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ABSTRACT

Gao, Zhenyuan Ph.D. candidate, Purdue University, December 2019. Failure Predic-
tion for Composite Materials with Generalized Standard Models. Major Professor:
Dr. Wenbin Yu.

Despite the advances of analytical and numerical methods for composite materi-

als, it is still challenging to predict the onset and evolution of their different failure

mechanisms. Because most failure mechanisms are irreversible processes in thermo-

dynamics, it is beneficial to model them within a unified thermodynamic framework.

Noting the advantages of so-called generalized standard models (GSMs) in this re-

gard, the objective of this work is to formulate constitutive models for several main

failure mechanisms: brittle fracture, interlaminar delamination, and fatigue behavior

for both continuum damage and delamination, in a generalized standard manner.

For brittle fracture, the numerical difficulties caused by damage and strain lo-

calization in traditional finite element analysis will be addressed and overcome. A

nonlocal damage model utilizing an integral-type regularization technique will be de-

rived based on a recently developed “local” continuum damage model. The objective

is to make this model not only rigorously handle brittle fracture, but also incorporate

common damage behavior such as damage anisotropy, distinct tensile and compres-

sive damage behavior, and damage deactivation. A fully explicit integration scheme

for the present model will be developed and implemented.

For fatigue continuum damage, a viscodamage model, which can handle frequently

observed brittle damage phenomena, is developed to produce stress-dependent fatigue

damage evolution. The governing equation for damage evolution is derived using

an incremental method. A class of closed-form incremental constitutive relations is

derived.
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For interlaminar delamination, a cohesive zone model (CZM) will be proposed.

Focus is placed on making the associated cohesive elements capable of displaying

experimental critical energy release rate–mode mixture ratio relationships. To achieve

this goal, each cohesive element is idealized as a deformable string exhibiting path

dependent damage behavior. A damage model having a path dependence function

will be developed, which will be constructed such that each cohesive element can

exhibit designated, possibly sophisticated mixed-mode behavior. The rate form of

the cohesive law will be subsequently derived.

Finally, a CZM for interlaminar fatigue, capable of handling brittle damage behav-

ior, is developed to produce realistic interlaminar crack propagation under high-cycle

fatigue. An implicit integration scheme, which can handle complex separation paths

and mixed-mode delamination, is developed. Many numerical examples will be uti-

lized to clearly demonstrate the capabilities of the proposed nonlocal damage model,

continuum fatigue damage model, and CZMs for quasi-static and fatigue delamina-

tion.
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1. INTRODUCTION

1.1 Overview

Composite materials are widely used in aerospace and automotive industries due to

their high strength-to-weight ratio, improved ultimate strength, improved resistance

to corrosion, or improved thermomechanical properties. Since the birth of composite

materials, research on their various failure mechanisms has attracted significant atten-

tion. While the different forms of failure and their causes have been well established

over the years, the prediction of the onset and evolution of such phenomenon is still

an ongoing challenge. Analytically, applying traditional mechanical theories (e.g.,

fracture mechanics, continuum damage mechanics, plasticity theory, etc.) to compos-

ite materials requires more robust and rigorous extensions to account for the complex

stress states and material interfaces. Numerically, conventional finite element method

(FEM) often meets with difficulties when modeling damage and fracture in composite

materials due to mesh induced directional bias and strain/damage localization, which

has motivated researchers to develop mesh-less methods (e.g., peridynamics [1]), or

to extend FEM with various nonlocal damage models [2]. Moreover, different failure

mechanisms also poses additional challenges on their constitutive modeling and nu-

merical implementation. The failure mechanisms in composite materials of interest

in this work are:

1. Brittle fracture: failure that often happens within matrix materials due to their

relatively lower strength, or due to transverse loading with respect to fiber

directions in fiber-reinforced composites;

2. Interlaminar delamination: the formation and growth of cracks along the lam-

inar interfaces under static or cyclic loads, especially in fiber-reinforced com-
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posite laminates, which is mainly caused by insufficient reinforcement in their

thickness directions;

3. Fatigue damage: the formation and coalescence of micro-cracks at one or more

locations within composite materials after exposure to extensive cyclic loading,

which can happen both within interfaces or at the continuum level.

While different constitutive models are usually developed for different failure mecha-

nisms, it is beneficial to develop models based on a unified theory that governs such

irreversible processes. For this reason, so-called generalized standard models (GSMs)

have been attracting considerable attention for decades. Halphen and Nguyen [3] first

introduced the concept of GSM, and several authors [4–8] enriched this concept in

succession. Following Ref. [6], a rate-independent damageable material is said to be

generalized standard only if:

1. there exist a potential function specifying the relation between each pair of state

variable (e.g., the elastic stain tensor and the damage factor/tensor) and its

conjugated thermodynamic driving force (e.g., the stress tensor and the damage

conjugate force (tensor)), and a damage function specifying the proportionality

limit (damages initiate and evolve beyond this limit);

2. the material obeys the principle of maximum dissipation.

According to Ref. [6], such a generalized standard model possesses the following

advantageous features:

1. it specifies the potential function, the damage function, and the damage evolu-

tion laws in a mathematically rigorous manner;

2. it leads to an associated flow rule and the Kuhn–Tucker loading/unloading

conditions and therefore eliminates the arbitrariness in the selection of the flow

rule and the loading/unloading conditions;

3. it regularizes damage evolution along nonproportional loading paths by requir-

ing the material to obey a unified principle.
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With GSM, it is possible to derive constitutive relations for the aforementioned fail-

ure mechanisms using the same thermodynamic framework. In the following sections

of this chapter, popular models previously developed by researchers for different fail-

ure mechanisms will be reviewed, and methods to extend the models to generalized

standard forms will be briefed.

1.2 Brittle fracture

Continuum damage mechanics (CDM) is concerned with the modeling of various

damage behavior of various materials. A number of pioneer authors [5, 9–19] estab-

lished the theoretical framework of CDM based on the thermodynamics of irreversible

processes. The laws of thermodynamics describe how the state variables selected for

a thermodynamic system behave under various conditions. The elastic strain tensor,

the damage tensor, the plastic hardening state variable(s), and the damage accumula-

tion state variable(s) form a complete set of state variables for a damageable material.

A generalized standard continuum damage model regularizes an irreversible process

obeying thermodynamics. It relies on the existences of: 1. a free energy specifying the

relation between each pair of state variable and its conjugated thermodynamic driving

force; 2. a dissipation potential describing the irreversible process [20]. Theoretically

speaking, there exists a state coupling between two phenomena if the free energy con-

tains one or more product terms of the variables describing these phenomena; there

exists a dissipation coupling if there exist multiple dissipation potentials [20].

Despite advances in CDM, locally defined continuum damage models often en-

counter difficulties when implemented in finite element codes for fracture prediction.

This is because: 1. a real material often has a characteristic length of heterogene-

ity (e.g., the maximum aggregate size in concrete [21]), but a “local” continuum

damage model assumes a material to be homogeneous on any length scales; 2. such

a model often produces localized displacement, stress, and strain fields and highly

mesh-dependent fracture paths in the presence of strain softening [22]. Therefore,
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there is a need for a “nonlocal” continuum damage model capable of producing real-

istic fracture paths and capturing size effects in real materials.

With a so-call regularization technique, a nonlocal model can be developed based

on a “local” model. A regularization technique involves replacing one (or more) locally

defined state variable with a corresponding nonlocally regularized state variable. An

extensive review of early nonlocal models can be found in Ref. [2]. Recently developed

nonlocal models can be classified into two groups, according to their regularization

techniques:

1. integral-type—a nonlocal variable is a spatially weighted integral of its cor-

responding local variable over the neighborhood of a damaged material point

[23–29];

2. gradient-enhanced—a nonlocal variable is related to its corresponding local vari-

able via a nonhomogeneous Poisson/Helmholtz equation [30–35].

Gradient-enhanced models are derived from integral-type models. Peerlings et al. [30]

expanded a local variable to be regularized into a Taylor series in the neighborhood

of a damaged material point, substituted the expression for a nonlocal variable in an

integral-type model into this Taylor series, and achieved a Poisson/Helmholtz equa-

tion. Integral-type and gradient-enhanced models have their respective advantages

and drawbacks. An integral-type model, as a nonlocal model in its original form, is

more general because: 1. it imposes no restrictions on the material properties, the

characteristic length, or the gradients of the local variable; 2. it only requires the

local field to be integrable. However, its integral form makes its implementation in

an incremental finite element framework not straightforward. A gradient-enhanced

model, as a derivative nonlocal model, is more restrictive because: 1. it requires the

material to be isotropic [30]; 2. the characteristic length and the gradients of the local

variable must be sufficiently small so that high-order terms in the Taylor series can

be omitted; 3. its weak form requires C0 continuity of the local field. Fortunately,

the weak form of a Poisson/Helmholtz equation can be conveniently implemented in
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a finite element framework. In this work, focus is placed on integral-type models to

seek generality.

Different choices on the local variables to be regularized also lead to different

nonlocal models. One option is to regularize the strain tensor or an equivalent

strain [28, 30–33, 35]. One motivation of choosing this option is probably to avoid

strain localization simply by smoothing the local strain field. In fact, from the ther-

modynamic point of view, strain localization is a consequence rather than a cause of

damage evolution. It is more reasonable to regularize the local variable(s) governing

damage evolution. Another motivation is that people often assume the damage factor

to be a function of an equivalent strain (see Ref. [30] for example). This assumption,

however, contradicts the principle of maximum dissipation. The resulting models

therefore do not possess the advantageous features of generalized standard models.

Other options include regularizing: 1. the damage factor/tensor [34]; 2. the damage

conjugate force (tensor) [23]; 3. both [24–26]. The principle of maximum dissipa-

tion suggests that the damage conjugate force is one controlling factor of damage

evolution. The latter two options are therefore more favorable. Lorentz and An-

drieux [27] recast the nonlocal models by Pijaudier-Cabot and Bažant [23], and Comi

and Perego [26] within the framework of generalized standard models and found that:

1. the two recast models were slightly different; 2. the recast model by Comi and

Perego [26] was energetically equivalent to its corresponding “local” model, but the

other was not. Recall that a “local” model cannot well capture damage and fracture

in a real material having a characteristic length [22]. Despite an attractive term,

it is questionable whether the above “energetic equivalence” should be satisfied. In

fact, the second option has the following advantages over the third option, due to

its simplicity: 1. it facilitates the model development; 2. it endows a model with

better convergence. Therefore, in this work, the damage conjugate force tensor will

be chosen as the local variable to be regularized. Despite advances in integral-type

models:
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1. most existing models assume damage isotropy, and there is a need for a general-

ized standard model capable of handling real, complex brittle damage behavior,

especially damage anisotropy;

2. although explicit finite element analysis codes are widely used to simulate dam-

age and fracture, there is not a fully explicit integration scheme for integral-type

models.

In summary, there is a critical need for overcoming these shortcomings.

In this work, the objective regarding prediction of brittle fracture is to develop a

nonlocal continuum damage model. A nonlocal damage conjugate force tensor will be

obtained from the “local” one using an integral-type regularization technique. The

thermodynamic equations will be formulated in a nonlocally generalized standard

manner based on a recently proposed “local” model [36], which can rigorously han-

dle damage anisotropy, tensioncompression asymmetry, and damage deactivation. A

fully explicit integration scheme for the present model will be developed and then

implemented in Abaqus/Explicit via VUMAT. The present model will be validated

through: 1. simulating cyclic uniaxial tests on a SiC–SiC woven composite; 2. cal-

ibrating its associated material parameters via single edge notched bend (SENB)

tests on concrete beams. Its versatility will be demonstrated through simulating a

mixed-mode fracture test on a double edge notched (DEN) specimen. The size effects

on fracture paths will be investigated. This part of the work (Chapter 2) has been

published.1

1.3 Fatigue damage

Engineering materials often fail by microcrack initiation, propagation, and coales-

cence when subject to intensive cyclic loading. Despite advances in non-destructive

1Gao, Zhenyuan, Liang Zhang, and Wenbin Yu, “A nonlocal continuum damage model for brittle
fracture,” Engineering Fracture Mechanics, vol. 189, pp. 481–500, 2018.
As the author of this Elsevier article, I retain the right to include it in a thesis or dissertation,
provided it is not published commercially.



7

testing, manual testing can be labor-intensive, time-consuming, and error-prone. Fa-

tigue life prediction therefore plays an important role in ensuring structural integrity

and reliability. The versatility of a generalized standard continuum damage model

also makes it a favorite candidate for modeling fatigue damage. Compared with other

fatigue models, they have great potential to achieve a good balance between accu-

racy and efficiency. In this work, focus is placed on continuum damage models for

high-cycle fatigue.

Fatigue damage evolution possesses one unique feature, i.e., its rate depends on

the mean stress and the stress amplitude. Simo and Ju [5] first derived a class of

viscodamage evolution laws based on the thermodynamics of irreversible processes.

Noting that fatigue damage evolution is essentially viscodamage evolution, Fish and

coworkers [37, 38] first modeled fatigue damage evolution using these viscodamage

evolution laws. Fatigue models calibrated via fatigue tests (e.g., those involving uni-

axial, constant amplitude loading) must remain valid in real-world applications (e.g.,

under multiaxial, spectrum loading). The goal is to seek for anisotropic generalized

standard rate-dependent models.

A major branch of existing rate-dependent models derives from the model by

Marigo [39]. Such a model involves:

1. formulating a damage criterion for a rate-independent model;

2. determining the so-called brittle damage rate from the consistency condition;

3. setting the fatigue damage rate to be the brittle damage rate times a viscous

function.

According to the controlling factors of damage evolution, these models can be clas-

sified into (1) strain-controlling [39–42], (2) stress-controlling [43], and (3) damage

conjugate force-controlling models [44–47]. However, the dissipation attains its max-

imum only if the damage conjugate force, neither the stresses nor the strains, is one

controlling factor (see Section 3.1 for more details). The three steps also suggest the

following:
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1. Brittle damage and fatigue damage share some common features.

2. Brittle damage evolution and fatigue damage evolution are linked.

Inspired by this, Mai et al. [42] first calibrated their material parameters irrelevant

to the viscous function, via monotonic tests, and then calibrated those in the viscous

function, from S–N curves. Despite success, from a thermodynamic perspective, brit-

tle damage evolution and fatigue damage evolution are mostly irrelevant: they have

their respective initial damage thresholds and damage accumulation laws (see Sec-

tion 3.2 for more details), not to mention rate dependence. First, the above assumed

fatigue damage rate involves terms resulting from the consistency condition, but a

rate-dependent model has no consistency condition. Therefore, the above models can-

not be said to be generalized standard. Second, several authors [48,49] reported both

S–N curves and fatigue damage/modulus degradation/maximum strain–cycle curves,

which should be sufficient for calibration. These curves, however, have seldom been

used for calibration simultaneously. Other rate-dependent models involve relating the

fatigue damage increment to the stresses [50–52], attributing fatigue damage evolution

to plastic deformation [33,53], viscoplastic deformation [54], or even entropy produc-

tion [55], or investigating micromechanisms at the molecular level [56]. Nevertheless,

there is still a lack of generalized standard rate-dependent models.

Despite differences, brittle damage and fatigue damage do share some common

features. One prominent feature is that, if not evolving, the same amount of dam-

age should identically degrade a material. This led Marigo [39] and other authors

to develop their rate-dependent models based on rate-independent models. When

developing rate-dependent models, researchers most frequently considered tension–

compression asymmetry. When modeling this behavior, some researchers chose strain

decomposition [57,58], and some others chose stress decomposition [14,59,60]. In fact,

it can be verified that only stress decomposition is valid (see 3.5 for more details).

Recently Zhang and Yu [36] developed a rate-independent model capable of handling

various brittle damage phenomena based on stress decomposition. A rate-dependent
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model developed based on this model will most likely possess the advantages of the

rate-independent model.

A further challenge is to derive a closed-form incremental constitutive relation (or

to say, an incremental stress–strain relation). Such an incremental relation can be

implemented in an explicit finite element analysis code for the fatigue life prediction of

engineering structures. One of the few closed-form relations is due to Mai [42], where

damage isotropy and strain-controlling damage evolution reduced the complexity of

derivation. Two challenges arise when considering damage anisotropy and damage

conjugate force-controlling damage evolution:

• Eliminate the damage increment in the incremental relations.

• Properly handle rate-dependent terms in the incremental relations.

Failing to overcome the first challenge often causes an additional computational cost

(e.g., 6 more degrees of freedom at each node, due to damage anisotropy). The second

challenge can be better understood by considering a similar case in viscoplasticity: to

handle rate-dependent terms, several authors [61–64] resorted to the Laplace trans-

form and its inverse but obtained complicated constitutive relations. Due to these

challenges, many researchers only developed explicit integration schemes involving

solving for the increments in different state variables step by step. Fortunately, Doghri

et al. [65] developed an incremental method for elasto-viscoplastic materials, which

involves first discretizing the time domain into numerous small intervals and then

deriving an incremental constitutive relation over each interval (without the Laplace

transform and its inverse), and Zhang and Yu [66] made this method more versa-

tile. One possible solution appears to apply this incremental method to materials

undergoing fatigue.

In this work, the objective regarding prediction of continuum fatigue is to de-

velop an anisotropic continuum damage model for high-cycle fatigue. A viscodamage

model, which can handle frequently observed brittle damage phenomena, is developed

to produce stress-dependent fatigue damage evolution. The governing equation for
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damage evolution is derived using an incremental method. A closed-form incremen-

tal constitutive relation is derived at last. The present model is validated through

model calibration via (1) cyclic compression tests on a concrete, (2) cyclic tensile

tests on another concrete, and (3) cyclic tensile tests on a unidirectional IM7/8552

fiber-reinforced composite in its longitudinal and transverse directions, respectively.

Different calibration methods are proposed. The feasibility of calibrating a continuum

damage model from S–N and modulus degradation/maximum strain–cycle curves are

evaluated.

1.4 Interlaminar delamination

Cohesive zone models (CZMs), firstly proposed by Dugdale and Donald [67], and

Barenblatt and Isaakovichand [68], can handle interlaminar delamination well with-

out assuming preexisting cracks and small fracture process zones (FPZs). A CZM

involves idealizing the FPZ as a separable interface, often ahead of a crack tip, and

discretizing this interface into a layer of cohesive elements obeying a cohesive law. A

cohesive element can be a line or a surface element with a zero or a nonzero thickness,

depending on circumstances [69]. Despite the diversity of cohesive elements, it is a

cohesive law that makes a CZM different from others. A cohesive law at least specifies

the relation between the interfacial traction and the interfacial separation under vari-

ous modes of fracture. A monotonic traction–separation curve generally possesses the

following features [70]: 1. it often consists an initial increasing portion and a subse-

quent decreasing/softening portion (see Figure 1.1(a)); 2. when the traction decreases

to zero, the element completely fails; 3. for a given separation path, the maximum

traction that the element can sustain is referred to as the interfacial strength, and

the area underneath the curve equals the critical energy release rate, Gc. Despite the

development of CZMs, researchers are still attempting to make cohesive elements:

1. behave reliably and consistently when deformed along complex (e.g., nonpro-

portional, unloading–reloading) separation paths;
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2. display experimental critical energy release rate–mode mixture ratio relation-

ships (Gc–GII/G relationships), which vary from case to case and can be some-

what complex (see Ref. [71] for examples).

Nonproportional, unloading–reloading separation paths are always more realistic than

proportional, monotonic ones. Turon and his coworkers [72,73] observed that, even in

a finite element model of a mixed-mode bending (MMB) specimen, cohesive elements

were often deformed along nonproportional separation paths. During the development

of CZM in this work, focus is placed on achieving these two goals.

Tr
ac

tio
n

Separation

(a) Ideal.

Tr
ac

tio
n

Separation

(b) Erroneous.

Fig. 1.1. Typical traction–separation relationships in CZMs.

Recently developed CZMs for interlaminar delamination can be classified into

potential-based CZMs and damage-type CZMs. A potential-based CZM involves:

1. assuming the existence of a potential function capable of specifying the pointwise

traction–separation relation; 2. properly formulating the potential function such that

the associated cohesive elements exhibit designated behavior. A detailed review of

potential-based CZMs can be found in Ref. [74]. In this work, focus is placed on
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damage-type CZMs. A cohesive element and a damageable material actually share

many common features:

1. both of them exhibit damage-type behavior (e.g., degradation and softening)

and are often deformed along complex separation/loading paths;

2. delamination and damage are essentially irreversible processes that can be de-

scribed by thermodynamics.

Researchers developed various damage-type CZMs, and some of them referred to gen-

eralized standard continuum damage models. Despite the aforementioned advantages,

one must face a dilemma when developing a generalized standard CZM. Specifically,

one can choose either a scalar-valued damage factor or a damage vector as the mea-

sure of the degradation of a cohesive element. On one hand, a damage factor leads

to an element always identically degraded in all directions. In a generalized standard

CZM, its associated scalar-valued damage conjugate force prevents a cohesive ele-

ment from exhibiting sophisticated mixed-mode behavior, due to its simplicity. On

the other hand, a damage vector leads to an element that can be differently degraded

in different directions. It is expected that such an element fails when the projection

of the damage vector onto a certain direction is close to unity, or to say, when the el-

ement cannot even sustain a small traction in a certain direction (see Figure 1.1(a)).

Numerical experiments indicate that, in a finite element model of an MMB speci-

men, such an element, associated with a generalized standard CZM, often fails when

the resultant traction is not so small (see Figure 1.1(b)). At the structural level,

this causes a predicted load–displacement curve to have a sudden drop right after

delamination initiation, indicating that progressive delamination is highly unstable.

This kind of predicted load–displacement curves, however, contradict experimental

data (e.g., those in Ref. [75]). This dilemma makes generalized standard CZMs less

popular than non-generalized standard CZMs.

A non-generalized standard CZM imposes few restrictions on the damage function

and allows a non-associated flow rule. Allix and his coworkers [76–78] first developed
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a class of damage-type CZMs within the framework of thermodynamics. Such a typi-

cal non-generalized standard CZMs involves: 1. choosing a damage vector and also a

damage function being a function of the damage conjugate force vector; 2. assuming

a non-associated flow rule forcing all components of the damage vector to approach

unity simultaneously at the onset of failure. Borg and his coworkers [79, 80] devel-

oped similar CZMs except that they assumed a damage function being a function

of the traction vector. Camanho et al. [69] developed a bilinear damage-type CZM

and achieved good agreement between their predictions and the experimental data in

Ref. [75]. Turon et al. [81,82] developed a damage model similar to a generalized stan-

dard one except that, in its damage function and damage evolution laws, an effective

separation took the place of a damage conjugate force. Overgaard et al. [83] further

applied the principle of maximum dissipation to its damage function and obtained

the same damage evolution laws. Despite improvements, it is rare that a GSM has a

flow rule directly related to an effective separation rather than a damage conjugate

force. Mosler and Scheider [84] developed another class of damage-type CZMs in-

volving: 1. assuming a damage factor being a function of the damage conjugate force,

which is also the state variable describing damage accumulation (this allows a user

to customize the traction–separation relation); 2. requiring each cohesive element to

obey the so-called principle of minimum stress power. Despite improvements, these

CZMs are not generalized standard because: 1. in thermodynamics, it is rare that

a thermodynamic driving force is also a state variable; 2. the principle of minimum

stress power is not equivalent to the principle of maximum dissipation (see Ref. [8]

for more details). Therefore, there is still a need for a versatile generalized standard

CZM developed in a thermodynamically rigorous manner.

In this work, the objective regarding prediction of interlaminar delamination is

to develop a string-type CZM. Focus is placed on making the cohesive elements as-

sociated with the present CZM: 1. behave reliably and consistently when deformed

along complex separation paths; 2. capable of displaying experimental critical energy

release rate–mode mixture ratio relationships. To achieve the first goal, the thermo-
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dynamic equations will be formulated in a generalized standard manner. To resolve

the aforementioned dilemma, each cohesive element will be idealized as a deformable

string exhibiting path dependent damage behavior. To achieve the second goal, a

damage model having a path dependence function will be developed, and the path

dependence function will be constructed such that each cohesive element can exhibit

designated, possibly sophisticated mixed-mode behavior. The rate form of the cohe-

sive law can be subsequently derived. The interface parameters associated with the

present CZM will be calibrated from experimental data. The present CZM will then

be validated through simulating a series of flexural tests using Abaqus/Explicit. The

effect of the interfacial strength on a load–displacement curves will also be evaluated.

This part of the work (Chapter 4) has been published.2

1.5 Fatigue delamination

Long-term cyclic load is one of the most prevalent service load in engineering

structures, which is also another common cause for fatigue delamination. Manual

fatigue life testing for composite delamination can be time-consuming and expensive,

due to the large number of cycles required for each test, and different factors that

can affect interlaminar fatigue behavior (e.g., mode mixture ratio, cyclic load profile,

and material configuration). It is desirable to develop a rigorous numerical model for

interlaminar fatigue that accounts for these factors and can be easily implemented in

complex structural analysis.

To extend the quasi-static CZMs for interlaminar fatigue, De-Andrés et al. [85] first

decoupled the damage parameter into one part due to quasi-static loading and another

part due to cyclic loading, where the damage rate was directly formulated as increment

per cycle. Several authors implemented Paris’ law [86–89] or other power law like

[90, 91] empirical relations into cyclic damage rate formulation. Such models usually

2Zhang, Liang, Zhenyuan Gao, and Wenbin Yu, “A string-based cohesive zone model for interlaminar
delamination,” Engineering Fracture Mechanics, vol. 180, pp. 1–22, 2017.
As the author of this Elsevier article, I retain the right to include it in a thesis or dissertation,
provided it is not published commercially.
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only depend on the computation of energy release rates or stress intensity factors,

without an intrinsic implementation of rate-dependency. Consequently, additional

parameters and assumptions are required for each load-related factor (e.g., mode

mixture ratio, load ratio, and fatigue limit). To include effects of different loading

profiles, Yang et al. [92] and Nguyen et al. [93] developed CZMs that defined different

stiffness degradation rates for loading and unloading, which were nonlinear functions

of separation rate. With the same idea, several authors [94–96] developed CZMs that

formulated mixed-mode damage evolution laws as different functions of separation

rate for loading and unloading. With this approach, effects of rate-dependent cyclic

loading are explicitly described in the traction separation law. Thus, interlaminar

fatigue behavior can be numerically reproduced in a cycle by cycle manner.

To avoid the possible arbitrariness in formulating the traction separation law, an-

other approach to formulate rate-dependency is to include viscous effect in the CZM

formulation following unified thermodynamic principles. Corigliano and Ricci [97]

first presented both a softening viscoplastic CZM and a viscodamage CZM for gen-

eralized standard materials to capture rate-dependent delamination. Both double

cantilever beam (DCB) and end-notched flexure (ENF) tests are simulated in mono-

tonic loading conditions with success. The goal now is to apply a similar CZM to

cyclic loading conditions. On the one hand, viscoplastic CZM is not suitable for

high-cycle fatigue in a physical sense because:

• For fiber-matrix interfacial debonding, the fracture can be considered brittle

under high-cycle dynamic loads.

• Crack formation and propagation during delamination is essentially damage

mechanics instead of plasticity.

On the other hand, the viscodamage CZM in Ref. [97] considers the viscous effects

in mode I, II and III as independent. This assumption is not suitable for complex

separation paths, as the crazing and fibril formation ahead of crack tips (observed by

Kramer and Berger [98, 99] for polymer interfaces) cannot be described. Musto and
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Alfano [100, 101] and Parrinello et al. [102] presented thermodynamically consistent

viscodamage CZMs with unified scalar damage parameter and viscosity function, and

showed that a rate-independent mixed-mode fracture energy can be obtained. Be-

cause these CZMs are not designed to predict fatigue life, the so-called consistency

condition is applied to regularize the damage surface during damage evolution. This

makes them unable to capture rate-dependent behavior during unloading and reload-

ing. Therefore, there is still a lack of generalized standard viscodamage CZM for

interlaminar fatigue.

In this work, the objective regarding interlaminar fatigue is to extend the previ-

ously developed string-based CZM to produce rate-dependent damage evolution. A

viscodamage model, capable of handling brittle damage behavior, will be developed

to produce realistic interlaminar crack propagation under high-cycle fatigue. An

implicit integration scheme, which can handle complex separation paths and mixed-

mode delamination, is developed and implemented in Abaqus/Standard via UMAT.

The material properties associated with the present model are first selected and cal-

ibrated from double cantilever beam (DCB) fatigue tests. The present model is then

validated through producing G–N and crack growth rate curves for both DCB and

end-notched flexure (ENF) tests. Finally, its capability to handle mixed-mode fatigue

delamination is demonstrated through simulating a series of mixed-mode bending

(MMB) tests.



17

2. NONLOCAL DAMAGE MODEL

2.1 Thermodynamics and energy equivalence

This chapter uses the same notation system as that in Chapter 3, and different

from those in Chapter 4 and 5. Let ψ denote the Helmholtz free energy per unit mass

of a material. It can be treated as a function of a suitable set of independent state

variables describing the elasticity and damage of the material, e.g.,

ψ = ψ (ε,d, β) , (2.1)

where ε denotes the elastic strain tensor, d is a symmetric second-order tensor mea-

suring damages, namely the second-order damage tensor, and β is a scalar describing

damage accumulation. Following Ref. [20], assume that ψ can be decomposed into

its elastic and damage accumulation parts, i.e.,

ψ (ε,d, β) = ψe (ε,d) + ψd (β) . (2.2)

The thermodynamic driving forces conjugate to the state variables in Eq. (2.2) are

defined as

σ = ρ
∂ψ

∂ε
= ρ

∂ψe
∂ε

, y = −ρ∂ψ
∂d

= −ρ∂ψe
∂d

, B = ρ
∂ψ

∂β
= ρ

dψd
dβ

, (2.3)

where σ denotes the stress tensor, y denotes the damage conjugate force tensor, and

B denotes the damage accumulation conjugate force.

For isothermal deformation, the Clausius–Duhem inequality can be written as

Φ = σ : ε̇− ρψ̇ ≥ 0, (2.4)

where Φ denotes the dissipation per unit volume, and the overdot denotes the time

derivative of a quantity. Combining Eqs. (2.2)–(2.4) gives

Φ = y : ḋ−Bβ̇ ≥ 0. (2.5)
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Let Ω denote the domain occupied by the material (with boundary ∂Ω), and let

〈·〉 =
∫

Ω
(·) dV denote the volume integral of a quantity over Ω. Define nonlocal

damage conjugate force tensor ȳ as

ȳ =

∫
Ω

w̄ (x− ξ)y (ξ) dξ, (2.6)

where w̄ = w/〈w〉 is a normalized weight function with

w (x) = exp

(
−‖x‖

2

l2c

)
(2.7)

and lc being the characteristic length of heterogeneity [103], where ‖x‖ denotes the

distance of material point x from a designated origin within Ω. Also define nonlocal

damage dissipation as

Φ̄ = ȳ : ḋ−Bβ̇. (2.8)

Let f denote the nonlocal damage function. Following Ref. [7], assume that the

following principle of maximum nonlocal dissipation applies throughout this paper:

for fixed but otherwise arbitrary ḋ and β̇, the actual ȳ and B should maximize Φ̄

subject to constraint f ≤ 0, or mathematically speaking, should make Lagrange

functional

L
(
ȳ, B, λ̇; ḋ, β̇

)
= ȳ : ḋ−Bβ̇ − λ̇f (2.9)

attain its extremum, where λ̇ is a positive Lagrange multiplier. This is the equivalent

of solving associated damage evolution laws

ḋ = λ̇
∂f

∂ȳ
and β̇ = −λ̇ ∂f

∂B
(2.10)

subject to Kuhn–Tucker conditions, or loading/unloading conditions,

f ≤ 0, λ̇ ≥ 0, λ̇f = 0, (2.11)

which physically mean that damage evolution is irreversible. Eq. (2.10) implies that

f must be a function of ȳ and B.

The effective space is where a fictitious, undamaged material is obtained from a

real, damaged one by removing all damage so that a set of so-called effective quantities
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can be defined to facilitate the derivation. The energy equivalence hypothesis [104]

specifies the correspondence between effective quantities and quantities measurable

in the real space, namely apparent quantities. It follows the definition of the effective

stress tensor: the effective stress tensor should be applied to an undamaged material

element such that it produces the same elastic Helmholtz free energy as that observed

on a damaged material element subject to the apparent stress tensor [20], i.e.,

ρψe =
1

2
ε : C : ε =

1

2
ε̃ : C̃ : ε̃, (2.12)

where C denotes the apparent elasticity tensor, and the overtilde denotes an effective

quantity (e.g., C̃ denotes the effective or the initial elasticity tensor, which remains

constant during continued deformation). Following Ref. [105], let σ̃ be related to σ

by

σ̃ = M : σ or σ = M−1 : σ̃, (2.13)

where M denotes the fourth-order damage effect tensor. Following Ref. [36], let

D =
3∑
i=1

3∑
j=1

dijei ⊗ ej ⊗ ei ⊗ ej (2.14)

denote a fourth-order diagonal damage tensor, where ei denotes the unit vector. Let

M−1 be related to D by

M−1 = I −D, (2.15)

where I denotes the fourth-order identity tensor. Hooke’s law can be written as

σ = C : ε and σ̃ = C̃ : ε̃ (2.16)

in the apparent and the effective spaces, respectively. Combining Eqs. (2.12), (2.13),

and (2.16) gives

ε̃ = M−1 : ε or ε = M : ε̃. (2.17)

Substituting Eq. (2.17) into Eq. (2.12) gives

C = M−1 : C̃ : M−1. (2.18)
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2.2 Nonlocal damage model

In this section, a nonlocal damage model will be developed based on the “local”

model in Ref. [36] so that it can rigorously handle damage anisotropy, tensioncom-

pression asymmetry, and damage deactivation. One major difference between these

two models is that here ȳ rather than y is one controlling factor of damage evolution.

More details on some derivation in this section can be found in Ref. [36].

Suppose that the material exhibits damage anisotropy, tensioncompression asym-

metry, and damage deactivation. It is beneficial to first specify all damage parameters

to be calibrated via a series of tension/compression and pure shear tests. Assume that

the material obeys damage criterion

f±
(
ȳ, B±

)
= (1− χ) ‖ȳ‖J± + χj± : ȳ − k± −B± ≤ 0 (2.19)

in entire tension/compression, where the superscript +/− denotes a parameter mea-

sured via tension/compression tests unless otherwise specified,

‖ȳ‖J± =

√
ȳ : J ± : ȳ (2.20)

with J ± being a fourth-order tensor describing damage anisotropy, k± denotes the ini-

tial damage threshold, 0 ≤ χ ≤ 1 denotes a parameter describing the curvature of the

damage surface, and j± is a second-order tensor also describing damage anisotropy.

Let J ± be related to j± by

J ±iiii =
(
j±ii
)2

and J ±ijij = 2
(
j±ij
)2

(i 6= j, and no summation over i or j) (2.21)

(the other components of J ± vanish), and set j±11 = 1 and J ±1111 = 1. Eqs. (2.2) and

(2.3) imply that B is a function of β, i.e., B = B (β), which is referred to as the dam-

age accumulation law, whose form varies from case to case. Assume that the damage

accumulation law takes the form of B± = B± (β) in entire tension/compression, whose

specific form is to be determined. It can be verified that, if ε and d are uniformly

distributed over Ω, so does y (see Eq. (2.54) for more details). In Eq. (2.6), setting

y to be constant in Ω gives ȳ = y everywhere. In this case, there is no numerical



21

difference between a nonlocal model and a “local” one. This implies that the above

damage parameters can be calibrated via tension/compression and pure shear tests,

similarly to Ref. [36].

The basic idea of modeling tensioncompression asymmetry is to treat tensile and

compressive stresses as another cause of damage anisotropy, just like texture patterns

and external loads, and to treat tensioncompression asymmetry as another conse-

quence of damage anisotropy. With this idea, one can properly define the parameters

describing damage anisotropy to produce tensioncompression asymmetry. Specifi-

cally, σ̃ can be expressed as

σ̃ =
3∑
i=1

σ̃ipi ⊗ pi, (2.22)

where pi denotes its ith principal unit vector, and σ̃i = pi · σ̃ · pi denotes its ith

eigenvalue. Following Ref. [14], define two fourth-order projection tensors

P− =
3∑
i=1

H̃ (−σ̃i)pi ⊗ pi ⊗ pi ⊗ pi and P+ = I −P− (2.23)

so that P± can project a second-order tensor onto the tensile/compressive part of σ̃,

say σ̃±, i.e.,

σ̃± = P± : σ̃, (2.24)

where

H̃ (σ̃i) =


0 σ̃i < 0,

H (σ̃m) σ̃i = 0,

1 σ̃i > 0

with H (x) =

 0 x < 0,

1 x ≥ 0.
(2.25)

In Eq. (2.25), H (x) is the Heaviside step function, and σ̃m denotes the mean ef-

fective stress. H̃ (σ̃i) is so defined that damages are entirely tensile/compressive in

uniaxial/biaxial tension/compression. Let ζ = k+/k− be a parameter describing the

contrast between tensile and compressive damage behavior. Assume that the material

obeys damage criterion

f (ȳ, B) = ȳeq − k −B ≤ 0 (2.26)

regardless of loading, where

ȳeq = (1− χ)
√
ȳ : J : ȳ + χj : ȳ ≡ (1− χ) ‖ȳ‖J + χj : ȳ, (2.27)
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j = P+ : j+ + ζP− : j−, J = P+ : J + : P+ + ζ2P− : J − : P−, (2.28)

k = k+ = ζk−, B = B+ = ζB−, (2.29)

so that Eq. (2.26) is equivalent to Eq. (2.19) in entire tension/compression.

Substituting Eq. (2.26) into Eq. (2.10) gives

ḋ = λ̇n and β̇ = λ̇, (2.30)

where n = ∂f/∂ȳ = ∂ȳeq/∂ȳ denotes the normal to the damage surface. Taking time

derivatives on both sides of Eq. (2.26) gives the consistency condition as

ḟ = ˙̄yeq −
dB

dβ
β̇ = 0, (2.31)

from which the governing equations of damage evolution can be derived. It is ben-

eficial to find the relationship between Ṗ− and ˙̃ε. According to Ref. [106], if σ̃ has

three distinct eigenvalues, ṗi can be related to ˙̃σ by

ṗi =

(
3∑

j=1;j 6=i

pj ⊗ pj ⊗ pi
σ̃i − σ̃j

)
: ˙̃σ

=
1

2

[
3∑

j=1;j 6=i

pj ⊗
(
pj ⊗ pi + pi ⊗ pj

)
σ̃i − σ̃j

]
: ˙̃σ ≡ Bi : ˙̃σ,

(2.32)

where the second equality holds because ˙̃σ is symmetric. Bi actually relates the

rotation of the principal stress axes to ˙̃σ. If σ̃ does not have three distinct eigenvalues,

Bi can be numerically determined. Taking time derivatives on both sides of the first

equation of Eq. (2.23) gives

Ṗ−mnpq =
3∑
i=1

H̃ (−σ̃i)
[
(ṗi)m(pi)n(pi)p(pi)q + (pi)m(ṗi)n(pi)p(pi)q

+ (pi)m(pi)n(ṗi)p(pi)q + (pi)m(pi)n(pi)p(ṗi)q

]
.

(2.33)

Eq. (2.32) can be further expressed as

(ṗi)j = (Bi)jrs ˙̃σrs = (Bi)jrsC̃rskl ˙̃εkl. (2.34)
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Substituting Eq. (2.34) into Eq. (2.33) gives

Ṗ−mnpq =

{
3∑
i=1

H̃ (−σ̃i)
[
(Bi)mrs(pi)n(pi)p(pi)q + (pi)m(Bi)nrs(pi)p(pi)q

+ (pi)m(pi)n(Bi)prs(pi)q + (pi)m(pi)n(pi)p(Bi)qrs
]}
C̃rskl ˙̃εkl ≡ Q−mnklpq ˙̃εkl.

(2.35)

˙̄yeq can be obtained through some derivation as

˙̄yeq = n : ˙̄y − κ : ˙̃ε, (2.36)

where

n = (1− χ)
J : ȳ

‖ȳ‖J
+ χj, (2.37)

κij =
1− χ
2‖ȳ‖J

ȳkl
[
Q−klijpq

(
J +
pqrsP+

rsmn − ζ2J −pqrsP−rsmn
)

+
(
P+
klpqJ

+
pqrs − ζ2P−klpqJ

−
pqrs

)
Q−rsijmn

]
ȳmn + χȳklQ

−
klijmn

(
j+
mn − ζj−mn

)
.

(2.37′)

More details on the derivation of Eqs. (2.32)–(2.37) can be found in Ref. [36]. Sub-

stituting Eq. (2.36) into Eq. (2.31) and rearranging the equation give

β̇ = λ̇ =
n : ˙̄y − κ : ˙̃ε

dB

dβ

. (2.38)

Substituting Eq. (2.38) into the first equation of Eq. (2.30) gives

ḋ =
n : ˙̄y − κ : ˙̃ε

dB

dβ

n =
n⊗ n

dB

dβ

: ˙̄y − n⊗ κ
dB

dβ

: ˙̃ε ≡ S : ˙̄y −R : ˙̃ε, (2.39)

which is the governing equation of damage evolution. −κ : ˙̃ε in Eq. (2.38) (or −R : ˙̃ε

in Eq. (2.39)) can be nonzero when the principal stress axes rotate in combined

tension–compression. κ : ˙̃ε can be so large that it makes λ̇ negative. In this case,

loading/unloading conditions Eq. (2.11) is not satisfied, and damages neither initiate

nor evolve.
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The key point of modeling damage deactivation is to distinguish between tensile

and compressive damages. Substituting Eq. (2.28) into Eq. (2.37) gives

n =

[
(1− χ)

P+ : J + : P+ : ȳ

‖ȳ‖J
+ χP+ : j+

]
+

[
(1− χ)

ζ2P− : J − : P− : ȳ

‖ȳ‖J
+ χζP− : j−

]
≡ n+ + n−,

(2.40)

where n± denotes the projection of n onto σ±. Substituting Eq. (2.40) into Eq. (2.30)

gives

ḋ = λ̇n+ + λ̇n− ≡ ḋ+
+ ḋ

−
, (2.41)

where ḋ
+

and ḋ
−

denote the tensile and compressive parts of ḋ, respectively. The

tensile and compressive parts of d can then be obtained as

d+ =

∫ t

0

ḋ
+

dt and d− = d− d+, (2.42)

respectively. In the presence of damage deactivation, state function ψe (see Eq. (2.2))

should be an explicit function of a measure of active damages rather than that of d,

a measure of active and inactive damages, and so should D. Following Ref. [107], we

assume that: 1. a constant portion of tensile damages are inactive in compression;

2. all compressive damages are active all the time. Let ηd+ denote the portion of d+

remaining active in compression so that

d∗
(
d,d+

)
= d− (1− η)P− : d+, (2.43)

namely the nominal second-order damage tensor, measures active damages. Eqs. (2.2),

(2.3), and (2.14) can then be amended as

ψe = ψe (ε,d∗) , σ = ρ

(
∂ψe
∂ε

)
d∗
, y = −ρ

(
∂ψe
∂d∗

)
ε

, (2.44)

D =
3∑
i=1

3∑
j=1

d∗ijei ⊗ ej ⊗ ei ⊗ ej, (2.45)

respectively. In fact, in Eqs. (2.43)–(2.45), d∗ serves as a pseudo-state variable, and

d a variable of d∗.
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2.3 Explicit integration scheme

The finite element implementation of a nonlocal model has been extensively stud-

ied (see Refs. [30], [25], [33], and [35] for examples). Nowadays a nonlocal model can

be implemented in commercial finite element code Abaqus/Explicit via user subrou-

tine VUMAT, for structural analysis, where:

1. Abaqus/Explicit can be used to solve complicated quasi-static problems;

2. VUMAT is used to define the constitutive behavior of a material [108].

Let (·)n denote a quantity at a given instant of time, tn. When calling VUMAT at an

integration point, Abaqus/Explicit passes in σn and ∆ε and gets back σn+1, where

∆ (·) denotes the increment in a quantity over time interval [tn, tn+1]. Note that, for

a state variable, its increment can be related to its rate using the Euler method (e.g,

∆ε = ε̇∆t). Suppose that all the state variables at tn, as well as ε̇, are known. The

task is then to find the other rates of state variables.

It is beneficial to find the relationship between ˙̃ε and ε̇. Taking time derivatives

on both sides of the first equation of Eq. (2.17) gives

˙̃ε = Ṁ−1
: ε+ M−1 : ε̇. (2.46)

Firstly Ṁ−1
awaits determination. Taking time derivatives on both sides of Eq. (2.15)

gives

Ṁ−1
= −Ḋ. (2.47)

Ḋ can be obtained through some derivation as [36]

Ḋijmn = Iijklmnḋkl − (1− η) IijpqmnQ
−
pqklrsd

+
rs

˙̃εkl ≡ Iijklmnḋkl −Rijklmn
˙̃εkl, (2.48)

where

III =
3∑
i=1

3∑
j=1

ei ⊗ ej ⊗ ei ⊗ ej ⊗ ei ⊗ ej. (2.49)
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−Rijklmn
˙̃εkl in Eq. (2.48) is nonzero when some active/inactive damages become inac-

tive/active due to the rotation of the principal stress axes. Noting that, in Eq. (2.48),

˙̃ε and ḋ can be arbitrarily chosen gives D = D (ε̃,d) (or M−1 = M−1 (ε̃,d)) and

∂Dijmn
∂dkl

= −
∂M−1

ijmn

∂dkl
= Iijklmn and

∂Dijmn
∂ε̃kl

= −
∂M−1

ijmn

∂ε̃kl
= −Rijklmn. (2.50)

The first term on the right side of Eq. (2.46) can then be expressed as

Ṁ−1
ijmnεmn = −Iijklmnεmnḋkl + Rijklmnεmn ˙̃εkl. (2.51)

Substituting Eq. (2.51) into Eq. (2.46) gives

(I −RRR : ε) : ˙̃ε = − (III : ε) : ḋ+ M−1 : ε̇. (2.52)

Eq. (2.52) leads one to find the relationship between ḋ and ε̇. Recall that

ρψe (ε,d∗) =
1

2
ε : C : ε =

1

2
ε :
(
M−1 : C̃ : M−1

)
: ε. (2.53)

Substituting Eq. (2.53) into the third equation of Eq. (2.44) gives

y = − ρ
(
∂ψe
∂d∗

)
ε

=
1

2
ε :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: ε

=
1

2
ε̃ : M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : ε̃,

(2.54)

which indicates that y = y (ε̃,d) and that

ẏ =
∂y

∂ε̃
: ˙̃ε+

∂y

∂d
: ḋ. (2.55)

The partial derivatives in Eq. (2.55) await determination. Note that

M : M−1 = I. (2.56)

Taking time derivatives on both sides of Eq. (2.56) gives

Ṁ : M−1 = −M : Ṁ−1
or Ṁ = −M : Ṁ−1

: M. (2.57)

Combining Eqs. (2.50) and (2.57) gives

∂Mijmn

∂dkl
=MijpqIpqklrsMrsmn and

∂Mijmn

∂ε̃kl
= −MijpqRpqklrsMrsmn. (2.58)
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The partial derivatives can then be expressed as

∂y

∂ε̃
=

1

2

[
M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : ε̃

+ ε̃ : M :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M

]
+

1

2
ε̃ :
[
−M : RRR : M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M

+ M :
(
III : C̃ : RRR + RRR : C̃ : III

)
: M

−M :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : RRR : M

]
: ε̃,

(2.59)

∂y

∂d
=

1

2
ε̃ :
[
M : III : M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M

− 2M : III : C̃ : III : M

+ M :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : III : M

]
: ε̃.

(2.59′)

Substituting Eq. (2.39) into Eq. (2.52) gives

[I −RRR : ε− (III : ε) : R] : ˙̃ε = − (III : ε) : S : ˙̄y + M−1 : ε̇. (2.60)

Let

I∗ = [I −RRR : ε− (III : ε) : R]−1. (2.61)

Premultiplying both sides of Eq. (2.60) by I∗ gives

˙̃ε = −I∗ : (III : ε) : S : ˙̄y + I∗ : M−1 : ε̇. (2.62)

Substituting Eq. (2.62) into Eq. (2.39) gives

ḋ = [I + R : I∗ : (III : ε)] : S : ˙̄y −R : I∗ : M−1 : ε̇. (2.63)

Substituting Eqs. (2.62) and (2.63) into Eq. (2.55) gives

ẏ =

(
∂y

∂ε̃
− ∂y

∂d
: R
)

: I∗ : M−1 : ε̇

+

[
∂y

∂d
−
(
∂y

∂ε̃
− ∂y

∂d
: R
)

: I∗ : (III : ε)

]
: S : ˙̄y.

(2.64)

Substituting Eq. (2.64) into Eq. (2.6) gives

˙̄y (x) =

∫
Ω

w̄ (x− ξ)

[(
∂y

∂ε̃
− ∂y

∂d
: R
)

: I∗ : M−1

]
(ξ) : ε̇ (ξ) dξ

+

∫
Ω

w̄ (x− ξ)

{[
∂y

∂d
−
(
∂y

∂ε̃
− ∂y

∂d
: R
)

: I∗ : (III : ε)

]
: S
}

(ξ) : ˙̄y (ξ) dξ.

(2.65)
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For notational convenience, let

˙̄y0 (x) =

∫
Ω

w̄ (x− ξ)

[(
∂y

∂ε̃
− ∂y

∂d
: R
)

: I∗ : M−1

]
(ξ) : ε̇ (ξ) dξ, (2.66)

K (x, ξ) = w̄ (x− ξ)

{[
∂y

∂d
−
(
∂y

∂ε̃
− ∂y

∂d
: R
)

: I∗ : (III : ε)

]
: S
}

(ξ) . (2.66′)

Eq. (2.65) can then be rewritten as

˙̄y (x) = ˙̄y0 (x) +

∫
Ω

K (x, ξ) : ˙̄y (ξ) dξ, (2.67)

which is a Fredholm integral equation of the second kind [109]. Eq. (2.67) can be

solved by iteratively finding ˙̄yi’s (i = 1, 2, . . . , n) as follows:

˙̄y1 (x) = ˙̄y0 (x) +

∫
Ω

K (x, ξ) : ˙̄y0 (ξ) dξ, (2.68)

˙̄y2 (x) = ˙̄y0 (x) +

∫
Ω

K (x, ξ) : ˙̄y1 (ξ) dξ, (2.68′)

· · · , (2.68′′)

˙̄yn (x) = ˙̄y0 (x) +

∫
Ω

K (x, ξ) : ˙̄yn−1 (ξ) dξ. (2.68′′′)

The Neumann series solution is then

˙̄y (x) = lim
n→∞

˙̄yn (x) , (2.69)

from which ˙̄y can be computed. According to numerical experiments, it generally

takes less than 20 iterations for Eq. (2.69) to converge (i.e., n ≤ 20). After having

reached convergence, substituting ˙̄y and ε̇ into Eqs. (2.62) and (2.63) gives ˙̃ε and ḋ.

σ̇ still awaits determination. Taking time derivatives on both sides of the first

equation of Eq. (2.16) gives

σ̇ = Ċ : ε+ C : ε̇. (2.70)
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The first term on the right side of Eq. (2.70) can be further expressed as

Ċijrsεrs =
(
Ṁ−1

ijmnC̃mnpqM−1
pqrs +M−1

ijmnC̃mnpqṀ−1
pqrs

)
εrs

= −
[ (

Iijklmnḋkl −Rijklmn
˙̃εkl

)
C̃mnpqM−1

pqrs

+M−1
ijmnC̃mnpq

(
Ipqklrsḋkl −Rpqklrs

˙̃εkl

) ]
εrs

= −
[(

IijklmnC̃mnpqM−1
pqrs +M−1

ijmnC̃mnpqIpqklrs

)
εrs

]
ḋkl

+
[(

RijklmnC̃mnpqM−1
pqrs +M−1

ijmnC̃mnpqRpqklrs

)
εrs

]
˙̃εkl

≡ − (Fijklrsεrs) ḋkl + (Gijklrsεrs) ˙̃εkl.

(2.71)

Substituting Eq. (2.71) into Eq. (2.70) gives

σ̇ = − (FFF : ε) : ḋ+ (GGG : ε) : ˙̃ε+ C : ε̇. (2.72)

Since ḋ, ˙̃ε, and ε̇ are all known at the current stage, σ̇ can be uniquely determined

from Eq. (2.72). Till now, all rates of state variables necessary for updating state

variables have been determined. In this work, the present explicit integration scheme

is implemented in a Euler–Trapezoidal predictor–corrector method to achieve second-

order accuracy.

In this work, the chosen option is to regularize y. Another frequently chosen

option is to regularize d and y simultaneously [24–26]. An in-depth investigation

indicates that the latter option leads to an integral equation similar to Eq. (2.67)

except that this equation is two-level (given that Eq. (2.67) can be treated as a

single-level integral equation). Unfortunately, a two-level integral equation cannot

be solved explicitly. Although Borino et al. [25] developed a companion implicit

time integration scheme, this scheme requires additional degrees of freedom (DOFs)

associated with damage (e.g., 2 times more DOFs for materials exhibiting damage

anisotropy). As a result, this scheme is somewhat computationally costly and cannot

be straightforwardly implemented in a commercial finite element code.
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2.4 Numerical examples

In this section, the present model will be validated through: 1. simulating cyclic

uniaxial tests on a SiC–SiC woven composite; 2. calibrating its associated material

parameters via SENB tests on concrete beams. Its versatility will be demonstrated

through simulating a mixed-mode fracture test on a DEN specimen. The size effects

on fracture paths will be investigated.

2.4.1 SiC–SiC woven composite

Ladevèze et al. [110] performed both 0◦ and 45◦ cyclic uniaxial tests on a SiC–SiC

woven composite having 11 plies (see Figure 2.1 for a schematic of a ply). Zhang

and Yu [36] calibrated this composite’s undetermined parameters associated with

their “local” model, from these experimental data. Recall that, given uniformly

distributed ε and d, a nonlocal model is numerically equivalent to a “local” one (so

that the characteristic length, lc, does not affect the predictions). Considering the

similarities between the present model and the model in Ref. [36], here the parameters

calibrated by Zhang and Yu [36] will be adopted for validation purposes.

� j

6

x2x1

x3

Fig. 2.1. A ply of a SiC–SiC woven composite (adapted from Ref. [110]).
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Choose the two mutually perpendicular fiber directions as the x1- and x2-directions

and the thickness direction as the x3-direction. Experimental and numerical results

[36, 110] indicate that the composite exhibits elastic orthotropy (specifically, Ẽ1 =

Ẽ2 due to rotational symmetry, but the composite is not isotropic because G̃12 6=

Ẽ1

/
2 (1 + ν̃12)), damage anisotropy, no compressive damage initiation or evolution,

and full damage deactivation. Due to a lack of necessary experimental data, set

Ẽ3 = Ẽ1, ν̃13 = ν̃23 = ν̃12, G̃13 = G̃23 = G̃12, χ = 1, j11 = j22 = j33 = 1, and

j12 = j13 = j23 [36]. Figure 2.2 shows the experimental cyclic uniaxial stress–strain

curves, and Table 2.1 lists the material parameters directly calibrated from Figure 2.2.

Zhang and Yu [36] found that j12 = 1.06809 and that

B (β) = − 17.1525β6 + 139.499β5 − 112.650β4 + 37.1191β3

− 2.65531β2 + 0.396641β
(2.73)

(see Ref. [36] for more details on the calibration). The task is then to simulate the

cyclic uniaxial tests with all aforementioned parameters.

Table 2.1.
Predetermined material parameters of a SiC–SiC woven composite.

Ẽ1 (GPa) ν̃12 G̃12 (GPa) k (MPa) η ζ

228.379 0.168085 91.1597 0.0230776 0 0

In this work, Abaqus/Explicit is used to simulate all tests, and the present model is

implemented in Abaqus/Explicit via VUMAT. Since during a uniaxial test, the stress

and the strain fields are uniform in the section of interest (e.g., a gauge section),

it is sufficient to simulate such a test with one plane stress, 4-node quadrilateral

element (CPS4). Especially, for the 45◦ test, VUMAT solves the problem in material

coordinates x. It can be verified that here

σ =


σ45◦

2
σ45◦

2
0

σ45◦
2

σ45◦
2

0

0 0 0

 (2.74)
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in x, which is a combination of equal biaxial loading and in-plane shear. Figure 2.2

shows the experimental and the fitted stress–strain curves. As can be seen, for the 0◦

test, the predictions fit the experimental data well, but for the 45◦ test, the predic-

tions are slightly overestimated. One possible reason for the overestimation is that

Eq. (2.73), as a polynomial fit to the numerical solution of B (β), causes slight loss

of accuracy.

2.4.2 SENB tests

SENB tests are widely used to measure the mode I behavior of concrete [111–

114]. Le Bellégo et al. [115,116] performed a series of SENB tests on concrete beams

having different dimensions, measured the load–deflection curve during each test,

and calibrated the material parameters associated with their nonlocal model. In this

section, the present model will be validated through calibrating its associated material

parameters from these experimental data.

Table 2.2 lists the dimensions of different specimens, and Figure 2.3 depicts the

experimental setting of the test on the smallest SENB specimens. In each case: 1. the

beam width is much smaller than the span length; 2. the front and rear faces of the

beam are traction free; 3. the geometry and the loads are both symmetric with respect

to the vertical axis of symmetry of the specimen. It is then reasonable to: 1. assume

that plane stress conditions prevail over a 2D beam; 2. only consider the left half

of the geometry for efficiency purposes. Figure 2.4 shows the finite element model

of the left half of the smallest specimen. Each 2D finite element model is meshed

with plane stress elements with reduced integration (CPS4R for 4-node, quadrilateral

elements and CPS3 for 3-node, triangular elements). Table 2.2 also lists the number

of elements in each case. Each region surrounding a potential crack is found to be

well resolved, and the sizes of quadrilateral elements in such regions are set to be

identical in all cases to accurately capture size effects. Each finite element model is

found to be capable of producing converged results.
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(a) 0◦ stress–strain curves.

(b) 45◦ stress–strain curves.

Fig. 2.2. Experimental and fitted stress–strain curves of a SiC–SiC
woven composite.
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Table 2.2.
Specimen dimensions (all in mm) and numbers of elements.

Span length Height Width
Edge notch

length

Number of

elements

Case 1 240 80 40 8 2,576

Case 2 480 160 40 16 10,944

Case 3 960 320 40 32 43,024

?

-� 120 mm -� 120 mm

?
8 mm
6

P

6

?

80 mm

6

-

x2

x1

Fig. 2.3. Sketch of an SENB specimen.

Fig. 2.4. Finite element model of the left half of the smallest SENB specimen.
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Experimental observations indicate that all specimens degraded by tensile damage

evolution. To facilitate the calibration, assume that the concrete exhibits full damage

deactivation (η = 0) and no compressive damage initiation or evolution (ζ = 0). Due

to a lack of necessary experimental data (e.g., those from uniaxial and biaxial tests),

assume that the concrete exhibits elastic isotropy, like most other concrete, and for

demonstration purposes, set χ = 1 and jij = 1 so that the concrete exhibits damage

isotropy. Figure 2.5 shows the experimental load–deflection curves (one experimental

curve for Case 3 is abandoned because it suggests a much stiffer material), and Ta-

ble 2.3 lists the material parameters directly calibrated from Figure 2.5. Numerical

experiments indicate that an exponential damage accumulation law,

B (β) = Q [exp (bβ)− 1] , (2.75)

makes the predictions have good fits to the experimental data, where b describes

the rate of damage accumulation, and Q, together with b, determines the maximum

value of B, say Bmax. For materials exhibiting damage isotropy, 0 ≤ β ≤ 1, and

Bmax = Q
(
eb − 1

)
. The fitted parameters are therefore Q, b, and lc.

Table 2.3.
Predetermined material parameters of a type of concrete.

Ẽ (GPa) ν̃ k (MPa) η ζ

45.0 0.24 2.6× 10−5 0 0

The calibration process is primarily a manual trial-and-error process. It consists

of the following steps:

1. given that the concrete has an ultimate tensile strength (UTS) of about 1.6

MPa [116], find the values of Q and b making the material have this UTS;

2. for Case 1, iteratively adjust Q, b, and lc, and find the values of Q, b, and lc

making the predictions have the best fit to the experimental data;
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3. for Cases 2 and 3, repeat the operations at Step 2.

Table 2.4 lists the fitted parameters, and Figure 2.5 shows the experimental and

the fitted load–deflection curves. It can be seen that the predictions by the present

model fit the experimental data as well as the predictions by Ref. [116]. Despite this

similarity, the predictions by the present model are different from those by Ref. [116],

mainly in three aspects. First, most fitted parameters here and those in Ref. [116]

are not comparable. On one hand, Q and b, as two parameters describing damage

accumulation, have their respective physical meanings and dimensions. On the other

hand, Le Bellégo et al. [116] assumed the damage factor to be a function of an

equivalent strain. Recall that this assumption contradicts the principle of maximum

dissipation. The fitted parameters in Ref. [116] (expect lc) therefore do not have clear

physical meanings. Second, Le Bellégo et al. [116] found that their predictions are

insensitive to lc and suggested that lc could vary from 7 mm to 14 mm, but these

findings contradict experimental observations. Peerlings et al. [31] and Desmorat

et al. [33] found that, for concrete, lc might vary from 1 mm to 2 mm. Table 2.4

is in agreement with this finding. Figure 2.6 shows Case 2 load–deflection curves

for different values of lc, where Q and b are held fixed. It can be seen that, as lc

increases, the load reaches a higher peak value at a larger deflection and more rapid

drops afterwards. In fact, lc directly determines the width of a strain localization

band due to fracture: a low value of lc leads to a narrow band, and a high value

a wide band. On one hand, creating a wide band requires more work to be done

and therefore a high load; on the other hand, the growth of a wide band tends to

be unstable and may cause a sudden drop in the load. Third, it is possible that the

fracture paths in different specimens are not similar, due to size effects. Le Bellégo

et al. [116], however, did not address this issue. There is a need for looking into this

issue.

Figure 2.7 shows Case 2 contour plots of d11, at different stages of deformation,

where u denotes the load point deflections. Recall that χ and jij are so chosen that the

concrete exhibits damage isotropy, or to say, all complements of d are equal in entire
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Table 2.4.
Fitted parameters of a type of concrete.

Q (MPa) b lc (mm)

1.235× 10−5 7.5 2.0

Case

Case

Lo
ad

N

Deflection mm

Experimental
Fitted

Case

Fig. 2.5. Experimental and fitted load–deflection curves of different specimens.
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Lo
ad

N

Deflection mm

lc mm
lc mm
lc mm

Fig. 2.6. Case 2 load–deflection curves for different values of lc.
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tension. Accordingly, Figure 2.7 actually indicates that a central crack nucleates at

the end notch, propagates along the axis of symmetry, and finally causes structural

failure. Similar fracture paths can be found in Refs. [114] and [117]. Figure 2.8 shows

the eventual fracture paths in different cases. Since lc is held constant in all cases,

all strain localization bands in Figure 2.8 have very close widths. In Figure 2.8(a),

the central band width approximately equal the edge notch width; in Figure 2.8(b),

the central band width is smaller than the edge notch width; in Figure 2.8(c), the

edge notch is so wide that two bands nucleate at two corners of the edge notch and

propagate simultaneously (only the left half of the geometry is shown). Fracture paths

similar to those in Figure 2.8(c) can be found in Ref. [34]. Such differences in fracture

paths more or less cause the curves in Figure 2.5 to exhibit different trends. Figure 2.8

again indicates the significance and necessity of calibrating lc via experiments.

(a) u = 0.042 mm. (b) u = 0.045 mm. (c) u = 0.048 mm.

6

-

x2

x1

Fig. 2.7. Case 2 contour plots of d11 at different stages of deformation
(height: 160 mm).
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(a) Height: 80 mm. (b) Height: 160 mm. (c) Height: 320 mm.

6

-

x2

x1

Fig. 2.8. Eventual fracture paths in different cases.
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2.4.3 Mixed-mode fracture test on a DEN specimen

Nooru-Mohamed [118] designed the so-called mixed-mode fracture test on a DEN

specimen, to measure the mixed-mode behavior of concrete. Figure 2.9 depicts the

experimental setting of such a test, and Figure 2.10 depicts typical fracture paths

during such a test. In Figure 2.9, a DEN specimen is fixed to two pairs of stiff

loading frames. One pair of frames moving horizontally, namely the outer frames, can

produce a pair of lateral compressive shear forces (Ps’s), and the other pair moving

vertically, namely the inner frames, can produce a pair of axial tensile/compressive

forces (Pt’s). During a test, these two pairs of frames can be moved to produce

different combinations of Ps and Pt at different instants of time and therefore different

loading paths throughout the deformation process. More details on experimental

settings can be found in Ref. [118]. In this section, such a test will be simulated

to further demonstrate the present model’s capability of producing realistic fracture

paths.

6

?

�

-

Pt

Pt

Ps

Ps

6

?

6

?

-� 140 mm -�30 mm-�30 mm

100 mm

100 mm

6

-

x2

x1

Fig. 2.9. Sketch of a DEN specimen (adapted from Ref. [118]).
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Fig. 2.10. Typical fracture paths during a mixed-mode fracture
test: solid line—front view; dash line—back view (duplicated from
Ref. [118]).
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Figure 2.11 shows the finite element model of the DEN specimen depicted in

Figure 2.9. Similarly to Section 2.4.2, assume that plane stress conditions prevail

over the specimen. The 2D finite element model is meshed with plane stress 4-node,

quadrilateral elements with reduced integration (CPS4R), and the meshed model

consists of 20,510 elements. The region surrounding potential cracks is found to

be well resolved, and the finite element model is found to be capable of producing

converged results. For demonstration purposes, assume that the specimen is made of

the same type of concrete as that in Section 2.4.2, and set the loading path to be a

proportional loading path described in Ref. [118]. Here a pair of Ps’s and tensile Pt’s

are applied to the specimen, in a displacement-controlled manner, such that the ratio

of the displacement due to each Ps to the displacement due to each Pt remains 0.5

throughout the test.

Fig. 2.11. Finite element model of a DEN specimen.

Figure 2.12 shows the contour plots of d11, at different stages of deformation, and

Figure 2.13 the contour plots of d22, where ut denotes the vertical displacement of the

top surface of the specimen relative to the bottom surface. Similarly to Figure 2.10,

the contour plots in Figures 2.12 and 2.13 are all 180◦ rotationally symmetric with
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respect to the geometric center of the specimen. This is because the geometry and the

loads are both rotationally symmetric. Similar findings can be found in Refs. [118]

and [119]. Despite some similarities, the contour plots of d22 are prominently differ-

ent from those of d11: clearly, d22’s increase more rapidly than d11’s during continued

deformation. Recall that the concrete is set to exhibit damage isotropy and no com-

pressive damage initiation or evolution. All these indicate that:

1. many material points in a damaged region are subject to tension–compression

in principal stress space, and at such a material point, damages neither initiate

nor evolve in the direction of n− (see Eqs. (2.40)–(2.42));

2. the specimen is more vulnerable to tensile damages in the x2-direction, due to

the applied loads.

Similar findings can be found in Ref. [33].

2.5 Conclusions

In this chapter, a nonlocal continuum damage model for brittle fracture is devel-

oped. A nonlocal damage conjugate force tensor is obtained from the “local” one,

using an integral-type regularization technique, and the thermodynamic equations are

formulated in a nonlcally generalized standard manner. The nonlocal damage model

is developed based on a recently developed “local” model so that it can rigorously

handle damage anisotropy, tension–compression asymmetry, and damage deactiva-

tion. A fully explicit integration scheme for the present model is developed and then

implemented in Abaqus/Explicit via VUMAT.

The following findings can be obtained from the results:

• The present model is found to be capable of handling various mechanical be-

havior, complex loading conditions, and complex loading paths.

• It is found to be capable of producing realistic fracture paths and capturing size

effects in real materials.
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(a) ut = 0.0094 mm. (b) ut = 0.0098 mm.

(c) ut = 0.01 mm.

6

-

x2

x1

Fig. 2.12. Contour plots of d11 at different stages of deformation (height: 200 mm).
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(a) ut = 0.0094 mm. (b) ut = 0.0098 mm.

(c) ut = 0.01 mm.

6

-

x2

x1

Fig. 2.13. Contour plots of d22 at different stages of deformation (height: 200 mm).
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• The characteristic length of heterogeneity is found to significantly affect the

predictions and should be calibrated via experiments.
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3. FATIGUE CONTINUUM DAMAGE MODEL

3.1 Thermodynamics and energy equivalence

This chapter uses the same notation system as that in Chapter 2, and different

from those in Chapter 4 and 5. Recall the Helmholtz free energy and state variable

definition from Eqs. (2.12) to (2.3). For isothermal deformation, the Clausius–Duhem

inequality takes the same form as before:

Φ = y : ḋ−Bβ̇ ≥ 0, (3.1)

where Φ denotes the dissipation per unit volume, and the overdot denotes the time

derivative of a quantity. Following Besson et al. [20], assume that there exist a

viscodamage potential, Ω, defining the evolution of d and β, such that

ḋ =
∂Ω

∂y
and β̇ = −∂Ω

∂B
. (3.2)

Further assume that Ω depends on y and B via a damage function, f , such that

Ω = Ω (f) and v̇ =
∂Ω

∂f
, (3.3)

where v̇ is referred to as the viscosity function. To this end, choosing a viscodamage

model is the equivalence of choosing f and v̇. Substituting Eq. (3.3) into Eq. (3.2)

gives the damage evolution laws as

ḋ = v̇
∂f

∂y
and β̇ = −v̇ ∂f

∂B
. (3.4)

According to Besson et al. [20], Ω must be a convex function of y and B. This,

together with Eq. (3.4), implies that f must be a convex function of y and B. With

the effective space concept and the energy equivalence hypothesis, Eqs. (2.12) to

(2.18) still stand.
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3.2 Viscodamage model

Suppose that the material exhibits damage anisotropy, tensioncompression asym-

metry, and damage deactivation. The damage functions in tension and compression

take the same form as in Eq. (2.19), which leads to the unified damage function

f (y, B) = yeq − k −B, (3.5)

where y and yeq are used instead of their nonlocal counterparts ȳ and ȳeq for the

derivation of this viscodamage model. Substituting Eq. (3.5) into Eq. (3.4) gives

ḋ = v̇n and β̇ = v̇, (3.6)

where n = ∂f/∂y = ∂yeq/∂y denotes the normal to the damage surface. Last let the

viscosity function, v̇, take a similar form to the Perzyna model in viscoplasticity [120],

i.e.,

v̇ =

 γ

(
f

k +B

)n
f ≥ 0,

0 f < 0,

(3.7)

where γ denotes a viscosity parameter, and n denotes a rate-sensitivity parameter.

Till now, all damage parameters have been specified. The time derivative of ẏeq can

be obtained similarly as in the nonlocal damage model, which is expressed as

ẏeq =

[
(1− χ)

J : y

‖y‖J
+ χj

]
: ẏ, (3.8)

and leads to
dyeq
dy

= n = (1− χ)
J : y

‖y‖J
+ χj. (3.9)

3.3 Governing equation for damage evolution

Given all variables at an instant of time, tn, the task is to find the correspondence

principle between ∆d and its controlling factors (e.g., ∆y and ∆ε̃) at tn+1 = tn + ∆t,

where ∆ (·) = (·)n+1 − (·)n. Hereafter omit the subscript n + 1 on each quantity at

tn+1.
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Eq. (3.6) suggests that the unknowns can be chosen as ḋ and β̇. Eqs. (3.7) and

(3.8), together with B = B (β), further suggest that ḋ and β̇ may both be functions

of y, ε̃, and β, i.e.,

ḋ (t) = ḋ (y (t) , ε̃ (t) , β (t)) and β̇ (t) = β̇ (y (t) , ε̃ (t) , β (t)) . (3.10)

∆d, ∆y, ∆ε̃, and ∆β can be related to ḋ, ẏ, ˙̃ε, and β̇ by

∆d = ḋ∆t, ∆y = ẏ∆t, ∆ε̃ = ˙̃ε∆t, ∆β = β̇∆t, (3.11)

respectively. Here the backward Euler method is adopted because it is A-stable. ḋ

and β̇ can be related to ḋn and β̇n using Taylor expansion at tn+1 by

ḋ = ḋn +
∂ḋ

∂y
: ∆y +

∂ḋ

∂ε̃
: ∆ε̃+

∂ḋ

∂β
∆β, (3.12)

β̇ = β̇n +
∂β̇

∂y
: ∆y +

∂β̇

∂ε̃
: ∆ε̃+

∂β̇

∂β
∆β. (3.12′)

More details on the partial derivatives in Eq. (3.12) can be found later in Section 3.6.

Substituting ∆β = β̇∆t into the above expression for β̇ gives

β̇ = β̇n +
∂β̇

∂y
: ∆y +

∂β̇

∂ε̃
: ∆ε̃+

∂β̇

∂β
β̇∆t. (3.13)

Rearranging Eq. (3.13) gives

β̇ =

β̇n +
∂β̇

∂y
: ∆y +

∂β̇

∂ε̃
: ∆ε̃

1− ∂β̇

∂β
∆t

. (3.14)

Combining Eqs. (3.12) and (3.14) gives

ḋ = ḋ
?

+ S : ∆y + R : ∆ε̃, (3.15)

where

ḋ
?

= ḋn +
β̇n∆t

1− ∂β̇

∂β
∆t

∂ḋ

∂β
, (3.16)

S =
∂ḋ

∂y
+

∂ḋ

∂β
⊗ ∂β̇

∂y

1− ∂β̇

∂β
∆t

∆t, R =
∂ḋ

∂ε̃
+

∂ḋ

∂β
⊗ ∂β̇

∂ε̃

1− ∂β̇

∂β
∆t

∆t (3.16′)
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with ḋ
?

being a viscous term. Rewriting Eq. (3.15) gives the governing equation for

damage evolution as

∆d = ∆d? + (S∆t) : ∆y + (R∆t) : ∆ε̃. (3.17)

3.4 Incremental constitutive relation

It is beneficial to relate ˙̃ε to ε̇. The following can be obtained from Eqs. (2.15)

and (2.17):

Ṁ−1
= −Ḋ, (3.18)

˙̃ε = Ṁ−1
: ε+ M−1 : ε̇. (3.19)

Ḋ can be obtained as

Ḋijmn = Iijklmnḋkl − (1− η) IijpqmnQ
−
pqklrsd

+
rs

˙̃εkl ≡ Iijklmnḋkl −Rijklmn
˙̃εkl, (3.20)

where

III =
3∑
i=1

3∑
j=1

ei ⊗ ej ⊗ ei ⊗ ej ⊗ ei ⊗ ej (3.21)

(see Zhang and Yu [36] for the derivation). Eqs. (3.18) and (3.20) indicate that

D = D (ε̃,d) and M−1 = M−1 (ε̃,d), or to say, that

∂Dijmn
∂dkl

= −
∂M−1

ijmn

∂dkl
= Iijklmn and

∂Dijmn
∂ε̃kl

= −
∂M−1

ijmn

∂ε̃kl
= −Rijklmn. (3.22)

Ṁ−1
: ε in Eq. (3.19) is then given by

Ṁ−1
ijmnεmn = −Iijklmnεmnḋkl + Rijklmnεmn ˙̃εkl. (3.23)

Combining Eqs. (3.19) and (3.23) gives

(I −RRR : ε) : ˙̃ε = − (III : ε) : ḋ+ M−1 : ε̇. (3.24)

It is also beneficial to relate ḋ to ˙̃ε. Since M : M−1 = I,

Ṁ : M−1 = −M : Ṁ−1
or Ṁ = −M : Ṁ−1

: M. (3.25)
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Substituting Eq. (3.25) into Eq. (3.22) gives

∂Mijmn

∂dkl
=MijpqIpqklrsMrsmn and

∂Mijmn

∂ε̃kl
= −MijpqRpqklrsMrsmn. (3.26)

Combing Eqs. (2.12) and (2.44) gives

y = − ρ
(
∂ψe
∂d∗

)
ε

=
1

2
ε :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: ε

=
1

2
ε̃ : M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : ε̃.

(3.27)

Eq. (3.27) indicates that y = y (ε̃,d), or to say, that

ẏ =
∂y

∂ε̃
: ˙̃ε+

∂y

∂d
: ḋ. (3.28)

Combining Eqs. (3.26)–(3.28) gives

∂y

∂ε̃
=

1

2

[
M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : ε̃

+ ε̃ : M :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M

]
+

1

2
ε̃ :
[
−M : RRR : M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M

+ M :
(
III : C̃ : RRR + RRR : C̃ : III

)
: M

−M :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : RRR : M

]
: ε̃,

(3.29)

∂y

∂d
=

1

2
ε̃ :
[
M : III : M :

(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M

− 2M : III : C̃ : III : M

+ M :
(
III : C̃ : M−1 + M−1 : C̃ : III

)
: M : III : M

]
: ε̃.

(3.29′)

Premultiplying both sides of Eq. (3.28) by S∆t gives

(S∆t) : ∆y = (S∆t) :
∂y

∂ε̃
: ∆ε̃+ (S∆t) :

∂y

∂d
: ∆d. (3.30)

Rearranging Eq. (3.17) gives

(S∆t) : ∆y = ∆d−∆d? − (R∆t) : ∆ε̃. (3.31)
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Solving Eqs. (3.30) and (3.31) for ∆d gives

∆d =

[
I − ∂y

∂d
: (S∆t)

]−1

: ∆d?

+

[
I − ∂y

∂d
: (S∆t)

]−1

:

[
(S∆t) :

∂y

∂ε̃
+ (R∆t)

]
: ∆ε̃

≡ I? : ∆d? + E : ∆ε̃.

(3.32)

Substituting Eq. (3.32) into Eq. (3.24) gives

[I −RRR : ε+ (III : ε) : E ] : ∆ε̃ = − (III : ε) : I? : ∆d? + M−1 : ∆ε. (3.33)

Let

I∗ = [I −RRR : ε+ (III : ε) : E ]−1. (3.34)

Premultiplying both sides of Eq. (3.33) by I∗ gives

∆ε̃ = −I∗ : (III : ε) : I? : ∆d? + I∗ : M−1 : ∆ε. (3.35)

The rate form of Eq. (2.16) can be obtained as

σ̇ = Ċ : ε+ C : ε̇. (3.36)

Ċ : ε in Eq. (3.36) can be expressed as

Ċijrsεrs =
(
Ṁ−1

ijmnC̃mnpqM−1
pqrs +M−1

ijmnC̃mnpqṀ−1
pqrs

)
εrs

= −
[ (

Iijklmnḋkl −Rijklmn
˙̃εkl

)
C̃mnpqM−1

pqrs

+M−1
ijmnC̃mnpq

(
Ipqklrsḋkl −Rpqklrs

˙̃εkl

) ]
εrs

= −
[(

IijklmnC̃mnpqM−1
pqrs +M−1

ijmnC̃mnpqIpqklrs

)
εrs

]
ḋkl

+
[(

RijklmnC̃mnpqM−1
pqrs +M−1

ijmnC̃mnpqRpqklrs

)
εrs

]
˙̃εkl

≡ − (Fijklrsεrs) ḋkl + (Gijklrsεrs) ˙̃εkl.

(3.37)

Combining Eqs. (3.36) and (3.37) gives

σ̇ = − (FFF : ε) : ḋ+ (GGG : ε) : ˙̃ε+ C : ε̇. (3.38)
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Combining Eqs. (3.32) and (3.38) gives

∆σ = − (FFF : ε) : I? : ∆d? + [GGG : ε− (FFF : ε) : E ] : ∆ε̃+ C : ∆ε. (3.39)

Substituting Eq. (3.35) into Eq. (3.39) gives the incremental constitutive relation as

∆σ = L : ∆ε−∆σ?, (3.40)

where

L = C + [GGG : ε− (FFF : ε) : E ] : I∗ : M−1 (3.41)

is a fourth-order tangent operator, and

∆σ? = {FFF : ε+ [GGG : ε− (FFF : ε) : E ] : I∗ : (III : ε)} : I? : ∆d? (3.42)

is a viscous term.

Till now, a closed-form incremental constitutive relation has been derived. The

present model can be conveniently implemented in an Euler–Trapezoidal predictor–

corrector time integration scheme, for fatigue analysis.

3.5 Stress or strain decomposition

One question is whether stress or strain decomposition is valid when modeling

tension–compression asymmetry. The problem can be solved in the regime of linear

elastic fracture mechanics (LEFM). First consider a horizontal crack subject to in-

plane biaxial tension (see Figure 3.1(a)). Set 0 < σ22 � σ11 so as to make ε22 negative

due to the Poisson effect. According to LEFM:

• The positive σ22 can cause mode I crack propagation.

• σ11 has no impact on crack propagation.

• A negative ε22 does not necessarily correspond to crack closure.

Next reverse the signs of σ11 and σ22 (see Figure 3.1(b)). According to LEFM:
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• The negative σ22 causes crack closure.

• σ11 has no impact on crack closure.

• A positive ε22 does not necessarily correspond to crack opening.

It is then clear that only stress decomposition is valid.

Fig. 3.1. A horizontal crack subject to in-plane biaxial loading.

3.6 Partial derivatives

In this section, the expressions for the following partial derivatives will be derived

in turn:
∂β̇

∂β
,

∂ḋ

∂β
,

∂β̇

∂y
,

∂ḋ

∂y
,

∂β̇

∂ε̃
,

∂ḋ

∂ε̃
. (3.43)

Note that β̇ = v̇. ∂β̇
/
∂β can be obtained from Eq. (3.7) as

∂β̇

∂β
=
∂v̇

∂β
= nγ

(
yeq

k +B
− 1

)n−1
∂

∂β

(
yeq

k +B
− 1

)
= − nγyeq

(k +B)2

(
yeq

k +B
− 1

)n−1
dB

dβ
.

(3.44)

∂ḋ
/
∂β can be obtained from Eq. (3.6) as

∂ḋ

∂β
=

∂

∂β
(v̇n) =

∂v̇

∂β
n = − nγyeq

(k +B)2

(
yeq

k +B
− 1

)n−1
dB

dβ
n. (3.45)
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∂β̇
/
∂y can be obtained from Eq. (3.7) as

∂β̇

∂y
=
∂v̇

∂y
= nγ

(
yeq

k +B
− 1

)n−1
∂

∂y

(
yeq

k +B
− 1

)
=

nγ

k +B

(
yeq

k +B
− 1

)n−1

n.

(3.46)

∂ḋ
/
∂y can be obtained from Eq. (3.6) as

∂ḋ

∂y
=

∂

∂y
(v̇n) = n⊗ ∂v̇

∂y
+v̇

∂n

∂y
, (3.47)

and ∂n/∂y can be obtained from Eq. (3.9) as

∂n

∂y
=

∂

∂y

[
(1− χ)

J : y

‖y‖J
+ χj

]
= (1− χ)

∂

∂y

(
1

‖y‖J

)
⊗ (J : y) +

1− χ
‖y‖J

∂

∂y
(J : y)

= (1− χ)

(
− 1

‖y‖2
J

∂‖y‖J
∂y

)
⊗ (J : y) +

1− χ
‖y‖J

J

=
1− χ
‖y‖J

[
J − (J : y)⊗ (J : y)

‖y‖2
J

]
.

(3.48)

Combining Eqs. (3.46)–(3.48) gives

∂ḋ

∂y
=

nγ

k +B

(
yeq

k +B
− 1

)n−1

n⊗ n

+
γ (1− χ)

‖y‖J

(
yeq

k +B
− 1

)n [
J − (J : y)⊗ (J : y)

‖y‖2
J

]
.

(3.49)

∂β̇
/
∂ε̃ can be obtained from Eq. (3.7) as

∂β̇

∂ε̃
=
∂v̇

∂ε̃
= nγ

(
yeq

k +B
− 1

)n−1
∂

∂ε̃

(
yeq

k +B
− 1

)
= − nγ

k +B

(
yeq

k +B
− 1

)n−1

κ,

(3.50)

where the third equality holds due to Eq. (3.9). ∂ḋ
/
∂ε̃ can be obtained from Eq. (3.6)

as
∂ḋ

∂ε̃
=

∂

∂ε̃
(v̇n) = n⊗ ∂v̇

∂ε̃
+v̇

∂n

∂ε̃
, (3.51)
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and ∂n/∂ε̃ can be obtained from Eq. (3.9) as

∂n

∂ε̃
=

∂

∂ε̃

[
(1− χ)

J : y

‖y‖J
+ χj

]
= (1− χ)

∂

∂ε̃

(
1

‖y‖J

)
⊗ (J : y) +

1− χ
‖y‖J

∂

∂ε̃
(J : y) + χ

∂j

∂ε̃
.

(3.52)

Note that

∂

∂ε̃ij

(
1

‖y‖J

)
= − 1

‖y‖2
J

∂‖y‖J
∂ε̃ij

=
yklKklijmnymn

2 ‖y‖3
J

, (3.53)

∂

∂ε̃kl
(Jijmnymn) = −Kijklmnymn. (3.53′)

Combining Eqs.(3.52) and (3.53) gives

∂n

∂ε̃
=

1− χ
2 ‖y‖3

J
(y : KKK : y)⊗ (J : y)− 1− χ

‖y‖J
KKK : y − χK. (3.54)

Combining Eqs. (3.50), (3.51), and (3.54) gives

∂ḋ

∂ε̃
= − nγ

k +B

(
yeq

k +B
− 1

)n−1

n⊗ κ

+ γ

(
yeq

k +B
− 1

)n [
1− χ

2 ‖y‖3
J

(y : KKK : y)⊗ (J : y)− 1− χ
‖y‖J

KKK : y − χK
]
.

(3.55)

3.7 Numerical examples

In this section, the present model will be validated through model calibration via:

• cyclic compression tests on a concrete;

• cyclic tensile tests on another concrete;

• cyclic tensile tests on a unidirectional IM7/8552 fiber-reinforced composite in

its longitudinal and transverse directions, respectively.

Different calibration methods will be proposed. The feasibility of calibrating a con-

tinuum damage model from S–N and modulus degradation/maximum strain–cycle

curves will be evaluated.
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3.7.1 Concrete in compression

Gao and Hsu [49] conducted cyclic compression tests on a concrete, measured

its modulus degradation–cycle relationship during one test, and obtained its S–N

relationship from all tests. The task is to determine all its material parameters.

Set the loading direction to be the x1-direction. Assume that the elastically

isotropic concrete exhibits damage anisotropy with χ = 0.5 and j−ij = 1. Figure 3.2

shows the experimental S–N and modulus degradation–cycle relationships, where N

denotes the number of cycles, and Nf its value at the onset of failure. Table 3.1 lists

the following predetermined parameters:

• Ẽ—initial Young’s modulus reported in Ref. [49];

• ν̃—initial Poisson’s ratio taking a value common for concrete;

• fc—the static compressive strength of the concrete, reported in Ref. [49];

• k−—calibrated from the fatigue limit (0.7fc in Figure 3.2(a)).

Following Ref. [49], apply a sinusoidal compressive stress ranging from 0 MPa to

a maximum stress, say σmax, with a frequency of 4 Hz, when simulating each test.

Numerical experiments indicate that B− (β) can take the form of

B− = Q− [exp (bβ)− 1] , (3.56)

where Q− and b not only affect the rate of damage evolution but also determine the

maximum value of B−, say B−max. According to numerical experiments, the maximum

value of β is close to unity, and B−max is close to Q−
(
eb − 1

)
. Q−, b, γ, and n are then

the fitted parameters.

In this work:

1. Monte Carlo experiments are used to create the guessed values of the fitted

parameters, which are close to the solution.
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(b) Modulus degradation–cycle curves for σmax = 0.6fc.

Fig. 3.2. (a) S–N and (b) modulus degradation–cycle curves of a
concrete in compression.
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2. When starting close to the solution, the method of nonlinear least squares has

a good chance to converge to the global optimum [121] and is therefore used for

curve fitting.

Numerical experiments indicate the following:

• A predicted modulus degradation–cycle curve is sensitive to Q− and b but in-

sensitive to γ or n.

• A predicted S–N curve is sensitive to Q−, b, γ, and n.

The fitted parameters can then be calibrated as follows:

1. Roughly estimate γ and n through numerical experiments.

2. Hold γ and n fixed, and iteratively adjust Q− and b till their values make the

predicted modulus degradation–cycle curve the curve of best fit.

3. Hold Q− and b fixed, and iteratively adjust γ and n till their values make the

predicted S–N curve the curve of best fit.

Table 3.1.
Predetermined parameters of a concrete.

Ẽ (GPa) ν̃ fc (MPa) k− (MPa)

35.45 0.2 −34.6 0.0167

Table 3.2.
Fitted parameters of a concrete.

Q− (MPa) b γ (s−1) n

0.0153 3.50 3.48× 10−4 2.39
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Table 3.2 lists the fitted parameters, and Figure 3.2 compares the fitted curves

with the experimental data. In Figure 3.2(b), the predicted curve can be divided into

the following segments:

1. a gradually decreasing one due to stable microcrack propagation and new mi-

crocrack initiation;

2. a rapidly decreasing one due to microcrack coalescence and unstable macrocrack

propagation.

This agrees well with experimental observations. In Figure 3.2(a):

• The predicted curve is the curve of best fit for the sparsely distributed experi-

mental data points.

• It is C1 continuous and exhibits an asymptotic trend near the fatigue limit.

• Unlike the predictions by some other models, its extrapolated value at logNf =

0 does not equal fc.

First, the predicted curve trend is realistic and complete for high numbers of cycles.

Figure 3.3 depicts a typical empirical S–N curve. Unlike the predicted curve, the

empirical curve is piecewise linear and seems ad hoc and oversimplified. Meanwhile,

the curves predicted by other continuum damage models seldom exhibit prominent

asymptotic trends near fatigue limits. Clearly, the present model can handle high-

cycle compressive fatigue. Second, the third point does no harm to the present model’s

validity due to the following reasons:

• The present model is designed to handle high-cycle fatigue, and modeling low-

cycle fatigue accompanied by plastic deformation is beyond the scope of this

work.

• Cyclic loading with a frequency varying from 4 Hz to 6 Hz is more of dynamic

loading, and the dynamic strength of a material is usually higher than the static

strength.
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On the one hand, the high-cycle segment of an S–N curve often exhibits a different

trend from the low-cycle segment, making its extrapolated value at logNf = 0 higher

than the static strength (see Figure 3.3 for example). On the other hand, if there is ex-

perimental evidence indicating that the extrapolated value equals the static strength,

this restriction can be imposed to the model calibration using a penalty method.

Fig. 3.3. Empirical S–N curve.

3.7.2 Concrete in tension

Cornelissen and Reinhardt [122] conducted cyclic tensile tests on another concrete,

measured its maximum strain–cycle curve during one test, and obtained its S–N curve

from all tests. The task is to determine all its material parameters.

Table 3.3.
Predetermined parameters of another concrete.

Ẽ (GPa) ν̃ ft (MPa) k+ (MPa)

36.14 0.2 2.46 7.4× 10−5
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Table 3.4.
Fitted parameters of another concrete.

Q+ (MPa) b γ (s−1) n

0.0350 0.0110 0.0115 2.11
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Set the loading direction to be the x1-direction. Assume that the elastically

isotropic concrete exhibits damage anisotropy with χ = 0.5 and j+
ij = 1. Figure 3.4

shows the experimental S–N and maximum strain–cycle curves, where εmax denotes

the maximum strain in each cycle. Table 3.3 lists the following predetermined pa-

rameters:

• Ẽ—reported in Ref. [122];

• ν̃—taking a value common for concrete;

• ft—the static tensile strength of the concrete, reported in Ref. [122];

• k+—calibrated from the fatigue limit (0.65ft in Figure 3.4(a)).

Following Ref. [122], apply a sinusoidal tensile stress ranging from 0.2ft to σmax, with

a frequency of 6 Hz, when simulating each test. Numerical experiments indicate that

B+ (β) can take the form of

B+ = Q+ [exp (bβ)− 1] . (3.57)

Q+, b, γ, and n are then the fitted parameters.

Here the fitted parameters are calibrated as follows:

1. Roughly estimate γ and n through numerical experiments.

2. Hold γ and n fixed, and iteratively adjust Q+ and b till their values make the

predicted maximum strain–cycle curve the curve of best fit.

3. Hold Q+ and b fixed, and iteratively adjust γ and n till their values make the

predicted S–N curve the curve of best fit.

Table 3.4 lists the fitted parameters, and Figure 3.4 compares the fitted curves

with the experimental data. Cornelissen and Reinhardt [122] assumed a linear re-

lationship between logNf and σmax/ft and replaced the original experimental data

with a straight line shown in Figure 3.4(a). Although the straight line is ad hoc and
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oversimplified, the predicted curve can only be its curve of best fit while including the

fatigue limit. Since the predicted curve trend here is similar to that in Figure 3.2(a),

the corresponding discussion for Figure 3.2(a) holds here. In Figure 3.4(b), the pre-

dicted curve can be divided into the following segments:

1. a rapidly increasing one due to unstable preexisting microcrack propagation

until a stable state is reached

2. a gradually increasing one due to stable microcrack propagation and new mi-

crocrack initiation

3. a rapidly increasing one due to microcrack coalescence and unstable macrocrack

propagation

These segments correspond to the well-known three stages of fatigue failure [46].

It is worth noting that the first stage is not prominent in Figure 3.4(b). This is

possibly because preexisting microcrack propagation becomes stable in compression.

In conclusion, the above discussion indicates that the present model can handle high-

cycle tensile fatigue.

3.7.3 Fiber-reinforced composite in tension

Cole et al. [123] conducted cyclic tensile tests on a unidirectional IM7/8552 fiber-

reinforced composite in its longitudinal and transverse directions, respectively, mea-

sured its maximum strain–cycle curves during some of the tests, and obtained its

longitudinal and transverse S–N relationships from all tests. The task is to determine

all its material parameters. Here focus is placed on modeling high-cycle anisotropic

fatigue in the framework of continuum mechanics. The problem can be solved more

rigorously using micromechanics models [38,124].

Set the longitudinal direction of the composite to be the x1-direction. Due to

insufficient experimental data, assume the following:

• The composite exhibits transversely isotropy in the x2x3 plane.



66

m
ax

f t

log Nf

Experimental
Fitted

(a) S–N curves.

m
ax

N Nf

Experimental
Fitted

(b) Maximum strain–cycle curves for σmax = 0.7ft.

Fig. 3.4. (a) S–N and (b) maximum strain–cycle curves of a concrete in tension.
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Fig. 3.5. (a) S–N and (b) maximum strain–cycle curves of a fiber-
reinforced composite in tension.
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• χ = 0.5 and j+
22 = j+

33 = j+
ij (i 6= j).

Let (·)‖ denote a quantity in the longitudinal direction, and (·)⊥ in the transverse

direction. Figure 3.5 shows the experimental S–N and maximum strain–cycle curves,

where σmax/ft stands for either σmax

/
ft‖ in the longitudinal direction or σmax/ft⊥

in the transverse direction and so on. Especially, Figure 3.5(b) is reported for the

first time. Table 3.1 lists the material parameters either experimentally measured

or properly chosen for a fiber-reinforced composite. Following Ref. [123], apply a

sinusoidal tensile stress ranging from 0 MPa to σmax, with a frequency of 5 Hz, when

simulating each test. For one thing, here k+ and j+
22 = j+

33 must be calibrated from

the experimental data in both directions simultaneously. For another, Eq. (3.57) is

found to serve the purpose well. k+, j+
22 = j+

33, Q+, b, γ, and n are then the fitted

parameters.

Table 3.5.
Predetermined parameters of a fiber-reinforced composite.

(a) Measured.

Ẽ1 (GPa) Ẽ2 = Ẽ3 (GPa) ft‖ (MPa) ft⊥ (MPa)

150.1 8.3 2191.0 76.8

(b) Chosen.

G̃12 = G̃13 (GPa) ν̃12 = ν̃13 ν̃23

5.0 0.2 0.3

Table 3.6.
Fitted parameters of a fiber-reinforced composite.

k+ (MPa) j+
22 = j+

33 Q+ (MPa) b γ (s−1) n

15.0 49.8 76.7 1.0 1.03× 10−3 1.0

Here the fitted parameters are calibrated as follows:
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1. Calibrate k+ from the fatigue limit in the longitudinal direction, and set j+
22 =

j+
33 = 1.

2. Roughly estimate γ and n through numerical experiments.

3. Hold k+, j+
22 = j+

33, γ, and n fixed, and iteratively adjust Q+ and b till their

values make the predicted maximum strain–cycle curve in the longitudinal di-

rection the curve of best fit.

4. Hold Q+, b, γ, and n fixed, and iteratively adjust k+ and j+
22 = j+

33 till their

values make the predicted maximum strain–cycle curves in both directions the

best fits to the experimental ones.

5. Hold k+, j+
22 = j+

33, Q+, and b fixed, and iteratively adjust γ and n till their

values make the predicted S–N curves in both directions the best fits to the

experimental ones.

Table 3.6 lists the fitted parameters, and Figure 3.5 compares the fitted curves

with the experimental data. In Figure 3.5(b), the curves in the longitudinal direction

lie prominently above those in the transverse direction. This simply indicates that

the ratio of the longitudinal fatigue limit to Ẽ1 is much greater than the ratio of the

transverse fatigue limit to Ẽ2. Although not very clearly shown, each curve here can

be divided into three segments similarly to those in Figure 3.4(b), corresponding to

three stages of fatigue failure. Especially, it also possesses the following features:

• The first segment accounts for less than 2% of the curve domain, and so does

the third segment.

• εmax negligibly increases over the second segment.

Numerical experiments indicate that a predicted maximum strain–cycle curve pos-

sesses these features only when σmax is very close to the fatigue limit. Accordingly, in

Figure 3.5(a), each predicted curve exhibits an asymptotic trend over a larger domain

than those in Figures 3.2(a) and 3.4(a). This indicates that the experimental data
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in Figure 3.5(a) are more complete for high numbers of cycles. Since ft‖ � ft⊥, Fig-

ure 3.5(a) also indicates that the composite is much more resistant to fatigue damage

in its longitudinal direction. However, even though the predicted curves plot normal-

ized maximum stresses versus logNf , the curve in the longitudinal direction still lies

prominently above that in the transverse direction. This most likely attributes to dif-

ferent failure mechanisms on the microscale, which are beyond the scope of this work.

Besides, since here the predicted curve trends are similar to that in Figure 3.4(a),

the corresponding discussion for Figure 3.4(a) still holds. In conclusion, the above

discussion indicates that the present model can handle high-cycle anisotropic fatigue.

3.8 Conclusions

In this chapter, an anisotropic continuum damage model for high-cycle fatigue is

developed. A viscodamage model, which can handle frequently observed brittle dam-

age phenomena, is developed to produce stress-dependent fatigue damage evolution.

The governing equation for damage evolution is derived using an incremental method.

A closed-form incremental constitutive relation is derived at last.

The following findings can be obtained from the results:

• The present model is found to handle high-cycle anisotropic, tensioncompression

asymmetric fatigue well.

• Its closed-form incremental constitutive relation is found to facilitate the model

calibration.

• It is found feasible to calibrate a continuum damage model from S–N and mod-

ulus degradation/maximum strain–cycle curves.
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4. COHESIVE ZONE MODEL FOR QUASI-STATIC

DELAMINATION

4.1 Basic ideas and thermodynamics

This chapter uses the same notation system as that in Chapter 5, and different

from those in Chapter 2 and 3. It is beneficial to start the modeling with seeking

a suitable idealization of the cohesive zone ahead of a crack tip. With the help

of transmission electron microscopy, Kramer and Berger [98, 99] observed that the

delamination of a polymer interface was often accompanied with the crazing ahead of

the crack tip (see Figure 4.1). Specifically, a crazing process consists of the following

stages:

1. as the interface is separated to a certain extent, it is incapable of sustaining the

traction imposed by the adherends and becomes crazed;

2. as the deformation continues, more and more crazes nucleate, grow, coalesce

with each other, causing a number of main fibrils (mostly parallel to the direc-

tion of separation) and cross-tie fibrils to form;

3. at last, main fibrils fail cohesively, and delamination occurs.

Inspired by these observations, this work hereafter idealize the cohesive zone as a

fibrillated region such that each cohesive element represents a fibril (or a fibril bundle),

and idealize each fibril as a deformable string that:

1. can only sustain uniaxial tension in the direction of separation [125];

2. exhibits path dependent damage behavior due to the existence of cross-tie fibrils

and some other micromechanisms.
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The first point implies that each cohesive element has a diagonal, constant initial

elasticity tensor, say

K̃ = K̃I, (4.1)

where K̃ denotes the initial elastic stiffness, and I denotes the second-order identity

tensor. On one hand, Hui et al. [126] pointed out that a main fibrils actually could

sustain small lateral loads due to the existence of cross-tie fibrils, implying that K̃

might have small off-diagonal terms and even be path dependent. On the other hand,

according to numerical experiments, cohesive elements (or fibrils) must be sufficiently

stiff to hold the adherends together in the elastic region [69], indicating that K̃ must

be sufficiently large, but once this requirement is met, fine tuning K̃ negligibly affects

numerical results. This indicates that Eq. (4.1) can serve the purpose.

Fig. 4.1. Crazing ahead of a crack tip (adapted from Ref. [127]).

The finite element implementation of a CZM has been extensively studied (see

Ref. [128], [81], and [84] for examples). Nowadays a CZM can be implemented in

commercial finite element code Abaqus/Explicit via user subroutine VUMAT, for

structural analysis, where:
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1. Abaqus/Explicit can be used to perform quasi-static analyses with complicated

contact conditions;

2. VUMAT is used to define the traction–separation relation for a cohesive element,

which may undergo finite deformation [108].

Consider a cohesive element on an interface. In VUMAT, a CZM must be defined in a

local corotational coordinate system, say x = (x1, x2, x3), where the x1-, the x2-, and

the x3-directions rotate with the element. Specifically, choose the element midplane

as the x2x3 plane, the normal to the midplane as the x1-direction, and the crack line

direction as the x3-direction (so that the delamination direction is the x2-direction

in a 2D problem, see Figure 4.2). In fact, the x1-, the x2-, and the x3-directions

are chosen so that they are associated with mode I, mode II, and mode III fracture,

respectively. The string assumption implies that a scalar-valued damage factor, say

d, can fully measure the degradation of the element. Let Ψ denote the Helmholtz free

energy per unit area of the element. It can be treated as a function of a suitable set

of independent state variables describing the elasticity and damage of the element,

e.g.,

Ψ = Ψ (γ, d, α) , (4.2)

where γ denotes the separation vector, and α is a scalar describing damage accumu-

lation. Note that a negative γ1 (the first component of γ) is inadmissible because it:

1. physically means that two neighboring crack faces penetrate each other; 2. should

not promote damage or delamination. Hereafter set

γ =
⌊
〈γ1〉 γ2 γ3

⌋T
, (4.3)

where 〈·〉 denotes the Macaulay bracket, i.e.,

〈x〉 =

 0 x < 0,

x x ≥ 0.
(4.4)

Assume that Ψ can be decomposed into its elastic and damage accumulation parts as

Ψ (γ, d, α) = Ψe (γ, d) + Ψd (α) . (4.5)
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The thermodynamic forces conjugate to the state variables are defined as

τ =
∂Ψ

∂γ
=
∂Ψe

∂γ
, y = −∂Ψ

∂d
= −∂Ψe

∂d
, A =

∂Ψ

∂α
=

dΨd

dα
, (4.6)

where τ denotes the traction vector, y denotes the damage conjugate force, and A is

related to the current damage threshold.

6

�
	

6

�

x1

x2

	

-

x3
MidplaneCrack line direction

Delamination direction

(b) Local coordinate system.(a) Deformed cohesive element.
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Fig. 4.2. Schematic of a deformed cohesive element.

For isothermal delamination, the Clausius–Duhem inequality can be written as

Φ = τ · γ̇ − Ψ̇ ≥ 0, (4.7)

where Φ denotes the dissipation per unit area, and the overdot denotes the time

derivative of a quantity. Combining Eqs. (4.5)–(4.7) gives

Φ = yḋ− Aα̇ ≥ 0. (4.8)

Let f denote the damage function. Following Ref. [7], assume that the following prin-

ciple of maximum dissipation applies throughout this paper: for fixed but otherwise

arbitrary ḋ and α̇, the actual y and A should maximize Φ subject to constraint f ≤ 0,

or mathematically speaking, should make Lagrange functional

L
(
y, A, λ̇; ḋ, α̇

)
= yḋ− Aα̇− λ̇f (4.9)

attain its extremum, where λ̇ is a positive Lagrange multiplier. This is the equivalent

of solving associated damage evolution laws

ḋ = λ̇
∂f

∂y
and α̇ = −λ̇ ∂f

∂A
(4.10)
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subject to Kuhn–Tucker conditions, or loading/unloading conditions,

f ≤ 0, λ̇ ≥ 0, λ̇f = 0, (4.11)

which physically mean that damage evolution is irreversible. Last but not least,

Eq. (4.10) implies that f must be a function of y and A.

In continuum damage mechanics, researchers introduced the concepts of effective

space and energy equivalence to facilitate the derivation of constitutive relations.

The effective space is where a fictitious, undamaged cohesive element is obtained

from a real, damaged one by removing all damages so that a set of so-called effective

quantities can be defined [129]. The energy equivalence hypothesis specifies the cor-

respondence between effective quantities and quantities measurable in the real space,

namely apparent quantities. Following Ref. [130], let the hypothesis follow the defini-

tion of the effective traction vector: the effective traction vector should be applied to

an undamaged element such that it produces the same elastic Helmholtz free energy

as those observed on a damaged element subject to the apparent traction vector, i.e.,

Ψe =
1

2
Kγ · γ =

1

2
K̃γ̃ · γ̃, (4.12)

where K denotes the apparent elastic stiffness, and the overtilde denotes an effective

quantity (e.g., K̃ denotes the effective or the initial elastic stiffness, which remains

constant throughout separation). Assume that this hypothesis applies throughout

this paper. Following Ref. [105], let τ̃ be related to τ by

τ̃ =
τ

1− d
or τ = (1− d) τ̃ . (4.13)

Hooke’s law can be written as

τ = Kγ and τ̃ = K̃γ̃ (4.14)

in the apparent and the effective spaces, respectively. Combining Eqs. (4.12), (4.13),

and (4.14) gives

γ̃ = (1− d)γ or γ =
γ̃

1− d
. (4.15)

Substituting Eq. (4.15) into Eq. (4.12) gives

K = (1− d)2K̃. (4.16)
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4.2 Damage model

Without loss of generality, suppose that a series of flexural tests, which include

but are not limited to standard double cantilever beam (DCB), end-notched flexure

(ENF), and MMB tests, or to say, which can produce mixed-mode I/II/III delamina-

tion, have been performed. The task is to develop a damage model:

1. whose damage parameters can be calibrated via these tests;

2. whose associated cohesive elements behave reliably and consistently when de-

formed along complex separation paths and can exhibit designated, possibly

sophisticated mixed-mode behavior.

It is beneficial to first specify all damage parameters to be calibrated. Assume that

the cohesive element obeys damage criterion

f = J (γ̂) y − k − A (α) ≤ 0, (4.17)

where J is a scalar-valued function describing the path dependence of damage behav-

ior,

γ̂ =
γ

√
γ · γ

≡ γ
γ

(4.18)

denotes the unit vector in the direction of γ with γ denoting the magnitude of γ, and k

denotes the initial damage threshold. A separation path is said to be nonproportional

if its γ̂ varies, and it is said to involve unloading if its γ decreases (see Figure 4.3

for the schematics of a simple and a complex separation paths). The principle of

maximum dissipation requires the damage surface to be convex (see Ref. [7] for more

details). This imposes no restrictions on J (γ̂). Recall that

Ψe =
1

2
Kγ · γ =

1

2
(1− d)2K̃γ · γ. (4.19)

Substituting Eq. (4.19) into the second equation of Eq. (4.6) gives

y = −∂Ψe

∂d
= (1− d) K̃γ · γ. (4.20)

Let y0 denote the value of y at damage initiation. Inspired by Ref. [131], set J (e1) = 1.

It can then be verified from Eq. (4.17) that:
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1. for a test producing mode I delamination, k = y0|γ̂=e1
;

2. for a test during which γ̂ = γ̂i (where (·)i denotes the value of a quantity for

the ith test), J (γ̂i) = k
/(

y0|γ̂=γ̂i

)
.

Eqs. (4.5) and (4.6) imply that A is a function of α, i.e., A = A (α), which is referred

to as the damage accumulation law. A (α) must be an increasing function, indicating

that additional work must be done to cause further delamination. Assume that

A = Q [exp (bα)− 1] , (4.21)

where Q and b are two positive damage accumulation parameters to be calibrated.

Till now, all damage parameters to be calibrated have been specified.

Fig. 4.3. Schematics of (a) a simple (proportional, monotonic) and (b)
a complex (nonproportional, unloading–reloading) separation paths.

Substituting Eq. (4.17) into Eq. (4.10) gives

ḋ = λ̇J and α̇ = λ̇. (4.22)

Taking time derivatives on both sides of Eq. (4.17) gives the consistency condition as

ḟ = Jẏ + y
∂J

∂γ̂
· ˙̂γ − A′ (α) α̇ = 0. (4.23)
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It is beneficial to find the relationship between ˙̂γ and γ̇. Taking time derivatives on

both sides of Eq. (4.18) gives

˙̂γ =
γ̇

γ
− γ̇

γ2
γ. (4.24)

Following Ref. [131], express γ̇ = ∂γ/∂t as

γ̇ =
1

2γ

∂γ2

∂t
=

1

2γ

∂

∂t
(γ · γ) =

γ · γ̇
γ

. (4.25)

Substituting Eq. (4.25) into Eq. (4.24) gives

˙̂γ =
γ̇

γ
− γ · γ̇

γ3
γ =

(γ · γ) I − γ ⊗ γ
γ3

· γ̇ ≡ A · γ̇. (4.26)

Substituting Eq. (4.26) into Eq. (4.23) and rearranging the equation give

α̇ = λ̇ =

Jẏ + y
∂J

∂γ̂
·A · γ̇

A′ (α)
. (4.27)

Substituting Eq. (4.27) into the first equation of Eq. (4.22) gives

ḋ =
J2

A′ (α)
ẏ +

Jy
∂J

∂γ̂
·A

A′ (α)
· γ̇ ≡ J2

A′ (α)
ẏ +R · γ̇, (4.28)

which is the governing equation of damage evolution.

4.3 Cohesive law

It is beneficial to find the relationship between ḋ and γ̇. Eq. (4.20) implies that y

is a function of γ and d. ẏ can then be expressed using the chain rule as

ẏ =
∂y

∂γ
· γ̇ +

∂y

∂d
ḋ = 2 (1− d) K̃γ · γ̇ − K̃γ · γḋ. (4.29)

Substituting Eq. (4.29) into Eq. (4.28) and rearranging the equation give

ḋ =

2J2 (1− d) K̃

A′ (α)
γ +R

1 +
J2K̃γ · γ
A′ (α)

· γ̇ ≡ B · γ̇. (4.30)
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Recall that

τ = Kγ (4.31)

and K = (1− d)2K̃. (4.32)

Taking time derivatives on both sides of Eq. (4.31) gives

τ̇ = K̇γ +Kγ̇. (4.33)

The first term on the right side of Eq. (4.33) can be further expressed as

K̇ = −2 (1− d) K̃ḋ = −2 (1− d) K̃B · γ̇. (4.34)

Combining Eqs. (4.33) and (4.34) gives the rate form of the cohesive law as

τ̇ = K̇γ +Kγ̇ =
[
−2 (1− d) K̃γ ⊗B +KI

]
· γ̇ ≡ L · γ̇. (4.35)

where L denotes the second-order continuum tangent operator.

4.4 Path dependence function

J (γ̂) still awaits determination. A feasible strategy of determining J (γ̂) involves:

1. calibrating the values of J (γ̂) for certain values of γ̂ from a series of flexural

tests;

2. expressing J (γ̂) in terms of these calibrated values.

Considering energy balance, the total energy release rate should equal the total

work minus the elastic potential energy stored in the cohesive element [80], i.e.,

G =

∫ t

0

τ · γ̇dt−Ψe =

∫ t

0

τ · γ̇dt− 1

2
τ · γ, (4.36)

where t denotes the current instant of time (see Figure 4.4 for more details on

Eq. (4.36)). Recall that the x1-, the x2-, and the x3-directions are chosen such that

they are associated with mode I, mode II, and mode III fracture, respectively. For
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notational convenience, define a column matrix G containing the energy release rate

in different modes,

G =
⌊
G1 G2 G3

⌋T
=
⌊
GI GII GIII

⌋T
. (4.37)

G can be related to G by

G = GI +GII +GIII = G1 +G2 +G3. (4.38)

Combining Eqs. (4.37) and (4.38) gives

G =

∫ t

0

τ · I · γ̇dt− 1

2
τ ·I ·γ or Gi =

∫ t

0

τiγ̇idt−
1

2
τiγi (no summation over i) ,

(4.39)

where

I =
3∑
i=1

ei ⊗ ei ⊗ ei. (4.40)

with ei denoting the ith local unit vector.

Define mode mixture array

β =
G

G
. (4.41)

As mentioned above, Turon and his coworkers [72, 73] observed that, even in a fi-

nite element model of an MMB specimen, cohesive elements were often deformed

along nonproportional separation paths, indicating that their β’s might vary during

a standard flexural test. Despite this fact, people often assume β to be constant

everywhere during a standard flexural test (or to say, assume all separation paths

to be proportional) and calibrate some interface parameters (e.g., J (γ̂) here) from

some others measured during a test (e.g., Gc), using a customized computer code.

This is because it is difficult (partially due to high computational complexity and

possible loss of convergence) to directly calibrate all interface parameters using finite

element analysis, without making simplifying assumptions. The above assumption is

equivalent to β̇ = 0. It is beneficial to investigate how this condition restricts the

deformation of an element. It is difficult to find a necessary and sufficient condition
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Fig. 4.4. Traction–separation curve of a cohesive element deformed
along a proportional, unloading–reloading separation path. The ele-
ment has been deformed along OP1P2 till t. It can either be unloaded
and reloaded along P2OP2 or be further loaded along P2P3, where P3

is the failure point at time tc. Let A(·) denote the area enclosed by
a curve in the figure. At t, G = AOP1P2O and Ψe = AOP2P4O; at tc,
Gc = AOP1P2P3O and (Ψe)c → 0 (see Eq. (4.45)).
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of β̇ = 0, but it is possible to find a sufficient condition. Specifically, set ˙̂γ = 0

everywhere. Substituting Eq. (4.14) into Eq. (4.39) and noting that ˙̂γ = 0 give

G =

∫ t

0

Kγγ̇dt− 1

2
Kγ2. (4.42)

Similarly,

G =

∫ t

0

Kγ · I · γ̇dt− 1

2
Kγ · I · γ

=

(∫ t

0

Kγγ̇dt− 1

2
Kγ2

)
γ̂ · I · γ̂ = G

(
3∑
i=1

γ̂2
i ei

)
.

(4.43)

Substituting Eqs. (4.42) and (4.43) into Eq. (4.41) gives

β =
3∑
i=1

γ̂2
i ei or β̇ = 0, (4.44)

which indicates that ˙̂γ = 0 is a sufficient condition of β̇ = 0. It is more convenient

to set ˙̂γ = 0 instead of β̇ = 0 because:

1. setting ˙̂γ = 0 allows one to calibrate the values of J (γ̂) regardless the values

of ∂J/∂γ̂ (see Eq. (4.23), where the term ∂J
∂γ̂
· ˙̂γ vanishes when ˙̂γ = 0);

2. although ˙̂γ = 0 is a sufficient condition of β̇ = 0, β̇ = 0 itself is merely a

simplifying assumption.

Therefore, when calibrating the value of J (γ̂) for a certain value of γ̂, assume that

˙̂γ = 0 everywhere.

A CZM often has a delamination criterion. It is common to assume that delam-

ination occurs when a scalar-valued damage factor, which is d here, reaches unity.

Unfortunately, numerical experiments indicate that stretching a cohesive element as-

sociated with a generalized standard CZM to infinity makes its d only approach but

never reach unity. For this reason, here modify the delamination criterion as: delam-

ination occurs when d reaches a critical value close to unity, or to say, when d = dc,

where (·)c denotes the value of a quantity at the onset of delamination. With this

criterion, one can uniquely determine the instant of time at the onset of delamination,
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tc, and then obtain the critical total energy release rate and the critical energy release

rate vector as

Gc =

∫ tc

0

τ · γ̇dt− (Ψe)c =

∫ tc

0

τ · γ̇dt and Gc =

∫ tc

0

τ · I · γ̇dt, (4.45)

respectively, where assuming that (Ψe)c → 0 leads to the second equality in the first

equation and the equality in the second equation. To this end, the real value of J (γ̂)

for a certain value of γ̂ should make the value of Gc predicted by the present CZM

have the best fit to that calibrated via a standard flexural test.

Suppose that a series of flexural tests, to which the assumption that ˙̂γ = 0

everywhere is applicable, have been performed. Also suppose that a set of n data

points (γ̂i, Ji) (where (·)i here denotes the ith data point) have been calibrated via

these tests. The task is to construct J (γ̂) from these data points. In the remaining of

this section, abandon the Einstein summation convention unless otherwise specified—

all sums are indicated by summation signs. Luo [132] proposed a class of multivariate

Lagrange polynomials for multivariate interpolation. This leads one to set J (γ̂) to

be a multivariate Lagrange polynomial. For notational convenience, let (·)◦2 denote

the Hadamard power of a vector, e.g.,

γ̂◦2 =
3∑
i=1

γ̂2
i ei. (4.46)

Following Ref. [132], introduce Lagrange basis polynomials

li
(
γ̂◦2
)

=
n∏

j=1;j 6=i

(
γ̂◦2 − γ̂◦2j

)
·
(
γ̂◦2i − γ̂

◦2
j

)(
γ̂◦2i − γ̂

◦2
j

)
·
(
γ̂◦2i − γ̂

◦2
j

) ≡ n∏
j=1;j 6=i

(
γ̂◦2 − γ̂◦2j

)
·
(
γ̂◦2i − γ̂

◦2
j

)∥∥γ̂◦2i − γ̂◦2j ∥∥2

(4.47)

and normalized Lagrange basis polynomials

l̂i
(
γ̂◦2
)

=
li
(
γ̂◦2
)

n∑
j=1

li
(
γ̂◦2
) ≡ li

(
γ̂◦2
)

l
(
γ̂◦2
) , (4.48)

and let J (γ̂) take the form of a linear combination of these normalized Lagrange

basis polynomials, i.e.,

J (γ̂) =
n∑
i=1

l̂i
(
γ̂◦2
)
Ji. (4.49)
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It can be verified that l̂i
(
γ̂◦2
)
’s have the following properties of Lagrange basis poly-

nomials:

1. reproduction property and consistency;

2. linear independence;

3. delta function properties, i.e., l̂i
(
γ̂◦2j
)

= δij, where δij denotes the Dirac delta

function;

4. partitions of unity property, i.e.,
n∑
i=1

l̂i
(
γ̂◦2
)

= 1.

Luo [132] numerically demonstrated that l̂i
(
γ̂◦2j
)
’s also have the property of linear

field reproduction, i.e.,
n∑
i=1

l̂i
(
γ̂◦2
)
γ̂◦2i = γ̂◦2. More details on multivariate interpola-

tion can be found in Ref. [132]. In fact, J (γ̂) is defined so that, when ˙̂γ = 0, J can

be treated as a subjective (and possibly injective) function of β (see Eq. (4.44)).

∂J/∂γ̂ also awaits determination. Differentiating both sides of Eq. (4.49) with

respect to γ̂ gives
∂J

∂γ̂
=

n∑
i=1

∂l̂i

∂γ̂◦2
· ∂γ̂

◦2

∂γ̂
Ji, (4.50)

where
∂γ̂◦2

∂γ̂
=

3∑
i=1

2γ̂iei⊗ei, (4.51)

and
∂l̂i

∂γ̂◦2
=

1

l

∂li

∂γ̂◦2
− li
l2

∂l

∂γ̂◦2
(4.52)

with

∂l̂i

∂γ̂◦2
=

n∑
j=1;j 6=i

[
n∏

k=1;k 6=i,j

(
γ̂◦2 − γ̂◦2k

)
·
(
γ̂◦2i − γ̂

◦2
k

)∥∥γ̂◦2i − γ̂◦2k ∥∥2

]
γ̂◦2i − γ̂

◦2
j∥∥γ̂◦2i − γ̂◦2j ∥∥2 (4.53)

and
∂l

∂γ̂◦2
=

n∑
i=1

∂li

∂γ̂◦2
. (4.54)

It is common to assume that a cohesive element exhibits a kind of transverse

isotropy within the x2x3 plane. Here the term “transverse isotropy” refers to the

phenomenon that the element properties are the same in all directions within a plane.



85

In this case, J is a function of γ̂1 only. It is then more convenient to set J to be a

univariate Lagrange polynomial. Introduce Lagrange basis polynomials

li
(
γ̂2

1

)
=

n∏
j=1;j 6=i

γ̂2
1 − (γ̂1)2

j

(γ̂1)2
i − (γ̂1)2

j

, (4.55)

and let J (γ̂1) take the form of a linear combination of these Lagrange basis polyno-

mials, i.e.,

J (γ̂1) =
n∑
i=1

li
(
γ̂2

1

)
Ji. (4.56)

It can be verified that here li (γ̂
2
1)’s also have the aforementioned properties of La-

grange basis polynomials. ∂J/∂γ̂ can then be expressed as

∂J

∂γ̂
=

∂J

∂γ̂1

e1 =

(
n∑
i=1

2γ̂1
∂li
∂γ̂2

1

Ji

)
e1, (4.57)

where
∂li
∂γ̂2

1

=
n∑

j=1;j 6=i

[
n∏

k=1;k 6=i,j

γ̂2
1 − (γ̂1)2

k

(γ̂1)2
i − (γ̂1)2

k

]
1

(γ̂1)2
i − (γ̂1)2

j

. (4.58)

4.5 Numerical examples

Reeder and Crews [75] performed a series of DCB, ENF, and MMB tests on a

type of unidirectional APC-2 PEEK composite beams, measured the applied load–

load point displacement curve during each test, and obtained a critical energy release

rate–mode mixture ratio relationship from these curves. In this section, the interface

parameters associated with the present CZM will be calibrated from these experi-

mental data. The present CZM will then be validated through simulating these tests

using Abaqus/Explicit. The effect of the interfacial strength on a load–displacement

curve will also be evaluated.

4.5.1 Calibration of interface parameters

Assuming that a cohesive element possesses some basic features can facilitate the

calibration of interface parameters. It is beneficial to start this with taking a look at
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some well-established CZMs, e.g., the bilinear CZM developed by Camanho and his

coworkers [69, 72, 81–83]. Specifically, a cohesive element in Ref. [69] possesses the

following features:

1. the element obeys a bilinear traction–separation law;

2. K̃ takes the form of Eq. (4.1) so that the element is string-like, where K̃ is

treated as a penalty parameter taking a very high value;

3. it exhibits transverse isotropy in the x2x3 plane;

4. it obeys the B–K delamination criterion [133] (see Eq. (4.59) for more details)

so that it can approximately exhibit designated, possibly sophisticated mixed-

mode behavior.

Inspired by Ref. [69], set a present cohesive element to possess the following features:

1. the element exhibits softening right after damage initiation;

2. K̃ takes a reasonable value (see Ref. [84] for example) rather than a very high

value so that the element does not undergo a sudden increase in d right after

damage initiation;

3. it exhibits transverse isotropy in the x2x3 plane so that J (γ̂) takes the form of

Eq. (4.56);

4. it obeys the simple delamination criterion in Section 4.4 because the specially

defined J (γ̂) enables a present element to exhibit designated, possibly sophis-

ticated mixed-mode behavior.

To endow the element with the first feature, further assume that the mode I inter-

facial strength, τI max, is 1.5% higher than the traction at mode I damage initiation,

τI0. This is because a value of 1.5% is found to balance the instant of time at the

onset of softening and the “ductility” of the element well. The reason for assuming

the second feature is that, unlike in Ref. [69], here K̃ is a thermodynamic quantity
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affecting damage evolution. Numerical experiments indicate that, if K̃ takes a very

high value, an element possessing the first feature may undergo a sudden increase in

d (from zero to almost unity) right after damage initiation. This is neither physically

realistic nor computationally favorable [134]. Table 4.1(a) lists some predetermined

interface parameters, where τI0 was recommended by Ref. [75], K̃ and dc are properly

chosen, and k and τI max are thereafter calculated. Table 4.1(b) lists different combi-

nations of β2 and Gc recommended by Ref. [75]. Numerical experiments indicate that

damage accumulation law Eq. (4.21) serves the purpose well. The fitted parameters

are therefore Q, b, and the values of J for the values of β2 listed in Table 4.1(b).

Table 4.1.
Predetermined interface parameters.

(a) Measured and assumed parameters.

K̃
(
N/mm3) τI0 (MPa) k (J/m2) τI max (MPa) dc

3.30237× 104 80.0 193.8 81.2 0.95

(b) Different combinations of β2 and Gc

DCB 20% MMB 50% MMB 80% MMB ENF

β2 0.0 0.2 0.5 0.8 1.0

Gc (J/m2) 969 1103 1131 1376 1719

In this work, a Euler–Trapezoidal predictor–corrector method is used for time

integration, and the method of nonlinear least squares is used for curve fitting (see

Ref. [121] for more details). The latter method, however, is not guaranteed to con-

verge to the global optimum and often gets “lost” if started far from the solution.

Fortunately, setting the starting values close to the solution greatly improves the

convergence, and such starting values can be obtained through a series of Monte

Carlo experiments. The specially defined f and J allow one to calibrate the fitted

parameters as follows:
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1. for the DCB test, find the values of Q and b making the predicted values of GIc

and τI max have the best fit to the predetermined ones;

2. for each of the others, hold Q and b fixed, and find the value of J making the

predicted value of Gc have the best fit to that listed in Table 4.1(b).

Table 4.2 lists the fitted interface parameters. Consider two cohesive elements:

one obeys the present cohesive law, and the other the bilinear cohesive law in Ref. [72].

Let the interface parameters of the latter element take the values listed in Table 4.3,

where τII0 denotes the traction at mode II damage initiation, the value of K̃ is set to

equal that listed in Table 4.1(a) for comparison purposes, and the other values are

duplicated from Ref. [69]. Also let the latter element obey the B–K criterion, i.e.,

Gc = GIc + (GIIc −GIc) β
2.284
2 , (4.59)

where the exponent 2.284 was calibrated by Camanho and Dávila [69]. It is benefi-

cial to investigate how these two elements behave when deformed along proportional

separation paths. Figure 4.6 shows the traction–separation curves (or τ–γ curves) of

the two elements. As expected, both elements possess their respective features. For

each element:

1. all curves exhibit similar trends;

2. as the mode of delamination shifts from mode I to mode II, the curve shift

upward due to an increase in Gc.

Despite similarities, two distinctions between these two sets of curves are worth not-

ing. First, the curves predicted by the present CZM terminate at higher values of γ,

indicating that the present element is more “ductile”. As mentioned above, stretching

a cohesive element associated with a generalized standard CZM to infinity makes its

d only approach but never reach unity. This kind of asymptotic behavior is actually

common in continuum damage mechanics. Second, the DCB and the 20% MMB

curves predicted by the bilinear CZM are very close to each other, but those pre-

dicted by the present CZM are not. This is actually because the two CZMs predict
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different values of Gc for the 20% MMB test. This can be understood by looking into

Figure 4.5. Last but not least, the trends of the traction–separation curves predicted

by the present CZM are actually similar to those obtained using integrated digital

image correlation, by Ref. [135]. This indicates that the present CZM is not only

thermodynamically rigorous but also physically realistic.

Table 4.2.
Fitted interface parameters.

(a) Fitted values of Q and b.

Q (J/m2) b

330.25 2.16095

(b) Fitted values of J

DCB 20% MMB 50% MMB 80% MMB ENF

J 1.0 0.951929 0.943059 0.878154 0.813075

Table 4.3.
Interface parameters for a bilinear cohesive law.

K̃
(
N/mm3) τI0 (MPa) τII0 (MPa) GIc (J/m2) GIIc (J/m2)

3.30237× 104 80.0 100.0 969 1719

Figure 4.5 shows critical energy release rate–mode mixture ratio curves (or Gc–

β2 curves) predicted by different CZMs, where the curve predicted by the bilinear

CZM is obtained from Eq. (4.59). Recall that Camanho and Dávila [69] calibrated

the exponent in Eq. (4.59) from the experimental data points in Figure 4.5, using

the method of linear least squares. The term “least squares” means that the fitted

parameter should minimize the sum of the squares of the errors made in the modeling

of data, which is often referred to as a merit function. A merit function provides

a measure of the agreement between the fitted curve and the experimental data.
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Fig. 4.5. Critical energy release rate–mode mixture ratio curves pre-
dicted by different CZMs.
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Present, DCB
Present, 20% MMB
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Bilinear, 20% MMB
Bilinear, ENF

Fig. 4.6. Traction–separation curves predicted by different CZMs.
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The smaller its value the better fitting. Numerical experiments indicate that J (γ̂)

directly leads to the curve predicted by the present CZM. On one hand, the curve

due to J (γ̂) goes through all experimental data points and therefore produces a zero

merit function. It can be expected that, if more data points were incorporated, the

same observation would be made due to the characteristics of Lagrange polynomial

J (γ̂). Note that a greater number of data points lead to higher accuracy. All these

imply that here J (γ̂) makes the accuracy increase with increasing number of data

points. On the other hand, the curve due to Eq. (4.59) produces a merit function of

0.121. Especially, at β2 = 0.2, this curve noticeably deviates from the experimental

data. It can also be expected that, if more data points were incorporated, this value

would more or less increase because the chosen form of Gc in Eq. (4.59) imposes

strong restrictions on the trend of a predicted Gc–β2 curve. All these at least imply

that here Eq. (4.59) does not necessarily make the accuracy increase with increasing

number of data points. In summary, the specially defined J (γ̂) endows the present

CZM with the following advantageous features:

1. the present CZM can produce a good estimate of the critical energy release

rate–mode mixture ratio relationship based on available experimental data;

2. its accuracy increases with increasing number of data points;

3. a user no longer needs to carefully choose the expression for Gc in a delamination

criterion when encountering a set of irregularly distributed data points;

4. the values of J (γ̂) and ∂J/∂γ̂ can be conveniently computed.

4.5.2 Validation examples

In this section, the present CZM will be validated through simulating the series

of flexural tests performed by Reeder and Crews [75]. Figure 4.7 depicts the exper-

imental settings of the DCB, the ENF, and the MMB tests. Each laminate had a

span length (L) of 102 mm, a width (b) of 25.4 mm, and a thickness (h) of 1.56 mm.



92

Table 4.4 lists the elastic constants of each laminate, the initial delamination length

(a0), and the lever length (c) during each test. More details on experimental settings

can be found in Ref. [75].

Table 4.4.
Experimental parameters.

(a) Elastic constants of each laminate.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23

122.7 10.1 5.5 3.7 0.25 0.45

(b) Initial delamination lengths and lever lengths.

DCB 20% MMB 50% MMB 80% MMB ENF

a0 (mm) 32.9 33.7 34.1 31.4 39.3

c (mm) – 97.4 42.2 27.6 –

Several authors [70,81,83,136–138] used 3D finite element models of the specimens

in their simulations but obtained some oscillatory load–displacement curves. This is

because a very complex finite element model often leads to a low convergence rate and

low accuracy. Several authors attempted to simplify such 3D finite element models.

Noting that the laminate thickness was much smaller than the span length, several

authors [69, 134, 139] idealized each laminate as a plate. Despite success, a plate

theory tends to oversimplify the stress distribution over the thickness direction of

each laminate. This is because, even though the laminate thickness is small, it is still

non-negligible with respect to the cohesive elements. Noting that each laminate was

unconstrained in its width direction on the interval of interest, several authors [72,

138,140] idealized each laminate as a beam with a negligible width and assumed that

plane stress conditions prevailed over each planar beam. Numerical results indicate

that this model can well capture the stress perturbations around the interface crack

tip. For these reasons, hereafter idealize each laminate as a 2D beam under plane

stress conditions.
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Fig. 4.7. Experimental settings.
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Here Abaqus/Explicit is used to simulate the tests, and the present CZM is im-

plemented in Abaqus/Explicit via VUMAT. Figure 4.8 shows a sample finite element

model of an MMB specimen (see Ref. [139] for finite element models with similar load-

ing levers). Each 2D finite element model consists of two planar beam sections and

an interface bonding these two sections. Both beam sections are meshed with 4-node

quadrilateral elements having 2 degrees of freedom (DOFs) at each node (CPS4), and

each meshed beam section consists of 510 × 6 elements (each element measures 0.2

mm × 0.26 mm). The interface is meshed with one layer of 510 4-node quadrilateral

elements having 2 integration points (COH2D4) (each element is 0.2 mm long), and

each element is set to obey the present cohesive law. When using an explicit time

integration scheme, one must properly choose some controlling parameters (e.g., the

mass scaling factor, the load rate, and the viscosity parameters) to achieve a balance

between accuracy and efficiency. More details on how these controlling parameters

were chosen can be found in Ref. [138]. All cohesive zones are found to be well re-

solved, and all finite element models are found to be capable of producing converged

results.

Loading lever

Fig. 4.8. Sample finite element model of an MMB specimen.

Figure 4.9 shows the load–displacement curves predicted by different CZMs. A

Savitzky–Golay filter is used to eliminate the noise on the ENF curve predicted by

the present CZM (see Ref. [121] for more details). It can be seen that both sets of

predicted curves agree well with the experimental curves in the linear region but more

or less deviate from the experimental curves in the nonlinear region. For the DCB test,

the two predicted curves are in good agreement but both lie below the experimental
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curve in the nonlinear region. One possible reason for this is that the value of GIc

listed in Table 4.1(b) is underestimated. For the 20% and the 80% MMB tests, the

curves predicted by the present CZM agree well with the experimental curves, while

the curves predicted by the bilinear CZM suggest underestimated maximum applied

loads. One possible reason for the underestimation of the 20% MMB maximum

applied load predicted by the bilinear CZM is that the bilinear CZM underestimates

Gc at β2 = 0.2 (see Figure 4.5). For the 50% MMB test, the curve predicted by the

present CZM suggests an overestimated maximum applied load. The reason for this

will be investigated in detail later this section. For the ENF test, both of the predicted

curves slightly deviate from the experimental curve in the nonlinear region. The curve

predicted by the present CZM also suggests that the ENF test can be unstable. This

actually agrees with experimental observations [141,142]. In summary, the predictions

by the present CZM are at least as accurate as (sometimes more accurate than) those

by the bilinear CZM except for the 50% MMB test. There is a need for taking a look

at more results regarding the 50% MMB test.
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ENF
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Present
Bilinear
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Fig. 4.9. Applied load–load point displacement curves predicted by different CZMs.
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As mentioned above, Turon and his coworkers [72, 73] observed that, even in a

finite element model of an MMB specimen, cohesive elements were often deformed

along nonproportional separation paths. This leads one to look into the deformation

processes of some cohesive elements during each test. Numerical experiments indicate

that the deformation process of the rightmost cohesive element during each test is

very representative. Let θ = tan−1 (γ2/γ1) denote the angle of inclination of a cohesive

element (or specifically, the angle between the current direction of the element and

the x1-direction). In a 2D problem, a separation path is said to be proportional if its

θ always remains constant. Figure 4.10 shows the variation in the orientation of the

rightmost cohesive element during each test, and Table 4.5 listed the corresponding

value of Gc from each test. In Figure 4.10, neglecting the oscillations due to the use of

an explicit time integration scheme, each predicted curve for an MMB test lies above

its corresponding recommended curve in the linear region and exhibits a decreasing

trend in the nonlinear region, indicating that the separation path is nonproportional.

Accordingly, in Table 4.5, the value of Gc from each test more or less deviates its

corresponding recommended value. All these again verify the observation made by

Turon and his coworkers [72,73].

Table 4.5.
Gc (J/m2) of the rightmost cohesive element from each test.

DCB 20% MMB 50% MMB 80% MMB ENF

Table 4.1(b) 969 1103 1131 1376 1719

Present 958.228 964.996 1132.08 1271.87 1875.53

Bilinear 968.623 989.460 1048.76 1256.37 1804.62

It is beneficial to take a look at more results regarding the 50% MMB test. Con-

sider the rightmost five cohesive elements in the finite element model of the 50% MMB

specimen, and number them in ascending order from right to left (so that the right-

most element is Element 1). Figure 4.11 shows the variations in the orientations of the
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Fig. 4.10. Variation in the orientation of the rightmost cohesive ele-
ment during each test.
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rightmost five cohesive elements during the 50% MMB test, and Table 4.6 listed the

corresponding values ofGc from this test. Similarly to Figure 4.10, here each predicted

curve lies above the recommended curve in the linear region and exhibits a decreas-

ing trend in the nonlinear region. Moreover, as the element number increases, the

predicted curve shifts upward. All these indicate that Gc can be location-dependent

during a single test. This can be understood by looking into the local fields (e.g.,

stress and strain fields) around the interface crack tip. Specifically, as the interface

crack propagates leftward:

1. the delamination length (a in Figure 4.7) keeps increasing, while the span length

(L) and the lever length (c) remain unchanged;

2. the deformation of each cohesive element is continuously affected by that of its

neighboring elements.

The first point causes the local fields location-dependent even at the structural level,

and the second point causes the local fields more complex on the microscopic scale.

Accordingly, in Table 4.6, for each CZM, the value of Gc increases with increasing

element number. Despite this similarity, the two CZMs actually produce very differ-

ent values of Gc. In Figure 4.11, the separation path of Element 1 is closest to the

recommended one. In Table 4.6, Element 1 obeying the present cohesive law has a

Gc 0.0955% higher than the recommended one, while Element 1 obeying the bilinear

cohesive law has a Gc 7.27% lower than the recommended one. Recall that, in Fig-

ure 4.9, the curve predicted by the present CZM suggests an overestimated maximum

applied load. To this end, it turns out that:

1. the recommended value of Gc for β2 = 0.5 may be overestimated;

2. given the recommended values of Gc, the bilinear CZM may underestimate Gc

when a cohesive element is deformed along a nonproportional separation path

around β2 = 0.5.
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There are two possible reasons for the second point. First, the bilinear CZM may

underestimate Gc on the interval of 0 < β2 < 0.5 (see Figure 4.5). Second, a non-

generalized standard CZM may insufficiently regularize damage evolution along non-

proportional separation path, overestimate/underestimate the rate of damage evolu-

tion, and therefore underestimate/overestimate Gc. In summary, all the results in

this section indicate that the present CZM can produce reliable simulation results.
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Fig. 4.11. Variations in the orientations of the rightmost five cohesive
elements during the 50% MMB test.

Table 4.6.
Gc’s (J/m2) of the rightmost five cohesive elements from the 50% MMB test.

1 2 3 4 5

Table 4.1(b) 1131 1131 1131 1131 1131

Present 1132.08 1171.71 1216.52 1281.81 1319.13

Bilinear 1048.76 1111.14 1120.33 1135.64 1154.48
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4.5.3 Parametric study

It is well known that Gc affects the load–displacement curves from the DCB, the

ENF, and the MMB tests. Several authors [72, 73, 140] found that, once a CZM was

introduced, the interfacial strength also affected these curves. In this section, the

effect of the interfacial strength on a load–displacement curve will be evaluated.

Consider three cohesive elements with different mode I interfacial strengths (τI max’s,

see Table 4.7(a)). For each element, set K̃, k, and dc to take the values listed in Ta-

ble 4.7(a), and set Gc to take the values listed in Table 4.1(b). The fitted parameters,

Q, b, and the values of J during all tests, can then be calibrated similarly to Sec-

tion 4.5.1. Tables 4.7(b) and 4.7(c) list the fitted values. In fact, the predetermined

parameters are set so that the fitted parameters of the three elements are close.

Figure 4.12 shows the mode I τ–γ curves for different values of τI max. As expected,

all curves exhibit similar trends, but as τI max increases, the element becomes stronger

but less “ductile”. Figure 4.13 shows the Gc–β2 curves for different values of τI max.

It can be seen that all three curves coincide. All these indicate that the present CZM

allows a user to customize the interfacial strength and the critical energy release

rate–mode mixture ratio relationship separately.

Figure 4.14 shows the load–displacement curves for different values of τI max. A

Savitzky–Golay filter is used to eliminate the noise on the predicted ENF curves.

On one hand, a lower interfacial strength leads to a flatter traction-separation curve

and a larger cohesive zone; on the other hand, it makes a cohesive element more

vulnerable to traction and capable of sustaining a lower maximum traction. These

two mechanisms compete with each other during progressive delamination. For each

test in Figure 4.14, as τI max decreases, the predicted curve becomes nonlinear earlier

and suggests a lower maximum applied load. This indicates that, for the present

experimental settings, the latter mechanism overwhelms the former one during each

test. The cohesive elements therefore behave like a thin layer of dampers smooth-

ing the load-displacement curves (e.g., preventing a sudden load drop). The lower
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Table 4.7.
Interface parameters in three cases.

(a) Predetermined parameters.

K̃
(
N/mm3) τI0 (MPa) k (J/m2) τI max (MPa) dc

1 1.65119× 104 56.5685 193.8 57.4171 0.95

2 3.30237× 104 80.0 193.8 81.2 0.95

3 6.60475× 104 113.137 193.8 114.834 0.95

(b) Fitted values of Q and b.

Q (J/m2) b

1 332.899 2.15215

2 330.25 2.16095

3 332.899 2.15215

(c) Fitted values of J

DCB 20% MMB 50% MMB 80% MMB ENF

1 1.0 0.951837 0.942953 0.877948 0.812458

2 1.0 0.951929 0.943059 0.878154 0.813075

3 1.0 0.951835 0.942951 0.877944 0.812762
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Fig. 4.13. Critical energy release rate–mixed-mode ratio curves for
different interfacial strengths.
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interfacial strength the more flexible dampers. All these agree with the findings in

Refs. [140], [72], and [73]. Meanwhile, the curves for τI max = 114.834MPa more or

less oscillate in the nonlinear region. This implies that an artificially high interfa-

cial strength can reduce the stability of the numerical analysis, leading one to adjust

some chosen controlling parameters in Abaqus/Explicit. However, for comparison

purposes, all controlling parameters are held fixed throughout this section. In fact,

similar oscillations can be found in Refs. [136], [140], [70], [137], [83], and [138].
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(a) DCB.

Fig. 4.14. Applied load–load point displacement curves for different
interfacial strengths.

4.5.4 Conclusions

In this chapter, a string-based CZM for interlaminar delamination is developed

such that its associated cohesive elements (1) behave reliably and consistently when

deformed along complex separation paths and (2) can display experimental critical
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Fig. 4.14. Applied load–load point displacement curves for different
interfacial strengths (continued).
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Fig. 4.14. Applied load–load point displacement curves for different
interfacial strengths (continued).
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energy release rate–mode mixture ratio relationships. To endow the present CZM

with the first feature, the thermodynamic equations are formulated in a generalized

standard manner. To resolve a dilemma encountered when developing generalized

standard CZMs, each cohesive element is idealized as a deformable string exhibiting

path-dependent damage behavior. To endow the present CZM with the second fea-

ture, a damage model having a path dependence function is developed, and the path

dependence function is constructed such that each cohesive element can exhibit des-

ignated, possibly sophisticated mixed-mode behavior. The rate form of the cohesive

law is subsequently derived.

The following findings can be obtained from the results:

• The present CZM is found to be capable of producing physically realistic traction–

separation curves and good estimates of the critical energy release rate–mode

mixture ratio relationships.

• It is found to be capable of producing reliable simulation results.

• It is found to allow a user to customize the interfacial strength and the critical

energy release rate–mode mixture ratio relationship separately.
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5. COHESIVE ZONE MODEL FOR FATIGUE

DELAMINATION

5.1 String-based CZM

This chapter uses the same notation system as that in Chapter 4, and different

from those in Chapter 2 and 3. Recall the Helmholtz free energy and state variable

definition from Eqs. (4.2) to (4.6). For isothermal deformation, the Clausius–Duhem

inequality takes the same form as before:

Φ = yḋ− Aα̇ ≥ 0. (5.1)

where Φ denotes the dissipation per unit area, and the overdot denotes the time

derivative of a quantity. say Ω, governing the evolution of d and α, such that [20]

ḋ =
∂Ω

∂y
and α̇ = −∂Ω

∂A
. (5.2)

Further assume that Ω depends on y and A via a damage function, f , such that

Ω = Ω (f) and v̇ =
∂Ω

∂f
, (5.3)

where v̇ is referred to as the viscosity function. Choosing a viscodamage model is

then the equivalence of choosing f and v̇. Combining Eqs. (5.2) and (5.3) gives the

damage evolution laws as

ḋ = v̇
∂f

∂y
and α̇ = −v̇ ∂f

∂A
. (5.4)

According to Ref. [20], Ω has to be a convex function of y and A, and so does f .

With the effective space concept and the energy equivalence hypothesis, Eqs. (4.12)

to (4.16) still stand.

The damage model characterizes the mixed-mode behavior of the element. Its

associated parameters ought to be calibrated via a series of flexural tests. Let the
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damage function follows the same form as in Eq. (4.17), and the damage accumulation

law follows the same form as in Eq. (4.21). Combing Eqs. (5.4) and (4.17) gives

ḋ = v̇J and α̇ = v̇. (5.5)

Similarly to a continuum damage model, the present CZM leads its associated cohe-

sive elements to exhibit asymptotic behavior when stretched infinitely (i.e., their d’s

approach but never attain unity). The following delamination criterion is therefore

necessary: a cohesive element is considered failed once its d attains dc, a value close

to unity. Last let the viscosity function, v̇, take a similar form to the Perzyna model

in viscoplasticity [120], i.e.,

v̇ =


1

η

(
f

k + A

)n
f ≥ 0,

0 f < 0.

(5.6)

where η and n are two parameters describing viscosity.

5.2 Implicit integration scheme

The present CZM can be implemented in implicit solver Abaqus/Standard via

user subroutine UMAT, for structural analysis. UMAT (1) allows users to create cus-

tomized cohesive laws and (2) can use and update any state variables, either passed

in or stored elsewhere [108]. Consider time interval [tn, tn+1]. Let (·)n denote a quan-

tity at tn, and let ∆ (·) = (·)n+1 − (·)n. When calling UMAT at an integration point,

Abaqus/Standard passes in τ n, γn and ∆γ and gets back τ n+1 and the consistent Ja-

cobian, ∂∆τ/∂∆γ. Given all variables at tn, along with ∆γ, the implicit integration

scheme should update the other variables and return the consistent Jacobian.

Hereafter omit the subscript n + 1 on each quantity at tn+1. The integration

scheme can be formulated as solving the following equation set for y and ∆α:

y = (1− d) K̃γ · γ, (5.7)

∆α = v̇∆t. (5.7′)
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By definition,

d = dn + ∆d and α = αn + ∆α. (5.8)

Eq. (5.5) can be rewritten as

∆d = J (γ̂) ∆v = J (γ̂) ∆α. (5.9)

When updating the variables, γ is held fixed. Eqs. (5.8) and (5.9) indicate that d

and α are functions of ∆α here. The task can then be reformulated as solving the

following equation set for y and ∆α:

Ψ (y,∆α) = y − (1− d) K̃γ · γ = 0, (5.10)

A (y,∆α) = ∆α− v̇∆t = 0. (5.11)

Eqs. (5.10) and (5.11) can be solved using the Newton–Raphson method. Require

Ψ (yold + dy,∆αold + d∆α) = Ψ (yold,∆αold) +
∂Ψ

∂y
dy +

∂Ψ

∂∆α
d∆α = 0, (5.12)

A (yold + dy,∆αold + d∆α) = A (yold,∆αold) +
∂A

∂y
dy +

∂A

∂∆α
d∆α = 0. (5.12′)

(see 5.3 for more details on the partial derivatives in Eqs. (5.12)). Eq. (5.12) can be

written in matrix form as Ψ (yold,∆αold)

κA (yold,∆αold)

+ J

 dy

κd∆α

 = 0, (5.13)

where κ is chosen so that J is well-conditioned, and

J =


∂Ψ

∂y

1

κ

∂Ψ

∂α

κ
∂A

∂y

∂A

∂α

 (5.14)

is a 2× 2 Jacobian matrix. Rearranging Eq. (5.13) gives dy

κd∆α

 = −J−1

 Ψ (yold,∆αold)

κA (yold,∆αold)

 . (5.15)

The corrections, dy and d∆α, can then be obtained and added to the solutions, i.e.,

ynew = yold + dy and ∆αnew = ∆αold + d∆α. (5.16)
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This process is iterated to convergence. After this, the variables are updated as

α = αn + ∆α, d = dn + J (γ̂) ∆α, τ = (1− d)2K̃γ. (5.17)

When deriving the consistent Jacobian, γ is no longer held fixed. Ψ and A in

Eq. (5.10) then depends on not only y and ∆α but also γ. It is beneficial to relate

d∆α to dγ. Totally differentiating Eq. (5.10) and (5.11) gives

dΨ =
∂Ψ

∂y
dy +

∂Ψ

∂γ
· dγ +

∂Ψ

∂∆α
d∆α = 0, (5.18)

dA =
∂A

∂y
dy +

∂A

∂γ
· dγ +

∂A

∂∆α
d∆α = 0 (5.19)

(see 5.3 for more details on the partial derivatives in Eqs. (5.18) and (5.19)). Solving

Eq. (5.18) for dy gives

dy = −
(
∂Ψ

∂y

)−1(
∂Ψ

∂γ
· dγ +

∂Ψ

∂∆α
d∆α

)
. (5.20)

Substituting Eq. (5.20) into Eq. (5.19) and solving for d∆α gives

d∆α =

∂A

∂y

(
∂Ψ

∂y

)−1
∂Ψ

∂γ
− ∂A

∂γ

∂A

∂∆α
− ∂A

∂y

(
∂Ψ

∂y

)−1
∂Ψ

∂∆α

· dγ ≡ B · dγ. (5.21)

The incremental form of Eq. (4.14) can be obtained as

dτ = dKγ +Kdγ. (5.22)

dK can be obtained from Eq. (4.16) as

dK = −2 (1− d) K̃d∆d. (5.23)

It is beneficial to relate d∆d to dγ. d∆d can be obtained from Eq. (5.9) as

d∆d = Jd∆α + ∆α
∂J

∂γ̂
·A · dγ (5.24)

(see 5.3 on more details on A). Combining Eqs. (5.21) and (5.24) gives

d∆d =

(
JB + ∆α

∂J

∂γ̂
·A
)
· dγ. (5.25)
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Substituting Eqs. (5.23) and (5.25) into Eq. (5.22) gives

dτ =

[
−2 (1− d) K̃γ ⊗

(
JB + ∆α

∂J

∂γ̂
·A
)

+KI

]
· dγ ≡ L · dγ. (5.26)

Last but not least, the definition of γ (Eq. (4.3)) indicates that, when γ1 < 0, the

relationship between τ1 and γ1 is unspecified. To prevent crack face penetration, set

each cohesive element to have a small thickness so that a negative γ1 is admissible.

Let K̃c denote the penalty contact stiffness such that

τ1 = K̃cγ1 or dτ1 = K̃cdγ1 (5.27)

when γ1 < 0. Numerical experiments indicate that K̃c = 1000K̃ serves the purpose

well. Let

I+ =


H (γ1) 0 0

0 1 0

0 0 1

 , (5.28)

where H (x) denotes the Heaviside step function, i.e.,

H (x) =

 0 x < 0,

1 x ≥ 0.
(5.29)

Combining Eqs. (5.26)–(5.28) gives
dτ1

dτ2

dτ3

 =
[
I+ ·L+ K̃c

(
I − I+

)]


dγ1

dγ2

dγ3

 ≡ L
∗


dγ1

dγ2

dγ3

 , (5.30)

where L∗ turns out to be the consistent Jacobian. The following can be verified: (1)

when γ1 ≥ 0, L∗ = L, and (2) otherwise, the relationship between dτ1 and dγ1 obeys

Eq. (5.27).



112

5.3 Partial derivatives

In this section, the expressions for the partial derivatives in Eqs. (5.12), (5.18),

and (5.19) will be derived. Without loss of generality, assume that Ψ and A are

functions of y, γ, and ∆α. It is beneficial to relate dγ̂ to dγ. dγ̂ can be expressed as

dγ̂ =
dγ

γ
− dγ

γ2
γ, (5.31)

and dγ can further be expressed as [131]

dγ =
dγ2

2γ
=

d (γ · γ)

2γ
=
γ · dγ
γ

. (5.32)

Combining Eqs. (5.31) and (5.32) gives

dγ̂ =
dγ

γ
− γ · dγ

γ3
γ =

(γ · γ) I − γ ⊗ γ
γ3

· dγ ≡ A · dγ. (5.33)

Recall that

d = dn + ∆d, α = αn + ∆α, ∆d = J (γ̂) ∆α. (5.34)

The following can be obtained from Eq. (5.34):

∂d

∂∆d
=

∂α

∂∆α
= 1,

∂ (·)
∂∆α

=
∂ (·)
∂α

∂α

∂∆α
=
∂ (·)
∂α

, (5.35)

∂∆d

∂y
= 0,

∂∆d

∂γ
= ∆α

∂J

∂γ̂
·A, ∂∆d

∂∆α
= J. (5.35′)

Eq. (5.10) indicates that Ψ is an explicit functions of y, γ, and d, and Eq. (5.35)

implies that d is a function of γ and ∆α. Totally differentiating Eq. (5.10) gives

∂Ψ

∂y
= 1, (5.36)

∂Ψ

∂γ
=

(
∂Ψ

∂γ

)
y,d

+

(
∂Ψ

∂d

)
y,γ

∂d

∂∆d

∂∆d

∂γ
, (5.36′)

∂Ψ

∂∆α
=

(
∂Ψ

∂d

)
y,γ

∂d

∂∆d

∂∆d

∂∆α
. (5.36′)

The partial derivatives in Eq. (5.36) can further be expressed as(
∂Ψ

∂γ

)
y,d

= 2 (1− d) K̃γ and

(
∂Ψ

∂d

)
y,γ

= −K̃γ · γ. (5.37)
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Substituting Eqs. (5.35) and (5.37) into Eq. (5.36) gives

∂Ψ

∂γ
= 2 (1− d) K̃γ −∆α

(
K̃γ · γ

) ∂J
∂γ̂
·A, (5.38)

∂Ψ

∂∆α
= −JK̃γ · γ. (5.36′)

Totally differentiating Eq. (5.11) gives

∂A

∂y
= −∆t

∂v̇

∂y
,

∂A

∂γ
= −∆t

∂v̇

∂γ
,

∂A

∂∆α
= 1−∆t

∂v̇

∂α
. (5.39)

Hereafter the expressions for ∂v̇/∂y, ∂v̇/∂γ, and ∂v̇/∂α will be derived in turn.

Differentiating Eq. (5.6) with respect to y gives

∂v̇

∂y
=
n

η

(
Jy

κ+ A
− 1

)n−1
∂

∂y

(
Jy

κ+ A
− 1

)
=

nJ

η (κ+ A)

(
Jy

κ+ A
− 1

)n−1

. (5.40)

Differentiating Eq. (5.6) with respect to γ gives

∂v̇

∂γ
=
n

η

(
Jy

κ+ A
− 1

)n−1
∂

∂γ

(
Jy

κ+ A
− 1

)
=

ny

η (κ+ A)

(
Jy

κ+ A
− 1

)n−1
∂J

∂γ̂
·A.

(5.41)

Differentiating Eq. (5.6) with respect to α gives

∂v̇

∂α
=
n

η

(
Jy

κ+ A
− 1

)n−1
∂

∂α

(
Jy

κ+ A
− 1

)
= − nJy

η(κ+ A)2

(
Jy

κ+ A
− 1

)n−1

A′ (α) .

(5.42)

It can be verified that, if γ is held fixed, the above expressions for ∂Ψ/∂y, ∂Ψ/∂∆α,

∂A/∂y, and ∂A/∂∆α still hold.

5.4 UMAT algorithm

Figure 5.1 depicts a flowchart of the UMAT algorithm. The algorithm can be

described as follows:

1. Read τ n and ∆γ passed in by Abaqus/Standard, while read γn, dn, and αn

saved for the present element.
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2. Check if damage initiates or evolves (f ≥ 0).

3. If yes, (a) compute ∆α, (b) update α, d, and τ , and (c) compute L∗.

4. Otherwise, (a) update γ, (b) set α = αn and d = dn, and (c) compute L∗ (here

L∗ = KI+ + K̃c

(
I − I+

)
) and τ .

5. Save γ, d, and α for the present element, while return τ andL∗ to Abaqus/Standard.

Once d = dc, UMAT will set K = 0 and mark the present element as failed hereafter.

More details on Abaqus/Standard and UMAT can be found in Ref. [108].

Read τ n, γn, dn, αn, & ∆γ

Start

LoadingTrue False

Update γ, α, d, & τ

Compute ∆α

Compute L∗

Update γ, & set

End

α = αn & d = dn

condition met

Save γ, d, & α,

& return τ & L∗

Compute L∗ & τ

Fig. 5.1. UMAT algorithm.
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5.5 Numerical examples

Al-Khudairi et al. [143] performed a series of constant amplitude DCB and ENF

fatigue crack propagation tests on a type of unidirectional E-glass fiber/E722 com-

posite beams, and recorded the number of cycles for the onset of delamination growth

(G–N curves) and crack growth rate for different cyclic strain energy release rates. In

this section, the material parameters associated with the present model will first be

calibrated from these experimental data. The present model will then be validated by

simulating these pure mode tests using Abaqus/Standard. The feasibility of calibrat-

ing the interface model from G–N and crack growth rate curves will be evaluated.

At last, the model’s capability to handle mixed-mode fatigue delamination will be

demonstrated by simulating MMB tests with the same material parameters.

5.5.1 Mode I fatigue delamination and calibration of interface parameters

Some of the interface parameters can be predetermined (listed in Table 5.1) based

on basic assumptions and measurements from tests. First, the initial interfacial stiff-

ness K̃ describes the purely elastic response of the interface, thus conclusions from

CZM for monotonic loading can be used here. Specifically, K̃ takes a reasonable

value instead of a large penalty value to avoid numerical instabilities at damage ini-

tiation. Second, the initial damage threshold k can be determined from the fatigue

limit measured in mode I delamination tests. Fatigue limit in mode I delamination

corresponds to the energy release rate GI,th below which fatigue delamination will

not happen. Assuming that every cohesive element in DCB tests exhibits experimen-

tal mode I fatigue limit and near elastic behavior under the fatigue limit, k can be

estimated as

k = y0|γ̂=e1
= K̃γ0 · γ0

∣∣∣
γ̂=e1

≈ 2GI,th, (5.43)

where GI,th is measured as 114.6 J/m2. The mode I traction for fatigue damage

initiation can in turn be calculated as τI0 = K̃γ0

∣∣∣
γ̂=e1

= 87.0 MPa. Next, maximum

cyclic energy release rates are set as fixed ratios of experimentally determined critical
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energy release rates (GIc and GIIc). Finally, η is regarded as a scaling factor in

the viscosity function, and is selected as 106 for all cases. This assumption is used

to alleviate the calibration burden for this example, which should be revoked with

more experimental data available for calibration. Therefore, the parameters to be

calibrated are Q and b in the damage accumulation law (Eq. (4.21)), and n in the

viscosity function (Eq. (5.6)).

Table 5.1.
Predetermined interface parameters

(a) Chosen.

K̃ (N/mm3) dc η

3.3× 104 0.95 106

(b) Measured and calculated.

k (J/m2) τI0 (MPa) GIc (J/m2) GIIc (J/m2)

229.2 87.0 764 1150

To calibrate these three parameters, the DCB cyclic energy release rate versus cy-

cle (G–N) and crack growth rate results from Ref. [143] are used. For the crack growth

rate results, only specimen 3’s data are used, to simplify the calibration process. The

specimen has a span length (2L) of 180 mm, a width (b) of 20 mm, a thickness (2h) of

8.5 mm, and a initial crack length (a0) of 50 mm. Table 5.2 lists the elastic constants

of each laminate. Constant-amplitude cyclic load is applied at the pre-cracked end of

the beam with tension-tension displacement control. The ratio of minimum to max-

imum displacement (R) is 0.1, and the load frequency is 5 Hz. Different designated

maximum cyclic energy release rate GImax’s are achieved by adjusting the maximum

cyclic displacement δImax, calculated as (ASTM standard D6115 [144])

δImax =

√
2

3
b (a0 + |∆|)GImaxCI, (5.44)

where |∆| = 2.293 mm is a correction constant measured in Ref. [143], and CI =

δImax/PImax is the initial compliance of the DCB specimen that can be obtained from
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quasi-static monotonic loading. More details on the experiments can be found in

Ref. [143].

Table 5.2.
Elastic constants of each laminate

(a) Measured.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) ν12 = ν13

38.9 13.0 5.0 0.24

(b) Chosen.

G23 (GPa) ν23

3.7 0.45

Following the previous CZM, each laminate is idealized as a 2D beam in FEA under

plane stress assumptions. Figure 5.2 shows the corresponding finite element model.

Zero thickness cohesive elements are inserted between two planar beam sections. The

two beam sections are meshed with 4-node quadrilateral elements (CPS4) with 6

elements in the thickness direction (0.708 mm each) and 300 elements in the length

direction (0.6 mm each). The cohesive zone consists of 216 4-node cohesive elements

having 2 integration points (COH2D4) and a length of 0.6 mm. For DCB tests, the

path dependence function J is set to 1 for all material points in the cohesive zone,

assuming that only mode I deformation is present on the local level.

The efficient global optimization (EGO) method is adopted for curve fitting. EGO

is a class of Bayesian optimization methods first developed by Jones et al. [145],

suitable for expensive unknown function evaluations. In this work, parameters of the

unknown function are Q, b, and n, and each function evaluation consists of:

1. simulating DCB fatigue delamination with five different GImax levels (20%, 25%,

30%, 35%, and 40% of GIc);

2. extracting simulated crack growth rate and number of cycles to delamination

onset for each case;
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Fig. 5.2. Finite element model for the DCB specimen.
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3. calculating the difference between simulated results and averaged experimental

data at these five levels, which serves as the function value.

Specifically, to determine fatigue delamination onset, ASTM standard D6115 [144]

recommends using the number of cycles until 1% or 5% of change in the structure’s

compliance as two quantifiable criteria. To determine crack growth rate in the sim-

ulations, the last material point to reach 5% change in stiffness is considered as the

crack tip, and the movement speed of the crack tip serves as the crack growth rate.

The goal is to find the set of parameters that minimize this function. First, sample

points are taken in the design space of the three fitting parameters to perform the

first set of evaluations. EGO then uses a surrogate model (e.g., polynomials) to create

a response surface that includes the evaluated points, and also provides uncertainty

estimation of the entire model. More function evaluations are carried out at most

promising locations based on the uncertainty estimation. The surrogate model is thus

iteratively updated until a stopping criterion is satisfied. Because the development

of an optimization algorithm is beyond the scope of this work, an implementation of

EGO by the Dakota toolkit [146] is adopted. Based on the previous CZM and some

numerical tests, the initial range for Q, b, and n are set as 0.01 to 5.

Table 5.3.
Calibrated interface parameters

Q (J/m2) b n

0.864 0.103 1.93

Table 5.3 lists the calibrated parameters. Figure 5.3 shows the fitted G–N and

crack growth rate curves. Figure 5.4 compares a segment of the compliance evolution

results between experiments and the present model. Within this segment, the rate

of compliance increase gradually decreases due to stable crack propagation. Since

the goal is to determine the onset of fatigue delamination, rapid failure and unsta-
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ble propagation is not studied in both the referenced experiments and the present

simulations.

The calibrated curves in Figure 5.3 represent the best fit for the two sets of sparsely

distributed experimental data points. In Figure 5.3(a), the calibrated curves are C1

continuous and shows an asymptotic trend towards the fatigue limit. The curve

for 1% compliance lies to the left of the one for 5% compliance change, showing a

more conservative prediction for delamination onset. Unlike empirical models, the

extrapolated GImax value at Nf = 1 does not equal GIc. This prediction doesn’t

harm the present model’s validity because: 1) low-cycle fatigue with possible plastic

deformation is beyond the scope of this work; 2) cyclic loading with a frequency of

5 Hz is dynamic loading, and the dynamic strength of a material is usually higher

than the static strength. Overall, Figure 5.3(a) shows that the present model can

create realistic delamination onset results for different loading levels.

In Figure 5.3(b), the horizontal axis represents the ratio between the maximum

cyclic energy release rate and the variation of the critical energy release rate (GIr).

Following Ref. [143], GIr is obtained as

GIr = GIc + 20.2 (a− a0)0.64 , (5.45)

where a is the instant crack length at the time of measurement. The calibrated

curve deviate from the leftmost experimental data point because it is not part of the

calibration criteria. Despite the scatter of the experimental data, the calibrated curve

can characterize their overall trend.

5.5.2 Mode II fatigue delamination

In this section, the parameters calibrated previously using experimental data from

mode I fatigue delamination tests will be adopted to predict mode II fatigue delami-

nation on the same material with ENF tests. Experimental crack growth rate results

from Ref. [143] will be used for comparison.
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(a) G–N curves.

(b) Crack growth rate curve.

Fig. 5.3. (a) G–N and (b) crack growth rate curves for DCB tests.
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Fig. 5.4. Compliance evolution curve for GImax = 0.3GIc.
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The specimen has a span length (2L) of 100 mm, a width (b) of 20 mm, a thickness

(2h) of 8.5 mm, and a initial crack length (a0) of 25 mm. Constant-amplitude cyclic

load is applied on top of the specimen at the middle with displacement control. The

ratio of minimum to maximum displacement (R) is 0.1, and the load frequency is

5 Hz. Similar to DCB tests, different designated maximum cyclic energy release rate

GIImax’s are achieved by adjusting the maximum cyclic displacement δIImax, calculated

as

δIImax =

√
2

9a2
0

b (2L3 + 3a3
0)GIImaxCII, (5.46)

where CII = δIImax/PIImax is the initial compliance of the structure for ENF tests

that can be obtained from quasi-static monotonic loading. The corresponding finite

element model has the same element types and sizes as the DCB finite element model.

Since GII,th is not directly available from experiments, the value of path dependence

function J for mode II can be estimated as the ratio between GImax and GIImax at the

lowest crack growth rate measured in the experiments,

J(e2) ≈ GI,th/GII,th ≈ GImax/GIImax|da/dN=5×10−5mm/cycle = 3.05, (5.47)

where 5 × 10−5mm/cycle is the lowest crack growth rate measured from ENF tests.

The path dependence function J is set to 3.05 for all material points in the cohesive

zone, assuming only mode II deformation is present on the local level.

Figure 5.5 compares the predicted crack growth rate curve with the experimen-

tal data points. Only specimen 2’s experimental data are presented for simplic-

ity. The variation of the critical energy release rate in this example is calculated as

GIIr = 0.162a2.77 [143]. While the simulated curve captures the overall trend, most

of the curve lies below the experimental data, signifying a slower crack growth. One

possible reason is the path dependence function J is estimated at 5× 10−5mm/cycle,

while 10−7mm/cycle is the fatigue crack growth threshold recommended by ASTM

standard E647 [147]. Additionally, during fatigue delamination tests, phenomena like

fiber bridging can also result in differences in fatigue limit measurements [148]. Note

that while a higher critical energy release rate is measured for mode II fatigue de-
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lamination, a lower fatigue limit is actually obtained based on the above discussion.

Complete measurements for fatigue limits in different mode mixture ratios are desired

to properly determine the path dependence function for the present model.

Fig. 5.5. Crack growth rate curve for ENF tests.

5.5.3 Mixed mode fatigue delamination

In this section, mixed mode delamination will be simulated with previously cali-

brated parameters. Let β2 denote the mode mixture raito, such that β2 = GII/G =

GII/(GI + GII). The relation between mixed mode critical energy release rate Gc

and β2 needs to be determined. According to Ref. [75], who performed a series of

delamination tests with different mode mixture ratios, this relation is usually non-

linear. With the lack of data for the above calibrated interface, and for the purpose

of demonstration, the calibrated results from the previous CZM is adopted here by
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setting the (Gc−GIc)/(GIIc−GIc)–β2 relationship to be the same. Table 5.4 lists the

assumed Gc–β2 relationship.

Table 5.4.
Assumed Gc–β2 and J–β2 relationships.

DCB 20%MMB 50%MMB 80%MMB ENF

β2 0.0 0.2 0.5 0.8 1.0

Gc (J/m2) 764 833 847 974 1150

The MMB finite element model has the same size and mesh as the DCB finite

element model. Figure 5.6 shows a sample finite element model of a MMB specimen

where the load is applied on a rigid loading lever. The details on how to determine

lever length for each mode mixture ratio can be found in ASTM standard D6671 [149].

Figure 5.7 compares the MMB test crack growth rates with the DCB test. ENF

test results are not plotted in the same figure due to the differences in specimen sizes.

The curves are C1 continuous and display an acceleration in crack growth rates as the

maximum cyclic energy release rates increase. This shows their trends toward eventual

failure. In this example, higher mode mixture ratio results in faster crack growth due

to the assumptions made to the path dependence function. In reality, higher mode

mixture ratio is experimentally tested to reduce crack growth rate. This can be

easily implemented with the corresponding fatigue limit data for mixed-mode fatigue

delamination. Effects of different fatigue limits can also be properly implemented

with a suitable set of experimental data.

5.6 Conclusions

In this chapter, a string-based CZM for interlaminar fatigue is developed. A visco-

damage model, capable of handling brittle damage behavior, is developed to produce

realistic interlaminar crack propagation under high-cycle fatigue. An implicit inte-
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Fig. 5.6. Sample finite element model for a MMB specimen.

Fig. 5.7. Simulated crack growth rate curves for DCB and MMB tests.
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gration scheme, which can handle complex separation paths and mixed-mode delam-

ination, is developed and implemented in Abaqus/Standard via UMAT. A systemic

method for choosing and calibrating the interfacial material parameters is presented.

The following findings can be obtained from the results:

• The present model is found to handle high-cycle, mixed-mode interlaminar fa-

tigue well.

• It is found to produce stable fatigue crack growth.

• It is found feasible to calibrate a viscodamage CZM through G–N and crack

growth rate curves.
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6. CONCLUSIONS AND RECOMMENDATIONS OF

FUTURE WORK

6.1 Conclusions

A series of material models for failure prediction in composites have been devel-

oped in this work. All models follow the same thermodynamic framework of general-

ized standard materials. These models possess the following common features:

• They specify the relation between each pair of state variable and its conjugated

thermodynamic driving force (e.g., the strain and the stress tensors, and the

damage state variable and the damage conjugate force) and a damage function

describing the proportionality limit.

• They obey the principle of maximum dissipation.

Using unified thermodynamic principles for different failure mechanisms leads to the

following advantages:

• It eliminates the arbitrariness in the selection of damage evolution laws and the

loading/unloading conditions for different material behavior.

• It regularizes damage evolution along nonproportional loading paths.

• It simplifies the numerical implementation and modification process by allowing

modularization and sharing of material subroutines among different models.

This work also explored different calibration methods for choosing suitable model

parameters. While it is not within the scope of this work, a unified calibration

method and tool can be easily developed for present models due to their similarity in

model formulation.
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6.2 Recommendations of Future Work

The following topics are recommended for future work:

• Multiscale implementation of generalized standard models — The present mod-

els can be incorporated into a multiscale modeling approach (e.g., the mechanics

of structure genome [150]) for composite damage and fracture prediction. They

can be directly implemented either on the micro- or macro-scale, while requiring

a homogenized damage parameter to bridge different scales.

• Global cycle jump scheme for multiscale fatigue simulation — Cycle jump meth-

ods (or similar numerical extrapolation methods) are required to efficiently com-

pute structural fatigue. For multiscale fatigue analysis, such a method should

also be multiscale, in the sense that microscale error estimations are used to

adjust macroscale extrapolation stepsize.

• Machine learning aided material parameter calibration — Machine learning

techniques have been applied to more and more aspects in engineering structural

design. EGO method used in 5.5.1 is one of them. A more rigorous machine

learning technique should include basic material formulation to further improve

the accuracy of parameter calibration.
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