Laser cooling and trapping of atoms have been important topics in the past couple

decades. Optical trapping originates from the idea that neutral atoms can be polarized

and have dipole energy in an oscillating electric field causing an energy shift that

can be used to manipulate the atoms [30]. Optical trapping has some properties

different from other atom traps, such as low trap-induced shifts, highly controllable

trap depths. Typical optical trap induced shifts and trap depths are at the MHz level,

and the effects caused by optical traps on the atomic internal states are extremely

small [31]. These properties make optical trapping a very attractive system in different

sub-fields. Optical trapping has been widely used in Bose-Einstein condensates [32],

quantum computing [33], and other systems.

Innovative properties emerge when we use Rydberg atoms instead of ground state

atoms in an optical trap due to the fact that the size of a Rydberg atom is com-

parable to the optical lattice period, which is the wavelength of laser beams. Pon-

deromotive optical traps are based on the fact that an electron oscillates with the

same frequency of a highly oscillating electric field, and the time averaged kinetic

energy acts as the trapping potential of the atom [34]. Recently, trapping Rydberg

atoms based on the ponderomotive force has been studied in several works [34–36].

Most studies are related to a one-dimensional ponderomotive optical lattice formed

by two counter-propagating Gaussian beams, since their interference gives a cosine
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shape beam intensity and trapping potential. Rydberg atoms in states with different

principal quantum numbers n could feel different trapping depths, and the trapping

depth in different nS states have been studied in Ref. [37].

Moreover, the angular distribution of the electron in a Rydberg atom also has a

significant effect on the ponderomotive energy shift. Trapping properties of Rydberg

atoms in high-l states in a one-dimensional lattice have been theoretically studied in

Ref. [38]. Also the dependence of trap depth on the angular wavefunction has been

experimentally studied in Ref. [36]. The dependence of ground-state atoms on mag-

netic quantum number m was studied in the late 1980s [39]. However, there has been

no systematic theoretical analysis on the energy shift, trap depth and state mixing of

Rydberg atoms with low-l in a ponderomotive potential including the effect of spin-

orbit coupling. For atoms with small orbital angular momentum l, spin orbit coupling

can have significant effects on the angular distribution of electrons. These low-l states

with spin-orbit coupling could have different trapping properties compared with nS

states.

The state-dependent trap depths of Rydberg atoms provide a new technique that

could be used in different systems. The low trap-induced shifts and long coherence

times of Rydberg atoms in a ponderomotive optical trap are advantages in different

systems such as Bose-Einstein condensates of Rydberg atoms [40], high precision

spectroscopy [41, 42], and quantum gate operations [43]. Also, we can change the

parameters of the trap to minimize the difference of trap-induced shifts between

ground and Rydberg states. This would give a high trapping efficiency when we

excite atoms from ground states to Rydberg states [35].

In this chapter, we present a degenerate perturbation analysis of a one-electron

Rydberg atom in ponderomotive potentials including the effect of spin-orbit inter-

actions. The method we use here is similar to that in Ref. [38]. We show that the

energy shift and state mixing only depend on total angular momentum j, and there

is almost no difference for two states with orbital angular momentum l = j ± 1/2. In

Sec. 2.2.1, we present the origin of ponderomotive optical trapping, and the method
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we used for perturbation analysis. In Sec. 2.2.2, we calculate the perturbation matrix

in the degenerate spin-orbit coupled basis with given j. In Secs. 2.2.3, 2.2.4, we study

the state mixing under special symmetry and periodicity properties of the potential.

In Sec. 2.3, we give the numerical result of our analysis in two specific potentials: a

one-dimensional lattice formed by two counter-propagating beams and an optical trap

formed by four parallel and separated beams. The SI units are used in this chapter.

2.2 Theoretical analysis of the energy shift and state mixing

2.2.1 Introduction of ponderomotive force and ponderomotive energy

Optical trapping of a Rydberg atom originates from the ponderomotive force.

A free electron in a highly oscillating electric field with amplitude E and angular

frequency ω oscillates with the frequency of the field. The time averaged kinetic

energy is given by

V =
e2E2

4meω2
, (2.1)

where −e and me are the electron charge and mass, respectively. Thus, the time

averaged kinetic energy of the electron acts as an effective potential energy for the

atom.

Since a Rydberg electron has a large size distribution and spends most of its

time far away from the atom nucleus, we can consider it as a quasi-free electron and

calculate the spatial average of the ponderomotive potential. The atom nucleus has a

much larger mass than the electron, so its ponderomotive energy is far smaller than

the electron’s and can be neglected here. Suppose the atom is in a space-dependent

electric field, then the adiabatic ponderomotive shift can be calculated as [34]

Vad(R) =

∫
d3r V (r+R)|ψ(r)|2, (2.2)

where R is the coordinate of nucleus, and r is the electron coordinate relative to

the nucleus. ψ(r) is the electron wavefunction in the Rydberg atom. V (r + R) is

the space-dependent ponderomotive shift for a free electron, which is proportional
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to the square of electric field amplitude as in Eq. (2.1). The electric-field amplitude

E(r+R) is time-independent as a result of laser-formed standing waves, which leads

to a spatial potential V (r +R). Thus Vad is the spatial average of the free electron

ponderomotive energy weighted by the electron distribution in a given state ψ(r).

This space dependent potential Vad(R) can be used as an optical atom trap.

This ponderomotive energy gives an extra potential in the Schrödinger equation

and it can couple states together. However, since the energy, Vad, is usually not very

large, we need to have degenerate or nearly degenerate states to have substantial

mixing. The method we use is based on the degenerate perturbation theory, and

we expand the perturbing potential in a degenerate or near degenerate basis. Then

we diagonalize the perturbation matrix to study properties of energy shift and state

mixing [38].

Suppose we have an atom in a set of degenerate or near degenerate states, e.g.

ψ1, ψ2. Then the perturbation matrix can be calculated as

Vad(R) =

 Vad,11(R) Vad,12(R)

Vad,21(R) Vad,22(R)

 , (2.3)

where

Vad,ij(R) =

∫
d3r ψ∗

i (r)V (r+R)ψj(r). (2.4)

Therefore, state ψ1, ψ2 can be coupled by the ponderomotive potential, and their

degeneracy could be lifted due to the perturbation of the potential.

2.2.2 Perturbation matrices of atoms in different states

We write the Hamiltonian of a one-electron atom as

H = H0 +HSOC + V, (2.5)

where H0 is the unperturbed Hamiltonian of the atom, HSOC is the spin-orbit cou-

pling (SOC) correction, and V is the ponderomotive potential. The free electron
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ponderomotive shift can be obtained at the MHz level [37], which mainly depends

on the power, focal diameter and wavelength of the laser beams used in experiments.

For the n = 50 state of Rb, the spin-orbit splitting is zero for an s state, 818 MHz

for a p state, 92.7 MHz for a d state, and 1.27 MHz for an f state [41, 42]. For Rb

50 S, P, or D Rydberg states, the ponderomotive shifts are approximately 10 MHz

as described in Sec. 2.3.1, which is much smaller than the corresponding spin-orbit

splitting. In this case, we should consider the ponderomotive potential as a pertur-

bation in the spin-orbit coupled basis. If the spin-orbit splitting is much smaller than

the ponderomotive caused coupling between different l’s or j’s, we should consider

the ponderomotive perturbation in the basis of pure orbital states.

We start with the atom in an S1/2 state; this state is degenerate for mj = ±1/2.

The angular wavefunctions for these states are∣∣∣∣l = 0, s =
1

2
, j =

1

2
, mj = +

1

2

⟩
=

∣∣∣l = 0, ml = 0
⟩ ∣∣∣∣s = 1

2
, ↑

⟩
, (2.6)∣∣∣∣l = 0, s =

1

2
, j =

1

2
, mj = −1

2

⟩
=

∣∣∣l = 0, ml = 0
⟩ ∣∣∣∣s = 1

2
, ↓

⟩
. (2.7)

Here |↑⟩ and |↓⟩ denote the electron in the spin-up and spin-down states, respectively.

We use the method in Sec. 2.2.1 to calculate the perturbation matrix. These matrix

elements can be calculated as

Vmj ,m′
j
(R) =

⟨
n, l, j,mj|V (R)|n, l, j,m′

j

⟩
, (2.8)

V± 1
2
,± 1

2
(R) =

⟨
mj = ±1

2

∣∣∣∣V (R)

∣∣∣∣m′
j = ±1

2

⟩
,

=

∫
d3r V (r+R)|ψn00(r)|2 · ⟨↑ | ↑⟩ or ⟨↓ | ↓⟩,

=

∫
r2dr R2(r)

∫
dΩ

[
Y ∗
00(θ, φ)Y00(θ, φ)

]
V (r′), (2.9)

V± 1
2
,∓ 1

2
(R) =

⟨
mj = ±1

2

∣∣∣∣V (R)

∣∣∣∣m′
j = ∓1

2

⟩
,

=

∫
d3r V (r+R)|ψn00(r)|2 · ⟨↑ | ↓⟩ or ⟨↓ | ↑⟩,

= 0. (2.10)
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Here R(r) is the radial wavefunction of the Rydberg electron, and the Ylm(θ, φ) are

spherical harmonics. Note these matrix elements depend on the position of the nu-

cleus, thus the perturbation matrix V is also position-dependent. That means the

perturbation matrix has different eigenvalues when the atom is located at different

positions in the potential. In Eq. (2.9) and Eq. (2.10), the ponderomotive potential

shifts depend on the shape of the electric field in V (R) from Eq. (2.1), on the radial

wavefunction R(r), and on the angular distribution of the electron. Rydberg states

with the same n and small difference in l have similar radial distributions (e.g. nS, nP,

and nD) on the distance scale over which V (R) varies. The radius of their maximum

radial distribution are approximately 2(n − µjl)
2. The quantum defect µjl is small

compared with the principal quantum number n of Rydberg states, and has a small

relative effect on the radial wavefunction.

As a result, the angular part of the integrand of a matrix element Vmj ,m′
j
will be an

important factor in the determination of the coupling between different states. If two

matrix elements have the same radial wavefunction and angular integrand, they will

have the same integral, which means the same perturbation matrix element. Also,

if an angular integrand vanishes, its corresponding element also vanishes. Therefore,

it is beneficial to investigate the properties of the angular integrand for different

Rydberg states.

For convenience, we can write the angular part of the integrand from the wave-

functions as the matrix element of a new matrix, the angular matrix ρ̃. Extract the

angular integrands from the wavefunctions in Eq. (2.9) and Eq. (2.10), the angular

matrix elements ρ̃mj ,m′
j
of S1/2 state can be written as

ρ̃± 1
2
,± 1

2
= Y ∗

00Y00, (2.11)

ρ̃ 1
2
,− 1

2
= ρ̃∗− 1

2
, 1
2
= 0, (2.12)

which can be written in the more compact form

ρ̃ =

 Y ∗
00Y00 0

0 Y ∗
00Y00

 . (2.13)
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We call this matrix the angular matrix of a one-electron system in Rydberg S1/2 state.

Similar to the case for an S1/2 state, if we consider the atom in a Rydberg P1/2

state, we can use Clebsch-Gordan coefficients to convert the spin-orbit coupled basis

into an orbital basis (angular part), which is∣∣∣∣l = 1, s =
1

2
, j =

1

2
, mj = +

1

2

⟩
= −

√
1

3
Y10 |↑⟩+

√
2

3
Y11 |↓⟩ , (2.14)∣∣∣∣l = 1, s =

1

2
, j =

1

2
, mj = −1

2

⟩
=

√
1

3
Y10 |↓⟩ −

√
2

3
Y1,−1 |↑⟩ . (2.15)

Matrix elements of the angular matrix of a P1/2 state can be written as

ρ̃± 1
2
,± 1

2
=

1

3
Y ∗
10Y10 +

2

3
Y ∗
11Y11 = Y ∗

00Y00, (2.16)

ρ̃ 1
2
,− 1

2
= ρ̃∗− 1

2
, 1
2
=

√
2

3
(Y ∗

11Y10 + Y ∗
10Y1,−1) = 0, (2.17)

which means all matrix elements of the angular matrix of P1/2 state are exactly the

same as for the S1/2 state.

If we have the atom in a Rydberg P1/2 state, no matter what shape the pondero-

motive potential is, the two states |mj = ±1/2⟩ are never mixed just as for the S1/2

case. Each of them is an eigenstate of this system. They also have the same energy

shift, which means the ponderomotive potential cannot split the P1/2 state.

Similarly, we find that the angular matrix of the P3/2, and D3/2 states are the

same:

ρ̃ =


Y ∗
11Y11

√
2
3
Y ∗
11Y10

√
1
3
Y ∗
11Y1,−1 0√

2
3
Y11Y

∗
10

1
3
Y ∗
11Y11 +

2
3
Y ∗
10Y10 0

√
1
3
Y ∗
11Y1,−1√

1
3
Y11Y

∗
1,−1 0 1

3
Y ∗
11Y11 +

2
3
Y ∗
10Y10 −

√
2
3
Y ∗
11Y10

0
√

1
3
Y11Y

∗
1,−1 −

√
2
3
Y11Y

∗
10 Y ∗

11Y11

 . (2.18)
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Since Eq. (2.18) is an Hermitian matrix, we can use the fact that Y ∗
lm = (−1)mYl,−m,

and the product of two spherical harmonics can be expanded as a linear combination

of spherical harmonics. Then we can re-write the matrix Eq. (2.18) as

ρ̃ =



5Y ∗
0,0−

√
5Y ∗

2,0

10
√
π

Y ∗
2,−1√
10π

−Y ∗
2,−2√
10π

0

−Y ∗
2,1√
10π

5Y ∗
0,0+

√
5Y ∗

2,0

10
√
π

0 −Y ∗
2,−2√
10π

−Y ∗
2,2√
10π

0 5Y ∗
0,0+

√
5Y ∗

2,0

10
√
π

−Y ∗
2,−1√
10π

0 −Y ∗
2,2√
10π

Y ∗
2,1√
10π

5Y ∗
0,0−

√
5Y ∗

2,0

10
√
π


. (2.19)

With our definition of the angular matrix element ρ̃ij, we may now calculate the

perturbation matrix element in Eq. (2.4) in another way:

Vij(R) = ⟨ψi|V (R)|ψj⟩

=

∫
r2dr R2(r)

∫
dΩ ρ̃ij(θ, φ)V (R+ r). (2.20)

We first do the radial part integral with the free electron ponderomotive potential

V (R+ r) and the radial wavefunction R(r). We have

Vij(R) =

∫
dΩ ρ̃ij(θ, φ)V̂ (R, θ, φ), (2.21)

where

V̂ (R, θ, φ) =

∫
r2dr R2(r)V (R+ r). (2.22)

Then we can expand ρ̃ij and V̂ in the spherical harmonic basis and its complex

conjugate basis. We have

V̂ (R, θ, φ) =
∑
lm

alm(R)Ylm(θ, φ), (2.23)

ρ̃ij(θ, φ) =
∑
l′m′

bl′m′Y ∗
l′m′(θ, φ). (2.24)

Thus Eq. (2.21) can be simplified as

Vij(R) =

∫
dΩ

∑
lm

∑
l′m′

alm(R)bl′m′Ylm(θ, φ)Y
∗
l′m′(θ, φ), (2.25)

=
∑
lm

alm(R) · blm. (2.26)
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The last step is based on the orthonormality of the spherical harmonics. In Eq. (2.22),

V̂ is the radial averaged free electron ponderomotive potential using the radial wave-

function. Thus V̂ is an angular function and it’s nearly independent of quantum

number l, m, or mj. We can find the expression of alm in Eq. (2.23) using Fourier

analysis. We have

alm(R) =

∫
dΩ V̂ (R, θ, φ)Y ∗

lm(θ, φ), (2.27)

=

∫
dΩ

[
Ylm(θ, φ)

∗
] ∫

r2dr R2(r)V (R+ r). (2.28)

We name alm the multipole expansion value of a free electron ponderomotive potential

V (R) on the spherical harmonics Ylm in the given radial wavefunction R(r).

For a given potential, we can study its expansion values on different spherical

harmonics to study the energy shift and state mixing for an electron in states with

different l, m, or mj. Usually the monopole term a00 is several times larger than the

other higher order terms because spherical harmonics Y00 is always positive in θ and

φ, thus there tends to be little cancellation in the integral for the matrix elements.

Conversely, higher order spherical harmonics change sign in the integral region, and

spherical harmonics with higher l, m flip sign more frequently than those with smaller

l, m. Since positive and negative values are somewhat cancelled, the higher order

expansion values are usually smaller than the lower order expansion values. Because

a00 only exists in the diagonal terms with mj = m′
j, the diagonal elements are usually

several times larger than the off-diagonal elements. We will study the properties of

alm in potentials with symmetric properties in Sec. 2.2.3.

For an electron in a spin-orbit coupled basis with given j and l = j − 1/2, the

general expression for the element in the angular matrix, after tracing over the spin,

can be written as

ρ̃
(j)

mj ,m′
j
= C1C

′
1 Y

∗
j−1/2,mj−1/2Yj−1/2,m′

j−1/2 + C2C
′
2 Y

∗
j−1/2,mj+1/2Yj−1/2,m′

j+1/2. (2.29)

The element for j, l = j + 1/2 can be written as

ρ̃
(j)

mj ,m′
j
= C3C

′
3 Y

∗
j+1/2,mj−1/2Yj+1/2,m′

j−1/2 + C4C
′
4 Y

∗
j+1/2,mj+1/2Yj+1/2,m′

j+1/2. (2.30)
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These Ci, C
′
i symbols are Clebsch-Gordan coefficients. We can expand the product of

two spherical harmonics into a linear combination of spherical harmonics, and simplify

Eq. (2.29) and Eq. (2.30). They generate the same expansion result (see Appendix

Sec. 2.5 for the derivation):

ρ̃
(j)

mj ,m′
j
=

2j−1∑
L=|mj−m′

j |

b(mj,m
′
j, L)× Y ∗

L,mj−m′
j
, (2.31)

where

b(mj,m
′
j, L) = (−1)mj+1/2

√
2L+ 1

4π

√
(2j + 1 + L)(2j − L)

×

 j − 1
2

j − 1
2

L

0 0 0

 j j L

−mj m′
j mj −m′

j

 . (2.32)

The brackets in Eq. (2.32) are Wigner 3j-symbol. We name this b(mj,m
′
j, L) the

expansion coefficient of an angular matrix element on spherical harmonics Y ∗
L,mj−m′

j
.

Note that all of the anti-diagonal matrix elements with mj+m
′
j = 0 vanish because of

the parity in spherical harmonics. Also note that, according to Eq. (2.32), if mj = m′
j

and L = 0, the coefficient multiplying the Y00 in the diagonal elements are all 1/
√
4π.

We will use this result for state mixing analysis in Sec. 2.2.4. In Eq. (2.31), the

summation index L is in the range |mj −m′
j| ⩽ L ⩽ 2j − 1 and L must be an even

integer for the expansion coefficient to be non-zero. That means only Y00, Y2m, Y4m,

etc terms exist in the angular matrices, and only monopole, quadruple, hexadecapole,

etc expansion values of the potential have an effect on the ponderomotive shift.

For example, we can use this analysis for the D5/2 state to study the properties of

its angular matrix. This is a 6× 6 matrix, and we obtain the result in Fig. 2.1, where

only diagonal elements contain summation of YL0 terms. The first two off-diagonal

lines have YL,±1 terms, while the second two off-diagonal lines have YL,±2 terms, etc.

The dashed line in the matrix contains anti-diagonal elements, which are always zero.

We will use this figure for symmetry analysis in Sec. 2.2.3.

Angular matrices always have the same form for the two spin-orbit coupled states

with the same j, and l differing by 1. In this case, if the energy shift induced by the
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0

0

0

0

0

0mj = 5/2

mj = 3/2

mj = 1/2

mj = −1/2

mj = −3/2

mj = −5/2

m′
j = 5/2 3/2 1/2 −1/2 −3/2 −5/2

Y∗
L0

Y∗
L1

Y∗
L2

Y∗
L3

Y∗
L4

Y∗
L,−1 Y∗

L,−2 Y∗
L,−3 Y∗

L,−4

Figure 2.1. Angular matrix of D5/2 state.

ponderomotive potential is much smaller than that caused by the spin-orbit coupling,

the total angular momentum number j determines the eigenvalues and eigenstates of

the electron in a ponderomotive potential.

If we consider the atomic Hamiltonian without the spin-orbit coupling term, or if

the spin-orbit splitting is much smaller than the ponderomotive shift, the cross terms

between different j’s or l’s will be important for obtaining the correct states and

energies. If these cross terms are comparable to or larger than the spin-orbit splitting,

states between different j’s or l’s have significant mixing. This usually happens for

Rydberg states with l ⩾ 3. For example, the natural energy splitting between 50F5/2

and 50F7/2 states is 1.27 MHz [42], which is smaller than the cross terms between

them (about 5∼10 MHz) caused by two Gaussian beams with power 1 W as described

in Sec. 2.3.1. For electrons in these states, we need to calculate the perturbation

matrix in a larger basis including j = l ± 1/2 and other near degenerate states.

This is equivalent to a pure orbital basis since electron spin has no explicit effect on

ponderomotive potential. Properties of high-l atoms in ponderomotive potential have

been studied in Ref. [38].
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2.2.3 Symmetry analysis of the potential shape

We study those special potentials with rotational symmetry properties, and the

effect of periodicity on the ponderomotive energy shift. Consider a potential with

periodicity in φ, V (r, θ, φ) = V (r, θ, φ+ 2π/s), s is a positive integer, and s ⩾ 2. We

use the conversion relation that Y ∗
lm = (−1)mYl,−m. Then we calculate the integral in

Eq. (2.27):∫ 2π

0

dφ V (θ, φ)Ylm(θ, ϕ),

=

∫ 2π

0

dφ V (θ, φ)f(θ)eimφ,

=

∫ 2π/s

0

dφ V (θ, φ)f(θ)
[
eimφ + eim(φ+2π 1

s
) + eim(φ+2π 2

s
) + · · ·+ eim(φ+2π s−1

s
)
]
,

=


∫ 2π/s

0
dφ V (θ, φ)f(θ)eimφ 1−exp(2πmi)

1−exp(2πmi/s)
= 0 when exp(2πmi/s) ̸= 1,∫ 2π/s

0
dφ V (θ, φ)f(θ)eimφ · s when exp(2πmi/s) = 1.

(2.33)

When the common ratio exp(2πmi/s) is not 1 in the geometric summation in Eq. (2.33),

m is not a multiple of s, and the integral vanishes. This gives the result that the

expansion value alm in Eq. (2.27) is zero. Based on the fact that Y ∗
lm = (−1)mYl,−m,

both values al,±m are zero. Conversely, for those m’s which are multiples of s, the

expansion values on these spherical harmonics don’t vanish (zero is a multiple of any

integer s).

For example, if a potential has φ-periodicity that V (φ) = V (φ + π/2), we have

s = 4. Multipole expansions of the potential withM = 1, 2, 3, 5, 6, 7, . . . vanish, while

M = 0, 4, 8, . . . terms are non-zero. Suppose we have an atom in the P3/2 or D3/2

state. These two states have 4×4 angular matrices which can be found in Eq. (2.19),

and the matrix elements consist of YLM with |M | ⩽ 2. Based on our analysis here,

all of these off-diagonal matrix elements vanish for these two states, and only the

diagonal elements are non-zero. As a result, P3/2 and D3/2 states would not mix in

this periodic potential at this symmetric position.
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Furthermore, suppose we have an atom in the D5/2 state with the same periodic

potential. In the angular matrix, only diagonal elements and YL,±4 elements are

non-zero, and all other elements vanish. Refer to Fig. 2.1, only the elements in the

diagonal line and YL,±4 lines have non-zero elements. We will analyse state mixing in

this kind of potential in Sec. 2.2.4. Numerical results can be found in Sec. 2.3.3.

There is an interesting limit when s → ∞, and it means that this potential is

cylindrically symmetric and φ-independent. In this case, only the m = 0 terms don’t

vanish. This means, in the angular matrix, only the diagonal terms are non-zero, and

the spin-orbit coupled or orbital eigenstates are never mixed in this potential. We

can also get this result directly from the fact that cylindrically symmetric potential

conserves the magnetic quantum number m. In this kind of potential, we may get

the ponderomotive energy shifts directly from calculating the expectation value of

the potential in the unperturbed states [36].

Similarly, we study potentials satisfying symmetric properties V (θ) = V (π − θ),

which corresponds to potentials having a mirror symmetry with respect to the x-y

plane. We can calculate the integral (let θ′ = π − θ)∫ π

0

dθ sin(θ)V (θ)Pm
l (cos θ) =

∫ 0

π

−dθ′ sin(θ′)V (θ′)Pm
l (− cos θ′),

=

∫ π

0

dθ′ sin(θ′)V (θ′)Pm
l (cos θ′)(−1)l−m. (2.34)

Here Pm
l (cos θ) is the associated Legendre polynomial. Only even l are allowed in the

matrix element expansion, so ifm is an odd number, this integral vanishes. Therefore,

only expansion values aLM with both L,M even numbers are non-zero.

2.2.4 State mixing analysis based on symmetric potential

Some matrix elements vanish due to the symmetry properties of the potential and

parity of the angular wavefunction. That leads to a simpler form of the perturbation

matrix, and a simpler result for the state mixing. Generally, if a given potential

doesn’t have any special symmetry properties, most angular matrix elements are
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non-zero. In this case, expansion values aL1 exist, which would make state mixing

between two adjacent spin-orbit coupled states with ∆mj = 1, and finally leads to

complicated state mixing between almost all states.

We can review the following properties of matrix diagonalization in linear alge-

bra. Suppose we have a diagonal matrix H with diagonal elements h11 ∼ hnn. The

eigenstates of this matrix are just n unit vectors. Then we add a perturbation to this

matrix by setting hij = h∗ji = p, and let all the other off-diagonal elements remain

zero. We can find that only the state i, j are mixed in the new eigenstates. Also, if

the off-diagonal term is much smaller than the difference between two corresponding

diagonal terms, which means |p| ≪ |hii−hjj|, the coupling between state i, j is small.

Conversely, if |p| is comparable to |hii−hjj|, the coupling between state i, j gets much

stronger.

In the perturbation matrix of j = 3/2 states in Eq. (2.19), all coefficients multi-

plying the Y ∗
00 terms in the diagonal elements are 1/

√
4π. This is also a general result

for the perturbation matrix in all states, and it can be derived from Eq. (2.32). Thus

the a00 terms are the overall energy shifts for all states, and have no effect on state

mixing. Refer to Eq. (2.19), the differences between diagonal terms originate in Y20.

Off-diagonal terms consist of Y2,±1 and Y2,±2. As we discussed in the last paragraph,

if expansion values a2,±1 or a2,±2 are comparable to a20, the coupling between states

with ∆mj = 1, or 2 would be much stronger. Since a00 has no effect on the state

mixing, the state mixing of a j = 3/2 state in a ponderomotive potential turns into

analysis and comparison of the quadruple expansions of the potential.

In our perturbation matrix, if a potential has symmetry properties and results in

all aLM with odd M vanishes, state mixing only exists between states with ∆mj = 2,

and finally leads to state mixing among all states where ∆mj are even. Consider the

6 × 6 angular matrix for D5/2 state in Fig. 2.1. If all aLM with odd M vanish, the

eigenstates would be states that mixed only within the two sets mj = 5/2, 1/2,−3/2,

and mj = 3/2,−1/2,−5/2. Each set has 3 different methods of mixing. If we flip all

signs of mj in one mixing, we would get a corresponding mixed eigenstate in the other
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set with the same energy shift. As an example, both states |ϕ1⟩, |ϕ2⟩ in Eq. (2.35) and

Eq. (2.36) are eigenstates in the ponderomotive potential, and they have the same

energy shifts.

|ϕ1⟩ = c1

∣∣∣∣mj =
5

2

⟩
+ c2

∣∣∣∣mj =
1

2

⟩
+ c3

∣∣∣∣mj = −3

2

⟩
, (2.35)

|ϕ2⟩ = c∗1

∣∣∣∣mj = −5

2

⟩
+ c∗2

∣∣∣∣mj = −1

2

⟩
+ c∗3

∣∣∣∣mj =
3

2

⟩
. (2.36)

Since the angular momentum jz of these two states have equal magnitudes but op-

posite signs, they would be split if we apply a small magnetic field Bz. We will study

the properties of |ϕ1⟩ instead of |ϕ2⟩ or their linear combinations.

Furthermore, if we consider a potential with only aL0 and aL,±4 expansion values,

non-zero state mixing only exists between ∆mj = 4 such as the states with mj =

5/2,−3/2, and mj = 3/2,−5/2. States mj = ±1/2 are not mixed with any other

states in this symmetric potential, and are, thus, eigenstates in the optical trap.

State mixing of an atom in a potential with these symmetry properties can be

found in Sec. 2.3.2.

2.3 Specific calculations for two traps

2.3.1 Counter-propagating beams as one-dimensional optical lattice

For an optical trap using two counter-propagating Gaussian beams in the experi-

ment [35], the free electron ponderomotive potential can be written as

V (z) =
e2

4meω2
× (E0e

ikz + E0e
−ikz)2 (2.37)

=
e2E2

0

mek2c2
× cos2(kz) (2.38)

on the beam axis. The beam has a maximum intensity at z = 0, and a minimum

at z = λ/4. We put an atom on the axis of the beam, and let the z-axis of the

atom be the same with the beam axis. The atom would feel a cylindrically symmetric

potential, which means it’s φ-independent. Based on our analysis in Sec. 2.2.3, spin-

orbit coupled states won’t mix in this potential.
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Figure 2.2. Eigenvalues of an atom in 50 D3/2 state located on the
beam axis in a ponderomotive optical lattice. Parameters used in
our calculation are: P = 1.0 W, λ = 1064 nm, ω0 = 6.5 µm. These
parameters correspond to a free electron ponderomotive shift 19.3
MHz at z = 0.

We calculate the eigenvalues of a D3/2 state when the atom locates on the different

positions on the axis. Plot of eigenvalues versus z-position of the atom can be found

in Fig. 2.2. Before perturbed by the ponderomotive potential, D3/2 has 4 degener-

ate states which are mj = ±3/2,±1/2. After perturbation, we found two different

eigenvalues when z ̸= λ/8. The ponderomotive energy partially lifts the degeneracy

for D3/2 states. States with the same absolute value of mj are still degenerate. We

also find that these two eigenvalues are the same at z = λ/8, which means a20 is zero

at this point by comparing with the diagonal elements in Eq. (2.19). Therefore, the

degeneracy of D3/2 is not lifted at this point, and the state is still four-fold degenerate.
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For the atom located at z = z0, the potential can be simplified as

V (z, z0) = V0 cos
2
[
k(z − z0)

]
(2.39)

=
V0
2

{
1 + cos

[
2k(z − z0)

]}
(2.40)

=
V0
2
(1 + cos 2kz0 cos 2kz + sin 2kz0 sin 2kz). (2.41)

In this expression, the ponderomotive potential consists of three parts. The first part

V0/2 is a constant shift, and its expansion in Eq. (2.28) only consists of monopole

terms. It’s the overall energy shift for all states. The third term sin 2kz has odd

parity, and it vanishes in the integral with all YLM with even L. In the second term,

cos 2kz0 is the atom position dependent coefficient, and it describes a cosine shape

for the energy shift versus atom position z0. Also, the spatial average of V2 = cos 2kz

in a specific eigenstate determines the trap depth in that state.

In Fig. 2.2, states with larger |mj| have larger trap depth. In those experiments

with the atom in a DC electric field polarized perpendicular to the beam axis [36],

atoms are in the Stark effect eigenstates with z-axis of the atom perpendicular to the

beam axis. We can do similar analysis for the trap depth of atoms in these states

with different |mj|, and principal quantum number n. The analytic result is consistent

with the experimental observation in Ref. [35].

2.3.2 Symmetric case in a system with four parallel Gaussian beams

A model for trapping atoms using four parallel Gaussian beams has been intro-

duced in Ref. [44]. Each beam is centered at one corner of a square. Two diagonal

beams have parallel polarization, and two adjacent beams have perpendicular polar-

izations. The setup of this system can be found in Fig. 2.3, and Fig. 2 in Ref. [44].

This potential has good symmetries along the z-axis, y = 0 line, y = x line, etc. It

also has a mirror symmetry with respect to the z = 0 plane as described in Sec. 2.2.3.

We study the properties of an atom located at these symmetric positions in this

section, and located at asymmetric positions in the next section.
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Figure 2.3. Setup of four parallel Gaussian beams system. Red arrows
indicate the polarizations of beams. Parameters used in the calcula-
tion: P=5 mW, w0=1.5 µm, d=4 µm, λ=780 nm, where P is the
power of one laser beam, w0 is the waist of a beam, d is the distance
between two adjacent beams, and λ is the wavelength. A free electron
has a ponderomotive shift of 12.7 kHz at the center of the square, and
1.94 MHz at the center of one beam.

Suppose the center of a cartesian frame is located at the center of the beam’s

square, and the z-axis is parallel with the beam axis. The free electron ponderomotive

potential has the form

V (x, y, z) =
e2E2

0

4meω2

[
w0

w(z)

]2 {[
u

(
x− d

2
, y − d

2
, z

)
+ u

(
x+

d

2
, y +

d

2
, z

)]2
+

[
u

(
x− d

2
, y +

d

2
, z

)
+ u

(
x+

d

2
, y − d

2
, z

)]2}
, (2.42)
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where

u(x, y, z) = exp

[
−x

2 + y2

w2(z)

]
exp

[
− i · φ(x, y, z)

]
, (2.43)

w(z) = w0

√
1 +

(
z

zR

)2

, (2.44)

φ(x, y, z) = kz + k
x2 + y2

2R(z)
− η(z), (2.45)

R(z) = z

[
1 +

(zR
z

)2
]
, (2.46)

η(z) = arctan

(
z

zR

)
, (2.47)

zR =
πw2

0

λ
. (2.48)

The beam is highly focused so that the distance d is much larger than the beam waist

w0. This can reduce the effect of interference near z = 0 plane. As z increases, the

waist size w(z) increases, which increases the interference among these four beams.

We can investigate the properties of an atom in the 100 D3/2 state and located

on the y = 0 line in the z = 0 plane. The radius of this atom is approximately

2n2a0 ≈ 1µm, and it is comparable to d. Thus the energy shift and state mixing

of this atom could have different properties when it is located at different positions

in the potential. We can find from Fig. 2.3 that the potential has good symmetries

when the atom is located on the y = 0 line in the z = 0 plane. When this atom is

in the z = 0 plane, it feels a potential with V (z) = V (−z). Based on our previous

symmetry analysis in Eq. (2.34), all expansion values aLM with odd M vanish. In

addition, the atom feels the potential with a mirror symmetry V (φ) = V (−φ). This

kind of symmetric potential guarantees all of the perturbation matrix elements to be

real, which leads to a real probability amplitude of the eigenstate in each spin-orbit

coupled state. We plot the eigenvalues of the perturbation matrix in Fig. 2.4, and

the probability of the corresponding eigenstate in each spin-orbit coupled state in

Fig. 2.5.

The eigenvalue versus position curves have similar shapes with the free electron

potential, which can be directly calculated from Fig. 2.3 and Eq. (2.42). They have
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Figure 2.4. Energy shifts of an atom in 100 D3/2 state located on the
y = 0 line in the z = 0 plane. “Was |mj| = 3/2” means that when
x = 0, the curve corresponds to the unmixed states |mj| = 3/2.

the maximum energy shift at x = 0.5 d point. We also do the quadratic fit for this

potential near the center x = y = z = 0, and the oscillating frequency of an Rb atom

is of the order of 3 ∼ 10 kHz in the x-y plane. The exact frequency depends on the

wavefunction and the oscillating angle of the atom [44].

In Fig. 2.5, when the atom in a 100 D3/2 state is located at the center x = y = z = 0

position, four mj states are not mixed, which is because the potential has a π/2

angle rotational symmetry on φ at the center of the system. This figure shows the

probability of the new eigenstates with mj = −3/2 character at x = 0 in each SOC

state. It gives the state coupling only between mj = −3/2 and mj = 1/2 states.

Note that states mj = −1/2, 3/2 have no contribution to this state mixing because

expansion values al,±1 and al,±3 vanish due to the property of a mirror symmetric

potential described in Eq. (2.34). State mixing only exists between ∆mj = 2. The

state mixing gets stronger with the x-position of the atom, and reaches the maximum
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Figure 2.5. State mixing of an atom in 100 D3/2 state locate on the
y = 0 line in the z = 0 plane. The vertical axis is the probability of
the eigenstate in each SOC state mj.

mixing at x = 0.5 d which is the closest position to the center of two adjacent Gaussian

beams on this line.

Based on our analysis in Eq. (2.35) and Eq. (2.36), we can flip the sign of all mj’s

in the first eigenstate, use the complex conjugate of their probability amplitudes as

new amplitudes, and then we can get the second eigenstate for this system with the

same energy (for convenience, we call the eigenstate in Eq. (2.5) the first eigenstate).

There are also two other degenerate eigenstates with different energies from the first

and second eigenstates. We can diagonalize a 4 × 4 perturbation matrix with aLM

vanishing for odd M , and get the analytic result for the other two eigenstates. If we

write the first eigenstate as c1|1/2⟩+ c2|−3/2⟩, the third eigenstate can be written as

c1|3/2⟩− c2|−1/2⟩, and the fourth eigenstate can be written as −c∗2|1/2⟩+ c∗1|−3/2⟩.

Note here the first and the fourth eigenstates have their probabilities of |1/2⟩ and

| − 3/2⟩ exchanged, so does other two eigenstates.

Similarly, we can investigate the properties of an atom in 100 D3/2 state and

located on the y = 2x line in the z = 0 plane. The potential still has z-symmetric
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properties, and only states with even ∆mj can mix in the eigenstates. Since the atom

is no longer located on the y = 0 line, most of the perturbation matrix elements are no

longer real numbers. The probability amplitudes of the eigenstates in the spin-orbit

coupled states could be complex numbers. We plot eigenvalues in Fig. 2.6, and the

probability of the eigenstates in each spin-orbit coupled state is shown in Fig. 2.7.

Figure 2.6. Energy shifts of an atom in 100 D3/2 state located on the
y = 2x line in the z = 0 plane. “Was |mj| = 3/2” means that when
x = 0, the curve corresponds to the unmixed states |mj| = 3/2.

We can find from Fig. 2.6 that the eigenvalues reach the maximum when the

atom is located at (x, y) = (0.3 d, 0.6 d), which is the closest position to the center

of (d/2, d/2) Gaussian beam on this line.. The strongest state mixing of these two

states appears at the same position in Fig. 2.7.
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Figure 2.7. State mixing of an atom in 100 D3/2 state locate on the
y = 2x line in the z = 0 plane. The vertical axis is the probability of
the eigenstates in each SOC state mj.

2.3.3 Asymmetric case in a system with four parallel Gaussian beams

As another example, we consider an atom in the state of 100 D5/2, but let the

atom locate on the line of y = 2x in the z = 5µm plane. All other parameters of the

optical trap remain the same with Sec. 2.3.2.

Since the atom is no longer in the z = 0 plane, it doesn’t have the mirror symmetry

that exists for the z = 0 plane. Then the expansion values on YLM with oddM terms

become non-zero on the line of y = 2x. Based on our analysis in Sec. 2.2.4, the state

coupling with ∆mj = 1 exists. As z = 5µm plane is close to the z = 0 plane, these

odd M expansion values aLM are small compared to the even M expansion values.

As a result, the state mixing is mainly between ∆mj = 2 states, and only has small

corrections for the other three states. Our calculated results of the eigenvalues versus

the position of the atom can be found in Fig. 2.8, and three plots of the six eigenstates

after mixing can be found in Fig. 2.9.
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Figure 2.8. Energy shifts of an atom in 100 D5/2 state located on the
y = 2x line in the z = 5µm plane. “Was |mj| = 5/2” means that
when x = 0, the curve corresponds to the eigenstate mixed between
mj = ±5/2 and ∓3/2, where ±5/2 is the main component of this
state. “Was |mj| = 3/2” means the eigenstate mixed between ±3/2
and ∓5/2, where ±3/2 is the main component. “Was |mj| = 1/2”
means the eigenstate of ±1/2, and it was not mixed when x = 0.

We find that wavefunctions of different eigenstates have substantial difference at

different positions in this potential, though their energy shifts are similar between

each other.
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Figure 2.9. State mixing of an atom in 100 D5/2 state locate on the
y = 2x line in the z = 5µm plane. The vertical axis is the probability
of the eigenstates in each SOC state mj. These graphs show the state
mixing mainly among the states with mj = −5

2
,−1

2
, 3
2
.
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2.4 Conclusions

In this chapter, we investigated the effect of the ponderomotive force on a one-

electron Rydberg atom. Using the wavefunction of a Rydberg electron, the spatial

averaged ponderomotive energy of the Rydberg electron in an oscillating electric

field acts as an effective potential energy of the Rydberg atom. This ponderomotive

potential can couple degenerate or nearly degenerate states. Under the condition that

the ponderomotive shift is much smaller than the spin-orbit coupling energy when

l ⩽ 3, the effect of a ponderomotive potential can be analyzed using the degenerate

perturbation theory in a spin-orbit coupled basis. We studied the energy shift and

state mixing of a one-electron Rydberg atom with given orbital angular momentum

l and total angular momentum j in different ponderomotive potentials.

First, we did multipole expansion of a ponderomotive potential. Then we studied

matrix elements of a general spherical harmonics in a spin-orbit coupled basis to study

the effect of spin-orbit coupled states’ wavefunctions on the perturbation matrix. Our

derivations showed that the eigenvalues and eigenstates mainly depend on j and n

but hardly depend on l. As a result, the |mj = ±1/2⟩ states for j = 1/2 are never

mixed in a ponderomotive potential.

Some potentials have periodicity or symmetry properties. Under special symme-

tries, expansion values of some spherical harmonics in a given potential vanish. These

zero matrix elements are usually on off-diagonal lines of the perturbation matrix, and

lead to a simpler ponderomotive energy shift and state mixing. If the expansion value

of a ponderomotive potential in YLM is zero, there is usually no state mixing between

∆mj =M states. This gives a method to study the state mixing between two states

by directly calculating the expansion value of the given potential in spherical harmon-

ics. State mixing in this symmetric situation is still valid approximately if the atom is

only slightly deviated from the symmetric or periodic position, because the expansion

values of the potential in YLM remain very small even if they are not exactly zero.
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We also calculated state mixing and energy shift in a one-dimensional optical

lattice formed by two parallel Gaussian beams. Since this potential is cylindrically

symmetric, there is no state mixing in this potential. Our result shows that energy

shifts of different states are cosine functions versus the atom position on the beam

axis. We also analyse the trap depth for states with different angular momentum in

this potential, which mainly depends on the polarization direction, |m| or |mj|, and

the principal quantum number of the state.

I would like to thank Baochun Yang for helpful discussions in this project. This

chapter is based upon work supported by the US National Science Foundation under

Grant No. 1404419-PHY.

2.5 Appendix: Proving the equivalence of two angular matrices for (l =

j − 1/2)j and (l = j + 1/2)j states

Based on our definition of angular matrices in Eq. (2.13), each element is the

angular part of the integrand of corresponding perturbation matrix element integral.

In our derivation in Eq. (2.24), we expand the angular matrix element ρ̃mj ,m′
j
on a

basis of complex conjugate of spherical harmonics:

ρ̃mj ,m′
j
(θ, φ) =

∑
kq

bkq(mj,m
′
j) Y

∗
kq(θ, ϕ) (2.49)

Then we can calculate the matrix element of Ykq in the spin-orbit coupled basis∣∣l = j ± 1
2
, s = 1

2
, j, mj

⟩
to get the coefficient bkq(mj,m

′
j), which is

bkq(mj,m
′
j) =

∫
dΩ Ykq(θ, φ)ρ̃mj ,m′

j
(θ, φ) (2.50)

= ⟨l, s, j,mj|Ykq|l, s, j,m′
j⟩ (2.51)
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Using the Wigner-Eckart theorem [45], we have

bkq(mj,m
′
j) = (−1)j−mj

 j k j

−mj q m′
j

 ⟨l, s, j||Y (k)||l, s, j⟩ (2.52)

= (−1)j−mj

 j k j

−mj q m′
j

 (−1)l+s+j+k(2j + 1)

 l j s

j l k


× ⟨l||Y (k)||l⟩ (2.53)

= (−1)2j−mj+l+s+k

 j k j

−mj q m′
j

 (2j + 1)

 l j s

j l k


× (−1)l

√
(2l + 1)2(2k + 1)

4π

 l k l

0 0 0

 (2.54)

= (−1)3/2−mj+k

 j k j

−mj q m′
j

 (2j + 1)(2l + 1)

 l j 1
2

j l k


×
√

2k + 1

4π

 l k l

0 0 0

 (2.55)

Here we used the fact that s = 1/2, l = j ± 1/2. We must have some restrictions so

that the matrix element is non-zero, which are

q = mj −m′
j, (2.56)

|mj −m′
j| ⩽ k ⩽ 2j, (2.57)

k must be an even number, (2.58)

⇒ |mj −m′
j| ⩽ k ⩽ 2j − 1. (2.59)

The explicitly l-dependent terms of Eq. (2.55) are as follows,

c(l) = (2l + 1)

 l j 1
2

j l k


 l k l

0 0 0

 , (2.60)
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which can be shown to be the same for l = j ± 1/2 [46]. The final form of Eq. (2.55)

can be written as

bkq(mj,m
′
j) =(−1)mj+1/2

√
2k + 1

4π

√
(2j + k + 1)(2j − k)

×

 j − 1
2

j − 1
2

k

0 0 0

 j j k

−mj m′
j mj −m′

j

 (2.61)

for l = j ± 1/2, where q = mj −m′
j. bkq(mj,m

′
j) are non-zero only when k satisfies

the restrictions in Eq. (2.58) and Eq. (2.59).
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3. PROBING DOUBLE RYDBERG WAVE PACKETS IN

A HELIUM ATOM WITH FAST SINGLE-CYCLE PULSES

This chapter is directly taken from Phys. Rev. A, 96, 043409 (2017) [47] with minor

differences, where the original draft was written by Xiao Wang.

3.1 Introduction

The study of correlations between two bound electrons has remained an interesting

topic since the development of quantum mechanics in the early 20th century. The

basic Coulomb form of the interaction is a prototype of coupled degrees of freedom

in atomic physics. Thus, understanding the correlations between two electrons can

help us understand more complicated atoms and molecules. In recent years, numerous

experiments have been done using ultrafast laser pulses to observe, create, and control

different two-electron processes [3–7]. Most of them have been focused on resonant

transitions in low-lying states.

In contrast to low-lying states, highly excited Rydberg states have many novel

properties. The tiny energy spacing between adjacent Rydberg states makes it easier

to generate spatially localized Rydberg wave packets [13,14]. Many experimental and

theoretical studies on atoms with a single Rydberg wave packet have been conducted

in the past few decades [14–22,48]. However, there are only a few experimental studies

of the dynamics of double Rydberg wave packets [23–26, 49]. Recently, experiments

done by Zhang et al in Ref. [26] studied the time evolution of two highly excited Ryd-

berg wave packets. Their experimental and numerical results were in good agreement

and showed that substantial energy and angular momentum exchanges between the

two electrons can happen in just a few Rydberg periods. This motivates us to study

the time-dependent dynamics of double Rydberg wave packets, which has not been
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systematically studied before. A numerical method using basis expansion techniques

was introduced in Ref. [27]. Another method [28] based on the time-dependent close

coupling method [8] will be used in this chapter to study the dynamics of double

Rydberg wave packets.

Most quantum mechanical methods face computational power issues when dealing

with highly excited Rydberg electrons, due to the wide spatial range, long time scale

of substantial interactions, and strong mixing among enormous numbers of basis

functions. Early research showed that Rydberg electrons behave more classically

than electrons in low-lying states [1,50]. This suggests the use of well-studied classical

mechanics to investigate those two-electron atoms. Classical calculations with a wide

range of principal quantum numbers are performed in this chapter, and the results

are compared with quantum calculations to study the validity of the classical method.

Experimentalists have been using well-controlled fast THz pulses as a time-resolved

probe to study the Rydberg electronic wave function structures at different times as

the system evolves [26, 51, 52]. Durations of fast THz pulses can be modified to be

shorter than, equal to, or longer than the period of Rydberg electrons, which can yield

totally different field-ionization results. Subpicosecond half-cycle pulses (HCP) have

been widely used to probe wave function structures of a single Rydberg wave packet

since the 1990s [21,53,54], but only a few experiments have been done using HCP to

study double Rydberg wave packets [26]. The effects of fast THz single-cycle pulses

(SCP) on atoms with one valence electron at different bound states have been studied

in both theoretical [55–57] and experimental [51] ways. However, there has been no

study on the effect of a SCP on an atom with doubly excited Rydberg wave packets.

In this chapter, we focus on the use of SCP to obtain wave function structures from

double Rydberg wave packets. We can also predict motions of the double Rydberg

wave packets from the time-resolved ionization results with SCP.

This chapter is organized as follows. In Sec. 3.2, we introduce the two-step launch

model for generating double Rydberg wave packets based on experiments in Ref. [26].

Both fully quantum and classical calculations are performed in order to explore the
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differences between them and the validity of classical methods in low-lying states. In

Sec. 3.3, we focus on the effect of a fast SCP on an atomic system. The evolution and

autoionization of the double Rydberg wave packets are then studied using a SCP. All

physical variables and formulas presented in this chapter are in atomic units unless

specified otherwise.

3.2 Comparison between fully quantum and classical methods

3.2.1 The two-step launch model

Our theoretical model is motivated by an experiment in Ref. [26], where both

valence electrons in Ba are individually excited to Rydberg wave packet type states.

The experiment starts with Ba atoms in the ground state, 6s2. The atom is excited

to a coherent superposition of 5d5/2n1d Rydberg states using two consecutive laser

pulses. The first radially localized wave packet is generated as a superposition of

n1 states. Its Rydberg period is about TRyd1 = 2πν31 , where ν1 = n1 − µ1 is the

effective principal quantum number. The ν1 corresponds to the central binding energy

E1 = −12/2ν21 , and the µ1 is the quantum defect. When the first wave packet reaches

its outer turning point, the other electron is then excited to a Rydberg wave packet

giving n2gn1d states. The ν2 = n2 − µ2 is the effective principal quantum number

that corresponds to the central binding energy E2 = −22/2ν22 . Central energies and

energy widths of the two Rydberg wave packets are controlled by properties of laser

pulses used to excite the atom. Dynamics of the double Rydberg wave packets can

then be studied.

This experiment can be converted into a theoretical two-step launch model in a

helium atom. We focus on an easier case where the angular momenta lj of both

electron at launch are zero. Usually, when the total angular momentum L is on the

order of 1 and is much smaller than both principal quantum numbers, the dynamics

are insensitive to the total angular momentum L. Calculations with different small

L are described in Sec. 3.2.4. Therefore, the first electron is launched as a spherically
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symmetric s-wave centered at a negative total energy E1 = −12/2ν21 and a launch

time width δt1. The δt1 is a time width parameter that describes a Gaussian shaped

electric field amplitude, which is F1(t) ∝ exp(−2 ln 2 t2/δt21). At t = 0.5 TRyd1,

the second electron is also launched as a spherically symmetric s-wave centered at

a negative total energy E2 = −22/2ν22 and a launch time width δt2. The δt2 has

a similar definition as of δt1. In the quantum calculations, the energy width is an

automatic result of the duration of the laser pulse that excites each wave packet. In

the classical calculations, the energy width is selected to be the same as that in the

quantum calculations. To satisfy the uncertainty principle, the FWHM of a Gaussian

shaped energy distribution of the Rydberg wave packet satisfies δEj = 4 ln 2/δtj,

where j = 1, 2 represent the first and second electron, respectively. We then study

the autoionization process of the atom, and angular momenta distributions of the

electrons after the second electron’s launch.

3.2.2 Quantum approach

For a neutral helium atom with two electrons, the Hamiltonian of this system can

be written as

H =
p1

2

2
+

p2
2

2
− 2

r1
− 2

r2
+

1

|r1 − r2|
, (3.1)

where pj and rj are the momentum and spatial coordinate of the j-th electron,

respectively. The main difference of a helium atom’s Hamiltonian compared to a

hydrogen atom’s is the Coulomb interaction term 1/|r1 − r2|, which couples the two

electrons. In this chapter, a method based on the time-dependent close coupling

(TDCC) method is used to propagate the wave function of a helium atom [8,28].

Expanding the two-electron wave function in a coupled spherical harmonic basis,

the wave function can be written as

ΨLS(r1,r2, t) =
∑
l1,l2

RLS
l1,l2

(r1, r2, t)

r1r2
×

∑
m1,m2

C l1,l2,L
m1,m2,0

Yl1,m1(r̂1)Yl2,m2(r̂2), (3.2)
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where RLS
l1,l2

is the radial wave function, C l1,l2,L
m1,m2,0

is the Clebsch-Gordan coefficient, Ylm

are spherical harmonics, r1, r2 represent the spatial coordinates of the two electrons

[8]. To reduce the computational requirements, the calculation can be performed with

total angular momentum L = 0 instead of small non-zero total angular momentum.

Additionally, since both Rydberg wave packets are highly localized in phase space

and far away from the nucleus, the overlap integral and exchange effect are expected

to be small. Singlet and triplet symmetrized calculations will give nearly the same

result. With total angular momentum L = 0, the wave function only depends on r1,

r2, and the relative angle θ12 between r1 and r2, [58]. The wave function in Eq. (3.2)

with L = 0 can be simplified to

Ψ(r1, r2, t) =
Lmax∑
l=0

(−1)lRl(r1, r2, t)Yl0(cos θ12), (3.3)

where the (−1)l term is following the conventions of Refs. [59, 60]. The Lmax is the

number of angular channels used in the calculation, and it’s slightly larger than the

maximum allowed angular momentum restricted by the total energy. The goal is

to evolve the Rl for all coupled channels with different angular momentum l of one

electron.

For the time propagation of the wave function, the split-operator technique is used.

The Hamiltonian in Eq. (3.1) can be split into 3 parts, Hj = p2j/2−2/rj with j = 1, 2

for each electron, and H3 = 1/r12 for the interaction between the two electrons. The

unitary propagators of U1, U2, and U3 can be taken in various forms at each time step,

e.g. Crank-Nicolson, Chebyshev, or leapfrog, etc. The propagators U1 and U2 don’t

couple amplitudes Rl with different angular momentum, and are tridiagonal in r1 and

r2, respectively. For the propagator U3, the idea from discrete variable representation

is used in the calculation [61]. The method is described in Ref. [28] in detail, and

we give a brief description here. First, the matrix elements of cos θ12 in the coupled

angular momentum basis |j⟩ = |(lj, lj)L = 0⟩ are calculated [59]. Then, the matrix of

cos θ12 is diagonalized, and we can use its eigenstates, eigenvalues and the geometric

relation r12 = (r21 + r22 − 2r1r2 cos θ12)
1/2 to calculate the matrix element of U3 in the
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coupled angular basis |j⟩. Finally, the U3 propagator couples all the angular states

|j⟩, and the radial amplitudes Rj are propagated to the next time step.

At the final time of the calculation, we can project the calculated wave function

onto energy eigenstates of a helium atom to get the energy distribution. Since the

total angular momentum of the system is zero, angular momenta of the two electrons

have the same magnitude but in the opposite directions. The angular momentum

distribution of one electron is calculated using [60]

pqm(l) =

∫∫
dr1dr2

∣∣∣Rl(r1, r2, t)
∣∣∣2. (3.4)

3.2.3 Classical approach

The three-dimensional classical trajectory Monte Carlo (CTMC) method [21, 28,

62,63] is used in the calculations as a comparison with the quantum calculation, as a

way of interpreting the results, and as a way to obtain results difficult or impossible

to converge using quantum calculations. Initial conditions of the electrons are set to

obey the quantum uncertainty principle with random Gaussian distributed energies

and launch times. Since both electrons are launched as spherically symmetric s-waves,

their launch directions are uniformly distributed in all 4π solid angle.

After the initial launches, the system is propagated under Hamilton’s equations

using a fourth order Runge-Kutta method with adaptive step size [64]. To avoid

divergence near the nucleus, a soft core potential V (r) = −Z/
√
r2 + a2 is used instead

of V (r) = −Z/r for the Coulomb interactions, where a is a soft core parameter.

Calculations performed with a ranged from 1.0 × 10−3 to 1.0 × 10−5 give converged

results.

At the final time of the calculations, the statistics of energies, angular momenta,

and other physical quantities of each electron from all Monte Carlo (MC) runs with

different initial conditions give continuous distribution functions. The continuous

distribution functions can be discretized and compared to the quantum calculations.
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For example, the classical analogy of the probability of the angular momentum at lc

can be calculated as follows

pcl(lc) =
Number of MC runs with lc ⩽ l < lc + 1

Total number of MC runs
, (3.5)

where l is the angular momentum from the classical calculations. The lc is a non-

negative integer, which corresponds to the azimuthal quantum number in the quantum

calculations. The pcl(lc) is compared to the quantum angular momentum distributions

pqm(lc), to study the differences between the classical and quantum methods.

3.2.4 Comparisons between quantum and classical methods

To study the validity of the classical methods, we start this subsection with a

calculation for ν1 = 23, ν2 = 38. The principal quantum numbers are chosen to be

neither too large, where the quantum calculations would be hard to converge, nor too

small, where the quantum effects can cause huge differences between the quantum

and classical calculations. Comparison of angular momentum distributions between

quantum and classical methods can be found in Fig. 3.1, with all the corresponding

parameters given in the caption. In this calculation, the total angular momentum

is set to zero. The results presented here are for the non-ionized part of the wave

function, which is only about 30% at the final time of 2 ps. The numerical difference

for ionization probabilities between the classical and quantum methods is about 1%

at the final time. The final time of this calculation is about one Rydberg period of

the first electron. In this time scale, significant interactions between the two electrons

can happen. This leads to a large probability of autoionization, and can excite most

of the two-electron wave function to high angular momentum states. In the figure, a

sharp decrease in angular momentum distribution can be found near l = 36, which is

the maximum classically allowed angular momentum when both electrons are bound

1.

1The maximum classically allowed angular momentum l when both electrons are bound can be
calculated using energy conservation, which is 0.5v21r+0.5v22r+l2/2r21+l2/2r22−2/r1−2/r2+1/r12 =
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Figure 3.1. Comparison between the quantum and classical methods
for the angular momentum distribution. The effective principal quan-
tum numbers are ν1 = 23, ν2 = 38, which correspond to central en-
ergies E1 = −12/2ν21 = −9.45× 10−4, E2 = −22/2ν22 = −1.39× 10−3

at launch. Rydberg period of the first electron is TRyd1 = 2πν31 =
7.64 × 104. The 2nd electron is launched at half of the Rydberg
period of the 1st electron after the 1st electron’s launch. Launch
time widths for the two electrons are δt1 = 2.17 × 104 = 0.28TRyd1,
δt2 = 4.28× 103 = 0.056TRyd1, which are shorter than a full Rydberg
period. The results in the figure are at t = 8.27 × 104 a.u. after the
2nd launch, which is about 2 picosecond.

Additionally, classical calculations that the second electron starts at a non-zero

angular momentum are performed. The results also match well with the L = 0 results,

and can be found in Fig. 3.2. The calculations with non-zero total angular momentum

Etot. When the radial velocities vr1 = vr2 = 0, r12 = r1 + r2, and r1 = r2 = −7/(4Etot), the l
reaches its maximum 7/(4

√
−Etot).
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Figure 3.2. Comparison of the angular momentum distributions
between classical calculations with total angular momentum L =
0, 1, 2, 3. All the parameters are the same as those given in the cap-
tion of Fig. 3.1 except for the total angular momentum. Since the
total angular momentum is non-zero, the angular momenta of the
two electrons have a small difference. The separate angular momen-
tum distributions of the two electrons have no visible differences, thus
their distributions are plotted on a single curve as shown in the figure.

strengthen our assumption that the dynamics of Rydberg electrons is insensitive to

small non-zero angular momentum.

With the comparison between quantum and classical calculations for highly ex-

cited states, the principal quantum number is then lowered, to study the validity of

the classical methods at low-lying states. We define a difference function to quantita-
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tively study the differences between the two methods for different principal quantum

numbers. The difference function fd is defined as

fd =
Lmax∑
l=0

∣∣∣pcl(l)− pqm(l)
∣∣∣, (3.6)

where Lmax is the number of coupled angular channels used in the quantum calcula-

tions. The pqm(l) is the probability that the electron has an angular momentum l as

defined in Eq. (3.4) in quantum calculations. The pcl(l) is an analogous probability

that the electron has an integer angular momentum l in classical calculations, which

is defined in Eq. (3.5). The difference function gives an estimation on the relative

error between the two methods at different l. The higher fd is, the larger differences

between the quantum and classical methods are.

Fully scaled calculations with ν1 = 23ζ, ν2 = 38ζ have been performed, where

0 < ζ ⩽ 1 is a dimensionless number. The laser time widths are scaled as ζ3,

since the Rydberg period of an electron and the interval between the two electrons’

launches are proportional to cube of their principal quantum numbers. To satisfy the

quantum uncertainty principle, the energy widths are scaled as ζ−3 in both classical

and quantum calculations. Final time of the calculations are also scaled as ζ3. Similar

to the calculation for ν1, ν2 = 23, 38, the angular momentum distributions used in

Eq. (3.6) are only from the non-ionized part of the wave function.

The results of the difference function versus the first electron’s principal quantum

number ν1 can be found in Fig. 3.3. In the figure, as the principal quantum number

decreases, the difference between the two methods increases. Due to the interference

and tunneling effects that only exist in quantum mechanics, the difference between

the two methods fluctuates as the energy of the system changes. Also, finite energy

spacings in the quantum calculations and finite final time of the calculations may

cause additional disagreements between the quantum and classical methods [65, 66].

We use n to denote the principal quantum number of the atomic system. Since the

energy spacings between adjacent Rydberg states are also scaled as n−3 as energy

uncertainties, approximately same number of quantum states are included in a Ryd-
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Figure 3.3. The difference function fd as defined in Eq. (3.6) versus the
first electron’s principal quantum number ν1. In these calculations,
the principal quantum numbers of the two electrons satisfy ν1/ν2 =
23/38. The red dots are the numerical results for the fd, while the
blue line is a fit for the numerical results versus ν1.

berg wave packet regardless of n. However, as n gets smaller, the discretized energy

levels in quantum mechanics may cause totally different behaviors from continuous

energies in classical mechanics, which could result in a difference function that scales

as power of n. A rough fit of the fd is also given in the figure, and that indicates

the differences between classical and quantum calculations scale as n−1/2. There are

not many studies on the differences between classical and quantum calculations for

different principal quantum numbers in an atomic system. Related studies on the

differences in other systems can be found in Refs. [66–68].
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3.3 Probing double Rydberg wave packets

Properties of double Rydberg wave packets in an atomic system are well described

by classical calculations. To avoid the huge computational effort on mixing of large

number of angular momentum states in quantum calculations, all of the following

calculations related to single-cycle pulses (SCP) are classical calculations.

3.3.1 The effect of SCP on a one electron atom

We start this subsection with a study of the effect of short SCP on an atomic

system with one Rydberg electron. A Rydberg electron is prepared in a classical,

elliptical Rydberg orbit with a small angular momentum. The electron has a signifi-

cant time to be far away from the nucleus, and a relatively short time to be close to

the nucleus in its one Rydberg period. The electric field of a SCP in our calculation

has the following form

F (t) = C0Fm

(
t

tw

)
exp

[
−
(
t

tw

)2
]
, (3.7)

where C0 =
√
2e ≈ 2.332 is a constant to make the maximum field strength be

Fm, note that e here is the base of natural logarithms. The tw is a parameter to

characterize the duration of the pulse. In our calculations, a SCP starts at t = −3.5 tw,

and ends at t = +3.5 tw. A SCP has a duration Tpulse = 7.0 tw. Durations of the short

pulses in the calculations below are much shorter than or equal to one Rydberg period

of the electron. Effects of a SCP in these two scenarios can be totally different. Single-

cycle pulses are applied to a one-electron atom at different times, and the energy

distributions of the electron after the SCP are observed.

We first describe the effect of a SCP with duration much shorter than one Rydberg

period. Within the duration of a short SCP, the nucleus-electron interaction can be

neglected if the electron is far away from the nucleus. Since the integral of the electric

field over time is zero, a short SCP only shifts the position of the electron, and has

almost no effect on its kinetic energy. The estimated energy change of the electron
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originates from the Coulomb potential energy change. If the electron was close to

the nucleus before the SCP, the potential energy change is much higher than that for

an electron which was far away from the nucleus. This is equivalent to saying that a

short SCP transfers more energy to an atom when an electron is closer to the nucleus

at the time of the SCP.

We also study the effect of a SCP with duration equal to one Rydberg period.

The electric field of a SCP has maximum amplitude at t = ± tw/
√
2 ≈ ± 0.707 tw,

which is about half of its duration. If a SCP starts at the time that the electron is

close to the nucleus, the electron feels maximum accelerations when it moves to the

Rydberg outer turning point. Acceleration from the SCP quickly flips the sign at

almost the same time that the electron passes the outer turning point, and reverses

its moving direction. This means the SCP can perfectly accelerate the electron during

the whole pulse. This is also true if a SCP starts at the time that the electron is close

to the outer turning point. However, there is a main difference between these two

scenarios. The work done to the electron is the integral of force times displacements.

The electron moves much faster when it is close to the nucleus than far away from

the nucleus. Using pulses with same strengths, the absolute value of the work done

by a SCP is much larger when it starts at the time that the electron is at its outer

turning point.

To summarize, a short SCP transfers more energy when the electron is close to

the nucleus, while a medium duration SCP transfers more energy when it starts at

the time that the electron is far away from the nucleus. An atom can be ionized if the

final energy after a SCP is above the ionization threshold. In experiments, a SCP can

be used to probe the periodic motion of the Rydberg wave packet in a one electron

atom.
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3.3.2 Probing double Rydberg wave packets

Within our two-step launch model described in Sec. 3.2.1, dynamics of the double

Rydberg wave packets can be divided into two regions based on their initial energies.

(i) One wave packet has a much larger Rydberg orbit than the other. This means

the two wave packets are usually spatially distinguishable, with an inner wave packet

and an outer wave packet. (ii) Two wave packets have similar sized Rydberg orbits.

We apply a fast SCP at different times after the electron launches. The SCP can

transfer energy to the atomic system. At a long final time, the atom will be singly or

doubly ionized. In our following calculations, the double ionization probabilities are

very small and can be neglected. We can measure the energy distributions of those

singly ionized atoms to study the electronic wave function structures at the start time

of the SCP.

A classical calculation with ν1 = 45, ν2 = 38 has been performed. This leads to

the initial energies E1i = −2.47 × 10−4, E2i = −1.39 × 10−3, and Rydberg periods

TRyd1 = 13.8 ps, TRyd2 = 2.08 ps. Before the first wave packet returns to the nucleus

(0.5TRyd1 = 6.9 ps), the second electron is expected to be in its own periodic motion

around the nucleus. In this calculation, the first electron is considered as the outer

wave packet, while the second electron is the inner wave packet. A short SCP with

duration Tpulse = 0.208 ps ≈ 0.1 TRyd2, and maximum strength Fm = 100 kV/cm

is applied at different times (tstart) after the second launch. Distributions of the

positive ion’s final energy, E+, can be found in Fig. 3.4. In the figure, most of the

energy distributions are lower than Ec, center of the initial total energy shifted by

energy widths, which is indicated as the vertical dashed line. For these electrons

with E+ > Ec, the atom must have gained energy from the SCP. As our analyses in

Sec. 3.3.1, a short SCP transfers more energy to an atom through the inner electron

when the electron is close to the nucleus. If the energy transferred to the inner

electron is large enough, the inner electron can be directly ripped off from the atom.

In this scenario, there will be no further chaotic three-body interactions after the
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outer electron returns. The energy of the outer electron after the inner electron being

ionized should be approximately 2E1i, which originates from the changing of ionic

core charge from 1 to 2. In Fig. 3.4, when E+ > Ec, the peak of the positive ion’s

energy is located at 2E1i.

To further study our claim that a short SCP transfers energy to an atom when

the electron is close to the nucleus, we plot the probability of E+ > Ec versus tstart

in Fig. 3.5. The probability indicates direct ionization of the inner electron due to

the short SCP. Additionally, we calculate the probability that at least one electron

is within a sphere of Rc = 260 au centered at the nucleus, when neither electron

is autoionized before the pulse. The latter probability, Pc, versus tstart is plotted in

Fig. 3.5. The Rc is calculated to satisfy

−2

Rc +∆r
− −2

Rc

+ Ec ⩾ 0, (3.8)

where ∆r is the displacement of a free electron due to a SCP. The probabilities of

E+ > Ec and Pc have similar trends and magnitudes on the locations of peaks and

troughs. To study the origin of Pc, we calculated the probabilities that each electron

is within Rc, indicated with Pc1 and Pc2 for the first and second electron, respectively.

The plots can be found in Fig. 3.5. Note that, the probability that both electrons are

within Rc is less than 0.1% and can be neglected here, which means Pc ≈ Pc1 + Pc2.

The peaks of Pc2 are located at tstart ≈ 2.0, 4.0, 6.0 ps, which are multiples of TRyd2

and indicate the inner electron’s return to the nucleus. Similarly, the outer electron

returns to the nucleus at tstart ≈ 6.9 ps. Instead of a peak in Pc1 at 6.9 ps, we

can find a small dip on it. This is because at tstart ≈ 7.0 ps, the inner electron is

at its outer turning point. Thus, the repulsion between the inner electron and the

returning outer electron shifts the radial positions of the two electrons. Therefore,

Pc1 is slightly lower and Pc2 is slightly higher at tstart ≈ 7.0 ps. On the Pc2 curve at

7.0 ps, the depth of the dip is not as large as that at 5.0 and 8.0 ps. As a result, we

have flatter distributions near 7.0 ps on both Pc and E+ > Ec curves. After 8.0 ps,

both curves are mostly flat, indicating a SCP applied after the collisions between the
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Figure 3.4. Energy distributions of the electron in a singly ionized ion
at a long final time, after the effect of a short SCP applied at different
time. The principal quantum numbers for the two electrons are ν1 =
45, ν2 = 38. The SCP has a maximum strength Fm = 100 kV/cm,
and a duration Tpulse = 0.208 ps. Numbers in the legends indicate the
start time of SCP (tstart) after the launch of the second electron. The
vertical dashed line is plotted at Ec = −1.46 × 10−3. The figure has
a cutoff at −0.0025 on the left, but the full energy distributions have
long tails to larger binding energies.

two electrons. The probability to find electrons in a small radial range barely changes

after collision.

To study the effect of a medium duration SCP, calculations with ν1 = 45, ν2 = 40,

Tpulse = 2.43 ps ≈ 1.0 TRyd2 and Fm = 5 kV/cm, have been performed. For this

case, the Tpulse is smaller than the outer electron’s Rydberg period TRyd1. When the

outer electron is far away from the nucleus, the SCP only slightly shifts its position,

and has negligible effect on it. We may only consider the effect of the SCP on the
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Figure 3.5. Probability results for calculations with ν1 = 45, ν2 =
38, Fm = 100 kV/cm, Tpulse = 0.208 ps. The red thin solid line
describes the probability of E+ > Ec, which is the positive ion’s final
energy higher than −1.46×10−3, with a short SCP applied at different
time tstart. The blue thick solid line describes the probability that at
least one electron is within Rc = 260, at different time tstart after the
second electron’s launch, just before the application of a SCP. The
green dashed line describes the probability that the first electron is
within Rc at different time, while the magenta dotted line describes
the probability for the second electron.

inner electron, before the outer electron returns. Energy distributions of the positive

ion at a long final time can be found in Fig. 3.6(a), which has the same meaning as

described in Fig. 3.4. The probability of E+ > Ec can be found in Fig. 3.6(b). To have

a detailed understanding of the effect of a medium duration SCP, we have performed

calculations of a He+ ion with only one Rydberg wave packet at ν2 = 40 under the

effect of a same medium duration SCP, with Tpulse = 2.43 ps and Fm = 5 kV/cm,
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Figure 3.6. Study of the effect of a medium duration SCP with ν1 =
45, ν2 = 40, Fm = 5 kV/cm, and Tpulse = 2.43 ps. Figure (a) describes
the same physical quantities as given in the caption of Fig. 3.4. Figure
(b) describes the probability of positive ion’s energy higher than Ec =
−1.17× 10−3, and the direct ionization probability of a He+ ion due
to a medium duration SCP with same properties. The tstart is the
start time of a medium duration SCP (see Eq. (3.7) for definition of
the start time).
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applied at different times. The field induced ionization probability (Pion) of the He+

is also plotted in Fig. 3.6. At tstart = 2.4 ps ≈ 1.0 TRyd2, the electron in He+ model

and the inner electron in the two-electron atom return to the nucleus, and gain the

lowest energy transferred from a short SCP. Thus the probabilities of E+ > Ec and

Pion reach their minimum. Similarly, at tstart = 1.3 ps ≈ 0.5 TRyd2 and tstart = 3.5 ps

≈ 1.5 TRyd2, the electron in He+ model and the inner electron in the two-electron

atom are at their outer turning points, and E+ > Ec, Pion reach their maximum.

These two lines have very similar trends, which strengthens our assumption that a

medium duration SCP transfers more energy to an atom when it starts at the time

that the electron is far away from the nucleus.

These calculations show that single-cycle pulses with a short duration and a

medium duration behave oppositely on the energy transfer to a Rydberg electron.

Experimentally, a SCP can be used to probe the wave function structures of the in-

ner wave packet, by transferring energy to the atom through the inner electron while

the inner electron is located at different positions.

3.3.3 Atoms with similar sized double Rydberg wave packets

In the previous subsection, we studied the effect of a SCP on a two-electron atom

with the size of one Rydberg wave packet much larger than the other’s. Here we focus

on those scenarios that the two Rydberg wave packets have similar sizes. A classical

calculation with ν1 = 34, ν2 = 40 has been performed. The single-cycle pulses have

durations Tpulse = 0.1 TRyd2 = 0.243 ps, and maximum strengths Fm = 100 kV/cm.

The Ec = −1.42× 10−3 is center of the initial total energy shifted by energy widths.

The probability of E+ > Ec, versus different start time of the SCP is plotted in

Fig. 3.7. The probabilities to find electrons within Rc = 300 au, Pc, Pc1, Pc2, as

introduced in the previous subsection can also be found in Fig. 3.7. In the figure,

similar trends between E+ > Ec and Pc can be found, which is because a short SCP

transfers more energy to an electron when it’s close to the nucleus. The peak of Pc1
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Figure 3.7. The curves have the same meaning as introduced in the
caption of Fig. 3.5. Parameters used in the plot are ν1 = 34, ν2 = 40,
Fm = 100 kV/cm, Tpulse = 0.243 ps, Ec = −1.42×10−3, and Rc = 300.

is located at tR1 = 2.4 ps, which indicates the first electron’s return to the nucleus.

Similarly, the second electron returns to the nucleus at tR2 = 3.4 ps. These return

times are neither a full nor a half Rydberg period related to their initial energies.

Due to the correlations between the two electrons, their energies, angular momenta,

and Rydberg periods are changed.

After the two electrons return to the nucleus, respectively, they will be in Rydberg

orbits with new periods. The new periods are approximately 2 tR1 and tR2 for the

two electrons, which can be deduced from the peaks and troughs on the Pc1 and Pc2

curves in Fig. 3.7. The first electron arrives at its new outer turning point at about

2 tR1 = 4.8 ps, while the second electron arrives at its new outer turning point at

about 1.5 tR2 = 5.1 ps. As can be seen in Fig. 3.7, at tstart ≈ 4.8 ps, the probabilities
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to find either electron inside Rc are at minimum. The energy transferred from a short

SCP and the probability of E+ > Ec are also at local minimum.

Experimentally, a short SCP can be used to probe an atom with two similar sized

Rydberg wave packets. Usually, the first two peaks of the probability of E+ > Ec

indicate the return times of the two electrons. After that, the two electrons will be

in new Rydberg periods which are related to their first return times to the nucleus.

3.4 Conclusions

Inspired by a previous experiment in Ref. [26], and various numerical methods

for solving two-electron atoms developed in the past few years, we studied dynamics

of two Rydberg wave packets in a helium atom. We first briefly introduced the

helium model with two-step launches, where the first electron was excited to a radially

localized Rydberg wave packet using laser pulses with tunable parameters. When the

first electron reached its outer turning point, the other electron was then excited to

a Rydberg wave packet using laser pulses with different properties. As studied in

Ref. [26], energy and angular momentum exchanges between the two electrons can

happen quickly, leading to rapid autoionization.

We then performed both quantum and classical calculations to show the validity

of the classical methods when dealing with Rydberg wave packets, comparing to

an accurate quantum method. The classical and quantum methods were in good

agreement at high principal quantum numbers. The numerical differences between

the two methods at lower principal quantum numbers were also quantitatively studied.

Furthermore, we introduced the effects of a fast single-cycle pulse on an atom with

one Rydberg electron. Detailed analyses showed that, a short duration single-cycle

pulse transfers more energy to an atom when the electron is closer to the nucleus,

while a medium duration single-cycle pulse transfers more energy when it starts at

the time that the electron is further away from the nucleus. With these results,

we studied the effects of a single-cycle pulse on an atom with double Rydberg wave
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packets. A short single-cycle pulse is applied to an atomic system with distinguishable

wave packets at different time, and the energy distribution of the positive ion at a

long final time is measured. The probability that significant energy is transferred

to the atom has a very similar trend as the probability that at least one electron is

located in a small region very close to the nucleus. We also compared the results

of a single-cycle pulse acting on an atom with double wave packets of significantly

different sizes, and on a positive ion with only the inner wave packet. The results

have very similar trends which verify our assumptions that a fast single-cycle pulse

only has small affects on the outer electron. Moreover, we studied the case that the

two Rydberg wave packets have similar sizes. From the time-dependent probabilities

that each electron is close to the nucleus, we found out the return times of the two

electrons. Due to the correlations between the two electrons, return times of the

two electrons are different from their initial Rydberg periods. The new Rydberg

periods after both electrons return to the nucleus are related to their return times.

Experimentally, a fast single-cycle pulse can be applied at these times that an electron

is close to the nucleus, and a large amount of energy will be transferred to the atom.

Further novel autoionization behaviors after the effects of single-cycle pulses remain

open questions to be studied in both theoretical and experimental ways.
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4. INTERFERENCE PATTERNS FROM

POST-COLLISION INTERACTION IN

BELOW-THRESHOLD PHOTOEXCITATION AUGER

PROCESSES

This chapter is directly taken from Phys. Rev. A, 98, 013421 (2018) [69] with minor

differences, where the original draft was written by Xiao Wang.

4.1 Introduction

In Auger processes, the Coulomb interaction between the outgoing photoelec-

tron and the Auger electron emitted later is known as post-collision interaction

(PCI) [70–76]. Typically, the energy of the Auger electron is much higher than the

energy of the photoelectron, thus the fast Auger electron will pass the slow photo-

electron a short time after the core decays. The effective charge of the ionic core

that the photoelectron experiences suddenly changes from +1 to +2. Energy and

angular momentum exchange between the two electrons can happen in the PCI due

to the repulsive Coulomb interaction between them, and, in some cases, the ionized

photoelectron can be recaptured to bound states with different energies or angular

momenta [77–82].

The PCI has been extensively studied both theoretically and experimentally in

the past few decades. Several early semiclassical theories considered extreme cases,

where the energy of one electron is much greater than the other, like the Barker-

Berry model [83], the Niehaus formula [84], and other derivations [75, 85, 86]. Later,

many stationary quantal theories were developed, including [72–74, 87, 88], which

gave similar PCI energy shifts but in a wider range of two electron energies. Detailed
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analysis of the angular momentum exchange in PCI can be found in Refs. [89–92].

Several time-dependent studies of PCI were developed in recent years [60, 91, 93–

96]. Experimentally, the effect of PCI in a near-threshold photoionization has also

been widely studied [76–82,97–100], while several studies mainly focused on angular

correlation in the double continuum [101,102]

When the incident photon energy is much below the ionization threshold for an

inner-shell electron, researchers study the resonant Auger process where the photon

can excite an inner-shell electron to an excited bound state above the valence shell.

There are also many studies of the resonant Auger process which has been thoroughly

reviewed [71]. Intuitively thinking, with a high density of states, the PCI with slightly

below-threshold photoexcitation and slightly above-threshold photoionization should

behave similarly. However, our calculations show differences in the angular and pho-

toelectron energy distributions (PED). This is partly due to the fact that a highly

excited bound electron will return after it reaches its outer turning point, but a pos-

itive energy electron will not. Thus, the outgoing fast Auger electron could meet the

photoelectron in a shorter distance and an earlier time, and the interaction between

the two electrons would be stronger.

For the PED in an above-threshold photoionization, angular correlations have

been investigated in experiments [25, 103, 104], and in theories [60, 91, 101, 102, 105].

There has not been studies focused on the PED in below-threshold photoexcitations,

where the photoelectron gains enough energy to be ionized due to the PCI. In this

chapter, we focus on the PED in below-threshold photoexcitation Auger process at

different initial conditions, including photoelectron energy and Auger width. Inter-

ference patterns can be found in the PED. Properties of the interference patterns in

PED at different initial conditions are studied, and also analyzed from a semiclas-

sical approach. Both a quantum method, by solving two-electron time-dependent

Schrödinger equations, and a classical method, by solving Hamilton’s equations, are

used in this chapter to study the PCI effect across the ionization thresholds. Our
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method is based on [28, 47, 91, 105], with extensions to negative photoelectron ener-

gies.

This chapter is structured as follows: in Sec. 4.2, a model of the Auger process

and the quantum and classical numerical methods used in this chapter are briefly

introduced. In Sec. 4.3, the results from both quantum and classical calculations are

presented and compared. Also in Sec. 4.3, the PED is studied for different photoelec-

tron energies across the threshold, and for different Auger widths. Atomic units are

used unless specified otherwise.

4.2 Numerical methods

Instead of a full model considering all electrons in an atom, we consider only the

photoelectron and the Auger electron in our calculations. This approximation can

be made because significant interactions between the two electrons mostly happen

outside the ionic core. Therefore, the detailed shell structure is less important and

can be interpreted as a simple model potential.

Additionally, we limit our calculations with total angular momentum L being

0, as well as the initial angular momentum for each electron. This approximation

can greatly reduce the number of coupled angular channels in the calculation. From

Ref. [90] and our analyses in Sec. 4.3, the angular momentum exchange between the

two electrons are fairly weak. Also, since the electron-electron interactions mostly oc-

cur far from the ionic core, we assume that the results from the L = 0 approximation

will not significantly misinterpret the essence of energy and angular momentum ex-

change in the PCI. For the cases with non-zero angular momentum, brief discussions

are given at the end of Sec. 4.3.3.
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4.2.1 Quantum methods

The dynamics of the emitted photoelectron before the Auger core decays can

be described by the following time-independent inhomogeneous Schrödinger equation

[91,105]: (
E1 + i

Γc

2
−Ha

)
F1(r1) = Dϕg(r1), (4.1)

where E1 = E −Ec is the incident photon energy minus binding energy of the Auger

core, and E1 is also the photoelectron energy above the ionization threshold. Γc is the

Auger core width, and Ha = p1
2/2+V (r1) is the Hamiltonian for the photoelectron.

The imaginary iΓc/2 is applied to the Auger core energy Ec to calculate the wave

function of the photoelectron before the Auger core decays. While Ref. [105] gives the

mathematical reason for this positive imaginary term, the qualitative reason is that it

leads to a finite spatial extent for F1(r1) even when E1 is positive, which reflects that

the part of the wave function representing a photoelectron with no Auger electron

should have a finite extent in r1. The Dϕg is the dipole operator acting on the ground

state wave function of the inner-shell photoelectron. With the approximations we

proposed at the beginning of this section, the Dϕg can be chosen as any short range

function as long as: (1) it is not orthogonal to the continuum wave function of the

photoelectron F1 and, (2) it has the correct angular momentum. For the potentials

in our problem, we may use a model potential that has an asymptotic form of −Z/r

as r → ∞:

V (r) = −Z + (Zt − Z) e−r/ra

r
, (4.2)

where Zt, ra are adjustable parameters that represent the properties of the model

potential or, different atomic structures. We may also use a Coulomb potential with

V (r) = −Z/r as a simplified model. Here in Ha, we have Z = 1 in the potential for

the photoelectron.
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After the Auger core decays, the dynamics of the two electron system can be

described by the following time-dependent Schrödinger equation [91,105]:(
i
∂

∂t
+ E1 + E2 −H

)
Λ(r1, r2, t) = S(t)F1(r1)F2(r2), (4.3)

H =
p1

2

2
+

p2
2

2
+ V (r1) + V (r2) +

1

|r1 − r2|
, (4.4)

where H is the full two-electron Hamiltonian with Z = 2 in the potentials for both

electrons. E2 is the energy of the Auger electron above the ionization threshold. F2

is a short range function that represents the source term for the Auger electron, and

it is not orthogonal to the Coulomb eigenstate at E2. S(t) is a step-like function that

acts as the source term for the Auger decays, and we choose S(t) = 1/(1+exp[10{1−

5t/tf}]) in our calculations [105], where tf is the final time of the calculation that all

physical quantities are stable.

The whole two-electron wave function Λ(r1, r2, t) is represented on a three-

dimensional mesh:

Λ(r1, r2, t) =
Lmax∑
l=0

(−1)lRl(r1, r2, t)Yl0(cos θ12), (4.5)

where the Yl0(cos θ12) are the spherical harmonics on the relative angle between r1,

r2, and the phase factor follows the convention in [60, 106]. Lmax is the maximum

number of coupled angular channels in the calculations, chosen to give converged

results. In the radial dimension, a square root mesh is used which provides more

grid points near the origin. For the time propagation of the wave function, the split

operator method and the implicit Crank-Nicolson method are used. When dealing

with the 1/r12 operator, the discrete variable representation is used for the coupling

between different angular momenta. Further details of the numerical calculations can

be found in Ref. [28].

It can be seen from Eq. (4.3) that the two-electron wave function Λ has an in-

creasing probability from the source term for Auger decay. At the final time of the

calculation, physical quantities should be extracted as their time derivatives normal-

ized by the probability increasing rate of Λ [107]. This can be understood that the
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probability to find the system in a given channel is equal to the rate that electrons

go into the channel divided by the norm increasing rate of the whole two-electron

wave function. For example, the probability that the two electrons having energy ϵ1,

ϵ2 and angular momentum l1, l2, respectively, can be calculated as:

P (ϵ1, ϵ2, l1, l2) =

d

dt

∣∣∣⟨fϵ1l1fϵ2l2 |Λ(t)⟩∣∣∣2
d

dt

∣∣∣⟨Λ(t)|Λ(t)⟩∣∣∣2 , (4.6)

where the Coulomb wave function fϵl should be energy normalized for a continuum

eigenstate, and unity normalized for a bound eigenstate.

4.2.2 Classical methods

It has been shown in many previous studies, e.g. Ref. [2], that a highly excited

Rydberg electron or a continuum electron often can be approximated as a classical

particle. We can use the much faster and more efficient classical-trajectory Monte

Carlo method to understand the system in a totally different approach. The classical

method can also give intuitive interpretations to the PCI.

In every Monte Carlo trajectory, a photoelectron is emitted near the origin at

t1 = 0 [91]. The energy of the photoelectron satisfies a normal distribution centered

at E1 with standard deviation σ = Γc/2
√
2 ln 2. The initial angular momentum

and angular distribution should satisfy those given in Dϕg(r1). After a delay time

of t2, which satisfies an exponential distribution Γc exp(−Γct), the Auger electron

is emitted near the origin. The energy of the Auger electron is the difference of

the photoelectron energy from the total incident photon energy. The initial angular

momentum and angular distribution of the Auger electron are the same as those from

F2(r2). With these initial conditions, we can propagate the classical system using

Hamilton’s equations, and extract the physical quantities as a statistical distribution

at the final time of the calculation. Further details can be found in [28,47,91]
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4.3 Results and discussions

In Sec. 4.3.1, we report results from calculations using quantum and classical

methods to show the validity of these methods with model potentials and negative

energy photoelectrons. In Sec. 4.3.2 and Sec. 4.3.3, calculations are performed in

pure Coulomb potentials, and we mainly focus on the quantum results of PED and

the semiclassical interpretations. All calculations performed in this section have zero

total angular momentum, and zero initial angular momentum for both electron.

4.3.1 Comparisons between quantum and classical methods

We first perform calculations using a model potential as given in Eq. (4.2) with

ra = 1.0, Zt = 6.0. In this model potential with nuclear charge Z = 1, the quantum

defects for Rydberg states with different angular momentum are approximately δs =

1.27, δp = 0.97, δd = 0.19, δf = 0.008. For Z = 2, the quantum defects are δs = 0.88,

δp = 0.70, δd = 0.35, δf = 0.06. In the calculation, we have the Auger core width

Γc = 0.003 a.u. ≈ 82 meV and Auger electron energy E2 = 2.0 a.u. ≈ 54 eV. The

photoelectron energy is set to be E1 = −6.0× 10−3 a.u., below the threshold, where

the Rydberg spacing is much smaller than the Auger width. Also, for simplicity of

the calculation, the initial angular momentum for both electrons is set to be zero.

The energy and state distributions for the photoelectron after PCI are plotted in

Fig. 4.1, from both quantum and classical calculations. Since there is no quantization

for a classical system, the classical energy distribution is a continuous function, and

it has a similar distorted shape to those calculations for an above-threshold Auger

process [60, 90, 91]. On the other hand, the quantum system is quantized and the

photoelectron can only be in discrete eigenstates. The probabilities to find the pho-

toelectron in different states are given in the figure. The overall envelope of the

quantum state distribution qualitatively agrees with the classical energy distribution.

Using the Niehaus formula [84], the maximum of the photoelectron energy distribu-

tion is located at −0.0157, while our classical calculation gives −0.0167. The initial
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Figure 4.1. Photoelectron energy distributions after PCI from both
quantum and classical calculations. The initial photoelectron energy
is E1 = −6.0× 10−3 a.u., below the threshold. Auger electron energy
is E2 = 2.0 a.u. above the threshold, and the Auger width is Γc =
3.0× 10−3 a.u. The inset figure is a magnification of quantum results
at high density of Rydberg state.

energy E1 = −6.0×10−3 a.u. is close to the resonant state of 10s of Z = 1. After the

PCI, the photoelectron is shaken-up to those 11s, 12s, 13s states of Z = 2, although

the photoelectron loses energy in the PCI. The ionization probabilities from both

quantum and classical calculations are about 0.5%.

Refs. [89–92] discussed the angular momentum exchange and angular distribution

between the two electrons due to the PCI. For our calculations of the angular momen-

tum distributions, the ns peaks have much higher probabilities than other non-zero

angular momentum peaks. Our quantum calculations show that about 82% of the

photoelectron wave function after PCI is in s orbitals. We also count the probability

that the classical angular momentum is within 0 ⩽ l < 1, and the result is 78%.
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These calculations show that the angular momentum exchange during the PCI with

these initial parameters is fairly weak but non-trivial, and most of the wave function

tends to keep its initial angular momentum.

4.3.2 The photoelectron angular and energy distributions

To further study the energy and angular momentum exchange during the PCI for

near-threshold photoionizations (or photoexcitations), we perform multiple quantum

calculations at different photoelectron launch energies across the threshold. The

following calculations are performed with Auger electron energy E2 = 2.0 a.u. and

Auger width Γc = 0.003 a.u. The photoelectron energies are varied. The initial

angular momentum for both electrons are set to be zero to simplify the calculations.

All of the following calculations are performed in a pure Coulomb potential. Although

we don’t show model potential calculations, they give very similar results.

In PCI with the photoelectron energy near the threshold, the vast majority of the

photoelectron wave function loses energy due to the change of nuclear charge from

+1 to +2 when the Auger electron leaves the atom. However, when the outgoing

angles of the two electrons are nearly the same, the early ejected photoelectron may

be strongly repelled by the Auger electron. As a result, the photoelectron gains

energy, and its momentum direction is also changed from its initial outgoing direction.

Therefore, we study the correlation of the photoelectron energy (E1f ) versus the

relative angle between momentum of the two outgoing electrons (θ12). Both values

are achieved at a long final time when they are already stable. We focus on the

angular and photoelectron energy distributions (PED) of the wave functions in the

double continuum.

In Fig. 4.2, the PED from quantum calculations are plotted for different initial

photoelectron energies E1. When E1 is well above the threshold at 0.07 a.u., most of

the photoelectron wave functions have a lower energy but still remains ionized, and

the angular distribution is nearly spherically symmetric other than for those cos θ12
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Figure 4.2. Quantum results of the angular (cos θ12) and photoelec-
tron energy (E1f ) distributions (PED) at different initial photoelec-
tron energy E1. The initial Auger electron energy is E2 = 2.0 a.u., and
Auger width is Γc = 0.003 a.u. The photoelectron energy E1 is given
at the top left of each subfigure. Note that, the E1f and PED scales
are different in different subfigures. All calculations are performed
at the same initial intensity in the source terms. Among different
subfigures, the PED number is proportional to their absolute count
of detections due to the same initial photon intensities. The dashed
horizontal lines in the subfigures of E1 = −0.015 and −0.02 a.u. are
plotted at E1f = 0.01, 0.02, and 0.04 a.u. The small circles are the
corresponding classical maxima presented later in the text.
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Figure 4.3. Quantum results of the PED at E1 = −0.006 a.u., and
different Γc. The Γc is given at the top left of each subfigure. The
initial Auger electron energy is E2 = 2.0 a.u. Other properties are the
same as those given in the caption of Fig. 4.2. The dashed horizontal
line in the subfigure of Γc = 3.3 × 10−4 a.u. is plotted at E1f =
0.01 a.u. The small circles are the corresponding classical maxima
presented later in the text.

near 1 [25, 105]. When E1 is slightly above the threshold at 0.003 a.u., two local

maxima can be found in the figure. The right peak originates from those positive

energy, outgoing photoelectrons being closely passed by a late emitted fast Auger

electron at a large distance away from the nucleus. The photoelectron is then pushed

aside to a slightly larger angle, and still remains in the continuum. Photoelectrons in

the left peak near cos θ12 = 0 are due to the repulsion from an early emitted Auger

electron just after the photoionization. The strong repulsion may directly push the

photoelectron to a much larger angle than the previous scenario. Detailed analyses

can be found in [91].

As the photoelectron energy E1 decreases and goes below the threshold, the ab-

solute value of the PED also decreases. This is partly due to the fact that, as E1

gets lower, the Rydberg spacings become greater than the Auger width, and the

initial photoabsorptions at non-resonant energies are much weaker. The abnormal

increase in the PED for E1 = −0.02 a.u. is because −0.02 a.u. is an eigenenergy of

a pure Coulomb potential with n = 5 and Z = 1. With the same intensity in the
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initial source terms, the resonant photoabsorption at −0.02 a.u. causes higher counts

in the double continuum. The ionization probabilities barely decrease to 0.4% for

E1 = −0.02 a.u., comparing to the 0.5% for E1 = −0.006 a.u.

Comparing the subfigures for E1 = 0.003 a.u. and E1 = 0 a.u., the “right” peak

disappears, and the “left” peak grows. This indicates a nearly zero probability for

an outgoing photoelectron being closely scattered by an Auger electron at a large

distance and still remain positive energy, as those scenarios described earlier for the

E1 = 0.003 a.u. Another interesting feature in Fig. 4.2 is that, as the E1 decreases,

interference patterns start to appear in the distributions. However, those interfer-

ence patterns do not exist in classical calculations with the same parameters, which

indicates that those patterns are quantum effects. The subfigure for E1 = −0.02 a.u.

also illustrates that resonance in the initial photoelectron excitation has no significant

effect in those final interference patterns.

To study the interference patterns at different initial conditions, we perform sev-

eral quantum calculations with the same E1 at −0.006 a.u. but different Γc. The

resulting PED can be seen in Fig. 4.3. The interference pattern is barely visible at

Γc = 0.003 a.u., but is very clear at Γc = 3.3 × 10−4 a.u. A smaller Γc gives well-

resolved energy spectrum in the photoabsorption, and that leads to better-resolved

interference patterns in the PED. Another feature is that the oscillations in the inter-

ference pattern are much faster than that of E1 = −0.015 a.u. or −0.02 a.u. This can

be interpreted using our semiclassical approach introduced in the next subsection.

Further estimations and numerical calculations show that, when the photoelectron

energy satisfies E1 < −0.5 Γ
2/3
c , the interference pattern starts to be visible. This is

also the energy, E1, that the Rydberg spacings ∼ n−3 equals the Auger width, and

states with different principal quantum number n are resolved by the photoexcitation

photon and the Auger decay rate.
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Figure 4.4. The relation of t2 versus cosω with a fixed E1f = 0.02 a.u.
The cos θ12 value, which is the angle difference in the asymptotic
momentum of the two continuum electrons, is marked with differ-
ent colors. The ω is the angle difference between the launch direc-
tions of the two electrons, and t2 is the time of Auger decay after
launch of the photoelectron. Two X’s are plotted at (0.83, 0.45) and
(0.9989, 630), which both give cos θ12 = −0.4. The triangle is plotted
at (0.987, 32.8), which is the transition point that distinguishes the
two paths, and is also the initial condition to achieve the classically
maximum allowed cos θ12 = 0.108.

4.3.3 Semiclassical interpretations of the interference patterns in PED

Interference in quantum systems often results from two paths leading to the same

final state. Since the quantum and classical calculations give similar results for a

below-threshold photoexcitation Auger process as presented in Sec. 4.3.1, multiple
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Figure 4.5. Illustrations for the two classical trajectories with final
angle cos θ12 = −0.4 and photoelectron energy E1f = 0.02 a.u. The
nucleus is located at the origin. The red and blue lines are trajectories
for photoelectron and Auger electron, respectively. The dashed red
lines are photoelectron trajectories before the Auger decay. The figure
(a) refers to an early Auger decay, and the figure (b) refers to a late
Auger decay.

classical calculations are performed to qualitatively study the quantum interference

patterns. We trace back those classical trajectories that give specific E1f and cos θ12 at

the final time, and study their spatial trajectories and initial launch variables. With

fixed initial energies for the photoelectron and Auger electron, only two variables

may affect the final values of E1f and cos θ12: the Auger decay time t2 after the

photoelectron excitation, and the initial launch angle difference ω between the two

electrons.

In classical trajectories, there exists a mapping from the initial pair (cosω, t2) to

the final pair (cos θ12, E1f ). For example, when E1 = −0.015 a.u., E1f = 0.02 a.u.,

the function of cos θ12 ∼ (cosω, t2) is given in Fig. 4.4. Note that, for initial angle

cosω < 0.7, it is nearly impossible for the photoelectron to gain enough energy and

become ionized. On this curve, to achieve cos θ12 = −0.4, which is close to a quantum
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constructive interference region in Fig. 4.2, there are two classical trajectories with to-

tally different initial values. Illustrations for the two trajectories are given in Fig. 4.5.

The first trajectory has cosω = 0.83, t2 = 0.45 a.u., and the second trajectory has

cosω = 0.9989, t2 = 630 a.u. In the first trajectory, the photoelectron is directly

pushed out by the early emitted Auger electron. For the second trajectory, we have

t2 > 0.5TRyd1 ≈ 604 a.u. The Auger decay happens when the photoelectron is just

starting to return to the nucleus, and the emitted angle of the Auger electron is very

close to that of photoelectron. The returning photoelectron is then scattered by the

outgoing Auger electron, gains energy, and gets ionized from the atom in a different

direction from its initial launch direction. Since there are two totally different paths

that can reach the same final region in the double continuum, quantum interferences

exist, and interference patterns can be found in the PED figure.

We also use a semiclassical idea to analyze the quantum interference pattern as

presented in Fig. 4.2. We consider the two classical paths that go to the same final

region in cos θ12 and E1f , and accumulate their classical actions as the time integral

of their respective Lagrangians from the launch of photoelectrons to a large fixed

final time. For example, in the problem with E1 = −0.015 a.u., E2 = 2.0 a.u. and

Γc = 0.003 a.u., we consider the thick horizontal dashed line of E1f = 0.02 a.u. in

the PED plot given in Fig. 4.2. The relation of cos θ12 versus initial value (cosω, t2)

pairs are given in Fig. 4.4. Since the photoelectron is in a periodic Rydberg motion

before Auger decay, we may only consider cases that the t2 is less than one Rydberg

period. For the first path with small t2 and small cosω, the cos θ12 increases as cosω

and t2 increase until reaching the classically maximum allowed cos θ12 = 0.108 at this

energy, where cosω = 0.987 and t2 = 32.8. Beyond this point, the cos θ12 decreases

as the t2 increases, which gives the mapping of the second path. We then calculate

the semiclassical actions S accumulated from the two paths, and δS as the action

difference. The phases φ, which are the actions modulo 2π, versus cos θ12 are given in

Fig. 4.6. Comparing to the quantum results in Fig. 4.2, where the global maximum

for E1f = 0.02 a.u. is achieved at around cos θ12 = 0, the classical action difference
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Figure 4.6. The classical phases from the two paths versus different
final value of cos θ12, at the same final energy of E1f = 0.02 a.u. The
action difference reaches a local maximum around cos θ12 = 0, and
δS = 1.05, which is plotted in black dotted line. The (cos θ12, E1f ) =
(0, 0.02) is a constructive interference point as presented in Fig. 4.2.
All other three black dotted lines represent the same phase differ-
ences δφ = 1.05, and are plotted at cos θ12 = −0.45, −0.67, −0.85,
respectively.

δS = 1.05 can be found at this angle. We then find those classical paths having action

differences δS = 1.05 ± k · 2π, where k is an integer. The classical paths with final

angles of cos θ12 = −0.45, −0.67, and −0.85 have phase differences δφ = 1.05 modulo

2π, and these cos θ12 values are approximately the same constructive interference

angles as those presented in Fig. 4.2. Similarly, classical maxima are also calculated

at several other E1f values and different initial conditions, and their locations can be

found in Fig. 4.2 and Fig. 4.3.
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In Fig. 4.3, the locations of interference maxima do not change with Auger width

Γc, and the interference patterns are better resolved when the Γc gets smaller. This

can be understood that the Γc only controls the distributions of the Auger decay

time t2, but not the actual electronic dynamics. With a smaller Γc, the t2 has a

higher probability to be a large value, which could result in more trajectories of those

extreme conditions in cos θ12 or E1f . On the other hand, the interference intensities

oscillate much faster in Fig. 4.3 with E1 = −0.006 a.u. than that in Fig. 4.2 with

E1 = −0.015 a.u. The fast change in the relative interference phase comes from the

rapid increase in the semiclassical action in the second path, where the returning

photoelectron is scattered by the fast outgoing Auger electron. In the second path,

the Auger electron is emitted a long time after excitation of the photoelectron. Con-

sidering the Bohr-Sommerfeld quantization condition, the photoelectron accumulates

more action with a higher initial energy. Thus, the semiclassical phases would be

more sensitive to the launch time t2 and final angle cos θ12.

Further studies of this model can be extended to non-zero initial angular momen-

tum. We know that the interference patterns are constructed from two paths, and

one crucial path is at small ω and large t2. For non-zero angular momentum, the

initial angular distributions of the photoelectron and Auger electron are polarized. If

they have the same polarization angle, there will be a higher chance that the initial

angle difference ω is a small value, and the interference patterns would be brighter

and easier to observe in experiment. Furthermore, since our calculations are per-

formed with zero angular momentum using pure Coulomb potential or simple model

potential, study of non-zero angular momentum in a sophisticated model potential

could be an interesting topic. A non-negligible ionic core could twist the motion of

electrons at small distance near the nucleus, thus the dynamics of the first path would

be affected. The exact interference patterns might be different in different atoms.
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4.4 Conclusions

In this chapter, we performed quantum calculations and classical calculations to

numerically study the Auger process and the post-collision interaction. Both meth-

ods are time-dependent calculations, which can help us better understand the time-

resolved dynamics of the Auger process. We mainly focused on those photoexcitation

and photoionization scenarios in which the excited (or ionized) photoelectron energy

is near the ionization threshold. An initial calculation demonstrated the effectiveness

of our classical method when describing a quantum model with negative photoelectron

energy and model potential. The numerical results showed that the angular momen-

tum exchange during the post-collision interaction is fairly weak [89–92]. To further

study the interaction between the two electrons during the post-collision interaction,

we focused on the correlation of angular and photoelectron energy distribution. We

decreased the initial energy of the photoelectron, and checked the PED at different

initial photoelectron energies and Auger core widths. Interestingly, when the initial

energy of the photoelectron is low enough, interference patterns can be found in the

PED. We studied the mappings between initial values of launch time and angles and

final values of energies and angles in the interference region. We found that there are

two paths with different initial conditions that can contribute to the same final region

in the double continuum. We used a semiclassical treatment to calculate the classical

actions as the time integral of the Lagrangian of the system, and calculated the phase

difference of the two paths. Along a given line in the PED correlation figure, our

semiclassical treatment gave the relative locations of the interference maxima, which

are nearly the same as those from quantum calculations. Finally, we briefly discussed

our model with non-zero initial angular momentum, and proposed further studies on

those interference patterns in different atomic systems.
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5. ANGULAR INTERFERENCES OF SEQUENTIALLY

IONIZED DOUBLE CONTINUUM WAVE PACKETS

This chapter is directly taken from Phys. Rev. A, 98, 053407 (2018) [108] with minor

differences, where the original draft was written by Xiao Wang.

5.1 Introduction

The correlations between two electrons in an atom remain an interesting and

difficult topic for many years. The Coulomb interaction between the two electrons

acts as the most important factor of the coupled degree of freedom in a complex

atomic or molecular system. In order to understand the basic interaction between

the two electrons, many theoretical and experimental studies have been conducted.

One of the most basic ideas is to study laser induced photoionization of a helium

atom. Experimentally, laser induced photoionization has been presented in many

previous works [109–116]. Theoretically, many calculations have also been success-

fully performed [3,117–121]. Some studies focus on the intrinsic correlations between

the two electrons, for example, how the two electrons are ionized or excited by one

photon. On the other hand, several authors conducted experiments on probing the

two-electron dynamics in an atom [23, 26, 122], using sequential two-step laser exci-

tations. In their experiments, barium atoms are prepared in the ground state. First,

two consecutive laser pulses excite one of the valence electrons to a coherent Rydberg

wave packet. After a short time delay, the other valence electron is also excited to a

coherent Rydberg wave packet, possibly with different energy, utilizing the isolated

core excitation (ICE) technique [17,123–125]. Due to the rapid interactions between

the two electrons, fast autoionizations can occur in less than one Rydberg period.

Time delay of the second excitation gives control over the strength of interaction
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between the two electrons. Time-resolved observations on the fraction of singly or

doubly charged ions act as a probe of the strong interactions between the two elec-

trons. Theoretical calculations on this two-step launch model were performed in a

previous study [47] and focused on probing the autoionization of the double Rydberg

wave packets.

Another possible way to study the two electron correlation is through the post-

collision interaction (PCI) in a laser-induced Auger process. Many theoretical and

experimental studies have been performed in the past decades, e.g. Refs. [71,72] and

references therein. In our previous work [69], we focused on the post-collision interac-

tion in below-threshold photoexcitation Auger processes. Interferences in the distri-

bution of photoelectron energy and relative angle between the two ionized electrons

were found. The quantum interferences make visible some of the phase properties of

the double continuum wave function. The interference originates from two different

classical paths that evolve to the same final energy and relative angle. Properties

of this interference were studied using classical trajectories and the classical actions.

The semiclassical interference maxima reproduced those from quantum calculations.

e− e−

e−

(a) (b) (c)

hν1

hν2 hν2

Figure 5.1. Cartoon of the two-step ionization model.

Similar to the photoexcitation Auger decay model, simulations also find interfer-

ences in the two-step ionization model. In this chapter, fully quantum calculations on

a two-electron atom are performed, see Fig. 5.1(a). The first electron is ionized to a
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spherically symmetric coherent wave packet in the continuum, see Fig. 5.1(b). After

a short time delay, the second electron is ionized to a spherically symmetric coherent

wave packet with energy higher than the first wave packet, see Fig. 5.1(c). After

the second electron fully passes the first electron, correlations of the first electron’s

final energy and the relative angle between the two electrons are evaluated. Effects

from properties of the ionization laser pulses on final energy and angle are studied,

including time widths and frequency chirpings of the laser pulses. The effects of the

variable time delay between the two-step laser ionizations are also investigated. All

of the above quantum calculations are interpreted using semiclassical techniques, and

detailed analyses are presented on the properties of the interference patterns. Finally,

the differences between the two-step ionization model and the photoexcitation Auger

decay model are discussed in detail.

This chapter is structured as follows. In Sec. 5.2, the quantum and classical models

used in this chapter are briefly introduced. In Sec. 5.3, properties of the interference

patterns with different initial conditions are presented. In Sec. 5.4, discussions of the

two models are given. Atomic units are used throughout the chapter unless specified

otherwise.

5.2 Methods

The two-electron atomic model used in this project has been introduced previously

in Refs. [47, 69]. Related experiments have been performed in Ref. [26]. The basic

idea of the theoretical model is presented in this section. To reduce the complexity

of calculations, both electrons are launched into spherically symmetric radial wave

packets, which means their initial angular momentum just after launch is set to zero.

An atom with two active valence electrons, e.g. Ba, is prepared in its ground state.

Experimentally, two consecutive short laser pulses are used to excite (or ionize) one of

the valence electrons to a coherent radial wave packet. The dynamics of the outgoing
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ionized electronic wave packet can be described using the following time-dependent

inhomogeneous Schrödinger equation [28]:[
i
∂

∂t
− (H1 − E1)

]
R1(r1, t) = S1(r1)G1(t). (5.1)

The H1 = p21/2 + V (r) is the Hamiltonian of the first outgoing electron. Although

the Coulomb potential V (r) = −Z/r is used in our calculations, model potentials

give very similar results since significant interactions between the two electrons occur

away from the nucleus. The potential for the first electron is Z = 1, before the second

electron is ionized. R1 is the time-dependent radial wave function of the wave packet.

E1 is the central energy of the wave packet. S1 is source term of the first electron

before laser ionization, and it has a small radial extent. The

G1(t) = exp
[
−2 ln(2) t2/t2w,1 − i ω̇c,1t

2/2
]

(5.2)

is a source term reflecting properties of the laser pulse electric-field used to ionize

the first wave packet. tw,1 is the FWHM of the laser pulse, and ω̇c,1 represents the

frequency chirping.

After a variable time delay td, the other valence electron is exposed to a laser pulse

with different frequency from the previous excitation, and being excited to another

radial wave packet. The dynamics of double wave packets can be calculated using the

following time-dependent Schrödinger equation [28]:[
i
∂

∂t
− (H − E1 − E2)

]
Ψ(r1, r2, t) = R1(r1, t)S2(r2)G2(t). (5.3)

The H = p21/2 + p22/2 + V (r1) + V (r2) + 1/r12 is the full Hamiltonian of the two-

electron three-body Coulomb system, and E1, E2 are the central energies of the two

electronic wave packets, respectively. Here Z = 2 is used in the Coulomb potential

term V (r). Ψ is the full two-electron wave function, while R1 is the radial wave

function calculated from Eq. (5.1). S2 is the source term with a small radial extent,

and

G2(t) = exp
[
−2 ln(2) (t− td)

2/t2w,2 − i ω̇c,2(t− td)
2/2

]
(5.4)
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is a source term reflecting properties of the laser pulse electric-field used to ionize the

second wave packet. Similarly, tw,2 is the FWHM of the second laser pulse, and ω̇c,2 is

the frequency chirping. The phase of the second laser pulse relative to the first laser

pulse only gives an overall phase shift of the two-electron wave function Ψ, and has

no physical impact to the system.

Figure 5.2. Final energy and radial distributions from a quantum
calculation with initial parameters given in the caption of Fig. 5.4.
The results are non-symmetrized. The final time of the calculation
is set to 215 a.u. after the center of the second laser pulse; at this
time, the second wave packet has fully passed the first wave packet
in position space. The black arrow in figure (b) indicates the moving
direction of the wave packet in position space. The separation between
the two electrons only gets larger at later times.

It can be seen in Eq. (5.1) and (5.3) that the two-electron wave function is

non-symmetrized whereas the actual spatial function should be symmetric or anti-

symmetric under exchange, depending on the spin coupling. However, all of the

calculations below are for cases where the two electrons’ energies have relatively

large differences which makes them essentially distinguishable. To illustrate this,

the final energy and radial distributions from an example quantum calculation are
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presented in Fig. 5.2. In neither the energy nor the position representations do the

wave functions have overlap with their symmetrized counterpart. Non-symmetrized,

symmetrized, or anti-symmetrized wave functions yield nearly identical results in the

physical quantities shown in later sections. All results presented in this chapter are

from non-symmetrized wave functions.

In the expressions for laser pulses in Eq. (5.2) and (5.4), the possibility for a

substantial chirp has been included for additional control of the two-electron wave

functions. There are two important consequences from the chirp. Firstly, the chirping

introduces an energy-dependent phase into the two-electron wave function. For a

positive chirping ω̇c, low energy electrons are emitted early; for a negative chirping

ω̇c, fast electrons are emitted early. Because of the energy exchange between the two

electrons, these relative energy-dependent phases are important. Secondly, when there

is frequency chirping, the energy width of the electrons are larger than the minimum

from the uncertainty principle. For example, the FWHM of energy distributions are

δEj =

(
4 ln 2

tw,j

)√
1 +

(
ω̇c,jt2w,j

4 ln 2

)2

, (5.5)

where j = 1, 2 represent the first and the second electron. When ω̇ct
2
w = ±4

√
3 ln 2 ≈

±4.802, the energy width, δE, is doubled from the minimum width without chirping.

This provides a tool to study the effect of laser time width or energy width only,

without changing the other.

The wave function Ψ is expanded in a spherical harmonic basis and propagated

using the time-dependent close coupling method [8, 28] with an implicit time prop-

agator. The final time of the calculation is chosen such that the second electron’s

radial wave function fully passes the first electron’s. The first electron’s energy and

the relative angle between the two electrons are evaluated at the final time.

This two-step launch model can also be simulated using the classical trajectory

Monte Carlo method [28,91]. The ionization (launch) times of the electrons are ran-

domly sampled from the quantum source term |G1,2(t)|2 for each electron. The initial
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energies are sampled from the Fourier transform of the corresponding launch time

distributions. The classical energies Ej satisfy the following Gaussian distribution:

Ej ∼ exp

(
−4 ln 2 ·

[
E − Ẽj(t)

]2
/δE2

j

)
, (5.6)

where j = 1, 2 represent the first and the second electron. The δEj = 4 ln 2/tw,j is

the FWHM of the Gaussian energy distribution without chirping. To simulate the

frequency chirping, the central energy Ẽj(t) = Ẽj(0)+ ω̇c,jt is time-dependent, where

Ẽj(0) is the corresponding laser central energy, and ω̇c,j is the frequency chirping.

5.3 Results

The first calculation is performed with the following initial variables and prop-

erties. Each electron’s angular momentum just after launch is set to be zero. The

initial energies for the two electrons are E1 = 0.15 a.u., E2 = 1.0 a.u. The laser time

widths are tw,1 = 40.0 a.u., tw,2 = 15.0 a.u., and there is no frequency chirping. The

second electron’s launch time delay is td = 120.0 a.u. At the final time, the relative

angle cos θ is defined as the angle between the two electrons’ asymptotic momentum

at infinity.

Correlation between the first electron’s final energy and the relative angle can be

found in Fig. 5.3. Since the launch angular momenta for each of the two electrons

are zero, the relative angle cos θ has a flat distribution from −1 to 1 if there are no

interactions between the two electrons. The interactions between the two electrons are

nearly negligible at large relative angle (i.e. small cos θ), and the distribution presented

in Fig. 5.3 is nearly flat in these regions. However, at a small relative angle (i.e. large

cos θ), when the second electron passes the first electron, the strong repulsion between

the two electrons push them away from each other. Thus, nearly no probability can

be found at cos θf > 0.95, and electrons initially emitted at these relative angles are

pushed aside to larger final angles, i.e. smaller cos θ. That makes the relative angle

distribution have a local maximum near cos θf ≈ 0.87 and E1f ≈ 0.15 a.u. Also, most
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Figure 5.3. Distribution of the first electron’s final energy versus the
final relative angle between the two electrons. The distribution is from
quantum calculations. The second electron’s final energy is integrated
over in the distribution. The initial energies for the electrons are
E1 = 0.15 a.u., E2 = 1.0 a.u. The laser widths are tw,1 = 40.0 a.u.,
tw,2 = 15.0 a.u. There is no frequency chirping. The second electron
is launched at td = 120.0 a.u. after the first electron.

of those electrons pushed aside gain energy from the strong repulsions, and they can

be found in a small tail near cos θf ≈ 0.9 and E1f > 0.18 a.u.

In Fig. 5.3, another small tail can be found near cos θ ≈ 0.75 and E1f > 0.18 a.u.

which is barely visible. To study the properties of this small tail, quantum calculations

are performed with only the first electron’s energy width doubled. From the quantum

uncertainty principle, this can be achieved by halving the first electron’s launch time

width tw,1 without introducing any frequency chirping. The distribution of the first

electron’s energy and the relative angle can be found in Fig. 5.4. Similar to Fig. 5.3,

the strong repulsion between the two electrons, when they pass close to each other,



87

Figure 5.4. Distributions of the first electron’s final energy versus the
final relative angle from quantum calculations. The first electron’s
launch time width is tw,1 = 20 a.u., all other parameters are the
same as those given in the caption of Fig. 5.3. The dashed line is at
E1f = 0.26 a.u., while the circles are at the semiclassical interference
maxima described later in the text.

introduce the vacancy at cos θf > 0.95, the local maximum near cos θf ≈ 0.87 and

E1f ≈ 0.15 a.u., and the first tail near cos θf ≈ 0.9 and E1f > 0.18 a.u. Importantly,

a second and a third tail near cos θf ≈ 0.8 and 0.7 also are found. The alternations

between high and low distributions with respect to cos θf are indications of quantum

interferences.

To study the properties of these interference patterns, the semiclassical method

described in Ref. [69] is used to analyze these classical trajectories. For example,

there are two totally different trajectories with final cos θf = 0.91 and E1f = 0.26 a.u.

in Fig. 5.4. Illustrations of the two trajectories are given in Fig. 5.5. The first

trajectory, as shown in Fig. 5.5(a), has a larger initial angle between the two electrons’
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Figure 5.5. Illustrations of the two classical trajectories that result
in the same final energy and final angle of the first electron. The
first electron is indicated by the red line, and the second electron is
indicated by the blue line. The dashed red line indicates the motion
of the first electron before the second electron is emitted. The launch
time delay of the second electron is 120 a.u. The second electron has
an initial energy of 1.0 a.u. The figure (a) indicates trajectories with
larger initial angle and weaker interaction between the two electrons,
while the figure (b) indicates trajectories with smaller initial angle and
stronger interaction. The final angle looks larger than cos θf = 0.91
because the x-scale is much larger than the y-scale in the figure.

launch directions. The Coulomb interaction between the two electrons in this case is

relatively weak. The final energies and angle is nearly the same as their initial values.

The second trajectory, as shown in Fig. 5.5(b), has a smaller initial launch angle.

Since the second electron has a much higher energy than the first electron, intense

Coulomb interaction will happen after the late-launched second electron catches up

to the early-launched first electron. As can be found from the labels in the figure (b),

the first electron gains energy in this process, and gets repelled to a larger final angle.

In order for the two trajectories to evolve to the same final energy, the early-emitted

electron from the second path must have a much lower energy than the expected final
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Figure 5.6. Comparisons of the first electron’s final energy and the
relative angle from three quantum calculations are given in (a), (b),
and (c). FWHM and frequency chirping properties of the first laser
pulse are given in the figure. All other quantities are the same as those
given in the caption of Fig. 5.3. Note that the probability densities are
in arbitrary units. Solid lines in the first three figures are plotted at
E1f = 0.26 a.u. or 0.15 a.u., corresponding to the respective horizontal
slices at energies E1f presented in subfigures (d) and (e).

energy. This requires the early-emitted electron be ionized from a laser with a wider

energy width, which explains why the interference pattern is stronger in Fig. 5.4 than

in Fig. 5.3.

When two classical paths have the same final energy and relative angle, quantum

interferences may appear [69]. A semiclassical technique is used to calculate the action

of the two paths. Note that when the final state is in the momentum representation,

an extra phase, −p1f·r1f−p2f·r2f, from Fourier transform of the wave function, is added

to the total classical action [126–128]. The pf and rf represent the vector momentum

and position of the two electrons at a fixed final time. The phase difference between

the two paths are used to find the semiclassical interference maxima. For calculations
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in Fig. 5.4, the first interference maximum angle is aligned for the semiclassical and

quantum calculations, e.g. the cos θf = 0.91 at E1f = 0.26 a.u. Then, the rest of

the interference maxima are found at semiclassical phase difference of 2π from the

first interference maximum, e.g. the cos θf = 0.80 at E1f = 0.26 a.u. matched fairly

well with the quantum result. The semiclassically calculated interference maxima are

marked as circles in Fig. 5.4.

From calculations in Fig. 5.3 to calculations in Fig. 5.4, not only the energy width

is doubled, the first electron’s launch time width is also halved. In order to study

properties of the interference patterns, three quantum calculations are designed with

the same energy width but different time widths. This can be achieved by introducing

frequency chirping as mentioned in Sec. 5.2 and Eq. (5.5). Correlations of the final

energy and the relative angle can be found in Fig. 5.6. For calculations shown in

Fig. 5.6(a) and (c), the first electron’s launch time widths are tw,1 = 40 a.u., and

frequency chirpings ω̇c,1t
2
w,1 ≈ ±4.802 are added. Note that the opposite signs in

frequency chirping result in a different energy vs launch time distribution for the

first electron. As a comparison, the Fig. 5.6(b) has the same parameters as those

in Fig. 5.4, where its doubled energy width is directly due to the halved time width

without frequency chirping. The interference patterns exist in all three calculations,

but with slightly different inclines in the distributions of the relative angle. These

results verify that the first electron’s energy width, but not the launch time width,

makes the interference patterns stronger in Fig. 5.4 than that in Fig. 5.3.

To study the detailed effects of frequency chirpings in Fig. 5.6(a-c), the two hori-

zontal slices at E1f = 0.26 and 0.15 a.u. are given in subfigures Fig. 5.6(d) and (e). At

high final energy E1f = 0.26 a.u., as chirping ω̇c goes more negative, the interference

maxima shift to higher cos θf . At low final energy E1f = 0.15 a.u., the maxima shift

to lower cos θf as ω̇c increases. This can be qualitatively explained that with negative

chirping, e.g. in Fig. 5.6(c), the first electron emitted at an earlier time has higher

average energy. Thus, its scattering from the second electron happens at a much fur-

ther distance from the nucleus, and it is harder for the first electron to be scattered
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into a larger final angle. As a result, for higher E1f , the rightmost angle cos θf is

larger. With negative chirping, the first electron emitted at a later time has lower

average energy, and it is more likely to be scattered to larger final angle (i.e. smaller

cos θf ). The frequency chirpings affect the inclinations of the interference patterns

but not the strength of them.

All of the above quantum calculations are performed with the delay time of the

second launch being td = 120 a.u. Quantum calculations with the delay time being

td = 200 a.u. are performed. The energy and angle correlation results can be found in

Fig. 5.7. One interesting result for td = 200 a.u. is that the interference patterns are

more dense than those of td = 120 a.u. in the upper right interference region, with

respect to the final angle cos θf . This can be qualitatively understood that in order

to get the same final angle and same final energy, with the first electron being further

away from the nucleus, the scattering should be more intense and the first electron

gains more energy in this process. To reach the same final energy, the first electron’s

initial energy has to be much lower, and E1i decreases much faster versus θf . Before

the second electron is launched, the lower E1i is, the slower action is accumulated.

Then the final total action changes faster as a function of the final angle. Faster

oscillations are found in the interference amplitudes with respect to the final angle,

with a longer launch delay time.

5.4 Comparisons between double wave packets and Auger decay model

As discussed in a previous chapter [69], quantum interferences also exist in the

photoexcitation Auger decay model with post-collision interaction. Different classical

trajectories were found that lead to the interferences in the Auger decay model.

However, there are several key differences between the Auger decay model and the

double wave packets model, and they lead to different interference properties.

The first major difference is the energy widths of the electrons in the two models.

In the present double wave packets model, energy widths of the electrons are directly
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Figure 5.7. Distributions of the first electron’s final energy versus
the final relative angle. The two electrons’ launch time widths are
tw,1 = 20.0 a.u. and tw,2 = 15.0 a.u. There is no frequency chirping.
The delay times of the second electron’s launch td are given in the
figure labels. All other parameters are the same as those given in the
caption of Fig. 5.3. Dashed lines in (b) are plotted at E1f = 0.26 a.u.
and E1f = 0.15 a.u. while circles are at the semiclassical interference
maxima. Note that the cos θf range is from 0 to 1.0 in the figure.
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controlled by the properties of the laser pulses used to ionize the electrons, and the

energy widths can be comparable to the absolute energy of the ionized electrons. In

the Auger decay model, the photoelectron’s energy width only depends on the lifetime

of the inner shell vacancy. This depends on the actual atom considered in the Auger

decay. It is often of the order of magnitude around 100 meV [71], which is about

3.7×10−3 a.u. That is usually smaller than the absolute energy of the photoelectron,

but comparable to the Rydberg spacings. Based on energy conservation, the Auger

electron’s energy width is the bandwidth of the laser pulse minus the Auger core

width. Considering the very high energy of a typical Auger electron, its energy width

usually has negligible effect on the final state of the photoelectron.

In the present double wave packets model, the interferences are achieved partly

by relatively large energy exchange when the two electrons are launched into small

relative angles. However, for the Auger decay model with a positive energy photoelec-

tron, the photoelectron can still be scattered by the later-emitted fast Auger electron

in the two paths as presented in Fig. 5.5, but the photoelectron will not have the

same final energies in the two paths. Interferences with the present two-step launch

mechanics thus do not exist in the above-threshold Auger decay model.

The second major difference is the controllable launch time delay between the

two electrons. In the Auger decay model, the delay time between the two launches

satisfies an exponential distribution. The interference occurs when the Auger core

width is equal to or smaller than the adjacent Rydberg spacings of the photoelectron.

Locations and oscillations of the interference amplitudes, with respect to the relative

angle cos θf , mostly depend on the photoelectron energy, but not the Auger core width

[69]. The smaller Auger core width only makes the interference patterns brighter. In

the present two-step launch model, the delay time is a single tunable value. Locations

and oscillations of the interferences mainly depend on this delay time between the

two launches. The first electron’s larger energy width makes the interference pattern

brighter.
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As discussed in the final paragraph in Sec. 5.3, in the present two-step launch

model, the main difference in total action accumulation is from the the first electron

before the second electron emission. This is also true for the below-threshold Auger

decay model. In the Auger decay model, the action accumulated by the photoelectron

before the Auger decay significantly affects the final interference patterns. For fixed

initial and final photoelectron energies, the Auger decay times of the two paths only

depend on the final relative angle. Thus the action accumulation differences and

oscillations of the interference patterns, with respect to the final relative angle, mainly

depend on the initial photoelectron energy, but not the Auger core width.

Last, the tilting direction of the interference patterns with respect to the final

angle are studied for the two models. For results presented in the two models, in

the correlation of the first electron’s final energy and the relative angle, along an

interference ridge, both cos θf and E1f go higher or lower, in the same numerical

direction. This can be understood that for electrons with higher energy, the scattering

usually happens at a far distance from the nucleus. It is then harder for the first

electron to be scattered into a larger final angle, or smaller cos θf , because the second

electron has to be aimed at a very narrow angle relative to the first electron’s. As

an interesting example presented in Fig. 5.6(a), due to the laser frequency chirping,

the first electron with lower energy is emitted earlier while higher energy is emitted

later. With a reasonable delay time, the first electron’s wave function can have a

very narrow radial width while scattered by the second electron. This causes the final

interference pattern be nearly vertical on the cos θf scale.

5.5 Conclusions

In this chapter, the interferences in the two-step launch double wave packets model

were presented. The two-step launch model contains sequentially ionized double

wave packets using laser pulses. The two wave packets can have different energies

or different energy widths due to the properties of the laser pulses. The delay time
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between the ionizations of the double wave packets is also tunable in an experiment.

Numerical calculations are performed using both quantum and classical methods.

The angular momentum of both electrons is set to zero just after launch. At the

final time of the calculations, the distribution of the first electron’s energy versus the

relative angle between the two electrons is studied. At large final relative angle, the

distribution is mostly flat, and the final angle is nearly the same as their initial angle.

In these regions, the final energies are also nearly the same as their initial energies.

However, due to the repulsion between the two electrons, the two electrons initially

launched into very close directions are repelled to larger final relative angles. The

first electron gains energy in this process. In these two different scenarios, there are

two sets of trajectories that start with different initial energies and angles but result

in the same final energy and relative angle. Semiclassical action is used to analyze the

two different trajectories and locations of quantum interference maxima. Properties

of the quantum interferences are studied in detail with respect to different initial

physical parameters, including laser pulse width, laser frequency chirping, and time

delay between the two-step ionizations.

Furthermore, the present double wave packet model and the below threshold pho-

toexcitation Auger decay model [69] are compared. Differences in the physical model

are discussed, including the fixed tunable delay time between the two-step ionizations

in the double wave packet model, versus the exponentially distributed Auger core de-

cay time after photoexcitation. Effects of the initial energy distributions of the two

electrons in these two models are also studied. Further studies of these two models

can focus on the non-zero initial angular momentum of the two electrons, and novel

interference patterns may be discovered.

This chapter is based upon work supported by the U.S. Department of Energy,

Office of Science, Basic Energy Sciences, under Award No. DE-SC0012193. This

research was supported in part through computational resources provided by Infor-

mation Technology at Purdue University, West Lafayette, Indiana.
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6. IONIZATION FROM RYDBERG ATOMS AND WAVE

PACKETS BY SCALED TERAHERTZ SINGLE-CYCLE

PULSES

This chapter is directly taken from Phys. Rev. A, 99, 033418 (2019) [129] with minor

differences, where the original draft was written by Xiao Wang.

6.1 Introduction

Strong field ionization is a tool commonly used to study and probe atomic and

molecular structure. In contrast to deeply bound electrons, Rydberg electrons have

many novel properties, such as weak binding energy, high density of states, long

period, large dipole moment, etc. The similar frequencies between terahertz radiation

and Rydberg orbits makes terahertz field pulses an alternative tool to study properties

of Rydberg electrons.

Strong terahertz radiation was used in many experiments studying field ioniza-

tion [51, 130–135]. However, strong terahertz single-cycle pulses have only become

widely used in the past few years. Strong terahertz single-cycle pulses are usually

generated by optical rectification in non-linear crystals [136, 137]. In most cases, the

single-cycle pulses are non-symmetric in the time-domain. The effects of asymmetry

in field ionization was studied theoretically in Ref. [55, 56]. The field strength of

terahertz single-cycle pulses can be up to 1 MV/cm [138]. A 1 picosecond duration

is approximately the same as the Rydberg period with principal quantum number

n ∼ 20, which makes the terahertz single-cycle pulse an effective tool to probe and

study the periodic motion of Rydberg electrons.
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Time-resolved studies of the spatial distributions of Rydberg wave packets have

been conducted extensively. Many different optical tools have been used, such as

ultraviolet laser pulses [139–141], half-cycle pulses [53, 54, 142], single-cycle pulses

[47, 52], microwaves [143–145], and others. Compared with the other methods, the

ionization properties of single-cycle pulses on Rydberg wave packets have not been

widely studied. When a single-cycle pulse duration is much shorter than a Rydberg

period, previous studies showed that the threshold field amplitude for ionization from

a stationary Rydberg state is proportional to (n/tw)
2 [55,56], where n is the principal

quantum number and tw is proportional to the pulse duration. The ionization mech-

anism is described as displacement ionization. In this chapter, ionization of Rydberg

wave packets using single-cycle pulses with durations shorter or equal to one Rydberg

period are studied.

For field pulse ionization due to a long pulse, the scaling relations of ionization

thresholds versus the principal quantum number n have been studied before. Dif-

ferent ionization thresholds can be found in different ionization regimes [146]. For

ionization due to a single-cycle pulse, only a few studies have been conducted, includ-

ing experimental [51] and theoretical studies [55, 56, 147, 148]. These studies focused

on the ionization probability versus initial pulse parameters or initial state nl of the

Rydberg electron. The distributions and scaling relations of a single variable physical

quantity, such as ionization probability, ionized electron’s angular distribution, energy

distribution, etc, are presented in several previous studies [51, 55]. There have been

no studies on the scaling relations for correlated two-dimensional distributions from

single-cycle pulse ionizations in Rydberg atoms. It is well known that classical calcu-

lations scale perfectly for different n, but quantum calculations do not scale due to

the restrictions from the uncertainty principle. In this chapter, comparisons between

quantum and classical calculations are studied, including correlated distributions for

two physical quantities, at different scaled n states and scaled pulse parameters. Ad-

ditionally, scaled ionization results for Rydberg wave packets due to a single-cycle

pulse are first discussed in this chapter.
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This chapter is structured as follows. Section 6.2 gives a brief introduction to

the quantum and classical methods used in our calculations. Section 6.3 introduces

the scaling relations for pulse parameters and all physical quantities. The quantum

and classical results in different conditions are compared. Also, the scaled properties

of ionization and quantum interference are studied. Section 6.4 introduces the type

of Rydberg wave packets used in this chapter, and the scaled ionization properties

from short and medium duration single-cycle pulses are investigated. Atomic units

are used throughout the chapter unless specified otherwise.

6.2 Methods

6.2.1 Quantum methods

With a linearly polarized laser pulse in the dipole approximation, a hydrogenic

atomic system follows the time-dependent Schrödinger equation:

i
∂ψ

∂t
=

(
−1

2
∇2 − 1

r
+ F (t) · z

)
ψ, (6.1)

where F (t) is the time-dependent strength of the electric field. The full three-

dimensional wave function is expanded on a spherical harmonic basis:

ψ(r, θ, ϕ, t) =
lmax∑
l=0

Rl(r, t)

r
Yl0(θ, ϕ). (6.2)

The Ylm are spherical harmonics, and the cylindrical symmetry of m = 0 is assumed

in the present work. The lmax is the number of angular channels needed to converge

all of the physical quantities in the calculations. The radial wave functions can

be propagated using various methods. Split operator and Crank-Nicolson methods

are used in our calculations. For the radial wave functions, a square-root mesh with

Numerov approximation is adopted. Further details on the wave function propagation

can be found in Ref. [28].
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For the single-cycle laser pulse, two different forms are used in our calculations.

The first form was introduced in Ref. [148]. It is used in this chapter to reinterpret

some results from Ref. [148]. The pulse is expressed as

F (t) =


−Fm sin(ωt), if − T < t < 0

−Fmβ sin(βωt), if 0 < t < T/β

0, otherwise.

(6.3)

The Fm is the peak intensity and T is the duration of the first half cycle, T = π/ω,

and β is a factor representing the asymmetry of the pulse. In the calculations, the

pulse starts at ti = −T , and ends at tf = T/β.

The second form was used in Ref. [56], which is a symmetric, Gaussian-like single-

cycle pulse. It is expressed as

F (t) = −C0Fm

(
t

tw

)
exp

[
−
(
t

tw

)2

− 0.1

(
t

tw

)4
]
, (6.4)

where C0 =
√
(
√
35 + 5)/5 exp[(

√
35 − 4)/4] ≈ 2.385 is a constant that makes the

maximum field amplitude to be Fm [56]. The fourth-power term in the exponent is

used to shorten the Gaussian tail of the electric field without significantly affecting

the properties of a single-cycle pulse. The tw is a scale of time width of the laser

pulse. The electronic wave function is propagated from ti = −3.5 tw to tf = +3.5 tw,

which gives well converged results. The second form of the Gaussian-like single-

cycle pulse is mainly used in the rest of the chapter, due to its smooth expression

and no discontinuities in the time domain. Although this chapter is based on these

two specific pulse types, the results can be generalized to other pulses with similar

asymmetry, duration, and strength.

The energy and angular distributions of the ionized electrons are the focus of

this chapter. At the final time of the calculations, the continuum part of the wave

function is expanded using energy normalized Coulomb eigenstates. The probability

amplitude at a positive energy ϵ and angular momentum l can be calculated as

aϵl =

∫
dr Rl(r, t = tf ) fϵl(r), (6.5)
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where fϵl is the energy normalized regular Coulomb wave function [149]. The energy

distributions for ionized electrons can be calculated as

dP

dϵ
=

lmax∑
l=0

|aϵl|2. (6.6)

The angular distribution for the ionized part of the electron wave functions at a given

energy can be calculated as

d2P

d cos θ dϵ
= 2π

∣∣∣∣∣
lmax∑
l=0

aϵl e
iσl Yl0(cos θ)

∣∣∣∣∣
2

, (6.7)

where σl is the Coulomb phase shift [149]. Note that the cylindrical symmetry of

m = 0 is assumed in our calculations. The integration of Eq. (6.7) at all positive

energies gives the full angular distributions at infinity. The emission angle θ is the

polar angle from the field polarization axis.

The radial distributions and the emission angle, just after the pulse is turned off,

are also studied in this chapter. They are mainly used to compare the results from

quantum and classical calculations. The radial distribution of ionized electrons at a

given emission angle can be calculated as

d2P

d cos θ dr
= 2π

∣∣∣∣∣
lmax∑
l=0

∫
dϵ aϵl fϵl(r)Yl0(cos θ)

∣∣∣∣∣
2

, (6.8)

and the radial distribution averaged over all angles is calculated as

dP

dr
=

lmax∑
l=0

∣∣∣∣∫ dϵ aϵl fϵl(r)

∣∣∣∣2 . (6.9)

6.2.2 Classical methods

For the strong field ionization problem, the classical trajectory Monte Carlo

method is used [56]. Specifically, consider a quantum problem starting from a station-

ary Rydberg eigenstate at |nl⟩. By using the microcanonical ensemble treatment [150],
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the initial energies and angular momenta of the electrons in classical calculations are

set to be Ecl = −0.5/n2
cl, where

[(n− 1)(n− 1

2
)n]1/3 < ncl ⩽ [n(n+

1

2
)(n+ 1)]1/3, and (6.10)

l2 − 1

4
< l2cl ⩽ (l + 1)2 − 1

4
, when l ̸= 0, n. (6.11)

For l = 0 or n, the simple lower or upper bound at 0 or n are used. At a large n and

non-zero l, the above two inequalities go to the following approximations:

n− 0.5 < ncl ⩽ n+ 0.5, (6.12)

l < lcl ⩽ l + 1, (6.13)

where the classical quantities ncl, l
2
cl are uniformly distributed in the given ranges,

not the classical energy −1/2n2
cl. Comparing with ncl being a single value fixed at

n, this microcanonical ensemble treatment gives better agreement between quantum

and classical calculations in some critical cases, which will be shown in Sec. 6.3.2.

In order to simulate the radial distribution from a stationary quantum state, all

the trajectories start the classical propagations from their respective classical outer

turning point at a random time tinit = tturn-on − αTRyd [56]. Here, tturn-on is the turn-

on time of the single-cycle pulse. For example, tturn-on = −T for single-cycle pulse in

Eq. (6.3), and tturn-on = −3.5 tw for single-cycle pulse in Eq. (6.4). α is a uniformly

distributed random number between 0 and 1 to simulate the initial radial distribution

from a full Rydberg period. The initial angular distribution of the electrons at tinit fol-

lows |Yl0(cos θ)|2. The initial velocity direction of the electron is randomly selected as

long as it’s perpendicular to the position vector, and the magnitude of velocity is cho-

sen to satisfy the initial angular momentum lcl from the microcanonical ensemble in

Eq. (6.13). The initial direction of the velocity vector can be randomly chosen on the

tangential plane because the ionization probability from our numerical calculations

does not depend strongly on the velocity directions. Then, the electron is propagated

only considering the pure Coulomb potential 1/r until tturn-on, when the single-cycle

pulse electric field turns on. Next the electron trajectory is calculated from both the
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1/r potential and the single-cycle pulse potential until the pulse turn-off time. To

achieve the final angular distribution, the electrons are then propagated to a long

fixed final time tf , when its momentum direction is nearly converged. The statistics

of the electrons’ final energy and final velocity angle give classical distributions which

are compared to those from quantum calculations.

Additionally, the classical trajectory Monte Carlo method can be extended to a

semiclassical version, which is known as the quantum trajectory Monte Carlo [126].

In this method, the actions for the classical trajectories are calculated. If there is

more than one classical path that can go into the same final region, e.g. position

or momentum, the amplitudes of the paths are added coherently using the classical

actions as the phase factor. The initial electronic states in our calculations are Ry-

dberg states in their position representations. If the final state is in the momentum

representation, e.g. when energy versus angle distribution is studied, an extra factor

of −pf ·rf needs to be added to the phase [126]. This is due to the Fourier transform

of the wave function to another representation.

6.3 Scaling relations

In this section, the scaling behavior of single-cycle pulse ionization with respect

to the principal quantum n is studied: we show quantum and classical results for

different n but with the field parameters scaled. Specifically, the physical quantities

are scaled as follows

r ∝ n2, t ∝ n3, p (momentum) ∝ n−1,

E (energy) ∝ n−2, Fm ∝ n−4, (6.14)

and other unit-less quantities are not scaled, such as angle or ionization probability.

The nuclear and electronic charges are not scaled. For example, if Fm = 500 kV/cm

is used at n = 15, then the scaled field strength at n = 30 can be calculated as

500 kV/cm · (30/15)−4 = 31.25 kV/cm. It is noted that, due to the same scaling
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Figure 6.1. Ionization probabilities from scaled classical and quantum
calculations. The black dashed line is for classical calculations with
an initial energy spread of ncl given in Eq. (6.12). The blue solid line
is for classical calculations at a single value of n, and the ionization
probability converges to 14.6%. The magenta dotted line is for quan-
tum calculations up to n = 70. The red thick line is a fitting for
classical results with ncl spread. For ncl ⩾ 60, the fitting function is
Pion = 0.146 + 4573/n3.02. The inset figure gives the classical ioniza-
tion probability when the pulse parameters are fixed at n0 = 15 and
the initial classical energy state is at a single value around ncl = 15,
see Eq. (6.15). Scaling relations are given in Eq. (6.14). Pulse param-
eters can be found in text. The initial angular momentum is fixed at
l = 2.

relations for pulse duration and Rydberg period, durations of the scaled single-cycle

pulses will always be the same fraction of one Rydberg period at different n.

As mentioned in Sec. 6.2.2, initial energies in classical calculations can either be a

single value or be a spread using the microcanonical ensemble treatment. The initial
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spread in angular momentum l only weakly affects the ionization probability, and it

is not scaled versus n (see Sec. 6.3.1). With all these scaling rules, scaled results from

classical calculations at different n, as a single value without spread, should be exactly

the same. This is because the classical mechanics of the Coulomb interaction are fully

scalable. Conversely, as given in Eq. (6.12), the microcanonical ensemble treatment

requires an energy spread of ∆ncl = 1, which do not scale with n. This makes the

classical calculations using the microcanonical ensemble non-scalable. In quantum

calculations, due to the uncertainty principle δx δp ⩾ 1/2, results at different n are

also different. According to the correspondence principle, the quantum and classical

calculations should give the same results as n goes to infinity. For the following part of

this section, scaled quantum and classical calculations with different n are performed,

and the differences between them are compared.

In Sec. 6.3.1 and Sec. 6.3.2, the single-cycle pulse in Eq. (6.3) is used. In Sec. 6.3.3,

the single-cycle pulse in Eq. (6.4) is used.

6.3.1 Ionization probabilities versus n

For example, scaled quantum and classical calculations at different n are per-

formed, and the ionization probabilities versus n is shown in Fig. 6.1. In the calcula-

tions, the single-cycle pulse with the form in Eq. (6.3) is used. At n = 15, the pulse

parameters are Fm = 2.05 × 10−6 a.u. = 10.5 kV/cm, T = 1.2402 × 105 a.u., and

β = 1.5. All parameters are the same as those in Ref. [148] (with a small modification

1). At other n, the pulse parameters are scaled using relations given in Eq. (6.14).

The initial state always has angular momentum l = 2, and are not scaled with n

(see next paragraph). Classical results with microcanonical ensemble treatment have

much better agreement with quantum results than the classical results with a single

1The parameters in the caption of Fig. 5 of Ref. [148] were used, except the field strength. From a
private communication (J. P. Hansen), Fm = 2.05 × 10−6 a.u. = 10.5 kV/cm instead of 18 kV/cm
was used. With that, the same ionization probability of 20% as indicated in their figure caption can
be achieved.
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value of n. Further details on why a spread of initial energy behaves better than a

fixed energy are discussed in the next subsection.

A very important question related to perfect scaling is how the initial angular

momentum lcl should scale and how large the difference is with respect to scaling.

The lcl determines both the initial angular distribution and the angular momentum

of the electron. The angular distribution is a unit-less function with respect to angle

θ and ϕ, and is not scaled with n. The angular momentum is equal to vinitrouter and is

scaled proportionally versus n. However, l is a discrete value and cannot be arbitrarily

scaled in experiments. To check the differences in ionization probabilities with non-

scaled angular momenta, several classical calculations are performed with the only

difference in the angular momentum distribution. At a single value of n = 15 and

identical remaining parameters, the initial angular distributions are kept unchanged as

Y20. The initial angular momenta are 0, 1, and 2. Ionization probabilities from these

calculations differ by less than 0.5% in the absolute value. Note that, as presented

in the blue solid curve of Fig. 6.1, l = 2 at n = 15 gives ionization probability

around 14.5%. In these cases, with the perfect scaling of classical dynamics, ionization

probabilities, with (n, l) = (30, 2) → (15, 1), (n, l) = (60, 2) → (15, 0.5), (n, l) =

(120, 2) → (15, 0.25), etc, would only differ by less than 0.5%. This can be seen in

Fig. 6.1 that the blue solid curve is mostly flat at large n, but with small variations

at n near 15. It is shown that, with non-scaled lcl value, the classical calculations

with a single value of n are mostly scalable with small differences at small n.

It is seen in Fig. 6.1 that, the differences between classical calculations using the

microcanonical ensemble and a single value of n get smaller as n gets larger. To

understand how the two types of calculations converge to the same value as n→ ∞,

consider a classical calculation on single-cycle pulse ionization. Let P
(n0)
ion (n) be the

ionization probability when the principal quantum number is a variable of n, and the
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pulse parameters are scaled for n0. Then the averaged ionization probability with n

being a spread of n0 − δn to n0 + δn can be calculated as

P̄ (n0, δn) =
1

2δn

∫ n0+δn

n0−δn

P
(n0)
ion (n) dn

≈ 1

2δn

∫ n0+δn

n0−δn

[
P

(n0)
ion (n0) + P

′(n0)
ion (n0)(n− n0)

+
1

2
P

′′(n0)
ion (n0)(n− n0)

2 +O[(n− n0)
3]
]
dn

= P
(n0)
ion (n0) +

1

6
P

′′(n0)
ion (n0)(δn)

2 +O[(δn)4]. (6.15)

Since classical calculations are perfectly scaled, e.g. P
(n0)
ion (n) = P

(2n0)
ion (2n), the deriva-

tives can be calculated as

P
(n0)
ion (n0 + δn) = P

(2n0)
ion (2n0 + 2δn),

P
(n0)
ion (n0 + δn)− P

(n0)
ion (n0)

δn
=
P

(2n0)
ion (2n0 + 2δn)− P

(2n0)
ion (2n0)

δn
,

P
′(n0)
ion (n0) = 2P

′(2n0)
ion (2n0). (6.16)

Thus, the first order derivative P
′(n0)
ion scales as n−1

0 , and the second order derivative

scales as n−2
0 . The average ionization probability from a spread of initial energy at

29.5 to 30.5 is the same as that of 14.75 to 15.25. With δn = 0.5, the series expansion

gives n−2
0 asymptotic relations for the ionization probability as n0 → ∞. Also, as

n0 → ∞, all derivatives of P n0
ion go to zero, and the average ionization probability

P̄ (n0, δn) converges to the single value of P
(n0)
ion (n0).

However, as can be seen in Fig. 6.1, the ionization probability from classical cal-

culations with ncl being a spread converge as n−3 asymptotically to the classical

calculations with a single value of ncl. The n
−3 relation is a coincidence, not a general

rule. This is partially due to the fact that the ionization properties at these specific

pulse parameters are very sensitive to the initial energy state n of the electron. Since

the pulse duration Tpulse = 2.067× 105 a.u. is much longer than the Rydberg period

at n = 15 (TRyd = 2.12 × 104 a.u.), over-the-barrier ionization mechanisms domi-

nate. The maximum field strength βFm = 3.075 × 10−6 a.u. is in the same order as
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the nuclear Coulomb field strength when the electron is at its outer turning point

((2 ∗ 152)−2 = 4.94 × 10−6 a.u.). Thus, with pulse parameters fixed at n0 = 15,

as n varies from 14.5 to 15.5, the ionization probabilities change rapidly and even

non-monotonically.

As given in the inset of Fig. 6.1, the ionization probability P
(15)
ion (n) is very sensitive

to the initial classical state n. The average of P
(15)
ion (n) for n varied from 14.5 to 15.5

gives an ionization probability around 20%, but the P
(15)
ion (15) itself only gives about

15%. At n0 = 15 and δn > 1/16, which is equivalent to n0 < 120 and δn = 0.5,

the P
(15)
ion (n) in Eq. (6.15) can not be well expanded as a Taylor series only up to

O[(n − n0)
3]. That means the n−2

0 scaling relations derived in Eq. (6.15) does not

hold, when n0 is not large enough. A mixture of n−2
0 and n−4

0 coincidentally gives a

scaling relation of n−3
0 , as presented in Fig. 6.1. It was found that only when n is

large enough, e.g. n0 > 120, did the Taylor series expansion in Eq. (6.15) correctly

represent the ionization probability, and a n−2
0 asymptotic relation was found. Further

details of ionization properties with ncl from 14.5 to 15.5 are discussed in the next

subsection.

6.3.2 Comparisons between quantum and classical methods

Originally found in Ref. [148], as well as shown in Fig. 6.1 in the previous subsec-

tion, ionization probabilities from a classical calculation at a fixed n of 15 are different

from a quantum calculations for n = 15. In this section, three calculations are per-

formed to study the ionization probability and physical quantities of this process:

fully quantal, classical with ncl fixed at 15, and classical with ncl being a spread from

14.5 to 15.5. The initial angular momentum is set to l = 2. The pulse parameters

are given in the previous paragraph at n = 15.

The radial distributions at the final time are given in Fig. 6.2. Both of the classical

calculations give overall similar results as compared with the quantum calculation.

For the ionized part around 3000 a.u., results from the classical calculation with ncl
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Figure 6.2. Full radial distributions at the final time of the pulse, from
three different calculations. The initial angular momentum is l = 2.
The blue solid curve is from a classical calculation with the initial ncl

fixed at 15. The black dashed curve is from a classical calculation
with the initial ncl being a spread of 14.5 to 15.5. The magenta
dotted curve is from a full quantum calculation starting in a 15d state.
The ionization probabilities from the three calculations are 14.3%,
20.7%, and 21.0%, respectively. The inset is a magnification of the
distribution with rf from 700 to 5500 a.u. Note that the probability
density scale is different for the inset.

fixed at 15 do not match well with the quantum result, while the spread ncl calculation

gives much better agreement. As mentioned in the caption of the figure, the ionized

wave function is a small portion of the whole wave function. Ionization probabilities

and continuum wave functions from the fixed ncl and spread ncl calculations are very

different.
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Figure 6.3. Radial distributions at the final time of the pulse from
classical and quantum calculations. Only those from the ionized part
of the distributions are plotted. The red solid curve with small extent
around 1600 a.u. is from a classical calculation with ncl fixed at 14.5,
and the ionization probability for this case is 0.77%. The green solid
curve with the largest extent is from a classical calculation with ncl

fixed at 15.5, and the ionization probability for this case is 37.2%.
The other three curves are the same calculations as those introduced
in the caption of Fig. 6.2.

To further study the details of the ionized part of the wave function, two more

classical calculations for ncl fixed at 14.5 and 15.5 are performed. The continuum

radial distributions from quantum and classical calculations are given in Fig. 6.3.

One notable quantity is the ionization probability. For ncl = 14.5, the ionization

probability is only 0.77%, but it is 37.2% for ncl = 15.5. As shown in the inset of

Fig. 6.1 and discussed in Sec. 6.3.1, field ionization processes with these specific field
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Figure 6.4. Correlated distribution of the ionized electron’s radial po-
sition, and its emission angle at the final time of the pulse. Parameters
of the field are given in the text of Sec. 6.3.1. Figure (a) is from a full
quantum calculation, figure (b) is from a classical calculation with ncl

being a spread of 14.5 to 15.5, and figure (c) is from a classical calcula-
tion with ncl fixed at 15. The density distributions in all three figures
are normalized to their respective ionization probabilities, which can
be found in the caption of Fig. 6.2.

parameters are very sensitive to the initial Rydberg state for this range of n, because

the ionization probability and the ionized part of the wave function depends strongly

on the initial energy of the Rydberg electron. With that, it is better to use a spread

in initial energy, i.e. microcanonical ensemble treatment, in the classical calculation

rather than just a fixed energy as used in Ref. [148].

To verify our applications of the initial energy spread in the classical calculations,

the ionized radial and angular distributions at the final time of the pulse are shown

in Fig. 6.4. It can be seen in the figure that the classical calculation with an initial

energy spread has a much better agreement with the quantum calculation. Addi-

tionally, some interference patterns, with respect to the radial distribution, appear

in the quantum results, but not in the classical results. Oscillations of the quantum

interference amplitudes will be discussed in the next subsection.
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Figure 6.5. Angular distributions for ionized electrons from quantum
and classical calculations. The initial angular momentum is l = 0.
Calculations are performed with different n as indicated by the leg-
ends, and different scaled pulse parameters as indicated in Eq. (6.14).
At n = 15, Fm = 500 kV/cm and tw = 500 a.u. are used. Classical
results at all three n are the same.

6.3.3 Scaled physical quantities and quantum interferences

Scaled physical quantities from single-cycle pulse ionization with scaled pulse

parameters at different n are studied in this subsection. The single-cycle pulse

in Eq. (6.4) is used in this subsection, and the pulse parameters are changed to

Fm = 500 kV/cm, tw = 500 a.u. for n = 15 from the previous subsection. The Ryd-

berg period for the n = 15 state is Tryd = 2πn3 = 21206 a.u. Electrons are initiated

in stationary Rydberg eigenstates with angular momentum being zero. Although

a single-cycle pulse process with these parameters only gives about 3.8% ionization
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Figure 6.6. Figure (a) gives the classical action differences between
two paths versus the final angle, at a scaled final energy. The final
energy is scaled for different n, which are Ef = (15/n)2 · 0.002 a.u.
The action differences are aligned as ∆S = 0 at cos θf = 1. Figure
(b) gives angular distributions at scaled final energies from quantum
calculations.

Figure 6.7. The correlated energy and angular distributions with
scaled pulse parameters at n = 15, 30, 45 for quantum calculations,
and at n = 30 for classical calculation. The maximum densities are
normalized to 1.0 for all figures. The dashed lines are at cos θf = 0.95,
while the circles are interference maxima calculated by the semiclas-
sical method introduced in the text.



113

probability, the small portion of the ionized wave function gives a clear picture for the

properties of the ionized electron. The ionization probability is the same for n = 15,

30, and 45. As discussed in Sec. 6.3.1 and in Eq. (6.15), with the same ionization

probability for 15, 30, 45 in quantum calculations, the classical ionization curvature

P ′′
ion is negligible in this case. Thus, to mimic the quantum calculation, classical cal-

culations with a single value of n and a single value of l can be performed instead of

spreads, and the results would be the same.

The angular distributions for ionized electrons are given in Fig. 6.5. In the figure,

the classical results at different n are scaled and overlapped. However, the results

for scaled quantum calculations are different near cos θf = 1. Although not shown in

the figure, the rest of the angular distributions for cos θf from −1 to 0.6 are nearly

the same for both quantum and classical, at different n, and they are much smaller

than those near cos θf = 1. As can be seen in the figure, as n increases, the quantum

angular distributions near cos θf = 1 gets sharper. This is very different from the

classical results, and the reason for the sharp peak is quantum interference. Quantum

interference can strengthen distribution at some angles, and weaken distribution at

other angles.

Using the scaling relations for physical quantities in Eq. (6.14), the classical action

is also scaled, and the scaling is

S =

∫
L dt ∝ n, (6.17)

where L is the classical Lagrangian. In the present problem, with a small ionization

probability, only two classical trajectories can be found that go into the same final

angle and same final energy. Actions from the two trajectories scale as n, as well

as the difference ∆S between the two trajectories. Since interference maxima can

be found at every 2π phase difference, oscillations of interference amplitudes, with

respect to scaled physical quantities, would be n times faster at a higher n.

To study the angular distributions in detail, results at scaled final energy slices,

Ef = (15/n)2 · 0.002 a.u., are presented in Fig. 6.6. In Fig. 6.6(a), the classical action

versus final angle is given. It can be seen that the action differences, ∆S, from the
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two paths changes faster as n gets larger, scaled as the factor of n. In Fig. 6.6(b),

the quantum angular distributions are given. With a larger n, the action varies

more rapidly. The amplitudes of angular distributions also oscillate faster. Since

the total angular distributions are incoherent summations of angular distributions at

all positive energy slices, faster oscillations of the angular distributions away from

cos θf = 1 lead to rapid cancellation and flattening of the full angular distribution.

With the same ionization probability, constructive summations and sharper peaks

around cos θf = 1 can be expected at higher n.

Finally, the correlated distributions of final emission angle and final energy are

given in Fig. 6.7. As mentioned in Sec. 6.3.2 and Fig. 6.4, quantum interferences

may appear in the correlated distributions at the final time. In Fig. 6.7, quantum

interference with respect to the scaled final energy is found. The differences for clas-

sical actions between the two paths are used to determine the quantum interference

maxima at Ef . The action differences are aligned at the first interference maximum,

and all further maxima are found at multiples of 2π phase differences. The classical

results are the same for n = 15, 30, and 45. No interference is found in classical

results. In the figure of n = 15, only one interference maximum can be found in the

given range along cos θf = 0.95, while two maxima can be found for n = 30 and

three for n = 45. This interference behavior is due to the fact that semiclassical

action is scaled proportional to n while all physical parameters are scaled as those in

Eq. (6.14). Thus, the oscillations of interference amplitudes are also scaled as n versus

other scaled parameters. As discussed in Fig. 6.5, Fig. 6.6 and earlier in this section,

sharper peaks in angular distributions near cos θf = 1 can be found when n is larger.

Since the maximum angular momentum scales as n, there are not enough angular

channels that can localize the angular distribution near cos θf = 1 at a smaller n.
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6.4 Ionization of wave packets

When dealing with strong field ionization of Rydberg atoms, the initial state can

be either a stationary eigenstate, or a coherent superposition of those eigenstates,

which is known as a wave packet. For field ionization with single-cycle pulses, several

studies of stationary states have been conducted [51,55,56,147,148]. Since the spatial

distribution for stationary states and wave packets can be totally different, the field

ionization results are also different for these two scenarios. In this section, the effects

of strong, short and medium duration single-cycle pulses on different initial Rydberg

states are studied. The single-cycle pulses with the form of Eq. (6.4) are used.

Short duration single-cycle pulses have been studied before [56]. A single-cycle

pulse with duration much shorter than one Rydberg period only shifts the position

of the Rydberg electron by a small amount without changing its kinetic energy. The

small shift in space may introduce large Coulomb potential energy change if the elec-

tron is close to the nucleus. If the electron is far from the nucleus, then the small

spacial shift barely changes the Coulomb potential energy. Thus, a short duration

single-cycle pulse provides a tool to probe the spatial distribution of an atomic sys-

tem. Due to the coherent superposition of the Rydberg wave functions from different

energies, the spatial distribution of a Rydberg wave packet changes with time. A

short duration single-cycle pulse applied at different times yields different ionization

probabilities.

Similarly, a medium duration single-cycle pulse can also be used to probe the

spatial distributions of a Rydberg wave packet. In this chapter, a medium duration

single-cycle pulse is defined as a single-cycle pulse with its duration approximately

the same as one Rydberg period of the Rydberg electron. With a medium duration

single-cycle pulse, the highest ionization probability is achieved when most of the

electron distribution is near the nucleus when the single-cycle pulse goes through

zero. This can be understood that an electron reverses velocity at the inner turn-

ing point at the same time as the electric field of a single-cycle pulse reverses [47].



116

Thus, a medium duration single-cycle pulse provides similar ionization properties as

a short duration single-cycle pulse, with respect to the probe of the electron spatial

distribution. It is similar to those many-cycle long pulse ionizations on Rydberg wave

packet experiments [139–141], where the Rydberg wave packets absorb energy and

get ionized when they are near the nucleus.

The type of Rydberg wave packet used in this chapter is the superposition of two

adjacent Rydberg eigenstates with a variable relative phase:

|ψ(ti)⟩ =
n3/2|nl⟩+ eiφ(n+ 1)3/2|(n+ 1)l⟩√

n3 + (n+ 1)3
, (6.18)

where φ = −(En+1 − En)ti + φ0. ti is the starting time of the pulse. The φ0 is

a controllable parameter between 0 and 2π, which gives the superposition phase of

wave packets at t = 0.

The two stationary states in Eq. (6.18) are not superposed with equal weight. The

n3/2 factor before the |nl⟩ state is due to the properties of radial wave functions of

hydrogenic eigenstates [9]

Rn(r) ∼ n−3/2f(r) at small radius r, (6.19)

where f(r) is an energy normalized radial function. This asymptotic behavior at

small radius can be used to add up the radial wave functions from |nl⟩ and |(n+1)l⟩

constructively or destructively at small radius. The wave packet in Eq. (6.18) can

thus have most of its radial distributions near the nucleus or far from the nucleus.

As an example, radial wave functions of the coherent superpositions of 15s and 16s

states are shown in Fig. 6.8. Experimentally, the n3/2 factor can be achieved by fine

tuning the frequency and width of a laser pulse used to generate the Rydberg wave

packet.

Several quantum calculations were performed to study the ionization probabilities

versus φ0, and the results can be found in Fig. 6.9. In the figure, the ionization

probabilities have huge differences at different superposition phase. At φ0 ≈ 0, the

wave packets add constructively at small radius, and the ionization probabilities are



117

15s

15s + 16s

15s - 16s

0 100 200 300 400 500 600 700 800

-0.05

0.00

0.05

0.10

 (a.u.)

R

ℓ(
)

(a
.u

.)

Figure 6.8. Radial wave functions of the hydrogen 15s, “15s + 16s”,
and “15s− 16s” states. Note that the 15s and 16s states do not have
the equal weight (1/

√
2) in the superpositions, see Eq. (6.18). The

“15s + 16s” represents a wave packet of φ0 = 0, while “15s − 16s”
represents φ0 = π.

at a maximum. At φ0 ≈ π, the wave packets add destructively at small radius. Most

of the electron probability is away from the nucleus, and the ionization probabilities

are at a minimum. The ionization probabilities satisfy simple cosine relations versus

the initial phase, and the fitting functions are given in the figure caption. Also, the

φ0-averaged ionization probabilities are the same as the weighted average ionization

probabilities for 15s and 16s. These properties can be derived from the coherent

superposition of the wave packets. Details for the ionization probability versus φ0

can be found in the Appendix Sec. 6.6.
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Figure 6.9. Ionization probabilities for 15s+ exp(iφ0)16s wave pack-
ets versus the superposition phase φ0 as given in Eq. (6.18). Figure
(a) describes a short duration pulse process with Fm = 2000 kV/cm
and tw = 606 a.u. Figure (b) describes a medium duration pulse
process with Fm = 60 kV/cm and tw = 3029 a.u., where the
pulse duration is approximately one Rydberg period for 15s state:
7.0 tw = TRyd ≈ 21206 a.u. The black dotted lines are weighted av-
erages of ionization probabilities for stationary 15s and 16s states,
separately. The averages are 11.7% and 13.1% for the two processes,
respectively. The red points are from quantum calculations, while
the red dashed lines are their fittings. The fitting functions are
0.116 + 0.112 cos(φ0 − 0.057) and 0.130 + 0.123 cos(φ0 − 0.245) for
the two processes, respectively. Details for the fitting functions can
be found in the Appendix Sec. 6.6.

As derived in the Appendix Sec. 6.6, the ionization probability versus superpo-

sition phase φ0 satisfies (assuming initial weights of the two stationary states are

approximately the same)

Pion ≃ P̄st + A cos(φ0 + φs), where Ae
iφs =

∑
l

∫ ∞

0

dϵ ⟨ψf1|ϵ l⟩⟨ϵ l|ψf2⟩. (6.20)

The P̄st is the φ0-averaged ionization probability. The |ψf1⟩ and |ψf2⟩ are continuum

wave functions ionized from the two stationary states in Eq. (6.18). The maximum
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Figure 6.10. Energy distributions for ionizations from 15s +
exp(iφ0)16s wave packets as introduced in Eq. (6.18). A short du-
ration single-cycle pulse with parameters in the caption of Fig. 6.9(a)
is used. The results are plotted for φ0 = 0, π, and averages of φ0

ranging from 0 to 2π.

ionization probabilities are slightly shifted from zero phase, where the shift φs of 0.057

and 0.245 radians are found. The small phase shift is the argument of the overlap

integral of continuum wave functions ionized from the two stationary states. The

depth of the ionization curve is determined by the amplitude of the overlap integral.

For both short and medium duration single-cycle pulse ionizations, the minimum

allowed ionization probability is very close to zero. This indicates that A ≃ P̄st, and

the overlap integral nearly reaches the maximum. As a comparison, the ionization

curve due to a medium duration single-cycle pulse is slightly deeper than that of a

short duration single-cycle pulse. In this case, the continuum wave functions ionized
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from two adjacent states due to a medium duration single-cycle pulse have a slightly

larger overlap than those due to a short duration single-cycle pulse.

Energy distributions of the ionized wave functions from wave packets with different

superposition phase φ0 are given in Fig. 6.10. In the calculations, short duration

single-cycle pulses are used. Pulse parameters and ionization probabilities can be

found in Fig. 6.9(a). Most of the ionized wave functions are at low energies and

the energy distribution is decreasing versus E. Since the majority of the electron

radial distributions from wave packet of φ0 = π are at the outer turning point, the

displacement-caused potential energy change by a short single-cycle pulse is much

smaller than that of the φ0 = 0 case. Thus, the energy distribution from φ0 = π

decreases much faster and earlier than that of φ0 = 0 and the φ0-averaged results.

Ionization probability from φ0 = 0 is at maximum, while φ0 = π is at minimum. It

can be proved that Pion(φ0)+Pion(φ0+π) = 2P̄st. This can be seen in the figure that

the φ0-averaged ionization probability is always the average of those from φ0 = 0 and

π, at all energies.

Additionally, scaling relations for ionizations from Rydberg wave packets are also

studied. Instead of |15s⟩ + eiφ0 |16s⟩ state, the initial wave packet is changed to

|30s⟩ + eiφ0 |31s⟩ and |45s⟩ + eiφ0 |46s⟩ states. Using the scaling relations given in

Eq. (6.14), the pulse parameters are scaled versus the principal quantum number n.

For all three wave packets given here, although ∆n = 1 is not scaled as n, curves of

ionization probabilities versus φ0 due to both short and medium duration pulses are

nearly the same as those in Fig. 6.9. For short or medium duration pulse, at t = 0,

only those electrons within a small radius near the nucleus can be ionized [55]. The

critical radius is proportional to the free electron shift in a field pulse, rc ∝ Fmt
2
w, and

is also scaled as n2. In all three wave packets |15s⟩+ eiφ0 |16s⟩, |30s⟩+ eiφ0|31s⟩, and

|45s⟩ + eiφ0 |46s⟩, the probabilities to find electron within a small radius (rc < 2n2)

are nearly the same, since they all have ∆n = 1. Thus, the curves of ionization

probability are also the same for all the three wave packets, and for both short and

medium duration pulses.
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Figure 6.11. Ionization probability from classical calculations versus
the radial position r of electron at t = 0. The electron is initiated at
energy of n = 15 and angular momentum of zero, where the distance
of the classical outer turning point is approximately 2n2 = 450 a.u.
See text for details of r. Short and medium duration pulses are defined
in the caption of Fig. 6.9. The radial distribution from a wave packet
of 15s − 16s with φ0 = π, as shown in Fig. 6.8 and Eq. (6.18), is
plotted as a reference. The radial distribution is plotted in arbitrary
unit.
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Classical calculations are performed to investigate the ionization probability versus

the radial distributions of wave packets. Electrons are initiated at the energy and

angular momentum of a 15s state. The pulse parameters for short and medium

durations pulses are defined in Fig. 6.9. For every rinit at t = −3.5 tw, two separate

classical trajectories are calculated. The first trajectory includes the field pulse and

the 1/r core Coulomb potential, while the second trajectory only considers the 1/r

core Coulomb potential. Then the ionization probability from the first trajectory

averaged over θ is plotted versus radial position at t = 0 from the second trajectory,

which is independent of θ. The ionization probability versus r at t = 0 can be found

in Fig. 6.11. This figure can be compared with Fig. 6.8, since φ0 in Eq. (6.18) gives

the radial distribution of wave packets at t = 0 when there is no single-cycle pulse.

For example, for the short pulse in Fig. 6.11, electrons only get ionized when they

have r ≲ 250 at t = 0. For the medium duration pulse, electrons can be ionized

when they are slightly farther away from the nucleus at t = 0, and the ionization

probability curve is smoother than that of a short pulse. Additionally, for a wave

packet of 15s − 16s with φ0 = π, illustrated as the green dotted line in Fig. 6.11,

the probability to find the electron within rc ≲ 250 a.u. is very small. The ionization

probabilities can be estimated from an integral

P̃ion,est =

∫
dr |ψ(r)|2Pion(r). (6.21)

For φ0 = π, the integral gives ionization probabilities of 0.3% for the short duration

pulse and 0.9% for the medium duration pulse. These values are very close to values

at the minima in the quantum calculations in Fig. 6.9.

The ionization probabilities from Rydberg wave packets at different superposition

phases can differ by a factor of 5 or more. A short or medium duration single-

cycle pulse can be used as highly efficient time-resolved probe to study the spatial

distributions of Rydberg wave packets.
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6.5 Conclusions

In this chapter, the scaling behavior for terahertz single-cycle pulse ionization

from a Rydberg atom was studied. Two different forms of single-cycle pulses were

used in this chapter, an asymmetric pulse [148] and a symmetric pulse [56]. A previ-

ous study [148] found discrepancies between the quantum and classical calculations

for single-cycle pulse ionizations of a Rydberg atom. Results from quantum calcula-

tions, classical calculations with a single value of n, and classical calculations using a

microcanonical ensemble treatment are compared in detail. In some critical cases of

over-the-barrier ionizations where the field strength is near the ionization threshold,

classical calculations with a spread of n give much better agreement with the quantum

calculations. The scalings for pulse parameters and other physical quantities versus

principal quantum number n were studied. With the scaled physical quantities, clas-

sical results with a single value of n are nearly perfectly scaled, but the quantum

results are not. Interferences in the correlated distributions of electron’s final energy

and emission angle were studied by quantum and semiclassical methods. It was found

that the oscillations of interference amplitudes scale as n.

Single-cycle pulse ionization from Rydberg wave packets were also studied. The

Rydberg wave packets were introduced as a superposition of |nl⟩ and |(n+1)l⟩ states

with different relative superposition phase. The ionization probabilities versus super-

position phase were studied for both short and medium duration single-cycle pulses,

and sinusoidal relations were found. The amplitude and argument of the overlap in-

tegral of ionized wave functions were discussed. The overlap integral determines the

depth and shift of the ionization curve. Additionally, ionization with scaled pulses

from Rydberg wave packets was also studied. Scaled pulses at higher n wave packets

yield nearly the same ionization curves as for lower n, for both short and medium

duration single-cycle pulse.
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6.6 Appendix: Wave packets ionization probabilities versus superposi-

tion phase φ0

The initial wave packet before the single-cycle pulse is given in Eq. (6.18):

|Ψi⟩ = c1|n1l⟩+ c2e
iφ0 |n2l⟩, (6.22)

where c1 and c2 are real amplitudes for the two states as given in Eq. (6.18) and φ0 is

the superposition phase of the wave packet. Since the Schrödinger equation is linear,

the final wave function after the single-cycle pulse can be written as

|Ψf⟩ = c1|ψf1⟩+ c2e
iφ0|ψf2⟩, (6.23)

where c1, c2, and φ0 are exactly the same numbers as those in Eq. (6.22). Here, the

|ψf1⟩ and |ψf2⟩ are the respective wave functions after single-cycle pulse ionization

for initial stationary states |n1l⟩ and |n2l⟩. The ionization probability for the wave

packet can be calculated as (|ϵ l⟩ is the energy-normalized continuum eigenstate)

Pion =
∑
l

∫ ∞

0

dϵ |⟨ϵ l|Ψf⟩|2

=
∑
l

∫ ∞

0

dϵ |⟨ϵ l|c1ψf1 + c2e
iφ0ψf2⟩|2

=
∑
l

∫ ∞

0

dϵ
[
c21|⟨ϵ l|ψf1⟩|2 + c22|⟨ϵ l|ψf2⟩|2 + c1c2e

iφ0⟨ψf1|ϵ l⟩⟨ϵ l|ψf2⟩+ c.c.
]

(6.24)

Note that integration over the first two terms is the weighted average of ionization

probabilities from the two stationary states, defined to be P̄st. Let the continuum

wave function projection be∑
l

∫ ∞

0

dϵ ⟨ψf1|ϵ l⟩⟨ϵ l|ψf2⟩ = Aeiφs , (6.25)
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where A is the real amplitude, and φs is the argument for the projection. The

ionization probability in Eq. (6.24) can be simplified as

Pion = P̄st + 2c1c2A cos(φ0 + φs). (6.26)

This explains that the φ0-averaged probabilities of Pion are always the same as the

weighted averages of the stationary state ionization probabilities. By comparing

Eq. (6.26) with wave packet ionization curves in Fig. 6.9, the projection phase φs

of the two continuum wave functions can be determined.

For c1, c2 from Eq. (6.18) at a large n, it can be shown that 2c1c2 ≃ 1. Thus,

Eq. (6.26) can be simplified as

Pion ≃ P̄st + A cos(φ0 + φs). (6.27)

The overlap amplitude A of the continuum wave functions, as given in Eq. (6.25),

significantly affects the depth of ionization probabilities versus φ0. When c1 = c2 =

1/
√
2, A ⩽ P̄st, which gives the upper bound of the overlap integral of the two

continuum wave functions.
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7. SUMMARY AND OUTLOOK

In this dissertation, we have discussed five published manuscripts in the field of AMO

physics.

In Chap. 2, the trapping energy and state mixing properties of Rydberg atom in

optical traps were discussed. Further directions on this project can be focused on the

special form of trapping lasers. For example, in Secs. 2.3.2 and 2.3.3, we presented

an optical trap with four parallel beams with their centers forming a square. This

model can be extended to n parallel beams forming an n-sided regular or irregular

polygon. The symmetries can effectively eliminate some crossing terms in the Wigner-

3j symbol, and make the trapping energy shift and state mixing demonstrate novel

properties.

In Chaps. 3, 4, and 5, we studied the two-electron correlations in an atom. We

mainly focused on the repulsive interactions between them during the post-collision

interaction (PCI). The PCI between them can cause rapid or negligible energy and

angular momentum exchanges, and leads to different final distributions. For example,

in Chaps. 4 and 5, we studied the PCI in two models: below-threshold photoexci-

tation followed by Auger decay, and sequential ionization. The PCI model can be

further extended to study the effects of other parameters, e.g. non-zero initial angular

momentum, different initial energies, etc. Another interesting two-electron result is

known as a frozen planetary configuration [151]. The frozen planetary configuration

can be achieved as follows: (1) excite the first electron to a highly excited state, with

small angular momentum, (2) excite the second electron to an excited state at a lower

energy when the first electron is near its outer turning point. The frozen planetary

configuration is classically stable, while a general three-body 1/r2 problem is usually

chaotic. However, there are two mechanisms that reduce the stability [151]. One is

the radiative transition, the transition rate for this model is proportional to log n/n5,
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where n is the principal quantum number. The other is the tunneling autoionization,

where the semi-classical tunnelling rate is proportional to exp(−S), where S is the ac-

tion. According to the classical scaling relation in Eq. (6.17), classical action scales as

S ∝ n. Thus, the autoionization rate drops exponentially as exp(−n). Estimates [151]

showed that, when the principal quantum number n is greater than 20, resonant tran-

sition dominates, and the lifetime of frozen planetary configuration can be up to a few

microsecond (10−6 s). This very interesting and novel nearly-stable frozen planetary

configuration can be studied using the two-electron correlation method and numerical

codes presented in this dissertation.

In Chap. 6, the ionization behavior from a Rydberg atom by a single-cycle pulse

is studied. Our research focused on the ionization probabilities from both Rydberg

stationary states and Rydberg wave packets. The ionization probability from a Ryd-

berg wave packet changes dramatically versus the superposition phase of the Rydberg

wave packet. This provides a highly efficient experimental tool to probe the radial

distribution of a Rydberg wave packet. Also, we studied the scaling behavior of

single-cycle pulse ionizations. All pulse parameters and the physical quantities of the

electron are scaled versus the principal quantum number n. One unexpected finding

in this project is that, when the pulse parameters are fixed and the field strength of

over-the-barrier ionization is near the ionization threshold, the ionization probabil-

ity is very sensitive to the initial energy of the electron. This is shown in Fig. 6.1.

Further studies of this ionization versus energy behavior can be extended to special

shapes of the laser pulse, three-, five-cycle pulses, or two-, multi-color pulses. The

initial angular momentum can also be changed to non-zero values, although there are

barely any differences from our single-cycle pulse calculations. As I am not certain

if over-the-barrier ionization is the dominant mechanism, a model potential instead

of the pure Coulomb potential can be used to study the ionization behavior at small

radius. Furthermore, since a short duration single-cycle pulse picks out electron dis-

tribution near the nucleus, a model potential in this case could provide more insights

on the field pulse ionization and different ionization results.
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Other than the above three projects. I also participated in two other projects

during my Ph.D. that are either unpublished or non-first-authored.

The first project is about cooling a hot electron plasma inside a microwave cav-

ity [152]. In this project, a hot electron plasma (∼ 104 K) is put into a microwave

cavity and trapped using a Penning-Malmberg trap. The cyclotron motion is tuned to

oscillate resonantly with the microwave cavity mode. In this process, electrons trans-

fer energy to the cavity, and are cooled to lower temperature (∼ 10 K) until a balance

between the external heating rate and the cooling rate is achieved. Experiments and

our numerical calculations have found that, using different transverse electro-magnetic

(TEM) cavity modes and different number of electrons, electron plasmas are cooled

at different cooling rates and achieved different final temperatures. The model can

be explained using the superradiance and subradiance theory [153], but they are well

beyond the scope of this dissertation. Further details about this project can be found

in [152].

The second project is to compare the speed of different time-dependent Schrödinger

equation solvers for a standardized laser field ionization problem. The results were

presented in the DAMOP 2018 meeting [154], and the manuscript is in preparation.

In this project, we are given a laser field ionization problem, and are asked to give

output on momentum distributions in the continuum at two different energies. Prof.

Brett Esry proposed a method to estimate the relative numerical error without know-

ing the exact answer. The estimation is based on “how fast” (the exponential order)

the numerical error decays versus explicitly chosen numerical parameters (grid size,

step size, etc). This provides a universal definition of accuracy among all partici-

pants, and provides a very helpful tool for our future numerical projects that need

convergence error estimations. Our Schrödinger equation solver used a higher order

implicit time propagator, the fourth order Padé approximation instead of the more

usual second order Crank-Nicolson propagator. The fourth-order Padé approximation

time propagator can be converted into the multiplication of two Crank-Nicolson-like

propagators. This made the programming much easier without the need to modify ex-
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isting codes using Crank-Nicolson propagators. Fourteen different numerical methods

were tested on the same unix workstation. The fastest 3 methods took 13 seconds, 16

seconds (our program), and 45 seconds to complete the task at the required accuracy.

The slowest 3 methods took 1/2 hour, 1/2 hour, and 1 hour.



130

REFERENCES

[1] J G Leopold and I C Percival. The semiclassical two-electron atom and the old
quantum theory. J. Phys. B: At. Mol. Opt., 13(6):1037, 1980.

[2] Gregor Tanner, Klaus Richter, and Jan-Michael Rost. The theory of two-
electron atoms: between ground state and complete fragmentation. Rev. Mod.
Phys., 72:497–544, Apr 2000.

[3] Luca Argenti, Renate Pazourek, Johannes Feist, Stefan Nagele, Matthias
Liertzer, Emil Persson, Joachim Burgdörfer, and Eva Lindroth. Photoioniza-
tion of helium by attosecond pulses: Extraction of spectra from correlated wave
functions. Phys. Rev. A, 87:053405, May 2013.
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[116] R. Dörner, H. Bräuning, J. M. Feagin, V. Mergel, O. Jagutzki, L. Spielberger,
T. Vogt, H. Khemliche, M. H. Prior, J. Ullrich, C. L. Cocke, and H. Schmidt-
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A. ATOMIC UNITS

In atomic, molecular, and optical physics, atomic units (a.u.) are more frequently

used than SI units. In atomic units, the following fundamental physical constants are

defined to be unity:

• Mass of electron me;

• Charge of electron e;

• Reduced Planck constant ℏ;

• Coulomb constant 1/(4πϵ0).

With the definitions above, there is a unique conversion between the atomic units

and SI units. The values of 1 a.u. of different physical variables in SI units can be

found as follows

Table A.1.
1 a.u. of physical variables in SI

dimension value in SI value in other units

mass 9.109×10−31 kg

charge 1.602×10−19 C

angular momentum 1.055×10−34 J·s

Coulomb constant 8.988×109 N·m2/C2

length 5.292×10−11 m 0.5292 Å

energy 4.360×10−18 J 27.21 eV

time 2.419×10−17 s

electric field 5.142×1011 V/m


