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ABSTRACT

Aldo, Porco F. M.S., Purdue University, December 2019. Using Modular Architec-
tures to Predict Change of Beliefs in Online Debates. Major Professor: Dan
Goldwasser.

Researchers studying persuasion have mostly focused on modeling arguments to

understand how people’s beliefs can change. However, in order to convince an au-

dience the speakers usually adapt their speech. This can be seen often in political

campaigns when ideas are phrased - framed - in different ways according to the geo-

graphical region the candidate is in. This practice suggests that, in order to change

people’s beliefs, it is important to take into account their previous perspectives and

topics of interest.

In this work we propose ChangeMyStance, a novel task to predict if a user would

change their mind after being exposed to opposing views on a particular subject. This

setting takes into account users’ beliefs before a debate, thus modeling their precon-

ceived notions about the topic. Moreover, we explore a new approach to solve the

problem, where the task is decomposed into ”simpler” problems. Breaking the main

objective into several tasks allows to build expert modules that combined produce

better results. This strategy significantly outperforms a BERT end-to-end model over

the same inputs.
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1 INTRODUCTION

Convincing others is a skill highly cherished in our society. Salesman, politician and

marketeer are just a few examples of professions that profit greatly on this trait.

Persuasion has been used to denote the act of influencing people beliefs, motivations,

attitudes and intentions [1]. Its aspects have been extensively studied [2, 3], giving

shape to framing and rhetoric theory. The former is a schema of interpretation that

relies on preconceived notions to communicate ideas [4], while the latter is defined

as the art of persuasion through discourse [5]. Nowadays, the popularity of social

platforms has allowed the act of persuasion to take place in public online spaces.

Since this phenomenon happens on a massive scale, it has caught the eye of several

researchers in this area [6–9].

The Natural Language Processing (NLP) community has studied beliefs changes

under the presence of persuasive language. First, researchers have tried to identify

beliefs under different settings like detecting legislation supporters in congressional

speeches [10–12], or predicting stance in online debates [13–16]. These works mo-

tivated numerous studies that analyze the effectiveness of language when trying to

change people’s biases [17–20]. For example, Gleize et al. [17] suggest comparing

the quality of two arguments based on a convincingness score. However, humans are

biased, meaning that the efficacy of an argument is a function of its quality and their

previous beliefs, morals and values. For example, a wealthy person might offer a lot

of resistance to arguments in favor of increasing taxes to the rich.

Recently some research take into account people’s beliefs when modeling persua-

sion. A good example is the study of the /r/ChangeMyView Reddit sub-community,

where users describe their beliefs on a topic and invite others to change their minds.

Tan et al. [18] created a classification task based on this mechanic and solve it by

using clever argumentation and stylistic features. Having a detailed description of the
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users’ belief over each subject seems contrived, but there are other ways of retrieving

a similar signal. Nowadays there are many websites that track users’ interactions with

content and their peers. For example, Durmus et al. [21] create a dataset inspired by

the debate.org website where they study convincingness by conditioning on users’

political and religious ideology. To do so, they make use of self reported users’ biases

and differences in language content between debaters. However, adding more features

without understanding the interaction of beliefs and arguments is not enough.

User behavior can attest to the characteristics that might make them susceptible

to persuasion. Our approach, in opposition to similar studies [18, 21], models users’

stance in several topics using self-reported traits and bias compatibility with their

peers. The idea is that a better user representation will help identify biases and

malleability. In order to prove our hypothesis we created a new task called Change-

MyStance (CMS) that is based on the debate.org website’s mechanics. It models

the binary classification problem of deciding whether users will change their stance

after joining a debate of two contenders with opposing views on a certain topic. One

debater will agree with the voter’s biases, while the other will not. The main con-

tributions of the dataset are that it offers a more natural version of the problem of

changing a person’s beliefs in an online setting where (1) users have several opportu-

nities to be persuaded on different topics, and (2) users can indirectly manifest their

biases without explicitly stating their views. This setting allows to model the users

in a wider beliefs spectrum.

Most works model the problem of changing people’s stance as an end-to-end sys-

tem [17, 18]. However, Our main hypothesis is that persuasiveness is a function of

the arguments and the users’ preconceived notions of the debated topic, thus we

think modeling these two elements separately, i.e. we propose decomposing the task

into sub-tasks that explicitly model beliefs and arguments. Particularly, we use the

following sub-tasks:

• Agreement: shape user representation based on their shared beliefs.



3

• Before: predict users’ bias prior to attending a debate.

• Arguments: given two pieces of text predict the one with better arguments.

• After: predict users’ belief after being exposed to opposing views.

In order to solve the CMS task we establish the necessity to separate belief and

argument detection. However, another important aspect is to understand their inter-

action. For example, a bias created by a trauma will be hard to change. There are

several ways of combining the sub tasks that model each of this aspects. One way

is to use a Multitask learning approach [22] where all sub-tasks are learned jointly

and share some input representation. On the other hand, we propose a hierarchi-

cal structure based on modular learning, where each module corresponds to a task

model. Naturally, there are sub-tasks that help alleviate a high level problem. The

idea is to use domain knowledge as an heuristic to drive the hierarchical structure,

i.e. each module should be directly supported by pertinent tasks. For example, a user

belief After the debate should be a consequence of their beliefs Before reading the

text and the quality of the Arguments the contenders make. Similarly, users change

their minds when their beliefs Before and After being persuaded are different. We

test two different strategies for building hierarchical structures: (1) connecting mod-

ules via a neural architecture and (2) defining constraints over their interaction using

Integer Linear Programming (ILP). We empirically show that the neural hierarchical

approach is more flexible and achieves better results than the alternatives.

We use the ChangeMyStance problem to test our hypothesis. First, we show the

results of using different complexities of user representation and then we compare our

modular approach against a strong end-to-end baseline using BERT [23], which is an

attention based sentence encoder (sentences from the same paragraph are mapped

close in the embedding space). Our results show the importance of modeling users’

beliefs when predicting a change in stance and how using a modular approach can

lead to statistically significant improvements.
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2 RELATED WORK

How to convince people has been studied at least since 322 BC by the ancient Greeks.

Aristotle defines the term rhetoric as ”the faculty of observing in any given case the

available means of persuasion” [24]. He built a framework for argumentative rea-

soning based on persuasive audience appeals (logos, pathos and esos) . After a few

centuries, the Romans developed the theoretic principles of persuasive speech: in-

vention, arrangement, style, memory and delivery. Nowadays, there are many books

that describe persuasion with the focus of improving business and interpersonal rela-

tions [1, 25]. The term is usually defined as exerting influence on a person with the

purpose of changing their views, attitudes, motivations and intentions [1]. We are

particularly interested persuasive discourse, where it is important to create abstrac-

tions or metaphors that would allow a quicker understanding. This strategy is called

framing [26] and it is used often in social movements as carriers of belief and ideology.

Persuasion has been a hot topic in the social sciences [2, 3], the Computational

Linguistics [13, 14] and the Natural Language Processing [17, 18, 21] communities.

Great efforts have been dedicated in understanding arguments to grasp the under-

lying mechanisms behind this phenomenon. They can be separated in argument

characterization [19], automatic detection and component extraction [20,27,28], and

quality assessment [6]. Gleize et al. [17] study it as way to improve the human-AI

interaction by showing machines how to hold interesting discussions. They do so by

creating a ranking task that given a pair of arguments decides which is more persua-

sive based on a convincingness score. However, we claim that understanding people’s

beliefs is key for persuasion to be successful, thus analyzing it only from the language

perspective is not enough.

In order to change someone’s belief to a target stance, it is necessary that the

people being persuaded does not identify with it. The problem of predicting some-
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one’s bias over a certain topic is called the stance classification task. In its inception,

researchers try to detect support (or opposition) towards a certain legislation in con-

gressional speeches [10–12]. With the popularity of online social environments, the

attention shifted towards predicting online debaters’ biases in a given session (topic

debate) based on how they argue [13–16]. Detecting people’s beliefs and their strength

is a first step in understanding if it is possible to convince them.

One of the ways persuasion has been studied is as the ability to change someone’s

stance. This problem was embodied by the ChangeMyView (CMV) task created by

Tan et al. [18]. They built a dataset by scrapping the /r/ChangeMyView Reddit sub

community where a member writes their belief about a topic and invites others to

change their stance. Their setting includes a detailed written self-description of the

thread creators’ biases and posts from other users trying to convince them. The

proposed solution consists on creating features corresponding to three categories:

arguments being discussed by both stances, reasons being expressed only by one end,

and stylistic features to measure malleability. Using the same dataset, Hidey et al. [29]

showed the importance of taking into account the argumentation order, while Xiao

et al [30] explored the effect of modeling user’s psychological attributes.

The CMV dataset is an interesting way to study persuasion but its setup seems

unrealistic as it is challenging to find people’s detailed biases description for every

topic in a more general setting. Moreover, people often overlook frames that are

relevant to the strength of their belief, making statements that are not fateful to

their biases. Similar to our work, Durmus et al [21] focus on modeling users’ beliefs to

predict a change in stance by conditioning on their religious convictions and political

ideologies. They collected a dataset from debate.org extracting the 48 big issues

(abortion legalization, minimum wage, etc) together with some profile information

(age, country, education, etc) for each user. We pursue this idea further and model

user’s beliefs by taking into account a broader spectrum of user attributes, their

association with arguments, and their belief agreement.
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Even when the NLP community has been mostly using end-to-end models to

predict changes in stance [17, 18], researchers found the need of decomposing the

problem in simpler sub-tasks. In order to solve the CMV problem, Jo et al. [31]

proposed a neural architecture with a modular attention mechanism that consists on

two components: a model to detect user malleability and a module that identifies the

relationship between opposing arguments. The idea is that the identified sub-tasks:

(1) should be easier to solve than the high level problem, and (2) given that intuitively

they are correlated with CMV, using them as input should help alleviate the burden

of the main task. One of the main issues when working with a modular setting is

to build an architecture that directs each signal where it is most useful. Research

community has invested some efforts in creating a general modular framework [32]

that automatically decides signal routing. However, we prove that domain knowledge

can be effectively used as an heuristic to model module interaction and obtain results

that improve our baselines.
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3 THE DATASET

Figure 3.1. Example of the debate.org voting system. Each
voter fills the same form. The rows correspond to different as-
pects/categories of the debate and the columns correspond to the
available targets.

Our dataset was extracted from the www.debate.org website. Their mechanics

allows users to express their change of view after a debate, and share prior beliefs in

different ways. Each debate comprises on two contenders, one called the initiator (IN)

and the other called the challenger (CH). The former creates a debate title, chooses

the stance they want to promote, and writes a post arguing in its favor. The latter

agrees to the challenge and contends the initiator’s point of view. After their main

arguments are laid out, both users have the necessary rounds to reason about each

other’s arguments. Until the voting period closes any user can attend the debate, read

both point of views, and cast their votes in different aspects of the debate. Votes will

give points to each contender depending on their target: 0 for IN, 2 for CH and 1 for

tie.
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Table 3.1.
Number of samples (votes) per class for each task.

Task Class 0 Class 1 Class 2

Arguments 21259 7981 37442

Before 13947 33655 19080

After 13866 35989 16827

ChangeMyStance 93633 5851 -

An example of the voting system can be seen in Fig. 3.1, where columns corre-

spond to the targets (IN, CH or tie) and rows to different aspects of the debate. The

meaning of the categories are as follows:

• before: user’s belief before the debate.

• after: user’s belief after the debate.

• arguments: debater with better arguments.

• conduct: debater with better conduct.

• writing: debater with better writing skills.

Another important factor of building a dataset based on www.debate.org is that

it allows users to explicitly identify themselves based on beliefs and demographics

information. The user profile Uprofile includes demographic information (like age,

education and occupation) and their stance over the most controversial topics in the

portal called the “big”-issues (see Table. 3.2). Finally, the summary section Usummary

is an open document that can be used by voters to further describe themselves.

3.1 Preprocessing

Our corpus consists of 12,901 debates and 51,096 users after removing noisy sam-

ples. In order to create the dataset, we only consider debates that contain text from
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Table 3.2.
Big-issues defined in the users’ profile.

Big-issues

Abortion Affirmative Action Animal Rights

Barack Obama Border Fence Capitalism

Civil Unions Death Penalty Drug Legalization

Electoral College Environmental Protection Estate Tax

European Union Euthanasia Federal Reserve

Flat Tax Free Trade Gay Marriage

Global Warming Exists Globalization Gold Standard

Gun Rights Homeschooling Internet Censorship

Iran-Iraq War Labor Union Legalized Prostitution

Medicaid and Medicare Medical Marijuana Military Intervention

Minimum Wage National Health Care National Retail Sales Tax

Occupy Movement Progressive Tax Racial Profiling

Redistribution Smoking Ban Social Programs

Social Security Socialism Stimulus Spending

Term Limits Torture United Nations

War in Afghanistan War on Terror Welfare

both stances and at least three votes. Moreover, the text was further simplified by re-

placing URLS for a token ”< url >” and substituting strings that appeared together

more than two times.

In order to represent each debater’s text, we fine-tuned the bert-base-uncased

model. BERT’s objective is to give a similar representation to sentences in the same

paragraph. In our case, we use the first 510 tokens of each round as a sentence and

the concatenation of all rounds as paragraph. Since in a debate rounds belonging

to the same writer will be close in the embedding space, we only use the first round
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encoding as the representation for the whole document (we use the same model to

encode Usummary). Finally, we use a one-hot representation for the big-issues and

most profile attributes that are discrete. However, we use < lat, long > coordinates

to represent the states the user lives in, and a continuous number to for their age.
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4 THE TASK

ChangeMyStance is binary classification problem where the objective is to predict if

users changed their minds after attending to a debate. An instance is defined as a

4-tuple < u, Tcon, Tother, y >. We say that the user u is persuaded when their beliefs

before(u) ∈ {0, 1, 2} and after(u) ∈ {0, 1, 2} the debate are different.

y =

1, if before(u) 6= after(u),

0, otherwise

The task is defined over a user u and two text representations Tcon and Tother. In

our setting both documents have opposite stance(t) ∈ {0, 2}

stance(Tcon) 6= stance(Tother)

Moreover, It is always true that U biases are different than Tcon stance.

before(u) 6= stance(Tcon)

However, it does not imply that U beliefs agree with Tother’s views. For example,

when the users’ biases are tied (before(u) = 1), either text can change their stance.

4.1 Decomposing the ChangeMyStance Task

Changing someone’s beliefs has been often solved as an end-to-end problem, but

in this work we take a modular approach. Breaking down ChangeMyStance into sub-

tasks gives several advantages. First, solving a single sub-task should be more simple

than the high level problem. As a consequence, it should be natural to focus on the

part of the input matter, thus making it easier to define the right setting and model

for them. The result is having specialized models that contribute specific aspects of

the CMS problem and alleviating its difficulty.
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We have identified four different modules that help improve the results. The data

statistics of each task can be found in Table 3.1.

4.1.1 Sub-task: Arguments

This task is inspired on the votes for the Arguments category of the voting

scheme showed in Fig. 3.1. There users shows their preference y for the arguments

written for the initiator y = 0, the challenger y = 2 or neither y = 1. Therefore, we

define Arguments as a multi-class classification problem. An instance of the task is

defined as a 4-tuple < u, Tin, Tch, y >, where u is the voting user, Tin is the initiator’s

text, Tch the challenger’s text and y ∈ {0, 1, 2} the user preference. It is important

to notice that this problem is different than CMS. Even when a voter acknowledges

that a debater has better arguments (than the one supporting their belief) it does

not mean they where able to convince them. A perfect example of this is shown in

Fig. 3.1 where the user was still undecided about their stance in spite of finding the

challengers case more appealing.

4.1.2 Sub-task: Before

The Before task arises as a way to model users’ beliefs using text as a proxy.

It inspired on the self-reported preference over the stances of a debate before reading

its content. The first row of the debate.org voting scheme (Fig. 3.1) corresponds

to the problem’s supervision. It is important to notice that this supervision was also

used to define the CMS task and corresponds to the before(u) ∈ {0, 1, 2} function.

Moreover, the CMS problem already encodes the non-preferred stance in the order

the inputs take in the instance, however this task allow the model to tune the user

representation to capture this initial bias.

We will define Before as a multi-class classification problem where users’ beliefs

y were aligned with the initiator’s Tin, the challenger’s Tch or no one’s text before the

debate. An instance of the task is a 4-tuple < u, Tin, Tch, y >, where y ∈ {0, 1, 2}.
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4.1.3 Sub-task: After

This task corresponds to the users’ stance after taking into account the arguments

written in a debate. Its supervision comes from the second row of the voting scheme

shown in Fig. 3.1 and its used to define CMS in the form of a function after(u) ∈

{0, 1, 2}. Similar to the Before task, it is a multi-class classification problem where

an instance is defined as a 4-tuple < u, Tin, Tch, y > and y ∈ {0, 1, 2}.

4.1.4 Sub-task: Agreement

Another way to model users’ biases is creating an embedding that increases sim-

ilarity between voters when they agree on their beliefs. This idea comes as a way

to improve the representation of occasional users that have a very small vote count.

The Agreement task uses Before’s supervision before(u) ∈ {0, 1, 2}. We say

that a user u1 is similar to a user u2 when they attended the same debate and

before(u1) = before(u2). An instance of this problem is a triplet of the form

< u1, u2, y >.

y =

1, if before(u1) = before(u2),

0, otherwise
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5 MODELS

So far we have argued the advantages of decomposing the ChangeMyStance prob-

lem and we have identified several subtasks that can help supporting it. However,

one of our technical challenges is looking for ways to integrate signals from different

models into a unified system that helps alleviate the CMS task. The approaches

we have considered in this study are Multitask Learning [22], Inference-based and a

Modular Architecture. Out of all the options we consider, the modular architecture

approach is the most flexible one. It allows to explicitly define modules interaction

using domain knowledge without the necessity of declaring complicated constraints

between them. Moreover, this strategy should make the decision easy to interpret by

understanding which signals are propagated from each module.

In the rest of this section we explain the different ways of composing sub-tasks. We

explore the basic end-to-end model followed by our hierarchical approach for combin-

ing modules. We will conclude with a description of the multitask and inference-based

approaches. But first we will briefly define define formally the concept of module com-

positionality.

In calculus [33], the composition operation ◦ is defined over two functions m :

X → Y and f : Z → X. Such operation is written as m ◦ f and its result is a new

function h where h(x) = m(f(x)) and h : Z → Y . Models are functions because they

consistently map the inputs to the same outputs but their composisionality works

slightly different. The main differences are:

• A sub module can transform only part of the parent module’s input.

• The parent module is fed by the original input together and its sub-module’s

outputs.
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Figure 5.1. Graphical representation of the ChangeMyStance non-
modular architecture. Similar architectures were used for Arguments,
Before and Arguments.

We will write the composition of the parent module P : X → Y over the children

sub-modules [m0, . . . ,mn], where mi : X → Zi, as:

P [m0, . . . ,mn] = H(X,m0(X), . . . ,mn(X))

H is a new module where H : X,Z0, . . . , Zn → Y .

As an example, we can say that the users’ preference after a debate depends on

their previous beliefs and the power of the debaters’ arguments. This idea can be write

as a compositional module after that is supported by the before and arguments

sub modules:

After[Before,Arguments]

Now, lets use the CMS definition. Voters changed their minds if their views Before

a debate were different than their views After. Applying the compositionality defi-

nition over this idea we can create the module in Eq. 5.1.

CMS[After[Before,Arguments],Before] (5.1)
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5.1 End-to End model

The End-to End (E2E) model is a feed forward (FF) neural network. As its

names suggests, it performs a direct mapping from input to outputs without using

other modules. The neural architecture, as shown in Fig. 5.1, is divided in two parts:

• Post Layer : is composed of a single hidden layer and its objective is to reduce

the text embedding dimensionality. It is applied twice per instance because the

input of our tasks is comprised by two BERT embeddings (one for each stance).

• Core Layers : consist on two FF hidden layers. They are fed with the concatena-

tion of the user embedding and the stance text’s hidden representation (output

of the post layer).

Since ChangeMyStance, Arguments, Before and After instances com-

prise the same input, the E2E model suits them. Moreover, all the aforementioned

tasks are classification problems, thus the output of the Core Layers is used as input

to a Softmax layer that provides the final decision. As we will explain in the next

section, end-to-end models can be used by other modules.

5.2 Hierarchical Models

The easiest way to understand Hierarchical Models (HM) is to think about them

as end-to-end models that also receive information from other sources - in our case,

modules. HM have two types of inputs depending if they come from the original task

or from a supporting module. As can be seen in in Fig. 5.2, if there is no information

coming from sub-modules, the HM takes the same form as its E2E version. On the

other hand, if it receives input from another module its architecture will consist of

three parts:

• Post Layer : has the same architecture and works in the same way as the E2E

model.
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Figure 5.2. Graphical representation of a Hierarchical Model.

• Extra Layer : is comprised by one FF layer. It receives as input the concatena-

tion of the user encoding together with the last hidden layer representation of

each supporting module.

• Core Layers : has the same functionality and structure as the E2E model, but

with the subtle difference that it also receives as input the Extra Layer hidden

representation.

There are many ways in which HM can use their sub-modules signal. In this

paper we pre-train each sub-module and use their last hidden layer encoding as fixed

inputs to the downstream module. Intuitively, the last layer represent the final input

transformation, containing the information needed for the sub-module classification

decision. Another interesting way would be to attach their neural architecture and

back-propagate the error from the HM back to the sub-modules. In practice we found

this method to be very slow and we will leave this idea open as further work.

It is important to notice that the user encoding is used separately by the core

layers and the extra layer. The hypothesis behind this architectural choice is that
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Figure 5.3. Graphical representation of the Agreement module.

the sub-modules’ weight should be dependent on the voter. For example, a ”used

trusted references” module would probably be very important to a voter with a high

education level.

We will write hierarchical modules using the composition operator defined at the

start of this chapter. A HM P [m0, . . . ,mn] is defined as H(X,m0(X), . . . ,mn(X)),

where the instance X will be processed by the E2E part, and the rest of the inputs

m0(X), . . . ,mn(X) will be handled by the Extra layer.

5.3 Agreement model

The Agreement module emerges as a way to fight vote sparsity in the data. The

idea is to create an embedding space where users are closer together when they have

similar beliefs. This will help create better representations for casual voters that do

not have enough participation. As shown Fig. 5.3, the Agreement task receives

as input two user representations comprised by Uprofile, Usumary and Uemb (randomly

initialized user embedding). The components of its architecture are devided in:
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• The Summary Encoding Layers are two FF hidden layers that take as input

the BERT embedding of the user summary and outputs a lower dimensionality

representation of it.

• The Core layers Layers are two FF hidden layers that take as input the concate-

nation of the Summary Encoding Layers hidden representation together with

Uemb and Uprofile, and outputs a user embedding.

The Agreement neural architecture does not feed a final Softmax layer. Instead,

because we have an embedding objective, the network is separately applied over the

two user representations and compared using the euclidean distance. We use the

Hinge Embbeding Loss as training objective - defined in Eq. 5.2 - to quantify the

similarity errors. In the loss definition, y = 1 means that users are similar (expressed

the same belief in a debate) while y = 0 means they are dissimilar. It is important to

notice that users without a polarized belief (”tie” votes) where not include in training.

This was done in order to avoid introducing too much noise in the embedding space.

ln =

xn, if yn = 1,

max{0,∆− xn}, if yn = 0

(5.2)

5.4 Multitask model

As said before, our modular approach pre-trains the modules and then uses their

last hidden state as instance representation for the task. However, we also wanted to

experiment how would a joint model behave in the same setting. For that reason, we

built a multitask model where all tasks are trained at the same time and share parts

of the architecture. As can be seen in Fig. 5.4, the Multitask model comprises the

following elements:

• The Post Layer, which works in the same way as the E2E model. This layer

together with the user representation are shared between all tasks.
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• The Core Layers : work in the same way as the end-to-end model and each task

has his own.

By using this paradigm, each task contributes to shaping the inputs representa-

tion, possibly helping other tasks in the process. Moreover, we use the sum of the

Cross Entropy Loss for each task as classification objective. Specifically, each objec-

tive has the same weights as the others, which should not let tasks overpower each

other.

Figure 5.4. Graphical representation of the multitask model.

5.5 ILP based Inference

So far we have used neural architectures to capture the interaction between mod-

ules. However, enforcing consistency rules at test time between tasks is another way
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to achieve the same effect. Examples of interesting sub-tasks combinations that can

act as a proxy for the CMS task are:

Arguments 6= Before =⇒ ChangeMyStance (5.3)

After 6= Before =⇒ ChangeMyStance (5.4)

E2E CMS =⇒ ChangeMyStance (5.5)

Each defined rule represents an alternative definition of the ChangeMyStance

task based on some sub-tasks. Rule 5.3 portrays the idea that if the users’ arguments

preference defers with their bias, then they changed their minds. On the other hand,

the Rule 5.4 uses our definition of CMS, i.e. if the beliefs before the debate are

not the same as the beliefs after the debate it means the users changed their stance.

Finally, we incorporate the end-to-end task as a way to enforce consistence with the

most simple version of the model.

There are several ways to model each rule. One of them would be to create con-

straints based on the single modules, but defining a big number of constraints would

be necessary. An easier way is building hierarchical modules to predict Change-

MyStance based on the modules used in each rule:

CMS[Arguments,Before] =⇒ ChangeMyStance

CMS[Before,After] =⇒ ChangeMyStance

CMS =⇒ ChangeMyStance

For an specific instance, the weight associated with each rule is proportional to the

probability assigned to the prediction of each hierarchical module.

We will need to enforce intra-rule and inter-rule constraints. The former restrict

the values taken by variables created for a single rule, while the latter enforces con-

sistency between rules. Given that CMS is a binary classification problem, each rule

will have two variables, one for each class. The intra-rule constraints will enforce that
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only one class must be active for a given instance. In ILP terminology, the variables

representing the classes for a single rule should sum one:

Xrule,class0 + Xrule,class1 = 1 (5.6)

On the other hand, the inter-rule constraints should ensure that the active class

is the same among all rules. In ILP terminology, the difference between variables

representing the same class should be zero:

Xrulei,class0 −Xrulej ,class0 = 0, where rulei 6= rulej (5.7)

Given that we want to maximize the probability of a instance being CMS, we

propose as objective the sum of all variables weighed by their probability - given by

the Hierarchical modules. Such objective is written in Eq. 5.8, where, i represents an

instance, r a rule, c a class and P (x) the c probability of i given by r.

max
∑
r

∑
c

N∑
i

Pr,c,iXr,c,i (5.8)
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6 EXPERIMENTAL EVALUATION

In this chapter we will revisit our main research questions and show the empirical

results supporting our findings. First we will enumerate the parameters used for each

model and briefly describe how our experiments are run. Then we will explain the

importance of the user in the ChangeMyStance task by incrementally analyzing

richer representations. Finally, we will compare different compositional approaches

measuring their performance against end to end approaches.

6.1 Models Setup

Our general experimental setting consists in running a 10-fold cross validation on

the debates, meaning that votes from the same debate will end in the same fold.

We use one fold for testing. From the remaining 9-folds, we randomly choose 15%

of debates for validation (20% for Arguments) and the rest for training. We use

Adam [34] as iterative method to optimize the Cross Entropy Loss and the Hinge

Embedding Loss for classification and embedding tasks respectively. Given that one

class usually is significantly grater than the other (see Fig. 3.1) we balance their

weight in the objective functions. We fix the learning rate to a value of 0.0001

(0.001 for Agreement) and training stops if there is no improvement after 25 (50

for Agreement) epochs for a maximum of 200 epochs. An epoch consists on a full

pass of the training samples arranged into batches of size 256.

6.1.1 Raw Inputs

The BERT encoding has a size of 9216 features and it is used for each stance text.

The user representation (unless explicitly stated) is built from the concatenation of
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its profile Uprofile and a randomly generated user embedding Uemb of size 158 and 100

(50 for Arguments) respectively. The user summary Usummary was used only as part

of the Agreement module and it is encoded by the BERT model.

6.1.2 Architectures

In all our experiments we employ Neural Networks to build modules. All the

layers the models contain are feedforward (their connections do not form cycles) and

the activation functions are Sigmoid. Moreover, the described models are built using

a subset of the following parts: a Post Layer of size 100, two Core Layers, each of

size 50, and an Extra Layer with size equal to the size of its inputs.

We have three special architectures that require further specification:

• The Agreement module works as an embedding model that maps a user to

a belief space. It comprises two Summary Encoding Layers of size 50 and two

Core Layers of size 100.

• The Multitask module uses the sum of each task’s Cross Entropy loss as the

objective function. Moreover, samples from all task are shuffled and they are

put together in batches of size 256 for training.

• The Inference-based model (ILP) selects the best weights for each rule based

on the validation set performance. In all of our folds the best set of weights

picked at validation time were 0.9, 0.1 and 0.1 for rules 5.3, 5.4 and 5.5 respec-

tively shown in the Models chapter.
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Table 6.1.
Avg. F1-score and +F1 (F1-score of the positive class) for the E2E
model using different user representations. All numbers are trun-
cated to the 3rd decimal. We test statistical significance ”*” with
p − value < 0.01 over the closest simplified version. For Example:
”Text + Uprofile + Uemb” is tested against ”Text + Uprofile”.

Task
Text Text + Uprofile Text + Uprofile + Uemb

Validation Test Validation Test Validation Test

Avg. F1 Avg. F1 Avg. F1 Avg. F1 Avg. F1 Avg. F1

Arguments 0.5164 0.4913 0.522 0.494 0.534 0.507*

Before 0.4364 0.4264 0.473 0.464* 0.531 0.517*

After 0.4494 0.4389 0.486 0.475* 0.548 0.534*

CMS 0.499 0.498 0.533 0.530* 0.606 0.601*

+F1 +F1 +F1 +F1 +F1 +F1

CMS 0.174 0.170 0.203 0.197* 0.282 0.272*

6.2 Experimental Design and Results

6.2.1 The importance of user biases

One of our motivations is to show how modeling users’ biases is key in predicting

beliefs changes. In order to prove this idea we trained the ChangeMyStance task

and some of its supporting sub-tasks with increasingly richer user representations:

• Text : only using the BERT embeddings, i.e. no user representation.

• Text+Uprofile: Text with demographics and big-issues features.

• Text+Uprofile +Uemb: Text+Uprofile with a randomly initialized user embedding.

As can be seen in Table 6.1, a richer user representation yields significant improve-

ments. This is specially true in tasks modeling users beliefs as ChangeMyStance,

Before and After in contrast with the Arguments task. The latter tasks in-
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Figure 6.1. Histogram of the number of votes per user.

crease approximately 3 points when adding the user profile, and around 6 points

when adding the randomly generated user embedding. On the other hand, the Ar-

guments E2E model barely benefits from the richer representations, which means

that this task is mostly dependent on the debates’ content.

One could think that because most users are casual (Fig. 6.1), creating a randomly

initialized user embedding would not make a considerable change. As we can see in the

last column of Table. 6.1, that is not the case. Adding Uemb produces a substantial

performance increase in all the end to end models. Our hypothesis is that it help

characterize the users that have several votes.

Now that we have shown that users’ beliefs play an important role in the CMS

problem, it would be interesting to include a module that models biases from a user

perspective. The Agreement task is the embodiment of this idea. In Table 5.2

we can evaluate the relevance of using Agreement E2E module for supporting the

Before task. As can be seen, the hierarchical module Before[Agreement] is

significantly better than its end-to-end version Before. Our hypothesis is that users

with a small number of votes are harder to characterize. However, they will most

probably attend to debates where frequent users participate. The more they vote

together, the better their representation should become.
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Table 6.2.
Predicting change of stance based on ideology agreement of Conser-
vatives and Liberals. The study uses as metrics the percentage of the
positive class (%+), the F1-score of the positive class (+F1) and the
Avg. F1-score.

Ideology Metric

Voter Writer %+ +F1 Avg. F1

Liberal Liberal 7.8 0.279 0.600

Liberal Conserv. 3.7 0.289 0.602

Conserv. Liberal 6.6 0.293 0.607

Conserv. Conserv. 15.9 0.405 0.647

We provide additional analysis based on users ideology in Table 6.2. We compare

our model’s performance based on the similarity between the ideology of the voting

user and the contender, aiming to change the voter’s mind. Interestingly, the task is

significantly easier when both users have a conservative ideology.

6.2.2 Compositionality and Modular Learning

In this section we will show that the idea of decomposing a high level task can

make a significant difference in the models’ final performance. Also, we will make a

case for hierarchical modules by comparing them to other compositional approaches.

Finally, we will test if using domain knowledge as an heuristic to build modules

interaction produces any improvements.

Task decomposition

In order to prove that finding relevant sub-tasks to alleviate the downstream task

is useful, we measure the performance of the simplest hierarchical modules - only

two levels - against their end-to-end versions. We can corroborate in Table 6.4 that
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Table 6.3.
Avg. F1 scores of the end-to-end (E2E) and Hierarchical models for
the supporting tasks. If p − value < 0.01 then * when comparing
basic and hierarchical.

Models
Validation Test

Avg. F1 Avg. F1

E2E Agreement 0.528 0.520

E2E Arguments 0.534 0.507

E2E Before 0.531 0.517

Before[Agreement] 0.544 0.533*

E2E After 0.548 0.534

After[Before[Agreement], Arguments] 0.562 0.550*

the ChangeMyStance task gets a statistically significant improvement when all

sub-tasks are supporting it - CMS[After, Before, Arguments, Agreement]

model. Moreover, we can confirm that decomposition also helps sub-task. In Table 6.3

we can see how the hierarchical model Before[Agreement] produces an statistical

significant increase over its E2E version.

Domain Knowledge

We previously showed how researchers have been able to improve results by en-

hancing signal routing [32]. The intuition is that if the relevant information travels

without interference to the point where it is useful, then it will make the biggest

difference. In our case, we have signal coming from each module and it would take

exponential time to test every possible composition. Therefore, we are looking heuris-

tics to build an architecture that would boost performance. That is where domain

knowledge comes into play. We compiled a list of reasons why one task should support

another and tested our hypothesis:
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• Before should use Agreement as sub-module because understanding which

users have similar beliefs is critical in predicting biases. As shown in Table. 6.3,

Before[Agreement] is significantly better that E2E Before.

• The beliefs After the debate are a consequence of how strong the bias in the

voter is, and the Arguments used to persuade them. Looking at Table. 6.3

we can corroborate that the end-to-end After model is outperformed by its

hierarchical version using Before[Agreement] and Arguments as auxiliary

sub-modules After[Before[Agreement], Arguments].

• As said before, the ChangeMyStance task is defined as the users’ beleifs

being different Before and After a debate. Therefore, Before and After

should always support CMS. As can be seen in Table 6.4 all the CMS hierar-

chical models that are supported by these tasks achieve better results than the

E2E CMS model.

Comparing compositional approaches

Now we want to test different strategies to combine modules. First we will compare

our modular approach embodied by the hierarchical model with the multitask setting.

The former separately pre-trains each module and they do not share parameters. On

the other side, the multitask approach jointly trains all task while they share part of

the architecture. We compare their performance in solving the ChangeMyStance

task while being supported by the Before, After and Arguments sub-tasks. As

can be seen in Table 6.4, the hierarchical model CMS[Before, After, Argu-

ments] performs significantly better than its E2E version (and its contender), while

the Multitask - [CMS, Before, After, Arguments] does not. We think the

reason why the multitask approach performs poorly is that objectives tend to fight

over the shared representation, making learning harder. Problem that is avoided with

the modular representation.
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It is also possible to combine modules at inference time using ILP. In order to

do this we defined some rules using domain knowledge as an heuristic. Moreover, we

used hierarchical modules to materialize this rules and created constraints to enforce

their agreement.

• The first rule 5.3 was embodied by the hierarchical model CMS[Before[Agree],

After[Before[Agree], Args]] which uses Before and After as the CMS

supporting modules.

• The second rule 5.4 tries to predict CMS as a consequence of the Arguments

preference being different than the beliefs. The idea is materialized by the

module CMS[Before[Agree], Args].

• The third rule 5.5 is built by using the E2E CMS module.

In order to compare the ILP and the modular approaches on equal ground, we

used the modules defined by each rule as auxiliary tasks of the CMS hierarchical

module, i.e. we are using the neural architecture to perform inference. As can be

seen in Table. 6.4, the ILP model manages to outperform the CMS end to end model,

feat that was not achieved by the multitask learning approach. However, the modular

method seems to be better than the ILP when predicting the positive CMS class.

Modular Composition

Now, we want to compare different modular architectures to understand the im-

pact of their structure in the performance. In order to test this idea we compare two

CMS hierarchical modules:

• A depth two HM that uses ChangeMyView as the high level task and all

end-to-end version of the supporting sub tasks CMS[After, Before, Args,

Agree]

• A hierarchical module that uses the best version of all supporting tasks, i.e. in-

stead of using their E2E version we will use their best hierarchical version. More
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Table 6.4.
Results of using different strategies when shaping the modules inter-
action to predict CMS. We use the Average F1 score and the +F1
(the F1-score of the positive CMS class) metrics to characterize the
models. We test for statistical significance with p− value < 0.05: (1)
”∗” w.r.t E2E CMS, (2) ”.” w.r.t Multitask, (3) ”+” w.r.t ILP, and
(4) ”−” w.r.t CMS[After, Before, Args, Agree].

Models Validation Test

Baselines +F1 Avg. F1 +F1 Avg. F1

E2E CMS 0.282 0.606 0.272 0.601

Multitask[CMS, Before, After, Args] 0.283 0.602 0.278 0.599

ILP[CMS, 0.283 0.605 0.279∗ 0.603∗

CMS[Before[Agree],

After[Before[Agree], Args]],

CMS[Before[Agree], Args]]

Hierarchical Models +F1 Avg. F1 +F1 Avg. F1

CMS[Before, After, Args] 0.297 0.609 0.288. 0.605

CMS[After, Before, Args, Agree] 0.296 0.607 0.286∗ 0.602

CMS[ 0.293 0.608 0.284∗ 0.603

CMS[Before[Agree],

After[Before[Agree], Args]],

CMS[Before[Agree], Args]]

CMS[After[Before[Agree], Args], 0.299 0.612 0.292+− 0.608+−

Before[Agree], Args, Agree]

explicitly, the auxiliary sub-modules will be After[Before[Agreement],

Arguments, Before[Agreement], E2E Agreement and E2E Argu-

ments. The final model will be written as

CMS[After[Before[Agree], Args], Before[Agree], Args, Agree].
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If the modules do not benefit from each other both modules should obtain similar

results. However, as we can see in Table 6.4, the hierarchical module using the

hierarchical sub-modules is significantly better than using their end to end versions

model. In other words, building hierarchies based on improved sub-modules can

improve the overall performance.
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7 SUMMARY

This work presents another perspective of the problem of changing peoples’ stance

in online debates. We built version of the task where people declare their beliefs in

different topics, through different mechanics and in a more natural way. Our main

insight lies in the fact that the convincingness of arguments depends on the of the

listener’s preconceived notions about the topic, i.e. a person with a strong bias will

be harder to persuade. This intuition leads us to identify tasks - strongly related with

the problem of changing someone’s mind - that represent users’ beliefs and discourse

arguments, and study their interaction.

In order to prove our hypothesis we build a new dataset ChangeMyStance

based on debate.org mechanics. There, users can manifest their stances in direct

or indirect ways, and their arguments preferences through the voting scheme when

attending a debate. We identify four tasks that are highly related with the CMS

problem, and used them to alleviate its difficulty: Before, After, Arguments

and Agreement. We propose different compositional approaches to represent the

tasks’ interactions and compare with an end-to-end approach. Modular learning - our

approach - is embodied by a hierarchical model. We compare it with two solutions

often found in the literature: Multitask Learning and ILP based inference. Their main

difference is that the modular strategy conditions in the latent representation of the

modules’ output, the multitask approach conditions on the input representation and

the ILP setting conditions on the outputs. Particularly, the ILP uses hard constraints

to model the tasks’ interaction while the hierarchical model uses a neural architecture.

We trained E2E models using increasingly complex user representations. From this

experiments we learned that increasing the user complexity produces a better perfor-

mance of the tasks that (intuitively) should highly depend on modeling user’s beliefs

(CMS, Before and After). This hunch was corroborated when the Agreement
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module improved the performance of the Before task. However, we empirically ver-

ified that a better user representation does not make a big difference when predicting

the Arguments task, probably because it depends on text.

By running experiments with and without supporting modules we could confirm

that the identified sub-tasks are relevant for the CMS problem. Moreover, we tested

our compositional strategies showing that the Modular Learning approach is better

in comparison to the Multitask and ILP based approaches when run using the same

supporting modules. Finally, we used domain knowledge to reason about the hierar-

chical structure of the modules, and we demonstrated that it can be effectively used

as an heuristic to improve signal routing in a modular architecture.
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