
TEST GENERATION AND RESYNTHESIS PROCEDURES

FOR TEST AND DIAGNOSIS QUALITY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Naixing Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Prof. Irith Pomeranz, Chair

School of Electrical and Computer Engineering

Prof. Raymond A. Decarlo

School of Electrical and Computer Engineering

Prof. Anand Raghunathan

School of Electrical and Computer Engineering

Prof. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Prof. Dimitrios Peroulis

Head of the School Graduate Program

iii

To my parents for their unconditional love and support

and to Yue.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Irith Pomeranz,

for her inspiration, encouragement and guidance throughout my Ph.D. study. Her

advices and feedback has been priceless. This work would not have been accomplished

without her guidance.

I am also greatly thankful to my lab mate Dr. Shraddha Bodhe for always being

there encourage me and give me valuable advices.

I also would like to thank Professor Raymond A. Decarlo, Professor Anand Raghu-

nathan and Professor Vijay Raghunathan for serving on my advisory committee. Par-

ticularly, I would like to thank Dr. Xijiang Lin and Dr. Brady Benware from Mentor,

A Siemens Business, Dr. Bo Yao, Dr. Srikanth Venkataraman, Dr. Enamul Amyeen

and Dr. Arani Sinha from Intel Corporation, Professor Sudhakar M. Reddy from

University of Iowa for their contributions to this work.

In addition, I would like to thank Semiconductor Research Corporation (SRC) and

National Science Foundation (NSF) for providing the grants to support this work.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

1 Introduction . 1

1.1 Delay Fault Testing . 1

1.1.1 Transition Delay Fault Model 1

1.1.2 Scan-based Testing for Transition Delay Fault 2

1.1.3 Overtesting and Functional Broadside Test 3

1.1.4 Contribution . 4

1.2 Defect Diagnosis . 5

1.2.1 Simulation-based Diagnosis . 5

1.2.2 Diagnosis for Multiple Defects 6

1.2.3 Contribution . 8

1.3 Systematic Defects Based on DFM guidelines 8

1.3.1 Testing Systematic Defects Based on DFM Guidelines 8

1.3.2 Contribution . 10

1.4 Organization . 12

2 Functional Broadside Test Generation Using a Commercial ATPG Tool . . . 13

2.1 Introduction . 13

2.2 Generation of Functional Broadside Tests 17

2.2.1 Test Generation . 17

2.2.2 Finding Reachable States and Constructing Rnext 19

2.2.3 Termination Conditions . 20

2.2.4 Multi-cycle Test Generation . 21

vi

Page

2.3 Experimental Results . 21

3 Improving the Resolution of Multiple Defect Diagnosis by Removing and
Selecting Tests . 27

3.1 Introduction . 28

3.2 Background . 31

3.3 Procedure Based on Test Removal . 32

3.4 Procedure Based on Test Selection . 33

3.5 Experimental Results . 36

4 Logic Resynthesis for Avoiding Undetectable Faults Based on DFM Guide-
lines in a Cell-Based Design . 42

4.1 Introduction . 43

4.2 Background . 46

4.3 Resynthesis Procedure . 48

4.4 Backtracking Procedure . 52

4.5 Experimental Results . 54

5 Layout Resynthesis by Applying DFM Guidelines to Avoid Low-Coverage
Areas of a Cell-Based Design . 59

5.1 Introduction . 60

5.2 Undetectable Faults Related to DFM Guideline Violations 63

5.2.1 Analysis of DFM Guideline Violations 64

5.2.2 Detectable Defects Modeled by Undetectable Faults 64

5.2.3 Circuit Areas with Poor Coverage 67

5.2.4 Coverage for Faults with Weighted DFM Guidelines 69

5.3 Layout Resynthesis . 71

5.3.1 Fixing DFM Guideline Violations 71

5.3.2 Layout Resynthesis Procedure 72

5.4 Experimental Results . 74

5.4.1 Layout Resynthesis Procedure 76

5.4.2 Circuits with Test Points . 79

vii

Page

5.4.3 Circuits after Logic Resynthesis 82

5.4.4 Weighted DFM Guidelines . 83

5.4.5 Circuits with High Cell Utilization 84

6 Summary . 86

REFERENCES . 88

VITA . 96

PUBLICATIONS . 97

viii

LIST OF TABLES

Table Page

1.1 Multiple Defects Cause Large Candidate Fault Set 7

2.1 Multi-cycle Functional Broadside Tests with Unconstrained Input Vectors . 23

2.2 Fault Coverage Achieved with All-0 State 25

2.3 Hamming Distance . 26

3.1 Experimental Results (Same Coverage and Precision) 39

3.2 Experimental Results (Different Coverage or Precision) 39

3.3 Statistical Analysis . 40

4.1 Clustered undetectable faults . 48

4.2 Experimental results . 57

5.1 DFM Guideline Violations . 65

5.2 Uncovered Short Defects . 67

5.3 Layouts with 70% Cell Utilization . 76

5.4 Layout Resynthesis (Benchmarks) . 78

5.5 Layout Resynthesis (OpenSPARC T1) . 79

5.6 Circuits with Test Points . 80

5.7 Circuits after Logic Resynthesis . 82

5.8 Weighted DFM Guidelines . 83

5.9 Circuits with Higher Cell Utilization . 85

ix

LIST OF FIGURES

Figure Page

1.1 Example of a transition delay fault. 2

1.2 Timing waveform of a broadside test. 3

2.1 Functional Broadside Test Generation Flowchart. 17

4.1 Adjacent Gates. 47

5.1 Potential short defects. 65

5.2 Undetectable external faults related to DFM guideline violations in sparc fpu.68

5.3 Coverages for the undetectable external faults in sparc fpu. 69

5.4 Fixing a DFM guideline violation. 71

5.5 Coverages of the original neighborhoods of undetectable faults in sparc fpu
after resynthesis. 80

x

ABSTRACT

Wang, Naixing Ph.D., Purdue University, December 2019. Test Generation and
Resynthesis Procedures for Test and Diagnosis Quality. Major Professor: Irith
Pomeranz.

Testing and diagnosis are performed to detect and identify manufacturing failures

in integrated circuits. In this dissertation, we focus on three important issues in test

and diagnosis. The solutions to these issues are implemented using commercial EDA

tools. No modification to the commercial tools is required. Thus, they can be easily

applied to complex designs with state-of-the-art features. We first address overtesting

of delay faults. Overtesting may occur when the circuit is brought into states that

cannot be reached during functional operations. We address this issue by generating

functional broadside tests using reachable states as scan-in states. Next, we address

the issue of improving the resolution of multiple-defect diagnosis by ignoring certain

tests. A feature of commercial defect diagnosis tools is used to avoid losing accuracy.

Last, we address the issue of avoiding undetectable faults that model potential sys-

tematic defects caused by design-for-manufacturability (DFM) guideline violations in

a cell-based design. We demonstrate that these undetectable faults tend to cluster

in certain areas of the circuit, resulting in circuit areas with low coverage. The miss-

ing tests may allow detectable defects in these areas to escape detection. This can

impact the defective-parts-per-million (DPPM) and reliability significantly since the

defects are likely to be systematic. We address this issue in a cell-based design by

eliminating the undetectable faults related to DFM guidelines that are internal and

external to cells. We first propose a logic resynthesis procedure to eliminate large

clusters of undetectable faults that are internal to cells. Next, we propose a layout

xi

resynthesis procedure that eliminates undetectable faults external to cells by making

fine changes to the layout so as to fix the corresponding DFM guideline violations.

1

1. INTRODUCTION

Aggressive scaling of integrated circuit (IC) technologies continues to decrease de-

vice sizes and increase circuit complexity. The scaling of integrated circuit (IC)

technologies has brought about many benefits including faster devices, lower power

consumption, reduced chip sizes and advanced functionality. However, the continuous

shrinking of device sizes also increases the systematic imperfection and random varia-

tion in a highly complex manufacturing process. As a result, for each smaller process

technology node, the chips are increasingly impacted by deviations in manufactured

patterns from the intended design. This can impact the yield and defective-parts-

per-million (DPPM) significantly. As the occurrence of defects is expected to be

prominent, it is more important than ever to perform testing and diagnosis with high

quality.

In this dissertation, three important issues related to delay fault testing, defect

diagnosis and systematic defects based on design-for-manufacturability (DFM) guide-

lines are discussed to improve the quality of testing and diagnosis. The solutions to

these issues are implemented using commercial EDA tools. No modification to the

commercial tools is required. Thus, they can be easily applied to complex designs

with state-of-the-art features.

1.1 Delay Fault Testing

1.1.1 Transition Delay Fault Model

Defects that cause faulty timing behaviors of a circuit are modeled by delay faults.

One of the most widely used delay fault models is transition delay fault model [1].

The transition fault model captures timing-related defects that cause slow-to-rise

2

transitions or/and slow-to-fall transitions at gate pins in the circuit. Under transition

delay fault model, it is assumed that the extra delay caused by a transition fault at a

gate pin is large enough such that the delay of every path passing through this gate

pin exceeds the desired clock period.

For illustration, in Fig. 1.1, a slow-to-rise transition fault is at the output Y of a

two-input AND gate. Input B has a constant logic value 0. The logic value of input

A changes from 0 to 1 at t1. If the circuit is fault-free, the logic value of Y should be

changed to 1 at the required time point t2, where t2 − t1 is the desired clock period.

However, due to the slow-to-rise transition fault at Y, the logic value of Y remains 0

at t2. Therefore, the circuit cannot operate correctly.

Fig. 1.1.: Example of a transition delay fault.

1.1.2 Scan-based Testing for Transition Delay Fault

Sequential circuits contain state elements such as latches and flip-flops. The ex-

istence of state elements increases the complexity of generating tests for the circuit.

In order to improve the testability of a sequential circuit, scan structure is inserted

by replacing the state elements with scannable state elements (scan cells) and then

stitching the scan cells into scan chains [2]. The scan cells can then be used for

controlling circuit states and observing test responses.

To test a transition fault in a scan-based circuit, a two-pattern test are required.

We denote a two-pattern test by 〈s0, a0〉 and 〈s1, a1〉. s0 and s1 are state values. a0

and a1 are primary input values. The first pattern 〈s0, a0〉 is used for initializing

3

the target fault site. The second pattern 〈s1, a1〉 is used for activating the fault by

launching a transition at the fault site, and propagating the response to a primary

output or state element. If the captured value indicates that the logic involved does

not transit as expected during the desired clock period, the transition fault is expected

to be present at the target fault site.

One of the widely used types of test for detecting transition delay fault is broadside

test [3]. The advantage of broadside test is that it does not require scan enable signal

to be shifted at-speed. Therefore, the scan enable does not need to be routed as a

timing critical clock. Under a broadside test, s0 is the initial state that is scanned

into the scan cells, and s1 is determined by the response of the circuit to 〈s0, a0〉.

A broadside test can thus be denoted by 〈s0, a0, a1〉. The circuit is tested by first

shifting in the scan-in state s0 at slow speed in test mode. Two at-speed clock cycles

are then pulsed for launch transition and capture response in functional mode. Once

the test response is captured, the scan-out state can be shifted out at slow speed in

test mode. The timing requirement for a broadside test is illustrated in Fig. 1.2. Note

that the dead cycle is used for guaranteeing that the scan enable signal is off, and it

is optional.

Fig. 1.2.: Timing waveform of a broadside test.

1.1.3 Overtesting and Functional Broadside Test

Scan-based testing may cause overtesting of transition faults when the circuit

is brought to states that cannot be reached during functional operations [4]. The

4

existence of overtesting can fail a good circuit, and thus resulting in significant yield

loss. Specifically, overtesting can impact the yield in the following ways.

• Overtesting can cause non-functional operations, which can lead to a higher

switching activity [5,6]. This can result in excessive current demands, and thus

resulting in voltage drops that slow down the circuit and cause a good circuit

to fail.

• Overtesting may activate slow logic that can only be activated during non-

functional mode, and thus causing the circuit to appear slower [4].

Thus, detecting transition faults under functional operation conditions is necessary

in order to address overtesting and avoid unnecessary yield loss.

Different strategies to address overtesting are described in [4–15]. The solutions

proposed in [4–8, 12–15] use functional constraints during test generation to avoid

non-functional states and the resulting high current demands. These methods do not

guarantee functional operation conditions during the functional capture cycles where

delay faults are detected, and therefore, do not guarantee that overtesting can be

avoided.

The approaches described in [9–11] create functional operation conditions during

the functional capture cycles of every generated test by using reachable states as

scan-in states. The generated tests are referred to as functional broadside tests, as

the functional operations are guaranteed when applying these tests.

1.1.4 Contribution

The procedures for generating functional broadside tests from [9–11] are imple-

mented using academic ATPG tools. The part of contribution of this dissertation is

demonstrating that it is possible to use a commercial ATPG tool for generating func-

tional broadside tests. In particular, a commercial ATPG tool is used for addressing

the challenge of identifying reachable states that are useful as scan-in states efficiently.

5

This will allow functional broadside tests to be generated for state-of-the-art circuits

with features that are not handled by academic tools.

1.2 Defect Diagnosis

1.2.1 Simulation-based Diagnosis

After generating a test set, the testing of a circuit is accomplished by applying the

tests to this circuit on an Automatic Test Equipment (ATE). If the observed responses

and the expected responses to all the tests in the test set are the same, then the circuit

under test passes the test, otherwise it fails. For circuits that fail during testing, it is

important to identify the locations and the root causes of the failures, so as to achieve

a fast yield ramp up. For this purpose, the differences between the observed and the

expected responses are recorded in a fail-log.

Defect diagnosis is then carried out to analyze the fail-log of every failing circuit.

The aim of defect diagnosis is to determine the root causes in the defective circuits.

With a high-quality defect diagnosis procedure, yield ramp up can be achieved more

quickly. Typically, The output of defect diagnosis is a list of fault candidates that are

identified as the potential causes of the failing circuit.

One of the wildly used diagnosis procedures is based on effect-cause fault simula-

tion [16]. The similar procedure is also used in leading commercial defect diagnosis

tools. The procedure can be summarized as follows.

1. Perform path-tracing to obtain an initial candidate list by analyzing all the

failing tests. An initial candidate fault is identified if it satisfies the following

requirements:

• The fault resides in the fan-in cone of an affected observe point of a failing

test.

• There exists a parity-consistent path from the fault site to the affected

observe point.

6

• If a failing test has more than one affected observe points, the fault must

reside in the intersection of all the fan-in cones of all the affected observe

points. This is based on the single-defect assumption, such that, for a

failing test, only one defect is activated, and the corresponding faulty re-

sponses are observed.

2. Perform fault simulate for each fault in the initial candidate list to see if it

perfectly explains any of the failing tests. If so, assign it a weight equaling to

the number of tests it explains. Store the candidate fault with the greatest

weight, and exclude the failing tests explained by it for consideration.

3. The procedure terminates when all the failing tests have been explained, or all

the initial candidate faults have been examined. Rank the obtained candidate

faults using their weights obtained in Step 2, and report the candidate fault list.

1.2.2 Diagnosis for Multiple Defects

In order to collect additional information about the candidate faults obtained

during diagnosis, failure isolation is typically performed through optical and electrical

physical tools after the defect diagnosis. Physical failure analysis is the last step

in this process to pinpoint the defects or the root causes of failures in the circuit,

by taking a defect sample through a scanning electron microscope or transmission

electron microscope. Typically, physical failure analysis is applied only if the number

of candidate faults small enough, as the process of physical failure analysis is very

time-consuming and expensive. However, large sets of candidate faults are typically

obtained in the case where multiple defects are present in a circuit, which makes it

impossible for physical failure analysis.

High defect densities are very common due to very fine geometries and lithography

pushed to its limit with multi-patterning. While defect densities improve as the

process matures, multiple defects are prevalent until the process yield reaches very

7

high mature levels. The reason that the existence of multiple defects can cause large

candidate fault sets is shown next.

The interactions among the defects that are present together in the circuit may

result in an output response that is difficult for the defect diagnosis procedure to

analyze. This occurs, for example, if the circuit contains multiple defects, and the

interaction among them creates output responses that any single defect in the circuit

cannot create alone. Considering a defect diagnosis procedure that is based on a

fault model, even if the fault model used perfectly matches every defect in the circuit

alone, the procedure may not be able to interpret the joint response of the defects to

a particular test. This is illustrated in Table 1.1. In this case, two defects are present

in the circuit, and they can be modeled by faults f0 and f1 respectively. Suppose that

the output responses of f0 and f1 under test t are O0 and O1, and the joint response

of them is O2. If there exists another fault f2 that can produce a output response

O2 under test t, the defect diagnosis procedure will conclude that f2 is likely to be

present in the circuit. When this happens multiple times during defect diagnosis, a

large candidate fault list can be obtained.

Table 1.1.: Multiple Defects Cause Large Candidate Fault Set

Candidate faults Response under t

f0 O0

f1 O1

f0 and f1 O2

f2 O2

In order to address this issue, the procedures described in [17–19] consider to

use reduced test sets for diagnosis, so as to allow the defect diagnosis procedure to

compute a more accurate candidate fault set. As a result, the overall defect diagnosis

quality can be improved.

8

1.2.3 Contribution

The procedures from [17–19] reduce the number of candidate faults to a manage-

able number for physical failure analysis in cases where large candidate fault sets are

obtained. However, they may lose the candidate faults that model the defects that

are present in a faulty chip. This is inevitable with the defect diagnosis tool they use.

In addition, they rely on the ability to modify the defect diagnosis tool, which is not

possible for the usage of a commercial defect diagnosis tool.

As part of the work in this dissertation, we develop a new procedure that reduces

the number of candidate faults obtained for multiple-defect diagnosis by ignoring

certain tests. The main contribution of the new procedure is the following.

• The new procedure does not need to modify the defect diagnosis tool at source

code level. This is appropriate when a commercial tool is used for defect diag-

nosis, and the source code is not available.

• The new procedure uses a partition of the candidate faults into subsets, so as to

avoid losing the ones that match the defects present in the circuit. This feature

is provided by commercial defect diagnosis tools. Avoiding losing the candidate

faults matching the real defects is crucial when physical failure analysis is per-

formed. It helps pinpoint more of the defects that are present in the circuit.

It also helps avoid spending physical failure analysis effort on candidate faults

that do not model any defects in the circuit.

1.3 Systematic Defects Based on DFM guidelines

1.3.1 Testing Systematic Defects Based on DFM Guidelines

The gap between the feature size and wavelength is increasing due to continuous

shrinking of process technology. Due to the drawing of sub-wavelength feature sizes in

lithography processes, deformities typically occur in the taped-out chips. As a result,

for each smaller process technology node, the chips are increasingly impacted by

9

deviations in manufactured patterns from the intended design. In particular, certain

layout features are more difficult to manufacture than others, and are more likely

to cause circuit failures. When such features are present multiple times in a chip,

they can result in repeated or systematic defects, which can impact the yield and

DPPM significantly [20–25]. Due to modeling errors and algorithmic inaccuracies in

removing the resulting systematic variations, process-related corrective actions using

OPC/RET techniques are not sufficient for acceptable yield and DPPM [26]. Thus,

appropriate interventions on design side are inevitable so as to remedy the potential

manufacturing issues and address the systematic defects.

Such design interventions are formulated as design rules and DFM guidelines.

Design rules are mandatory, and must all be applied when designing the chip. DFM

guidelines are typically taken as recommendations, and they are adhered to when

possible to improve the quality of the design within the constraints of area, delay and

power. When DFM guidelines are not adhered to, potential systematic defects may

occur. The relationship between DFM guideline violations and potential systematic

defects was discussed in [27–29]. In all these works, the layout sites where DFM

guidelines are violated are first pinpointed. The affected transistors are then identified

at the schematic level. The expected defect behaviors are translated into gate-level

logic faults by using switch-level simulation. Test patterns are generated to target

the resulting logic faults so as to avoid potential test holes.

Among the logic faults resulting from DFM guideline violations, there are un-

detectable faults. The clustering of undetectable faults related to DFM guideline

violations in certain areas of the circuit can impact the coverage for the potential

systematic defects in these areas. The missing tests may allow detectable defects in

these areas to escape detection. This can impact the yield and DPPM significantly.

10

1.3.2 Contribution

As part of the work in this dissertation, we first demonstrate that the undetectable

faults caused by DFM guideline violations tend to cluster in areas of the circuit,

resulting in circuit areas with low coverage for potential systematic defects. In order

to improve the coverage of the circuit for potential systematic defects caused by DFM

guideline violations, we propose two procedures based on logic and layout resynthesis

respectively. The procedures are developed for cell-based designs. For this discussion

we distinguish between faults that are internal to the standard cells (internal faults),

and faults that are external to the standard cells (external faults).

First, we propose a procedure that is based on logic resynthesis followed by phys-

ical design process to eliminate undetectable internal faults. In this process of this

procedure, the large clusters of undetectable faults related to DFM guideline viola-

tions are eliminated, and thus the coverage of the circuit for potential systematic

defects is improved. Specifically, the procedure targets clusters of potential system-

atic defects related to DFM guidelines when the clusters may remain uncovered. It

leaves other areas unaffected by logic resynthesis. This is important for allowing the

design to be implemented in the constraints of delay, power and area.

The proposed logic resynthesis procedure is based on the fact that every time a

gate, or an instance of a standard cell, is used in the circuit, it introduces the same

internal faults caused by DFM guideline violations. The procedure eliminates the un-

detectable internal faults by resynthesizing the circuit with standard cells containing

fewer internal faults. The procedure does not require to modify the cell library, but

only uses different standard cells from the same cell library. The total number of un-

detectable internal and external faults is only allowed to decrease monotonically when

applying the procedure. Hence, the increase in circuit coverage and the reduction in

the number of undetectable faults related to DFM guideline violations are significant

when undetectable internal faults are eliminated by logic resynthesis.

11

Next, we propose a layout resynthesis procedure that makes fine changes to the

layout so as to improve the coverage of areas with low coverage because of the presence

of undetectable external faults. The proposed layout resynthesis procedure eliminates

undetectable external faults by fixing the DFM guideline violations that lead to them.

The procedure prefers to eliminate faults whose effect on the circuit coverage is more

significant. The DFM guideline violations are fixed by automatically changing the

layout with the help of a place and route tool. The procedure maintains the same

critical path delay, power consumption and die area when making changes to the

layout.

The layout resynthesis method of the proposed procedure is not the main con-

tribution of the proposed procedure. The contribution is using DFM guidelines to

identify areas of the circuit with low coverage, and improving their coverage with the

help of layout resynthesis. From a test point of view, we demonstrate which DFM

guideline violations need to be fixed first so as to improve the coverage for potential

systematic defects. As part of this solution, we suggest a layout-based coverage metric

that can be used for identifying areas with low coverage.

Both two resynthesis procedures described above can be embedded into a stan-

dard cell based design flow as follows. In a cell based design flow, after the initial

design, several iterations of incremental logic and physical design processes are typi-

cally required for satisfying the design constraints of delay, power and area. Both two

procedures are iterative, and can thus fit within the overall iterative design process.

In particular, an iteration of the design process can include one or more iterations

of the proposed procedures to eliminate undetectable faults in poorly covered circuit

areas, and improve the coverage for potential systematic defects in these areas. For a

large chip, to maintain an acceptable computational effort, the proposed procedures

can be applied to each logic block separately.

12

1.4 Organization

This dissertation is organized as follows. Chapter 2 describes the functional broad-

side test generation procedure to address the overtesting of delay faults. Chapter 3

describes the procedure to improve the quality of multiple defect diagnosis by re-

moving and selecting tests. Chapter 4 and Chapter 5 describe the logic and layout

resynthesis procedures for avoiding undetectable faults caused by DFM guideline vi-

olations respectively. The summary of this dissertation is shown in Chapter 6.

13

2. FUNCTIONAL BROADSIDE TEST GENERATION

USING A COMMERCIAL ATPG TOOL

c©2017 IEEE. Reprinted, with permission, from N. Wang, B. Yao, X. Lin and I.

Pomeranz, “Functional Broadside Test Generation Using a Commercial ATPG Tool,”

in Proceedings of the IEEE Computer Society Annual Symp. on VLSI, Jul 2017. doi:

10.1109/ISVLSI.2017.61

Scan-based tests may lead to overtesting of delay faults by bringing a circuit to

states that the circuit cannot enter during functional operation. Functional broadside

tests address this issue by using reachable states as scan-in states. Different strate-

gies for generating functional broadside tests have been studied and implemented by

academic tools. The main challenge that these procedures address is the identifica-

tion of reachable states that are useful as scan-in states. This chapter describes the

generation of functional broadside tests using a commercial test generation tool. Our

results demonstrate that it is possible to generate functional broadside tests with-

out requiring any modifications to the commercial tool, and using the tests that the

tool produces to obtain reachable states. This is expected to enable the generation

of functional broadside tests for state-of-the-art designs that cannot be handled by

academic tools. To demonstrate this point, we apply the procedure to two large logic

blocks of the OpenSPARC T1 microprocessor.

2.1 Introduction

The rapid decrease of geometry size and increase of clock frequency in ICs have

lead to a growing of timing-related defects. These timing-related defects can generally

14

be modeled by delay faults. One of the widely used delay fault models is the transition

fault model.

Scan-based tests may cause overtesting of delay faults when the circuit is brought

to states that cannot be reached during normal functional operation [4]. This can

cause yield loss in the following ways. (1) Non-functional operation may lead to a

higher switching activity, which will cause excessive current demands [5, 6]. These

current demands may lead to voltage drops that slow down the circuit and cause a

good circuit to fail. (2) Slow logic that can only be activated during non-functional

operation may cause the circuit to appear slower [4]. Based on theses observations,

detecting delay faults under functional operation conditions is necessary in order to

avoid unnecessary yield loss.

Different strategies to address overtesting are described in [4–15]. To reduce the

current demands, [5] and [6] describe solutions for generating scan-based tests with low

switching activity. In [7] and [8], methods are proposed to avoid detecting functionally

untestable faults. The methods in [12–14] apply functional constraints extracted

from the circuit to avoid unreachable states. The tests generated by [12–14] are

called pseudo-functional tests since the functional constraints may not avoid all the

unreachable states. Pseudo-functional tests are also generated in [15]. These solutions

do not guarantee functional operation conditions during the functional capture cycles

where delay faults are detected, and therefore, do not guarantee that overtesting will

be avoided.

The test sets in [9–11] create functional operation conditions during the functional

capture cycles of a test by using reachable states as scan-in states. In [9] and [10], the

methods target circuits that can be synchronized; while in [11], the method targets

circuits with a hardware reset state. Two-cycle broadside tests are generated in [10]

and [11]. The tests are referred to as functional broadside tests.

Functional constraints on primary input sequences exist when a circuit is embed-

ded in a design. To simplify the generation of functional broadside tests, the test

generation procedures typically assume that the primary input sequences are uncon-

15

strained during functional operation. We make the same simplifying assumption in

this work.

With reachable scan-in states and unconstrained primary input vectors, the state

transitions caused by a functional broadside test that is generated by the procedure

from [10] or [11] can occur during functional operation. Delay faults detected by these

tests can also be activated during functional operation, and the switching activity can

occur during functional operation. Therefore, the tests avoid the unnecessary yield

loss described before.

We denote a broadside test by 〈si, a0, a1〉, where si is the scan-in state, and a0 and

a1 are primary input vectors that are applied during two functional capture cycles.

In a functional broadside test, si is a reachable state, and the state transitions from

si under a0 and then a1 can be obtained during functional operation as well.

The procedures for generating functional broadside tests from [10, 11] are imple-

mented using academic tools. The goal of this work is to show that it is possible to

use a commercial tool for implementing the generation of functional broadside tests.

In particular, a commercial tool is used for addressing the challenge of identifying

reachable states that are useful as scan-in states efficiently. This will allow functional

broadside tests to be generated for state-of-the-art circuits with features that are not

handled by academic tools.

This chapter describes an implementation of a functional broadside test generation

procedure that is based on the procedure presented in [11] using a commercial ATPG

tool. The procedure is applied to two large logic blocks of the OpenSPARC T1

microprocessor to demonstrate its applicability to such designs.

The test generation procedure described in this chapter starts from a single known

reachable state denoted by sr. For circuits with hardware reset, sr is the reset state.

For circuits that are synchronized by applying a synchronizing sequence, sr is entered

after applying the synchronizing sequence. Similar to the procedure in [11], we use

the all-0 state as sr.

16

The test generation procedure is iterative. In every iteration, it uses a set of

reachable states Rnext as scan-in states for functional broadside tests. Initially, Rnext

contains only sr. In an arbitrary iteration, the procedure uses the commercial tool to

generate functional broadside tests with scan-in states from Rnext. The scan-out states

of the generated tests, which are also reachable states, are used for reconstructing

Rnext for the next iteration. Thus, the commercial tool is used for test generation as

well as for identifying new reachable states.

The commercial tool can generate tests with several additional features that are

also useful for functional broadside tests. We discuss these features next. In all the

cases, we rely on the commercial tool to produce tests with the additional features.

The limitations of ATEs may require the input vectors applied during different

functional capture cycles of a broadside test to be equal. The commercial tool can

be applied with this constraint.

The studies in [30–32] have demonstrated that the number of clock cycles needed

for test application, as well as the test data volume, can be reduced significantly with

multi-cycle tests. This was shown for functional broadside tests in [32]. Multi-cycle

tests were also used in [33]. We denote an l -cycle broadside test by 〈si, a0, ..., al−1〉 ,

where si is the scan-in state, and a0, ..., al−1 are primary input vectors that are applied

during l consecutive functional capture cycles. It is possible to use the commercial tool

for generating multi-cycle tests. The commercial tool is also used for fault simulation

of multi-cycle tests.

We focus on the use of the commercial tool for the generation of multi-cycle

functional broadside tests with unconstrained primary input vectors, for the following

reasons. (1) Two-cycle tests are a special case of multi-cycle tests, and the procedure

we develop can be used for generating two-cycle tests as a special case. (2) In addition

to providing test compaction, the use of multi-cycle tests reduces the number of calls

to the commercial tool during the iterative test generation procedure. This reduces

the runtime. (3) Equal primary input vectors reduce the fault coverage achievable for

benchmark circuits.

17

2.2 Generation of Functional Broadside Tests

The test generation procedure from [11] iterates through a process where it gener-

ates functional broadside tests and identifies new reachable states. Fig. 2.1 presents

the structure of the functional broadside test generation procedure. We implement

the parts of the procedure around the commercial ATPG tool using TCL, Python, and

C shell language. In addition, the commercial tool is used whenever fault simulation

or logic simulation is needed.

Fig. 2.1.: Functional Broadside Test Generation Flowchart.

The procedure maintains a set of target faults that is denoted by Φ. As tests are

generated, Φ is simulated with fault dropping. The procedure terminates when Φ is

empty, or when certain other termination conditions are satisfied.

In the following subsections of this section, we describe the details of this proce-

dure. In subsection 2.2.1, we describe the details of test generation. In subsection

2.2.2, we describe the details of finding reachable states to construct Rnext. In subsec-

tion 2.2.3, we describe the termination conditions. In subsection 2.2.4, we describe

our strategy for generating multi-cycle tests.

2.2.1 Test Generation

In this part, we describe the procedure for generating functional broadside tests

using the commercial tool. Suppose that Rnext contains n reachable states, denoted

18

by s0, s1, ..., sn−1. For every state si from Rnext, the procedure needs to be able to call

the commercial tool to generate functional broadside tests with scan-in state si.

There are two ways to specify a scan-in state for the commercial tool. The first is

through ATPG constraints on the values of the state variables. This can be done using

a command to specify the constrained values of the state variables before performing

test generation. This approach turned out to be slow. In particular, it can only use

one reachable state to generate functional broadside tests in each call. A significantly

faster approach, which we used for our implementation, is to use what is called the

Named Capture Procedure (NCP) [34].

NCP was originally introduced for explicitly defining the legal relationship between

external and internal clock sequences, and controlling the complex clock-generator

circuits. In this work, we use an NCP to define a scan-in state by specifying a scan-in

value for every scan cell. In addition, we use NCP to specify the number of functional

capture cycles in a test. We use multiple NCPs in each call to the commercial tool.

This makes it possible to use several reachable states as scan-in states in each call.

The number of NCPs we use in a call to the commercial tool is denoted by m.

The number of capture cycles is denoted by l, and it is the same in all the m NCPs.

The selection of values for m and l is described later. For each call, we use the first

m reachable states s0, s1, ..., sm−1 from Rnext to define NCPs. If there exist fewer than

m reachable states in Rnext, we use all of them. With these m NCPs, the commercial

tool generates l -cycle functional broadside tests to detect as many faults from Φ

as possible. The set of tests that is returned is denoted by Ψcur. We apply fault

simulation with fault dropping of Φ under Ψcur. We also add the tests to a test set

denoted by Ψ . We then remove s0, s1, ..., sm−1 from Rnext.

The test generation procedure described above is shown next.

19

Procedure 2.1 Test Generation with Rnext

1: Define m NCPs for the first m reachable states s0, s1, ..., sm−1 in Rnext.
2: Use the commercial tool to generate functional broadside tests for the faults in Φ

with the NCPs defined in step 1. Collect the generated tests into Ψcur.
3: Run fault simulation of Φ under Ψcur, and remove the detected faults from Φ. Add
Ψcur to Ψ .

4: Remove s0, s1, ..., sm−1 from Rnext.

2.2.2 Finding Reachable States and Constructing Rnext

In this part, we describe the procedure we use to update the set of reachable states

Rnext for the next iteration.

Considering the tests that the commercial tool generates, the procedure collects

the scan-out states, and places them in a set denoted by Rraw. The scan-out state

of a functional broadside test is a reachable state for the following reason. With a

reachable scan-in state, the test takes the circuit through state-transitions that the

circuit can make during functional operation. Therefore, the circuit visits reachable

states during the test. This includes the final state, which is the scan-out state of the

test. Although all the states that the circuit visits during a functional broadside test

are reachable states, we only use the scan-out state because it is available after fault

simulation, while extracting other states requires additional simulations. In addition,

these states have no special features compared with the scan-out states. Therefore,

using these states does not increase the fault coverage.

To avoid using the same reachable states in different iterations, the procedure

maintains a set called Rused that includes all the reachable states that it has used.

For the next iteration, the procedure includes in Rnext every state from Rraw that is

not included in Rused.

If Rnext is empty, we need to find more reachable states using a different process.

Different strategies for finding reachable states have been described in [9] and [11].

The strategy we use here is the following.

20

For every state si in Rnext, we apply a preselected number r of random input

vectors v0, v1, ..., vr−1. We simulate each pattern, denoted by 〈si, vk〉, to find a next-

state, which is also reachable. The state is added to a set denoted by Rsim. The states

in Rsim that are not included in Rused are added to Rnext. If Rnext is empty after using

Rsim, we use the states in Rsim to generate additional reachable states using the same

process with random primary input vectors. We only apply this process once again.

It does not indicate all the reachable states have beeen visited if Rnext is empty after

applying this process. However, it is desirable to terminate this process after one

iteration, in order to limit the runtime.

The procedure described above is shown next. The procedure stops when Rnext is

not empty to allow the test generation process to continue to the next iteration. The

test generation process stops if Rnext is empty after Procedure 2.2 terminates.

Procedure 2.2 Finding Reachable States and Constructing Rnext

1: For each newly generated test in Ψcur, add its final state to Rraw.
2: For each state in Rraw, add it to Rnext and Rused if it is not included in Rused.
3: If Rnext is not empty, stop.
4: Simulate each state currently in Rraw with random input vectors v0, v1, ..., vr−1

and add the states into Rsim.
5: Add the states in Rsim that are not in Rused into Rnext and Rused.
6: If Rnext is not empty, stop.
7: Repeat steps 4, 5 and 6 with Rsim.
8: Stop.

2.2.3 Termination Conditions

The test generation procedure terminates if or Rnext (after the application of Pro-

cedure 2.2) are empty. In addition, the procedure terminates when it appears that

the fault coverage has saturated. This is measured as follows.

Suppose that after i iterations the fault coverage is fci. Suppose that after 2i

iterations the fault coverage is still fci. This implies that doubling the number of

iterations did not increase the fault coverage. In this case, the procedure terminates.

21

2.2.4 Multi-cycle Test Generation

Experimental results show that the runtime of an iteration increases with the

number of capture cycles of a functional broadside test. Therefore, it is important

to avoid generating multi-cycle tests with large numbers of capture cycles when this

is not necessary for test compaction. At the same time, using multi-cycle tests with

more functional capture cycles increases the number of faults that the commercial

tool can detect with every additional test, thus reducing the number of iterations. To

balance these observations, we generate tests with decreasing numbers of functional

capture cycles, and use smaller numbers of reachable states for the higher numbers

of functional capture cycles. The process is described by Procedure 2.3.

In Procedure 2.3, we use Procedure 2.1 to generate multi-cycle functional broad-

side tests, and Procedure 2.2 to find more reachable states and construct Rnext. The

pair (l, m) implies that we use m reachable states from Rnext to generate l -cycle tests.

The selection of values for l and m is based on experimental results that show the

following. (1) Using l > 8 results in a high runtime, and we avoid it. (2) For l = 8

it is important to limit the number of reachable states in order to limit the runtime.

The lowest possible limit is m = 1 and we use this value. (3) After using l = 8, using

l = 7 and 6 does not increase the fault coverage significantly enough to use these

values. (4) Using l = 5, 4, 3 and 2 is important for increasing the fault coverage.

It is important to continue limiting the number of reachable states in order to limit

the runtime. Increasing m gradually to use m = 8, 16, 32 and 256 proved to be an

effective choice. (5) Iterative calls to the commercial tool are cost-effective only with

l = 2.

2.3 Experimental Results

The procedure described in Section 2.2 is applied to ISCAS-89, ITC-99 and

OpenCores R© [35] benchmark circuits. To further demonstrate the capability and ef-

fectiveness of the procedure, it is also applied to two large blocks of the OpenSPARC

22

Procedure 2.3 Multi-cycle Test Generation

1: Assign Rnext = {sr}.
2: for (l,m) = (8, 1), (5, 8), (4, 16), (3, 32) do
3: Call Procedure 2.1 to generate l-cycle tests with Rnext and m.
4: Call Procedure 2.2 to update Rnext.
5: if any termination condition is satisfied then
6: stop.
7: end if
8: end for
9: if no termination condition is satisfied then

10: Call Procedure 2.1 to generate 2-cycle tests with Rnext and m = 256.
11: Call Procedure 2.2 to update Rnext.
12: end if

T1 [36] microprocessor. OpenSPARC T1 is a 64-bit open-source microprocessor. It

has eight cores and each core can support up to four threads for a total of thirty-

two threads. Within OpenSPARC T1, we apply the proposed procedure to a single

SPARC core (sparc) and the floating-point unit (sparc-fpu). We run the procedure

on a Linux machine with 2.6GHz processors.

We experimented with different values of r, which is the number of random input

vectors to apply during the simulation procedure for finding reachable states. Both

the computational effort and the number of reachable states increase with r. We

found experimentally that r = 256 balances the two parameters well.

For comparison, we use the commercial tool to generate a multi-cycle broadside

test set without considering functional constraints. When multi-cycle tests are gen-

erated for the purpose of increasing the fault coverage, it is typical to supplement

two-cycle tests with tests that have higher numbers of capture cycles. To match our

functional broadside test set, we generate 2-, 3-, 4-, 5-, and 8-cycle tests, in this order.

In every case, the commercial tool generates tests to detect as many faults as possible

that were not detected with lower numbers of capture cycles. The resulting test set

is denoted by Ψnonfunc.

We show the results in Table 2.1. In column G, we show the number of gates in

the circuit. In column ff, we show the number of flip-flops in the circuit. In column

23

F, we show the number of transition faults. In column R, we show the number of

reachable states the procedure used to generate tests. It should be noted that not

all the reachable states lead to a contribution to the test set. In column Tests, we

show the number of tests generated by the proposed procedure. We also show the

number of multi-cycle tests in the non-functional broadside test set Ψnonfunc generated

by the commercial tool. Next, we show the fault coverage achieved by the proposed

procedure. This is followed by the fault coverage of Ψnonfunc. In the first column under

ATPG time, we show the runtime of the commercial tool as part of the proposed test

generation procedure. We then show the total runtime of the proposed test generation

procedure. We also show the runtime for generating Ψnonfunc in the last column under

ATPG time for comparison.

Table 2.1.: Multi-cycle Functional Broadside Tests with Unconstrained Input
Vectors

Circuit G ff F R
Tests Fault Coverage ATPG time

func
non
func

func
non
func

tool func
non
func

b04 1176 66 2400 709 108 117 81.25 85.38 15s 38s 4s
b10 332 17 746 42 41 53 84.58 86.73 2s 5s 6s
b14 6780 215 21444 481 480 551 93.19 93.91 121s 137s 155s
b20 14641 430 47986 2674 1473 904 92.7 94.46 906s 1020s 379s

s1423 1169 74 2090 504 120 108 84.3 92.73 10s 31s 5s
s5378 2535 163 4468 618 117 174 70.12 89.86 2s 16s 2s
s35932 22909 1728 26456 635 113 70 96.31 97.18 25s 115s 9s
s38584 18577 1164 34646 2973 1072 329 82.57 95.41 262s 545s 19s

aes core 23516 530 85118 472 471 599 99.94 99.95 368s 497s 55s
des perf 157078 8808 355028 6190 6195 202 100 100 12119s 17542s 76s

i2c 2047 128 3872 439 155 122 86.24 94.4 8s 20s 4s
systemcaes 13644 670 29306 1377 294 383 61.6 94.2 606s 696s 99s
systemcdes 4301 190 11182 684 83 164 98.33 99.82 28s 50s 5s

spi 4763 229 11864 1039 938 965 98.68 99.29 174s 198s 20s
usb phy 1391 98 2010 353 52 75 32.95 92.9 1s 10s 2s
wb dma 8621 523 15258 193 192 212 71.21 98.94 3s 7s 5s
sparc-fpu 87748 4431 333420 2599 1594 785 92.13 98.73 3324s 4329s 842s

sparc 350468 17942 658844 4791 4678 1217 86.37 92.11 14453s 19453s 8167s

From Table 2.1 it can be seen that the proposed procedure achieves a fault coverage

that is typically close to the one achieved by non-functional broadside tests. The exis-

tence of functionally redundant logic in the circuits leads to functionally-undetectable

24

faults that cannot be detected by functional broadside tests. These faults may be de-

tectable by non-functional broadside tests, resulting in the fault coverage differences.

The difference in fault coverage is larger when a circuit contains more functionally

redundant logic. Differences between the fault coverages that can be achieved with

functional and non-functional tests were also observed in [10] and explained by the

existence of functionally-undetectable faults [37]. Close-to-functional tests can be

used to reduce the occurrence of overtesting while increasing the fault coverage (or

reducing the fault coverage difference). However, using close-to-functional tests does

not guarantee that unreachable states will be avoided. In this chapter, we focus on

functional broadside tests, in order to ensure that overtesting is avoided.

The need to satisfy functional constraints also causes the number of functional

broadside tests to be higher than the number of non-functional tests for a similar

fault coverage. With reachable states as scan-in states, fewer faults can be detected

by each functional broadside test, and more tests are needed for detecting the same

or similar number of faults.

The number of reachable states is typically larger than the number of tests. This

is reasonable, since not all the reachable states contribute to the functional broadside

test set.

The proposed multi-cycle functional broadside test generation procedure has a

higher runtime than when non-functional broadside tests are generated. The pro-

posed procedure needs to iteratively call the commercial tool to generate functional

broadside tests, and it needs to compute reachable states. This increases the runtime.

In addition, because of the simplicity of Python, we use it to implement the procedure

for finding reachable states and constructing Rnext. Running Python scripts increases

the runtime. For complex logic blocks such as sparc-fpu and sparc, the runtime of

the proposed procedure is around 5 and 2 times the runtime of the non-functional

broadside test generation procedure, respectively. This demonstrates the feasibil-

ity and scalability of the proposed multi-cycle functional broadside test generation

procedure.

25

To further illustrate the benefits of using multi-cycle functional broadside tests, in

Table 2.2, we present the results obtained when the procedure uses only the all-0 state

as a scan-in state. We generate functional broadside tests with different numbers of

capture cycles for comparison. The results are shown for b04, b14, s1423 and des perf.

For each of the circuits and every number of capture cycles, we show the number of

functional broadside tests, the fault coverage achieved by the tests, and the runtime.

Table 2.2.: Fault Coverage Achieved with All-0 State

Circuit
2-cycle 3-cycle 5-cycle 8-cycle

T fc time T fc time T fc time T fc time
b04 2 7.88% 1s 51 47.17% 1s 95 69.33% 4s 96 78.71% 10s
b14 275 48.26% 2s 311 53.22% 5s 622 90.49% 16s 364 91.18% 35s

s1423 27 32.97% 1s 46 53.01% 2s 73 67.61% 5s 65 80.38% 11s
des perf 89 9.78% 65s 133 17.28% 209s 174 28.31% 954s 89 39.53% 5532s

It can be seen that the fault coverage increases rapidly as the number of cap-

ture cycles increases. The comparison shows that generating multi-cycle functional

broadside tests can reduce the need to find additional reachable states.

Next, we consider an additional parameter of the non-functional tests, the distance

between the scan-in state and a reachable state. For functional broadside tests this

distance is zero. For non-functional tests, a lower distance implies that the circuit

operates closer to functional operation conditions. This is the basis for the generation

of what are called partially-functional broadside tests. An accurate computation of

the distances requires enumeration of all the reachable states, which is infeasible.

We obtain a pessimistic estimate of these distances by using the set Rused of all the

reachable states that were computed during the generation of functional broadside

tests. Let S be the set of scan-in states of the non-functional broadside test set.

For a state s in S, the minimum distance between s and a reachable state in Rused

is denoted by d(s). For a circuit with k state variables, we include in a subset Sp

every state s from S for which d(s) ≤ p% k. When p is small, the states in Sp have

26

low distances from reachable states and thus maintain close-to-functional operation

conditions.

Table 2.3 shows the percentage of tests included in S10, S20, S30 and S40.

Table 2.3.: Hamming Distance

Circuit S10 S20 S30 S40

s38584 0 0 0 0
systemcaes 0 0 0 1.04

usb phy 0 0 0 10.67
s5378 0 0 0 41.23

wb dma 0 0 3.21 5.33
sparc 0 0 4.55 10.11

des perf 0 0.5 4.67 21.1
fpu 0.07 0.22 5.11 15.81
b20 0.39 1.3 7.1 27.55

systemcdes 1.67 5.21 7.99 59.31
aes core 2.11 5.13 10.11 71.11

spi 2.44 3.56 7.33 51.71
i2c 2.51 6.31 18.03 83.32
b04 2.56 9.21 10.26 99.14

s35932 3.11 3.11 7.97 29.99
b14 4.31 5.77 12.11 98.55

s1423 4.51 7.43 18.52 93.52
b10 9.23 31.21 61.33 100

From Table 2.3 it can be seen that only small percentages of non-functional tests

have a distance of 10% or lower from a reachable state in Rused. This is consistent

with the observation made in [10] that non-functional tests rarely use reachable states

accidentally. As p increases, the number of states in Sp increases. However, even

with p = 30 or 40, only small percentages of states in S have d(s) ≤ p% k. This

implies that non-functional tests do not create close-to-functional operation conditions

accidentally.

27

3. IMPROVING THE RESOLUTION OF MULTIPLE

DEFECT DIAGNOSIS BY REMOVING AND SELECTING

TESTS

c©2018 IEEE. Reprinted, with permission, from N. Wang, I. Pomeranz, B. Benware,

M. E. Amyeen and S. Venkataraman, “Improving the Resolution of Multiple De-

fect Diagnosis by Removing and Selecting Tests,” in Proceedings of the Defect and

Reliability Symp., Oct 2018. doi: 10.1109/DFT.2018.8602935

Earlier works showed that the resolution of defect diagnosis when multiple defects

are present in a chip can be improved by instructing the defect diagnosis procedure

to ignore certain tests. Specifically, these procedures reduce the number of candidate

faults when the defect diagnosis procedure produces large numbers of candidates.

Diagnosis with a large number of candidates poses challenges to failure isolation as

optical emission and electrical probing physical tools need to eliminate a large number

of candidates to isolate the defects. The procedures from the earlier works improved

the diagnostic resolution by reducing the number of candidates at the cost of a reduced

accuracy, or a reduced overlap between the candidates and the defects present in the

faulty chip. In addition, they relied on the ability to modify the defect diagnosis

tool. This chapter develops a procedure that improves the diagnostic resolution for

multiple defects by ignoring certain tests without modifying the defect diagnosis tool.

Moreover, the procedure uses a feature of commercial defect diagnosis tools to avoid

losing accuracy. Experimental results for multiple defects indicate that reductions in

the numbers of candidate faults are typically achieved without losing accuracy.

28

3.1 Introduction

A defect diagnosis procedure identifies the locations of the defects in a faulty chip

using the faulty output response produced by the chip [38–57]. The output of a

defect diagnosis procedure is a set of faults that is referred to as a candidate fault set.

After obtaining a candidate fault set, failure isolation is performed through optical

and electrical physical tools to obtain additional information about the candidates.

Physical failure analysis is the last step in this process, taking a defect sample through

a scanning electron microscope or transmission electron microscope. Physical failure

analysis is applied only if the candidate fault set is small enough (such as 20 or

fewer candidate faults). Large sets of candidate faults are obtained in the case where

multiple defects are present in a chip. In modern process technologies, due to very

fine geometries and lithography pushed to its limit with multi-patterning, high defect

densities are very common. It takes a while for the process to reach a mature yield

level. With high defect densities, multiple defects are common. While defect densities

improve as the process matures, multiple defects are prevalent until the process yield

reaches very high mature levels. The interactions between the defects that are present

together in the circuit may result in an output response that is difficult for the defect

diagnosis procedure to analyze. As a result, the procedure may yield a large set of

candidate faults. If a candidate fault set is large, diagnostic tests may be added and

used to reduce the number of faults in the candidate fault set. The additional tests

are expected to improve the defect diagnosis results by providing more information.

However, the inclusion of a test in the test set used for diagnosis does not always

improve the results of defect diagnosis. The observation that a defect diagnosis pro-

cedure does not require the output response obtained from the complete test set to

produce accurate results is the basis for the approaches described in [58–60]. The need

to ignore certain tests when computing the actual output response from a compacted

output response is noted in [61]. The procedure in [17] goes further to show that cer-

29

tain tests reduce the resolution of diagnosis, and removing them from consideration

is advantageous.

Improvements of the procedure from [17] are described in [18] and [19]. Similar

to [17], the procedure from [18] is also based on the removal of tests from the test set

used for diagnosis. In contrast, the procedure from [19] starts from an empty test set,

and adds tests one by one such that the best diagnosis results will be obtained after

the addition of every test. After selecting one test, the procedure typically produces

a single candidate that matches one of the defects that exists in the circuit. As the

number of tests is increased, the number of candidate faults increases, and more of

the defects are identified correctly.

The procedures from [17–19] reduce the number of candidate faults to a man-

ageable number in cases where the defect diagnosis procedure produces large sets of

candidate faults, thus improving the diagnostic resolution. However, they may lose

accuracy by identifying fewer of the defects that are present in a faulty chip. This

is inevitable with the defect diagnosis tool they use. In addition, they rely on the

ability to modify the defect diagnosis tool.

As part of the work in this dissertation, we develop a new procedure that im-

proves the diagnostic resolution for multiple defects by ignoring certain tests. The

main differences between the new procedure and the previous ones are the following.

(1) The new procedure does not need to modify the defect diagnosis tool. This is

appropriate when a commercial tool is used for defect diagnosis, and the source code

is not available. (2) The new procedure uses a partition of the candidate faults into

subsets, so as to avoid losing accuracy. This feature is provided by commercial defect

diagnosis tools. When n defects are present in a faulty chip, the defect diagnosis tool

is typically able to compute n subsets of candidate faults where each subset corre-

sponds to one of the defects that is present in the faulty chip. By considering the

subsets one by one, and ensuring that the same number of subsets is obtained after

test removal, the procedure described in this chapter avoids losing candidates that

match the defects. It thus rarely loses accuracy. A higher accuracy is crucial when

30

physical failure analysis is applied. It helps single out more of the defects that exist in

the circuit. It also helps avoid spending physical failure analysis effort on candidate

faults that do not correspond to any defects in the circuit.

Considering the issue of modifying the defect diagnosis tool, the procedures from

[17–19] call the defect diagnosis procedure not only with reduced sets of tests, but also

with reduced sets of faults from which candidates may be selected. After computing

a basic set of candidate faults CB using the complete test set, these procedures do

not require new candidate faults to be identified. As tests are removed or selected,

the procedures compute new sets of candidate faults out of the faults in CB. This

reduces the computational effort for additional calls to the defect diagnosis procedure.

With the defect diagnosis tool used in this chapter, limiting the set of tests is possible

without interfering with the tool, but limiting the set of faults requires the tool to

be modified. We prefer to use the tool as a black box, and avoid interfering with its

internal operation.

To address the computational effort, we develop a new algorithm that has two

phases. The first phase is based on the removal of subsets of tests without omitting

any candidate faults. The second phase is based on the selection of subsets of tests

from the test set obtained in the first phase, so as to obtain smaller sets of candidate

faults, and thus improve the resolution of defect diagnosis. In the first phase, most of

the tests are removed from the initial test set to reduce the number of tests considered

by the second phase. Experimental results show that the reduction in the computa-

tional effort of the second phase is higher than the additional computational effort

required by the first phase. Consequently, the first phase improves the efficiency of

the new algorithm significantly.

As in [17–19], considering fewer tests for defect diagnosis implies that the defect

diagnosis procedure is given a subset of tests with their corresponding output re-

sponses. A new application of the test set to the faulty chip in order to obtain a new

output response is not required.

31

3.2 Background

The following example explains the reason why the diagnostic resolution can be

potentially improved by ignoring certain tests, when multiple defects are present in

a chip.

Considering a defect diagnosis tool that is based on a fault model, suppose that

the fault model used by the tool can perfectly match every one of the defects that are

present in the chip if they are present alone. However, the interactions between the

defects under a particular test may result in an observed response that is different from

the response of any one of the faults. The removal of such tests from consideration

by the defect diagnosis tool improves the results of defect diagnosis. For example,

suppose that two defects are present in a faulty chip, modeled by faults f0 and f1.

Considering a test t, suppose that the observed responses produced by f0 and f1 are z0

and z1, respectively. Suppose that when f0 and f1 are present in the circuit together,

the joint observed response produced is z2. Other faults, such as f2, in the fault model

may produce z2 under test t individually. Therefore, the defect diagnosis tool would

conclude that f2 might be present in the chip based on the observed response under

test t. A more accurate candidate fault set can be computed by ignoring test t.

We denote the defect diagnosis tool by Diag(). The procedure described in this

chapter first computes a basic candidate fault set, denoted by CB. This is accom-

plished by calling the defect diagnosis procedure Diag() with the complete test set,

denoted by TB. Every additional candidate fault set that the procedure computes is

intersected with CB. We do this because a small subset of TB does not provide suffi-

cient information to produce accurate diagnosis results by itself [19]. Similar to [19],

the procedure described in this chapter considers the candidate faults in CB as appro-

priate and sufficient, thus, it does not attempt to obtain new candidate faults that

are not contained in CB. By taking intersections with CB, it only attempts to reduce

the number of candidate faults in CB to improve the resolution of defect diagnosis.

32

To define quality metrics for the results of defect diagnosis, we assume that the

defects in the chip are best described by a subset of modeled faults fin. Let C be

candidate fault set obtained for fin. The number of subsets of candidate faults in C

is denoted by n. The overlap between C and fin is denoted by OV LP = C ∩ fin. We

define the following quality metrics.

• Coverage : The diagnosis coverage is defined as COV = |OV LP |/|fin|. A

higher coverage indicates that the defect diagnosis procedure singles out more

of the defects correctly.

• Precision : The diagnosis precision is defined as PRC = |OV LP |/n. A higher

precision is important when physical failure analysis is guided by the subsets

of candidate faults. It helps avoid spending physical failure analysis effort on

candidate faults that do not correspond to any defects in the circuit. The

precision rarely reduces by keeping n unchanged.

• Resolution : The diagnosis resolution is defined as RESO = |OV LP |/|C|. A

higher resolution implies that the fraction of correct locations is higher, which

facilitates physical failure analysis. The resolution is increased, as well as in

[17–19], by reducing C.

3.3 Procedure Based on Test Removal

In this section, we describe the procedure for removing tests from TB. The com-

puted subset of TB is denoted by TR. To provide sufficient tests for the second

phase of test selection, the procedure restricts the test removal by setting a param-

eter BOUND indicating the minimum number of tests in TR. Initially, we assign

TR = TB. The procedure then iteratively removes tests from TR, as follows.

At the beginning of each iteration, the procedure randomly divides TR into l

subsets, denoted by Tr0,Tr1, ...,Tr(l−1), each of them containing m tests. To speed up

the procedure, l and m are parameters that change according to |TR|. In general, the

33

procedure removes these subsets from TB one at a time. For every subset Tri, it calls

the defect diagnosis procedure Diag(TR − Tri) to check the effects of the removal of

Tri on the candidate fault set. The removal is accepted only if this candidate fault set

contains CB. This implies that the tests in TR−Tri are sufficient to obtain CB. When

the removal of Tri from TR is accepted, the removal of additional tests is considered

with Tri excluded from TR.

The experimental results indicate that, as the procedure removes more tests, lower

numbers of candidate faults are obtained. This may result in none of these removals

being accepted during one iteration. When this occurs, the procedure switches to

the following strategy. It selects the subset Tri that produces the largest intersection

between the obtained candidate fault set and CB of all the subsets. It then removes

the tests in Tri from TR one at a time. For every test t, it calls the defect diagnosis

procedure Diag(TR − t) to obtain the output candidate fault set. We use the same

criteria described earlier to determine whether the removal of t is acceptable. Simi-

larly, when the removal of t is accepted, TR is updated by removing t from it, and

additional tests are considered for removal from the reduced test set.

The procedure described above is shown next. The procedure terminates when

the removal of any test from Tri is not acceptable. In addition, since the maximum

number of tests removed from TR in one iteration is m, the procedure terminates

when |TR| < BOUND + m to guarantee that the number of tests in TR is no less

than BOUND.

3.4 Procedure Based on Test Selection

In this part, we describe the test selection procedure, which is based on a subset-

by-subset strategy. A partition of the candidate faults into subsets is provided by

the defect diagnosis tool Diag(). We assume that CB contains n subsets of candi-

date faults, denoted by CB0,CB1, ...,CB(n−1). During test selection, we ensure that

every set CA of candidate faults is also partitioned into n subsets. The subsets

34

Procedure 3.1 Test Removal
1: Assign TR = TB.
2: while TR is not empty and |TR| ≥ BOUND +m do
3: Randomly divide TR into l subsets Tr0, Tr1, ..., Tr(l−1), each of them containing

m tests.
4: for every subset Tr1 do
5: Call Diag(TR− Tri) and compute the intersection between the obtained can-

didate fault set and CB.
6: If the intersection is CB, then TR = TR − Tri.
7: end for
8: if at least one subset is removed from TR then
9: go to step 2.

10: end if
11: Select the subset Tri that produces the largest intersection between the obtained

candidate fault set and CB of all the subsets.
12: for every test pattern t in Tri do
13: Call Diag(TR− t) and compute the intersection between the obtained candi-

date fault set and CB.
14: If the intersection is CB, then TR = TR − t.
15: end for
16: If no test is removed from TR, then stop.
17: end while

of CA are denoted by CA0,CA1, ...,CA(n−1). Initially, we assign CA0 = CB0,CA1 =

CB1, ...,CA(n−1) = CB(n−1). For every subset of candidate faults CAj, whenever a

smaller candidate fault set is obtained during test selection, CAj is replaced with the

smaller candidate fault set. The test selection procedure considers the subsets of can-

didate faults one at a time in a descending order of the number of candidate faults in

CB0,CB1, ...,CB(n−1). When CAj is considered, the test selection procedure performs

the following steps. This procedure repeats for every subset of candidate faults.

The reduced test set is denoted by TA. Initially, when CAj is considered, TA is

empty. We also denote TC = TR − TA. Tests from TC will be added to TA.

As in the test removal phase, we consider subsets of TC. In each iteration, we

first randomly divide TC into l subsets, denoted by Ta0,Ta1, ...,Ta(l−1), each of them

containing m tests. Again, l and m are parameters that change according to |TC|.

The procedure calls the defect diagnosis tool Diag(TA + Tai) for every subset Tai. Of

35

all the options for Tai, the procedure selects the one that yields the candidate fault

set with the smallest number of candidate faults. The procedure then adds Tai to TA.

This repeats until at least one of the termination conditions given below is satisfied.

As shown in [19], the number of candidate faults increases as the procedure selects

more tests. Accordingly, we use a similar strategy to speed up this procedure. The

procedure maintains a target number of candidate faults for CAj, which is denoted

by NC. Initially, NC = 1, since a smaller set cannot be produced. After selecting

Tai, the procedure assigns NC equal to the number of candidates in the intersection

between the obtained candidate fault set and CB. If adding an additional subset in

the next iteration leads to at most NC candidate faults, the procedure selects the

subset without considering additional tests.

The procedure adds a subset of TC into TA in each iteration. In many cases,

especially when m is large, removing some of the tests added to TA may improve

the resolution of diagnosis further. The procedure accomplishes this by reconsidering

every test t in Tai after the selection of Tai is accepted. For each test t, we call

the defect diagnosis tool Diag(TA − t) to check the effects of the removal of t. The

procedure accepts the removal when the number of computed candidate faults is less

than or equal to NC. However, if all the preceding tests in Tai are removed from

TA, the procedure will not remove the last test in Tai from TA. The procedure then

assigns NC equal to the number of computed candidate faults. When the removal of

t is accepted, the removal of additional tests is considered with t excluded from TA.

The consideration of CAj terminates if at least one of the following conditions is

satisfied. (1) The total number of candidate faults in CA0,CA1, ...,CA(n−1) does not

exceed 20, which is assumed to be a feasible number for physical failure analysis. (2)

All the candidate faults in CAj are equivalent faults, which are identified by the defect

diagnosis tool.

The test selection procedure applying the subset-by-subset strategy described

above is shown next. For conciseness, we denote the intersection between the current

36

candidate fault set the tool returns and CB by Ctemp. The procedure terminates when

all the subsets of candidate faults satisfy the termination conditions described above.

Procedure 3.2 Test Selection

1: for j = 0, 1, ..., n − 1, considering the subsets of candidate faults in descending
order of the number of candidate faults in CBj do

2: TA = 0;NC = 1.
3: Randomly divide TC = TR − TA into l subsets Ta0, Ta1, ..., Ta(l−1), each of them

containing m tests.
4: for every subset Tai do
5: Call Diag(TA + Tai) and compute Ctemp.
6: If |Ctemp| ≤ NC, then add Tai into TA, assign NC = |Ctemp|, and go to step

9.
7: end for
8: Select the subset Tai for which Ctemp is the smallest of all the subsets. Assign

NC = |Ctemp|.
9: Replace every subset of candidate faults with a smaller candidate fault set, if

available.
10: for each test t in Tai, if t is not the last test in Tai that is not removed from TA

do
11: Call Diag(TA − t) and compute Ctemp.
12: If |Ctemp| ≤ NC, then remove t from TA, assign NC = |Ctemp|, and replace

every subset of candidate faults with a smaller candidate fault set, if available.
13: end for
14: If TA 6= TR, then go to step 3.
15: end for

3.5 Experimental Results

To demonstrate the effectiveness of the proposed procedure, we apply it to three

different groups of benchmark circuits, ISCAS-89, ITC-99 and OpenCores R©. The

defect diagnosis procedure Diag() used in this chapter is a commercial defect diagnosis

tool. We run the procedure on a Linux machine with 2.6GHz processors.

Faulty output responses for defect diagnosis are produced by injecting multiple

stuck-at faults into the circuit, and computing the output responses. We denote a

multiple fault as fin. A fault fin of multiplicity k consists of k single stuck-at faults. To

cover a range of possible multiplicities, we use 2 ≤ k ≤ 10. The test set T is a fault

37

detection test set for single stuck-at faults that is also generated by a commercial

tool.

We randomly select three different multiplicities k of fin for each benchmark circuit.

For each k, we run 100 cases of basic defect diagnosis with different fin. We only show

the case with fin that results in the largest basic set of candidate faults CB of the 100

cases for each k. In all the cases, |CB| > 20. These cases demonstrate the effectiveness

of the procedure for large sets of candidates, which are its targets. As described in

Section 3.1, large sets of candidate faults are typical when multiple defects are present

in faulty chips.

We experimented with different values of BOUND, which is the minimum number

of tests in TR. Both the computational effort and the effectiveness of test selection

increase with BOUND. Experimental results indicate that BOUND = 20 balances

the two parameters well.

We select the values of l and m as follows. The computational effort of all the

calls to Diag() is approximately the same. Therefore, the goal of the selection of l

and m is to minimize the number of calls to Diag(). For a test set T, when m 6= 1, in

the worst case, an arbitrary iteration requires l+m calls to Diag(), where l = |T |/m.

To minimize the number of calls to Diag(), m = l =
√
|T |. When m = 1, in the worst

case, an arbitrary iteration requires |T | calls to Diag(). The procedure only accepts

m = 1 when |T | < 2. This indicates that |T | < 4. To summarize, the selection of

l and l is as follows. (1) When |T | < 4, m = 1, and l = |T |. (2) When |T | ≥ 4,

m = l =
√
|T |.

We present experimental results for the cases where the coverage and precision

are not affected by the proposed procedure in Table 3.1. We also present results for

the cases where the coverage or precision are affected in Table 3.2.

Table 3.1 and Table 3.2 are arranged as follows. In each case, column k provides

the multiplicity of fin. Column Cnd provides the number of candidate faults. Column

Ovlp provides the size of the overlap. Column Sub provides the number of subsets of

candidate faults in CB, which is also the number of subsets of candidate faults after

38

applying the procedure described in this chapter. Column Cov provides the coverage,

which is Ovlp/k. Column Prc provides the precision, which is Ovlp/Sub. Column

Reso provides the resolution, which is Ovlp/Cnd. Column Ratio provides the ratio

|CRA|/|CB|, where CRA is the candidate fault set obtained by the procedure described

in this chapter. In every column, two sub-columns are provided if the results obtained

by the procedure described in this chapter and the ones obtained by the basic defect

diagnosis procedure are different. The first sub-column provides the results of the

procedure described in this chapter, while the second sub-column provides the results

of the basic defect diagnosis procedure. Otherwise, the single entry applies to both

defect diagnosis procedures.

Column ntime provides the run time for the procedure described in this chapter

relative to the run time for the basic defect diagnosis procedure. In Column Tests,

the first sub-column provides the number of tests in TR, while the second sub-column

provides the number of tests in TB.

From Table 3.1 and Table 3.2 it can be seen that the procedure described in this

chapter reduces the number of candidate faults in all the cases considered. This

can be seen from column Ratio. For most of the observed responses considered, the

reduction in the number of candidate faults is significant. For some of the cases, the

candidate faults with the highest scores are removed, while the ones with lower scores

that are present in the circuit are kept in the candidate fault set.

Because the procedure calls Procedure 3.2 for every subset of candidate faults

in CB independently, it never loses a subset of candidate faults. Consequently, the

coverage and precision rarely reduce, while the resolution improves significantly. The

procedure described in this chapter only loses coverage or precision in eight cases

out of forty-two cases that are considered. For every case that loses coverage or

precision, only one candidate fault that is present in the faulty circuit is missed by

the procedure described in this chapter. The reduction in the number of candidate

faults is significant in all these cases, which are reported in Table 3.2, and justifies the

loss in coverage and precision. For example, reducing the number of candidate faults

39

Table 3.1.: Experimental Results (Same Coverage and Precision)

Circuit k Cnd Ovlp Sub Cov Prc Reso Ratio ntime Tests

b04
5 15 57 3 4 60.00% 75.00% 20.00% 5.26% 26.32% 210.2 40 79
8 24 92 4 5 50.00% 80.00% 16.67% 4.35% 26.09% 141.2 66 79
9 29 65 3 4 33.33% 75.00% 10.34% 4.62% 44.62% 60 23 79

b14
2 2 24 2 2 100.00% 100.00% 100.00% 8.33% 8.33% 93.29 21 429
4 15 95 3 4 75.00% 75.00% 20.00% 3.16% 15.79% 166.57 65 429
8 46 104 6 7 75.00% 85.71% 13.04% 5.77% 44.23% 349.5 65 429

b17
2 22 45 2 2 100.00% 100.00% 9.09% 4.44% 48.89% 71.44 22 589
3 20 45 3 3 100.00% 100.00% 15.00% 6.67% 44.44% 122.08 21 589
6 30 54 5 5 83.33% 100.00% 16.67% 9.26% 55.56% 142.53 21 589

b18
2 8 32 2 2 100.00% 100.00% 25.00% 6.25% 25.00% 49.57 21 658
3 33 56 3 3 100.00% 100.00% 9.09% 5.36% 58.93% 104.21 22 658

b19
3 21 39 3 3 100.00% 100.00% 14.29% 7.69% 53.85% 59.56 20 659
5 45 75 5 5 100.00% 100.00% 11.11% 6.67% 60.00% 50.89 22 659

b20
2 22 31 2 2 100.00% 100.00% 9.09% 6.45% 70.96% 112.45 20 468
5 19 120 4 4 80.00% 100.00% 21.05% 3.33% 15.83% 380.3 157 468
8 17 117 3 4 37.50% 75.00% 17.65% 2.56% 14.53% 116 22 468

s1423
2 10 35 2 2 100.00% 100.00% 20.00% 5.71% 28.57% 54.5 21 73
5 23 50 2 4 40.00% 50.00% 8.70% 4.00% 46.00% 153.13 23 73

s35932 4 16 44 4 4 100.00% 100.00% 25.00% 9.09% 36.36% 199.5 26 50

s38584
3 31 46 3 3 100.00% 100.00% 9.68% 6.52% 67.39% 78.6 21 145
5 34 53 5 5 100.00% 100.00% 14.71% 9.43% 64.15% 82.1 20 145
9 47 69 5 6 55.57% 83.33% 10.64% 7.25% 68.12% 484.29 36 145

aes core
4 47 168 4 4 100.00% 100.00% 8.51% 2.38% 27.98% 91.36 26 380
6 85 167 5 5 83.33% 100.00% 5.89% 2.99% 50.89% 175.69 54 380

des perf
3 27 61 3 3 100.00% 100.00% 11.11% 4.92% 44.26% 252.44 37 137
5 18 68 4 4 80.00% 100.00% 22.22% 5.88% 26.47% 280.41 31 137
7 59 83 7 7 100.00% 100.00% 11.86% 8.43% 71.08% 349.18 37 137

i2c
2 9 31 2 2 100.00% 100.00% 22.22% 6.45% 29.03% 21.88 21 73
3 26 49 3 3 100.00% 100.00% 11.54% 6.12% 53.06% 177.2 21 73
6 50 81 4 5 66.67% 80.00% 8.00% 4.94% 61.73% 260.42 37 73

spi 4 7 104 3 3 75.00% 100.00% 42.86% 2.88% 6.73% 571.21 183 495

systemcaes
2 5 68 2 2 100.00% 100.00% 40.00% 2.94% 7.35% 203.4 21 205
4 14 48 3 4 75.00% 75.00% 21.43% 6.25% 29.17% 430.6 23 205
5 57 84 4 5 80.00% 80.00% 7.02% 4.76% 67.86% 249.8 35 205

Table 3.2.: Experimental Results (Different Coverage or Precision)

Circuit k Cnd Ovlp Sub Cov Prc Reso Ratio ntime Tests
b18 8 29 151 3 4 5 37.50% 50.00% 60.00% 80.00% 10.34% 2.65% 19.21% 132.25 33 658
b19 10 35 112 4 5 7 40.00% 50.00% 57.14% 71.43% 11.43% 4.46% 31.25% 193.82 23 659

s1423 7 31 100 5 6 7 71.43% 85.71% 71.43% 85.71% 16.13% 6.00% 31.00% 472.3 55 73

s35932
9 12 90 2 3 3 22.22% 44.44% 66.67% 100.00% 16.67% 4.44% 13.33% 63.6 20 50
10 18 128 4 5 5 40.00% 50.00% 80.00% 100.00% 22.22% 3.91% 14.06% 138 44 50

aes core 10 90 244 7 8 9 70.00% 80.00% 77.78% 88.89% 7.77% 3.28% 36.89% 521.07 73 380

spi
5 22 65 4 5 5 80.00% 100.00% 80.00% 100.00% 18.18% 7.69% 33.85% 212.33 26 495
6 36 82 4 5 5 66.67% 83.33% 80.00% 100.00% 11.11% 6.10% 43.91% 291.87 23 495

40

from 151 to 29 for b18 with k = 8 makes it possible to apply physical failure analysis

in a case where it cannot be applied with the basic defect diagnosis procedure.

To further illustrate the improvements of the defect diagnosis results using the

proposed procedure, Table 3.3 presents a summary of the results of all the cases that

are considered. Column Cnd provides the total number of candidate faults obtained

for all the cases considered. Column Ovlp provides the total size of the overlap. Row

Basic provides the results of the basic defect diagnosis procedure. Row RA provides

the results of the proposed procedure. Row Reduction provides the reduction in the

sizes of the candidate fault set and the overlap when the proposed procedure, instead

of the basic defect diagnosis procedure, is used. Row Percent provides the percentage

reduction. It can be observed from Table 3.3 that in total, more than 60% of the

candidate faults are removed from CB, while the loss of the overlap is only about

5%. Consequently, the loss of coverage and precision is small, while the increase in

resolution is significant.

Table 3.3.: Statistical Analysis

Cnd Ovlp

Basic 3332 159
RA 1206 151

Reduction 2126 8
Percent 63.81% 5.03%

It can also be seen from column Tests that TR typically contains significantly

fewer tests than T. This indicates that most of the tests are removed during the test

removal phase. Experimental results show that the number of tests in TA for each

subset of candidate faults is also small. For instance, the candidate fault set CB in

the first case considered for s1423 contains two subsets of candidate faults. The test

set TA for each subset of candidate faults contains one and five tests, respectively.

As in [17–19], after the computation of CB, the run time of the procedure de-

scribed in this chapter can be significantly reduced by providing the defect diagnosis

41

procedure with CB from which to select the candidate faults. However, in our study,

we prefer to avoid interfering with the internal operation of the defect diagnosis tool.

Therefore, the run time of the procedure described in this chapter is higher than

necessary.

42

4. LOGIC RESYNTHESIS FOR AVOIDING

UNDETECTABLE FAULTS BASED ON DFM

GUIDELINES IN A CELL-BASED DESIGN

c©2019 IEEE. Reprinted, with permission, from N. Wang, I. Pomeranz, S. M. Reddy,

A. Sinha and S. Venkataraman, “Resynthesis for Avoiding Undetectable Faults Based

on Design-for-Manufacturability Guidelines,” in Proceedings of the Design, Automa-

tion and Test in Europe Conference, Mar 2019. doi: 10.23919/DATE.2019.8715037

As integrated circuit manufacturing advances, the occurrence of systematic defects

is expected to be prominent. A methodology for modeling systematic defects based

on DFM guidelines was described earlier. In this chapter we demonstrate that, among

the faults obtained based on DFM guidelines, there are undetectable faults, and these

faults cluster in certain areas of the circuit. This leaves areas in the circuit uncovered

for potential systematic defects. Because the defects are systematic, and they may be

detectable even though the faults are undetectable, the test escapes can impact the

yield and DPPM significantly. To address this issue, we propose two procedures based

on logic and layout resynthesis to eliminate large clusters of undetectable faults related

to DFM guidelines, and improve the coverage of the circuit for potential systematic

defects. In this chapter, the logic resynthesis procedure is presented. The layout

resynthesis procedure is presented in next chapter. The logic resynthesis procedure is

applied to benchmark circuits and logic blocks of the OpenSPARC T1 microprocessor.

The resynthesized circuit maintains design constraints of critical path delay, power

consumption and die area. Experimental results indicate that both the improvement

in the coverage of the circuit and the reduction in the sizes of large clusters are

significant after applying the proposed logic resynthesis procedure.

43

4.1 Introduction

Aggressive scaling of IC technologies continues to decrease device size and increase

circuit complexity. The continuous shrinking of device sizes increases the gap between

the feature size and the lithography wavelength. As a result, certain layout features

are more difficult to manufacture than others, and are more likely to lead to defects.

Such features can cause repeated or systematic defects to occur when they are present

multiple times [20–25]. Because of the systematic nature of these defects, they can

impact the yield and DPPM significantly. To address systematic defects, appropriate

design interventions are inevitable so as to remedy the potential manufacturing issues.

However, the constraints of die area, layout geometry and the ever-decreasing win-

dow of time to market make it impossible to obtain complete information about the

potential manufacturing issues in advance. Thus, it is not possible to eliminate all the

causes of systematic defects when implementing the physical design. DFM guidelines

are layout guidelines that attempt to capture and prevent yield and manufacturabil-

ity issues. In contrast to design rules, which must be followed by the physical design

process, DFM guidelines are applied when possible to improve the yield. The relation-

ship between DFM guidelines and potential defects was noted in [27]. In [27], DFM

guidelines were tightened to find the layout locations where DFM guidelines were not

applied, or not applied strictly, so as to anticipate potential causes for systematic

defects. The affected transistors were identified at the schematic level, and the defect

behaviors were translated to gate-level logic faults by using switch-level simulation.

A target test set for these logic faults was then generated to close potential test holes

and prevent adverse DPPM impact due to systematic defects.

Not all the faults that result from DFM guidelines are detectable. When a trans-

lated logic fault is undetectable, it leaves an uncovered site in the circuit. It was

shown in [62] and [63] that undetectable faults in general tend to cluster in certain

areas, leaving areas of the circuit uncovered. This can lead to test holes that affect

more than a single gate or line. If an area of the circuit is uncovered, detectable

44

defects in the area may go undetected, resulting in test escapes. As we demonstrate

in Section 4.2, undetectable logic faults that result from DFM guidelines also tend

to cluster in certain areas of the circuit. Because these logic faults are likely to be

systematic, the test escapes caused by the clustering phenomenon can impact the

yield and DPPM significantly.

The solution suggested in [62] and [63] is to target double faults that consist of an

undetectable fault and an adjacent detectable fault. Additional tests for double faults

were generated so as to improve the coverage of subcircuits containing undetectable

faults. For the systematic defects considered in this chapter, the coverage of the

circuit needs to be even higher so as to avoid adverse DPPM impact. In addition,

experimental results show that the sizes of the clusters of undetectable faults resulting

from DFM guidelines are large. Thus, a significant number of additional test patterns

is needed so as to achieve an acceptable coverage for theses defects. This may result

in an excessive increase in the size of the test set, which leads to an unacceptable

tester time.

Motivated by these observations, we propose a procedure that is based on resyn-

thesis to eliminate large clusters of undetectable faults related to DFM guidelines,

and improve the coverage of the circuit for potential systematic defects. Resynthe-

sis techniques are usually applied for optimizing the circuit with respect to delay,

power and area [64–66]. They are also used for improving the testability of the cir-

cuit by reducing the difficulty of test generation [67–72]. The resynthesis procedure

described in this chapter is the first one to address clusters of potential systematic

defects related to DFM guidelines by resynthesis. A test set for the detectable faults

related to DFM guidelines in the resynthesized circuit is also obtained during the

proposed resynthesis procedure. Test generation procedures, such as the ones de-

scribed in [62] and [63], can follow the procedure described in this chapter so as to

improve the coverage of the circuit further by generating additional tests based on the

remaining undetectable faults. In our experiments, typically one tenth of the original

45

undetectable faults remain undetectable after resynthesis. With significantly fewer

undetectable faults, the effect of additional test generation on test set size is reduced.

The resynthesis procedure is developed for a standard cell based design flow. In a

cell based design flow, a gate-level netlist and a layout are synthesized from an RTL

description of a circuit using a standard cell library. Typically, several iterations of

the design process are needed to satisfy design constraints such as area, delay and

power. The proposed resynthesis procedure is also iterative, and it can fit within

the overall iterative design flow. Specifically, an iteration of the design process can

include one or more iterations of the resynthesis procedure to eliminate clusters of

undetectable faults.

In this context of cell-based design, we distinguish between faults that are internal

to the standard cells (internal faults), and faults that are external to the standard

cells (external faults). Every time a gate, or an instance of a standard cell, is used

in the circuit, it introduces the same internal faults. The procedure eliminates the

undetectable internal faults by resynthesizing the circuit with standard cells contain-

ing fewer internal faults. As we demonstrate in Section 4.2, most of the undetectable

faults are internal faults. Therefore, the increase in the coverage of the circuit and

the decrease in the sizes of large clusters of undetectable faults are significant when

undetectable internal faults are eliminated by resynthesis.

The proposed procedure has two phases. The first phase focuses on the largest

clusters of undetectable faults so as to reduce the number of undetectable faults that

are clustered together. The second phase focuses on the entire circuit so as to improve

the coverage of the circuit further. In both phases, the procedure resynthesizes the

circuit iteratively. For a large chip, the procedure can be applied to every logic block

separately so as to keep the computational effort acceptable. The proposed procedure

is applied to logic blocks of the OpenSPARC T1 microprocessor to demonstrate its

applicability to such designs.

To guarantee that the proposed procedure maintains design constraints of critical

path delay, power consumption and die area, we also develop a backtracking procedure

46

based on the observation that modifying fewer gates implies lower design overheads.

The backtracking procedure reduces the design overheads by modifying fewer gates

during both phases. In addition, the design overheads are also reduced when gates

with fewer internal faults, which are typically smaller, replace larger gates that can

cause routing congestion, and thus affect delay and performance adversely.

In this chapter, the die area after resynthesis is kept the same as the original

design so as to maintain the original floorplan of the chip. For delay and power, a

maximum of five percent increase compared with the original design is assumed to

be acceptable. Experimental results indicate that the coverage of the circuit can be

improved significantly under these design constraints. The resynthesis procedure can

accommodate different design constraints if needed.

4.2 Background

We use the approach described in [27] to translate the violations of DFM guide-

lines into likely systematic defects, and related logic faults. The violations of DFM

guidelines are first translated into likely shorts and opens inside and outside cells. In

some cases, the defects are translated into faults that belong to commonly used fault

models [73–75]. In other cases, switch-level simulation is carried out, and a fault is

represented by input and output patterns of a cell [76]. We denote the resultant fault

set by F.

A test generation procedure is applied to F. We denote by T a test set that detects

all the detectable faults in F. The fault set U = {f0, f1, ..., fl−1} consists of all the

undetectable faults in F.

We say that a gate corresponds to a fault fi if (1) fi is an internal fault, and it is

inside the gate, or (2) fi is an external fault, and it is on the inputs or outputs of the

gate. Only one gate corresponds to an internal fault. For an external fault, multiple

gates may correspond to the fault when it is located on a net that connects multiple

gates, or it results in a short between two nets.

47

To explore the structural relations among the gates corresponding to the unde-

tectable faults, we say that two gates are structurally adjacent if one of the two gates

is directly driven by the other gate. For illustration, in Fig. 4.1, gates g1 and g2 are

only adjacent in (c). We also define two faults fa and fb to be structurally adjacent

if one of the following conditions is satisfied. (1) There exist a gate that corresponds

to fa and a gate that corresponds to fb, such that the two gates are adjacent. (2)

There exists a gate that corresponds to both fa and fb.

Fig. 4.1.: Adjacent Gates.

We partition U into subsets S0, S1, ... of adjacent faults. Initially, we set Si = {fi}

for 0 ≤ i < l. We repeat the following process to merge subsets that contain adjacent

faults. The process terminates when additional merging is not possible.

For every pair of subsets of undetectable faults, Si1 and Si2 such that i2 > i1, we

check whether Si1 and Si2 contain faults fi1 and fi2, respectively, where fi1 and fi2

are structurally adjacent. If so, we merge Si1 and Si2 by adding the faults from Si1

to Si2, and removing Si1.

To demonstrate that the undetectable faults resulting from DFM guidelines and

the gates corresponding to them tend to cluster in certain areas of the circuit, we

computed the subsets of undetectable faults and the gates corresponding to them for

ITC-99 benchmark circuits and logic blocks of the OpenSPARC T1 microprocessor.

We denote the largest subset of adjacent undetectable faults by Smax. The set of

gates corresponding to all the faults in Smax is denoted by Gmax. The results are

shown in Table 4.1. Column F shows the total number of faults resulting from DFM

guidelines. Column U shows the number of undetectable faults. Column G shows

48

the number of gates that correspond to all the undetectable faults. Column Gmax

shows the number of gates in Gmax. Column Smax shows the number of undetectable

faults in Smax. Column %Smax U shows the percentage of all the undetectable faults

that are in Smax. Column Smax I shows the number of undetectable internal faults

in Smax. Column %Smax I shows the percentage of all the faults in Smax that are

internal faults.

Table 4.1.: Clustered undetectable faults

Circuit F U G Gmax Smax
%Smax

U
Smax

I
%Smax

I
b15 34188 3108 1345 1186 2572 82.75% 2152 83.67%
b20 38337 2552 857 645 1638 64.18% 1472 89.87%

sparc fpu 234125 15263 4685 2831 8291 54.32% 7515 90.64%
sparc exu 116525 10753 3661 2771 7072 65.77% 6338 89.62%

From Table 4.1, it can be observed that the circuits have large subsets of adjacent

undetectable faults, and large sets of adjacent gates corresponding to them. Although

the faults are undetectable, defects in the same areas of the circuit may be detectable,

and they will go undetected if the areas are not covered. In addition, the major part

of the undetectable faults are internal faults. Such faults can potentially be removed

by replacing the gates corresponding to them. These observations motivate us to

reduce the sizes of subsets of adjacent undetectable faults and improve the coverage

of the circuit by resynthesizing subcircuits that consist of gates corresponding to

undetectable faults.

4.3 Resynthesis Procedure

In this section, we describe an iterative resynthesis procedure that eliminates

undetectable faults so as to avoid clustering that can lead to poor coverage of certain

areas of the circuit. Suppose that the standard cell library consists of m standard cells,

denoted by cell0, cell1, ..., cellm−1. The circuit that is considered by the procedure is

49

denoted by Call. We assume that Call was already optimized by one or more iterations

of a standard IC design flow. The resynthesis procedure ensures that Call does not

deteriorate in terms of design constraints of delay, power and area, but improves in

terms of the clustering of undetectable faults.

The procedure considers different subcircuits in different iterations. The subcircuit

as part of Call that is considered for resynthesis in an arbitrary iteration is denoted by

Csub. The rest of the circuit, Cdont = Call−Csub, is not resynthesized. We use Gzero to

store the gates in Csub that do not contain undetectable internal faults. The gates in

Gzero are not modified during the resynthesis to avoid unnecessary design changes. In

every iteration, logic synthesis is applied to Call, allowing only the gates in Csub−Gzero

to be modified. We denote the logic synthesis tool used in this chapter by Synthesize().

The physical design process that follows logic synthesis is denoted by PDesign().

The resynthesis procedure reduces the number of undetectable faults by eliminating

undetectable internal faults. In addition, the internal faults are only related to the

standard cells that are used in the circuit, and do not depend on the placement

and routing processes of physical design. Therefore, PDesign() is called only when

the number of undetectable internal faults decreases in the resynthesized circuit.

This avoids unnecessary runtime for physical design. The resynthesis procedure calls

Synthesize() and PDesign() iteratively as described next. The resynthesis repeats

until the termination conditions described later in this section are satisfied.

For a subcircuit Csub, the standard cells in the library are considered in the re-

verse order of the number of internal faults. This is because standard cells with

more internal faults tend to introduce more undetectable internal faults to the cir-

cuit. Let cell0, cell1, ..., cellm−1 be the ordered set of standard cells. For a standard

cell celli, it is eligible to be considered by the procedure when (1) it is used to syn-

thesize Csub, and (2) at least one gate in Csub, of type celli, contains undetectable

internal faults. When celli is considered, the procedure resynthesizes Csub without

using cell0, cell1, ..., cellm−1. This is important to avoid introducing gates with more

internal faults. The procedure then calls Synthesize(Call), and the resultant circuit

50

is denoted by Ctemp. A call to PDesign(Ctemp) is carried out if the number of unde-

tectable internal faults decreases. Otherwise, the procedure moves on to consider the

next standard cell. After calling PDesign(Ctemp), if the acceptance criteria described

later are satisfied, yet the resultant layout violates the design constraints, a back-

tracking procedure is invoked, denoted by Backtracking(). Details of Backtracking()

will be discussed in Section 4.4.

As described in Section 4.1, the procedure has two phases. During phase one, the

procedure targets the largest cluster, which is described by the set of faults Smax and

the set of gates Gmax. In this case, Csub consists of all the gates in Gmax and the goal is

to reduce the size of Smax without introducing more undetectable faults to the circuit.

The resynthesized circuit Ctemp is accepted in the first phase of the procedure if the

following criteria are satisfied. (1) The size of the previous largest subset of adjacent

undetectable faults decreases. (2) No more undetectable faults are introduced to the

circuit. (3) The design constraints of delay, power and area are satisfied. We use a

target p1 for the percentage of the faults in F that are in Smax after phase one. The

first phase of the procedure terminates when (1) the percentage of the faults in F

that are in Smax is less than or equal to p1, or (2) no additional improvements can

be achieved during phase one in terms of the number of undetectable faults in the

circuit.

During phase two, Csub consists of the gates that correspond to all the undetectable

faults in the circuit so as to improve the coverage of the circuit further. We use p2

to indicate the maximum acceptable percentage of the faults in F that are in Smax

after the second phase of the procedure. If the percentage of the faults in F that

are in Smax after phase one is less than p1, then p2 is set to be p1. Otherwise, p2 is

set to be the percentage of the faults in F that are in Smax after phase one. The

resynthesized circuit Ctemp is accepted during the second phase of the procedure if

the following criteria are satisfied. (1) The total number of undetectable faults in the

circuit decreases. (2) The percentage of faults in F that are in Smax does not exceed

p2. (3) The design constraints of delay, power and area are satisfied. The second

51

phase terminates when the number of undetectable faults in the circuit cannot be

decreased further.

To speed up the procedure, additional conditions are used to terminate the current

phase based on the following observation. In an arbitrary iteration, the procedure

eliminates undetectable internal faults in Csub by resynthesizing the circuit with stan-

dard cells that contain fewer internal faults. This can potentially increase the number

of undetectable external faults, since the nets inside the original gates may be outside

the gates in the resynthesized circuit. Therefore, as the standard cells are considered,

the gross trend of the number of undetectable faults in the circuit first goes down

and then up. We terminate a phase when it appears that the number of undetectable

faults is increasing, as follows. Let umin be the minimum number of undetectable

faults in the original or any resynthesized circuit that was previously accepted. Let

ui be the number of undetectable faults in the circuit when celli is considered. The

current phase of the procedure terminates if the following conditions are satisfied. (1)

ui−1 > umin and ui > ui−1, or (2) ui−1 ≤ umin and ui > umin. In the first case, the

consideration of celli−1 leads to a number of undetectable faults that is larger than

umin, and even more undetectable faults are obtained when considering celli. This

implies that the consideration of celli+1, celli+2, ..., cellm−1 may also result in a number

of undetectable faults that is larger than umin. In the second case, the consideration

of celli−1 leads to a number of undetectable faults that is smaller than umin, yet the

resynthesized circuit is not accepted as it may violate other acceptance criteria. The

current phase does not terminate as long as a number of undetectable faults that is

smaller than umin is obtained.

The procedure for phase one is shown next. We use set dont use() to indi-

cate standard cells that cannot be used during the logic synthesis process. We use

set dont touch() to indicate subsets of gates and subcircuits that are not considered

for modification during the logic synthesis process. The procedure for phase two is

similar. The main difference is that in step 1 of phase two, Csub consists of all the

gates in the circuit that correspond to undetectable faults. In addition, the accep-

52

tance criteria for phase two are different from the ones for phase one as described

earlier.

Procedure 4.1 Phase one of resynthesis

1: Csub consists of all the gates in Gmax, Cdont = Call − Csub

2: for every celli, 0 ≤ i ≤ m− 1, if celli is eligible do
3: set dont use(cell0, cell1, , celli)
4: set dont touch(Gzero, Cdont)
5: Ctemp = Synthesize(Call)
6: if more undetectable internal faults are in the circuit then
7: continue
8: end if
9: PDesign(Ctemp)

10: if ui−1 > umin and ui > ui−1, or ui−1 ≤ umin and ui > umin then
11: p2 = max{p1, |Smax|/|F |}
12: stop
13: end if
14: if the size of the previous largest cluster decreases and no more undetectable

faults are introduced to the circuit then
15: if design constraints are not satisfied then
16: call Backtracking()
17: if a resynthesized circuit is accepted in Backtracking() then
18: go to step 1.
19: end if
20: else
21: Call = Ctemp

22: If |Smax|/|F | > p1, then go to step 1.
23: p2 = max{p1, |Smax|/|F |}
24: stop
25: end if
26: end if
27: end for
28: p2 = max{p1, |Smax|/|F |}
29: stop

4.4 Backtracking Procedure

In this part, we describe the backtracking procedure we use to guarantee that the

resynthesized circuit does not violate the design constraints of delay, power and area.

53

The backtracking procedure is called when an attempt to resynthesize the circuit fails

because of the design constraints.

Suppose that the standard cell celli is currently considered by the resynthesis

procedure. Considering the gates in Csub that belong to cell0, cell1, ..., celli, the back-

tracking procedure includes in a set Gi every gate that is not in Gzero. The back-

tracking procedure is based on the observation that modifying fewer gates implies

lower design overheads. Therefore, instead of trying to replace all the gates in Gi as

in phase one or two, the backtracking procedure considers subsets of Gi.

The procedure first removes gates from Gi in groups of k gates, where k is selected

based on the computational complexity as described in Section 4.5. The gates that

are removed from Gi are placed in a set Gback. As the backtracking procedure removes

more gates from Gi, higher numbers of undetectable faults are obtained. This may

result in a resynthesized circuit that does not violate the design constraints, yet does

not satisfy the acceptance criteria for the current phase of the resynthesis procedure

that are described in Section 4.3. When this occurs, the backtracking procedure

returns to Gi the last k gates that it added to Gback one by one.

When removing gates from Gi, the backtracking procedure always considers the

gates with fewer undetectable internal faults first. When adding gates back to Gi,

it considers the gates with more undetectable internal faults first. In every case, the

procedure calls Synthesize(Call) to resynthesize Csub without changing the gates in

Gback, Gzero and Cdont. As before, the resultant circuit is denoted by Ctemp. The

physical design process PDesign(Ctemp) is called when the number of undetectable

internal faults is smaller than the one before the current iteration of the resynthesis

procedure. Otherwise, the acceptance criteria for the current phase of the resynthesis

procedure are not satisfied, and there is no need to perform physical design.

The resynthesized circuit Ctemp is accepted if the acceptance criteria described

in Section 4.3 are satisfied and no design constraints are violated. To speed up the

proposed resynthesis procedure, the backtracking procedure terminates whenever a

54

resynthesized circuit Ctemp is accepted. In addition, it terminates if no more gates

can be added into or removed from Gback.

4.5 Experimental Results

The proposed procedure is applied to ISCAS-89, ITC-99 and OpenCores R© bench-

mark circuits, and to several logic blocks of the OpenSPARC T1 microprocessor.

OpenSPARC T1 is a 64-bit open-sourced microprocessor. It has eight cores and

each core can support up to four threads for a total of thirty-two threads. Within

OpenSPARC T1, we apply the proposed procedure to the logic blocks in a single

SPARC core and the floating-point unit (fpu).We run the procedure on a Linux ma-

chine with 2.6GHz processors.

We obtained gate-level netlists and layouts from RTL descriptions using the tool

kit in the standard cell library developed by OSU [77], which is based on TSMC

0.18um technology. The netlists obtained after logic synthesis for all the circuits

considered in this chapter are flattened. Each circuit is treated as one block with

respect to floorplanning. The core utilization for the floorplan of the original physical

design is set to be 70% for all the circuits. As described in Section I, no increase in

die area is allowed in this chapter. In addition, a maximum of five percent increase

in critical path delay and power consumption, compared with the original design, is

assumed to be acceptable.

To define the set F of target faults, three categories of DFM guidelines from [28]

are considered, Via, Metal and Density. The guidelines specify certain dimensions of

width and spacing that are recommended for the physical design process. We use 19

guidelines in the Via category, 29 guidelines in the Metal category, and 11 guidelines

in the Density category.

We use commercial tools for the logic synthesis and physical design processes. A

commercial IC verification and sign-off package is used to find locations of potential

55

systematic defects in the layout. In addition, we use a commercial ATPG tool to

generate test patterns for fault detection.

We experimented with different values of p1, which is the target percentage of all

the faults in the circuit that are in Smax after the first phase of the procedure. A high

value of p1 may result in a large cluster after resynthesis, while a low value of p1 may

set a bound that is too restrictive for the second phase of the procedure to improve

the coverage of the circuit. Experimental results indicate that p1 = 1% balances them

well.

We select the value of k as follows. Suppose that the computational effort of

all the calls to Synthesize() and PDesign() during the backtracking procedure is

approximately the same. Therefore, the goal of the selection of k is to minimize the

number of calls to Synthesize() and PDesign(). Suppose that, initially, Gi contains

n gates. We partition the calls to Synthesize() and PDesign() into two parts. In the

first part, gates are added into Gback. The number of calls for this part is denoted by

n1. In the second part, gates are removed from Gback. The number of calls for this

part is denoted by n2. In the worst case, every gate from Gi is added to Gback in n/k

iterations, and then all the newly added k gates are removed from Gback one at a time.

In this case, the number of calls to Synthesize() and PDesign() is n1 + n2 = n/k+ k.

To minimize n/k+ k, k =
√
n is used, where the total number of calls to Synthesize()

and PDesign() is 2.

The experimental results are shown in Table 4.2 as follows. In each case, two rows

correspond to a circuit. The first row describes the original design of the circuit. The

second row describes the resynthesized circuit obtained using the procedure described

in this chapter. Row average shows average values considering all the circuits before

and after resynthesis.

In every row, column F provides the number of faults in the circuit, which is

the number of faults that are translated from the potential systematic defects based

on the DFM guidelines. Column U provides the number of undetectable faults in

the circuit. Column Cov provides the coverage of the circuit, which is defined as

56

Cov = 1 − U/F%. Column Smax provides the number of undetectable faults in

Smax. Column %Smax all provides the percentage of all the faults that are in Smax.

Column Smax I provides the number of internal faults in Smax. Column %Smax I

provides the percentage of all the faults in Smax that are internal faults.

In column Delay, we show the ratio for the critical path delay of the resynthesized

circuit to the one of the original design. In column Power, we show the ratio for the

power consumption of the resynthesized circuit to the one of the original design. In

column ntime, we show the run time for the proposed resynthesis procedure relative

to the run time for one iteration of logic synthesis and physical design with test

generation for the logic faults resulting from DFM guidelines. The test generation

time is included since a test set is also obtained by the proposed resynthesis procedure.

From Table 4.2 it can be seen that the procedure described in this chapter achieves

a significant reduction in the number of undetectable faults for all the circuits con-

sidered. This can be seen from column U . With a small change to the total number

of faults in the circuit, the improvement in the coverage of the circuit is significant.

Because the resynthesis procedure focuses on the largest cluster in the first phase

so as to reduce the size of Smax, and it is also controlled in the second phase, the

size of Smax decreases significantly. This can be seen from column %Smax all. For

most of the circuits, the percentage of all the faults that are in Smax after applying

the resynthesis procedure is below 1%, which is the target value given by p1.

The backtracking procedure helps ensure that the improvement in the coverage

of the circuit is achieved under the design constraints. This can be observed from

columns Delay and Power. In addition, the layouts for all the resynthesized circuits

are achieved with the original floorplans without design rule violation. For some of the

circuits, the delay or power reduces compared to the original design. This is because

the proposed resynthesis procedure replaces certain larger gates with smaller gates

that typically contain fewer internal faults. It thus alleviates the routing congestion

caused by larger gates. As a result, the adverse effects in delay and power resulting

from the routing congestion are reduced.

57

Table 4.2.: Experimental results

Circuit F U Cov Smax
%Smax

all
Smax

I
%Smax

I
Delay Power ntime

b04
2940 245 91.67% 216 7.35% 139 64.35%

100.93% 103.33% 21.93
2831 50 98.23% 23 0.81% 1 4.35%

b14
17413 1104 93.66% 701 4.03% 629 89.73%

92.32% 101.98% 11.94
16755 127 99.24% 98 0.58% 9 9.18%

b15
34188 3108 90.91% 2572 7.49% 2152 83.67%

96.04% 96.27% 26.87
32828 773 97.69% 530 1.59% 68 12.83%

b20
38337 2552 93.34% 1638 4.27% 1472 89.87%

101.70% 103.42% 21.01
37292 362 99.03% 311 0.83% 36 11.58%

s9234
4475 369 91.75% 93 2.08% 82 88.17%

99.01% 101.08% 6.25
4398 41 99.07% 10 0.23% 0 0%

s35932
43937 1939 95.59% 1507 3.43% 1316 87.33%

101.35% 100.49% 17.99
43401 241 99.44% 136 0.31% 0 0%

DMA
68698 6618 90.37% 1448 2.11% 1353 93.44%

98.26% 103.13% 8.52
67986 413 99.39% 93 0.14% 0 0%

tv80
29376 2677 90.89% 1270 4.32% 938 73.86%

93.61% 99.15% 17.77
28908 465 98.39% 381 1.32% 0 0%

systemcdes
11645 943 91.90% 663 5.69% 635 95.78%

99.65% 100.75% 5.42
11258 85 99.24% 36 0.32% 0 0%

systemcaes
42360 4274 89.91% 2852 6.73% 2694 94.46%

95.13% 102.18% 26.37
40480 294 99.27% 196 0.48% 1 0.51%

aes core
94258 6015 93.62% 1633 1.73% 1267 77.59%

94.39% 103.38% 12.78
98368 1722 98.25% 259 0.26% 29 11.20%

des perf
354562 20897 94.17% 10845 3.02% 10560 97.37%

104.87% 102.11% 12.43
363609 897 99.75% 59 0.02% 11 18.64%

wb conmax
193350 21334 88.97% 5821 3.01% 5571 95.71%

103.61% 104.17% 19.91
183821 799 99.57% 184 0.10% 1 0.54%

sparc fpu
234125 15263 93.48% 8291 3.54% 7515 90.64%

94.58% 99.65% 14.08
230642 3355 98.55% 2095 0.91% 765 36.52%

sparc spu
41939 2598 93.81% 669 1.60% 656 98.06%

98.67% 102.69% 5.46
40503 260 99.36% 153 0.38% 0 0%

sparc ffu
48937 5155 89.47% 3554 7.26% 3232 90.94%

94.49% 100.37% 16.29
48756 630 98.71% 525 1.29% 22 4.19%

sparc exu
116525 10753 90.77% 7072 6.07% 6338 89.62%

92.95% 102.57% 12.22
116902 768 99.34% 694 0.59% 14 2.02%

sparc ifu
149116 10197 93.16% 6619 4.44% 5513 83.29%

96.06% 99.54% 13.99
147376 1210 99.18% 677 0.46% 7 1.03%

sparc tlu
151591 9603 93.67% 5418 3.57% 4555 84.07%

91.19% 98.80% 15.78
151328 1025 99.32% 756 0.68% 2 0.26%

sparc lsu
164658 9357 94.32% 5563 3.38% 4720 84.85%

97.41% 98.01% 10.63
161196 850 99.47% 594 0.37% 0 0%

average
92121.5 6750.05 92.27% 3422.25 4.26% 3066.85 87.64%

97.31% 101.15% 14.88
91431.9 718.35 99.02% 390.5 0.58% 48.3 5.64%

It can also be observed that in general, the relative runtime does not increase as the

complexity of the circuit increases. This is related to the fact that only subcircuits

with gates corresponding to undetectable faults are resynthesized. Therefore, the

58

procedure described in this chapter is applicable to complex logic blocks in large

chips. As mentioned earlier, the iterative resynthesis procedure can be integrated

into an iterative design flow and thus avoid adding new iterations to the process.

59

5. LAYOUT RESYNTHESIS BY APPLYING DFM

GUIDELINES TO AVOID LOW-COVERAGE AREAS OF

A CELL-BASED DESIGN

c©2019 Association for Computing Machinery. Reprinted, with permission, from N.

Wang, I. Pomeranz, S. M. Reddy, A. Sinha and S. Venkataraman, “Layout Resyn-

thesis by Applying Design-for-Manufacturability Guidelines to Avoid Low-Coverage

Areas of a Cell-Based Design,” ACM Trans. Des. Autom. Electron. Syst., Jun 2019.

doi: 10.1145/3325066

DFM guidelines are recommended layout design practices intended to capture

layout features that are difficult to manufacture correctly. Avoiding such features

prevents the occurrence of potential systematic defects. Layout features that result in

DFM guideline violations may not be avoided completely due to the design constraints

of chip area, performance and power consumption. A framework for translating DFM

guideline violations into potential systematic defects, and faults, was described earlier.

In a cell-based design, the translated faults may be internal or external to cells.

In Chapter 4, we focused on the faults that are internal to cells. We use a logic

resynthesis procedure to eliminate large clusters of undetectable internal faults related

to DFM guidelines. In this chapter we focus on undetectable faults that are external

to cells. Using a layout resynthesis procedure that makes fine changes to the layout

while maintaining the design constraints, we target areas of the design where large

numbers of external faults related to DFM guideline violations are undetectable. By

eliminating the corresponding DFM guideline violations, we ensure that the circuit

does not suffer from low-coverage areas that may result in detectable systematic

defects escaping detection, but failing the circuit in the field. The layout resynthesis

procedure is applied to benchmark circuits and logic blocks of the OpenSPARC T1

60

microprocessor. Experimental results indicate that the improvement in the coverage

of potential systematic defects is significant.

5.1 Introduction

The scaling of IC technologies has brought about many benefits including faster

devices, lower power consumption, reduced chip sizes and increase in functionality.

However, the continuous shrinking of device sizes also increases the gap between the

feature size and the lithography wavelength. As a result, for each smaller process

technology node, the chips are increasingly impacted by deviations in manufactured

patterns from the intended design. Specifically, certain layout features are more diffi-

cult to manufacture than others, and are more likely to lead to circuit failures. When

such features are present multiple times in a chip, they can result in repeated or

systematic defects, which can impact the yield and DPPM significantly [20–25]. Due

to modeling errors and algorithmic inaccuracies in removing the resulting systematic

variations, process-related corrective actions using OPC/RET techniques are not suf-

ficient for acceptable yield and DPPM [26]. Thus, appropriate interventions during

circuit design are inevitable so as to remedy the potential manufacturing issues and

address the systematic defects.

Such design interventions are formulated as design rules and DFM guidelines.

While design rules are mandatory, and must all be applied to a design, DFM guide-

lines are taken as recommendations, and they are adhered to when possible within

the design constraints of area, performance, and power consumption. When DFM

guidelines are not adhered to, potential systematic defects may occur. The relation-

ship between DFM guideline violations and potential systematic defects was discussed

in [27–29]. In [27], DFM guidelines related to vias on interconnects, and contacts on p-

diffusion, are considered. A more comprehensive set of DFM guidelines is considered

in [28]. DFM guidelines related to internal nets of standard cells are considered in [29].

In all these works, the layout sites where DFM guidelines are violated are found, and

61

the affected transistors are identified at the schematic level. The anticipated defect

behaviors are then translated into gate-level logic faults using switch-level simulation.

Test generation is carried out for the resulting faults to avoid potential test holes.

Among the potential faults resulting from DFM guideline violations, there are

undetectable faults. When a large number of undetectable faults related to DFM

guideline violations are present in an area of the circuit, the area suffers from a

low coverage by tests that target the area. The missing tests may allow detectable

defects in the area to escape detection. This can impact the yield and reliability

significantly since the defects are likely to be systematic. This chapter demonstrates

these issues and addresses them in the context of a cell-based design, and targeting

faults that are external to cells. For this discussion we distinguish between faults

that are internal and ones that are external to cells. We assume that undetectable

faults, which are related to DFM guideline violations, and are internal to cells, can be

addressed by proper logic synthesis [78–80]. In [78,79], manufacturability information

is integrated into the cost function of logic synthesis, and a DFM extension library

that contains yield-optimized cells is used for improving the manufacturability of the

circuit. In [80], a logic resynthesis procedure is proposed that replaces cells with

large numbers of undetectable internal faults related to DFM guideline violations by

smaller cells that contain fewer faults. Overall, the procedure eliminates undetectable

faults that are internal to cells, and also reduces the number of undetectable external

faults. However, it leaves large numbers of undetectable external faults that cannot

be addressed by replacing cells.

For faults that are external to cells, this chapter describes a layout resynthesis

procedure that makes fine changes to the layout while maintaining the design con-

straints in order to improve the coverage of areas with low coverage because of the

presence of undetectable external faults. The layout resynthesis procedure in itself

(the procedure that makes local changes to the layout) is not the main contribution

of this chapter. The contribution is related to the use of DFM guidelines to identify

areas of the circuit with low coverage, and improving their coverage by layout resyn-

62

thesis. From a test point of view, we show which DFM guideline violations need to be

considered first so as to improve the layout areas with low coverage. This is the first

layout resynthesis procedure to address this issue directly. As part of this solution,

we suggest a layout-based coverage metric that can be used for identifying areas with

low coverage.

As technologies evolve, many DFM guidelines remain the same and are transferred

to the new technology. For example, the interconnect bridge defects shown in [81] to

exist in 160nm technology are also believed to be an issue in the latest FinFET tech-

nologies [82], and require similar DFM guidelines. The proposed layout resynthesis

procedure is independent of the cell library and the DFM guidelines. Therefore, it

can work with different DFM guidelines related to different technology nodes even if

new DFM guidelines are introduced. For different DFM guidelines, it may require

different changes to the layout for fixing DFM guideline violations, but the basic

methodology is the same.

The proposed layout resynthesis procedure eliminates undetectable external faults

by fixing the DFM guideline violations that lead to them. The procedure prefers to

eliminate faults whose effect on the coverage of the circuit is more significant. The

DFM guideline violations are fixed by automatically changing the layout with the

help of a place and route tool. The procedure does not allow any increase in critical

path delay, power consumption or die area when changing the layout.

Other approaches for addressing the testability of a circuit are described in [67,

71, 83–99]. In [83–85,95,96], design-for-testability (DFT) methods for improving the

transition fault coverage are discussed. The coverage is improved by inserting DFT

logic that can provide better control over the state vectors. In [67,71,86,92–94], logic

resynthesis techniques are used for improving the testability of the circuit by reducing

the difficulty of test generation. In [97–99], scan chain ordering is considered for

improving the coverage for transition and path delay faults. With layout information

taken into account, the routing penalty and the impact on circuit performance are

limited. In [87–91], test point insertion is considered for improving the testability

63

of a circuit, while limiting the deterministic pattern counts. We experimented with

circuits into which test points are inserted to improve testability. The results indicate

that, even with test points, there are areas with low coverage for faults that result

from DFM guideline violations. Such areas require the layout resynthesis procedure

described in this chapter. The reason is that test point insertion does not target DFM

guideline violations directly, and therefore, does not target the resulting undetectable

faults.

The procedure described in this chapter can be embedded into a standard cell

based design flow. In a cell based design flow, after the initial design of the layout,

several iterations of an incremental physical design process are typically required for

satisfying the design constraints of delay, power and area. The proposed procedure

is also iterative, and can thus fit within the overall iterative design process. In par-

ticular, an iteration of the design process can include one or more iterations of the

proposed procedure to eliminate undetectable faults in poorly covered circuit areas,

and improve the coverage of potential systematic defects. For a large chip, to main-

tain an acceptable computational effort, the proposed procedure can be applied to

each logic block separately. We applied the proposed procedure to logic blocks of the

OpenSPARC T1 microprocessor to demonstrate its applicability to such designs.

This chapter is organized as follows. Section 5.2 demonstrates the existence of

undetectable external faults related to DFM guideline violations, and the presence

of areas with poor coverage. Section 5.3 describes the proposed layout resynthesis

procedure. Experimental results and analysis are presented in Section 5.4.

5.2 Undetectable Faults Related to DFM Guideline Violations

This section discusses the existence of undetectable external faults related to DFM

guideline violations, and the presence of areas with poor coverage. A coverage metric

is defined based on layout neighborhoods of undetectable faults.

64

Three categories of DFM guidelines are considered in this chapter. They are Via,

Metal and Density. We use 19 guidelines in the Via category, 29 guidelines in the

Metal category, and 11 guidelines in the Density category. These guidelines provide

recommended layout constraints for dimensions of vias, spacings between exterior-

facing edges on polygons, and densities of routing layers.

We translate DFM guideline violations into potential short and open defects that

are external to cells, and then translate the potential defects into corresponding logic

faults using the approach described in [27–29]. We denote the set of faults by F.

A test generation procedure is applied to generate a test set T that detects all the

detectable faults in F. We denote by U = {f1, f2, . . . , fn} the set of undetectable

faults in F.

5.2.1 Analysis of DFM Guideline Violations

In this section, we discuss the challenges related to DFM guidelines.

In Table 5.1, we show the numbers of DFM guideline violations for several cir-

cuits. In column DFM total, we show the total number of DFM guideline violations

in the circuit. In column DFM undet, we show the number of DFM guideline viola-

tions translated to undetectable faults. It can be observed that the number of DFM

guideline violations is typically very large, and it is not possible to fix all of them

within the design constraints. The number of DFM guideline violations translated

to undetectable faults is small compared to the total number of DFM guideline vio-

lations. This makes it possible for the layout resynthesis procedure described in this

chapter to address them.

5.2.2 Detectable Defects Modeled by Undetectable Faults

In this section, we consider an example where faults that are translated from DFM

guideline violations are undetectable, while potential systematic defects in the same

65

Table 5.1.: DFM Guideline Violations

Circuit DFM total DFM undet

b15 218619 10786

b20 249383 3352

sparc fpu 1666799 9012

sparc exu 899740 20328

area are detectable. The presence of such situations motivates the need for layout

resynthesis to eliminate undetectable faults and improve the coverage of the area.

Fig. 5.1.: Potential short defects.

We conducted the following experiment to determine the existence of detectable,

potentially systematic defects that may go undetected. The DFM guideline we consid-

ered specifies the recommended minimum separation between exterior facing edges of

metal4 polygons. Figure 5.1 shows an example where this DFM guideline is violated

for NET1 and NET2, as well as NET2 and NET3. These violations can potentially

66

cause shorts between NET1 and NET2, and between NET2 and NET3. The shorts

are modeled by bridging faults. Suppose that both bridging faults are undetectable.

A possible defect that is not covered by the DFM guideline is a short between

NET1 and NET3 (i.e. NET1, NET2 and NET3 are shorted). This defect is not

modeled by F, and a test for it is not generated directly. Nevertheless, the defect may

occur because the site is prone to be defective. Without tests that detect the shorts

between NET1 and NET2, and between NET2 and NET3, this defect may remain

undetected by T. In this case, the low coverage around NET1, NET2 and NET3, and

the missing tests for the two bridging faults, causes the bridge between NET1 and

NET3 to go undetected.

We searched for occurrences of this situation in benchmark circuits and logic

blocks of the OpenSPARC T1 microprocessor. The test set we used detects all the

detectable transition and stuck-at faults, as well as the bridging faults in F. The

results for several circuits are shown in Table 5.2. For every circuit, column Uncov

shows the number of occurrences of undetected defects as illustrated by Figure 5.1.

Although the numbers in Table 5.2 are small, they represent only one example

where the presence of undetectable faults may allow detectable defects to go unde-

tected. This motivates the layout resynthesis procedure described in Section 5.3 that

eliminates undetectable faults in areas with low coverage.

In general, since sites of DFM guideline violations are more likely to be defective

than other sites, and circuits manufactured prior to volume production tend to suffer

from multiple defects, it can be expected that multiple DFM violation sites would be

defective. In addition to the double fault illustrated above, there can be other types of

undetectable faults related to DFM guideline violations that are undetectable alone,

but become detectable when two or more faults are present together. One can try

to add tests to detect multiple faults [62,100–102], but the number of faults can be

very large, and the number of tests may increase dramatically. For example, in the

circuits we considered, we found hundreds and even thousands of undetectable faults

related to DFM guideline violations, leading to millions and more multiple faults. The

67

resynthesis procedure we propose in this chapter eliminates or drastically reduces the

number of undetectable faults related to DFM guideline violations. If desired, one can

add tests for detectable multiple faults that consist of undetectable faults remaining

after resynthesis [62].

Table 5.2.: Uncovered Short Defects

Circuit Uncov

b15 42

b20 65

sparc fpu 75

sparc exu 76

5.2.3 Circuit Areas with Poor Coverage

In this section, we define a coverage metric, and demonstrate the presence of

areas with poor coverage that suffer from the presence of undetectable external faults

related to DFM guideline violations.

In Figure 5.2, we show the topological distribution of the undetectable external

faults related to DFM guideline violations in the layout of sparc fpu. It can be ob-

served that the undetectable faults tend to cluster in the darker areas, resulting in

areas with large numbers of undetectable faults.

We define the coverage of an area as the percentage of detectable faults among

all the faults related to DFM guideline violations in this area. The details of this

definition are discussed next.

We say that two layout sites are adjacent to each other if the distance between

them is less than 20× the minimum feature size. Within such distance, the two layout

sites can be affected by similar optical interactions, which are the major causes for

systematic defects [103].

68

Fig. 5.2.: Undetectable external faults related to DFM guideline violations in
sparc fpu.

For a defect d that is obtained from a DFM guideline violation, we define the

neighborhood of d to include all the layout sites that are adjacent to the site of d.

A fault f in F may model several different defects. The defects are always at a

close proximity to each other. We define the neighborhood of f as the union of the

neighborhoods of all the defects that f models.

We say that a fault f ′ is in the neighborhood of a fault f if the site of a defect

d′ modeled by f ′ is in the neighborhood of f. With these definitions, we define the

coverage c(f) of the neighborhood of a fault f as follows.

c(f) =
Number of detectable faults in the neighborhood of f

Total number of faults in the neighborhood of f
(5.1)

69

For illustration, we computed coverages for the neighborhoods of all the unde-

tectable external faults in sparc fpu, and partitioned the faults according to their

coverage range. The results are shown in Figure 5.3.

Fig. 5.3.: Coverages for the undetectable external faults in sparc fpu.

It can be seen that the coverages for more than half of the undetectable external

faults are below 90%. About a quarter of the faults have coverages below 60%.

These observations motivate the need to eliminate undetectable external faults with

poorly covered neighborhoods, and thus improve the coverage for potential systematic

defects.

5.2.4 Coverage for Faults with Weighted DFM Guidelines

The coverage metric c(f) defined above assumes that all the DFM guidelines are

equally important. In this section, we define the coverage of the neighborhood of a

fault f when DFM guidelines have different levels of importance.

The evaluation of DFM guidelines was discussed in [104–106]. In [104], test struc-

tures are used for evaluating the importance of DFM guidelines. In [105, 106], infor-

70

mation extracted from actual failed ICs during volume diagnosis is used for measuring

the effectiveness of a DFM guideline.

In this chapter, we define the weight of a DFM guideline as the probability of a

defect given a violation of this guideline. A violation of a DFM guideline with a higher

weight indicates a higher risk of failure. We also define the weight of a fault related

to DFM guideline violations based on the corresponding DFM guideline weights, as

follows.

Suppose that a fault f is translated from violations of n different DFM guidelines,

g1, g2, . . . , gn, and the weights of g1, g2, . . . , gn are p1, p2, . . . , pn. The numbers of times

that g1, g2, . . . , gn are violated are denoted by m1,m2, . . . ,mn. We assume that all

the DFM guideline violations are independent. We define the weight w(f) of f as

the probability that f is present in the circuit given all the DFM guideline violations

that are translated to f . We have that

w(f) = 1− (1− p1)m1(1− p2)m2 . . .(1− pn)mn (5.2)

Next, considering all the faults in the neighborhood of f , we define the coverage

c(f) of the neighborhood of f as shown in Equation (5.3). In Equation (5.3),
∑
w(det)

and
∑
w(undet) give the total weights of the detectable and undetectable faults in the

neighborhood of f , respectively. In addition, they can be considered as the expected

numbers of detectable and undetectable faults in the neighborhood of f . Thus, the

subtrahend of the equation can be considered as the probability that f is present in

the circuit, while its neighborhood is not covered by the test set that detects all the

detectable faults. When this probability is high, the detectable systematic defects in

the neighborhood of f may go undetected, causing circuit failure.

c(f) = 1− w(f) · (1−
∑
w(det)∑

w(det) +
∑
w(undet)

) (5.3)

71

5.3 Layout Resynthesis

This section describes a methodology for eliminating undetectable faults by fixing

the DFM guideline violations leading to them, and the layout resynthesis procedure

that is built upon it.

5.3.1 Fixing DFM Guideline Violations

In this section, we use an example to illustrate a methodology for eliminating the

undetectable faults related to DFM guideline violations. This methodology is based

on the use of a place and route tool to make local changes to the layout for fixing

the related DFM guideline violations. For different DFM guideline violations, the

concrete modifications to the layout may be different. The connectivity of the circuit

is maintained when modifying the layout as described later. The DFM guideline used

as an example specifies that the separation between exterior facing edges of metal1

polygons should be no less than 330nm. In Figure 5.4, this DFM guideline is violated

for polygons A and B, resulting in an undetectable bridging fault that involves the

two polygons.

Fig. 5.4.: Fixing a DFM guideline violation.

One way to fix this violation is to move polygon A horizontally, such that the sep-

aration between the polygons would be enlarged. We achieve this by first extracting

72

the design exchange format (def) file of the layout. The def file of a layout records

the coordinates of all the polygons in the layout. We then change the x-coordinate of

polygon A by subtracting 30 units. We also change the x-coordinates of the polygons

that are connected to polygon A in the same manner to ensure the connectivity of

the circuit. After modifying the def file, we provide the modified def file back to the

place and route tool. The tool changes the locations of polygon A and polygons that

are connected to polygon A in the layout accordingly. After moving polygon A to

the new layout site, the separation between exterior facing edges of polygons A and

B is 330nm, which adheres to the DFM guideline considered. As a result, the DFM

guideline violation that results in the undetectable bridging fault is eliminated.

When an undetectable fault is translated from several different DFM guideline

violations, we attempt to eliminate the undetectable fault completely so as to improve

the coverage of its neighborhood. This is achieved by fixing all the DFM guideline

violations leading to the fault, and changing all the polygons involved.

The resynthesis procedure sometimes decides to undo a layout modification. To

implement this operation, the procedure stores the original coordinates of the poly-

gons that it moves. By changing the coordinates of a polygon in the def file to its

original coordinates, the polygon is moved back to its original position.

5.3.2 Layout Resynthesis Procedure

In this section, we describe an iterative layout resynthesis procedure that makes

fine changes to the layout in order to eliminate undetectable faults whose neighbor-

hoods have low coverage. This is achieved by fixing the DFM guideline violations

that lead to them. The procedure considers every undetectable fault, and attempts

to eliminate the ones whose neighborhoods have the lowest coverages. When an un-

detectable fault is eliminated from a neighborhood with a low coverage, the coverage

of the neighborhood increases.

73

The proposed procedure starts with the original physical design Layout of the

circuit. We assume that Layout was already optimized by one or more iterations of

a physical design flow, and satisfies the design constraints of delay, power and area.

The proposed procedure improves Layout with respect to the coverage of the circuit

without violating the original design constraints.

We use a set Udone to store every undetectable fault, for which the procedure has

completed the attempt to eliminate it successfully. Initially, Udone is empty. The

target coverage of the original neighborhood of an undetectable fault is denoted by

p. The proposed procedure attempts to ensure that the coverage of the original

neighborhood of every undetectable fault initially in the circuit is no less than p.

A higher value of p indicates a higher coverage for potential systematic defects after

applying the procedure, and more changes to the layout that require a higher runtime.

The proposed layout resynthesis procedure can accommodate different values of p.

With p=100%, the procedure considers all the undetectable faults.

In every iteration, the procedure computes the set Ucur of undetectable faults

resulting from DFM guideline violations that are not in Udone based on the current

layout of the circuit. For every fault it also computes its coverage. A fault with a

coverage of p and above is excluded from Ucur. The procedure attempts to eliminate

the undetectable faults in Ucur one by one, considering the faults from low to high

coverage of their neighborhoods. This ensures that the faults with the lowest coverages

are considered earlier. Such faults are also more important to consider.

When an undetectable fault f from Ucur is considered, it is possible that another

fault, f ′, in its neighborhood has already been considered and added to Udone in this

iteration. In this case, the procedure does not consider f . The reason is that the

elimination of f ′ made a change to its neighborhood that may affect the coverage for

f . In the next iteration, the procedure will recompute the coverage for f , and decide

whether it still needs to be considered.

After every attempt to eliminate an undetectable fault, the procedure checks

whether the design constraints of delay, power and area are satisfied. It also

74

checks whether the modified design has Design-Rule-Check (DRC) or Layout-Versus-

Schematic (LVS) violations. If all the design constraints are satisfied and there is

no DRC or LVS violation, the undetectable fault is added to Udone. Otherwise, the

modification to the layout is discarded, and the next eligible undetectable fault in

Ucur is considered by the procedure.

After considering all the eligible undetectable faults in Ucur, and modifying the

layout accordingly, the proposed procedure recomputes the faults related to DFM

guideline violations based on the modified layout. A test generation procedure for

fault detection is carried out only when new faults are obtained. The procedure then

computes the coverages of the original neighborhoods of the undetectable faults tar-

geted in this iteration. For every target undetectable fault f , the procedure checks

whether the coverage of the original neighborhood of f increased, and the layout mod-

ification for eliminating f does not result in more DFM guideline violations leading

to undetectable faults. If these conditions are not satisfied, the layout modification

for fixing the DFM guideline violations leading to f is discarded.

The procedure described above is shown in Algorithm 5.1. We denote the process

for fixing the DFM guideline violations leading to a fault f by ApplyDFM(f),

and the reverse process for removing the corresponding layout modification by

UnapplyDFM(f). The procedure terminates when (1) the coverages of all the

original neighborhoods of the undetectable faults initially in the circuit are at least

p, or (2) these coverages cannot be improved further without violating the design

constraints of delay, power and area, or introducing more DFM guideline violations

leading to undetectable faults.

5.4 Experimental Results

In this section, we describe five experiments to demonstrate the effectiveness and

applicability of the proposed layout resynthesis procedure in different scenarios.

75

Procedure 5.1 Layout Resynthesis Procedure

1: Udone = ∅
2: Layout is the original layout of the circuit
3: while true do
4: Compute Ucur based on Layout, p and Udone

5: if Ucur == ∅ then
6: stop
7: end if
8: Sort the faults in Ucur in the order of increasing neighborhood coverages
9: for every fault f in Ucur, if it is eligible do

10: layout = ApplyDFM(f)
11: if the design constraints are satisfied and there is no DRC or LVS violation

then
12: Layout = layout
13: Add f into Udone

14: end if
15: end for
16: if Layout is not modified then
17: stop
18: end if
19: for every fault f added into Udone in this iteration, if the coverage of its origi-

nal neighborhood does not increase or more DFM guideline violations causing
undetectable faults are obtained do

20: Layout = UnapplyDFM(f)
21: end for
22: end while

In all the experiments, we apply the proposed procedure to benchmark circuits,

and to logic blocks of the OpenSPARC T1 microprocessor. The proposed procedure

is applied to the logic blocks in a single SPARC core, and the floating-point unit

(sparc fpu).We run the procedure on a Linux machine with 2.6GHz processors.

We use the tool kit with a standard cell library developed by OSU to synthesize

the RTL descriptions of the circuits into gate-level netlists and layouts. The tool kit

was developed based on TSMC 180nm technology. For the circuits considered in all

the experiments, the netlists obtained after logic synthesis are flattened and treated

as one block with respect to floorplanning. In the first four experiments, we set the

cell utilization to be 70% for all the circuits. The allocation area, total number of nets

76

and total wire length of the original layout for each circuit are shown in Table 5.3.

In the fifth experiment, we set the cell utilization to be 80% and 90% to show the

applicability of the proposed procedure to more congested designs.

Table 5.3.: Layouts with 70% Cell Utilization

Circuit alloc area (mm2) nets wire length (um)

b14 0.15 17480 139766
b15 0.28 33640 276498
b20 0.32 38049 291774

aes core 0.7 119197 1143766
DMA 0.75 78925 915701
tv80 0.25 32988 290335

systemcaes 0.37 46692 517923
s35932 0.67 47543 401998

wb conmax 1.1 225595 3092420
sparc spu 0.6 49786 554713
sparc ffu 0.51 56240 617818
sparc exu 1.09 140785 1992839
sparc lsu 1.99 213751 3403376
sparc tlu 1.94 196218 2743798
sparc ifu 1.59 187349 2653452
sparc-fpu 2.33 254847 2759603

We use a commercial tool for logic synthesis. We also use a commercial place

and route tool for layout synthesis and for applying DFM guidelines. A commercial

IC verification and sign-off package is used for finding locations of DFM guideline

violations in the layout. We use a commercial ATPG tool to generate test patterns

for fault detection.

5.4.1 Layout Resynthesis Procedure

In this experiment, the layout resynthesis procedure as described in Section 5.3

is applied. The results are shown in Tables 5.4 and 5.5 as follows. In each case,

three rows correspond to a circuit. The first row describes the original design of the

circuit. Row half describes the resynthesized circuit when p, the target coverage of

the original neighborhood of an undetectable fault, is set to be the median of the

77

coverages of the neighborhoods of all the undetectable faults in the original design.

This indicates that only half of the original undetectable faults are considered for

elimination. Row all describes the resynthesized circuit when p is set to be 100%,

which indicates that the procedure attempts to eliminate all the undetectable faults

related to DFM guideline violations.

In every row, column F provides the total number of faults related to DFM guide-

line violations. Column U provides the number of undetectable faults in F . Column

Cov provides the coverage of the circuit, which is defined as Cov = (1 − U/F)%.

Column Ave c provides the average coverage of the original neighborhoods of un-

detectable faults initially in the circuit. Column Nchanges provides the number of

changes to polygons during layout resynthesis. In column Rtime, we show the run

time for the proposed layout resynthesis procedure relative to the run time for one

iteration of logic synthesis and physical design with test generation for the logic faults

related to DFM guideline violations. We include test generation time since a test set

is also obtained by the proposed layout resynthesis procedure.

From Tables 5.4 and 5.5 it can be observed that the procedure described in this

chapter achieves a significant reduction in the numbers of undetectable faults for all

the circuits considered. This can be seen from column U . As the proposed procedure

always attempts to eliminate the undetectable faults with the lowest coverages, and

no additional DFM guideline violations causing undetectable faults are allowed to be

introduced to the circuit, the coverage of the original neighborhoods of undetectable

faults increases significantly. This can be seen from column Ave c.

It can also be observed that when p is set to be the median of the coverages of the

neighborhoods of undetectable faults in the original design, it typically requires less

than half of the number of polygon changes and runtime relative to the case where p is

set to be 100%. This is because eliminating an undetectable fault typically increases

the coverages for the undetectable faults in its neighborhood. Thus, fewer than half

of the undetectable faults need to be considered.

78

Table 5.4.: Layout Resynthesis (Benchmarks)

Circuit F U Cov Ave c Nchanges Rtime

b14
orig 11582 182 98.43% 89.14% / 1
half 11518 117 98.98% 94.02% 189 2.02
all 11404 2 99.98% 99.87% 556 5.7

b15
orig 21103 713 96.62% 85.64% / 1
half 20807 417 98.00% 93.07% 631 3.28
all 20408 10 99.95% 99.80% 2398 7.02

b20
orig 25815 339 98.69% 91.00% / 1
half 25704 213 99.17% 95.14% 329 2.12
all 25492 2 99.99% 99.93% 1037 6.36

aes core
orig 75092 874 98.84% 93.93% / 1
half 74688 455 99.39% 97.49% 575 4.18
all 74240 11 99.99% 99.90% 1211 9.5

DMA
orig 44589 409 99.08% 91.55% / 1
half 44425 231 99.48% 96.23% 286 2.66
all 44191 2 99.99% 99.95% 821 6.63

tv80
orig 20292 757 96.27% 80.43% / 1
half 20048 508 97.47% 87.89% 506 1.74
all 19542 3 99.99% 99.95% 2618 6.77

systemcaes
orig 26214 267 98.98% 89.43% / 1
half 26102 146 99.44% 95.64% 238 1.95
all 25958 2 99.99% 99.87% 1240 3.52

s35932
orig 32895 227 99.31% 89.46% / 1
half 32804 122 99.63% 95.83% 69 2.59
all 32676 0 100.00% 100.00% 194 5.37

wb conmax
orig 112351 627 99.44% 93.98% / 1
half 112047 319 99.72% 97.82% 340 2.22
all 111756 19 99.98% 99.82% 785 3.38

From column Rtime, we can see that the relative runtime does not increase as

the complexity of the circuit increases. This is because the layout modification for

applying DFM guidelines is based on the original layout of the circuit. The proposed

procedure does not require the layout to be implemented from the gate-level netlist

repeatedly.

For further illustration, in Figure 5.5, we show the numbers of the original neigh-

borhoods of undetectable faults initially in the circuit in different coverage ranges

for sparc fpu. The three groups of bars correspond to the three rows for sparc fpu

79

Table 5.5.: Layout Resynthesis (OpenSPARC T1)

Circuit F U Cov Ave c Nchanges Rtime

sparc spu
orig 30046 295 99.02% 71.34% / 1
half 29926 174 99.42% 88.38% 109 2
all 29790 24 99.92% 94.64% 562 4.95

sparc ffu
orig 32605 413 98.73% 74.05% / 1
half 32433 238 99.27% 87.12% 127 1.39
all 32234 37 99.89% 95.43% 563 3.38

sparc exu
orig 76709 1006 98.69% 84.19% / 1
half 76226 514 99.33% 91.76% 417 1.52
all 75745 39 99.95% 98.51% 1745 2.68

sparc lsu
orig 114076 1440 98.74% 83.20% / 1
half 113427 787 99.31% 91.61% 649 1.18
all 112715 76 99.93% 98.18% 2114 2.86

sparc tlu
orig 104694 1553 98.52% 77.67% / 1
half 103982 828 99.20% 87.53% 729 2.02
all 103224 70 99.93% 95.40% 2165 3

sparc ifu
orig 101074 1858 98.16% 66.93% / 1
half 100351 1123 98.88% 82.51% 820 1.28
all 99271 48 99.95% 91.29% 3581 2.29

sparc fpu
orig 157728 1159 99.27% 73.72% / 1
half 157295 723 99.54% 88.53% 586 2.51
all 156639 63 99.96% 95.04% 2376 4.04

in Table 5.5. It can be observed that the coverages of the original neighborhoods of

undetectable faults increase significantly.

5.4.2 Circuits with Test Points

In this section, we show the experimental results of applying the layout resynthesis

procedure to circuits with test points.

The commercial tool we use inserts test points for three purposes, (1) to improve

coverage for random pattern resistant faults, (2) to improve coverage for undetected

faults during ATPG, and (3) to reduce deterministic test pattern counts. We experi-

mented with all the seven possible combinations of the three groups of test points. Of

the seven designs of a circuit, we select the one with the highest coverage for the faults

80

Fig. 5.5.: Coverages of the original neighborhoods of undetectable faults in sparc fpu
after resynthesis.

related to DFM guideline violations. We then apply the proposed layout resynthesis

procedure to the selected design with p set to be 100%.

Table 5.6.: Circuits with Test Points

Circuit F U Cov Ave c Ntests Nchanges Rtime Delay Power Area

b15
(4722, 155)

orig ntp 21103 713 96.62% 85.64% 378 / 1 100.00% 100.00% 100.00%
resyn ntp 20408 10 99.95% 99.80% 378 2398 7.02 98.27% 97.40% 100.00%

orig tp 21960 184 99.16% 90.18% 256 / 1 108.34% 106.68% 104.16%
resyn tp 21789 5 99.98% 99.25% 257 619 3.11 107.78% 104.93% 104.16%

DMA
(10696, 331)

orig ntp 44589 409 99.08% 91.55% 996 / 1 100.00% 100.00% 100.00%
resyn ntp 44191 2 99.99% 99.95% 997 821 6.63 99.63% 98.48% 100.00%

orig tp 46303 286 99.38% 91.75% 650 / 1 100.70% 100.76% 102.98%
resyn tp 46034 4 99.99% 99.89% 651 591 5.38 100.41% 99.32% 102.98%

sparc ifu
(22257, 413)

orig ntp 101074 1858 98.16% 66.93% 384 / 1 100.00% 100.00% 100.00%
resyn ntp 99271 48 99.95% 91.29% 384 3581 2.29 98.77% 99.13% 100.00%

orig tp 116836 1539 98.68% 70.11% 201 / 1 105.48% 108.14% 102.82%
resyn tp 115331 31 99.97% 93.45% 201 3417 2.23 104.68% 107.46% 102.82%

sparc fpu
(34418, 545)

orig ntp 157728 1159 99.27% 73.72% 599 / 1 100.00% 100.00% 100.00%
resyn ntp 156639 63 99.96% 95.04% 600 2376 4.04 99.62% 98.83% 100.00%

orig tp 161059 1073 99.33% 74.13% 232 / 1 103.78% 107.80% 101.79%
resyn tp 160131 39 99.98% 95.78% 232 2203 3.99 103.49% 107.13% 101.79%

81

The results for several circuits are shown in Table 5.6. Under the name of the

circuit, we show the number of nets in the circuit, followed by the number of inserted

test points. For comparison, in every case, we repeat the results for the circuit without

test points in the first two rows. The last two rows describe the results for the circuit

with test points. In both scenarios, we present the results of the original design in

the first row and the results of the resynthesized design in the second row.

In addition to the columns defined for Tables 5.4 and 5.5, column Ntests in Ta-

ble 5.6 provides the number of test patterns that detect all the detectable faults

related to DFM guideline violations. In columns Delay, Power and Area, we show

the critical path delay, power consumption and die area of the circuit relative to the

ones of the original design without test points. The increases in delay, power and area

are due to the insertion of test points. The proposed layout resynthesis procedure

does not allow any increases in delay, power or area compared to the original design

which it is applied to. It is possible to maintain the original design constraints by

limiting the test points inserted to the circuit. However, in this chapter, we prefer not

to interfere with the analysis and insertion of test points provided by the commercial

tool.

It can be observed from Table 5.6 that the insertion of test points can improve

the coverage of the circuit, while reducing the test pattern count. It also improves

the coverage of the neighborhoods of undetectable faults. However, this coverage is

still low in many cases. After applying the proposed layout resynthesis procedure, the

coverage of the original neighborhoods of undetectable faults initially in the circuit

increases significantly. Therefore, the application of the proposed procedure can also

benefit the coverage for potential systematic defects when the circuit contains test

points.

In some cases, column Ave c of Table 5.6 shows that after applying the proposed

procedure, the circuit with test points has an average coverage that is lower than

the one of the circuit without test points. This is because the original layout of the

circuit with test points is different from the original layout of the circuit without test

82

points. The undetectable faults related to DFM guidelines in the two circuits can

be different. Therefore, the unresolved undetectable faults in the two circuits due to

design constraints can be different. In some cases, the coverage of the neighborhoods

of certain unresolved faults in the circuit with test points may be low. As a result,

the average coverage after applying the proposed procedure to the circuit with test

points can be lower.

5.4.3 Circuits after Logic Resynthesis

In this section, we show the experimental results of applying the layout resynthe-

sis procedure after applying the logic resynthesis procedure described in [80]. This

procedure addresses undetectable faults related to DFM guideline violations that are

internal to cells by replacing cells with large numbers of undetectable internal faults

by different cells. In this experiment, we focus on the undetectable external faults

related to DFM guideline violations that remain in the circuit.

The results for several circuits are shown in Table 5.7. For every circuit, row

orig inter describes the original circuit after applying the logic resynthesis procedure

in [80]. Row resyn describes the circuit that is resynthesized using the layout resyn-

thesis procedure described in this chapter. The columns of Table 5.7 are the same as

in Tables 5.4, 5.5 and 5.6.

Table 5.7.: Circuits after Logic Resynthesis

Circuit F U Cov Ave c Ntest Nchanges Rtime

b15
orig inter 27265 743 97.27% 83.19% 382 / 1

resyn 26533 11 99.96% 99.77% 382 2461 7.23

DMA
orig inter 53567 413 99.23% 91.87% 1001 / 1

resyn 53156 1 99.99% 99.99% 1001 842 6.32

sparc ifu
orig inter 115154 1199 98.96% 73.15% 391 / 1

resyn 113988 32 99.97% 93.19% 391 2910 2.01

sparc fpu
orig inter 185598 1517 99.18% 72.87% 609 / 1

resyn 184153 67 99.96% 95.18% 610 2895 4.17

83

From Table 5.7, it can be observed that the circuits after logic resynthesis still

contain large numbers of undetectable external faults related to DFM guideline viola-

tions, resulting in low-coverage areas in the design. This can be seen from columns U

and Ave c. The proposed layout resynthesis procedure addresses this issue by elimi-

nating undetectable faults in the neighborhoods with low coverages. As a result, the

coverage of the original neighborhoods of undetectable faults initially in the circuit

increases significantly.

5.4.4 Weighted DFM Guidelines

In this section, we show the experimental results of applying the layout resynthesis

procedure when different DFM guidelines have different weights.

We experimented with two cases for comparison. In the first case, the weights

assigned to spacing related DFM guidelines are 50%. In the second case, the weights

assigned to via dimension related DFM guidelines are 50%. We select the two types

of DFM guidelines since they are related to most of the DFM guideline violations. In

both cases, the weights assigned to the rest of the DFM guidelines are 5%, and p is

set to be 80%.

Table 5.8.: Weighted DFM Guidelines

Circuit F U Cov
Ave c

Ntests Nchanges Rtime
orig resyn

b15
spacing 21092 702 96.67% 93.07% 93.54% 378 99 0.25

via 20973 582 97.23% 88.03% 93.51% 378 390 0.89

DMA
spacing 44589 409 99.08% 93.12% 95.67% 996 31 0.19

via 44579 399 99.10% 92.27% 95.03% 996 104 0.77

sparc ifu
spacing 100998 1782 98.24% 78.63% 90.54% 384 601 0.48

via 100930 1713 98.30% 75.91% 90.18% 384 826 0.59

sparc fpu
spacing 157620 1051 99.33% 89.34% 96.23% 599 422 0.31

via 157563 994 99.37% 87.42% 95.82% 599 524 0.47

The results for several circuits are shown in Table 5.8. For every circuit, row

spacing describes the case when spacing related DFM guidelines are assigned higher

84

weights, and row via describes the case when via dimension related DFM guidelines

are assigned higher weights. The columns of Table 5.8 are the same as in Tables 5.4,

5.5, 5.6 and 5.7. In column Ave c, we show the results for the original and the

resynthesized circuits. In other columns, we show the result for the resynthesized

circuit.

From Table 5.8, it can be seen that the number of changes to polygons in the first

case is less than the one in the second case. This is because more DFM guideline

violations that are translated to undetectable faults are related to via dimensions.

This can also be validated from column Ave c. When via dimension related DFM

guidelines are assigned higher weights, the average coverage of the original neigh-

borhoods of undetectable faults is typically lower than the one when spacing related

DFM guidelines are assigned higher weights.

5.4.5 Circuits with High Cell Utilization

The cell utilization used thus far is 70% as discussed earlier. In this section, we

show the results of applying the layout resynthesis procedure to circuits with higher

cell utilization. We experimented with two cases for comparison. In the two cases,

the cell utilization is set to be 80% and 90% respectively.

The results for several circuits are shown in Table 5.9. The original layouts of all

the circuits considered are obtained without design rule violations in all the cases.

For every circuit, we repeat the results with 70% cell utilization, and then show the

results with 80% and 90% cell utilization. In all the scenarios, we present the results

of the original design in the first row and the results of the resynthesized design in

the second row. The columns of Table 5.9 are the same as in Tables 5.4, 5.5 and 5.6.

It can be observed from Table 5.9 that the numbers of unresolved undetectable

faults increase compared to the ones in the circuits with 70% cell utilization. This is

due to the congestion in the circuit with high cell utilization. However, the proposed

layout resynthesis procedure still reduces the number of undetectable faults signifi-

85

cantly. Therefore, the coverage of the original neighborhoods of undetectable faults

initially in the circuit increases significantly. This can be seen from column Ave c.

Table 5.9.: Circuits with Higher Cell Utilization

Circuit F U Cov Ave c Nchanges Rtime

b15

orig 70% 21103 713 96.62% 85.64% / 1
resyn 70% 20408 10 99.95% 99.80% 2398 7.02
orig 80% 21489 811 96.23% 81.32% / 1

resyn 80% 20702 14 99.93% 99.19% 2491 8.19
orig 90% 22950 903 96.07% 82.06% / 1

resyn 90% 22075 20 99.91% 99.31% 2610 7.79

DMA

orig 70% 44589 409 99.08% 91.55% / 1
resyn 70% 44191 2 99.99% 99.95% 821 6.63
orig 80% 45033 524 98.84% 89.58% / 1

resyn 80% 44530 7 99.98% 99.91% 1037 7.18
orig 90% 46194 629 98.64% 88.37% / 1

resyn 90% 45607 25 99.95% 99.36% 1153 7.68

sparc ifu

orig 70% 101074 1858 98.16% 66.93% / 1
resyn 70% 99271 48 99.95% 91.29% 3581 2.29
orig 80% 102019 2105 97.94% 63.19% / 1

resyn 80% 100029 97 99.90% 89.93% 3710 2.96
orig 90% 104986 2973 97.17% 62.64% / 1

resyn 90% 102173 156 99.85% 87.56% 4002 3.59

sparc fpu

orig 70% 157728 1159 99.27% 73.72% / 1
resyn 70% 156639 63 99.96% 95.04% 2376 4.04
orig 80% 163579 1490 99.09% 74.56% / 1

resyn 80% 162196 102 99.94% 91.63% 2865 4.68
orig 90% 170479 1817 98.93% 72.10% / 1

resyn 90% 168854 177 99.90% 90.29% 3309 4.81

86

6. SUMMARY

This dissertation addressed three important issues in test and diagnosis that are

related to delay fault testing, defect diagnosis and systematic defects based on DFM

guidelines. The solutions to these issues were implemented using commercial EDA

tools. No modification to these commercial tools is required. Thus, they can be easily

applied to complex designs with state-of-the-art features.

First, an implementation of a functional broadside test generation procedure using

a commercial ATPG tool was presented. Functional broadside tests use only reach-

able states as scan-in states to address overtesting of delay faults. The procedure

starts with a initial state and iteratively generates more reachable states and more

tests. Features that already exist in the commercial tool allowed us to implement this

procedure without modifying the tool. This allows functional broadside tests to be

generated for state-of-the-art circuits with features that are not handled by academic

tool. The experimental results demonstrated that the generated test set achieved a

fault coverage that is typically close to the one achieved by non-functional broadside

tests. The difference in fault coverage is caused by the functional constraints that are

necessary to avoid overtesting. The need to satisfy functional constraints also explains

the increased number of tests. The experimental results also showed that generating

multi-cycle functional broadside tests can reduce the need to find additional reachable

states.

Next, a new procedure was presented to improve the resolution of multi-defect

diagnosis by considering fewer tests. The procedure is implemented on top of a defect

diagnosis tool that computes a partitioned set of candidate faults and takes advantage

of the partition to avoid losing precision. The procedure has two phases. The first

phase is based on the removal of subsets of tests. The second phase is based on

the selection of subsets of tests. A subset-by-subset strategy is applied in the second

87

phase to avoid a loss of precision while increasing the resolution. Experimental results

indicated that the procedure results in reduced candidate fault sets. In addition, the

procedure rarely loses the candidate faults that match the defects.

Last, we demonstrated that, among all the faults translated from DFM guideline

violations, the undetectablle faults tend to cluster together and can result in areas of

the circuit with poor coverage for potential systematic defects. In order to eliminate

large clusters of undetectable faults, and improve the coverage of the circuit for po-

tential systematic defects, two procedures based on logic and layout resynthesis were

presented.

We first presented a procedure based on logic resynthesis followed by physical

design to eliminate large clusters of undetectable internal faults caused by DFM

guideline violations. The proposed logic resynthesis procedure has two phases. The

first phase focuses on the largest clusters of undetectable faults. The second phase

considers the entire circuit. A backtracking procedure was used to guarantee that

the resynthesized circuit maintains design constraints of critical path delay, power

consumption and die area. Next, we presented a layout resynthesis procedure to

address the issue of undetectable external faults caused by DFM guideline violations.

The layout resynthesis procedure uses a layout-based coverage metric, and makes

fine changes to the layout while maintaining the design constraints. The procedure

is iterative. In every iteration, it prefers to eliminate the undetectable faults whose

neighborhoods have the lowest coverages. The undetectable faults are eliminated by

fixing the DFM guideline violations that lead to them. The experimental results for

benchmark circuits and logic blocks of the OpenSparc T1 microprocessor showed that

both the improvement in the coverage of the circuit areas with low coverage and the

reduction in the sizes of large clusters of undetectable faults are significant. Therefore,

the coverage for potential systematic defects can be improved significantly.

REFERENCES

88

REFERENCES

[1] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Transition
fault simulation,” IEEE Design Test of Computers, vol. 4, no. 2, pp. 32–38,
1987.

[2] E. B. Eichelberger and T. W. Williams, “A logic design structure for lsi testa-
bility,” in Proceedings of the Design Automation Conference, Jun 1977, pp.
462–468.

[3] J. Savir and S. Patil, “Broad-side delay test,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 13, no. 8, pp. 1057–1064,
1994.

[4] J. Rearick, “Too much delay fault coverage is a bad thing,” in Proceedings of
the International Test Conference, Nov 2001, pp. 624–633.

[5] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreep-
rakash, and M. Hachinger, “A case study of ir-drop in structured at-speed
testing,” in Proceedings of the International Test Conference, vol. 1, Sep. 2003,
pp. 1098–1104.

[6] S. Sde-Paz and E. Salomon, “Frequency and power correlation between at-speed
scan and functional tests,” in Proceedings of the International Test Conference,
Oct 2008, pp. 1–9.

[7] X. Liu and M. S. Hsiao, “Constrained atpg for broadside transition testing,” in
Proceedings of the Symposium on Defect and Fault Tolerance in VLSI Systems,
Nov 2003, pp. 175–182.

[8] I. Pomeranz and S. M. Reddy, “On application of output masking to un-
detectable faults in synchronous sequential circuits with design-for-testability
logic,” in Proceedings of the International Conference on Computer Aided De-
sign, Nov 2003, pp. 867–872.

[9] I. Pomeranz, “On the generation of scan-based test sets with reachable states
for testing under functional operation conditions,” in Proceedings of the Design
Automation Conference, July 2004, pp. 928–933.

[10] I. Pomeranz and S. M. Reddy, “Generation of functional broadside tests for
transition faults,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 10, pp. 2207–2218, 2006.

[11] ——, “On reset based functional broadside tests,” in Proceedings of the Design,
Automation and Test in Europe Conference, March 2010, pp. 1438–1443.

89

[12] Y. C. Lin, F. Lu, K. Yang, and K. T. Cheng, “Constraint extraction for pseudo-
functional scan-based delay testing,” in Proceedings of the Asia and South Pa-
cific Design Automation Conference, vol. 1, Jan 2005, pp. 166–171 Vol. 1.

[13] Z. Zhang, S. M. Reddy, and I. Pomeranz, “On generating pseudo-functional de-
lay fault tests for scan designs,” in Proceedings of the International Symposium
on Defect and Fault Tolerance in VLSI Systems, Oct 2005, pp. 398–405.

[14] M. Syal, K. Chandrasekar, V. Vimjam, M. S. Hsiao, Y. Chang, and
S. Chakravarty, “A study of implication based pseudo functional testing,” in
Proceedings of the International Test Conference, Oct 2006, pp. 1–10.

[15] T. Zhang and D. M. Hank Walker, “Power supply noise control in pseudo func-
tional test,” in Proceedings of the VLSI Test Symposium, April 2013, pp. 1–6.

[16] J. A. Waicukauski and E. Lindbloom, “Failure diagnosis of structured vlsi,”
IEEE Design Test of Computers, vol. 6, no. 4, pp. 49–60, 1989.

[17] I. Pomeranz, “Improving the accuracy of defect diagnosis by considering fewer
tests,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 12, pp. 2010–2014, 2014.

[18] ——, “Improving the accuracy of defect diagnosis with multiple sets of candi-
date faults,” IEEE Transactions on Computers, vol. 65, no. 7, pp. 2332–2338,
2016.

[19] ——, “A test selection procedure for improving the accuracy of defect diagno-
sis,” IEEE Transactions on Very Large Scale Integration Systems, vol. 24, no. 8,
pp. 2759–2767, 2016.

[20] B. Kruseman, A. Majhi, C. Hora, S. Eichenberger, and J. Meirlevede, “System-
atic defects in deep sub-micron technologies,” in Proceedings of the International
Test Conference, Oct 2004, pp. 290–299.

[21] C. Schuermyer, K. Cota, R. Madge, and B. Benware, “Identification of sys-
tematic yield limiters in complex asics through volume structural test fail data
visualization and analysis,” in Proceedings of the International Test Conference,
Nov 2005, pp. 9 pp.–145.

[22] R. Turakhia, M. Ward, S. K. Goel, and B. Benware, “Bridging dfm analysis
and volume diagnostics for yield learning - a case study,” in Proceedings of the
VLSI Test Symposium, May 2009, pp. 167–172.

[23] R. Desineni, L. Pastel, M. Kassab, M. F. Fayaz, and J. Lee, “Identifying de-
sign systematics using learning based diagnostic analysis,” in Proceedings of the
Advanced Semiconductor Manufacturing Conference, July 2010, pp. 317–321.

[24] S. Kundu and A. Sreedhar, “Modeling manufacturing process variation for de-
sign and test,” in Proceedings of the Design, Automation and Test in Europe
Conference, March 2011, pp. 1–6.

[25] B. Seshadri, P. Gupta, Y. T. Lin, and B. Cory, “Systematic defect screening in
controlled experiments using volume diagnosis,” in Proceedings of the Interna-
tional Test Conference, Nov 2012, pp. 1–7.

90

[26] M. Brodsky, S. Halle, V. Jophlin-Gut, L. Liebmann, D. Samuels, G. Crispo,
K. Nafisi, V. Ramani, and I. Peterson, “Process-window sensitive full-chip in-
spection for design-tosilicon optimization in the sub-wavelength era,” in Pro-
ceedings of the IEEE/SEMI Conference and Workshop on Advanced Semicon-
ductor Manufacturing, April 2005, pp. 64–71.

[27] D. Kim, M. E. Amyeen, S. Venkataraman, I. Pomeranz, S. Basumallick, and
B. Landau, “Testing for systematic defects based on dfm guidelines,” in Pro-
ceedings of the International Test Conference, Oct 2007, pp. 1–10.

[28] D. Kim, I. Pomeranz, M. E. Amyeen, and S. Venkataraman, “Defect diagnosis
based on dfm guidelines,” in Proceedings of the VLSI Test Symposium, April
2010, pp. 206–211.

[29] A. Sinha, S. Pandey, A. Singhal, A. Sanyal, and A. Schmaltz, “Dfm-aware
fault model and atpg for intra-cell and inter-cell defects,” in Proceedings of the
International Test Conference, Oct 2017, pp. 1–10.

[30] H. Zheng, K. K. Saluja, and R. Jain, “Test application time reduction for scan
based sequential circuits,” in Proceedings of the Great Lakes Symposium on
VLSI, March 1995, pp. 188–191.

[31] I. Park and E. J. McCluskey, “Launch-on-shift-capture transition tests,” in
Proceedings of the International Test Conference, Oct 2008, pp. 1–9.

[32] I. Pomeranz, “Generation of multi-cycle broadside tests,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 8,
pp. 1253–1257, Aug 2011.

[33] X. Lin and R. Thompson, “Test generation for designs with multiple clocks,”
in Proceedings of the Design Automation Conference, June 2003, pp. 662–667.

[34] X. Lin, R. Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and
N. Tamarapalli, “High-frequency, at-speed scan testing,” IEEE Design Test
of Computers, vol. 20, no. 5, pp. 17–25, 2003.

[35] [Online]. Available: http://www.opencores.org/

[36] [Online]. Available: http://www.oracle.com/technetwork/systems/opensparc/
index.html

[37] G. Chen, S. M. Reddy, and I. Pomeranz, “Procedures for identifying untestable
and redundant transition faults in synchronous sequential circuits,” in Proceed-
ings of the International Conference on Computer Design, Oct 2003, pp. 36–41.

[38] Digital Systems Testing and Testable Design.

[39] D. B. Lavo, B. Chess, T. Larrabee, and I. Hartanto, “Probabilistic mixed-model
fault diagnosis,” in Proceedings of the International Test Conference, Oct 1998,
pp. 1084–1093.

[40] J. Ghosh-Dastidar and N. A. Touba, “Adaptive techniques for improving delay
fault diagnosis,” in Proceedings of the VLSI Test Symposium, April 1999, pp.
168–172.

http://www.opencores.org/
http://www.oracle.com/technetwork/systems/opensparc/index.html
http://www.oracle.com/technetwork/systems/opensparc/index.html

91

[41] S. Venkataraman and S. B. Drummonds, “Poirot: a logic fault diagnosis tool
and its applications,” in Proceedings of the International Test Conference, Oct
2000, pp. 253–262.

[42] S. Y. Huang, “On improving the accuracy of multiple defect diagnosis,” in
Proceedings of the VLSI Test Symposium, April 2001, pp. 34–39.

[43] T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, “Diagnosing com-
binational logic designs using the single location at-a-time (slat) paradigm,” in
Proceedings of the International Test Conference, Nov 2001, pp. 287–296.

[44] D. B. Lavo, I. Hartanto, and T. Larrabee, “Multiplets, models, and the search
for meaning: improving per-test fault diagnosis,” in Proceedings of the Interna-
tional Test Conference, Oct 2002, pp. 250–259.

[45] Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, “Multiple fault di-
agnosis using n-detection tests,” in Proceedings of the International Conference
on Computer Design, Oct 2003, pp. 198–201.

[46] I. Pomeranz, S. Venkataraman, S. M. Reddy, and E. Amyeen, “Defect diagnosis
based on pattern-dependent stuck-at faults,” in Proceedings of the International
Conference on VLSI Design, Jan 2004, pp. 475–480.

[47] J. B. Liu and A. Veneris, “Incremental fault diagnosis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 2, pp.
240–251, 2005.

[48] R. Desineni and R. D. Blanton, “Diagnosis of arbitrary defects using neighbor-
hood function extraction,” in Proceedings of the VLSI Test Symposium, May
2005, pp. 366–373.

[49] C. Liu, “Improve the quality of per-test fault diagnosis using output informa-
tion,” Journal of Electronic Testing, vol. 23, no. 1, pp. 11–24, 2007.

[50] R. Adapa, S. Tragoudas, and M. K. Michael, “Accelerating diagnosis via dom-
inance relations between sets of faults,” in Proceedings of the VLSI Test Sym-
posium, May 2007, pp. 219–224.

[51] S. Holst and H. Wunderlich, “Adaptive debug and diagnosis without fault dic-
tionaries,” in Proceedings of the European Test Symposium, May 2007, pp. 7–12.

[52] W. C. Tam, O. Poku, and R. D. Blanton, “Precise failure localization using
automated layout analysis of diagnosis candidates,” in Proceedings of the Design
Automation Conference, June 2008, pp. 367–372.

[53] X. Yu and R. D. Blanton, “An effective and flexible multiple defect diagnosis
methodology using error propagation analysis,” in Proceedings of the Interna-
tional Test Conference, Oct 2008, pp. 1–9.

[54] W. Cheng, B. Benware, R. Guo, K. Tsai, T. Kobayashi, K. Maruo, M. Nakao,
Y. Fukui, and H. Otake, “Enhancing transition fault model for delay defect
diagnosis,” in Proceedings of the Asian Test Symposium, Nov 2008, pp. 179–
184.

92

[55] V. J. Mehta, M. Marek-Sadowska, K. Tsai, and J. Rajski, “Timing-aware
multiple-delay-fault diagnosis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, no. 2, pp. 245–258, 2009.

[56] X. Tang, W. Cheng, R. Guo, and S. M. Reddy, “Diagnosis of multiple physical
defects using logic fault models,” in Proceedings of the Asian Test Symposium,
Dec 2010, pp. 94–99.

[57] I. Pomeranz, “Obo: An output-by-output scoring algorithm for fault diagnosis,”
in Proceedings of the Computer Society Annual Symposium on VLSI, July 2014,
pp. 314–319.

[58] P. G. Ryan, W. K. Fuchs, and I. Pomeranz, “Fault dictionary compression
and equivalence class computation for sequential circuits,” in Proceedings of the
International Conference on Computer Aided Design, Nov 1993, pp. 508–511.

[59] H. Wang, O. Poku, X. Yu, S. Liu, I. Komara, and R. D. Blanton, “Test-data vol-
ume optimization for diagnosis,” in Proceedings of the DAC Design Automation
Conference, June 2012, pp. 567–572.

[60] X. Fan, H. Tang, Y. Huang, W. Cheng, S. M. Reddy, and B. Benware, “Im-
proved volume diagnosis throughput using dynamic design partitioning,” in
Proceedings of the International Test Conference, Nov 2012, pp. 1–10.

[61] S. Kundu, P. Bhattacharya, and R. Kapur, “Fault diagnosis in designs with ex-
treme low pin test data compressors,” in Proceedings of the Design, Automation
and Test in Europe Conference, March 2015, pp. 1285–1288.

[62] I. Pomeranz and S. M. Reddy, “On clustering of undetectable single stuck-at
faults and test quality in full-scan circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 29, no. 7, pp. 1135–1140,
2010.

[63] I. Pomeranz, “On clustering of undetectable transition faults in standard-scan
circuits,” in Proceedings of the VLSI Test Symposium, May 2011, pp. 128–133.

[64] P. Pan, “Performance-driven integration of retiming and resynthesis,” in Pro-
ceedings of the Design Automation Conference, June 1999, pp. 243–246.

[65] V. N. Kravets and K. A. Sakallah, “Resynthesis of multi-level circuits under
tight constraints using symbolic optimization,” in Proceedings of the Interna-
tional Conference on Computer Aided Design, Nov 2002, pp. 687–693.

[66] A. Saifhashemi, D. Hand, P. A. Beerel, W. Koven, and H. Wang, “Performance
and area optimization of a bundled-data intel processor through resynthesis,”
in Proceedings of the International Symposium on Asynchronous Circuits and
Systems, May 2014, pp. 110–111.

[67] S. Chiu and C. A. Papachristou, “A design for testability scheme with ap-
plications to data path synthesis,” in Proceedings of the Design Automation
Conference, June 1991, pp. 271–277.

[68] T. C. Lee, W. H. Wolf, and N. K. Jha, “Behavioral synthesis for easy testability
in data path scheduling,” in Proceedings of the International Conference on
Computer-Aided Design, Nov 1992, pp. 616–619.

93

[69] S. Kanjilal, S. T. Chakradhar, and V. D. Agrawal, “A partition and resynthesis
approach to testable design of large circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 14, no. 10, pp. 1268–1276,
1995.

[70] I. Pomeranz and S. M. Reddy, “On the number of tests to detect all path
delay faults in combinational logic circuits,” IEEE Transactions on Computers,
vol. 45, no. 1, pp. 50–62, 1996.

[71] A. Krstic and K. Cheng, “Resynthesis of combinational circuits for path count
reduction and for path delay fault testability,” in Proceedings of the European
Design and Test Conference, March 1996, pp. 486–490.

[72] K. D. Wagner and S. Dey, “High-level synthesis for testability: a survey and
perspective,” in Proceedings of the Design Automation Conference, June 1996,
pp. 131–136.

[73] J. C. M. Li, Chao-Wen Tseng, and E. J. McCluskey, “Testing for resistive
opens and stuck opens,” in Proceedings of the International Test Conference,
Nov 2001, pp. 1049–1058.

[74] Z. Li, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, “A circuit level fault model
for resistive opens and bridges,” in Proceedings of the VLSI Test Symposium,
May 2003, pp. 379–384.

[75] V. Krishnaswamy, A. B. Ma, and P. Vishakantaiah, “A study of bridging defect
probabilities on a pentium (tm) 4 cpu,” in Proceedings of the International Test
Conference, Nov 2001, pp. 688–695.

[76] A. Salz and M. Horowitz, “Irsim: An incremental mos switch-level simulator,”
in Proceedings of the Design Automation Conference, June 1989, pp. 173–178.

[77] J. E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash, N. Iliev, and
N. Jachimiec, “A framework for high-level synthesis of system on chip designs,”
in Proceedings of the International Conference on Microelectronic Systems Ed-
ucation, June 2005, pp. 67–68.

[78] C. Guardiani, N. Dragone, and P. McNamara, “Proactive design for manufac-
turing (dfm) for nanometer soc designs,” in Proceedings of the Custom Integrated
Circuits Conference, Oct 2004, pp. 309–316.

[79] A. Nardi and A. L. Sangiovanni-Vincentelli, “Synthesis for manufacturability:
a sanity check,” in Proceedings of the Design, Automation and Test in Europe
Conference, Feb 2004, pp. 796–801.

[80] N. Wang, I. Pomeranz, S. M. Reddy, A. Sinha, and S. Venkataraman, “Resyn-
thesis for avoiding undetectable faults based on design-for-manufacturability
guidelines,” in Proceedings of the Design, Automation and Test in Europe Con-
ference, March 2019, pp. 1022–1027.

[81] P. Maxwell, F. Hapke, M. Ryynnen, and P. Weseloh, “Bridge over troubled
waters: Critical area based pattern generation,” in Proceedings of the European
Test Symposium, May 2017, pp. 1–6.

94

[82] W. Howell, F. Hapke, E. Brazil, S. Venkataraman, R. Datta, A. Glowatz, W. Re-
demund, J. Schmerberg, A. Fast, and J. Rajski, “Dppm reduction methods and
new defect oriented test methods applied to advanced finfet technologies,” in
Proceedings of the International Test Conference, Oct 2018, pp. 1–10.

[83] I. Pomeranz and S. M. Reddy, “On achieving complete coverage of delay faults in
full scan circuits using locally available lines,” in Proceedings of the International
Test Conference, Sept 1999, pp. 923–931.

[84] S. Wang, X. Liu, and S. T. Chakradhar, “Hybrid delay scan: a low hardware
overhead scan-based delay test technique for high fault coverage and compact
test sets,” in Proceedings of the Design, Automation and Test in Europe Con-
ference, Feb 2004, pp. 1296–1301.

[85] N. Devtaprasanna, A. Gunda, P. Krishnamurthy, S. M. Reddy, and I. Pomeranz,
“Methods for improving transition delay fault coverage using broadside tests,”
in Proceedings of the International Test Conference, Nov 2005, pp. 10 pp.–265.

[86] S. Wang and T. Yeh, “High-level test synthesis for delay fault testability,” in
Proceedings of the Design, Automation and Test in Europe Conference, April
2007, pp. 1–6.

[87] B. Krishnamurthy, “A dynamic programming approach to the test point inser-
tion problem,” in Proceedings of the Design Automation Conference, June 1987,
pp. 695–705.

[88] J. Yang, N. A. Touba, and B. Nadeau-Dostie, “Test point insertion with control
points driven by existing functional flip-flops,” IEEE Transactions on Comput-
ers, vol. 61, no. 10, pp. 1473–1483, 2012.

[89] E. Moghaddam, N. Mukherjee, J. Rajski, J. Tyszer, and J. Zawada, “Test point
insertion in hybrid test compression/lbist architectures,” in Proceedings of the
International Test Conference, Nov 2016, pp. 1–10.

[90] C. Acero, D. Feltham, F. Hapke, E. Moghaddam, N. Mukherjee, V. Neerkundar,
M. Patyra, J. Rajski, J. Tyszer, and J. Zawada, “Embedded deterministic test
points for compact cell-aware tests,” in Proceedings of the International Test
Conference, Oct 2015, pp. 1–8.

[91] Y. Liu, E. Moghaddam, N. Mukherjee, S. M. Reddy, J. Rajski, and J. Tyszer,
“Minimal area test points for deterministic patterns,” in Proceedings of the
International Test Conference, Nov 2016, pp. 1–7.

[92] S. Ravi and M. Joseph, “High-level test synthesis: A survey from synthesis
process flow perspective,” ACM Trans. Des. Autom. Electron. Syst., vol. 19,
no. 4, pp. 38:1–38:27, 2014.

[93] C. A. Papachristou, S. Chiu, and H. Harmanani, “A data path synthesis method
for self-testable designs,” in Proceedings of the Design Automation Conference,
1991, pp. 378–384.

[94] I. Pomeranz and S. M. Reddy, “On synthesis-for-testability of combinational
logic circuits,” in Proceedings of the Design Automation Conference, 1995, pp.
126–132.

95

[95] I. Pomeranz, “Design-for-testability for multi-cycle broadside tests by holding
of state variables,” ACM Trans. Des. Autom. Electron. Syst., vol. 19, no. 2, pp.
19:1–19:20, 2014.

[96] ——, “Enhanced test compaction for multicycle broadside tests by using state
complementation,” ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 1, pp.
13:1–13:20, 2015.

[97] S. Wang, K. Peng, K. Hsiao, and K. S. Li, “Layout-aware scan chain reorder for
launch-off-shift transition test coverage,” ACM Trans. Des. Autom. Electron.
Syst., vol. 13, no. 4, pp. 64:1–64:16, 2008.

[98] P. Gupta, A. B. Kahng, I. Mandoiu, and P. Sharma, “Layout-aware scan chain
synthesis for improved path delay fault coverage,” in Proceedings of the Inter-
national Conference on Computer-Aided Design, Nov 2003, pp. 754–759.

[99] S. Wang, K. Peng, and K. S. Li, “Layout-aware scan chain reorder for skewed-
load transition test coverage,” in Proceedings of the Asian Test Symposium, Nov
2006, pp. 169–174.

[100] S. Kajihara, T. Sumioka, and K. Kinoshita, “Test generation for multiple faults
based on parallel vector pair analysis,” in Proceedings of the International Con-
ference on Computer-Aided Design, Nov 1993, pp. 436–439.

[101] M. Fujita and A. Mishchenko, “Efficient sat-based atpg techniques for all mul-
tiple stuck-at faults,” in Proceedings of the International Test Conference, Oct
2014, pp. 1–10.

[102] I. Pomeranz and S. M. Reddy, “On multiple bridging faults,” in Proceedings of
the VLSI Test Symposium, April 2010, pp. 221–226.

[103] T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Enabling technology scaling
with ”in production” lithography processes,” in Proceedings of the SPIE, vol.
6924, 2008, pp. 6924 – 6924 – 10.

[104] C. Tabery, M. Craig, G. Burbach, B. Wagner, S. McGowan, P. Etter, S. Roling,
C. Haidinyak, and E. Ehrichs, “Process window and device variations evaluation
using array-based characterization circuits,” in Proceedings of the International
Symposium on Quality Electronic Design, March 2006, pp. 6 pp.–265.

[105] W. C. Tam and S. Blanton, “To dfm or not to dfm?” in Proceedings of the
Design Automation Conference, June 2011, pp. 65–70.

[106] R. D. Blanton, F. Wang, C. Xue, P. K. Nag, Y. Xue, and X. Li, “Dreams: Dfm
rule evaluation using manufactured silicon,” in Proceedings of the International
Conference on Computer-Aided Design, Nov 2013, pp. 99–106.

VITA

96

VITA

Naixing Wang received his B.Eng. degree in Electrical & Electronics Engineering

from Beijing Institute of Technology, Beijing, China in 2014. Since 2014, he has

been at the school of Electrical and Computer Engineering, Purdue University, West

Lafayette, USA, pursuing a Ph.D. degree.

His current research interests include Design-for-testability (DFT), test genera-

tion, defect diagnosis, logic synthesis, design-for-manufacturability (DFM) and EDA

tool development.

97

PUBLICATIONS

1. N. Wang, B. Yao, X. Lin and I. Pomeranz, “Functional Broadside Test Gener-

ation Using a Commercial ATPG Tool,” in Proceedings of the IEEE Computer

Society Annual Symp. on VLSI, Jul 2017, pp. 308-313.

2. N. Wang, I. Pomeranz, B. Benware, M. E. Amyeen and S. Venkataraman, “Im-

proving the Resolution of Multiple Defect Diagnosis by Removing and Selecting

Tests,” in Proceedings of the Defect and Reliability Symp., Oct 2018, pp. 1-6.

(Best paper award nominee)

3. N. Wang, I. Pomeranz, S. M. Reddy, A. Sinha and S. Venkataraman, “Resyn-

thesis for Avoiding Undetectable Faults Based on Design-for-Manufacturability

Guidelines,” in Proceedings of the Design, Automation and Test in Europe Con-

ference, Mar 2019, pp. 1022-1027.

4. N. Wang, I. Pomeranz, S. M. Reddy, A. Sinha and S. Venkataraman, “Layout

Resynthesis by Applying Design-for-Manufacturability Guidelines to Avoid Low-

Coverage Areas of a Cell-Based Design,” ACM Trans. Des. Autom. Electron.

Syst., vol. 24, no. 4, pp. 42:1-42:19, 2019.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Delay Fault Testing
	Transition Delay Fault Model
	Scan-based Testing for Transition Delay Fault
	Overtesting and Functional Broadside Test
	Contribution

	Defect Diagnosis
	Simulation-based Diagnosis
	Diagnosis for Multiple Defects
	Contribution

	Systematic Defects Based on DFM guidelines
	Testing Systematic Defects Based on DFM Guidelines
	Contribution

	Organization

	Functional Broadside Test Generation Using a Commercial ATPG Tool
	Introduction
	Generation of Functional Broadside Tests
	Test Generation
	Finding Reachable States and Constructing Rnext
	Termination Conditions
	Multi-cycle Test Generation

	Experimental Results

	Improving the Resolution of Multiple Defect Diagnosis by Removing and Selecting Tests
	Introduction
	Background
	Procedure Based on Test Removal
	Procedure Based on Test Selection
	Experimental Results

	Logic Resynthesis for Avoiding Undetectable Faults Based on DFM Guidelines in a Cell-Based Design
	Introduction
	Background
	Resynthesis Procedure
	Backtracking Procedure
	Experimental Results

	Layout Resynthesis by Applying DFM Guidelines to Avoid Low-Coverage Areas of a Cell-Based Design
	Introduction
	Undetectable Faults Related to DFM Guideline Violations
	Analysis of DFM Guideline Violations
	Detectable Defects Modeled by Undetectable Faults
	Circuit Areas with Poor Coverage
	Coverage for Faults with Weighted DFM Guidelines

	Layout Resynthesis
	Fixing DFM Guideline Violations
	Layout Resynthesis Procedure

	Experimental Results
	Layout Resynthesis Procedure
	Circuits with Test Points
	Circuits after Logic Resynthesis
	Weighted DFM Guidelines
	Circuits with High Cell Utilization

	Summary
	REFERENCES
	VITA
	PUBLICATIONS

