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ABSTRACT

Shawly, Tawfeeq A. PhD, Purdue University, December 2019. Design and Evaluation
of Hidden Markov Model Based Architectures for Detection of Interleaved Multi-stage
Network Attacks. Major Professor: Arif Ghafoor.

Nowadays, the pace of coordinated cyber security crimes has become drastically

more rapid, and network attacks have become more advanced and diversified. The

explosive growth of network security threats poses serious challenges for building

secure Cyber-based Systems (CBS). Existing studies have addressed a breadth of

challenges related to detecting network attacks. However, there is still a lack of

studies on the detection of sophisticated Multi-stage Attacks (MSAs).

The objective of this dissertation is to address the challenges of modeling and de-

tecting sophisticated network attacks, such as multiple interleaved MSAs. We present

the interleaving concept and investigate how interleaving multiple MSAs can deceive

intrusion detection systems. Using one of the important statistical machine learning

(ML) techniques, Hidden Markov Models (HMM), we develop three architectures that

take into account the stealth nature of the interleaving attacks, and that can detect

and track the progress of these attacks. These architectures deploy a set of HMM

templates of known attacks and exhibit varying performance and complexity.

For performance evaluation, various metrics are proposed which include (1) attack

risk probability, (2) detection error rate, and (3) the number of correctly detected

stages. Extensive simulation experiments are conducted to demonstrate the efficacy

of the proposed architecture in the presence of multiple multi-stage attack scenarios,

and in the presence of false alerts with various rates.
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1. INTRODUCTION

Large organizations face a daunting challenge in the provision of security for their

cyber-based systems. Modern cyber-based infrastructures typically consist of a large

number of interdependent systems and exhibit increasing reliance on the security of

such systems. In the present threat landscape, network attacks have become more

advanced, sophisticated and diversified, and the rapid pace of coordinated cyber secu-

rity crimes has witnessed a massive growth over the past several years. Cyber attacks

can affect and downgrade functionalities and missions of critical infrastructures [1].

For instance, in December 2015, hackers were able to successfully compromise infor-

mation systems of three energy distribution companies in Ukraine and temporarily

disrupt the power supply to consumers [2]. Another recent incident in May 2017

occurred when the “WannaCry” ransomware attack was detected after it locked up

over 200,000 servers in more than 150 countries [3]. A month later, another version

of the same attack caused outages of most of the government websites and several

companies in Ukraine, and eventually, this attack spread worldwide [4].

With the explosive growth of cyber threats, a dire need exists for the development

of high-assurance and resilient cyber-based systems. One of the most important

requirements for high-assurance systems is the need for advanced and sophisticated

attack detection and prediction systems [5].

Security reports reveal that, over time, the type of network intrusions have trans-

formed from the original Trojan horses and viruses into more complex attacks com-

prised of a myriad of individual attacks. These attacks follow a series of long-term

steps and actions referred to as Multi-stage Attacks (MSAs), and therefore are hard

to predict [6]. During these attacks, an intruder launches several actions, which may

not be performed simultaneously, but are correlated in the sense that each action
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is part of the execution of previous ones and each multi-stage attack is aimed at a

specific target [7].

One example of multi-stage attacks is the Distributed Denial-of-Service attack

(DDoS), which consists of the following main stages. At the beginning, the attacker

tries to identify potential vulnerabilities by scanning the targeted network. Then, he

attempts to break into vulnerable hosts and to compromise them. After that, the

attacker installs malware in the compromised hosts, and eventually initiates a DDoS

attack to the targeted server, which is accessible from all the exploited hosts [8].

The detection of multi-stage attacks is a challenge for existing threat detection

techniques. Furthermore, launching multiple such attacks simultaneously in the net-

work, in order to stealth certain attacks within others, exacerbates this challenge [7].

The main challenges for detecting interleaved multi-stage attacks include: modeling

multi-stage attacks in terms of security states and in the presence of mixed obser-

vations (IDS alerts); designing an efficient architecture that detects and tracks the

progress of interleaved multi-stage attack in the presence of IDS false alarms; and

evaluating the detection performance of the architecture, given that there is a lack of

standard procedures and a lack of availability of datasets with interleaved multi-stage

attack scenarios.

In this dissertation, we address the challenges of detecting interleaved multi-stage

attacks. In particular, using one of the important ML techniques, Hidden Markov

Models (HMM), we propose three Intrusion Detection System (IDS) architectures

that take into account the stealth nature of the interleaving attacks, and that can

detect and track the progress of these attacks. These architectures deploy a database

of HMM templates of known attacks and exhibit varying performance and complexity.

In particular, the proposed architectures can identify, at any point in time, how slowly

or quickly each attack is progressing; and which security state each attack is in. The

design of these architectures relies on modifying HMM model parameters to detect

multiple multi-stage attacks in the presence of interleaved alerts.
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The proposed architectures utilize an IDS (e.g., SNORT [9]) to monitor the net-

work traffic and to raise alerts for any suspicious activities. We quantitatively evaluate

the detection accuracy of architectures using multiple simulated multi-stage attack

scenarios where we control the behavior of SNORT to study the effect of false and

missing alerts. In other words, we vary the behavior of the attacker, in terms of

stealthiness, and vary the behavior of the IDS, in terms of false and missing alarms,

to demonstrate the efficacy of the proposed architectures.

1.1 Research Motivation

One of the most essential requirements for having high-assurance Cyber systems

is to develop advanced and sophisticated attack detection and prediction systems [5].

Most detection systems have the capability to detect a single-stage attack or to detect

each of the stages of a multi-stage attack independently. However, due to the inability

to analyze the chain of the attack activity as a whole, the detection of multi-stage

attacks poses a daunting challenge to the existing intrusion detection methods.

This challenge is exacerbated if multiple multi-stage attacks are interleaved inten-

tionally by the attacker(s). The difficulty in detecting interleaved multi-stage attacks

comes from unrelated observations (i.e., interfering alerts) resulting from unrelated

attacks that conceal the details of the activity chains of multi-stage attacks. These un-

related observations cause an interference for the multi-stage detection system which

reduces the certainty about the current situation. Furthermore, the stream of obser-

vations might contain a large number of false alerts or incomplete observations [10].

As a result, this noisy stream of observation can degrade the performance of the

multi-stage detection system.

To elaborate on this challenge, Fig. 1.1 exhibits three multi-stage attacks inter-

leaved in five possible scenarios. The correspondence between the Alert type and

stages for some observations of these multi-stage attacks is shown in the top-right

table. A hypothetical real-time state estimation of Attack 1 for scenarios (3), (4)
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.. . .. .

Observations ( Length T = 10 )

.. . .. .

Alerts ( O9 ) of 
Attack 2
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HMM1 - Stages of Attack 1 of Scenario 5
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Expected Risk

HMM1

Low Degree of Interleaving

Scenario
(3)

Observations ( Length T = 10 )

Fig. 1.1.: State Estimation of Interleaved Multi-stage Attacks Scenarios at Time t

and (5), assuming that Attack 1 has five stages, is shown on the right side of the

figure. A darker color represents a higher probability for the HMM state estimation

(i.e., indicates a higher degree of certainty about the current state). Fig. 1.1 shows

an example of the impact of interleaving among alerts of three multi-stage attacks

on the performance of an HMM-based state estimation. For instance, the degree of

interleaving in scenario (3) in Fig. 1.1 is lower than in scenario (4), and therefore, at

time t, the certainty about the current state for Attack 1 in scenario (3) can be higher

than in scenario (4) (which is supposed to be State 2 for both scenarios). Moreover,

in scenario (5), we assume an erroneous configuration for the IDS that can cause a

high rate of false and missing alarms. Hence, due to both reasons, the interleaving of

multi-stage attacks and the erroneous configuration of the IDS, the uncertainty about

the current state for Attack 1 in scenario (5) can also be higher than in scenario (3).
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1.2 Summary of Challenges and Contributions

This research addresses several challenges to the detection of multiple multi-stage

attacks which include:

1. Multiple MSAs challenges (e.g., Scenario (3) in Fig. 1.1):

• How to model each multi-stage attack in terms of HMM states?

• How to design an efficient architecture that can track the progress of mul-

tiple attacks?

• How to deal with unrelated and shared observations?

2. Highly Interleaved MSAs challenges (e.g., Scenario (4) in Fig. 1.1):

• How to detect a multi-stage attack when an attacker(s) performs highly

interleaved multi-stage attacks with the intention to hide an attack (i.e.

stealthy attacks)?

• How to eliminate (or reduce) the interference using a demultiplexing ap-

proach?

3. Erroneous and incomplete observations (e.g., Scenario (5) in Fig. 1.1):

• How to reduce the noise due to erroneous IDS (”de-noising”)?

• How to detect multi-stage attacks with incomplete information (missing

alerts)?

4. Performance Evaluation

• How to efficiently evaluate the performance (metrics and datasets)?

- The development of an approach to accurately quantify and measure the

detection performance of such an architecture.

- Since no standard public dataset is available that can provide interleaved

traffic from simultaneous multiple attacks, the generation of this type of

dataset poses a challenge to the research community,
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To address the above challenges, we propose in this thesis three architectures

based on HMM formalism. The proposed architectures exhibit varying detection per-

formance and processing complexities. These architectures can detect the occurrence

of multiple organized attacks and provide insights into the dynamics of these attacks

such as identifying which attack is progressing and which one is idle at any point of

time, how fast or slow each R-LRHMM attack is progressing, and in which security

state each attack is occurring at any given point in time. Knowledge of this informa-

tion can assist in designing effective response mechanisms that can mitigate security

risks to the network [5, 11].

Specifically, in Chapter 3, we present the first proposed architecture (i.e., Re-

setting Left-Right HMM (R-LRHMM)) and the proposed performance evaluation

metrics. The design of R-LRHMM relies on modifying HMM model parameters to

detect multiple multi-stage attacks in the presence of mixed alerts using a reset ap-

proach. In particular, as the rate of the unrelated observations from an unrelated

attack(s) increases, the tendency of resetting the HMM model for the corresponding

original attack to the initial state (State 1) and staying there also increases due to the

increase in the number of unrelated observations. R-LRHMM can detect the multi-

stage attacks in Scenario (1), (2) and (3) shown in Fig. 1.1 with a high detection

performance and low detection delay as well, as discussed in Chapter 3. However,

R-LRHMM fails to detect the stage of Scenario (4) and (5) due to the high degree of

interference and the noisy observations in these two scenarios.

In Chapter 4, we introduce in more details the interleaving concept and investi-

gate how interleaving multiple MSAs can deceive the HMM-based intrusion detection

systems. Moreover, we propose the second architecture (i.e., Left-Right HMM Archi-

tecture with Attack Demultiplexer (LRHMM+AD)) and compare its performance and

complexity with R-LRHMM. The design of LRHMM+AD relies on de-interleaving

mixed alerts from different attacks prior to the HMM processing subsystem by using

a Demultiplexer component. Further, we study the impact of false and missing alerts

on the performance of both architectures in order to motivate the need for the third
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proposed architecture (i.e., Highly Resilient Ergodic HMM (HR-EHMM)) which is

presented in Chapter 5. LRHMM+AD can detect the multi-stage attacks in Scenario

(1), (2), (3) and (4) shown in Fig. 1.1 with a high detection performance and with

a higher complexity than in R-LRHMM. The design of HR-EHMM relies on modify-

ing HMM model parameters to detect interleaved multi-stage attacks in the presence

of false and missing alarms and hence by using a nullifying and a backtracking ap-

proaches, HR-EHMM can detect all the multi-stage attack scenarios shown in Fig.

1.1 as shown in Chapter 5.

Note, the reason for discussing R-LRHMM in this thesis, despite its low detec-

tion performance with some specific multi-stage attack scenarios, is to provide the

tradeoff between the low computation (i.e., faster output from the system) and the

performance cost in terms of the high state estimation error rate. On the other hand,

LRHMM+AD and HR-EHMM yields to a better performance in terms of state es-

timation error rate but at the cost of high complexity incurred by introducing the

demultiplexer in both architectures. In this thesis, we compare the three architectures

in terms of their detection performance and design complexity.

1.3 Organization

The thesis is organized as follows. In Chapter 2 the background has been intro-

duced along with the related work. In Chapter 3, an HMM-based threat detection

and prediction mechanism is proposed (R-LRHMM). In Chapter 4, LRHMM+AD

is introduced and its performance is compared with R-LRHMM. In Chapter 5, HR-

EHMM is proposed. Chapter 6 concludes the thesis with plans for the future work.
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2. BACKGROUND AND RELATED WORK

This chapter summarizes the research efforts regarding intrusion detection and pre-

diction methods and provides some background material.

With the growing cyber threats, making the right decisions by security analysts

has become an obstacle and the need to develop high assurance and resilience cyber-

based systems is becoming increasingly important. Note that the term ”resilience”

refers to the ability to adapt to changing conditions and rapidly recover from disrup-

tion due to emergencies such as cyber attacks and in timely manner [12]. Existing

studies have addressed a breadth of challenges related to detecting network attacks.

In order to make better-informed decisions, to take a proper response to a cyber

Multi-stage Attack (MSA), and to keep the system’s resilience at a high level under a

progressing MSA, security analysts need to be aware of the current situation, the im-

pact and evolution of an attack, the behavior of the attackers, the quality of available

information and models, and the expected future of the current situation. Recently,

researchers have shown an increased interest in investigating a breadth of challenges

and research questions related to the design and development of resilience systems.

Some of the fundamental questions that an effective cyber situation awareness system

must be able to help answer are [5]:

1. Current situation:

• What is the stage or the state of the ongoing MSAs?

• What is the attacker’s location?

These questions aim to evaluate the effectiveness of the deployed Intrusion De-

tection System (IDS), and identifying the compromised and damaged assets.
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Data gathered by security monitoring systems are used to answer such ques-

tions [1], [11], [13].

2. Evolution:

• How is the MSA evolving?

• What is the speed of the MSA propagation?

• Can we track all the steps of an MSA?

Such questions aim to evaluate the effectiveness of security monitoring systems

facing ongoing attacks, once some stages of such attacks have been detected.

Ideally, the output of the ATM system should be clear information of how the

attack is progressing [14], [15], [16], [17].

3. Behavior:

• How are the attackers expected to behave?

• What are the strategies of attackers?

• Can we evaluate the capabilities of attackers?

These questions aim to evaluate the capability of modeling the attacker’s be-

havior in order to understand his goals and strategies. In this case, the output

of the ATM system is supposed to be a set of formal models of the attacker’s

behavior (e.g., stochastic models or game theoretic models) which takes into

account the dynamicity of the attacker’s behavior over time [18], [19].

4. Forensics:

• How did the attacker reach the current situation?

• What was he trying to achieve?

These questions aim to evaluate the capability of analyzing the IDS logs and

correlating observations to analyze how an attack originated and evolved so far.
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Based on this information, security administrators can harden system configu-

rations to eliminate any similar incidents in the future [20], [21].

5. Prediction:

• Can we predict a plausible future of the current situation?

These questions aim to evaluate the capability of predicting the attacker’s pos-

sible moves in the future. In this case, the output of the ATM system is

supposed to be a set of all possible alternative scenarios ranked probabilisti-

cally [22] [23] [24] [25].

6. Impact:

• How is the attack impacting the system’s functionality and missions?

• Can we assess the risk and the damage of the multi-stage attack (past and

future stages)?

Answering this set of questions implies the capability of assessing the impact of

an ongoing MSA accurately. In this case, the ATM system needs information

about of the CBS assets and their dependencies, importance and criticality for

the system’s functionality and missions [26], [27].

7. Response:

• What are the possible responses to an ongoing MSA(s) that keeps the

system in high assurance and resilience levels?

• Can we rank possible responses in terms of cost, system damage, recovery

speed, or any other metric?

• Can we find the optimal responses if we have multiple objectives?

These questions aim to evaluate the capability of the decision making and re-

sponse systems. The input to the ATM system is the situation awareness ob-

tained in response to the previous questions. Ideally, the output is supposed



11

to be a set of all possible responses ranked based on assurance and resilience

requirements [28], [29], [30], [31], [32].

There is a strict correlation and dependency between answers of many of these

questions. For instance, the capability of predicting plausible moves of an attacker

depends on the capability of modeling the attacker’s behavior. Another example is

that the capability of finding and ranking all possible responses depends, for example,

on the capability of predicting possible future moves of an attacker and his speed,

and the capability of assessing the impact of an ongoing attack accurately. The most

challenging issues that affect almost all aspects of any cyber security framework are

real-time requirements and scalability (e.g., in terms of estimating the overall security

state of CBS and responding to ongoing multi-stage attacks in timely manner). Given

the volumes of data involved in answering all these questions, the large number of

infrastructure components that the framework deals with, and timing constraints as

there are detection and assessment latencies, we need to define approaches that are

not only effective and computationally efficient, but also respond to ongoing attacks

optimally and in timely manner. This thesis aims to address many of these research

questions and challenges as will be discussed later.

2.1 Related Work

In the past, various approaches have been proposed to address intrusion detec-

tion challenges related to multi-stage attacks. These approaches can, in general, be

categorized as correlation-based techniques [33–35] or machine learning (ML) based

techniques. Examples of ML techniques include Hidden Markov Models, Bayesian

Networks, Clustering and Neural Networks [1, 24, 36, 37]. Correlation-based tech-

niques, based on cause and effect relationships, mainly utilize attack-graphs when

searching the possible stages of the attack [20, 38–42]. For example, the work in [38]

focuses on the causal relationships between attack phases on the basis of security infor-

mation. Onwubiko et al. [39] assesses network security through mining and restoring
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the attack paths within an attack graph. A causal relations graph presented in [40],

contains the low-level attack patterns in the form of their prerequisites and conse-

quences. In this approach, during the correlation phase, a new search is performed

upon the arrival of a new alert. Several other techniques use similar ideas for analyz-

ing attack scenarios from security alerts [41, 42]. However, most of these approaches

depend on correlation rules in conjunction with the domain knowledge. Due to in-

creased computational complexity in detecting real time attacks, these techniques

pose a limitation.

In the category of ML techniques, HMM is a leading approach to intrusion detec-

tion and the prediction of multi-stages attacks, [13, 22, 23, 43–51]. In this approach,

stages of an attack are modeled as states of the HMM. The HMM is considered the

most suitable detection techniques for such attacks for several reasons [43]. First, it

has a tractable mathematical formalism in terms of the analysis of input-output re-

lationships, and the generation of transition probability matrices based on a training

dataset. Second, because of its specialized capacity to deal with sequential data by

exploiting transition probability between states, it can track the progress of a multi-

stage attack. Holgado and her colleagues proposed a model to predict the progress

of multi-step attacks by considering the hidden states as similar stages of a specific

type of attack [49].

Despite the existing research in the use of HMM for intrusion detection in general

and multi-stage attacks in particular, none of these approaches considers the prob-

lem of interleaving multi-stage attacks and analyzing the impact on the detection

performance of such attacks. Moreover, existing approaches address only a single

multi-stage attack.

2.2 Hidden Markov Models

Hidden Markov Model (HMM) is a well known and widely used sequential data

modeling method which was introduced in the late 1960s [52]. Due to its rich math-
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ematical structure, HMM is widely applied in real world applications such as speech

recognition, handwriting pattern recognition, gesture recognition, and intrusion de-

tection. An HMM is a doubly stochastic process with an underlying stochastic process

that is hidden, and can only be observed through another set of stochastic processes

that produce the sequence of observed symbols [52]. The hidden process represents

the states of the Markov chain (the actual stages of the attack). represents the ob-

served alerts coming out from the IDS.

2.2.1 Hidden Markov Model Description

Consider that each attack is modeled using a distinct HMM model λk that en-

compasses all the following parameters,

λk = {Sk, Vk, Ak, Bk, πk}, k = 1, 2, . . . , K (2.1)

where Sk = {s1k , . . . , snk
, . . . , sNk

}, snk
represents State n of Attack k, and Nk is

the number of states in Attack k. Note, for multiple attacks, different attacks can

have different values for the number of states (N). In this thesis, for simplicity of

HMM computations, we assume that ongoing multi-stage attacks in the network can

be modeled with the same number of security states. Vk = {v1k , . . . , vmk
, . . . , vMk

}

represents distinct observation symbols set for Attack k, where Mk is the total number

of distinct observations for Attack k. In our model, we consider both the cases of

Vi ∩ Vj = φ and Vi ∩ Vj 6= φ, for j 6= i, and j, i = 1, 2, . . . , K. That is, any two

multi-stage attacks can have the same set of observations. Ak represents the state

transition probability matrix of Attack k with dimension Nk ×Nk. Each element in

this matrix, aij, represents the state transition probability form state i to state j as

follows:

aij = P (xt+1 = sj|xt = si),

1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk, xt ∈ Sk
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Bk is the observation emission probability matrix with dimension Nk × Mk. The

emission probability of the mth observation of state j is represented by bj(m), as

follows:

bj(m) = Pr(ot = vm|xt = sj),

1 ≤ j ≤ Nk, 1 ≤ m ≤Mk

Initial probability distribution vector (π) represents initial states probabilities of the

HMM states with πi = Pr(x1 = si), 1 ≤ i ≤ N . The observation sequence (O) of

length T for HMM is represented as O = {o1, o2, . . . , ot, . . . , oT} where ot ∈ Vk. As

indicated in [52], HMM can deal with three main problems which are, the evaluation,

hidden state decoding, and model training. Note, all of these problems need to be

addressed for designing our architectures in order to determine and estimate the

current belief state for a multi-stage attack. The three fundamental problems related

to HMMs are as follows [52]:

1. The Evaluation: How to compute the probability of a sequence of observations

given the model λ, P (O|λ), using the Forward-Backward algorithm efficiently.

2. The Decoding: How to find the most likely states path given the model λ and

the observation sequence O = O1, O2, ..., Ot, ..., OT , using the Viterbi algorithm.

3. The Training: How to set and adjust the HMM parameters A, B, and π in

order to maximize P (O|λ) using the Baum-Welch algorithm.

The Baum-Welch algorithm is used first to perform offline training process related

to the third problem, to find the best states sequence corresponding to the second

problem, and to compute probabilities based on Viterbi and Forward-Backward al-

gorithms for both, the first and second problems.

An important consideration that needs to be taken into account when choosing

HMM for an application, is the type of the model. There are mainly two types of

HMM in terms of state transition diagram. One is called ergodic HMM or fully
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connected HMM, in which every state of the model can be reached from every other

state in a single step [52]. The other type of HMM is the left-right HMM which

has the property that as the time progresses, the state number increases, i.e., state

transition proceeds from left to right and there is no return transition. This type of

modeling puts a constraint on the state probability matrix such that:

aij = 0, j < i

The left-right HMM model is suitable for the type of applications where states change

over time. This applies to the problem of a multi-stage attack that progresses over

time to reach the goal of compromising a certain target. Even though the attacker

sometimes may perform actions that are supposed to lead to lower security states from

the current state for reasons depend on the type of attack, the left-right HMM does

not allow transition to a lower state. Therefore, two of the proposed architectures are

modeled using a modified HMM model where right-left transitions are allowed for a

specific cases.

2.2.2 HMM Parameters and Training

One of the important parts of any HMM-based architecture is the parameteriza-

tion of HMMs in terms of determining both Ak and Bk matrices in (2.1) to maxi-

mize probability Pr(O|λk) for each multi-stage attack. There are several unsuper-

vised training algorithms, such as Baum-Welch (BW) and Expectation Maximization

(EM) [52]. In this thesis, we use BW training algorithm as it is the most widely used

algorithm and it is a special case of the EM method applied to HMM training [52].

Furthermore, since we have a limited availability of public datasets with multiple

multi-stage attacks, we train HMMs with a small number of training data points, al-

though practically the larger the number of training data points the better the model

is, and thus the better detection accuracy can be obtained [48].

The training algorithm starts with an initial Markov model created and parame-

terized randomly (i. e. λinitial = (Ainitial, Binitial, π)). Then, the algorithm is executed
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multiple times on a training sequence of observations and in every iteration of the

algorithm, it improves the probability that the model λ = (A,B, π) will match ob-

servation sequence O. That is,

P (O/λt) > P (O/λt−1)

This process continues until convergence occurs, i.e., no further improvement for the

probability is observed.

2.2.3 State Estimation and Prediction

In order to solve the second fundamental problem related to HMM (i.e., finding

the best state path for a specific IDS alert observation or a window-sized sequence of

alerts), we use the Viterbi algorithm. Viterbi algorithm computes the most probable

path of states based on the state probability for each stage of the multi-stage attack.

We calculate the multi-stage attack risk probability PMAS and the progress of the

attack based on the obtained state probability and samples of a similar multi-stage

attack used in a supervised training phase as will be shown later. In particular, given

a model λi, the objective is to find PMAS by computing the most probable state the

system is in after the last sequence of observations.

To apply this solution, we first define the variable γt(i) (i.e., the probability of

being in state Si at time t) formally as follows:

γt(i) = P (xt = si|O, λk) (2.2)

This probability can be expressed in terms of the forward-backward variables as

follows [52]:

γt(i) =
αt(i) · βt(i)
P (O|λk)

=
αt(i) · βt(i)

N∑
i=1

αt(i) · βt(i)
(2.3)
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αt(i) accounts for the partial observation sequence {O1, O2, . . . , Ot} while βt(i)

accounts for the remainder of the observation sequence {O(t+1), O(t+2), . . . , OT} at

time t and given the state Si.

Considering one fixed state sequence X = x1, x2, . . . , xT . The Fordward-Backward

consider the forward variable αt(i) defined as

αt(i) = P ({O1, O2, . . . , Ot}, xt = si|λk) (2.4)

In a similar manner, we can consider a backward variable βt(i) defined as

βt(i) = P ({Ot+1, Ot+2, . . . , OT}, xt = si|λk) (2.5)

The computation of the forward and backward variables is shown in [52] and it requires

the order of O(T ·N2) calculations [49].

The normalization factor P (O|λk) =
N∑
i=1

αt(i) · βt(i) makes γt(i) a probability mea-

sure and thus:
N∑
i=1

γt(i) = 1 (2.6)

We can solve then compute the most probable state xt for each observation at

time t as follows [52]:

xt = max
1≤i≤N

[γt(i)], 1 ≤ t ≤ T (2.7)

Although (2.12) maximizes the expected number of correct states, if the HMM

model has state transitions that have zero probability, this states sequence could not

be correct because (2.12) determines the most likely state at any time, without taking

into account the probability that the state sequence will occur. Therefore, we use the

Viterbi algorithm to find the single best state sequence [52], X = x1, x2, ..., xT , for

the given observation sequence O = o1, o2, ..., oT from an IDS. The best score along a

single path at time t is defined by δt(i), which considers the first t observations and

ends in state si:

δt(i) = max
x1,...,xt−1

P (x1 . . . xt = si, o1 . . . ot|λi) (2.8)



18

The essential part of the Viterbi algorithm is that if we find δt(i), then by induc-

tion:

δt+1(i) = [max
i

δt(i) · aij] · qj(ot+1) (2.9)

Finally, the Viterbi algorithm calculates the best state sequence. It has a complexity

of O(T ·N2).
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3. DESIGN AND PERFORMANCE EVALUATION OF A

RESETTING LEFT-RIGHT HIDDEN MARKOV MODEL

ARCHITECTURE (R-LRHMM)

The main objectives of this chapter are to design a detection architecture that esti-

mates the current state of multi-stage attacks and to provide performance evaluation

metrics for HMM-Based detection architectures.

3.1 Introduction

An HMM-based generic architecture for detecting multiple multi-stage attacks is

shown in Fig. 3.1. The generic architecture employs information provided by alerts

from intrusion detection systems (IDSs) that monitor the cyber-based infrastructure

for malicious activities, conjointly with knowledge about the network topology and

the functional dependencies between network assets. Based on real-time alert infor-

mation, the HMM detection architecture is utilized to estimate the state and the

progression of the attack and to predict the type and the real-time risk of an impend-

ing threat. The main challenges addressed in this chapter are as follows:

• Challenge 1: how to model each multi-stage attack in terms of HMM states and

observations.

• Challenge 2: how to accurately estimate the security state of CBS in real-time

during an impending threat and how to design an efficient architecture that

detects and tracks the progress of multi-stage attacks.

• Challenge 3: how to accurately quantify and measure the detection performance

of such an architecture, to predict the progression of the multi-stage attack, to
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predict how far the attack is from its next stage or from its goal(s) and to

estimate how fast it is.
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Fig. 3.1.: A Generic Architecture for Multiple Multi-stage Attack Detection using an

HMM database

3.1.1 Objectives and Contributions

The main objectives and contributions of this chapter are as follows. First, we

present the Resetting Left-Right HMM (R-LRHMM) architecture for detecting a

single multi-stage attack or multiple multi-stage attacks occurring sequentially in a

network using multiple HMMs. The design of R-LRHMM relies on modifying HMM

model parameters to detect multiple multi-stage attacks. Further, for evaluation pur-

poses, we propose three performance metrics, in addition to the widely used state

probability metric [45]. The proposed metrics are: (1) the attack risk probability

which provides insight to the speed of the attacks and can help in prioritizing re-
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sponse actions, (2) the detection error rate performance, which measures how much

error is generated by an architecture in estimating states, and (3) the number of cor-

rectly detected stages. The justification of these performance metrics is given in the

following subsections. The performance of the proposed architecture is evaluated us-

ing extensive simulation experiments to demonstrate its efficacy. These experiments

are conducted using DARPA2000 public dataset as will be discussed later [8]. In the

next section, the proposed architecture is described in more details.

3.2 The Resetting Left-Right Hidden Markov Model Architecture

The proposed R-LRHMM is shown in Fig. 3.2. The stream of alerts generated by

the IDS contains alerts that belong to one or more concurrent attacks. That is, for

each observation length T , there are T observations (o1, o2, . . . , ot, . . . , oT ) processed

by the HMM detection system, as shown in Fig. 3.2. Arrival of these alerts represents

the interleaved attacks mentioned in Section III-B. The HMMk template is trained

for Attack k. Therefore, out of T observations, HMMk is expected to distinguish

and process only those observations that belong to its attack, for which this HMM

has been designed. Note that among T observations, there are Lk observations (i.e.,

{o1k , o2k , . . . , oLk
}) belong to Attack k, and the remaining T − Lk observations are

considered by HMMk as unrelated (interfering) alerts. We introduce a common state

that encompasses all the unrelated alerts in HMMk.

For HMM structure, we focus on the alerts generated by the IDS. In R-LRHMM,

for each template, we consider State 1 as the most likely state that can be inferred by

observing T−Lk unrelated observations using HMMk. In other words, the occurrence

of these interfering (unrelated) observations leads to the lowest security state (i.e.,

reset mode) in the HMMk. To deal with these unrelated observations in parameter-

izing HMMk, we introduce a new symbol, {ot /∈ Vk}, that represents all unrelated

observations for Attack k. This requires modifying HMM parameters, (i.e., matri-

ces Ak and Bk). This can be obtained by considering an observation ot, such that
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Fig. 3.2.: R-LRHMM Architecture

{ot /∈ Vk}. Accordingly, we add an extra column in the emission probability matrix,

Bk, to account for this new symbol, as follows:

Bk =


b11 b12 · · · b1Mk

ε1

b21 b22 · · · b2Mk
0

...
...

. . .
...

bNk1 bNk2 · · · bNkMk
0


Note that transition to State 1, in the presence of unrelated observation ot, occurs

with probability ε1 which has a very small value (such as < 1 × 10−6) chosen such

that
∑M

j=1 b1j = 1. Accordingly, almost no change is made to the other observation

probabilities in the first row of the emission probability matrix. In addition, setting

the probability to zero in the rest of the last column increases the probability that

observing {ot /∈ Vk} leads to State 1. A second modification is needed for the tran-

sition probability matrix (Ak) to ensure that whenever HMMk observes the T − Lk

alerts from attacks other than Attack k, transition to State 1 occurs. This can be

done by introducing transition probability (ε2) in the first column of the Ak matrix.
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Although our initial assumption is a left-right model, in this architecture, instead of

adding a new state to the model we let all other states return only to State 1 whenever

alerts from unrelated attacks occur. An important advantage of modeling unrelated

alerts in this way is that it simplifies the training of each HMM. Subsequently, by

introducing ε2, the matrix Ak becomes as follows:

Ak =


a11 a12 · · · a1Nk

ε2 a22 · · · a2Nk

...
...

. . .
...

ε2 0 · · · aNkNk


Based on this modification and training of the HMM template (λk), the evaluation

module determines whether Attack k is active or not, as shown in Fig. 3.2, according

to the criteria Pr(O|λk) ≥ thr. Note that thr is a threshold used to avoid unnecessary

computations of the Viterbi algorithm module in case the attack is not active. The

thr value can be chosen in the range of 0 to 0.5. However, with the larger the

value of thr, HMM template (λk) estimates only the states of the high probability

sequences. In this chapter, we take a conservative approach in choosing thr = 0.

The evaluation probability can be computed using the forward algorithm [52]. In

case Attack k is active, then HMMk (λk) runs the Viterbi algorithm to decode the

most probable hidden states that correspond to the given observation sequence O =

{o1, o2, . . . , ot, . . . , oT}, as follows:

xt = max
1≤i≤Nk

γt(i)

γt(i) = Pr(xt = si|O, λk)

t = 1, . . . , T

(3.1)

where γt(i) represents the probability of being in state si at time t based on the

observation sequence. In R-LRHMM, each HMM template in Fig. 3.2 uses the

Viterbi algorithm to find the best state sequence, X = {x1, . . . , xt, . . . , xT}. For a
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given observation sequence, Viterbi algorithm finds the highest probability along a

single path for every ot (t ≤ T ) and ot its corresponding state si such that:

δt(i) = argmax
s1,...,st−1

Pr(s1, . . . , st, o1, . . . , ot|λk) (3.2)

Using induction, the algorithm determines the rest of the state sequence, as follows:

δt+1(j) = argmax
1≤i≤Nk

{δt(i)aij(k)}.bi(ot+1(k)) (3.3)

This computation for a given sequence is repeated by all HMM templates in R-

LRHMM (Fig. 3.2). Table 3.1 shows the overall processing of alerts based on R-

LRHMM.

Table 3.1.: Detection process for R-LRHMM

Input: interleaved alerts: O = {o1, o2, . . . , ot, . . . , oT},

πk: λk, k = 1, 2, . . . , K,

Output: X = {x1, x2, . . . , xT}

1 While (O is not empty)

2 for k = 1 : K

3 if (Pr(O|λk ≥ thr))

4 for t = 1 : T

5 Compute γt(i), i = 1, 2, . . . , Nk from equation (5.1)

6 xt = max
1≤i≤Nk

γt(i)

7 endfor

8 endif

9 endfor

10 endWhile
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3.3 Performance Evaluation

In this section, the performance evaluation of HMM-based alert prediction mech-

anism is conducted. Experiments are mainly focused on identifying the effect of the

window size and HMM parameters on the accuracy of alert prediction.

3.3.1 Experimental Setup

In this subsection, we discuss our experimental results based on the DARPA2000

dataset [8], which contains two DDoS multi-stage attacks labeled as LLDDOS 1.0

and LLDDOS 2.0.2. Both of these attacks have five stages, that can be summarized

as IP sweeping, Sadmind probing, Sadmind exploit, DDoS software installation and

Launching. Therefore, the training of the two HMMs is conducted based on a five

state model (Nk = 5, k = 1, 2), which corresponds to five stages in each attack. The

state diagrams of HMM1 for Attack 1 and HMM2 for Attack 2 are shown in Fig. 3.3.

The parameterization of each HMM will be discussed later.

In our experiment, DARPA2000 raw network packets were processed by SNORT

intrusion detection system [9] to generate alerts. The total number of alerts results

from this process is 3500 and 2000, for LLDDOS 1.0 and LLDDOS 2.0.2 attacks,

respectively. These alerts are clustered into 12 distinct symbols. Therefore, Mk =

12, k = 1, 2, as mentioned in Section II-A. The preprocessing module assigns a severity

level to these alerts based on their relation to the stages of multi-stage attacks. In

case there are more than one alert which lead to a state, the higher the severity level is

given to the alert which indicates that the attack is progressing. Accordingly, Tables

3.2 and 3.3 show alert severity, alert type and states of both attacks [45].

One of the important parts of any HMM-based architecture is the parameter-

ization of HMMs in terms of determining both Ak and Bk matrices to maximize

probability Pr(O|λk) for each multi-stage attack. We use BW training algorithm

as it is the most widely used algorithm and it is a special case of the EM method

applied to HMM training [52]. Furthermore, since we have a limited availability of
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Fig. 3.3.: State Diagrams for HMM1 and HMM2

public datasets with multiple multi-stage attacks, we train HMMs with a small num-

ber of training data points, although practically the larger the number of training

data points the better the model is, and thus the better detection accuracy can be

obtained [48].

The training algorithm starts with an initial Markov model created and parame-

terized randomly (i.e. λinitial = (Ainitial, Binitial, π)). Then, the algorithm is executed

multiple times on a training sequence of observations and in every iteration of the

algorithm, it improves the probability that the model λ = (A,B, π) will match ob-

servation sequence O. That is,

P (O/λt) > P (O/λt−1)
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Table 3.2.: Correspondence between Alert type, Alert Severity and States in DARPA

LLDDOS 1.0

Alert Severity Alert Type State

1 ICMP PING 1

2 ICMP Echo Reply 1

3 ICMP PING BSDtype 1

4 ICMP PING Unix 1

5 RPC portmap sadmind request UDP attempt 2

6 ICMP Destination Unreachable Port Unreachable 2

7 RPC sadmind UDP PING 2

8 RPC sadmind query with root credentials attempt UDP 3

9 RPC sadmind UDP NETMGT CLIENT overflow attempt 3

10 SERVICES rsh root 4

11 TELNET login 4

12 SNMP AgentX/tcp request 5

and flood DDoS attempt

This process continues until convergence occurs, i.e., no further improvement for the

probability is observed.

For simplicity, we assume five stages in our training model for both attacks. Alerts

are mapped into five different sets which are the same as states in our HMM. For

example, an alert of ICMP PING type is usually considered as a scanning/probing

type and it is converted to its corresponding stage which is scanning/probing. This

mapping is used to train each HMM state for a group of alerts (observations). After

forming five sets of alerts that are mapped to five states of an HMM model, we use

BW algorithm to generate the HMM parameters λ = (A,B, π).

The two HMMs are trained using 30% of the DARPA2000 dataset, i.e. HMM1 is

using LLDDOS 1.0 and HMM2 is using LLDDOS 2.0.2 for training, while the rest of

the dataset was used for testing.
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Table 3.3.: Correspondence between Alert type, Alert Severity and States in DARPA

LLDDOS 2.0.2

Alert Severity Alert Type State

1 RPC portmap sadmind request UDP 1

2 RPC portmap Solaris sadmind port query udp request 1

3 RPC portmap Solaries sadmind port query 1

4 udp portmapper sadmind port query attempt 1

5 RPC sadmind query with root credentials attempt UDP 2

6 RPC sadmind UDP 2

7 sadmind UDP NETMGT CLIENT overflow attempt 2

8 RPC portmap Solaries sadmind port query 3

9 RPC sadmind query with root credentials attempt UDP 3

10 RPC sadmind UDP - Diff. IP 4

11 sadmind UDP NETMGT CLIENT overflow attempt 4

12 ICMP Destination Unreachable Port Unreachable 5

and flood DDoS attempt

The training of HMMs in terms of computation of observations and states proba-

bilities are based on the machine learning toolbox in MATLAB [53]. For the purpose

of training, we use 30% of the dataset, while the rest of the dataset was used for

testing. In this evaluation, parameters ε1 and ε2 of models λ1 and λ2 of R-LRHMM

are chosen as ε1 = 10−6 and ε2 = 10−3.

The main parameters of HMM model in both attacks, which are determined from

training using BW algorithm are as follows:
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A1 =


0.8550 0.1448 0.0001 0.0001 0.0001

0 0.9 0.0997 0.0001 0.0001

0 0 0.9880 0.0090 0.0001

0 0 0 0.9880 0.0090

0 0 0 0 1



A2 =


0.9287 0.0712 0.0001 0 0

0 0.9141 0.0857 0.0001 0

0 0 0.9387 0.0612 0.0001

0 0 0 0.9752 0.0248

0 0 0 0 1



B1 =


0.1131 0.1342 0.1397 0.1610 0.0861 0.1093 0.0955 0.0407 0.0999 0.0656 0.0970 0.0467

0.0884 0.1096 0.1335 0.0355 0.1185 0.1230 0.1266 0.1088 0.0803 0.0965 0.0593 0.0333

0.0095 0.0638 0.1138 0.1163 0.0201 0.1162 0.0536 0.1211 0.1127 0.1165 0.0577 0.0451

0.0719 0.1338 0.0688 0.1016 0.0796 0.0504 0.0487 0.0690 0.1016 0.1275 0.1382 0.0664

0.0297 0.0707 0.0771 0.0947 0.0349 0.1927 0.0115 0.0844 0.0553 0.0032 0.0207 0.1142



B2 =


0.1376 0.0291 0.0033 0.1538 0.1174 0.0049 0.0044 0.1838 0.1490 0.0304 0.1501 0.0361

0.0922 0.0651 0.1968 0.0427 0.1096 0.0941 0.1127 0.0089 0.0886 0.0358 0.0800 0.0736

0.0630 0.0568 0.1421 0.0052 0.0007 0.1598 0.1049 0.0798 0.0519 0.1332 0.0955 0.1071

0.0459 0.1605 0.1204 0.1586 0.0158 0.0075 0.1319 0.1817 0.1053 0.0160 0.0521 0.0041

0.0356 0.0408 0.0978 0.0841 0.0290 0.1304 0.0411 0.1242 0.1427 0.0693 0.0357 0.1693


The training of HMMs in terms of computation of observations and states proba-

bilities are based on the machine learning toolbox in MATLAB [53]. For the purpose

of training, we use 30% of the dataset, while the rest of the dataset was used for

testing. In this evaluation, parameters ε1 and ε2 of models λ1 and λ2 of R-LRHMM

are chosen as ε1 = 10−6 and ε2 = 10−3.

For the completeness of our evaluation, we present the detection performance of

the two multi-stage attacks using their respective HMMs when these attacks occur one

at a time. Subsequently, interleaved scenarios of the two attacks can be generated

with varying the starting point of the interleaving to test the performance of the

proposed architecture. For all the results, the x-axis shows the running count of

alerts as they are generated by SNORT. For the purpose of evaluation, we propose
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three performance metrics, in addition to the widely used state probability metric [45].

The performance metrics are: the attack risk probability which provides an insight

about the speed of attacks and can help in prioritizing response actions; and the

number of correctly detected stages. The justification of these performance metrics

is given in the following subsections.

3.3.2 Detection of Individual DARPA2000 Attacks

In this subsection, we first consider the alerts generated by SNORT when only

LLDDOS 1.0 dataset is used. We pass these alerts to the alerts preprocessing module

and then to HMM1 which is trained to detect the first DDoS attack (Attack 1). The

same is done for LLDDOS 2.0.2 dataset to detect the second DDoS attack (Attack

2). The state probability results of each attack is shown in Fig. 3.4. It can be noted

that the five stages of each attack are detected by each HMM. It can also be noted

that Attack 2 is relatively faster than Attack 1, as few alerts are needed by Attack 2

to reach the last stage of HMM2 indicating the launching of the DDoS attack on the

target. In Fig. 3.4 we show the estimated state corresponding to only the first 500

alerts out of all the SNORT alerts as the remaining alerts are almost all the same

and lead to the compromise state (State 5). The observation length for this case is

taken as T = 100.

3.3.3 Generating Interleaved Scenarios

Based on the two multi-stage attacks in the DARPA2000 dataset, we altered the

timestamp of some of alerts in both attacks so that we can generate a single sequence

of alerts that is composed of a mix of the two attacks without altering the temporal

order of the original alerts. In addition, the IP addresses of the hosts attacked by

Attack 2 (LLDDOS 2.0.2) are also changed. The reason for this modification is to

simulate two simultaneous attacks intruding a network. Fig. 3.5 shows a scenario of

interleaved alerts for two simultaneous DDoS attacks. Since Attack 2 takes shorter
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Fig. 3.4.: State Probability of HMM1 and HMM2 for Individual DARPA Attacks

time to compromise the target and launch DDoS, we manipulate timestamps of Attack

2 so that it starts in the middle of Attack 1. The y-axis in Fig. 3.5 represents the

alert severity based on the preprocessing module as depicted in Tables 3.2 and 3.3.

Based on this scenario, the performance results of the proposed architecture are given

in the following subsections.
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Fig. 3.5.: Scenario of Interleaved Alerts from LLDDOS 1.0 and LLDDOS 2.0.2 Attacks

3.3.4 Probability of State Estimation and the Effect of Interleaving

In this subsection, we present the state probability, γt(i), from (5.1) and (4.2) for

i = 1, . . . , 5 with two observation lengths, T = 10 and T = 500. For T = 500, it can

be seen from Fig. 3.6 that R-LRHMM can estimate1 the states of both attacks with

a high probability, especially for States 1, 2, 4, and 5. Note that the state probability

for State 3 of Attack 1 is very low for both values of T . The reason is there are not

enough alerts produced by SNORT for this stage.

We observe discontinuity in the state probability plot of R-LRHMM in Figs. 3.6

and 3.7, which is due to the fact that both HMMs return to State 1 whenever there

exist interfering alerts from other attacks. Fig. 3.8 shows the importance of con-

sidering ε2 in designing HMM used by R-LRHMM. In this experiment, we choose

ε2 = 0.001, which is a small value that does not significantly affect the transition

probability matrices, A1 and A2, obtained from training. Note that ε2 = 0 represents

the case of generic architecture, for which returning to State 1 is not allowed when

1Note: The terms detecting a state and estimating a state are used interchangeably in this chapter
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Fig. 3.6.: State probability of Attacks 1 and 2 detected by HMM1 and HMM2 based on

R-LRHMM, T=500
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Fig. 3.7.: State Probability of Attacks 1 and 2 Detected by HMM1 and HMM2 based on

R-LRHMM, T=10
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HMM1 receives alerts belong to Attack 2 or when HMM2 receives alerts belong to

Attack 1. Setting ε2 = 0 reduces the accuracy of state detection for the two attacks,

as can be seen in Fig. 3.8. For example, Fig. 3.8 provides no estimate for state

probability of States 2 and 4 for the first 200 alerts when ε2 = 0, as compared to

Fig. 3.8 when ε2 = 0.001. Similar observation can be made by comparing Figs. 3.8

and 3.8 for the first 350 alerts of State 2. In summary, Figs. 3.6 and 3.7 show that

there is no significant change in the state detection performance of R-LRHMM as the

observation length changes from 10 to 500 alerts.
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Fig. 3.8.: Effect of ε2 on State Probability based on R-LRHMM

3.3.5 Attack Risk Probability

We define the first proposed performance metric as the attack risk probability,

which is the probability of how far an attack is from compromising the target, i.e.,

reaching the final state. The calculation of this attack probability depends on the

estimated state probability (γt(i)) averaged over the total number of states. Its value
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gets updated at every observation length in a non-decreasing manner, as shown below

in (3.4):

Prattackk(t) =

∑Nk

i=1 γt(i)si
Nk

t = 1, . . . , T i = 1, . . . , Nk, k = 1, . . . , 2

(3.4)

This performance measure can help in tracking the progress of each attack, especially

when there are multiple organized attacks. It can be noted that, the rate at which the

attack risk probability changes with respect to alerts gives an indication of how fast

or slow an attack is progressing. Consequently, this measure can help in prioritizing

response actions for each ongoing attack.

Figs. 3.9 and 3.10 show the attack risk probability for both DARPA multi-stage

attacks using R-LRHMM for the two observation lengths, T = 10 and T = 500. Note

that there is no significant difference between the case of T = 10, and T = 500.

Also Note that after 100 alerts, Attack 2 progresses relatively fast, and reaches the

compromise state well before Attack 1.
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Fig. 3.9.: Attack risk probability based on R-LRHMM where T = 500
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Fig. 3.10.: Attack risk probability based on R-LRHMM where T = 10

3.3.6 Number of Correctly Detected Stages of Multi-stage Attacks

The next performance measure we propose is the number of correctly detected

stages per attack, which allows us to analyze the security impact due to missing or

incorrectly detecting stages in a multi-stage attack, especially from the point of view

of considering response actions. We evaluate R-LRHMM by computing the number

of detected stages per attack as follows. As we know the correspondence between

alerts and stages (or states) of the multi-stage attack based on the knowledge of the

DARPA2000 dataset, we compare the estimated states from each HMM with the

exact states. Table 3.4 provides the results for three different values of T .

Table 3.4.: Number of correctly detected stages

Interleaving Scenario Architecture Attack T = 10 T = 100 T = 500

Scenario I
Attack 1 4 4 4

Attack 2 5 5 5
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3.3.7 Error Rate Performance

The next performance measure we propose is the error rate (ER), which is the

ratio of the number of errors resulting from the inconsistency between the type of an

alert and the corresponding estimated state relative to the total number of incoming

alerts. Formally, ER is given by the following equation:

ER =
Number of incorrect detected states of the incoming Alerts

Total number of Alerts
× 100 (3.5)

3.4 Conclusion

To sum up, the main objectives and contributions of this chapter are as follows.

First, we propose a framework for detecting/predicting multiple multi-stage attacks

occurring simultaneously in a network using HMM (sequentially or interleaved). Sec-

ond, for the performance assessment of R-LRHMM, we propose three performance

metrics. The performance metrics are: (1) the attack risk probability which provides

insight to the speed of the attacks and can help in prioritizing response actions, (2)

the detection error rate performance, which measures how much error is generated by

an architecture in estimating states, and (3) the number of correctly detected stages.

The DARPA2000 dataset is chosen to demonstrate the efficacy of the proposed ar-

chitecture.

The limitation with R-LRHMM is that there is a high probability of high false

negatives in states detection, especially when the attacks are highly interleaved. The

reason is that, each HMM template processes an observation sequence that contains

interfering observations belonging to other attacks. However, the low performance

of R-LRHMM is observed only in special attack scenarios. Nevertheless, R-LRHMM

has a low computation complexity in terms of observations preprocessing as will be

discussed later.

To address the challenge of the high degree of interleaving and to achieve a better

performance, we propose another variation of the generic architecture. The new archi-
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tecture is discussed in the next chapter. The aforementioned performance metrics will

be used to compare between the performance of the proposed the two HMM-based

architectures.
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4. LEFT-RIGHT HIDDEN MARKOV MODEL

ARCHITECTURE WITH ATTACK DEMULTIPLEXER

(LRHMM+AD)

As mentioned in the previous chapter, the limitation with R-LRHMM is that there is a

high probability of high false negatives in states detection when the attacks are highly

interleaved. To address the challenge of the high degree of interleaving and to achieve

a better performance, we propose in this chapter another variation of the generic ar-

chitecture. The design of the proposed architecture, termed as LRHMM+AD, relies

on de-interleaving mixed alerts from different attacks prior to the HMM processing

subsystem. Furthermore, we compare the Left-Right Hidden Markov Model Archi-

tecture with Attack Demultiplexer (LRHMM+AD) with R-LRHMM in terms of their

detection performance and design complexity.

4.1 Introduction

4.1.1 Using HMM to Detect Interleaved Multi-stage Attacks

In a multi-stage attack, an intruder launches a series of long-term steps and actions

that are sequentially correlated in the sense that each action follows the successful

execution of the previous one. In other words, the output of one stage serves as the

input to a subsequent stage. One example of multi-stage attacks is the DDoS attack

in which the attacker starts by scanning the targeted network in order to identify

potential vulnerabilities. Subsequently, the attacker tries to break into vulnerable

hosts which have been compromised by the attacker. After exploiting these hosts,

the attacker installs a software such as a Trojan horse. Eventually, the attacker
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initiates access to the final target, which could be a server accessible from all the

exploited hosts, and subsequently, the DDoS attack is launched [8].

Most detection systems have the capability to detect a single-stage attack or each

of the stages of a multi-stage attack independently. However, the detection of multi-

stage attacks poses a daunting challenge to the existing intrusion detection techniques

due to the lack of an ability to analyze the entire attack activity chain as a whole.

This challenge is exacerbated if several of these attacks are launched simultaneously

in the network, each attack originated by a single or multiple attackers trying to

stealth certain attacks within others. The difficulty in detecting interleaved attacks

comes from the unrelated observations made of unrelated attacks, observations that

conceal the details of the activity chains of multi-stage attacks.
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Fig. 4.1.: State Estimation of Multi-stage Attacks with Different Degree of Interleav-

ing at Time t

Fig. 4.1 illustrates this challenge by exhibiting three possible scenarios involving

the interleaving of three multi-stage attacks that can target a specific or multiple

servers. For example, Attack 1, shown in yellow, is an SQL injection attack, wherein
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Attack 2, in orange, is a Brute force SSH, and Attack 3, in red, is a DDoS attack [8].

The table in the lower-left corner of the figure shows the correspondence between

the type of attack, Alert ID, Alert type, and stages for some observations of the

aforementioned attacks. In addition, on the right side of the figure, an HMM heatmap

shows the estimation of the belief about the current state assuming there are five

stages for each multi-stage attack. A darker color indicates a higher probability and

a higher degree of certainty about the current state.

In this example, ICMP PING is a common observation between Attack 1 and

Attack 2. Also, assume that the system is in State 4 of Attack 1 and the next

alert(s) generated by the IDS is ICMP PING, which is an observation for State 1 in

this attack. The ICMP PING observation could be originally generated from Attack

2, thus, in this case, the state estimation can be affected due to the uncertainty

regarding the exact current state of the system caused by the unexpected ICMP

PING observation(s).

Fig. 4.1 also exhibits an example of how the degree of interleaving among the

observations of three multi-stage attacks can hypothetically affect the performance

of the state estimation over time. For instance, Scenario C in Fig. 4.1 has a higher

degree of interleaving compared to Scenario B and, consequently, the uncertainty

about the current state for each multi-stage attack at time t in Scenario C can be

higher than in Scenario B. A detailed performance analysis regarding varying the

degree of interleaving is given later.

In this chapter, we use HMM to model and detect possible multi-stage attack

scenarios on a targeted cyber-based system. In particular, in order to detect a single

multi-stage attack, (say Attack k), stages of the attack are modeled as states of the

HMM and the observation process corresponds to related alerts generated by the IDS

and processed later by a preprocessing component. Note that the aforementioned

three multi-stage attacks can consist of different types in terms of the order of se-

quences and the number of stages and corresponding observations. Each attack type
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(k) is modeled using a distinct HMM template λk. In the case of M possible attacks,

we have a set of M templates.

Note that the selection of the optimum number of states for each HMM template

is a challenge, and no simple theoretical answer exists as to how, in general, this

parameter can be selected; this selection depends on the application [52]. In this

chapter, we model the number of HMM states so that they are similar to the number

of stages of the multi-stage attack. The justification for this approach is that the

closer the number of states is to the number of stages in the multi-stage attack, the

better the details can be provided regarding the progress of the attack; therefore this

approach can lead to the development of a more effective response mechanism.

Also Note that for each attack type, multiple instances of the same type of attack

can be launched by the attacker(s) and consequently, each instance constitutes a dis-

tinct attack. The distinction among instances is maintained by a set of observations

features such as the source and destination IP addresses and ports. The full descrip-

tion of the attributes and features associated with observations is given in Section

IV.

The parameters of the HMM template (i.e. the HMM model λk) for the multi-

stage attack k include the number of states of its Markov chain, the number of related

IDS observations and aforementioned probability matrices A and B. These parameters

are derived offline from a training dataset that contains alerts of a similar multi-stage

attack scenario and which can be reestimated and improved online [54]. Specifically,

each state is trained based on the observations that belong to the corresponding stage.

Subsequently, in the presence of observations related to Attack k, HMM estimates the

probability of being in each state of the model using Viterbi Algorithm [52]. However,

as mentioned earlier, in the presence of multiple interleaved multi-stage attacks, the

performance of the state estimation degrades significantly, especially in a scenario

that contains a high degree of interleaving among the observations of multi-stage

attacks. In the next section, we discuss interleaved multi-stage attacks in detail and

present an HMM-based architecture.
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4.2 System Model and Architecture

In order to detect multiple multi-stage attacks, say K attacks, one can generalize

the existing single attack architecture by building a database of K HMM templates.

In Fig. 4.2, we present a generic architecture for the threat detection process that

uses such a database. Here, each HMM-based template is designed to detect a specific

type of multi-stage attack. The goal of this generic architecture is to detect K multi-

stage attacks originated from a single or multiple attackers. Note that each of the K

HMM templates is trained to detect an individual multi-stage attack. As mentioned

earlier, each template encompasses the HMM structure including all its parameters.

The second major component of this architecture is the Intrusion Detection System

(IDS), (e.g., SNORT software [9,55]), which generates the attack related alerts in real

time from the network traffic according to a predefined set of rules. Typically, an IDS

generates a stream of alerts which are temporally ordered based on their timestamps.

The online processing of this stream of alerts can potentially require a large amount

of memory [56]. The selection of IDS rules can help to reduce the large volume of

alerts and false positives by tuning these rules. [10]. The interleaved alerts generated

by SNORT can belong to one or multiple attacks. These alerts can be preprocessed

to generate observations in a suitable format that can be forwarded to the HMM

database. Based on the information from SNORT, the preprocessing module can

assign different severity levels for the incoming alerts. The higher the level is, the

more severe the alert that indicates indicates that an ongoing multi-stage attack is

progressing towards an advanced stage. In this chapter, we assume a window-based

technique which is needed in order to buffer a finite number of observations so that

these can be processed by the HMM templates. For this purpose, the incoming alerts

to the system are grouped together to form an observation sequence of window size

(observation length) (T ). We assume no overlap occurs between two consecutive

windows. Note that the risk of progressing multi-stage attacks can be assessed in real
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time by the risk assessment component. Prioritized response actions can be taken

based on detected states and the risk of the active attacks [5].
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Fig. 4.2.: A Generic Architecture for Multiple Multi-stage Attack Detection Using an

HMM database

4.2.1 Modeling Interleaved Attacks

Note that in general, K distinct multi-stage attacks can be launched simultane-

ously in a network, and their related alerts, generated by IDS (SNORT), are forwarded

to the HMM database in the form of a single stream of interleaved alerts. These alerts

can be the result of a systematic interleaving of multiple multi-stage attacks initiated

by a single attacker or can be generated randomly by different attackers. Note that

for each observation length (T ), we assume T alerts are processed by the HMM tem-

plates sub-system. In particular, at any time, it is possible that these T alerts can

result from one attack or a mix of at most K attacks. Some possible interleaved

attack scenarios that can be orchestrated by an attacker include:
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• An attacker starts and finishes an attack (Attack 2) in the middle of another ongoing

attack (Attack 1) as shown in Scenario A in Fig. 4.1.

• Multiple attacks start and finish at different times in the presence of one or multiple

ongoing attacks.

• Stages of one attack can be embedded at different times across another ongoing

attack(s).

• Stages of multiple attacks can be embedded at different times of an ongoing at-

tack(s).

• Systematic interleaving among multiple multi-stage attacks can be launched based

on interleaving groups of alerts (see; for example, Scenario C in Fig. 4.1).

The existing datasets which feature multi-stage attacks and are publicly available,

do not consider these complex attack scenarios. The DARPA2000 alerts dataset,

for instance, contains two distributed denial-of-service (DDoS) multi-stage attacks

that happened at different times in which the attacker used multiple distributed

compromised hosts to launch DoS attacks on a specific target [8]. To address the

challenge of generating the aforementioned interleaved attack scenarios, we generate

interleaved alerts by altering timestamps and IP addresses of the DARPA2000 dataset.

In order to detect the aforementioned attack scenarios, we propose two architec-

tures based on the generic architecture shown in Fig. 4.2. The design of the first

architecture, R-LRHMM, is based on modifying the HMM model parameters so that

they can deal with the interleaved alerts. The design of LRHMM+AD improves at-

tack detection capability by separating alerts from the various attacks prior to routing

the alerts to HMM templates sub-system.

4.3 The Left-Right HMM Architecture with Attack Demultiplexer

As mentioned in the previous chapter, R-LRHMM has the limitation of a high

probability of high false negatives in states detection, especially when the attacks
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are highly interleaved as shown in Section V. The reason for this limitation in such

scenarios is that each HMM template processes an observation sequence that contains

interfering observations belonging to other attacks. However, the low performance of

R-LRHMM is observed only in special attack scenarios. Nevertheless, R-LRHMM has

a low computation complexity in terms of observations preprocessing (as discussed

later).

To achieve better performance, we propose another variation of the generic archi-

tecture of Fig. 4.2. Termed as LRHMM+AD, this new architecture, is depicted in

Fig. 4.3 and is discussed below.

Again, we consider K interleaved multi-stage attacks that can be simultaneously

launched in the network. The IDS system, based on SNORT, generates alerts from

these attacks. Every alert is generated with a set of features, which includes alert

ID, source/destination IP address, source/destination port number, and timestamp.

In LRHMM+AD, we use these features to improve detection efficiency of the HMM

templates. In particular, unrelated observations that do not belong to the kth attack

are separated and passed to their respective HMMs. Note that the major design

philosophy behind LRHMM+AD is to use aforementioned features to preprocess the

online network traffic stream and demultiplex it into multiple substreams, as shown

in Fig. 4.3. Note each substream is routed to individual instances (planes) where each

instance plane contains templates of all attack types. We refer to this preprocessing

step as a demultiplexing step. It is an important step as it helps in eliminating the

number of interfering observations from other attacks that are not detectable by a

particular HMM.

Note that alerts triggered by the same attack scenario are correlated based on

some features, (e.g., the source and destination IP addresses). We define alert (oi)

as a 7-tuple features (timestamp, ID, srcIP, srcPort, desIP, desPort, priority) ac-

cording to the IDMEF [57], [58]. We refer to this tuple as a feature set F =

{f1, f2, f3, f4, f5, f6, f7}. The timestamp represents date and time of an alert gen-

erated by the IDS. ID is the identification of the alert, srcIP and srcPort indicate
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Fig. 4.3.: LRHMM+AD Exhibiting L Instance Planes with Substream Routing

the source IP address and source port number, respectively. Also, desIP and desPort

represent the destination IP address and port number, respectively, and priority in-

dicates the alert’s rank [33]. Note that these features are used to distinguish between

attacks as to whether their instances are from the same or different types of attacks.

A subset, S, from the feature set F (S ⊂ F ) can be used for the demultiplexing

operation. The simplest way in which we can demultiplex interleaved alerts is by

grouping the alerts that are triggered by the same multi-stage attack into one subse-

quence based on their IP addresses relationships, i.e., S = {f3, f5}. Note that the IP

addresses of the alerts, which are triggered by the same attack scenario, are generally

related in form a single substream. Consider there are two alerts, oi and oj. The

demultiplexer searches for their addresses to check if they have the same srcIP, or

the same desIP. Moreover, it also checks whether destIP of the previous alert is the

same as the srcIP of the next one, as in a multi-stage attack scenario, as when the

destination node of an earlier alert is the source node of the next alert. Based on the

IP address search, the demultiplexer either inserts oi and oj in the same subsequence

or in different ones.
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In essence, the demultiplexer module demultiplexes the alert streams into L sub-

sreams (1 ≤ L ≤ K). The demultiplexing process is based on one or more of

the aforementioned distinguishing feature(s) of the incoming alerts and/or based

on the correlation of IP addresses. Therefore, from the incoming stream of alerts,

O = {o1, o2, . . . , ot, . . . , oT}, the demultiplexer generates L substreams each of which

belongs to a distinct multi-stage attack. These substreams are a subset of O, which

are represented as, O1 = {o11 , o21 , . . . , oT1}, Ok = {o1k , o2k , . . . , oTk
}, and so on till

OL = {o1L , o2L , . . . , oTL
}, where L ≤ K and Tk ≤ T . Note that the larger the feature

subset we consider in stream demultiplexing, the more distinct substreams we ob-

tain and, in turn, the more processing is entailed. Note that within one observation

sequence, alerts can belong to L attacks where 1 ≤ L ≤ K. We assume that the

demultiplexer does not cause any error in generating substreams.

The demultiplexer module does not distinguish among types of attacks, therefore,

it cannot route a substream to its corresponding HMM template. To address this issue

in LRHMM+AD, each HMM can have L instances, each of which can process one

single substream. Thus, all the L generated substreams pass through each HMM to

find which subsequence matches a certain HMM. The computation by each instance

is performed based on the posterior probability given in (4.1).

O∗k = max
1≤l≤L

Pr(Ol|λl), L ≤ K (4.1)

Note that this probability computation is performed L×K times. The next stage of

the HMM process is to estimate the state probabilities for its corresponding subse-

quence, O∗k, found from (4.1) using the Viterbi decoding algorithm, as follows:

xt = max
1≤i≤Nk

γt(i)

γt(i) = Pr(xt = si|Ok, λk)

t = 1, . . . , Tk

(4.2)

Unlike R-LRHMM, the first stage of every HMM in LRHMM+AD has a maximum

of K instances of the forward algorithm and one instance of the Viterbi algorithm.
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Table 4.1.: Detection process for LRHMM+AD

Input: interleaved alerts: O = {o1, o2, . . . , ot, . . . , oT},

πk: λk, k = 1, 2, . . . , K,

Output: X = {x1, x2, . . . , xT}

1 While (O is not empty)

2 Demultiplex sequence O into L subsequences, O1, O2, . . . , OL,

using features and address correlation

3 for k = 1 : K

4 for l = 1 : L

5 Compute (Pr(Ol|λk))

6 endfor(l)

7 Find O∗k = max
1≤l≤L

Pr(Ol|λk)

8 for t = 1 : Tk, Tk is the length of sequence O∗k

9 Compute γt(i) = Pr(xt = si|O∗k, λk), from equation (4.2)

10 xt = max
1≤i≤Nk

γt(i)

11 endfor(t)

12 endfor(k)

13 endWhile

In addition, the HMM in LRHMM+AD deals with subsequences of length Tk, where

Tk ≤ T . Table 4.1 shows the overall processing of alerts based on LRHMM+AD.

4.3.1 Complexity Comparison of the Proposed Architectures

Note that in R-LRHMM and LRHMM+AD in Figs. 3.2 and 4.3, the main mod-

ules that contribute to their computational complexity are the alert preprocessing
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module for assigning alert severity, the stream demultiplexing module, and the HMM

parallel branch modules. The first preprocessing module is the same for both archi-

tectures. However, the demultiplexing module exists only in LRHMM+AD, which

demultiplexes all T alerts based on a subset (S) of alert features considered in the

demultiplexing operation. The larger the T and S sets are, the more complex compu-

tation is performed by this module. In other words, as a result of the demultiplexing

operation, LRHMM+AD has T × |S| additional computational steps as compared

with R-LRHMM.

Next, we consider the HMM database component of the architectures. Note that

two algorithms need to be executed in each branch of the HMM database, the forward

algorithm (FW) to compute posterior probability for the evaluation purpose and the

Viterbi algorithm (VA) to estimate the best state sequence. In R-LRHMM, each

incoming sequence of T alerts is processed by all of the K branches. In other words,

K computations of the FW algorithm plus K computations of the Viterbi algorithm

are performed. On the other hand, in LRHMM+AD, each HMM template processes,

on the average, with a shorter sequence length compared to the sequence lengths

in R-LRHMM. In the first module of each branch, the FW algorithm is executed L

times, and in the second module of the branch, the Viterbi algorithm is executed

only once. Therefore, in LRHMM+AD, L × K computations of the FW algorithm

plus L computations of the Viterbi algorithm are performed. It is important to note

that although LRHMM+AD seems to perform a greater number of computations

in the HMM database, the length of sequences processed by both the FW and the

Viterbi algorithms is, on the average, shorter than the sequences in R-LRHMM. The

primary shortcoming of LRHMM+AD is the computation overhead needed for the

demultiplexing operation. This overhead can be high especially in cases where T has

a very large value and a large number of features.
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Fig. 4.4.: Interleaved Alerts Scenarios from LLDDOS 1.0 and LLDDOS 2.0.2 Attacks

4.4 Evaluation and Performance Measures

In this section, we discuss the experimental results based on the DARPA2000

dataset [8], since limited datasets are available for this particular evaluation. The

DARPA2000 dataset contains two DDoS multi-stage attacks labeled as LLDDOS

1.0 and LLDDOS 2.0.2. Each of these attacks has five stages: 1) IP sweeping, 2)

Sadmind probing, 3) Sadmind exploitation, 4) DDoS software installation, and 5)

Launching the DDoS attack. In our experiment, DARPA2000 raw network packets

were processed by SNORT IDS [9] to generate alerts. The total number of alerts

resulting from this process is 3500 and 2000, for LLDDOS 1.0 and LLDDOS 2.0.2
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attacks, respectively. These alerts are clustered into 12 distinct symbols, therefore,

Mk = 12, k = 1, 2. The preprocessing module assigns a severity level to these alerts

based on their relation to the stages of the multi-stage attacks. In the case of more

than one alert which leads to a state, the higher severity level is given to the alert

which indicates that the attack is progressing. The training of the two HMMs is

conducted based on a five-state model (Nk = 5, k = 1, 2), which corresponds to the

five stages in each attack.

For the completeness of our evaluation, several scenarios of the two simultaneous

attacks are generated with a varying degree of interleaving to test the performance

of the proposed architectures. For some cases, we compare the three architectures

of Figs. 4.2, 3.2, and 4.3. The reason for using the generic architecture of Fig. 4.2

for the comparison is that no evaluation has been done in the literature for multiple

multistage attacks. For all the results, the x-axis shows the running count of alerts as

they are generated by SNORT. For evaluation purposes, we utilize three performance

metrics, in addition to the widely used state probability metric [45]. The performance

metrics are: (1) the attack risk probability which provides insight to the speed of the

attacks and can help in prioritizing response actions, (2) the detection error rate

performance, which measures how much error is generated by an architecture in

estimating states, and (3) the number of correctly detected stages. The justification

of these performance metrics is given in the following subsections.

4.4.1 Generating Alert Interleaving Scenarios

Based on the two multi-stage attacks in the DARPA2000 dataset, we alter the

timestamp of some of these alerts in both attacks so that we can generate a single

sequence of alerts that is composed of a mix of the two attacks without altering

the temporal order of the original alerts. In addition, the IP addresses of the hosts

attacked by Attack 2 (LLDDOS 2.0.2) are also changed. The reason for this modi-

fication is to simulate two simultaneous attacks intruding into a network. Fig. 4.4
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shows several scenarios of interleaved alerts for two simultaneous DDoS attacks. Note

that the degree of interleaving increases from Scenario 1 to Scenario 4 indicating an

increase in the sophistication of actions and complexity of attacks. Since Attack 2

takes a shorter time to compromise the target and launch DDoS, we manipulate the

timestamps of Attack 2 so that it spreads across different times of Attack 1. Note

also, in this experiment Case Study 1, we only implement systematic interleaving sce-

narios and no random interleaving scenario is used. The y-axis in Fig. 4.4 represents

the alert severity based on the preprocessing module. Based on these scenarios the

performance results of the proposed architectures are given in the following subsec-

tions.

4.4.2 Probability of State Estimation and the Effect of Interleaving

In this subsection, we present the state probability, γt(i), from (5.1) and (4.2) for

i = 1, . . . , 5 with two observation lengths, T = 10 and T = 500. Regarding T = 500,

it can be seen from Figs. 4.5(a) and 4.5(b) that R-LRHMM can estimate1 the states

of both attacks with a high probability, especially for States 1, 2, 4, and 5. However,

as the degree of interleaving increases from Scenario 1 to Scenario 4, R-LRHMM

fails to detect many states. For example, for Scenario 3, States 3 and 4 of Attack

2 are not detected, as depicted in Fig. 4.5(c). For Scenario 4, R-LRHMM performs

very poorly as it fails to detect all the states of both attacks, as depicted in Fig.

4.5(d). For T = 10, R-LRHMM shows a small improvement in detecting States 3

and 4 for Scenarios 1 and 3, respectively, as can be seen from Fig. 4.5 and Fig. 4.7.

The reason for the poor performance of R-LRHMM is that the increasing degree of

interleaving between alerts allows for more interfering alerts to exist within a given

sequence. These conditions cause the Viterbi algorithm to incorrectly determine the

state probability of the non-interfering alerts.

1Note: The terms detecting a state and estimating a state are used interchangeably in this chapter
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Fig. 4.5.: State probability of Attacks 1 and 2 detected by HMM1 and HMM2 based on

R-LRHMM, T=500

LRHMM+AD, on the other hand, performs better as compared to R-LRHMM

in terms of estimating correct states of all incoming alerts for both T = 10 and

T = 500. This performance improvement, even for higher degrees of interleaving, can

be observed from Figs. 4.5(c), 4.5(d,) 4.6(c), 4.6(d), 4.7(c), 4.7(d), 4.8(c), and 4.8(d).

The reason behind this performance improvement for LRHMM+AD is the presence

of the demultiplexing module that helps each HMM to process only relevant attack

alerts. Note that for both architectures the state probability for State 3 of Attack 1

is very low for both values of T because SNORT does not produce enough alerts for

this stage.
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Fig. 4.6.: State Probability of Attacks 1 and 2 Detected by HMM1 and HMM2 based on

LRHMM+AD, T=500

We observe discontinuity in the state probability plot of R-LRHMM in Figs. 4.5

and 4.7, a condition that results when both of the HMMs return to State 1 whenever

interfering alerts exist from other attacks. However, in LRHMM+AD, as the alerts

from different attacks are demultiplexed prior to their processing by the HMMs, the

states of the HMMs are not interrupted. Fig. 4.9 shows the importance of considering

ε2 in designing the HMM used by R-LRHMM. In this experiment, we choose ε2 =

0.001, which is a small value that does not significantly affect the transition probability

matrices, A1 and A2, obtained from training. Note that ε2 = 0 represents the case

of generic architecture, for which returning to State 1 is not allowed when HMM1
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Fig. 4.7.: State Probability of Attacks 1 and 2 Detected by HMM1 and HMM2 based on

R-LRHMM, T=10

receives alerts belonging to Attack 2 or when HMM2 receives alerts belonging to

Attack 1. Setting ε2 = 0 reduces the accuracy of state detection for the two attacks,

as can be seen in Fig. 4.9. For example, for interleaving Scenario 2, Fig. 4.9(a)

provides no estimate for state probability of States 2 and 4 for the first 200 alerts

when ε2 = 0, as compared to Fig. 4.9(b) when ε2 = 0.001. A similar observation can

be made by comparing Figs. 4.9(c) and 4.9(d) for the first 350 alerts of State 2.

In summary, Figs. 4.5, 4.6, 4.7, and 4.8 show that no significant change occurs

in the state detection performance of each architecture as the observation length

changes from 10 to 500 alerts. Moreover, LRHMM+AD is more robust in terms of
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Fig. 4.8.: State Probability of Attacks 1 and 2 Detected by HMM1 and HMM2 based on

LRHMM+AD, T=10

having a better state probability estimation metric at a higher degree of interleaving

as compared to R-LRHMM.

4.4.3 Attack Risk Probability

Figs. 4.10 and 4.11 show the attack risk probability, defined in Chapter 3, for

both DARPA multi-stage attacks using R-LRHMM and LRHMM+ADR-LRHMM for

different interleaving scenarios and for the two observation lengths, T = 10 and T =

500. The results shown are for Scenarios 3 and 4, as they are relatively more complex



58

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 1

Observation length, T=500

 

 

Attack 1 by HMM1

Attack 2 by HMM 2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 
S

ta
te

 2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 3

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 4

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 5

(a) Scenario 1

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
1

Observation length, T=500

 

 

Attack 1 by HMM1

Attack 2 by HMM 2

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
2

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
3

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
4

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
5

(b) Scenario 2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 1

Observation length, T=500

 

 

Attack 1 by HMM1

Attack 2 by HMM 2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 3

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 4

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Alerts 

S
ta

te
 5

(c) Scenario 3

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
1

Observation length, T=500

 

 

Attack 1 by HMM1

Attack 2 by HMM 2

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
2

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
3

0 100 200 300 400 500
0

1

2

Alerts 
St

at
e 

4

0 100 200 300 400 500
0

1

2

Alerts 

St
at

e 
5

(d) Scenario 4

Fig. 4.9.: Effect of ε2 on State Probability based on R-LRHMM

to detect. Fig. 4.11 shows that LRHMM+AD can track the progress of Attacks 1 and

2 for both interleaving scenarios accurately based on the knowledge of the generated

input alerts shown in Figs. 4.4(c) and 4.4(d). Note that there is no significant

difference is shown between the case of T = 10, and T = 500. Also Note that after

100 alerts, Attack 2 progresses relatively quickly, and reaches the compromised state

well before Attack 1. In contrast, however, R-LRHMM underestimates the progress

of Attacks 1 and 2, as shown in Figs. 4.10(c) and 4.10(d), because R-LRHMM fails

to detect some of the states for Scenarios 3 and 4, as illustrated in the previous

subsection. Fig. 4.10(c) shows that both attacks progress at a slow pace. However,

this discrepancy is not true as depicted in Fig. 4.11(c) where LRHMM+AD shows
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Fig. 4.10.: Attack Risk Probability Based on R-LRHMM

both attacks progress quickly at different rates. For instance, Attack 2 reaches 80%

after 100 alerts, while Attack 1 reaches 80% after 300 alerts. Moreover, Fig. 4.10(d)

shows that Attack 1 progresses faster than Attack 2, which is also not true, as depicted

in Fig. 4.11(d) which indicates Attack 2 is faster than Attack 1. This inaccurate

detection of these attacks can adversely affect response decisions, especially, when a

priority-based response mechanism is employed [5].
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Fig. 4.11.: Attack Risk Probability Based on LRHMM+AD

4.4.4 Error Rate Performance

The next performance measure we study is the error rate (ER), which is the ratio

of the number of errors resulting from the inconsistency between the type of an alert

and the corresponding estimated state relative to the total number of incoming alerts.

Note that the exact state corresponding to every incoming alert is considered based

on the knowledge of the input alerts and their corresponding states. The reasons for

inconsistency between the type of alerts and their detected states are: (1) the presence

of interfering alerts, and (2) the state estimation error resulting from the enforcement

of the left-right HMM model along with some of the observations which may be out
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Fig. 4.12.: State Detection Error Rate at Various Interleaving Scenarios

of sequence due to the packets generated by the attacker. In the next chapter, we

analyze the effect of False Positives (FPs) and False Negatives (FNs) introduced by

the SNORT alert generation system on the state estimation error.

Fig. 4.12 shows the plot of ER for different interleaving scenarios and for several

values of T . Note that the error for R-LRHMM is due to the aforementioned reasons

(1) and (2), while the error for Architecture 2, is due to only reason (2). It can be seen

from the figure that the proposed architectures outperform the generic architecture for

interleaving Scenarios 1,2, and 3. However, for Scenario 4, both R-LRHMM and the

generic architecture have similar ER, which is higher than LRHMM+AD. It can also

be noted that the ER for LRHMM+AD remains almost constant with respect to T
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Fig. 4.13.: Comparison between Architectures I and II in detecting stages of Attack 2 for

Scenario 3
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Table 4.2.: Number of correctly detected stages per attack at various interleaving scenarios

Interleaving Scenario Architecture Attack T = 10 T = 100 T = 500

Scenario 2

I
Attack 1 4 4 4

Attack 2 5 5 5

II
Attack 1 4 4 4

Attack 2 5 5 5

Scenario 3

I
Attack 1 4 4 5

Attack 2 4 4 3

II
Attack 1 4 5 5

Attack 2 5 5 5

Scenario 4

I
Attack 1 1 1 1

Attack 2 1 1 1

II
Attack 1 4 5 5

Attack 2 5 5 5

and is also the same for all scenarios. Similarly, R-LRHMM has an almost constant

ER with respect to T ; however, its ER performance gets worse as the degree of

interleaving increases as compared to LRHMM+AD. For instance, for Scenario 4, the

ER for R-LRHMM is as high as 77% as compared to LRHMM+AD which has a value

of 22%.

Note that for the generic architecture, the ER generally increases with T and

saturates to a value. The main reason for this trend is the same as aforementioned

reason (1) and the lack of capability of this architecture to distinguish between alerts

from two different attacks. In addition, due to the same reason, the ER of the generic

architecture also increases from Scenario 1 through Scenario 4.
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4.4.5 Number of Correctly Detected Stages per Attack

The third performance measure we propose is the number of correctly detected

stages per attack, which allows us to analyze the security impact due to missing

or incorrectly detecting stages in a multi-stage attack, especially in consideration

of response actions. We compare between architectures in terms of the number of

detected stages per attack.

This measure is computed as follows. As we know the correspondence between

alerts and stages (or states) of the attacks based on the knowledge of the DARPA2000

dataset, we compare the estimated states from each HMM with the exact states.

Table 4.2 provides the results for three different values of T . It can be observed that

LRHMM+AD outperforms R-LRHMM in correctly detecting more stages for both

attacks. The performance of the two architectures is the same for the interleaving

Scenario 2, as both of them can detect stages 1, 2, 4, and 5 but not 3. This can also

be seen in Figs. 4.5(b), 4.6(b), 4.7(b), and 4.8(b).

For Scenarios 3 and 4, LRHMM+AD detects more stages than R-LRHMM. For

example, all five stages of Attack 2 are detected in Scenario 3 using LRHMM+AD

for T = 500, while R-LRHMM only detects Stages 1 and 5. Fig. 4.13 shows the

estimated states by HMM2 for Attack 2 using Scenario 3. It can be observed that

with R-LRHMM, Stages 3 and 4 are not detected. The advantage of LRHMM+AD

is more apparent in Table 4.2 when the interleaving Scenario 4 is used.

Fig. 4.13 and Table 4.2 show the importance of this performance metric in terms

of how much lead time is available to respond to ongoing attacks. For instance,

Fig. 4.13(b) shows that R-LRHMM detects State 2 then immediately detects State

5 of Attack 2, which implies that not enough lead time is available to respond to a

progressing attack. While Fig. 4.13(c) shows, on the other hand, that LRHMM+AD

detects all states of Attack 2 in a correct sequence similar to the synthesized input

states of Attack 2 shown in Fig. 4.13(a). This performance metric establishes the

importance of considering a large number of states in modeling the HMM in essence
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that the effect of missing a few number of states does not drastically impact lead time

while making real time response decisions to an ongoing multi-stage attack.

4.4.6 Performance Evaluation Using Synthesized Datasets - Case Study

2

The evaluation experiments in the previous case study have been implemented

with DARPA2000 simultaneously interleaved attacks. Due to the limitation of this

dataset in terms of number of scenarios and due to the lack of availability of datasets

with a large number of attacks, in this case study, we generate synthesized datasets

that contain different instances of the DARPA2000 multi-stage attacks. Note that

it is important to point out that our objective is not to evaluate a specific dataset,

but rather to evaluate the proposed architectures for detecting complex multi-stage

attacks that are orchestrated by an adversary through interleaving. The design of

the architectures is generic in the sense they can process any dataset with multiple

attacks. Specifically, the goal of this case study is to study the effectiveness of the

proposed architectures when tested on various datasets that have multi-stage attack

instances which vary from from the trained HMM templates. The importance of this

evaluation is that, in reality, the attacker(s) may not follow the exact same steps for

the same multi-stage attack type, for example, in terms of the targeted nodes or the

number of attempts.

In particular, an HMM generator [53], which generates sequences for HMM, is

used to orchestrate several instances of a multi-stage attack type. In this case study,

the original DARPA2000 dataset is used for training, and the generated synthesized

datasets is used for testing.

Performance Evaluation - Two Synthesized Multi-stage Attacks

Fig. 4.14 shows the state probability of synthesized Attacks 1 and 2 for the

interleaving Scenario 3 detected by HMM1 and HMM2 for R-LRHMM, Fig. 4.14(b),
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(c) LRHMM+AD

Fig. 4.14.: State Probability of Synthesized Attacks 1 and 2 for the Interleaving Scenario

3 Detected by HMM1 and HMM2 Based on both Architectures, T=500
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and for LRHMM+AD, (Fig. 4.14(c)). It can be observed in Fig. 4.14 that the results

of the case study of synthesized multi-stage attacks are consistent with the previous

results for Scenario 3 from Case study 1, discussed in Subsection 4.5.2 (Figs. 4.4(c),

4.5(c) , 4.6(c)), in terms of detection performance and state estimation. In particular,

LRHMM+AD detects all stages of the interleaved multi-stage attack scenario. In

contrast, R-LRHMM fails to detect State 5 of Attack 2 as it estimated the state as

State 2 and State 3 due to the noisy observations resulting from unrelated alerts.

Performance Evaluation - Four Synthesized Multi-stage Attacks

The proposed architectures can be applied to more than two simultaneous attacks,

as well as attacks with different instances. We have conducted several experiments,

using synthetic datasets, to study the effect of having more than two simultaneous

multi-stage attacks on the performance of the proposed architectures. In particular,

LRHMM+AD performs better than R-LRHMM since it depends essentially on the

demultiplexing operation. However, with more than two multi-stage attacks, more

computations are involved, especially in the demultiplexing module and also in the

HMM database component. Consequently, the mean time to demultiplex the stream

and to estimate the state for a window size of 100 increases from 0.46 milliseconds to

1.9 milliseconds. R-LRHMM works well with more than two attacks, but its detection

performance deteriorates significantly with a large number of attacks and a higher

degree of interleaving. Fig. 4.15 shows the results for a scenario of four multi-stage

attacks. In this scenario, the attacker(s) in Attack 3 and Attack 4 attempt to hide

an attack with some of their previous attempts that he/she exploited successfully,

which represent two quite different instances from the trained HMM templates for

these attacks. Although the sequence of observations has unrelated observations from

four different multi-stage attacks, especially in the window between 300 and 400, Fig.

4.15(b) shows that the proposed architecture estimates the progress of the attack
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Fig. 4.15.: State Probability of Synthesized Attacks 1 - 4 Detected by HMM1 and HMM2

Based on R-LRHMM, T=10
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correctly. Due to page limit, we show the results for only one scenario of interleaving

from the four multi-stage attacks.

4.4.7 Performance Evaluation - Impact of False Positives (FPs) and False

Negatives (FNs)

The security alerts generated by an IDS are, in general, noisy and suffer from both

FPs and FNs. In the former case, the IDS (e.g. SNORT) generates false alerts when

no attack attempts are happening in the network, and in the latter case, the IDS fails

to detect exploit attempts and does not generate alerts [10]. In our evaluation of the

proposed architectures, similar effects are observed, as discussed below.

We have conducted several experiments to study the impact of FPs and FNs for

the proposed HMM architectures. In our experiments, we synthesize the dataset by

eliminating some of the True Positive alerts (TPs), in order to mimic FNs, and inject

some FPs into the observation sequence in a randomized fashion. In our experiments,

we vary the False Discovery Rate (FDR) and the False Negative Rate (FNR) from

0% to 50% for the alert generation system (SNORT). In addition, due to randomized

injection and elimination, we conduct 100 experiments for each interleaving scenario

and for each value of FDR and FNR to identify any potential outliers. Note that

in our experiments, we assume that the FP error is uniformly induced by all of the

alert generation rules employed by SNORT. In other words, the effect of the FPs is

uniformly distributed over all the alerts generated by the SNORT.

The results for the impact of FDR for both architectures are shown in Fig. 4.16.

It can be noticed that the performance of LRHMM+AD degrades with the increase of

FDR. This lowered performance is expected as some of FPs are also ”demultiplexed”

and affect the TPs in their respective substreams when each of these substreams is

processed by the associated HMM template.

However, for R-LRHMM, the general trend observed is an improvement in the de-

tection error rate performance which is more noticeable for Scenario 4 (Fig. 4.16(d)).
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 4.16.: The Impact of False Positives on the State Detection Error Rate of R-LRHMM

& LRHMM+AD in Scenarios 1-4 Using Various False Discovery Rates (FDR = 0%−50%)

- The Observation Window Size = 500 and the Number of Experiments = 100

A plausible explanation for this trend is that the FPs in the whole stream either main-

tain the current state or allow for a transition to a subsequent state in the HMM.

The DARPA2000 dataset contains a high number of observations related to State 1

as compared to other states. Therefore, under the assumption of a uniform injection

of FPs in the alert stream, the likelihood of the HMM staying in State 1 increases

with the increase in FDR. Note that an HMM template for R-LRHMM always leads

to State 1 for unrelated observations. Therefore, as the percentage of FDR increases,
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 4.17.: The Impact of False Negatives on the State Detection Error Rate of R-LRHMM

& LRHMM+AD in Scenarios 1-4 Using Various False Negative Rates (FNR = 0%− 50%)

- The Observation Window Size = 500 and the Number of Experiments = 100

this tendency of staying in State 1 also increases with the high degree of interleaving

due to the increase in the number of unrelated observations.

The effect of FNs of the IDS system (SNORT) on both architectures is shown

in Fig. 4.17. The effect of the FNR on the performance of LRHMM+AD is shown

in Fig. 4.17. Note that some of the TPs which are eliminated by FNs may belong

to the erratic behavior of the attacker (which is reason (2) mentioned in Subsection

5.4), while some other TPs eliminated by FNs are legitimate (i.e. correctly sequenced)

alerts. A positive effect is shown on performance in the case of erratic behavior results
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in improved performance of detection error rate, while for the case of legitimate alerts,

the performance degrades. We can notice such improvement and degradation in the

performance for different values of FDR and FNR as shown in Figs. 4.16 and 4.17.

For R-LRHMM, in addition to reason (2), the reason (1) (mentioned in Subsec-

tion 4.4) also comes into play, whereby FNs can eliminate some unrelated alerts and

thereby reduce the possibility of transition to State 1 and increasing the possibility

of transition from a given state to the next state. This improvement in the perfor-

mance is more noticeable for Scenario 4 where the prospects of making such forward

transitions are higher.

4.5 Conclusion

This chapter addresses the detection problem of interleaved multiple multi-stage

attacks intruding into a computer network. We emphasize the importance of this

problem by showing how interleaving and stealthy attacks can deceive the detection

system. Therefore, we propose two architectures based on a well-known machine

learning technique, i.e., the Hidden Markov Model, and provide their performance

results and computational complexity. Both architectures can track interleaved at-

tacks by detecting the correct states of the system for each incoming alert. However,

as the degree of interleaving among attacks increases, LRHMM+AD, which employs

a demultiplexing mechanism, exhibits more robustness and better performance as

compared to R-LRHMM. For the performance assessment of these architectures, we

use three performance metrics which include (1) attack risk probability, (2) detection

error rate, and (3) the number of correctly detected stages. The DARPA2000 dataset

is chosen to synthesize interleaved multi-stage attack scenarios and to demonstrate

the efficacy of the proposed architectures. The proposed architectures are generic

in terms of their capability to process any dataset that contains multiple interleaved

multi-stage attacks.
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As mentioned earlier, the performance of LRHMM+AD degrades with the increase

of FDR. This lowered performance is because some of FPs are also ”demultiplexed”

and affect the TPs in their respective substreams when each of these substreams is

processed by the associated HMM template. The limitation of R-LRHMM regarding

the high degree of interleaving, in addition to the degradation of the performance of

LRHMM+AD in the presence of high volume of FPs and FNs, motivate the need for

LRHMM+ADI which will be discussed in Chapter 5.
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5. HIGHLY RESILIENT ERGODIC HIDDEN MARKOV

MODEL ARCHITECTURE (HR-EHMM)

As mentioned in Chapter 4, the performance of LRHMM+AD degrades with the

increase of FDR. This lowered performance is because some of FPs are also ”de-

multiplexed” and affect the TPs in their respective substreams when each of these

substreams is processed by the associated HMM template. The limitation of R-

LRHMM regarding the high degree of interleaving, in addition to the degradation of

the performance of LRHMM+AD in the presence of high volume of FPs and FNs,

motivate the need for a new architecture.

In this chapter, we propose HR-EHMM, an HMM-based detection architecture

with a backtracking feature, which can detect the occurrence of multiple multi-stage

attacks and provide insights about the dynamics of these attacks in the presence of

false alarms. We quantitatively evaluate the detection accuracy of HR-EHMM using

multiple simulated multi-stage attack scenarios where we control the behavior of the

IDS (SNORT) to study the effect of false and missing alerts. In other words, we vary

the behavior of the attacker, in terms of stealthiness, and vary the behavior of SNORT,

in terms of false and missing alarms, to demonstrate the efficacy of HR-EHMM.

5.1 Introduction

One of the most essential requirements for having high-assurance Cyber systems

is to develop advanced and sophisticated attack detection and prediction systems [5].

Most detection systems have the capability to detect a single-stage attack or to detect

each of the stages of a multi-stage attack independently. However, due to the inability

to analyze the chain of the attack activity as a whole, the detection of multi-stage

attacks poses a daunting challenge to the existing intrusion detection methods. This



75

.. . .. .

Observations ( Length T = 10 )

.. . .. .

Alerts ( O9 ) of 
Attack 2

Alerts ( O4 ) of 
Attack 1

Alerts ( O1 ) of 
Attack 3

Alerts ( O9 ) of 
Attack 2

HMM1 - Stages of Attack 1 of Scenario 3 

S2S1 S3 S4 S5

Expected Risk

MSA Alert Alert Type Stage

DDoS O4 RPC Sadming S2

SQL Inject O9 Stack overflow S4

Brute force O1 ICMP PING S1

Multi-stage Attacks 
Attacker 2

Attacker 3

Network

Internet

Attacker 1

Intrusion 
Detection
System

SNORT
HMM1

Correspondence Between Some Alerts and Stages

Scenario
(5)

Erroneous 
Configuration

HMM1 - Stages of Attack 1 of Scenario 5

S2S1 S3 S4 S5

Expected Risk

HMM1

Scenario
(3)

Observations ( Length T = 10 )

Fig. 5.1.: State Estimation of Interleaved multi-stage attacks Scenarios at Time t

challenge is exacerbated if multiple multi-stage attacks are interleaved. The difficulty

in detecting interleaved multi-stage attacks comes from unrelated observations result-

ing from unrelated attacks that conceal the detail of activity chains of multi-stage

attacks. To elaborate on this challenge, Fig. 5.1 exhibits three multi-stage attacks

interleaved in five possible scenarios. The correspondence between the Alert type and

stages for some observations of these multi-stage attacks is shown in the top-right ta-

ble. A hypothetical real-time state estimation of Attack 1 for scenarios (3), (4) and

(5), assuming that Attack 1 has five stages, is shown on the right side of the figure.

A darker state represents a higher probability for the HMM state estimation (i.e.,

indicates a higher degree of certainty about the current state). Fig. 5.1 shows an

example of the impact of interleaving among alerts of three multi-stage attacks on

the performance of an HMM state estimation. For instance, in Fig. 5.1, we assume

an erroneous configuration for the IDS in scenario (5) that can cause a high rate of

false and missing alarms. Hence, due to both reasons, the interleaving of multi-stage
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attacks and the erroneous configuration of the IDS, the uncertainty about the current

state for Attack 1 in scenario (5) can be higher than in scenario (3).

5.2 Highly Resilient Ergodic Hidden Markov Model Architecture

In this section, we propose HR-EHMM to detect the aforementioned attack sce-

narios. Note that for HMM structure, we focus on the stream of alerts generated

by the IDS, which may consist of True Positive (TP) and False Positive (FP) ob-

servations belonging to multiple multi-stage attacks. The design of the HR-EHMM,

depicted in Fig. 5.2, is based on modifying HMMk template parameters (λk) (i.e.,

matrices Ak and Bk) to deal with the interleaved alerts, as discussed next.
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Fig. 5.2.: The Proposed Architecture (HR-EHMM) for Multiple multi-stage attacks

Detection using a set of HMM Templates

The HMM detection system processes alerts in windows of length T (i.e., ob-

servation sequence O = {o1, o2, . . . , ot, . . . , oT}). Among T observations, there are

Lk observations belonging to Attack k, and the remaining T − Lk observations are
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considered by the HMMk as interfering (unrelated) alerts. For HMMk, we consider

the current state as the most likely state that can be inferred by observing T − Lk

unrelated observations. In other words, the occurrence of an unrelated observation

ot leads, with high probability, to a nulling transition. This can be done by adding

transition probability (ε1) in the right-left transition of the Ak matrix. Hence, in-

stead of introducing a new state to the model, we let all other states return back to

a previous state with a very low probability whenever alerts from unrelated attacks

occur. Subsequently, the matrix Ak becomes as follows:

Ak =



a11 a12 · · · a1Nk

ε1 a22 · · · a2Nk

ε1 ε1 · · · a3Nk

...
...

. . .
...

ε1 ε1 · · · aNkNk


Note that in our experiments, we choose ε1 = 1 × 10−6, which is a small value that

does not significantly affect the transition probability matrices, Ak, obtained from

training. Note also that ε1 = 0 represents the case of generic architecture (G-Arch),

which will be used later in the performance evaluation section, for which returning to

the previous states in the model is not allowed when HMMk receives unrelated alerts

belonging to other interleaving attacks (i.e., a strict left-right model).

A second modification is needed for the emission probability matrix (Bk) to be

most likely to transition to the current state. This can be obtained by introducing

an extra column in the emission probability matrix, Bk, to account for an unrelated

observation ot, as follows:

Bk =


b11 b12 · · · b1Mk

ε2

b21 b22 · · · b2Mk
ε2

...
...

. . .
...

...

bNk1 bNk2 · · · bNkMk
ε2


Hence, unrelated observation ot, occurs with probability ε2, which has a very small

value. In addition, setting the probability to ε2 in the last column increases the
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probability that observing ot leads to a nulling transition whenever HMMk observes

the T − Lk alerts from attacks other than Attack k. An important advantage of

modeling unrelated alerts in this way is that it simplifies the training of each HMM.

In order to determine whether Attack k is active or not, the evaluation module

is utilized as shown in Fig. 5.2. The evaluation probability can be computed using

the forward algorithm and compared with a threshold value thr [52]. Note that thr

is used to prevent unnecessary computations of the Viterbi algorithm due to inactive

attacks. In this chapter, we take a conservative approach by choosing thr = 0. In case

Attack k is active, HMMk uses the Viterbi algorithm to decode the most probable

hidden states corresponding to a given observation sequence O, as follows [52]:

xt = max
1≤i≤Nk

γt(i)

γt(i) = Pr(xt = si|O, λk)

t = 1, . . . , T

(5.1)

where γt(i) represents the probability of being in state si at time t for a given O.

Each HMM template in HR-EHMM depicted in Fig. 5.2 runs the Viterbi algorithm

to determine the best hidden state sequence, X = {x1, . . . , xt, . . . , xT}. For a given

observation sequence O, the Viterbi algorithm identifies the highest probability along

a single path for every ot (t ≤ T ) and its corresponding state si. Accordingly, the

algorithm finds the rest of the state sequence by using induction [52].

5.3 Performance Evaluation

In this section, we evaluate the detection performance of HR-EHMM architecture

using two scenarios of multi-stage attacks generated by varying the degree of inter-

leaving between attacks. In addition, we study the impact of False Positives (FPs)

and False Negatives (FNs) on the performance of HR-EHMM and compare this per-

formance with the generic architecture G-Arch. The reason for using G-Arch for the

comparison is that no evaluation has been done in the past for multiple multi-stage

attacks [49].
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We discuss the experimental results based on the DARPA2000 public dataset [8].

Note that due to the limitation of the DARPA2000 dataset in terms of the number

of scenarios and due to the lack of availability of datasets with a large number of

attacks, we conduct our experiments based on a synthesized dataset generated from

the DARPA2000 dataset. In our experiments, we alter the timestamp of some of

the alerts resulting from multiple multi-stage attacks. Accordingly, we can generate

a single sequence of alerts that is composed of a mix of attacks without altering

the temporal order of the original alerts. Further, some of the IP addresses of the

targeted hosts are also modified. The reason for this modification is to simulate

multiple simultaneous attacks.

The DARPA2000 dataset contains two DDoS multi-stage attacks labeled as LLD-

DOS 1.0 and LLDDOS 2.0.2. Both multi-stage attacks have five stages, which can

be summarized as IP sweeping, Sadmind probing, Sadmind exploit, DDoS software

installation, and Launching. Hence, the HMM model used in HR-EHMM architec-

ture for each multi-stage attack is a five-state model (Nk = 5, k = 1, 2), shown in Fig.

5.2, which is trained offline using the BW algorithm [52]. We use SNORT IDS in our

experiments and with various rule configurations to process the raw network packets

and to generate alerts [9] [10]. The generated alerts are clustered into 12 distinct

symbols for each multi-stage attack, i.e., Mk = 12, k = 1, 2. These alerts are assigned

severity levels by the preprocessing module based on their relations to stages of the

multi-stage attack (i.e., alerts with severity 1-4, 5-7, 8-9, 10-11, and 12 correspond

to State 1, 2, 3, 4, and 5 respectively). In the next subsections, the performance

evaluation and results are discussed.

5.3.1 State Estimation and the Effect of Interleaving

In this subsection, we present the estimation of state probability, γt(i), from (5.1)

for i = 1, . . . , 5 for two different scenarios, SC1 and SC2, with the observation length

T = 500.
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Figs. 5.3(a) and 5.4(a) show the input alerts and severities of both DARPA2000

multi-stage attacks, Attack 1 and Attack 2, for interleaving scenarios SC1 and SC2

respectively. Note that the degree of interleaving in scenario SC2 is higher than in

scenario SC1, which indicates a more complexity of attacks and sophistication of

actions. Since Attack 2 takes a shorter time to compromise the target and launch

DDoS, we manipulate timestamps of Attack 2 so that it spreads across different times

of Attack 1.

The exact state corresponding to every incoming alert is considered based on the

knowledge of the input alerts and their corresponding states mentioned earlier. Note

that errors that might degrade the detection performance of an HMM-based architec-

ture are due to the inconsistency between the type of an alert and the corresponding

estimated state. Such inconsistency can arise due to two main plausible reasons:

1. The existence of interfering alerts due to interleaving.

2. The state estimation error resulting from the enforcement of the left-right HMM

model along with some of the observations that may be out of sequence due to

the packets generated from the irregular behavior of the attacker. Note that

this model is stricter in G-Arch than in HR-EHMM due to introducing ε1 in

matrix Ak, as discussed in Section II.

It can be seen from Figs. 5.3(b) and 5.4(b) that HR-EHMM can estimate the

states of both attacks with a high probability for both scenarios, especially for States

1, 2, 4, and 5. Note that the state probability for State 3 of Attack 1 is low because

there are not enough alerts for this stage produced by SNORT in order to be detected

by the trained HMM. On the other hand, Fig. 5.3(c) shows that G-Arch fails to detect

States 2-5 of Attack 2 for scenario SC1. For scenario SC2, G-Arch performs poorly,

in terms of estimating the correct states of all incoming alerts, as it fails to detect

any state for both attacks, as depicted in Fig. 5.4(c). The reason for this poor

performance is that, as the degree of interleaving increases between alerts, the more
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interfering alerts can exist within a given sequence, causing the Viterbi algorithm to

incorrectly determine the state probability of the non-interfering alerts.

5.3.2 Detection Accuracy - Impact of FPs and FNs

In general, the generated security alarms are noisy and suffer from both FNs

and FPs [10]. In the former case, the IDS does not generate alerts for some attack

attempts, and in the latter case, the IDS raises false alarms when there are no exploit

attempts happening in the network. In this subsection, we analyze the effect of FPs

and FNs introduced by the IDS (e.g. SNORT [9]), on the state estimation error. In

particular, we use the Detection Accuracy (DA) as a performance measure to study

the effect of multi-stage attacks interleaving and the impact of FPs and FNs on both

architectures, HR-EHMM and G-Arch. DA is the ratio of the number of correct

detected states of the incoming alerts to the total number of alerts. Note that DA

= 1 - Error Rate (ER), which discussed in the previous chapters. Formally, DA is

given by the following equation:

DA =
Number of correct detected states of the incoming TP Alerts

Total number of TP Alerts
× 100 (5.2)

There are two methods to define the false alarm rate: False Positive Rate (FPR),

and False Discovery Rate (FDR). On the other hand, True Positive Rate (TPR) is

used to define the change in FNs errors. Note that TPR = 1 - False Negative Rate

(FNR). In this chapter, we use the FDR-TPR combination to represent the change

in the configuration of rules of the IDS (SNORT) and consequently its false detection

behavior [10,59]. In particular, several experiments are conducted to study the impact

of varying FDR-TPR on the performance of the proposed HMM architecture. In our

experiments, we synthesize the dataset by eliminating some of the True Positive alerts

(TPs) to mimic FNs, and inject some FPs in a randomized fashion. In addition, due

to the randomized elimination and injection of alerts, we conduct 100 experiments for

both interleaving scenarios and for each combination of FDR and TPR. We take the
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Fig. 5.3.: Interleaved Alerts Scenario SC1 from LLDDOS 1.0 and LLDDOS 2.0.2 Attacks

for HR-EHMM and G-Arch
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Fig. 5.4.: Interleaved Alerts Scenario SC2 from LLDDOS 1.0 and LLDDOS 2.0.2 Attacks

for HR-EHMM and G-Arch
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average over the total number of experiments to identify and filter out any potential

outliers.

Note that in our experiments, we study three cases for the distribution of false

and missing alarms. In the first case, we assume that the FP and FN errors are

uniformly induced by all of the SNORT configuration rules i.e., the impact of FPs

errors is uniformly distributed over all the alerts generated by the SNORT. In the

second case, we assume that the errors are induced by a subset of the IDS rules and

correspond to one state or two consecutive states. In other words, all the errors are

localized in one cluster spread over one or two consecutive states. Finally, we consider

the case in which errors are generated from a subset of the IDS rules and correspond

to two separated states or groups of states (i.e., all the errors are localized in two

balanced clusters spread over two non-consecutive states).

Figs. 5.5 and 5.6 show the plots of DA and the impact of varying FDR-TPR for

scenarios SC1 and SC2 for these cases. We vary FDR value from 0 to 0.4 and TPR

from 1 to 0.6. Note that the point FDR = 0 and TPR = 1 represents the case of having

an accurate and precise configuration for the IDS. As mentioned earlier, at this point,

FDR-TPR = (0,1), the errors originated from both architectures are due to both

aforementioned reasons (1) and (2). Note also, reason (2) causes more errors for G-

Arch, in which the enforcement of the left-right model is stricter than in HR-EHMM,

which increases the inconsistency between the type of alerts and the corresponding

state estimated by the Viterbi algorithm. Hence, the DA for G-Arch is worse than

HR-EHMM in each scenario. For instance, for scenario SC1 depicted in Fig. 5.5, the

DA value for G-Arch at the point FDR-TPR = (0,1) is as low as 44%, compared to

HR-EHMM, which has a value of 78%. Furthermore, the DA degrades for G-Arch

as the degree of interleaving increases, as shown in Figs. 5.5 and 5.6, where the DA

value for G-Arch at the point FDR-TPR = (0,1) is as low as 23% in scenario SC2,

compared to the DA value of 44% in Scenario SC1. The reason for this degradation

in the performance of the DA is that, as discussed in Subsection III-A, the number of

interfering alerts within an observation sequence increases by increasing the degree of
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interleaving between alerts, which causes the Viterbi algorithm to estimate the state

probability of the non-interfering alerts incorrectly.

It can be noticed from Figs. 5.5 and 5.6 that, in general, as we decrease TPR and

increase FDR, HR-EHMM outperforms G-Arch. The effect of varying FPs of the IDS

system (SNORT) on the performance of architectures is as follows.

the case of FNs, some of the eliminated TPs by the FNs are accurate alerts (i.e.,

alerts are correctly sequenced and part of the multi-stage attack), while other TPs

that are eliminated by FNs may belong to the irregular behavior of the attacker,

which is reason (2) mentioned earlier. The effect on the performance in the case

of accurate alerts results in degraded performance of the DA, while for the case

of irregular behavior, the DA improves. Such degradation and improvement in the

performance can be noticed for different values of TPR, as can be seen in Figs. 5.5

and 5.6.

For instance, in scenario SC1, shown in Fig. 5.5, the DA degrades with lowering

TPR for both architectures (i.e., the DA decreases with the increase of FNs). The

main reason is that as the TPs decrease, the uncertainty about the current state

increases which causes more errors in the state estimation. This problem exacerbates

when the number of observations to detect a state in multi-stage attack is low due

to the experience of the attacker [49] or due to the behaviors of the attack and the

interleaving. For example, the third case of the two clusters depicted in Fig. 5.5(c)

has a lower DA than the second case of one cluster in Fig. 5.5(b) when TPR value

= 0.6 and FDR value = 0. A plausible explanation is that the second cluster in the

third case eliminates TPs from State 3 and State 4, which have fewer observations

than State 1 and State 2. Therefore, the estimation fails to detect correctly some of

the states of alerts corresponding to State 3 and State 4.

Note that for the case of TPR = 1, the DA does not degrade with the increase of

FDR in HR-EHMM. The main reason is that we assume a random injection of FPs

alerts in all the three cases, with the assumption that two successive FB alerts are

most likely not corresponding to the same state. Therefore, under the assumption of
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(a) Uniform Distribution of Errors - Scenario SC1

(b) Single Cluster of Errors - Scenario SC1

(c) Two Clusters of Errors - Scenario SC1

Fig. 5.5.: The Impact of FDR and TPR on the Detection Accuracy for Scenario SC1,

Varying the Distribution of FPs and FNs
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(a) Uniform Distribution of Errors - Scenario SC2

(b) Single Cluster of Errors - Scenario SC2

(c) Two Clusters of Errors - Scenario SC2

Fig. 5.6.: The Impact of FDR and TPR on the Detection Accuracy for Scenario SC2,

Varying the Distribution of FPs and FNs
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uniform distribution and clustered injection of FPs in the alert stream, the likelihood

of staying in the current state increases with the increase in FDR.

5.3.3 Attack Risk Probability

As discussed in Chapter 3, the Attack Risk Probability (ARP) is defined as the

probability of how far the current state of an attack is from reaching the final state

and causing the maximum damage.

Figs. 5.7(a) and 5.7(b) show the attack risk probability for two interleaving scenar-

ios, SC1 and SC2 respectively, for both HR-EHMM and G-Arch architectures, using

DARPA multi-stage attacks, for the case FDR-TPR = (0,1) and for the observation

length T = 500. It can be noticed that HR-EHMM can accurately track the progress

of both attacks for scenarios SC1 and SC2 based on the knowledge of the generated

input alerts shown in Figs. 5.3(a) and 5.4(a). Note that after 50 alerts, Attack 2

progresses and reaches the compromise state relatively fast as compared to Attack

1. However, on the other hand, G-Arch underestimates the progress of Attack 1 for

scenario SC1 as depicted in Fig. 5.7(a). This is because G-Arch fails to detect State

2 at an earlier point due to the interference from the alerts of Attack 2 as mentioned

in the previous subsection.

For the case of a non-zero and small value of FDR, FPs and FNs can be distributed

across all states. For this case, we observe almost no change in the performance of

the system, indicating that short erroneous sequences are tolerated well. However,

with a high value of FDR or, in other words, for longer sequences clustered in a

specific state, HR-EHMM fails to correctly estimate the true attack risk probability,

as shown in Figs. 5.7(c) and 5.7(d). This results in the ”oscillatory” shape in two

regions corresponding to the two clusters of FP and FN alerts.
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(a) SC1, FDR = 0, TPR = 1 (b) SC2, FDR = 0, TPR = 1
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Fig. 5.7.: Attack Risk Probability of Attacks 1 and 2 for SC1 and SC2 and for Various

FDR-TPRs for SC1 - Two Clusters of Errors

5.4 Conclusion

In this chapter, we address the detection challenges of interleaving multiple multi-

stage attacks targeting a network. We emphasize the importance of this problem

by showing how interleaving and stealthy attacks can deceive the detection system.

Therefore, we propose an architecture based on an important machine learning tech-

nique, the Hidden Markov Model, and demonstrate its efficacy. The architecture,

HR-EHMM, can track interleaved multi-stage attacks by estimating the correct states

for each incoming alert of the attack. We analyze the impact of the erroneous behav-
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ior of IDS on the performance of the proposed HR-EHMM for various interleaving

attack scenarios.
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6. CONCLUSION AND FUTURE WORK

In Section 6.1 the research contribution is summarized, while in Section 6.2, the future

research has been discussed.

6.1 Research Contributions

The main objectives and contributions of this dissertation are as follows. First,

we propose a framework for detecting multiple multi-stage attacks occurring consecu-

tively or simultaneously in a network using HMM (sequentially or interleaved). This

thesis addresses the detection problem of interleaved multiple multi-stage attacks in-

truding into a computer network. We emphasize the importance of this problem

by showing how interleaving and stealthy attacks can deceive the detection system.

Therefore, we propose three architectures based on a well-known machine learning

technique, i.e., the Hidden Markov Model, and provide their performance results and

computational complexity. The proposed architectures can track interleaved attacks

by detecting the correct states of the system for each incoming alert.

For the performance assessment of these architectures, we propose three perfor-

mance metrics which include (1) attack risk probability, (2) detection error rate, and

(3) the number of correctly detected stages. The DARPA2000 dataset is chosen to

synthesize interleaved multi-stage attack scenarios and to demonstrate the efficacy

of the proposed architectures. The proposed architectures are generic in terms of

their capability to process any dataset that contains multiple interleaved multi-stage

attacks.

The proposed architectures deploy a database of HMM templates of known attacks

and exhibit varying performance and complexity. In Chapter 3, we have presented
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R-LRHMM architecture. In Chapter 4, we have presented LRHMM+AD architecture

[60]. In Chapter 5, we have presented HR-EHMM [61].

6.2 Limitations of the Proposed Architectures

For the research presented in this dissertation, we have made several assumptions

regarding the cyber attacks and intrusion detection systems which might need to be

overcome in order to deploy the proposed architectures on real-time systems. Some

of the limitations and assumptions include the following:

In this research, we have made the assumption that the attacker has no knowledge

about the detection architectures in terms of the HMM parameters and the demul-

tiplexing mechanism. However, in general, this assumption may not hold since it

is possible for any cyber-based infrastructure to be attacked by an insider that has

knowledge about its detection system. Precisely, a knowledgeable attacker can deceive

R-LRHMM detection system by interleaving multiple attacks in certain ways (e.g.,

Scenario 4 discussed in Chapter 3). On the other hand, a knowledgable attacker can

deceive LRHMM+AD and HR-EHMM by attacking the demultiplexer component

itself (e.g., by using fake IP addresses or by sending a DoS attack on the DeMux).

We plan to address this limitation as a future research by using a Moving Target

Defense [62] approach or observations filtration techniques.

Another assumption we have made which may not hold is having a database of

all possible multi-stage attacks in a network. In practical life, it is quite possible that

attacks may not follow the expected behavior constituting, for instance, a zero-day

attack, and in this case, the existing HMM templates can not detect all stages of

the attack and a new template needs to be generated. One possible solution for the

unexpected behaviors issue (e.g., zero-day attacks) is to integrate an anomaly-based

detection component along with an online self-adaptive HMM Database to detect

such attacks [54].
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Furthermore, from memory-efficiency point of view, in R-LRHMM we consider re-

setting the template to the initial state (State 1) if the corresponding attack becomes

idle (e.g., by having another attack). One of the goals of R-LRHMM architecture

is to keep as memory-efficient as possible comparing with other multi HMM-based

systems. However, since the detection performance for this approach degrades signif-

icantly with some scenarios, we plan to study alternative memory-efficient solutions

for the proposed architectures that address the tradeoff issue between performance

and complexity in HMM-based detection systems.

6.3 Future Work

This work can be extended in various directions. For instance, different variants

of designs of HMM can be explored in order to minimize the impact of erroneous IDS.

Additional performance-driven design objectives can be investigated such as detection

latency and throughput. Also, an HMM-based architecture can be augmented with a

real time response mechanism to mitigate the effect of attacks-in-progress before the

attacks reach the final stages. In addition, other machine learning techniques such as

Recurrent Neural Network (RNN) can be utilized and compared with the proposed

model.

6.3.1 Hidden Markov Model Extensions

In this thesis, we have not implemented a real time experimentation in terms of

traffic arrival rate. We plan to study the detection latency by evaluating the perfor-

mance of the proposed architectures using a real-time experimentation. In addition,

we can use a temporal-based window approach for the sequence of observations in-

stead of the count-based method.

We plan to study the effect of different alert window sizes and time window sizes

on the accuracy and the performance of the HMM prediction model and how to
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find criteria for an adaptive window size assignment based on the attack and HMM

parameters.

Moreover, we will study the possibility of using a two-layer hierarchical HMM in

which the atomic activities and parts of the multi-stage attack are modeled in one

layer and parameterized using supervised and unsupervised training and the high-level

activities or the key vulnerability for each state are modeled in the other layer and

parameterized using CVSS scores [63]. In addition, we plan to study the possibility of

using Switching Hidden Semi-Markov Model (S-HSMM) instead of HMM to address

the change of state durations and its scalability issues [63].

Furthermore, clustering and pre-processing of alerts can help speeding up the

discovery of the attack by decreasing the possibility of any confusion for the HMM

due to high degree of interleaving among multi-stage attacks. Specifically, we will

investigate utilizing an alert filtration approach to intentionally cause FNs that can

lower the high degree of interleaving between MSAs ”de-noising effect”. This de-

noising effect can be noticed in Fig. 5.6(c) where we see a slight improvement in the

DA for the G-Arch due to FNs that remove some of the interfering alerts.

6.3.2 Safe Zones - Response

Moreover, the erroneous detection of interleaved MSAs can adversely affect re-

sponse decisions, especially, when a priority-based response mechanism is employed

[5]. We plan to address the challenges of interleaved MSAs along with erroneous IDSs

on the existing intrusion response systems such as the recent work [64], which basi-

cally employs Partially Observable Markov Decision Process (POMDP) to respond

to an ongoing MSA.

Specifically, we plan to develop a cost-based response and recovery strategies that

can be used to respond to an ongoing multi-stage attacks and to recover the system’s

normal or an acceptable operational state once an attack is detected. Such techniques

will aim at achieving an acceptable level of resilience in the face of disruptions. In



95

particular, we plan to develop a novel design concept of formation of Safe Zones (SZs)

which is driven by performance metrics such as high level of operational availability

and response time. SZs allow isolation of comprised/damaged portion(s) of the CBS,

while maintaining high availability of the system functionalities. We plan to model

and formulate the problem of finding SZs as a multi-objective optimization problem

and to propose heuristics to solve the optimization problem.

6.3.3 Cyber-Physical Systems Application

We plan to study applying Adaptive Threat Management (ATM) mechanisms

on a Cyber-Physical Systems (CPS) application. In ATM, we will study not only

the detection of MSA, but also risk assessment and response. The main challenges

for this research are as follows. The first challenge is how to fuse the information

and correlate the alerts from both Cyber and physical IDSs. The second challenge

is how to assess the impact on both the Cyber and the physical sub-systems and

functionalities/missions for both the MSA and the plausible response actions. We

aim to apply ATM mechanism on a Smart Grid application, (specifically in Advanced

Metering Infrastructure (AMI)), as an extension for our previous work in [16].

6.3.4 Scalability - Partitioning-based Approach

We plan to study how to find an optimal distribution for detection (sensors), esti-

mation, and controllers (e.g., Firewalls) based on a cost-driven partitioning approach

to resolve the scalability and the real-time latency issues.
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A. HMM-BASED GENERIC ARCHITECTURE

Fig. A.1 shows the general architecture of the HMM-based architecture for multi-

stage attacks detection. The essential components and tasks in this architecture are

as follows:

- Cyber-based System model: this component generates functionality dependency

graphs for the whole system and its missions.

- Vulnerability Dependency Graphs (VDG): this component generates VDG tem-

plates for all known and possible multi-stage attacks. VDG is created by integrating

the functionality dependency graph generated from the cyber-based System model

with its vulnerabilities generated from the output of vulnerability scanners.
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Fig. A.1.: A Generic Architecture for Multiple Multi-stage Attack Detection using

an HMM database
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- Network Data Gathering: this component extracts necessary information from

captured network traffic and activities and prepare it for the detection components.

- Detection: this module tries to detect abnormal activities and generates alerts.

- Security Database: this component stores all Common Vulnerabilities and Ex-

posures (CVE) names, CVSS scores and their computed measures.

- Alerts Clustering and Pre-processing: alerts clustering and Pre-processing com-

ponent correlates and groups alerts and adjusts their severities to get a better pre-

diction.

- HMM Knowledgebase: this component contains the HMMs parameters obtained

by training them with different multi-stage attacks. These parameters include the

number of states of the Markov chain, the number of observations and probability

matrices.

- Prediction: the prediction component will estimate and probabilistically predict

the possibility of current or future cyber problems based on the IDSs alerts observa-

tions. This prediction is achieved by applying HMM algorithms to the observations

sequence arriving to the prediction component and using an HMM template from

HMM knowledgebase component. As a result, we will compute the most probable

sequence of states the multi-stage attacks go through and calculate the multi-stage

attack probability. This prediction mechanism will be illustrated in more details in

the following sections.

- Risk Assessment: this component assess the risk and the impact of the multi-

stage attack on the functionalities/missions of the system.

- Response: the response component prepares a set of responses to run on the

network based on the result of the prediction and the risk assessment components

with a goal to prevent or minimize the damage propagation and to recover the system

to a normal mode or to the most possible acceptable functional state.
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A.1 Preliminaries

We develop a weighted graph model to represent the topology of the CBS network,

known vulnerabilities, and their interdependencies. This model will be used mainly

in the risk assessment and response components of the proposed ATM model but we

introduce it in this chapter with an example to motivate the need for the prediction

mechanism.

The cyber-based system graph model is formally represented as G = {V,E},

where V represent its components (nodes), i.e., servers, routers, hosts, etc., and E

is the set of connections between components. Let F = {f1, f2, ..., fm} be the set of

functions/services supported by CBS, where a Function Dependency Graph (FDG)

fi is modeled as a directed graph fi ⊂ G and
⋃

f∈F f = G. Let Vfi (for simplicity

Vi) represents the set of components that support the functionality fi and Efi (for

simplicity Ei) represents the set of edges that support the functionality fi.

For any h ∈ V , h is a tuple (id(h), Ser(h), V ul(h),Wei(h)), where id(v) denotes

a unique identification represents the node’s IP address, Ser(h) represents the a list

of the active services on that node, Vul(h) identifies all the known vulnerabilities on

the host h, and Wei(h) identifies the weight of a vertex in fi which represents its

importance and criticality for the functionality fi which is based on several factors

such as the frequency of accessing that component from other hosts and servers. The

weight of an edge in fi identifies its importance for that functionality based on the

frequency of using that edge from other hosts and servers to reach and access a critical

server.

We model exploits and vulnerabilities using information from various sources such

as Snort [9]. Vulnerability Dependency Graph (VDG) Gvi for a functionality fi is a

directed graph Gv = (V uls, Ev) where V uls is the set of vulnerabilities (vertices) and

Ev ⊆ V uls x V uls is the set of edges. VDG can be generated from Nessus vulnerabil-

ity scanner output and functionality dependency graph. Intuitively, edges represent

causal relationships between vulnerabilities (i.e, an edge from vulnerability v1 to a
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Fig. A.2.: CBS Resilience Model - Example

vulnerability v2 means that v2 can be exploited if v1 is exploited). A vulnerability

with zero in-degree can be exploited directly (entry vulnerability that is exploited to

initiate attacks). Fig. A.2 shows an example of a CBS Resilience Model with four

functions mapped to ten nodes and then generating a VDG for the FDG f1.

For any v ∈ V uls, v is a tuple (id(v), IP (v), p(v),MTTE(v), impact(v)), where

id(v) denotes a unique identification for the vulnerability that comes from Common

Vulnerabilities and Exposures (CVE) which is a dictionary of common names (i.e.,

CVE Identifiers) for publicly known cyber security vulnerabilities [?], IP (v) repre-

sents the node’s id (IP address(es)) that has this vulnerability, p(v) represents the

vulnerability exploitability probability, MTTE(v) represents the the mean time to

exploit the vulnerability, and impact(v) indicates the vulnerability severity and im-

pact on the functionality. Note that p(v), MTTE(v), and impact(v) can be computed

initially using CVSS(v) score.
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As shown in Fig. A.2, each VDG will be mapped to an HMM where each vulner-

ability exploit is represented by a hidden state.

A.2 Correlating Vulnerabilities of Attack Graph with Alerts from HMM

Attack graphs represent prior knowledge about vulnerabilities, their dependencies,

and dependency of functions on CBS components. We model an attack graph by

enumerating all possible vulnerabilities sequences an attacker can exploit within the

CBS to reach his goal (e.g., a critical server), by enumerating all possible attack paths

along functional mapping. We assume that an attacker does not relinquish acquired

capabilities. Accordingly, dependencies between vulnerabilities can be recorded by

attack graphs while keeping attack paths implicitly without losing any information.

The CBS component vulnerability model can be automatically created from output

of vulnerabilities scanners such as the Nessus vulnerability scanner. We generate

HMM-based threat detection templates from attack graphs by mapping vulnerabilities

to observation as well as the transition probabilities in HMM. Such mapping will

allow generation of HMM-based threat detection templates from attack graphs. Such

templates will be maintained in the ATM knowledgebase depicted in Fig. A.1.

A.3 Implementation of ATM - HMM Prediction Model

This section details the application and implementation of the architecture (Fig.

A.1) for different multi-stage attacks. Each HMM model has an HMM configuration

file associated with it to store its parameters (λk)

As discussed previously, each multi-stage attack needs a Markov chain to represent

states and stages of the attack. The S parameter in the HMM is composed with these

states. Examples of HMM topologies are illustrated in Fig. A.3. The ergodic HMM

model, as shown in Fig. A.3b, is an HMM that allows transitions from any state to

any other state. Every state in the ergodic model can reach every other state in a

single transition. On the other hand, a left-to-right HMM model is a forward-only
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Fig. A.3.: Examples of HMM Topologies

Fig. A.4.: Examples of Multi-stage Attacks - Left-to-Right HMMs

and suitable for modeling order constrained time series whose properties sequentially

change over time. and since it has no backward path, the state proceeds from left to

right as time proceeds or stays where it was, as shown in Fig. A.3a [52].
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The Fig. A.4 shows examples of several multi-stage attacks that can be obtained

from the VDG with three and four states and each multi-stage attack has a different

HMM model.
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