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ABSTRACT 

In urbanized river basins, sanitary wastewater and urban runoff (non-sanitary water) from 

urban agglomerations drain to complex engineered networks, are treated at centralized wastewater 

treatment plants (WWTPs) and discharged to river networks. Discharge from multiple WWTPs 

distributed in urbanized river basins contributes to impairments of river water-quality and aquatic 

ecosystem integrity. The size and location of WWTPs are determined by spatial patterns of 

population in urban agglomerations within a river basin. Economic and engineering constraints 

determine the combination of wastewater treatment technologies used to meet required 

environmental regulatory standards for treated wastewater discharged to river networks. Thus, it 

is necessary to understand the natural-human-engineered networks as coupled systems, to 

characterize their interrelations, and to understand emergent spatiotemporal patterns and scaling 

of geochemical and ecological responses.  

My PhD research involved data-model synthesis, using publicly available data and 

application of well-established network analysis/modeling synthesis approaches. I present the 

scope and specific subjects of my PhD project by employing the Drivers-Pressures-Status-

Impacts-Responses (DPSIR) framework. The defined research scope is organized as three main 

themes: (1) River network and urban drainage networks (Foundation-Pathway of Pressures); (2) 

River network, human population, and WWTPs (Foundation-Drivers-Pathway of Pressures); and 

(3) Nutrient loads and their impacts at reach- and basin-scales (Pressures-Impacts) 

Three inter-related research topics are: (1) the similarities and differences in scaling and 

topology of engineered urban drainage networks (UDNs) in two cities, and UDN evolution over 

decades; (2) the scaling and spatial organization of three attributes: human population (POP), 

population equivalents (PE; the aggregated population served by each WWTP), and the 

number/sizes of WWTPs using geo-referenced data for WWTPs in three large urbanized basins in 

Germany; and (3) the scaling of nutrient loads (P and N) discharged from ~845 WWTPs (five 

class-sizes) in urbanized Weser River basin in Germany, and likely water-quality impacts from 

point- and diffuse- nutrient sources.  

I investigate the UDN scaling using two power-law scaling characteristics widely 

employed for river networks: (1) Hack’s law (length-area power-law relationship), and (2) 

exceedance probability distribution of upstream contributing area. For the smallest UDNs, length-
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area scales linearly, but power-law scaling emerges as the UDNs grow. While area-exceedance 

plots for river networks are abruptly truncated, those for UDNs display exponential tempering. 

The tempering parameter decreases as the UDNs grow, implying that the distribution evolves in 

time to resemble those for river networks. However, the power-law exponent for mature UDNs 

tends to be larger than the range reported for river networks. Differences in generative processes 

and engineering design constraints contribute to observed differences in the evolution of UDNs 

and river networks, including subnet heterogeneity and non-random branching. 

In this study, I also examine the spatial patterns of POP, PE, and WWTPs from two 

perspectives by employing fractal river networks as structural platforms: spatial hierarchy (stream 

order, ω) and patterns along longitudinal flow paths (width function). I propose three 

dimensionless scaling indices to quantify: (1) human settlement preferences by stream order, (2) 

non-sanitary flow contribution to total wastewater treated at WWTPs, and (3) degree of 

centralization in WWTPs locations. I select as case studies three large urbanized river basins 

(Weser, Elbe, and Rhine), home to about 70% of the population in Germany. Across the three river 

basins, the study shows scale-invariant distributions for each of the three attributes with stream 

order, quantified using extended Horton scaling ratios; a weak downstream clustering of POP in 

the three basins. Variations in PE clustering among different class-sizes of WWTPs reflect the size, 

number, and locations of urban agglomerations in these catchments.  
WWTP effluents have impacts on hydrologic attributes and water quality of receiving river 

bodies at the reach- and basin-scales. I analyze the adverse impacts of WWTP discharges for the 

Weser River basin (Germany), at two steady river discharge conditions (median flow, QR50; low-

flow, QR90). This study shows that significant variability in treated wastewater discharge within 

and among different five class-sizes WWTPs, and variability of river discharge within ω <3, 

contribute to large variations in capacity to dilute WWTP nutrient loads. For QR50, reach-scale 

water quality impairment assessed by nutrient concentration is likely at 136 (~16%) locations for 

P and 15 locations (~2%) for N. About 90% of the impaired locations are ω<3. At basin-scale 

analysis, considering in stream uptake resulted 225 (~27%) P-impaired streams, which was ~5% 

reduction from considering only dilution. This result suggests the dominant role of dilution in the 

Weser River basin. Under QR90 conditions [(QR50/QR90) ~ 2.5], water quality impaired locations are 

likely double than QR50 status for the analyses. This study for the Weser River basin reveals that 



 
 

17 

the role of in-stream uptake diminishes along the flow paths, while dilution in larger streams (4≤ 

ω ≤7) minimizes the impact of WWTP loads.  

Furthermore, I investigate eutrophication risk from spatially heterogeneous diffuse- and 

point-source P loads in the Weser River basin, using the basin-scale network model with in-stream 

losses (nutrient uptake).Considering long-term shifts in P loads for three representative periods, 

my analysis shows that P loads from diffuse-sources, mainly from agricultural areas, played a 

dominant role in contributing to eutrophication risk since 2000s, because of ~87% reduction of 

point-source P loads compared to 1980s through the implementation of the EU WFD. Nevertheless, 

point-sources discharged to smaller streams (ω<3) pose amplification effects on water quality 

impairment, consistent with the reach-scale analyses only for WWTPs effluents. Comparing to the 

long-term water quality monitoring data, I demonstrate that point-sources loads are the primary 

contributors for eutrophication in smaller streams, whereas diffuse-source loads mainly from 

agricultural areas address eutrophication in larger streams. The results are reflective of spatial 

patterns of WWTPs and land cover in the Weser River basin. 

Through data-model synthesis, I identify the characteristics of the coupled natural (rivers) 

– humans – engineered (urban drainage infrastructure) systems (CNHES), inspired by analogy, 

coexistence, and causality across the coupled networks in urbanized river basins. The quantitative 

measures and the basin-scale network model presented in my PhD project could extend to other 

large urbanized basins for better understanding the spatial distribution patterns of the CNHES and 

the resultant impacts on river water-quality impairment. 
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 INTRODUCTION 

1.1 Research motivation and scope 

River networks form the dominant continuous natural drainage pathways transporting 

water and substances from headwaters to the basin outlet in a river basin, which is the well-known 

as the River Continuum Concept (Vannote et al., 1980). In addition, self-organized structural 

patterns of river flow paths converging from all points in a river basin to the basin outlet is a 

popular example of fractals in nature (Mandelbrot, 1983; Feder, 1988). Rivers also act as spatial 

integrators and mediators of temporal dynamics of hydrological and biogeochemical processes 

occurring over a river basin, as manifested in the hydrologic responses (e.g., hydrograph) and 

biogeochemical responses (e.g., solute export, chemograph) (Gall et al., 2013; Kamjunke et al., 

2013; Andres-Domenech et al., 2015; Musolff et al., 2017). Moreover, river networks provide the 

riverine ecosystems with diverse habitats across the entire riverine landscape (both the flood-scape 

and the river-scape), facilitating the biodiversity and integrity of the lentic and lotic ecosystems 

(Platts, 1979; Brown & Swan, 2010; Altermatt, 2013; Widder et al., 2014; Rinaldo et al., 2018), 

which is known as the Riverine Ecosystem Synthesis (Thorp et al., 2006).  

Recognizing various attributes and roles of river networks encompassing multiple fields, 

well-established knowledge on globally consistent self-organized fractal river networks (Dodds & 

Rothman, 2000; Rodríguez-Iturbe & Rinaldo, 2001; Veneziano & Langousis, 2010) has been 

employed to generate a structural and functional framework for several modeling applications, 

including human migration along river networks (Campos et al., 2006; Bertuzzo et al., 2007), 

aquatic species dispersal and diversity (Muneepeerakul et al., 2008; Carrara et al., 2012; Peterson 

et al., 2013; Bertuzzo et al., 2015), and the spread of waterborne diseases (Bertuzzo et al., 2008; 

Bertuzzo et al., 2010; Mari et al., 2012). More recently, socio-hydrology studies of coupled human-

water systems (Sivapalan et al., 2012; Hall, 2019)  have used river networks to estimate the 

location and spatial pattern of human settlements in river basins (Kummu et al., 2011; Ceola et al., 

2015; Fang et al., 2018; Fang & Jawitz, 2019). Researchers (referenced therein) commonly pointed 

out the diverse favorable roles of rivers to the human communities for explaining human settlement 

patterns they found, such as supply source of daily used water, receiving body of wastewater, 

transport pathways within/across nations, and provision of recreational spaces. 
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Simultaneously, humans have empirically recognized that people should maintain and 

conserve river systems for relying on the beneficial services of rivers (e.g., recreational, ecological), 

otherwise people inevitably encounter and suffer returning harms to ourselves. One representative 

example is the lethal cholera epidemics that erupted in Europe in the mid-1800s (Colwell, 1996; 

Davenport et al., 2019). In Germany, unprecedented growth of human population, propelled by 

urbanization and industrialization during that period, contributed to corresponding wastewater 

production. Poor sanitation systems at that time also accelerated the wastewater-driven cholera 

outbreak throughout the nation. Massive mortality from cholera in 1866 triggered the construction 

of sanitary sewer systems (Seeger, 1999). Despite the improvements in public hygiene, wastewater 

discharges from sanitary sewerages gradually increased severity of water-quality impairments in 

receiving rivers, prompting the initiative to construct wastewater treatments plants (WWTPs) in 

the late 1880s (Seeger, 1999). Increasing public awareness and expert knowledge about river and 

lake eutrophication prompted the development of a tertiary treatment (more advanced) for 

reducing nutrient loads. The first WWTP deploying the tertiary treatment technology began 

operations in 1978 (Seeger, 1999). The steady spread of the tertiary treatment technology and 

continuous expansion of the sewerage length in Germany (ATT et al., 2015; Berger et al., 

2017) contributed to ~93% connectivity to WWTPs with tertiary treatment technology (EEA, 

2017). 

Indeed, Germany is among the top three EU countries in terms of establishing national-

scale consistent sanitation systems and providing the wastewater collection and treatment services 

to most of residences across the nation. Thus, Germany has already met the goal for public access 

to adequate sanitation (goal 6.2) among the UN sustainable development goals (SDGs), which the 

UN member states agree to achieve by 2030 (BMUB/UBA, 2018). The evident achievements of 

Germany might depend on continued national investment around for the last century to construct 

sanitation systems and treatment technology development. However, as the global-scale agreement 

for SDGs shows, there are more countries requiring necessary sanitation systems. For example, 

even within EU countries, there are large variabilities in the percent of human population 

connected to urban wastewater collecting and treatment systems (from <50% to 100%) (EEA, 

2017b). Although it cannot be argued that the current distribution patterns of the sanitation systems 

in Germany are ultimate exemplary archetype that other countries with lack of connectivity should 

pursue for accomplishing the given goal, understanding spatial patterns of river-humans-WWTPs 
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in a developed country with established wastewater treatment systems helps in characterizing the 

WWTPs-distribution of other countries and suggesting future development direction for ensuring 

public hygiene and riverine ecosystems integrity.  

However, higher connectivity of people to sanitary sewer networks and WWTPs with 

advanced treatment technology cannot ensure the healthy status of receiving river bodies regarding 

nutrients, physio-chemical, and ecological perspectives. The European Union Water Framework 

Directive (EU WFD; 2000/62/EC) (European Commission, 2000) set the goal to achieve by 2027 

at least “good status” for both surface water bodies (rivers; lakes; transitional and coastal waters) 

and groundwater. At the end of the first management cycle (2009-2015), Germany achieved the 

WFD objective for <10% of about total 9,800 surface water bodies. Major contributing factors 

were alteration of river morphology causing loss of habitat diversity, and continued diffuse nutrient 

loads (phosphorus P; nitrogen N) from intensively-managed lands (BMUB/UBA, 2016). 

In Germany, relative contribution of point-sources N and P loads discharged from 

municipal WWTPs decreased continuously since 1983, through increased usage of phosphorus-

free detergents, and introduction of stringent regulations for wastewater treatment (BMUB/UBA, 

2014; Ibisch et al., 2016; Westphal et al., 2019). Similar reductions were achieved in several other 

EU countries (Ludwig et al., 2009; Passy et al., 2013; Meybeck et al., 2018). However, such 

remarkable reductions do not always guarantee mitigation of river water quality impairments and 

prevention of algal blooms. Nutrient loads from WWTPs could cause reach-scale (local) 

eutrophication, and may amplify the adverse impacts of diffuse sources (Jäger & Borchardt, 2018). 

In smaller streams, nutrient loads discharged from WWTPs could degrade river water 

quality and habitat integrity if dilution of WWTP-effluents by river discharge is insufficient (Rice 

& Westerhoff, 2017).  Even in larger river reaches, nutrient loads from WWTPs serving larger 

cities may also contribute to eutrophication when the dilution is insufficient (García-Galán et al., 

2011). Such problems are exacerbated during extended periods of low-flow and drought conditions 

(Withers & Jarvie, 2008). Identifying and rehabilitating the impaired streams is a river basin 

management goal, especially for smaller streams and headwaters, which sustain diverse habitats 

and biodiversity (Meyer et al., 2007; Besemer et al., 2013; Baattrup-Pedersen et al., 2018) and are 

important for biogeochemical regulation of nutrient loads (Alexander et al., 2007). Thus, the 

impacts of WWTPs nutrient loads on water quality impairment need to be investigated both at the 

reach-scale (i.e., considering dilution of each WWTP discharge alone) and at the basin-scale (i.e., 
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through cumulative nutrient loads attenuated by dilution and in-stream nutrient uptake) 

(Kuemmerlen et al., 2019). 

In fact, spatial distributions of WWTPs discharges (treated effluents and nutrient loads) to 

a river network are determined by a combination of three main factors: (1) human population 

distribution within a river basin; (2) sizes of sanitary sewer-sheds connected to WWTPs, and (3) 

wastewater treatment regulations and the portfolio of technologies used at WWTPs (see Urban 

Waste Water Treatment Directive 91/271/EEC (EEC, 1991)). Thus, they can be represented as the 

multiple-layers of river network structures, human population settled, urban drainage networks 

(UDNs) and WWTPs for a given urbanized river basin. Furthermore, the influence of 

anthropogenic pressures from point- and diffuse-sources on river water-quality can be laid as the 

resultant layer for the inputs generated from multi-layers. The input multi-layers conceptualize the 

coupled natural-human-engineered (CNHE) systems in urbanized river basins, and the last output 

layer indicates their corresponding influence (Figure 1.1). 

With the five layers of interest in this study, I present the scope and specific subjects by 

employing the Drivers-Pressures-Status-Impacts-Responses (DPSIR) framework (OECD, 1993; 

EEA, 1999), which has been employed to systematically understand and assess a system of interest 

(Whitall et al., 2007; Mattas et al., 2014; Elliott et al., 2017): People act as main drivers producing 

pressures (nutrients loads) on the water-quality, ecological and chemical status of receiving river 

Figure 1.1 Schematic representation for the research subject and scope in this study 
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bodies through pathways (UDNs & WWTPs), thus responses, such as environmental regulations 

and relevant sanitation facilities, are applied to mitigate impacts of the anthropogenic pressures 

(hydrological alteration and eutrophication). 

The defined research scope is organized as three main themes. In the next section, research 

background, questions and hypotheses are given for each theme: 

1. River network and UDNs (Foundation-Pathway) 

2. River network, human population, and WWTPs (Foundation-Drivers-Pathway) 

3. Nutrient loads and their impacts at reach- and basin-scales (Pressures-Impacts) 

1.2 Research background, questions, and hypotheses 

1.2.1 Functional topological scaling of evolving urban drainage networks 

Efficient drainage of urban landscapes is among the critical services provided to the 

citizens for avoiding flooding of streets and neighborhoods, and for maintaining flows to WWTPs. 

Early engineering studies on infrastructure networks focused on cost-optimal design solutions, 

maintaining efficient operations, and reliable (stable) provision of services to meet customer 

demands, guided by fail-safe engineering design principles within regional limitations such as 

demography, geology, and topography under budgetary and regulatory constraints (Froise & 

Burges, 1978; Loucks, 1979; Harremoës & Rauch, 1996; Cantarella & Vitetta, 2006; Ukkusuri et 

al., 2007; Türker, 2011). More recently, urban infrastructure has been examined from network 

theory perspectives, both as individual complex networks (Rosvall et al., 2005; Porta et al., 2006; 

Yazdani & Jeffrey, 2011, 2012; Diao et al., 2014; Masucci et al., 2014; Porse & Lund, 2015), and 

as interdependent complex networks (Chan & Dueñas-Osorio, 2014; Morris & Barthelemy, 2014). 

These studies have promoted a generalized understanding of structural and functional attributes of 

evolving engineered urban networks. 

Of particular interest here are UDNs that include storm-water, sanitary sewers, and 

combined sanitary storm-water systems. UDNs are located below-ground at shallow depths and in 

close proximity to road networks (Blumensaat et al., 2012; Mair et al., 2012; Klinkhamer et al., 

2017; Mair et al., 2017). The understanding about the network scaling characteristics of engineered 

UDNs is limited with surprisingly little literature (e.g., Oh (2010)). An intriguing question in this 

regard is how the topology of UDNs compares with their natural analogs, i.e., river networks. Like 
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rivers, UDNs involve gravity-driven and directed flows from all terminal points over the entire 

drainage area converging towards a WWTP. In river networks, terminal points are drainage areas 

for all first-order streams, whereas in UDNs households are the terminal points. Many large cities 

have multiple outlets (e.g., combined sewer overflow outlets; several WWTPs), forming multiple 

sewer-sheds, whose boundaries may overlap several natural watersheds. UDNs consist of junctions 

and conduits, which correspond to nodes and links, like confluences and reaches in river networks. 

Same as stream orders in river networks, UDNs exhibit hierarchy of pipe-diameters for a range of 

designed discharges. These structural and functional similarities prompted the application of river 

network hierarchical organization concepts to describe UDNs. Cantone & Schmidt (2011b, 2011a), 

Sitzenfrei et al. (2013), and Urich et al. (2010) classified the hierarchy of real/virtual sewer systems 

through Horton-Strahler ordering scheme (Strahler, 1957). However, they did not investigate 

sewer networks by using scaling relations for natural river networks. 

Differences between rivers and UDNs are also informative. They differ in terms of 

generative processes, scale, growth direction, branching structure, and optimality (Table 1.1). 

While river networks evolve through natural processes, UDNs are engineered networks, designed 

to meet efficiently urban drainage requirements at the minimum cost. River networks drain large 

landscapes, up to the continental scales (~106 km2; e.g., Amazon; Congo; Nile; de Plata; 

Mississippi). However, even the largest known UDNs drain much smaller urban sewer-sheds (≤ 

103 km2) (USEPA, 2001). These differences are likely to contribute to differences in network 

topology of UDNs to those reported for river networks. 
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Table 1.1 Key differences between river networks and urban drainage networks 

Factors River Networks Urban Drainage Networks 
Generative 
Processes 

River networks are formed by 
geomorphological processes, 
including erosion, deposition, 
weathering, tectonic uplift, and 
ecosystem functions over geologic 
time-scales. 

UDNs are planned, designed, built, 
maintained, and operated by engineers 
to drain urban landscapes. Existing 
UDNs have evolved over several 
decades or centuries in some cases. 

Network 
Size & Flow 

Direction 

Large river networks drain 
continental-scale basins (~106 km2), 
with nested sub-basins ranging from 
102 to 105 km2. Rivers carve out flow 
along the steepest downstream 
gradient. 

Largest urban drainage networks are 
~103 km2, usually draining to a single 
outlet (a WWTP). Large cities (>106 
population) have multiple WWTPs. 
Sewer lines are often laid out to follow 
roads rather than in the direction of 
steepest descent (Blumensaat et al., 
2012; Haghighi, 2013). 

Direction of 
Network 
Growth 

For a given drainage area with an 
established outlet, starting with the 
main channel, river networks grow 
upstream, eventually occupying 
entire drainage area (Parker, 1977). 

The drainage area grows in time as the 
city grows, and its maximum 
discharge increases. The initial UDN 
draining to a WWTP expands as new 
neighborhoods are added to the city. 

Network 
Structure 

Bifurcating, branching trees. Loops 
occur only under exceptional 
conditions such as river deltas and 
braided rivers (p. 231 in Knighton 
(1998)).  

Imperfect branching trees, with 2 or 
more pipes connected to some 
junctions. Drainage areas can cross 
watershed boundaries. Loops exist 
although they usually represent less 
than 1% of the network. When loops 
represent a significant fraction of 
UDNs, methods have been proposed 
for defining equivalent binary-tree 
networks for looped configurations 
(Haghighi, 2013; Seo & Schmidt, 
2014).  

Optimality Optimal channel network 
hypotheses, e.g., minimize total 
energy dissipation (Rodríguez-Iturbe, 
Rinaldo, et al., 1992; Paik & Kumar, 
2010), given a fixed drainage area 
delineated by topography, under the 
assumption of uniform forcing 
(constant rainfall) over a 
heterogeneous landscape. 

Maximum engineering efficiency for 
designed total discharge (at the 
outlet), and minimum costs. Most 
projects pursue local optimizations in 
time and space, often constrained by 
budgets. Expansion of the system 
after repeated local optimization may 
not result in optimality achieved over 
time. 

  



 
 

25 

Such analogies and differences lead me to compare topologies of UDNs and rivers. It is 

well-established that river networks are fractals with self-similarity revealed through quantitative 

scaling relationships (Horton, 1945; Hack, 1957; Tokunaga, 1978; Tarboton et al., 1991; 

Rodríguez-Iturbe, Ijjász-Vásquez, et al., 1992; Marani et al., 1994; Rigon et al., 1996). Here I 

examine whether UDNs and river networks share such scaling properties, given similarities in their 

functions (landscape drainage), and despite differences (engineered versus natural). In particular, 

I investigate the functional organization and scaling of UDNs in terms of their topological features, 

and examine how scaling patterns change as they grow over several decades. Here, I analyze UDN 

evolution towards some attractor (“mature” network) using time-stamped data. I begin with an 

explanation of scaling relationships for river networks underlying the study UDNs, to investigate 

their conformity with well-known and universal relationships established for river networks. Then, 

I explore the scaling relationships of the most recent UDNs, and compare the findings to those 

found from river networks. Further, I examine how the scaling of an engineered network has 

evolved over time by examining UDN topology during the preceding decades. 

1.2.2 Spatial distribution patterns of wastewater treatment plants and human population 

I selected as case studies three large urbanized river basins in Germany (Weser, Elbe, and 

Rhine; accounting for about 70% of total population in Germany], and examined the spatial 

organizations of three attributes: population (POP); aggregation of POP into sewer-sheds served 

by WWTPs (i.e., population equivalent, PE), and WWTPs distribution. I also characterized the 

inter-relationships in the spatial organizations of these three attributes. PE is the common measure 

of aggregated POP for a given WWTP and includes sanitary flows from households and non-

sanitary flows (e.g., urban storm water runoff). Organic biodegradable load having a five-day 

biochemical oxygen demand (BOD5) of 60 g of oxygen per day is set as one PE (EEC, 1991). 

Note that (PE/POP) > 1 for each WWTP is indicative of the contribution of non-sanitary inflows. 

Urban storm water runoff is expected to be higher in larger cities with more impervious area, and 

the runoff coefficient is larger for bigger storm events (Shuster et al., 2005; Walsh et al., 2012; 

Yao et al., 2016). 

I used a rich archive of national-scale, geo-referenced, high-resolution data for municipal 

WWTPs serving as spatially distributed point-sources of treated wastewater discharge and 

associated nutrient loads in German river basins. The following questions and corresponding 
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hypotheses guided the technical analyses in this study: (1) What are the spatial distributions of 

POP, PE served, and the number of WWTPs in urbanized river basins?; and (2) How can I quantify 

the spatial distributions of these three inter-related attributes (POP, PE, and WWTP) along river 

networks in urbanized catchments?  

I used river networks, which exhibit universally consistent scaling patterns, as the structural 

platforms for investigating spatially organized patterns of anthropogenic pressures. Following 

Fang et al. (2018), I characterized the joint structure of the river networks and the population 

pressures based on stream order, width functions, and power spectra. Horton-Strahler (H-S) stream 

order (Horton, 1945; Strahler, 1957) allows systematic linkage of any spatial attribute embedded 

in river networks with the network hierarchy. The width function (WF) along the longitudinal flow 

path (Marani et al., 1994; Rodríguez-Iturbe & Rinaldo, 2001) is a one-dimensional representation 

of attributes distributed in a river basin along hydrological flow paths from upstream reaches to 

the basin outlet. I identified the similarities/differences in analyzed trends of spatial organization 

among the three river basins. 

Motivated by previous findings for Horton scaling relationships of human-related variables 

(Miyamoto et al., 2011; Fang et al., 2018), I investigated whether POP distributions in  German 

urbanized basins follow globally consistent patterns of human settlements (Fang et al., 2018). 

Knowing that sanitary sewer networks exhibit self-similar topology like river networks (Yang et 

al., 2017), I hypothesized that total PE, the aggregation of POP over multiple sanitary sewer 

networks, also involves scale-invariance over H-S orders. Spatial distribution of WWTPs by H-S 

orders reflects not only the total PE-size distribution over H-S orders, but also the aggregation of 

PE for multiple WWTPs discharging to a given H-S order. Thus, I hypothesized that the 

distribution of WWTPs also exhibits Horton scaling relationships.  

I propose three dimensionless scaling indices to capture the functional relationships among 

river network hierarchy, and distributions of POP, PE, and WWTPs. I hypothesized that these 

scaling indices share consistent patterns across the three urbanized river basins, managed under 

similar environmental regulations and shared history of development. 

1.2.3 Impact of point source nutrient loads on river water quality impairments 

The primary motivation for this study was to determine the extent of water quality 

impairment from nutrient (N and P) loads discharged only from multiple WWTPs located along 



 
 

27 

the river network. Since Germany is one of three EU countries with >95% connectivity to WWTPs 

(EEA, 2017b), here as the case study, I selected the Weser River basin with the entire drainage 

area embedded in Germany (~46K km2; ~13% of Germany’s territory; ~8.4 million population; 

~10% of Germany’s population). 

Analyses presented here are based on a synthesis of (1) empirical data for WWTPs 

discharges (treated effluents and nutrient loads); (2) total N and P loads from point- and diffuse-

sources; (3) long-term water quality monitoring at multiple locations throughout the basin; (4) 

spatially explicit hydrologic model simulations (long-term hydrograph time series at all WWTP 

locations and basin outlet); and (5) estimation of likely N and P concentrations at reach- and basin-

scales. 

I estimated N and P concentrations from WWTPs loads alone at ~845 WWTP locations in 

the Weser River basin by considering: (1) at the reach-scale, dilution of treated wastewater 

discharge (QU) and nutrient loads (LU) with river discharge (QR), and (2) at the basin-scale, the 

combined effects of dilution and in-stream uptake of the cumulative nutrient loads along 

downstream flow paths to the basin outlet. I considered two steady-state hydrologic conditions of 

river discharge: median flow (QR50) and low-flow (QR90). I estimated QR50 and QR90 values from 

the verified long-term (1960-2015) daily streamflow simulations generated by the mesoscale 

Hydrological Model simulations (mHM) (Samaniego et al., 2010; Kumar et al., 2013). To identify 

eutrophic risk, the estimated nutrient concentrations were compared to the ecological threshold 

concentrations (0.1 mg P/L and 2.8 mg N/L) regulated in Germany for achieving the EU WFD 

management objectives regarding nutrients (Heidecke et al., 2015). 

In Germany, there are five class-sizes (1≤k≤5) of WWTP, based on population in the 

community served within the sewer-shed, expressed as the Population Equivalents (PE). Assuming 

a mean per capita water-use (q, [L3/T/PE]), QU for each WWTP of given class-size k varies 

depending on total PE served. River discharge for a stream order (ω) at a given WWTP location j 

is approximated as QRj ~ (Aj (PR-ET)j), where Aj is the contributing drainage area and (PR-ET)j is 

the effective rainfall, which contributes to mean stream discharge. It is well established that QR 

scales exponentially with ω, in proportion to increasing drainage area (Rodríguez-Iturbe, Ijjász-

Vásquez, et al., 1992; Rodríguez-Iturbe & Rinaldo, 2001) For a given ω, the effective rainfall (PR-

ET)j might be less variable across sub-basins, while variability in Aj for a given ω is much larger 

especially for smaller streams (ω≤3). Thus, I hypothesize that two factors determining variability 
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in dilution and water quality impacts at the reach-scale are: (1) variability in PE within WWTPs 

class-size k, translated to variability of wastewater discharge (QU) and nutrient load (LU); and (2) 

variability of drainage area, Aj, among sub-basins of a given stream order, ω, reflected in variability 

of river discharge (QR). Such variability would be most evident for WWTP locations on smaller 

streams (ω≤3).  

Using river networks extracted from Digital Elevation Model (DEM), I estimated that 

Weser River basin has a total of ~1,700 stream reaches, of which most (~98%) are smaller streams 

(ω≤3), as expected. In larger streams (4≤ω≤7), converging river discharge from upstream drainage 

areas is larger and less variable. Thus, I hypothesize that dilution plays a dominant role in 

mitigating water quality degradation impacts from upstream WWTP nutrient loads. Variability in 

the efficiency of treatment of incoming nutrient loads in small WWTPs (1≤k≤ 3), which deploy a 

suit of primary and secondary treatment technologies, adds to the variability in N and P loads 

discharged. On this basis, I also hypothesize that any WWTP location with low dilution capacity 

(large QU/QR), resulting from combination of small ω (with small Ai) and large k (with large PE), 

has a greater likelihood of exceeding nutrient concentration thresholds. The analyses identify the 

WWTP locations in the Weser basin where such combination of ω and k exist. 

1.3 Organization of the dissertation 

The discussions of this dissertation consist of eight sections to follow. In Section 2, 

analyzed data and study areas are presented by matching with the order of research themes. Section 
3 focuses on the methodology used to demonstrate scaling relations, to identify longitudinal 

distribution pattern, and to quantify the impacts of point- and diffuse-sources pressures. 

Similarities in scaling relationships for naturally evolved river networks and engineered urban 

drainage networks are compared in Section 4, while scaling of several key attributes of three large 

urbanized river basins are presented in Section 5. Next, likely hydrologic and water-quality 

impacts are examined at reach-scale (Section 6) and basin-scale (Section 7). Overall conclusions 

and implications of my PhD research are presented in Section 8. I close my dissertation in Section 
9 with a research outlook through the perspectives of monitoring, modeling, and management. 

Sections 2 to 7 are derived from three papers published during my PhD research at Purdue 

University (USA) and Helmholtz Centre for Environmental Research-UFZ (Germany).  
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 DATA & STUDY AREAS 

The contents of this section are mainly based on the data & study areas sections of following 
published papers: (1) Soohyun Yang, Kyungrock Paik, Gavan S. McGrath, Christian Urich, 
Elisabeth Krueger, Praveen Kumar, and P. Suresh C. Rao, (2017). Functional Topology of 
Evolving Urban Drainage Networks. Water Resources Research; (2) Soohyun Yang, Olaf Buettner, 
James W. Jawitz, Rohini Kumar, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial 
organization of human population and wastewater treatment plants in urbanized river basins. Water 
Resources Research; (3) Soohyun Yang, Olaf Buettner, Rohini Kumar, Christoph Jaeger, James 
W. Jawitz, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial patterns of water quality 
impairments from point source nutrient loads in Germany's largest national River Basin (Weser 
River). Science of the Total Environment. 

2.1 Sanitary sewer networks in Oahu Island and AAC 

Detailed data of UDNs are difficult to obtain, and recent emphasis on security concerns 

and privatization of utilities have further limited data accessibility. Based on the availability of 

data recorded over decades, sanitary sewer networks (not combined with storm-water) from Oahu 

Island, Hawaii, USA (~1 million population), and a large anonymous Asian city (AAC) (~4 million 

population) (Figure 2.1) were examined. The two Oahu networks (Wahiawa and Honouliuli) are 

named after the WWTPs to which they discharge. These cities have contrasting socio-economic 

backgrounds, history, climate, and terrain. The Oahu data are publicly available while the AAC 

dataset was obtained under a confidentiality agreement from the city’s water utility authority. 

Node-degree distribution and other topological metrics for AAC, based on dual mapping, were 

presented in Krueger et al. (2017). Here, the analyzed sewer-shed is the AAC’s largest one 

(drainage area: ~126 km2; population ~2.4 million) draining to a WWTP built around 1970. A 

summary of the characteristics of each network is provided in Table 2.1.  
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Table 2.1 Characteristics of the UDNs at the last year of record 

 Wahiawa Honouliuli AAC 

Data period 1929*-2009 1923**-2014 1968-2015 

Drained area (km2) 7.2 85.1 126.0 

Number of pipes 1,364 17,255 49,355 

Length of pipes (m) 77,725 929,205 1,895,459 

Number of loops 8 23 252 

* Wahiawa WWTP has been operating since 1928 (Owens, 2010). 
** Website for Hawaii Water Environment Associate (http://www.hwea.org/) states that the 
Honouliuli WWTP was originally put into service in December 1984. 
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Figure 2.1 Geographic details of study UDNs and their underlying natural 
catchments. (a) Wahiawa (orange line) and Honouliuli (light blue line) sanitary 

sewer networks, residing over multiple independent catchments are shown. 
Catchment boundaries for Wahiawa and Honouliuli are colored with thick red and 
blue lines, respectively. (b) AAC sanitary sewer network (blue line). Black lines 

represent boundaries of five sub-catchments within the largest catchment 
embedding most of the AAC network (red line, 182.13 km²). Green circles are 

outlets of UDNs. Sub-catchments underlying the Honouliuli network and the AAC 
are indexed with initial H and A, respectively, and their outlets are marked as 

yellow triangles. 
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Catchment boundaries to which Wahiawa and Honouliuli belong (Figure 2.1a) are obtained 

from the State of Hawaii, Office of Planning. Catchment boundary of AAC is derived using SRTM 

(Shuttle Radar Topography Mission) 1 arc-second digital elevation model (DEM) provided by 

USGS (United States Geological Survey) (horizontal resolution ≈  30 m) that has vertical 

resolution of 1 m (Figure 2.1b). Note that only a fraction of the obtained boundary forms the 

contributing area of each UDN or sewer-shed. The area within each boundary was discretized into 

raster grids with a size of 25×25 m2 each. For each cell, a circular area of 100 m radius is drawn. 

Then, the open-source platform DynaMind (http://iut-ibk.github.io/DynaMind-ToolBox/) (Urich 

et al., 2012) was used to assign a nearest (direct distance) manhole (node) among those found 

within the circular area as the node to which the cell contributes. Then, upstream drainage area for 

every node in a network was calculated. The 100 m radius is empirically determined as a 

reasonable compromise between two requirements to minimize: (1) erroneous inclusion of rural 

cells in UDNs (which can happen as the threshold radius becomes too large); and (2) missing urban 

cells which are not assigned to any nearby manhole (which can happen if the threshold radius is 

too small). The sewer networks were found to contain only a small percentage (< 0.5 %) of pipes 

contributing to loops (Table 2.1), accounted for 16 pipe segments for Wahiawa, 86 pipe segments 

for Honouliuli, and 1218 pipe segments for AAC. Loops were manually removed by deleting 

selected pipes, ensuring connectivity and flow directions.  

Sewer networks were retrieved at five-year intervals utilizing pipe installation date records. 

Beginning at a WWTP, from its construction date, a continuous pipe network was determined by 

incrementally sampling upslope pipes with the same or earlier installation date although not all 

pipes contained attribute data for installation date. For some pipes, their downslope or upslope 

pipes are older according to the records, indicating that they were replaced, and the new installation 

dates were retained in the dataset. In such incident, the newer pipe was incorporated into the older 

network to enforce flow connectivity. 

2.2 Common data for three large rivers in Germany (Weser, Elbe, Rhine Rivers) 

2.2.1 River network 

Of the ten major rivers in Germany three large rivers (Weser, Elbe, and Rhine, with 

drainage areas in Germany of 46K, 98K, and 100K km2, respectively; Figure 2.2) were selected 
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based on the following criteria. First, of the 14 German cities with population >500K, 13 (all except 

Munich) are located within one of the three selected basins (Table 2.2). Here, the size of German 

cities (Destatis, 2018) was categorized by following the United Nations (2016) classification. 

These three basins account for ~71% of the total population in Germany. Second, geo-referenced 

WWTP data for these three rivers are available with high accuracy and reliability. Lastly, for each 

of these river basins, more than half of the total basin area is embedded in Germany (Table 2.2). 

The Weser River basin is entirely within Germany, while only the downstream portion of the Elbe 

(~66% of total) and mid- and upstream portions of the Rhine (~54 % of total) are in Germany 

(Table 2.2). For the Elbe and Rhine, these analyses were limited to only the drainage areas within 

Germany. Thus, in this study, a basin outlet was designated as a location having the maximum 

accumulated drainage area within German territories. Analyses of the entire river basins spanning 

multiple countries are candidates for future research. 

River networks were extracted from 100x100 m2 resolution digital elevation model (DEM), 

scaled up from 50x50 m2 DEM obtained from the State Institute for Environmental Protection 

Baden-Wuerttemberg (LUBW), Germany (Zink et al., 2017). Each depression cell was filled by 

raising its elevation to the lowest elevation among its eight neighboring cells. This process yielded 

some flat surfaces. The imposed gradients method (Garbrecht & Martz, 1997) was used to assign 

a flow direction over flat areas. For all pixels consisting of a river basin, accumulated drainage 

area was calculated, and H-S order (ω) was allocated. Then, I calculated the accumulated drainage 

area and H-S order only for the drainage areas within Germany; upstream drainage areas for the 

two international rivers (Elbe and Rhine) were not included. To extract river networks using the 

up-scaled 100x100 m2 DEM, an average source area of 10 km2 was applied as the minimum 

hillslope area to form a channel (Band, 1986; Montgomery & Dietrich, 1988; Tarboton et al., 1988).  

Note that the absolute values for H-S orders would vary depending on the river basin domain 

analyzed, but their scaling attributes are not affected. In this study, focusing point was the 

consistent conditions for one country.  
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Table 2.2 General information for the three German river basins 

  River basin 
Weser Elbe Rhine 

Whole  
river 

basins 

Total drainage area [km2] 46,306 148,242 185,260 
Total population of the 
basin 8.4 M 25 M 58 M 

Number of countries 1 4 9 

River 
basins in 
Germany 

Portion of basin area in 
Germany (%) 100 % 66 % 54 % 

Part of the basin in 
Germany  Whole Downstream Mid-and up-

streams 

Portion of population in 
Germany (%) 100 % 75 % 62 % 

Basin area in Germany 
over  
German territory area (%) 

13 % 27 % 28 % 

Basin population in 
Germany over German 
total (%) 

10 % 20 % 41 % 

Population density 
[people/km2] 176 170 336 

Basin WWTPs over 
German total (%) 10 % 22 % 35 % 

Cities in 
German 

river 
basins 

Medium-sized cities*  
(1M - 5M inhabitants) - Berlin (1st) 

Hamburg (2nd) Cologne (4th) 

Cities* 
(500K - 1M inhabitants) 

Bremen (11th) 
Hannover (13th) 

Leipzig (10th) 
Dresden(12th) 

Frankfurt (5th) 
Stuttgart (6th)  

Duesseldorf (7th) 
Dortmund (8th)  

Essen (9th) 
Nuernberg (14th) 

Mean population density of 
the urban areas** 
[people/km2] 

2,112 2,894 2,713 

Note. * I categorize here size of German cities by following classification of United Nations (2016); 
Megacity (more than 10M inhabitants); Large city (5M - 10M in habitants); Medium-sized city 
(1M - 5M inhabitants); and City (500K - 1M inhabitants). Values in parenthesis are rankings of 
cities in Germany based on the number of population in the dataset (Destatis, 2018). **I estimate 
the mean population density for each river basin by using the aforementioned dataset. 
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Figure 2.2 Ten German river basins shown with different background colors, and 
corresponding river networks. For the three study river basins (Weser, Elbe, Rhine), 
layouts of river networks show the entire river network (EU-Hydro River Network 

Dataset; https://land.copernicus.eu/imagery-in-situ/eu-hydro/eu-hydro-public-beta/eu-
hydro-river-network). For the other seven river basins, river networks are shown only 
within German territory. Line thickness and color density of river networks vary over 

stream order (thicker and darker line represents higher stream order). Note that the 
basin outlets for the Weser and the Elbe in Germany are the same as those for the 

whole river basins, but not the Rhine. 
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2.2.2 Human population (Driver) 

The spatial distribution of POP was determined from Gridded Population of the World, 

Version 4 (GPWv4) Adjusted Population Count (Center for International Earth Science 

Information Network - Columbia University, 2017), which is a global raster of human population 

(number of persons per pixel) at 30 arc-second (approximately 1 km at the equator) resolution. 

The German territory was extracted from the entire GPWv4 dataset (Figure 2.3). I checked the 

reliability of the data for total population in Germany, and then downscaled to 100x100 m2 raster 

using ArcMAP (ver. 10.6). Spatial variability of population within one raster is not relevant to the 

scope of this study.  
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Figure 2.3 Map of total human population in Germany (~82 million). Blue 
regions represent German cities (≥ 500K inhabitants). Layouts of the three 
study river basins (Weser, Elbe, and Rhine) within Germany are shown as 

gray, magenta, and orange, respectively. 
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2.2.3 WWTPs (Pressure pathway) 

I used country-scale data for ~8,900 WWTPs in Germany (Figure 2.4), collected from both 

the European Environment Agency (for WWTPs > 2,000 PE) and 13 Federal German States 

(including WWTPs < 2,000 PE) (except Hamburg, Bremen, and Berlin that have no WWTPs < 

2,000 PE). German regulations divide WWTPs into five class-sizes based on PE served: Class-1 

for PE < 103; Class-2 for 103 ≤ PE < 5x103; Class-3 for 5x103 ≤ PE < 104; Class-4 for 104 ≤ PE < 

105; Class-5 for PE ≥ 105 (https://www.gesetze-im-internet.de/abwv/anhang_1.html). In Germany, 

the total population of about 82 million translates to a total PE of 110 million, resulting a national-

scale average, PE/POP = 1.34; however, variabilities in the contribution of non-sanitary flows are 

expected. On average, one German WWTP serves ~12K PE.  

The original data for each German WWTP includes the magnitude of PE served, the annual 

discharged nutrient (N and P) loads [kg/yr], and the Federal State and catchment where it is located 

are included. However, layouts and boundaries of sanitary sewer networks connected to WWTPs 

are not available. The H-S order of the streams receiving discharged treated wastewaters was 

assigned based on the nearest stream to individual WWTPs within 2.5 km radius using ArcMAP 

(ver. 10.6). For <1% of total WWTPs which the rule was not reflected, its receiving stream was 

manually assigned. 
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Figure 2.4 Spatial distribution of all WWTPs (~8,900) in Germany. Each 
WWTP is shown as a dot with distinguishing five class-sizes. 
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2.3 Specific data for the largest national river in Germany (Weser River) 

2.3.1 River discharge 

The Weser River basin is located in the humid-temperate climatic zone, with annual mean 

precipitation (PR) of ~780 mm/yr (range: 600-1,100 mm/yr), and evapotranspiration (ET) of 505 

mm/yr. Mean aridity index (PET/PR, where PET is potential ET) for this basin is around 0.9 

(IWRM-net, 2010; Zink et al., 2017). Using the long-term (56 years; 1960-2015) daily gridded 

(spatial resolution of 4 km) estimates of streamflow from well-established and verified mHM 

simulations (Samaniego et al., 2010; Kumar et al., 2013; Zink et al., 2017), volumetric discharge 

(QR, L3T-1) at the Weser River basin outlet for the median and low-flow conditions (QR50 and QR90) 

were estimated as 311 m3/s and 135 m3/s, respectively. Temporal fluctuation in area-normalized 

discharge (Q*, LT-1) at the basin outlet was characterized by coefficient of variation (CVQ*) of 

0.76, representing the “persistent” hydrologic regime (CVQ* < 1) as defined by Botter et al. (2013). 

Mean CVQ* values were <1 and decreased slightly with increasing stream order ω (~0.9 for ω =1 

to 4; ~0.84 for ω = 5 and 6; ~0.8 for ω = 7). Variability in CVQ* values was the largest for ω =1 

(CV of CVQ* = 0.18) and decreased continuously until ω =5 (CV of CVQ* = 0.06), while remarkably 

low diversity in CVQ* values was found in ω =6-7 (CV of CVQ* = 0.01). This trend suggests higher 

variations in hydro-climatic conditions among smaller streams. 

2.3.2 Distributions of people and WWTPs discharges 

Based on the United Nations (2016) definition of a city, among the top 14 German cities 

with > 500K inhabitants (Destatis, 2018) only two, Bremen and Hannover, are located within the 

Weser River basin. About 8.4 million inhabitants in the basin (~10.2% of Germany’s population; 

Figure 2.5a) are served by ~845 WWTPs (~10% of total German WWTPs; Figure 2.5b) with one 

of top connectivity of people to WWTPs (~97%) in EU (EEA, 2017b). The number of WWTPs 

corresponds to a density of 2 point source entries per 100 km2, and a mean separation distance 

between two successive WWTPs of ~11 km (CV = 0.9) based on a total river network length (~12K 

km). More than half of total WWTPs in the basin discharge the treated effluents to streams with 

the persistent hydrologic regime. The receiving streams consist of ~58% of total streams with ω≤3 

and ~95% of total streams with 4≤ω≤7. About 700 WWTPs (~83% of total WWTPs in the Weser) 
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discharge to small streams (ω≤3), and ~26% of these receiving streams receive discharge from 

large WWTPs (k≥4). Thus, significant variability in WWTP discharges (treated effluents and 

nutrient loads) to small streams is expected, and the resulting variability in likely water quality 

impacts at the reach-scale. 

2.3.3 Land cover (Pressure pathway) 

To reflect the temporal change of land cover over the Weser River basin, the CORINE 

Land Cover (CLC) 100 m grid data version 20 for three reference years (1990, 2000, and 2012) 

were used among five available ones (downloaded from https://land.copernicus.eu/pan-

Figure 2.5 For the Weser River basin of ~46K km2, (a) the distributions of ~8.4 
million human population (background color of green to red scaled) and river 

network (darker blue color and thicker line width for higher H-S order). With the 
overlapped river network (gray-scaled color lines) (b) the location of ~845 WWTPs 
with classification for five class-sizes. Note that the original datasets are the same 

ones for Figures 2.3 and 2.4. 
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european/corine-land-cover). The three time series were selected to be consistent with time-

periods for available nutrient loads input data reported in literatures (see Section 2.3.4). Since the 

original CLC database provides land cover across Europe, national territory of Germany was 

extracted first, and then the extent of Weser River basin was clipped using the ArcGIS. The CLC 

datasets produced based on satellite imaginary are categorized as one of 44 classes in the 

hierarchical-order three class levels.  

In this study, five main classes in the uppermost level 1 are used to distinguish different 

representative land cover (Class 1 = Artificial surfaces representing urban areas; Class 2 = 

Agricultural areas; Class 3 = Forest and semi-natural areas; Class 4 = Wetlands; and Class 5 = 

Water bodies). The CLC spatial maps over the Weser River basin for the three chosen years (Figure 

2.6) obviously manifest the dominance of agricultural areas, the scattered urban areas, and 

upstream clustered formation of forest/semi-natural areas. A skewness index (Mineau et al., 2015)  

calculated for each land cover provide quantitative representation characterizing a spatial 

distribution of different land attributes within a river basin (Table 2.3). Distribution of forest/semi-

natural land cover (skewness index >1) is skewed towards the headwaters. On the contrary, skewed 

distributions of artificial and agricultural areas are towards the basin outlet (skewness index ~0.9), 

and wetlands are distributed with stronger downward-skewness (skewness index ~ 0.5). For last 

few decades, agricultural areas consistently accounted for ~ 60% of total drainage area; land cover 

portions of artificial and forest/semi-natural areas slightly increased with a trade-off of decrease in 

wetlands proportion (Table 2.4).  

In addition, to understand internal heterogeneity in land cover proportions within the entire 

Weser River basin (final stream order Ω = 7), I delineated all possible 1681 sub-basins with final 

stream order (Ω* = 1 – 6) and examined the proportions of dominant land cover types within each 

sub-basin based on the latest 2012 land cover dataset. Since at least 50% of total drainage area for 

99% of the 1681 sub-basins consists of artificial surface (CLC-Class 1), agricultural areas (CLC-

Class 2), and forest / semi-natural areas (CLC-Class 3), I focused on the three dominant land cover 

types to compare variabilities in land cover composition within/across stream orders (Figure 2.7). 

As reflecting fractal structure of river network, lower-order sub-basins (Ω* < 3) are more dispersed 

from upstream to downstream regions over the entire basin area (Figures 2.7a-c), whereas higher-

order sub-basins (Ω* ≥ 5) are formed towards the basin outlet and spatially less variable located 

(Figures 2.7e-f). Within a given stream order, sub-basins located far from each basin outlet are 
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covered by more forest/semi-natural areas (>50%) than agricultural areas with a narrow range of 

artificial surface proportion (< 20%); on the contrary, sub-basins in more downstream are mainly 

dominated by agricultural than forest/semi-natural areas with a broader proportion of artificial 

surface area (0 to possibly 95%). It is also noteworthy that more aggregation of sub-basins for 

higher Ω* reduces variabilities in land cover proportion.  

Table 2.3 Skewness index of each land cover for a given year CLC data in the Weser River basin  

CLC-class in level 1 Reference year 
1990 2000 2012 

Artificial surface 0.90 0.91 0.90 
Agricultural areas 0.92 0.92 0.92 
Forest & Semi-natural 1.20 1.20 1.18 
Wetlands 0.50 0.50 0.51 
Water bodies 0.65 0.66 0.66 

  

Figure 2.6 The CORINE Land Cover (CLC) map over the Weser River basin for 
three reference years: (a) 1990, (b) 2000, and (c) 2012. Five CLC-classes in the 

uppermost level 1 are consistently depicted: black-zone for CLC-Class 1 = Artificial 
surfaces representing urban areas; brown-zone for CLC-Class 2 = Agricultural areas; 
green-zone for CLC-Class 3 = Forest and semi-natural areas; purple zone for CLC-

Class 4 = Wetlands; and blue-zone for Class 5 = Water bodies. Red-dashed rectangle 
represents the most visually distinct change over time, as an example.  
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Table 2.4 The percent (%) of each land cover for a given year CLC data in the Weser River basin 

CLC-class in level 1 Reference year 
1990 2000 2012 

Artificial surface 7.0 7.5 9.0 
Agricultural areas 61.8 61.3 58.9 
Forest & Semi-natural 30.1 30.1 31.2 
Wetlands 0.7 0.7 0.5 
Water bodies 0.4 0.5 0.5 

 

  

Figure 2.7 For all sub-basins in the Weser River basin, ternary diagrams for the portion of 
land cover within a sub-basin having its final stream order as Ω∗. From the 1st to 6th order 
sub-basins, results are shown in (a) to (f), sequentially. Among total five main classes of 

land cover, three dominant land cover types are used as the ternary axes (Class 1 = 
Artificial surface; Class 2 = Agricultural areas; Class 3 = Forest / Semi-natural areas). 

Number in the parenthesis in each sub-title is the total number of Ω∗th order sub-basins. 
Each dot represents each sub-basin. Color in each dot means the distance to the Weser 

River outlet from the outlet of each sub-basin. 
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2.3.4 Nutrient loads (Pressures) 

Nutrient loads given into river networks are distinguished between point-source and diffuse 

sources. There are a few or several sub-categorized sources and one type source can be transported 

through multiple pathways. Since this study scope is to consider relative impact from point- and 

diffuse-sources, sub-categorized sources being the most typical and compatible with available 

dataset in this study were selected as nutrient loads input sources. Thus, this study considers 

nutrient emissions from municipal WWTPs discharges as point-source, and those from urban areas, 

agricultural areas, and green areas (e.g., forests) as diffuse-sources.  

To reflect temporal change in the magnitude and portion of nutrient emissions, three time 

periods were selected, 1983-1987, 1998-2002, and 2011-2014, which encompass environmental-

political-social events such as water pollution, relevant regulations formation, and public practice. 

For a given period, nutrient emissions of each sub-categorized source in the Weser basin were 

estimated by employing its proportion to nutrient emissions for the entire Germany, based on the 

published values in reports of German Environment Agency (UBA, 2003; 2010; 2017). Note that 

this study deals with only Phosphorus loads (Table 2.5) which is preferred nutrient for algal growth. 

Municipal WWTPs P loads accounts for ~95% of total point-source P emissions. Each diffuse-

source was categorized correspondingly to CLC-class 1 to 3, under the assumption to deal with 

terrestrial nutrient inputs mainly.  

Table 2.5 Estimated P loads [tonP/yr] from different sources in the Weser River basin 

 1983-1987 1998-2002 2011-2014 
Municipal WWTPs 5391 861 694 
Artificial surface 829 300 419 
Agricultural areas 1300 1807 1576 
Forest & Semi-natural 660 750 485 
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2.3.5 Water quality monitoring (State) 

During 1979-2015, nutrient concentrations (Cmeans(i), i = total inorganic N and P) were 

monitored at a total of 361 locations in river reaches of the Weser River basin (Figure 2.8), at 

approximately monthly intervals. The reaches were sampled at different times of the year, and at 

varying intervals, under diverse range of hydrologic conditions. Archived data (total: ~57K data 

recorded) were obtained from the official EIONET (European Environmental Information and 

Observation Network) and WFD sample sites. Only ~35% of the total archived data concurrently 

included the measured river discharge (QRmeas) at the same location.  

Given the major shifts in governance, wastewater treatment technology, and environmental 

regulations over the past few decades in Germany, the monitoring data were pooled into two time 

periods: (1) Cmeas,pre(i) for 1979-1999 (Tpre), which includes the period prior to German 

Reunification in 1990, and subsequent changes in regulatory and technological regimes; and (2) 

Cmeas,post(i) for 2000-2015 (Tpost), during which Germany initiated monitoring for the 

implementation of the EU WFD (EEA, 2017b). For total inorganic N, the Cmeas ranges for Tpre and 

Tpost were similar, and ranged from 0.08 (and 0.06) to 45 mg N/L. For total inorganic P, the range 

of Cmeas values for Tpost was smaller (0.006 to 6 mg P/L) than that for Tpre (0.005 to 7.9 mg P/L). 

The monitoring records were also analyzed to examine spatial patterns in the measured 

concentrations for inorganic nutrients over H-S stream orders. 
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Figure 2.8 The distribution of ~360 monitoring stations (cyan colored 
triangular) in the Weser River basin. For comparing locations, WWTPs are 

depicted as dots without class-size category. 
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 DATA ANALYSIS & MODELING 

The contents of this section are mainly based on the analyses methods sections of following 
published papers: (1) Soohyun Yang, Kyungrock Paik, Gavan S. McGrath, Christian Urich, 
Elisabeth Krueger, Praveen Kumar, and P. Suresh C. Rao, (2017). Functional Topology of 
Evolving Urban Drainage Networks. Water Resources Research; (2) Soohyun Yang, Olaf Buettner, 
James W. Jawitz, Rohini Kumar, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial 
organization of human population and wastewater treatment plants in urbanized river basins. Water 
Resources Research; (3) Soohyun Yang, Olaf Buettner, Rohini Kumar, Christoph Jaeger, James 
W. Jawitz, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial patterns of water quality 
impairments from point source nutrient loads in Germany's largest national River Basin (Weser 
River). Science of the Total Environment. 

3.1 Power law scaling relationships 

To address whether UDNs exhibit scaling behavior comparable to that of rivers, two 

relationships widely found in river networks, were used in this study. The first, Hack’s law, is a 

power-law relationship between the main channel length, L, and its corresponding drainage area 

A: 

L ∝ Ah            (3.1) 

with the exponent h for rivers found to be universally in a small range, h = 0.6±0.1 (Hack, 1957; 

Robert & Roy, 1990; Crave & Davy, 1997; Paik & Kumar, 2011). For UDNs, I take ‘the length 

along main sewer line’ as L. The other scaling relationship is the exceedance probability 

distribution of the upstream drainage area (Rodríguez-Iturbe, Ijjász-Vásquez, et al., 1992) within 

catchments retrieved from DEMs. The exceedance probability that the upstream drainage area is 

equal to or greater than a value δ is reported to follow a power-law. For UDNs, this can be 

expressed as an exponentially tempered Pareto distribution (Aban et al., 2006), 

( ) exp( );  minP A a cεδ δ δ δ δ−≥ = − ≥ .        (3.2) 
The exponent ε for most river networks is 0.43±0.03 (and c = 0, representing truncation) 

suggesting universality of this scaling relationship (Rodríguez-Iturbe, Ijjász-Vásquez, et al., 1992; 

Maritan et al., 1996; Crave & Davy, 1997; Rinaldo et al., 2014). 



 
 

49 

3.2 Hierarchical scaling relationships 

3.2.1 Horton scaling ratios framework 

Self-similar structures of natural river networks exhibit nearly consistent ratios, known as 

Horton scaling ratios, for geometric variables between two successive H-S orders. I investigated 

whether the studied German rivers conform to well-established scale-invariant structure found 

universally for river networks. I used four well-known Horton scaling ratios of stream number, RB 

(Horton, 1945), stream length, RL (Horton, 1945), drainage area, RA (Schumm, 1956), and eigen-

area (i.e., order-specific area variable), RE (Beer & Borgas, 1993), expressed as: 

1BR N Nω ω+=            (3.3) 

1LR L Lω ω+=            (3.4) 

1AR A Aω ω+=            (3.5) 

1ER E Eω ω+=            (3.6) 

where ,  ,  and N L Aω ωω  (for 1ω ≥ ) are the number, the mean length, and the mean drainage area 

of ω-order streams, respectively. Eω  (for 2ω ≥ ) are the mean eigen-area of ω-order streams. The 

first three ratios have typical ranges observed from natural river networks, 3<RB<5, 1.5<RL<3, and 

3<RA<6 (Smart, 1972; Kirchner, 1993). Horton scaling ratios are inter-related through fractal 

dimensions. For example, the fractal dimension for network branching, Db (1≤ Db ≤2; mean ~1.8), 

links RB and RL as bD
B LR R=  (La Barbera & Rosso, 1989). I infer bD

A ER R=  based on the finding of 

cross-relationships among the four ratios ( ) ( )E L A BR R R R≈ < ≈  (Yang & Paik, 2017).  

In this study, I propose three extended Horton scaling ratios to examine scale-invariant 

distributions of population (RPOP), PE (RPE), and the number of WWTPs (RWWTP) over H-S orders 

in the three case study river networks, evident in consistently increasing or decreasing rate of 

change between any two successive H-S orders. The extended ratios are defined as: 

1POPR POP POPω ω+=               (3.7) 

1PER PE PEω ω+=                   (3.8) 

1
WWTP WWTP

WWTPR N Nω ω+=               (3.9) 

where POPω  (for 1ω ≥ ) are the mean population living in ω-th order eigen-areas (i.e., 
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POP POP Nω ωω = ), PEω  (for 1ω ≥ ) are mean PE served by WWTPs discharging to ω-th 

order streams per ω-th order stream (i.e., PE PE Nω ω ω= ), and WWTPNω  (for 1ω ≥ ) are number 

of WWTPs regardless of class-sizes discharging to ω-th order streams. 

I used an eigen-area-based perspective (i.e., order-specific drainage area) to examine 

scaling of both POP and PE, while previous researchers employed cumulative drainage area to 

estimate the Horton scaling ratios for surrogate variables for population (Miyamoto et al., 2011; 

Fang et al., 2018). Both the order-specific and cumulative-area perspectives allow for evaluating 

the scale-invariance of the spatial distribution of POP based on census data (as in this study) or 

surrogate variables (Miyamoto et al., 2011; Fang et al., 2018). However, PE for each WWTP is an 

aggregated representation of POP and corresponding pressures (wastewater and nutrient loads) for 

its contributing sewer-shed. Thus, I used the spatially more distinct eigen-area-based approach in 

this study to represent the underlying attribute of PE indicating the point-source pressures for all 

non-overlapping regions.  

3.2.2 Proposed scaling indices 

As measures for quantifying the spatial distributions of three attributes (POP, PE, and 

WWTP) across river networks, I propose three new scaling indices, γ, ε, and δ, defined as: 

POP ER Rγ = ,                           (3.10) 

PE POPR Rε = ,                         (3.11) 

( )PE WWTP BR R Rδ = ⋅ .            (3.12) 

The index, γ, identifies the preferred eigen-area for population settlement by H-S order, 

with preferences either for higher orders ( 1γ > ), lower orders ( 1γ < ), or neutral ( 1γ  ). A similar 

index used by Fang et al. (2018) is based on cumulative area and surrogate population variable. 

Two approaches are related based on the relationship between RA and RE, 1( ) bD
POP AR Rγ =  (1≤ 

Db ≤ 2; mean Db ~ 1.8). 

The index, ε , estimates the contribution of non-sanitary inflow to wastewaters treated at 

the WWTPs. A value of 1ε >  suggests that WWTPs discharging to higher H-S orders have a 

larger contribution of non-sanitary wastewaters, while 1ε <  represents that lower orders receive 
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more non-sanitary wastewaters collected into WWTPs. Uniform or zero contribution of non-

sanitary wastewaters yields 1ε = .  

The third index, δ, indicates the degree of centralization in WWTP locations. Here, higher 

centralization means fewer WWTPs, but of higher class-size, whereas lower centralization means 

more number of lower class-size WWTPs, to treat a given amount of wastewaters. For 1δ > , the 

increase in PE by H-S order is greater than the corresponding increase in the number of WWTPs, 

and thus higher (lower) centralization of WWTPs in eigen-areas of higher (lower) stream orders. 

On the other hand, 1δ <  represents lower (higher) centralization of WWTPs in eigen-areas of 

higher (lower) stream orders. A value of 1δ =  can reflect either the construction of same class-

size WWTPs for all H-S orders (idealized case) or the absence of a tendency for the degree of 

centralization in WWTPs construction across H-S orders. 

3.3 Longitudinal distribution pattern characterization 

3.3.1 Width function and spatial clustering indices 

The geomorphological width function (G-WF, ( )G GW x ) is an operator to examine the 

structural character of drainage network along a hydrological path in a one-dimensional domain 

(Marani et al., 1994; Rodríguez-Iturbe & Rinaldo, 2001). The G-WF relates the drainage areas at 

a flow distance from the basin outlet, thus the integral of G-WF along flow distances represents 

the total drainage area : 
max

0
( )

x
G G GW x dx AΩ=                (3.13) 

where maxx  is the longest distance from the basin outlet, Gx  is a distance variable for the G-WF, 

and AΩ  is the total drainage area of the basin with the final H-S order Ω. 

Applying human-related width function (Fang et al., 2018), I investigated the population 

width function (POP-WF, ( )POP POPW x ) and the directionality of population clustering (ΨPOP) with 

one-dimensional perspective as: 
max

0
( )

x
POP POP POPW x dx POPΩ=              (3.14) 

,50 ,50ˆ ˆPOP G
POP x xΨ =                        (3.15) 

where POPx  is a distance variable for the POP-WF, POPΩ  is the total population in the river basin. 
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I used a distance interval of 1POP edx L x≈ +  (where ex  is a distance yielding rectangular area 

equivalent to a given source area). ,50ˆPOPx  is normalized flow length from the basin outlet for half 

of the population in the river basin. ,50ˆGx  is normalized flow length for half of total drainage area 

of the river basin. 

Furthermore, I extended these metrics for the PE width function (PE-WF, ( )k
PE PEW x , where 

1≤k≤5 is a class-size of WWTPs, and the directionality of PE clustering for each k-th class-size 

(ΨPE(k) ). Their mathematical expressions are given as: 
max

0
( )

x k k
PE PE PEW x dx PE=                (3.16) 

,50 ,100
( )

PE PE
PE k k kx xΨ =                  (3.17) 

where PEx  is distance for PE-WF, and kPE  is the total PE of class-k. I employed a distance 

interval of 1PEdx L≈ . For each class k, ,50PE
kx  is a hydrological distance from the basin outlet to 

take 50% of total PE and ,100PE
kx  is the longest flow distance. 

For all three basins, I normalized POP-WFs by each maximum POP of ( )POP POPW x  to 

facilitate cross-basin comparison. To differentiate the population in cities, here I introduced the 

concept of the urban zone, considered as regions where the normalized ( )POP POPW x  is above a 

particular threshold (POP*; 0 <POP*< 1). I then estimated the interval distance for each urban 

zone as a distance between upstream and downstream crossing points for the threshold of POP* = 

0.5, which determined based on the national-scale portion of population in the cities. I estimated 

the inter-urban separation distance (σi) for cities, and normalized separation distances (τi) as the 

ratio σi/Lmax, and reported the mean (τ ; 0 1τ< < ).  

3.3.2 Power spectral analysis 

The power spectra, S(f), of G-WF as a function of frequency, f [L-1], reveals the spatial 

auto-correlations. A power-law relationship, ( )
G

S f f β−∝ , has been found for river networks, with 

exponent Gβ  between 1.2 and 2.1 (Marani et al., 1994; Fang et al., 2018). This implies that scale-

invariance of river network structures is reflected in the G-WF. To explore how the spatial 

clustering for populations is different from that of river network structures, I compared the power-
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law exponents for POP-WF and G-WF ( POPβ / Gβ ) for the three river basins. Moreover, I 

investigated power-law exponent for PE-WFs for each class-size k ( PE
kβ ), to examine how the 

degree of spatial clustering for PE is different among WWTP class-sizes. Each power-law 

exponent β was estimated through Matlab fitlm function referring to a linear relationship of S(f) 

and f on a log-log paper. The significance of the power-law exponent was determined by the p- 

value for t-statistic of the null hypothesis test that the estimated coefficient is zero.  

3.4 Impacts of point-source pressure 

3.4.1 Reach-scale perspective 

3.4.1.1 Urban wastewater discharge fraction (Hydrological impact) 

I used the concept of Urban Wastewater Discharge Fraction (Φ) to estimate the likely 

reach-scale dilution of WWTP treated effluents with river discharge. I calculated Φ as:  

U

R U

Q
Q Q

Φ =
+

   (0 ≤ Φ ≤ 1)            (3.18) 

where QR is the steady volumetric discharge [L3T-1] of receiving stream, and QU is the (mean 

annual) steady volumetric discharge [L3T-1] of treated wastewater from a WWTP. Note that Φ~0 

for QR>>QU, Φ=0.5 for QR=QU, and Φ~1 for QR<<QU.  

In this study, I considered two conditions for river discharge (QR): (1) median river 

discharge ( 50RQ ), and (2) low-flow condition, which is exceeded 90% of the time ( 90RQ ). These 

values were derived based on the long-term, daily (56 years, 1960-2015) hydrographs simulated 

using the grid-based mHM (Samaniego et al., (2010); Kumar et al., (2013) for model 

details/parameterizations, and Zink et al. (2017) for a detailed model set-up including verification 

of modeled fluxes and states across Germany). Location of each WWTP was matched with its 

nearest mHM grid (spatial resolution of 4 km x 4 km) using the ArcGIS, and the simulated 

hydrograph was allocated to each WWTP. Using feature scaling, for about 11% of all WWTP 

locations, I modified hydrographs showing inconsistency compared to hydrographs for the same 

H-S order from other locations. I calculated QU for each WWTP based on PE served and the annual 

per capita water-use in Germany (q= 46.3 m3/yr/PE) (Eurostat, 2013). 
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3.4.2.2 In-stream nutrient concentration (Water quality impact) 

I examined reach-scale water quality impairments using N and P concentrations (Creach(i), i 

= N or P) estimated using only the point source nutrient loads from each WWTP discharge alone. 

The estimation for Creach(i) was based on the mass-balance equation for nutrient loads at the point 

of WWTP discharge: 

( ) ( ) ( )reach i R i U iL L L= +            (3.19) 

where L [MT-1] variable means nutrient loads, and the subscripts of R, U, and reach denote the 

representation of river before receiving WWTP discharge, WWTP discharge, and reach received 

WWTP discharge, respectively. Given that L is the product of concentration C [ML-3] and 

discharge Q [L3T-1], Eq. (3.19) is expressed as: 

( ) ( ) ( )reach i reach R i R U i UC Q C Q C Q= +         (3.20) 

where Qreach denotes the mass balance at the reach-scale for combined streamflow within a 

receiving stream reach (Qreach = QR + QU). To investigate the sole influence of the WWTP point 

source nutrient loads on water quality impairment, here I considered zero nutrient concentrations 

in receiving rivers (i.e., CR(i) = 0), resulting in the following expression of Creach(i): 

( )
( )

U i
reach i

R U

LC
Q Q

=
+

.          (3.21) 

To interpret Creach(i) values estimated at the reach-scale, I applied the following 

conservative assumptions, similar to a US EPA study for estimation of wastewater impacts on 

surface waters through US (Rice & Westerhoff, 2015) : (1) complete and instantaneous mixing of 

WWTP effluents and river flow at the point of discharge; (2) neglecting diurnal and seasonal 

patterns in WWTP effluents; (3) no loss of nutrient loads from WWTPs through in-stream 

processes within the reach; (4) no loss of WWTP effluents to groundwater; and (5) no temporal 

evolution of PE served by each WWTP. 

3.4.2 Basin-scale perspective 

3.4.2.1 In-stream nutrient uptake process 

At basin-scale considering downstream cumulative nutrient loads with in-stream uptake, 

total loads of nutrient i at the location of the j-th WWTP (Li,tot(j)) consist of two types of nutrient 
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loads: (1) constant nutrient loads discharged from the j-th WWTP (Li,in(j)) and (2) sum of attenuated 

nutrient loads discharged from all upstream WWTPs along flow paths, expressed as: 

max( )

min( )
, ( ) , ( ) , ( )

1 1
exp ( )

m

m

M l
i tot j i in j i in x

l
m

L L L k l dlγ
γ

Γ

= =

 = + ⋅ − 
 

         (3.22) 

where Γ is the total number of upstream WWTPs of the j-th WWTP, and M is the total number of 

stream segments along a flow path from upstream γ-th WWTP to the j-th WWTP.  

In-stream nutrient uptake rate constant kx [L-1] scales inversely with river discharge (or 

stage) (Ensign & Doyle, 2006; Basu et al., 2011). Thus, in this study, I estimated kx, as a function 

of a flow length l to a given location along the longest flow path from the basin divide. I derived 

kx(l) based on a scaling of kx with hydraulic and geomorphologic properties of a river network 

(Basu et al., 2011; Hall Jr. et al., 2013; Bertuzzo et al., 2017) as: 

kx = vf /(h·v) = vf /(QRmean/w)          (3.23) 

where vf is nutrient uptake velocity [m/yr] in the hyporheic zone. Here, I assumed spatially uniform 

vf over the entire river network (Alexander et al., 2000; Wollheim et al., 2006; Basu et al., 2011). 

Note that the product of river depth (h) and velocity (v) corresponds to specific discharge (QRmean/w, 

where QRmean is the mean annual river discharge and w is the river width).  

At the same frequency of occurrence, power-law relation between QRmean [m3 s-1] and w 

[m] is well-known (Leopold and Maddock, 1953) as: 

w = π1 QRmeanb            (3.24) 

where π1 and b are river width scaling coefficient and scaling exponent. I used reference values of 

π1 = 7.2 [m1-3b sb] and b = 0.5 [-] found by Moody & Troutman (2002) who analyzed the 

synthesized data including Leopold and Maddock (1953). For mean annual frequency, steady-state 

QRmean can be estimated based on mass balance with spatially homogeneous precipitation (PR) and 

evapotranspiration (ET) [mm/yr] as: 

QRmean = A(PR-ET)           (3.25) 

where A is accumulated drainage area at a given location within a river basin. Last scaling I used 

for kx(l) derivation is a power-law relation between A [m2] and l [m] along a mainstream, known 

as Hack’s law (Hack, 1957): 

l = π2 Ah            (3.26) 

where π2 and h are coefficient and the power-law exponent in Hack’s law. Analysis for the Weser 

river network yielded π2 = 0.37 [m1-2h] and h = 0.59 [-] of which value is within a narrow h range 
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(0.5 – 0.7) universally found in natural rivers (Hack, 1957; Crave & Davy, 1997; Paik & Kumar, 

2011). Substituting Eqs. (3.24) to (3.26) into Eq. (3.23) yields the power relation with the exponent 

of (b-1)/h (< 0) as: 
(1 ) 1 ( 1)

1 2( ) ( ) ( ) ( )b h b b h
x fk l v PR ET lτ π π − − −= ⋅ ⋅ ⋅ ⋅ − ⋅        (3.27) 

where τ is an unit conversion coefficient set as 103(1-b)·(365·24·3600)-b to result kx [m-1] from the 

predetermined units of dependent variables in this study. 

For each nutrient, mean uptake velocity at the basin-scale (vf(i), i = N or P) was estimated 

through the inverse calculation of Eq. (3.22), Eq. (3.24), and the nutrient delivery ratio (NDR) near 

the basin outlet (NDRi(out)), expressed as: 

 , ( )
( ) ( )

 , ( )
 (0 1)i tot out

i out i out
i tot in

LNDR NDR
L

= ≤ ≤                    (3.28) 

where Li,tot(in) is the total input of nutrient loads from both point- and diffuse-sources, and Li,tot(out) 

is the current nutrient loads nearby the basin outlet. Note that NDRi(out) is related to the fraction of 

nutrient loads removed (Ψi) over the entire Weser basin as: 

Ψi = 1 - NDRi(out)     (0 ≤ Ψi ≤ 1).                     (3.29) 

Thus, NDRi(out) = 1 (Ψi = 0) means no nutrient losses through in-stream nutrient uptake, 

whereas NDRi(out) = 0 (Ψi = 1) represents complete loss of input nutrient loads over the entire basin.  

I used the latest value for Li,tot(in) during 1998-2000, 655,530 ton N/yr and 3,576 ton P/yr 

as the total input nutrient loads to Weser River basin (Behrendt et al., 2003). The value of Li,tot(out) 

was determined as the mean of QRmeas x CRmeas(i, ω=7) for the same period at the only one monitoring 

station located in the 7-th order stream (total 34 data points were available for both QRmeas and 

CRmeas(i, ω=7)). This estimation resulted ΨN = 0.3 and ΨP = 0.4, and sequentially, vf(N) = 43 and vf(P) 

= 62 m/yr. 

3.4.2.2 In-stream nutrient concentration (Water quality impact) 

At each of WWTP locations along converging flow paths, I evaluated the impact of the 

spatially heterogeneous distribution of point sources (five different class-sizes of WWTPs with 

constant nutrient loads) on the eutrophication risk in the Weser basin. Nutrient concentration at 

the basin-scale Ccum(i) (i = N or P) is estimated by considering cumulative discharge and nutrient 

loads from all upstream WWTPs. For a given ω-th H-S order, the estimated values of Ccum(i) were 
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compared with measured nutrient concentration at monitoring stations (Cmeas(i)) to identify the 

contribution of the point source nutrient loads from WWTPs to the water quality impairment. The 

value of Ccum(i) at the location of j-th WWTP was calculated as: 

, ( )
( )

( ) ( ) ( )1

i tot j
cum i

R j U j U

LC
Q Q Q γγ

Γ

=

=
+ +

         (3.30) 

where Li,tot(j) is total loads of nutrient i at the location of the j-th WWTP, and Γ is the total number 

of upstream WWTPs of the j-th WWTP. 

3.4.3 Assessment thresholds for nutrient concentrations 

The status of water quality impairment is one of quality elements for ecological status 

assessment (BMUB/UBA, 2014). In-stream nutrient concentrations lower than specific thresholds 

(CN* and CP*) contribute to the achievement for Good ecological status. However, the water quality 

assessment satisfaction does not always guarantee better than Good ecological status because of 

comprehensive assessment for other quality elements (e.g., river channel alteration, biota). In this 

study, to evaluate water quality impact (eutrophication), I referred to CN* = 2.8 mg/L and CP* = 

0.1 mg/L, which are set as the management objectives for the EU WFD to be achieved by 2021 in 

Germany (Heidecke et al., 2015). 

3.5 Impacts of point- and diffuse-sources pressures 

3.5.1 Basin-scale network model 

The Eulerian perspective model at the basin-scale (described in Section 3.4.2.1) was 

originally designed to evaluate the sole contribution of point-source nutrient loads pressure to river 

eutrophication threat at the WWTP discharge points. The approach was appropriate with the 

primary interest for point source, but its limitation that diffuse sources were not included drove the 

need for an extended model dealing with both sources in a river basin. The necessity came up with 

a basin-scale spatially explicit model. The model presented here follows the essential framework 

of elemental removal based network model of Bertuzzo et al. (2017) which demonstrate scaling 

pattern of terrestrial dissolved organic carbon removal with drainage area. Compared to the 

original model application to conceptual diffuse-source input over synthetic optimal channel 
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networks, this study model covers practical nutrient loads from both point- and diffuse sources in 

real river network.  

In this model, incoming loads of nutrient i to reach z (Lin(i),z) is estimated with the sum of 

three components: (1) point-source loads from WWTP discharges into reach z (LU(i),z), (2) diffuse-

source loads from directly draining area (i.e., eigen-area) into reach z (KL(i),YEY,z), and (3) 

cumulative loads from direct upstream reaches of reach z (WnzLd(i),n), expressed as: 

( ), ( ), ( ), , ( ),in i z U i z L i Y Y z nz d i n
n

L L K E W L= + +         (3.31) 

where KL(i),Y is the nutrient i loads per unit area for land cover of a certain Y-category following 

CORINE level 1 data (Y = 1~5), EY,z is the eigen-area of reach z with Y-category land cover, Wnz is 

the connectivity indicator between upstream reach n and reach z, and Ld(i),n is the nutrient i loads 

at downstream end of reach n.  

Following the original model approach, a reach z is considered as a channel segment 

between two connected pixels, and the nutrient loads within every reach is removed with first-

order reaction. Thus, nutrient loads delivered at the end of reach z (Ld(i),z) can be estimated through 

the uptake velocity (vf), the specific river discharge(QR/w), and the reach length (l), as: 

( )
( ), ( ), ( ), ( ),

,
exp f i

d i z in i z z in i z i z
R z z

vL L l L NDR
Q w

 
= ⋅ − = 

 
      (3.32) 

where NDR(i),z is the nutrient delivery ratio of reach z.  

Concentration of nutrient i from both point- and diffuse-sources loads in reach z (CTotal(i),z) 

is calculated as: 
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, , ,

in i z
Total i z

R z U z nz TotU n
n

LC
Q Q W Q

=
+ +

         (3.33) 

where QTotU,z is the total (mean steady) volumetric treated wastewater discharged to reach z from 

all upstream WWTPs. Thus QTotU,z = 0 if there are no WWTPs in upstream area of reach z. QU,z is 

the treated wastewater discharge directly from a WWTP at reach z. 

For a river discharge at a reach z (QR,z), to reflect more diverse conditions of river discharge 

that can potentially happen, I considered six additional conditions for river discharge based on 

percentiles (10th, 25th, 50th, 75th, and 90th percentiles) as well as the annual mean river discharge 

(QRmean). Note that the resolution of the mHM simulation domain (4 km grid) is too coarse to 
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indicate river discharges of individual reaches (100 m grid) in the basin-scale model described in 

this dissertation. Thus, as an alternative way, I estimated a relative proportion of each percentile 

river flow to QRmean (e.g., κ90 = low-flow 10th percentile QR / QRmean) based on the mHM time-

series at the Weser River basin outlet. Each relative proportion for a given QR percentile was 

applied to all river reaches homogeneously (κ90 = 0.34; κ75 = 0.49; κ50 = 0.78; κ25 = 1.26; and κ10 

= 1.94), representing the steady-state river discharge with the same frequency over the entire river 

network. 
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 SCALE-INVARIANCE IN RIVER & URBAN DRAINAGE NETWORKS 

The contents of this section are mainly based on the results & discussions sections of 
following published paper: Soohyun Yang, Kyungrock Paik, Gavan S. McGrath, Christian Urich, 
Elisabeth Krueger, Praveen Kumar, and P. Suresh C. Rao, (2017). Functional Topology of 
Evolving Urban Drainage Networks. Water Resources Research. 

4.1 Scaling in river networks 

I investigated the underlying river networks of the study area. I extracted and analyzed 

river networks using SRTM 1 arc-second DEM provided by USGS (Figure 2.1a for Honouliuli; 

Figure 2.1b for AAC). Various river networks located within the same catchment boundary show 

an overlapping straight trunk in the exceedance probability distribution of the upstream area 

(Figure 4.1a for Honouliuli; Figure 4.1b for AAC). With the lower threshold area δmin = 0.01 km2, 

I fitted the exceedance probability (Eq.(3.2)) without exponential tempering, i.e., ( )P A a εδ δ −≥ =  

as widely done for river networks. Each ε value was found using Matlab’s nlinfit function of which 

the objective function is to minimize the sum of the squares of the residuals for the fitted model. 

The estimated range for a parameter was calculated with 95% confidence intervals. Averaged 

ε values are 0.4 for Honouliuli and 0.45 for AAC, which is in the range reported for other river 

networks (Rodríguez-Iturbe, Ijjász-Vásquez, et al., 1992; Maritan et al., 1996; Crave & Davy, 1997; 

Rinaldo et al., 2014). The length-area relationships of the underlying river networks also exhibit 

power-law scaling typical of a natural river network (Figure 4.1c for Honouliuli; Figure 4.1d for 

AAC). Breaking points starting the power-law length-area relationships with slope h ~ 0.6 are 

close to δmin in area-exceedance probability distributions. 
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Figure 4.1 Scaling relationships of multiple catchments within the boundaries of Honouliuli 
and AAC catchments. (a, b) Area-exceedance probability distribution plots. Black dashed 

lines represent the fitted equation P(A≥δ)=αδ−ε (δ ≥ δmin) with each averaged power-law slope 
of 0.4 for Honouliuli and of 0.45 for AAC. Each catchment index is compatible to those 

shown in Figure 2.1. (c, d)  Log-binned power-law relationships between the main channel 
length (L) and its corresponding drainage area (A). To obtain this figure, the range of A is 

divided into equal interval (0.1) on log scale (log-binning size of 0.1) and then the average L 
for each class interval is obtained. The two lines are displayed as the ‘ideal slope’ for 

comparison with the data (linearity h=1; Hack’s exponent h = 0.6). 



 
 

62 

4.2 Scale-invariant topology of UDNs 

4.2.1 Scaling patterns for “Quasi-mature” UDNs 

( )P A δ≥   plots for the most recent UDNs show similar patterns (Figure 4.2a): a straight 

middle part, here called “trunk,” and the tempered “tail” resulting from the finite-size effect. The 

trunk section becomes evident for larger UDNs (e.g., AAC). Drainage areas for these UDNs (< 

130 km2) are much smaller than typical river networks. These are constrained by the city size and 

economy-of-scale constraints on the size of the WWTPs; thus, large cities are often drained by 

multiple UDNs. Notably for UDNs, finite-size constraints are shown as the smooth exponential 

tempering of ( )P A δ≥ . In contrast, finite-size effects for river networks are evident as abrupt 

power-law truncation of ( )P A δ≥  (i.e., c in Eq.(3.2) is close to 0) at all spatial scales (Rinaldo et 

al., 2014) (Figure 4.1). 

Fitting Eq.(3.2) involves three degrees of freedom: (1) the lower threshold δmin where the 

power-law begins; (2) the upper threshold (parameterized as c) where the power-law diminishes; 

and (3) the power-law exponent ε. For river networks, the lower area threshold (δmin) has often 

been interpreted as where “hillslope” ends and the “channel” begins (Maritan et al., 1996). For 

UDNs, I still observe the lower threshold, although there is no hillslope in this case. I interpret the 

area below the lower threshold as the area inside a city block (with terminal nodes, cul-de-sacs, 

etc.) draining to local sewer lines along streets. Such terminal branches organize differently than 

most other branches; their topology differs from that of the entire network. I measured drainage 

areas of several such branches for the given networks and estimated the lower threshold to be 0.02 

km2. This corresponds well to the reported size of a medium-size city block (Siksna, 1997). For a 

typical river network, ( )P A δ≥  distribution for δ < δmin (hillslope) shows an upward concave trend 

on log-log plots (Figures 4.1a and 4.1b). In contrast, the UDNs show a concave downward trend 

of ( )P A δ≥  for δ < δmin on a log-log plot (Figure 4.2), indicating the disparate organization 

between hillslope rill and sub-block scale pipe networks. 
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For contributing area ≥ 0.02 km2, the two parameters of ε and c in Eq. (3.2) were found 

using the same method mentioned in Section 4.1. Overall, the fitted ε and c of UDNs depend on 

the UDN size. I find ε values of 0.36, 0.46, and 0.53, and c values of 0.43, 0.20, and 0.03, 

respectively, for Wahiawa (year 2009), Honouliuli (year 2014), and AAC (year 2015). A small 

UDN of Wahiawa shows a strong exponential tempering with a short power-law range fitted with 

a small ε value. A large UDN of AAC, on the other hand, exhibits a long power-law range with 

sharp tail truncation, comparable with river networks. This implies that a UDN tends to exhibit a 

more robust power-law, as its drainage area expands (subject to size constraints as discussed 

above). For such a large UDN, ε (0.53), is greater than that reported for rivers. This can be partly 

Figure 4.2 Scaling relationships of three UDNs of the most recent data. (a) Area-exceedance 
probability distributions for AAC, Honouliuli, and Wahiawa networks (total drainage area Amax 

are 126.0 km2, 85.1 km2, and 7.2 km2, respectively). Numbers inside the parentheses in the 
legend are the mean fitted ε value in Eq. (3.2). Standard errors with 95% confidence interval are: 

for the ε value, 0.001 (AAC), 0.002 (Honouliuli), and 0.005 (Wahiawa); for the c value, 0.001 
(AAC), 0.006 (Honouliuli), and 0.021 (Wahiawa). Mean squared error values for the fitted 

model are: 3.3×10-6 (AAC), 3.1×10-5 (Honouliuli), and 7.0×10-5 (Wahiawa). (b) Normalized 
area-exceedance probability distribution with power-law fit. (c) Length-area relationships for the 
three UDNs. L is the length along main sewer line and A is the drainage areas corresponding to 
L. The two dotted black lines are displayed as the “ideal slopes” for comparison with the data 

(linearity h=1; Hack’s law exponent h=0.6). 
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due to the fact that UDNs are not strict binary trees, unlike river networks, and can have more than 

two upstream pipes draining into some junctions. 

From Eq. (3.2), ( )P A δ≥  can be normalized as 1( )( )P A a εδ δ − −≥  (Rinaldo et al., 2014). 

The trunk portions of the normalized exceedance probability distributions collapse onto the single 

value of unity (Figure 4.2b). This suggests comparable topologies among the UDNs regardless of 

diverse (e.g., climatic, demographic, economic, engineering, and geographic) constraints 

underpinning the evolution of these UDNs. Normalized exceedance probability distributions 

deviate from unity for the tail of the distribution due to the finite size effect and difference in the 

tempering parameter c among UDNs. 

The relationship between main sewer line length and corresponding drainage area also 

follows a power-law (Figure 4.2c), like Hack’s law for rivers, which describes a power-law 

relationship between the main channel length and its corresponding drainage area with exponent 

h = 0.6±0.1. To be specific, length-area relationships for UDNs are often dissected into two 

segments, i.e., upstream segment which shows the convergence to h ≈ 1 and the downstream 

segment with h ≈ 0.6. I postulate the following scenario for the emergence of power-law scaling 

with the growth of UDNs. Given an initial single sewer line, the length-area relationship of such a 

simple system is linear and thus h ≈ 1. As the system starts growing, repeated additions of other 

pipes along its length from adjoining branches lead to a self-repetitive tree, still far from self-

similarity and having a linear length-area relationship. Nevertheless, with continuous network 

growth, some random factors such as the size of added subnets and junction locations are 

introduced, which is sufficient to drive the transition from this deterministic, repetitive structure, 

to that approaching a self-similar tree (Paik & Kumar, 2007). 

The threshold between upstream and downstream segments is about 0.2 km2, much greater 

than δmin in Figure 4.2a. This implies that the topological reasoning for the threshold in length-area 

relationship differs from the reasoning for δmin. The downstream segment is considered as the 

‘mature’ section of a UDN where enough number of branches have been connected. The upstream 

segment is the terminal section, corresponding to the new development area at the outskirt where 

early settlements form only along the single major line which is connected to the main body of the 

network, without the development of background blocks. As cities expand such areas can be 

densified but another new development forms further away from the city core (e.g. Figures 4.3 and 

4.4). Hence, such a break point in the length-area relationship can be found at any stage of a 
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growing city. The break point, however, is invisible in Figure 4.2a because ( )P A δ≥  is for the 

entire network rather than a single path. 

It has been suggested that the scaling constants, ε and h, are related as ε+h ≈ 1 for natural 

river networks (Rigon et al., 1996). Given estimated values of ε and h in Figure 4.2, such constraint 

is not obeyed for UDNs. This is because the space-filling constraint in river networks is not 

necessarily applied for UDNs. For example, a single sewer-line which connects a sub-sewershed 

to the main network (e.g., a pipeline Ψ in Figure 4.4) can be lengthy but has a little lateral 

contributing area. Therefore, unlike river networks, decoupling between ε and h can be expected. 

 

  

Figure 4.3 For the UDN in AAC (1970-2015), detailed upstream network of the break point 
(marked as an orange dot) in a length-area relationship (the accumulated drainage area is 
about 0.2 km2). Poorly developed tree topology is clearly shown. Blue-colored lines show 
the pipe-layout existed in each year. Grey-colored background lines are the latest networks 

(2015). Full network configuration for each year is given in Figure 4.4, facilitating the 
observation for relative location of the orange dot. 
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4.2.2 Scaling of evolving UDNs 

Water infrastructure networks in cities evolve over time with increasing population and 

economic development. Network growth involves two processes: (1) expansion in area with the 

addition of new suburbs; and (2) densification as older neighborhoods are filled in or vertically 

expanded. These processes can occur in sequence or in parallel (Gudmundsson & Mohajeri, 2013; 

Mohajeri et al., 2015). Both processes contribute to an increase in total pipe length and number of 

network nodes in proportion to population (Krueger et al., 2017; Zischg et al., 2017). Water 

infrastructure also changes with retrofitting over time to accommodate growth, and changing 

design principles, regulatory requirements, financial constraints, etc. 

I investigated the evolution of the pipe layout for the UDN (AAC shown in Figure 4.4; the 

other UDNs shown in Figure 4.5) and the associated scaling relationships over several decades 

Figure 4.4 Evolution of the pipe layout (blue lines) for the UDN in AAC over decades 
(1970-2015). Line thickness is proportional to the Horton-Strahler order of each pipe 
branch. The latest UDN is shown in the background with grey color. An orange dot 

represents the node of which upslope area is 0.2 km2, on the main branch (the visible break 
point in Hack’s law of Figure 4.2c). 
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(Figures 4.6a-f). Specific ε and c values estimated for evolving UDNs are given in Figures 4.6a, 

4.6c, and 4.6e. The power-law exponent ε in Eq. (3.2) increases as the total drainage area, Amax, 

increases over time (Figure 4.6g). On the other hand, the exponential tempering parameter, c, 

scales inversely with increasing Amax (Figure 4.6h), with an apparent log c versus log Amax slope 

of 0.73. These results suggest that as UDNs grow to drain larger urban areas, the exponential 

tempering diminishes, with ( )P A δ≥  tending to be more abruptly truncated, thus increasingly 

resembling river networks. 
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Figure 4.5 Evolution of the pipe layout for two UDNs in Oahu Island. (a) Wahiawa 
network. (b) Honouliuli network. The latest networks are drawn in grey line. Blue-
colored line thickness is proportional to the Horton-Strahler order of each pipe branch. 
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Figure 4.6 Scaling relationships of three evolving UDNs: Wahiawa (1929-2009); Honouliuli 
(1985-2014); and AAC (1970-2015). (a, c, e) Area-exceedance probability distribution plots. 
Black dashed lines represent the fitted straight power-law lines with each ε of the most recent 

UDNs. (b, d, f) Power-law relationship between normalized length (L/Lmax, where Lmax is a 
maximum length of main sewer line in each year) - normalized area (A/Amax). The two dashed 
black lines are shown as the “ideal slope” (linearity h=1 and Hack’s law exponent h=0.6) for 

comparison. (g) Trend of the exponent ε in Eq. (3.2) over varying maximum sewer-shed 
drainage area (black dashed line is fitted as ε = 0.053lnAmax+0.25). (h) Power-law relationship 
between the maximum sewer-shed drainage area and the exponential tempering parameter c 

(fitted power-law exponent -0.73 with standard error 0.13 for 95% confidence interval). 
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The long-term expansion of sewer networks occurs in an episodic fashion, with short 

periods of quick growth, either to accommodate anticipated growth in demand or to connect new 

neighborhoods with increasing population, or because of retrofitting catalyzed by technological 

advancements. Such spurts in UDN growth are largely reflected in the extension of trunks of the 

area exceedance plots and steps in tails (Figures 4.6a, c, e). In river networks, similar dynamic 

shifts have been shown to occur, but at rates orders-of-magnitude less frequent over geologic time 

scale, as revealed in stream piracy or migration of drainage divides (Bonnet, 2009; Willett et al., 

2014) resulting from tectonic activities or non-stationary climate forcing. UDN expansion can also 

involve pipe networks crossing topographic watershed divides of naturally drained catchments. 

As the population of a city grows, drainage density tends to increase in a given area of a 

city. Figure 4.7a shows an example of growing UDN sub-nets within a 53 km2 boundary area of 

AAC. The growing UDN within the bounded region shows well-collapsed ( )P A δ≥  curves 

(Figure 4.7b). The repeated analysis for a total of four sub-networks in AAC (the other three shown 

in Figure 4.8a) shows similar evolving patterns, with elongation of the trunk and more abrupt 

truncation over time (Figures 4.8b, c, d). Increasing drainage density with population pressure 

(increasing sanitary sewer discharge) is also analogous with a river basin where the drainage 

density tends to increase with increasing precipitation (wetter climate) (Wang & Wu, 2013). 

The total length of pipes within each clipped area of the UDN increases rapidly during the 

initial decade or two, representing the period of expansion, followed by much slower increase over 

the next decades (Figure 4.7c), consistent with empirical analyses of city growth (Gudmundsson 

& Mohajeri, 2013; Mohajeri et al., 2015). Exponential tempering of ( )P A δ≥  diminishes as the 

sub-networks grow within the clipped area, with c decreasing inversely with increasing total pipe 

length (Figure 4.7d). Thus, c is a measure of the stages of expansion and densification. The rate at 

which c decreases varies among different subnets in the city (drainage areas ranging from 7 to 46 

km2), revealing the heterogeneity of UDN growth processes within subnets of AAC. 

  



 
 

71 

 

 

 

 

  

Figure 4.7 Evolution of sub-networks in AAC. (a) Map of the sub-network 1, which is 
within a clipped area (53 km2) of AAC. (b) Area-exceedance probability distribution 
of growing pipe networks shown in Figure 4.7a. (c) Growing total pipe length over 
time. Total pipe length in a certain year LT (Year) is normalized by the longest total 
pipe length in the latest LT(2015). Numbers inside the parentheses in the legend are 

the maximum drainage area in 2015. Sub 1 indicates the sub-network shown in Figure 
4.7a. Other sub-networks are shown in Figure 4.8a. (d) Variation of exponential 

tempering parameter c, normalized to the maximum c value at the earliest time cmax. 
Numbers inside the parentheses in the legend are cmax values. 95% confidence 

intervals are also shown as the bars. 
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Figure 4.8 Map of subnet 2, 3, and 4 in AAC and their area-exceedance probability 
distributions. (a) Light blue lines represent the latest UDN layout. Grey lines display 
boundaries of subnets (subnet numbers are printed next to outlets marked as brown 

dots). The boundary lines were extracted using Convexhull function in Qgis 
(http://www.qgis.org/en/site/); (b, c, d) Area-exceedance probability distributions of 

the subnets 2, 3, and 4 over time, respectively. Evolving values of ε and c in Eq. (3.2) 
are shown. 
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 SCALING AND SPATIAL ORGANIZATION OF THE CNHE 
SYSTEMS 

The contents of this section are mainly based on the results & discussions sections of 
following published paper: Soohyun Yang, Olaf Buettner, James W. Jawitz, Rohini Kumar, P. 
Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial organization of human population and 
wastewater treatment plants in urbanized river basins. Water Resources Research. 

5.1 River network and human population 

5.1.1 Scaling in hierarchical structures 

Horton scaling ratios for stream number, length, drainage area, and eigen-area for the 

Weser, Elbe, and Rhine River networks were within the reported range from global river networks 

analyses (Table 5.1), although the analyzed drainage areas for the Elbe and Rhine were only within 

Germany. This result is consistent with universal scale-invariance of river network structures.  

Mean population in a given eigen-area increased at a consistent rate over H-S orders in the 

three river basins, with 2.1 0.2POPR = ±  (Figure 5.1; Table 5.1), suggesting similar hierarchical 

scale-invariance of POP distribution in the three river basins. In addition, POP distributions 

similarly indicate weak or neutral preference for settlements in eigen-areas of higher H-S orders 

(γ = 1.10 for Weser; 1.05 for Elbe; and 1.12 for Rhine, Table 5.1). These results are consistent with 

Fang et al. (2018), who also found mostly neutral preference for settlement by stream orders in the 

global basins they examined. 
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Table 5.1 Metrics used for hierarchical structure (Horton scaling ratios and scaling indices) 

 
Metrics River basin 

Weser Elbe Rhine 
Fraction of non-
sanitary flows 
contribution 

Total PE - Total POP
Total PE

Θ =  0.3 0.1 0.3 

Hierarchical 
structure  

RB 3.4 3.7 3.8 
RL 1.8 2.0 2.1 
RA 3.7 4.0 4.0 
RE 1.7 2.0 2.0 
RPOP 1.9 2.1 2.3 
RPE 3.1 2.6 3.3 
RWWTP 1.7 2.0 1.8 
γ (= RPOP /RE) 1.10 1.05 1.12 
ε (= RPE /RPOP) 1.63 1.23 1.46 
δ (=RPERWWTP /RB) 1.59 1.35 1.54 

 

 

  

Figure 5.1 (a-c) For Weser, Elbe, and Rhine River basins, variations of the mean population 
living in eigen-area (triangle) across H-S stream orders ω on a semi-log scale. Values of the 
population ratio (RPOP) and scaling index γ (=RPOP / RE) indicating the preferred settlement 

eigen-area are inset. 
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5.1.2 Longitudinal distribution patterns  

Along longitudinal flow directions, population patterns in the three river basins were 

similar, with weak downstream clustering (ΨPOP = 0.84 to 0.92 in Table 5.2). Nevertheless, the 

patterns of urban zones in each of POP-WFs (with similar dxPOP values of 8.3-8.6 km) were 

heterogeneous among the three river basins, manifesting different number, size, and location of 

cities in each river basins (gray-shaded regions in Figure 5.2). The heterogeneous distribution 

patterns of urban zones among river basins depend on the long-term political and historical legacy 

in Germany. For example, in the Holy Roman Empire, hundreds of politically independent 

territorial states were governed by each of the medieval lords, related to the locations of modern 

cities (Johnson, 2002). 

Estimated values of Gβ  (1.8 - 1.9) (R2 > 0.95, p < 0.05) were within the reported range 

from natural rivers (Marani et al., 1994; Fang et al., 2018), revealing again the consistency in scale-

invariance of river network structures (Table 5.2). The degree of population clustering, POPβ (R2 > 

0.90, p < 0.05), was not significantly greater than Gβ  (p < 0.05) for the three river basins, 

consistent with the lack of large cities (> 5M inhabitants) in these basins, and a smaller percentage 

of the population living in cities of >500K inhabitants (about 17%) compared to the global average 

(about 28%) (United Nations, 2016).  
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Table 5.2 Metrics used longitudinal patterns along flow path (directionality of clustering and 
power-law exponent from power spectral analysis with standard error (SE) estimated from the 

95% confidence interval) 

 
Metrics River basin 

Weser Elbe Rhine 

Longitudinal 
patterns along 

flow path  

POPΨ  0.91 0.92 0.84 
(1)PEΨ   0.76 0.73 0.63 
(2)PEΨ  0.71 0.73 0.55 
(3)PEΨ  0.46 0.67 0.60 
(4)PEΨ  0.40 0.66 0.46 
(5)PEΨ  0.30 0.54 0.22 
SEGβ ±   1.90 ± 0.03 1.90 ± 0.04 1.80 ± 0.05 

SEPOPβ ±  1.50 ± 0.14 1.60 ± 0.12 1.70 ± 0.14 
1 SEPE

kβ = ±  1.24 ± 0.21 a 1.44 ± 0.12 c 1.05 ± 0.16 f 
2 SEPE

kβ = ±  1.04 ± 0.16 a 1.29 ± 0.11 c 0.73 ± 0.19 f 
3 SEPE

kβ = ±  0.74 ± 0.14 a 0.58 ± 0.21 d 0.71 ± 0.16 f 
4 SEPE

kβ = ±  0.98 ± 0.21 a, 0.83 ± 0.20 d 0.84 ± 0.22 f 
5 SEPE

kβ = ±  0.23 ± 0.19 b 0.18 ± 0.12 e 0.64 ± 0.15 f 
Note. Superscripts a ~ f : For each river basin, individual alphabets characterize a group with 
statistically significant difference from others at the 95% confidence level (Knezevic, 2008).  
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Figure 5.2 (a-c) For Weser, Elbe, and Rhine River basins, the geomorphological width 
functions (G-WF, WG(x)) with dxG = 100 m (blue line) and the population width 

functions (POP-WF, WPOP(x)) with dxPOP = 8.3 km for Weser; 8.4 km for Elbe; and 
8.6 km for Rhine (black line). Variables on y-axes were normalized by the maximum 
value of each dataset. The x-axis indicates hydrological flow distance from the outlet 
in Germany. Note that the flow direction from the left to the right-hand side is toward 
the outlet in Germany. Names of German cities (with more than 500K inhabitants) in 
each river basin are given at their corresponding location points along hydrological 

flow paths. Gray-shaded regions show urban zones where the each POP-WF is above 
a threshold of 0.5. 
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5.2 PE and WWTPs 

5.2.1 Scaling in hierarchical structures 

PE spatial patterns in the three river basins followed Horton scaling (Figure 5.3), indicating 

scale-invariance of the aggregated POP through sewer networks over H-S orders. In addition, I 

found similar values of PER  for the three basins (3.0±0.3, Table 5.1), suggesting consistent basis 

for POP aggregation as PE served by WWTPs. Non-sanitary wastewaters accounted for 10-30 % 

of total wastewater within the three river basins (Θ in Table 5.1). The scaling index ε suggested 

that for all three German basins, more non-sanitary wastewater is collected and treated at WWTPs 

discharging to higher H-S orders (1.63 for Weser; 1.23 for Elbe; and 1.46 for Rhine, Table 5.1). 

The total number of WWTPs decreased exponentially with H-S order in all the three basins 

(Figure 5.4), resulting in similar values of RWWTP = 1.8±0.1 (Table 5.1). These findings support the 

hypothesis of scale-invariance of WWTPs distribution when not categorizing by class-sizes. Given 

the five class-sizes of WWTPs based on PE ranges, I found that for all three basins, WWTP 

locations were highly centralized as H-S order increased (with δ = 1.59 for Weser; 1.35 for Elbe; 

1.54 for Rhine, Table 5.1), indicating that a smaller number of WWTPs but with higher class-size 

were located in eigen-areas of higher H-S orders. The lower δ value for the Elbe basin captures 

the higher proportion of class-1 WWTPs and smaller fraction of class-5 WWTPs over 5th ~ 7th 

stream orders in the Elbe than either the Weser or the Rhine basins (Table 5.3) 

.  

Figure 5.3 (a) For Weser, (b)Elbe, and (c)Rhine River basins, variations of the mean PE 
served by WWTPs discharging across H-S stream orders ω  on a semi-log scale. Values of 
the PE ratio (RPE) and ε (= RPE / RPOP) indicating the contribution of non-sanitary inflows 

to wastewater collected into a WWTP are inserted. 
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Table 5.3 Percent (%) of the number of wastewater treatment plants (WWTPs) for each class-
size over stream orders 

River basin WWTP  
class-size 

Stream order (ω) 
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5 ω = 6 ω = 7 

Weser 

1 46 23 15 4 16 0 0 
2 27 22 26 19 29 12 8 
3 9 24 15 24 13 24 17 
4 17 30 41 47 32 44 50 
5 1 1 3 6 11 20 25 

Elbe 

1 69 49 47 29 33 19 21 
2 20 22 16 15 16 13 8 
3 4 9 12 11 16 0 17 
4 5 19 21 37 31 50 46 
5 1 1 4 7 5 19 8 

Rhine 

1 49 23 14 12 16 7 2 
2 30 23 21 13 13 11 12 
3 9 14 16 16 15 14 13 
4 11 37 46 49 45 54 44 
5 1 3 4 9 11 14 29 

 

  

Figure 5.4 (a) For Weser, (b) Elbe, and (c) Rhine River basins, variations of the total 
number of WWTPs discharging to streams of a given stream order (red circle) across H-S 
stream orders ω  on a semi-log scale. Bars represent the number of WWTPs by class-size. 
Values of the WWTP ratio (RWWTP) and a scaling index of δ (=RPERWWTP / RB) indicating 

the degree of centralization in WWTPs locations are inserted 
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5.2.2 Longitudinal distribution patterns 

Patterns of PE-WFs with all WWTP class-sizes in the three river basins were mostly 

equivalent with those of POP-WFs (e.g., compare Figure 5.2a with Figure 5.5a for Weser). On the 

other hand, the patterns of class-merged PE-WFs were generally the inverse longitudinal 

distributions of the number of WWTPs (see upper and lower panels in Figures 5.5a, 5.6a, and 5.7a). 

This suggests the need for differentiating among the five class-sizes of WWTPs. Larger urban 

zones were served by higher class-sizes (k = 4 and 5) WWTPs which deploy mandatory tertiary 

treatment technologies (EEC, 1991) (Figures 5.5e-f, 5.6e-f, and 5.7e-f). In contrast, smaller 

communities were served by lower class-size (k = 1 to 3) WWTPs deploying primary and 

secondary treatment (combination of physical and biological technologies) (EEC, 1991) (Figures 

5.5b-d, 5.6b-d, and 5.7b-d). Given no regulatory requirements for nutrient loads discharges by 

lower class-size WWTPs, the operators customize cost-effective combinations of primary and 

secondary treatment technologies.  

These analyses showed that PE-clustering is downstream for higher WWTP class-sizes, 

while upstream for lower WWTP class-sizes (Figure 5.8). The metric ( )PE kΨ  decreased as class-

size k increased (Table 5.2). The Weser basin provided a representative example for PE-clustering 

for the five class-sizes (Figure 5.8a). On the other hand, the Elbe and Rhine basins showed less 

variability among the five class-sizes (Figures 5.8b-c), because of the exclusion of the other basin 

regions outside Germany. I anticipate that if WWTPs in the portions of the Elbe and Rhine basins 

outside Germany exhibit similar scale-invariance distributions to those in the German portion of 

the basins, Figures 5.8b and 5.8c will shift to become similar to Figure 5.8a, by adding WWTPs 

outside Germany. Demonstrating this argument for the whole of Elbe and Rhine basins will be the 

focus for future research.  
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Figure 5.5 For Weser River basin, width functions for the number of WWTPs 
(upper panels) and for population equivalent (PE-WFs, WPE(x)) (lower panels) 

for (a) all classes and for (b-f) each class-size k = 1-5 in sequence along 
hydrological flow distance from the outlet in Germany. Note that the flow 

direction from the left to the right-had side is toward the outlet in Germany. 
Gray-shaded regions show urban zones where the normalized width function for 

population (Figure 5.2a) is above a threshold of 0.5 
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Figure 5.6 For Elbe River basin, width functions for the number of WWTPs (upper 
panels) and for population equivalent (PE-WFs, WPE(x)) (lower panels) for (a) all 
classes and for (b-f) each class-size k = 1-5 in sequence along hydrological flow 
distance from the outlet in Germany. Note that the flow direction from the left to 

the right-had side is toward the outlet in Germany. Gray-shaded regions show urban 
zones where the normalized width function for population (Figure 5.2b) is above a 

threshold of 0.5 
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Figure 5.7 For Rhine River basin, width functions for the number of WWTPs 
(upper panels) and for population equivalent (PE-WFs, WPE(x)) (lower panels) for 
(a) all classes and for (b-f) each class-size k = 1-5 in sequence along hydrological 

flow distance from the outlet in Germany. Note that the flow direction from the left 
to the right-had side is toward the outlet in Germany. Gray-shaded regions show 
urban zones where the normalized width function for population (Figure 5.2c) is 

above a threshold of 0.5 
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All values of PE
kβ  indicating the degree of spatial clustering for PE served by class-size k 

WWTPs were statistically significant at the 99% confidence level (p < 0.01), except 5
PE
kβ =  for the 

Weser and Elbe basins (Table 5.2, Figures 5.9 and 5.10). Significant similarity of the spatial auto-

correlation for PE including the largest class-size for the Rhine basin depends on the intervals 

among populated areas along hydrological flow distances (Table 5.2 and Figure 5.11). Normalized 

mean separation distance between urban zones (τ ) for the Rhine basin (0.12) was half of that for 

the Weser and Elbe basins (0.23 and 0.22), reflecting the larger number and greater sizes of more 

populated areas in the Rhine basin (Figure 5.2). When the populated areas are closer, the patterns 

Figure 5.8 (a) For Weser, (b) Elbe, and (c) Rhine River basins, accumulated PE 
distribution from the basin outlet at a given relative flow distance from the 

outlet in Germany. Note that the flow direction from the left to the right-had 
side is toward the outlet in Germany. The five class-sizes of German WWTPs 

are marked as different colors. 
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of WWTPs across the five class-sizes along hydrological flow distances are more similar (Figures 

5.5-5.7), decreasing the differences in the degree of PE clustering among the five class-sizes. 

Therefore, the findings suggest that the degree of spatial clustering for PE served by each class-

size reflects unique pattern for the size and location of populated areas in individual river basins. 

Under an adequate assumption for life-style and water-use of inhabitants, the distinct patterns for 

the nutrient loads discharged from WWTPs are predictable from those of PE-WFs for class-sizes. 

For assessing hydrological alteration and water-quality impairment from point-source pressures, I 

suggest a combined approach employing H-S order hierarchy and the longitudinal perspective,  

recognizing the key role of receiving river discharge in the evaluations (Ekka et al., 2006; Rice & 

Westerhoff, 2017). 

 

  

Figure 5.9 For Weser River basin, (a-e) Power spectra for the PE-WFs (WPE(x)) on a log-
log scale for each class-size k=1-5 in sequence. Red dashed lines identify the power law 
fitted lines estimated using log-binned data within 0.1 frequency interval (red asterisks) 

from the original data (gray dots). Significant level for each power law exponent is set as 
p<0.01 for k=1-4 and p<0.2 for k=5 
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Figure 5.11 For Elbe River basin, (a-e) Power spectra for the PE-WFs (WPE(x)) on a log-
log scale for each class-size k=1-5 in sequence. Red dashed lines identify the power law 
fitted lines estimated using log-binned data within 0.1 frequency interval (red asterisks) 

from the original data (gray dots). Significant level for each power law exponent is set as 
p<0.01 for k=1-4 and p<0.2 for k=5 

Figure 5.10 Rhine River basin, (a-e) Power spectra for the PE-WFs (WPE(x)) on a log-log 
scale for each class-size k=1-5 in sequence. Red dashed lines identify the power law 

fitted lines estimated using log-binned data within 0.1 frequency interval (red asterisks) 
from the original data (gray dots). Significant level for each power law exponent is set as 

p <0.01 for all class-sizes 
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 SPATIAL DISTRIBUTIONS OF POINT-SOURCE IMPACTS AT 
REACH-SCALE 

The contents of this section are based on the results & discussions sections of following 
published paper: Soohyun Yang, Olaf Buettner, Rohini Kumar, Christoph Jaeger, James W. 
Jawitz, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial patterns of water quality 
impairments from point source nutrient loads in Germany's largest national River Basin (Weser 
River). Science of the Total Environment. 

6.1 River discharge simulated and WWTP discharge reported 

Across the Weser River network, mean of both QR50 and QR90 ( 50RQ  and 90RQ ) scaled 

exponentially over seven stream orders, with a scaling exponent of 1.13 and 1.17 (for both, p < 

0.01 and R2 ~ 1), respectively (Figure 6.1); these values are on the lower end of reported range 

(1.1 to 1.8) for drainage area ratios found from natural rivers (Schumm, 1956; Rodríguez-Iturbe & 

Rinaldo, 2001). For a given stream order, 50RQ  increased about three orders of magnitude from 

0.4 m3/s (ω = 1) to 306 m3/s (ω = 7) (Table 6.1). Values of 90RQ  were ~2.5 times smaller than 

50RQ , on average, over seven stream orders (standard deviation; std, 0.22), and the ratio of 

50 90R RQ Q  decreased monotonically with increasing stream order (Table 6.1). 

Figure 6.1 Spatial patterns over stream orders for (a) median flow QR50 and (b) base-flow 
QR90 (both are simulated using mHM). The five class-sizes (k=1-5) of German WWTPs 
are marked as different colors. Red dashed lines are fitted exponential lines (for both (a) 

and (b), p < 0.01 and R2 = 0.99). 
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Table 6.1 For QR50 and QR90 [m3/s], key statistics over stream orders (ω). Values in the 
parenthesis for ω = 4 were estimated by excluding exceptionally deviated results of the mHM 

simulation. 

H-S 
order  
(ω) 

Number  
of data 

Median flow condition  
(QR50 [m3/s]) 

Low-flow condition  
(QR90 [m3/s]) 

Statistics Statistics 

Median 
[m3/s] 

Mean 
[m3/s] CV Median 

[m3/s] 
Mean 
[m3/s] CV 

1 401 0.3 0.4 0.8 0.1 0.1 0.8 

2 175 0.8 1.1 0.8 0.3 0.4 0.9 

3 125 3.0 3.2 0.6 1.1 1.2 0.7 

4 69 12.1 
(12.7) 

15.3 
(14.1) 

1.1 
(0.6) 

5.0 
(5.9) 

6.3 
(5.8) 

1.2 
(0.6) 

5 38 38.0 34.0 0.4 15.3 14.0 0.4 

6 25 128.2 123.9 0.4 55.1 53.2 0.4 

7 12 306.0 291.8 0.1 132.3 125.7 0.1 

*Note that five hydrographs deviated from the others (three for ω = 5; two for ω = 6, about 8% of 
total WWTPs in each H-S order) were excluded for the mean CVQ* calculation. 

 

Mean WWTP discharge ( UQ ) also scaled exponentially (Figure 6.2) from 0.009 to 0.21 

m3/s with stream order, with a scaling exponent of 0.46 (p < 0.01, R2 = 0.87). High CV values for 

QU for all stream orders resulted from the variability of PE among and across different five class-

sizes for each given order. (Table 6.2). Given the variability in QR and QU, combination of class-

size (k) and stream order (ω) determines the variability in Urban Wastewater Discharge Fraction 

(Φ) (see Section 6.3), which in turn is reflected in estimated reach-scale nutrient concentrations 

(see Section 6.4.1). 
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Table 6.2 For QU [m3/s], key statistics over Horton-Strahler (H-S) stream orders. 

H-S order 
(ω) 

Number  
of data 

Statistics 

Median 
[m3/s] Mean [m3/s] CV 

1 386 1.6x10-3 8.6x10-3 2.7 

2 172 6.8x10-3 1.4x10-2 1.6 

3 123 9.9x10-3 3.1x10-2 2.4 

4 69 1.2x10-2 3.5x10-2 1.6 

5 38 8.9x10-3 7.0x10-2 2.9 

6 25 2.1x10-2 4.8x10-2 1.4 

7 12 3.2x10-2 2.1x10-1 2.0 

 

  

Figure 6.2 Spatial patterns over stream orders for steady-state discharge of 
treated wastewater from WWTPs QU. The five class-sizes (k=1~5) of German 

WWTPs are marked as different colors. Red dashed lines are fitted exponential 
lines (p < 0.01 and R2 = 0.87). 
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6.2 Point-source pressure 

Total N and P loads from all 845 WWTPs in the Weser basin were: 8.6x106 kg N/yr and 

9.6x105 kg P/yr. Mean N and P loads also scaled exponentially with stream order (Figures 6.3a-b), 

with scaling exponents of 0.37 (p < 0.01, R2 = 0.87) for N and 0.26 (p < 0.01, R2 = 0.84) for P. 

Regular patterns in variabilities of N and P loads over stream orders were not evident (Table 6.3), 

but with a highly consistent pattern in CV of QU, which expected from the scaling between QU and 

nutrient loads (Figure 6.4).  

Mean molar ratio of N/P estimated from WWTPs nutrient loads was ~16 (ω = 1∼5), then 

increased to ~32 (ω = 7) (Figure 6.3c; Table 6.3). The lower mean N/P value was around the 

threshold to assess N-limitation (N/P molar ratio = 15); whereas the highest mean N/P value was 

close to the threshold to evaluate P-limitation (N/P molar ratio = 33) (McDowell et al., 2009). This 

finding indicates that WWTPs in ω≤5 removed less P compared to those in ω≥6. Indeed, >50% of 

WWTPs discharging to ω≤5 consisted of lower class-sizes (k≤3) (Figure 6.3d), which deployed, 

at best, secondary treatment (physical and biological technologies) with no statutory regulations 

for P removal (EEC, 1991; DWA, 2018). On the other hand, >60% of WWTPs in ω≥6 were larger 

WWTPs (k≥4) deploying the tertiary treatment technologies targeting P removal (more stringent 

for higher k) (EEC, 1991). Thus, the higher N/P values for larger streams (ω≥6) reflect the 

combination of a larger portion of WWTPs with k≥4 and the use of advanced treatment 

technologies for P removal. 
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Figure 6.3 Spatial patterns over H-S orders in the Weser River for (a-b) N and P loads 
[kg/yr] discharged from all WWTPs, and (c) molar ratio of N/P. (d) Relative portion of the 
number of WWTPs depending on each class-size for a given H-S order. Mean values in (a-
c) are given as red bars. Red dashed lines in (a) and (b) are linear fitting lines on a semi-log 

paper (p<0.01, 0.84 ≤ R2 ≤ 0.87). The five class-sizes of German WWTPs are marked as 
different colors (light-blue, purple, orange, yellow, and light-green for class 1 to 5, in 

sequence). 
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Figure 6.4 Scattered plot using all WWTPs in the Weser River basin. (a, b) Discharged 
N and P loads [kg/year] VS. PE [p.e.]. (c) N/P molar ratio VS. PE. Fitted θN 0.84 with 
standard error 0.04 for 95% confidence interval; fitted θP 0.71 with standard error 0.04 
for 95% confidence interval. Mean squared error (MSE) values are given in the figures. 
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Table 6.3 For N and P loads discharged from available data of WWTPs in the Weser River basin, 
key statistics over H-S orders 

H-S 
order  
(ω) 

N loads LU(N) P loads LU(P) N/P molar ratio 

Statistics Statistics Statistics 
Median 
[kg/yr] 

Mean 
[kg/yr] CV Median 

[kg/yr] 
Mean 
[kg/yr] CV Median Mean CV 

1 2.2x103 5.2x103 1.9 3.3x102 6.6x102 1.4 12.2 16.4 1.0 

2 4.0x103 8.4x103 1.6 8.7x102 1.1x103 1.0 12.8 14.8 0.7 

3 4.6x103 1.4x104 2.4 9.8x102 1.5x103 1.6 14.5 17.7 0.9 

4 6.0x103 1.8x104 2.0 1.0x103 1.7x103 1.2 15.7 17.1 0.7 

5 4.1x103 3.4x104 2.8 6.6x102 3.0x103 2.4 14.2 15.7 0.8 

6 7.4x103 2.2x104 1.3 1.5x103 2.0x103 0.8 15.5 20.9 1.1 

7 1.9x104 6.8x104 2.0 2.4x103 3.9x103 1.6 19.6 31.9 1.2 

*Number of available data for N loads = [333; 161; 118; 66; 37; 25; 12] 
**Number of available data for P loads = [376; 170; 124; 69; 38; 25; 12] 
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6.3 Hydrological impact 

 

At the Weser River basin outlet, the Urban Wastewater Discharge Fraction (Φ) values 

estimated for median flow and low-flow (ΦQR50 and ΦQR90) were 0.06 and 0.12, respectively, 

suggesting that, on a basin-wide average, contribution of WWTPs discharge is small relative to 

river discharge. However, spatial variations in reach-scale hydrologic impacts are also important. 

Mean Φ values for both flow conditions ( 50QRΦ  and 90QRΦ ) decreased exponentially, as stream 

order increased with exponent 0.56 (p < 0.01; R2=0.85 and 0.89), from 2.9x10-2 to 7.6x10-4 and 

from 6.7x10-2 to 1.8x10-3. The ratio of exponents for QR and QU is ~2.5, suggesting that QR 

increases more relative to QU with increasing stream orders; thus, dilution effect is greater in larger 

stream reaches. The average of 90 50QR QRΦ Φ  across all stream orders was 2.4 (std. = 0.3) similar 

to 50 90R RQ Q , demonstrating that wastewater discharge is more likely to be a significant 

contribution to total river flow under drier weather condition (Figure 6.5 and Table 6.4).  

 

 

  

Figure 6.5 Spatial hierarchy of Urban Wastewater Discharge Factor (Φ) over seven stream 
orders in the Weser from (a) median flow QR50 and (b) base-flow QR90. Red dashed lines in 

both (a) and (b) are linear fitting lines on a semi-log paper (p<0.01, R2=0.9). 
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Variability in ΦQR50 and ΦQR90 was large for both median flow and low-flow conditions. 

CV values for ΦQR50 and ΦQR90 were characterized by three trends: (1) the largest CV for ω = 4, (2) 

relatively smaller CVs for streams with ω ≤ 3, and (3) relatively larger CVs for higher orders (ω = 

5~7). Minimum and maximum CV values were 2.1 and 5.3 for ΦQR50, and 1.8 and 4.1 for ΦQR90. 

The strikingly high CV for ΦQR50 and ΦQR90 for ω = 4 resulted from the exceptional peak of CVQ 

for ω = 4. Overall higher CV values for ΦQR50 than for ΦQR90 reflect the increasing magnitude of 

streamflow QR (QR50 > QR90) (Table 6.4). 

The findings presented above for Φ suggest that WWTPs treated effluents are not likely to 

generate significant hydrologic alterations to natural stream flows in the Weser River. However, 

several important exceptions are evident for smaller streams. Among total 825 WWTPs (excluding 

WWTPs with no data of PE), portions of streams having Φ≥0.1 were ~5% for ΦQR50 and ~15% for 

ΦQR90. Among the streams with Φ≥0.1, first-order streams accounted for the largest portion (~70% 

for ΦQR50 and ~66% for ΦQR90), followed by second-order streams (~16% for ΦQR50 and ~20% for 

ΦQR90). More than 70 % of the lower-order streams (ω<3) with Φ≥0.1 received the treated effluents 

from larger WWTPs (k≥4) serving large urban agglomerations. How these hydrologic patterns are 

manifested in water quality impairments is discussed in the following section, at reach-scale. 

Table 6.4 For Urban Wastewater Discharge Factor (Φ) estimated from each of QR50 and QR90, key 
statistics over H-S orders 

H-S 
order  
(ω) 

Number  
of data 

Φ estimated from QR50 Φ estimated from QR90 

Statistics Statistics 

Median  Mean  CV Median  Mean  CV 

1 386 6.7x10-3 2.9x10-2 2.1 1.8x10-2 6.7x10-2 1.8 

2 172 8.8x10-3 2.2x10-2 2.1 2.3x10-2 5.6x10-2 1.7 

3 123 4.0x10-3 1.2x10-2 1.8 1.1x10-2 3.3x10-2 1.8 

4 69 1.5x10-3 1.6x10-2 5.3 3.6x10-3 2.7x10-2 4.1 

5 38 2.6x10-4 4.7x10-3 2.5 6.3x10-4 1.2x10-2 2.6 

6 25 1.7x10-4 3.5x10-3 3.4 3.9x10-4 8.6x10-3 3.4 

7 12 1.0x10-4 7.6x10-4 2.1 2.3x10-4 1.8x10-3 2.1 
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6.4 Water quality impact 

6.4.1 Pattern in hierarchical structures 

I further examined the internal variability of reach-scale water quality impairments from P 

and N loads discharged from WWTPs, by estimating reach-scale nutrient concentrations using Eq. 

(3.21) for given nutrient loads discharged to receiving streams. For median flow (QR50), mean of 

Creach(P) and Creach(N) decreased from 8.6x10-2 to 4.5x10-4 mg P/L, and from 6.1x10-1 to 7.9x10-3 mg 

N/L for higher-order streams (Tables 6.5 and 6.6). For low-flow (QR90), the mean of Creach(P) and 

Creach(N) increased by a factor of 2.5 on average for each stream order, proportional to the ratio of 

50 90R RQ Q ~2.5 (see Section 6.1), and suggesting the dominant contribution of QR compared to QU 

(see Section 6.3). 

I used a threshold of CP* = 0.1 mg/L and CN* = 2.8 mg/L to evaluate water quality 

impairments which limit the achievement of at least Good ecological status, which is the EU WFD 

objective. At median flow, <20% of total WWTPs (17% for P, and 2% for N) are likely to have 

reach-scale nutrient impairment (e.g., Creach(P) > CP*); of these, lower-order streams (ω<3) 

accounted for ~93% for P and N (Figures 6.6a-b). About half of these P-impaired low-order 

streams received nutrient loads from larger class-size (k≥4) WWTPs. At low-flow, the proportion 

of impaired streams increased by a factor of more than two (37% for P, and 11% for N), with most 

(~90%) being lower-order streams (Figures 6.6c-d). 
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Table 6.5 For the reach-scale concentration for P (Creach(P) [mg/L]) estimated from each of QR50 
and QR90, key statistics over H-S orders 

H-S 
order  
(ω) 

Number  
of data 

Creach(P) from QR50 Creach(P) from QR90 

Statistics Statistics 

Median 
[mg/L] 

Mean 
[mg/L] CV Median 

[mg/L] 
Mean 

[mg/L] CV 

1 370 3.7x10-2 8.6x10-2 1.6 1.0x10-1 2.2x10-1 1.4 

2 169 3.2x10-2 6.1x10-2 1.8 9.1x10-2 1.6x10-1 1.7 

3 122 9.1x10-3 2.3x10-2 1.5 2.5x10-2 6.3x10-2 1.5 

4 69 3.5x10-3 2.3x10-2 4.4 8.6x10-3 4.5x10-2 3.9 

5 38 7.0x10-4 7.3x10-3 2.7 1.8x10-3 1.9x10-2 2.8 

6 25 4.1x10-4 1.6x10-2 3.9 9.6x10-4 3.9x10-2 3.9 

7 12 2.5x10-4 4.5x10-4 1.7 5.7x10-4 1.1x10-3 1.7 

 

Table 6.6 For the reach-scale concentration for N (Creach(N) [mg/L]) estimated from each of QR50 
and QR90, key statistics over H-S orders 

H-S 
order  
(ω) 

Number  
of data 

Creach(N) from QR50 Creach(N) from QR90 

Statistics Statistics 

Median 
[mg/L] 

Mean 
[mg/L] CV Median 

[mg/L] 
Mean 

[mg/L] CV 

1 329 2.5x10-1 6.1x10-1 1.7 7.0x10-1 1.5 1.4 

2 161 1.6x10-1 4.1x10-1 1.8 4.3x10-1 1.0 1.6 

3 116 6.2x10-2 2.0x10-1 2.0 1.6x10-1 5.3x10-1 1.9 

4 66 1.9x10-2 2.8x10-1 5.5 4.6x10-2 4.6x10-1 4.3 

5 37 4.7x10-3 4.2x10-2 2.1 1.2x10-2 1.1x10-1 2.1 

6 25 2.2x10-3 1.0x10-1 3.6 5.1x10-3 2.5x10-1 3.6 

7 12 2.2x10-3 7.9x10-3 2.1 5.1x10-3 1.8x10-2 2.1 
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6.4.2 Longitudinal distribution patterns 

Longitudinal distributions for the estimated, reach-scale, N and P concentrations along 

hydrologic flow paths with the locations of the impaired lower-order streams are shown (Figure 

6.7 for QR50; Figure 6.8 for QR90). Two regions are of specific interest. First, at 200-300 km from 

the outlet, where four of the eight largest cities (Brunswick, Wolfsburg, Salzgitter, and Hildesheim) 

in Lower Saxony are located and are served by larger WWTP class-sizes. Second, about 500-600 

km from the outlet, several smaller urban areas served by lower class-size (k≤2) WWTPs, but with 

larger PE discharging to small streams with lower river discharge. Thus, WWTP locations with a 

combination of large PE (regardless of class-size) and small river discharge (regardless of stream 

order) are likely to cause water quality impairment of streams.  

Figure 6.6 Spatial hierarchy over stream orders for nutrients (i = N and P) concentrations 
at the reach-scale (Creach(i)) under each of median flow QR50 and base-flow QR90, with the 

condition of zero background concentration (Co = 0 mg/L). (a and c) Reach-scale N-
concentration results for QR50 and QR90, respectively. (b and d) Reach-scale P-

concentration results for QR50 and QR90, respectively. 
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Figure 6.7 For the median flow condition QR50, longitudinal distribution along the 
mainstream of the Weser for (a) N concentration (Creach(N), mg/L) and (b) P concentration 

(Creach(P), mg/L) at the discharge-point of WWTPs (local-scale) (left-hand side y-axis). 
Each color in circle-markers represents each class-size of WWTPs. Lower limit value on 

the left y-axis is set as a measurable concentration (USEPA, 1993) for visualization 
efficiency. Out of total WWTPs, 15% for N and 40% for P result the reach-scale 

concentration < 0.01 mg/L. Note that the flow direction from the left to the right-hand 
side is toward the Weser basin outlet. Human population distribution along the 

mainstream (right-hand side y-axis) is plotted to identify a relevant pattern between 
populated areas and water quality impaired regions. 



 
 

100 

 

 

 

  

Figure 6.8 For the base-flow condition QR90, longitudinal distribution along the 
mainstream of the Weser for (a) N concentration (Creach(N), mg/L) and (b) P 

concentration (Creach(P), mg/L) at the discharge-point of WWTPs (local-scale) (left-hand 
side y-axis). Each color in circle-markers represents each class-size of WWTPs. Lower 

limit value on the left y-axis is set as a measurable concentration (USEPA, 1993) for 
visualization efficiency. Out of total WWTPs, 9% for N and 26% for P result the reach-
scale concentration < 0.01 mg/L. Note that the flow direction from the left to the right-

hand side is toward the Weser basin outlet. Human population distribution along the 
mainstream (right-hand side y-axis) is plotted to identify a relevant pattern between 

populated areas and water quality impaired regions. 
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 BASIN-SCALE WESER RIVER EUTROPHICATION ASSESSMENT 

The part of this section is based on the results & discussions sections of following published 
paper: Soohyun Yang, Olaf Buettner, Rohini Kumar, Christoph Jaeger, James W. Jawitz, P. 
Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial patterns of water quality impairments from 
point source nutrient loads in Germany's largest national River Basin (Weser River). Science of 
the Total Environment. 

7.1 Sole contribution of point-source pressure 

I evaluated the cumulative effects of WWTP nutrient loads at all locations downstream 

from WWTPs, first by considering only the role of dilution. At median discharge QR50, compared 

to reach-scale assessments, the number of impaired streams were around doubled, from 136 to 266 

for P, from 15 to 31 for N. This accounts for ~32% (for P) and 4% (for N) of all WWTP locations. 

Of these, larger streams (ω>3) accounted for ~35% (for P) and ~45% (for N), suggesting the 

increased effects of cumulative N and P loads along flow paths. Including in-stream nutrient uptake, 

the impaired streams decreased to ~27% (for P) and 3.8% (for N). Because I estimated the basin-

scale Ccum(i) at the exact points of WWTP locations (consistent with the reach-scale assessments), 

the small decline (by ~5% for P and 0.2% for N) mostly resulted from the decrease portion for 

WWTPs discharging to larger streams. At low-flow QR90, considering in-stream nutrient uptake, 

the number of WWTP locations where Ccum(i) exceeds the threshold concentrations was 463 for P 

(~56%) and 112 for N (~14%), around 1.7 (for P) and 3.6 (for N) times larger than that at QR50. 

This finding highlights the increased eutrophication risk at low-flow conditions. Larger streams 

(ω>3) once again represented a disproportionate fraction of these locations (~29% for P, ~23% for 

N). 

Fraction of P and N losses over the entire basin (Ψ) were estimated as ΨP = 0.47 and ΨN = 

0.32 for QR50. For P loads, starting from each of the 845 WWTP locations, I estimated the Nutrient 

Delivery Ratio (NDRP) along flow paths to the basin outlet (Figures 7.1a-b). In all cases, the NDR 

profile was convex downward with distance towards the basin outlet, indicating the decline of the 

nutrient uptake rate constant kx (see Eq. (3.27)). At low-flow QR90, fraction of P and N loads 

removed over the entire basin was larger than for QR50 (ΨP ~ 0.63; ΨN ~ 0.46), corresponding to 

lower NDR and higher kx (Figures 7.1c-d). However, P and N concentrations at the basin outlet 

increased ~1.5 times for QR90 compared to QR50, from 0.05 to 0.07 mg P/L, and from 0.56 to 0.96 
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mg N/L. Thus, for QR90, increased in-stream nutrient uptake was countered by a smaller dilution-

effect (QR90/QR50 ~0.4 on average). These findings suggest that in-stream nutrient uptake plays an 

important role in reducing loads in low-order streams, while dilution is a major determinant for 

decreasing P and N concentrations in larger streams. 

 

 

  

Figure 7.1 (a) Longitudinal profile of the Nutrient Delivery Ratio for P loads (NDRP) estimated 
under median flow (QR50). Among individuals 845 flow paths starting from each WWTP, four 
representative ones were selected depending on the NDR value at the basin outlet (NDRP(out)): 
(1) the lowest, (2) 25th, (3) 50th, and (4) 75th percentile (PCTL). Each line indicates a flow 
path from a WWTP location to the basin outlet (towards the right-hand direction). Anchor 

points on the profile represent confluences of side river streams. (b) Cumulative Distribution 
Function (CDF) of all estimated values for NDRP(out) under QR50. (c-d) are illustrated using the 

estimated results of NDRP and NDRP(out) under low-flow (QR90) condition 
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7.2 Temporal trends of eutrophication from point- and diffuse-sources 

Mean P concentration over the entire Weser river basin decreased from 0.37 to 0.19 mgP/L 

during recent few decades, because of significant reduction of total annual P loads (from 10K ton 

in 1980s to 3.1K ton in 2010s). Noting the heterogeneous spatial distributions for/within diffuse- 

and point-sources P loads despite total P loads reduction, it is also important to identify which 

streams within the Weser basin have been impaired consistently or recovered gradually over time. 

Thus, I separately examined P concentration estimated from diffuse- and point-source P loads 

(CDS(P) and CPS(P)) and consequent total P concentration (CTotal(P)) (Figure 7.2). In 1980s, point-

source P loads accounting for ~57% of total P loads dominated the spatial pattern of CTotal(P). Figure 

7.2a shows that most of streams with red-color code (ratio >2.5) are collocated between two maps 

of CPS(P)/CP* and CTotal(P)/CP*, with a similar mean concentration value of ~0.37 mg/L over the 

entire basin. On the other hand, since 2000s, diffuse-source of P loads played a key determinant to 

the resulted total P concentration, despite its 45% reduction than 1980s (Figures 7.2b and 7.2c). 

This is because the significant reduction magnitude of point-source P loads (~87% reduction than 

1980s), which affected by the implementation of the EU WFD, increased the relative portion of 

diffuse-source of P loads. 
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Figure 7.2 For the Weser River basin, basin-scale simulated P concentration from 
individual inputs of diffuse- and point-sources P loads (CDS(P) and CPS(P)), and from 

both together (CTotal(P)) for three different periods: (a) 1980s, (b) 2000s, and (c) 2010s. 
These temporal variability reflected the differences in the pattern of land cover, the total 

P loads from both diffuse- and point-sources. For better visualization to recognize 
streams with less than good-status assessment regarding water-quality, absolute 
magnitudes of the three P concentration were normalized with the threshold of P 

concentration (CP* = 0.1 mg/L). Mean annual river discharge (QRmean) was used to 
estimate the P concentrations. 
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Moreover, it is noteworthy that the reduced magnitude of diffuse-source P loads is 

insufficient to improve water-quality status for the recent few decades, implying the necessity of 

further reduction for diffuse-source P loads. Applying the threshold for P concentration (CP* = 0.1 

mgP/L), CDS(P) values of almost all streams exceeded CP* for all three periods. In contrast, the 

reduction of point-source P loads facilitated to increase of good-state streams regarding water-

quality impairment at least from point-sources (15% in 1980s to 84% from 2000). Remaining 

streams with CPS(P) > CP* were mostly terminal tributaries in midstream (Zone-1) and upstream 

(Zone-2) regions (Figures 7.2b and 7.2c). These point-source P loads discharged to small streams 

amplified P concentration within a short downstream range, demonstrating higher nutrient uptake 

rate upstream as water depth decreases (Figure 7.3). 

  

Figure 7.3 The map of the nutrient P removal efficiency for each 
stream segment z of the Weser River basin. The removal 

efficiency is indicated as the portion of nutrient removed within 
a segment z (Lr(P),z), compared to a given nutrient input (Lin(P),z). 
Mean annual river discharge (QRmean) was considered to estimate 
the nutrient uptake rate constant. For visual efficiency, log-scaled 

values of Lr(P),z / Lin(P),z are depicted. 
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7.3 Comparison with water quality monitoring data 

Monitoring data (measured concentrations for P and N) for the pre- and post-WFD time 

periods (Tpre = 1979-1999 for the pre-WFD; Tpost = 2000-2015 for the post-WFD) indicate the 

significant water quality improvements achieved from significant reductions in diffuse- and point-

source nutrient loads (Behrendt et al., 2003; BMUB/UBA, 2014, 2016). For all stream orders, 

median value for the Tpre data (Cmeas,pre) was significantly larger than that for Tpost data (Cmeas,post) 

(p < 0.01 from Mann-Whitney test), with a factor of 1.6 ± 0.3 (mean ± std.) for P and 1.2 ± 0.2 for 

N. The variability in both Cmeas,pre and Cmeas,post decreased with increasing stream order for both P 

and N (Tables 7.1 and 7.2).  

The findings from the Weser River monitoring data reflect the water quality recovery in 

other neighboring EU countries which also experienced similar reductions in WWTP nutrient 

loads. For example, in the Lower Seine River basin in France (~76K km2; 18 million people), ~80% 

reduction in P loads from the largest WWTP serving Paris urban agglomeration (~12 million 

people) since the EU WFD initiation resulted in decrease of maximum P concentration, from ~2 

mg/L to ~0.4 mg/L (Aissa-Grouz et al., 2018). These authors also point out the role of advanced 

P removal technologies (e.g., coagulation, flocculation, and decantation) in increasing P sorption 

onto suspended colloidal matter, thus altering bioavailable P in river reaches, which need to be 

accounted in estimating frequency of algal blooms. 

Following the findings in Section 7.1, P loads discharged from WWTPs remarkably 

influenced on water quality impairment for P, whereas N loads from WWTPs hardly contributed 

to water quality degradation for N which implies much more dominant effect of diffuse-sources 

driven N loads. Thus, to understand the impact of nutrient loads from point-source WWTP 

discharges on river water quality, I focus only nutrient P in the following discussion. I compared 

the measured concentrations during Tpost (Cmeas,post(P)) and the basin-scale, estimated nutrient 

concentrations for point-source WWTP discharge loads (Ccum(P)) from both QR50 and QR90 

conditions. I highlight three apparent spatial patterns over stream orders in the comparison (Figure 

7.4a): (1) variability in Cmeas,post(P) was lower than that in Ccum(P); (2) median value of Cmeas,post(P) 

was twice as large (2.0±0.6; p < 0.01 from Mann-Whitney test) than that of Ccum(P); and (3) out of 

total number of each dataset, the portion of Cmeas,post(P) exceeding the concentration threshold (CP*) 

was >71%, and ~42% for Ccum(P) > CP*.  
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Several important factors need to be considered in interpreting these trends. First, pooled 

measured data are based on monitoring over different time periods and sampling intervals (on 

average, monthly). River discharge at sampling times was variable, while the Ccum(P) values 

estimated for two specific flow conditions (QR50; QR90) and were aggregated to cover the two 

occurrence frequencies in flow conditions. Thus, variabilities in Cmeas,post(P) and Ccum(P) reflect both  

differences in site-specific conditions among streams of a given order, and variability in river 

discharge (CV of QR~1). Second, their median ratio (  
, ( ) ( )meas post P cum PC C ) is ~1.5 for low-order 

streams (ω≤3), which drain more numerous upstream sub-basins with smaller drainage area, 

compared to ~2.5 for high-order streams (ω>5) that represent converging flows and aggregated 

loads from much larger drainage areas (Figure 7.4b). Third, as ω increased, the portion of 

Cmeas,post(P)>CP* increased (61% to 100%), while that of Ccum(P) >CP* decreased (44% to 0%). The 

last two factors suggest that in-stream P concentration in upstream locations are influenced mostly 

by WWTPs loads, while that larger nutrient concentrations in the higher-order streams are the 

result of accumulated diffuse sources nutrient loads from agricultural areas (~60% of total drainage 

area), resulting in increase of eutrophication risk. 

Using the basin-scale network model, I could investigate the aforementioned argument 

about more increasing influence of diffuse-source P loads on river water quality status for higher-

order streams. I estimated the total P concentration (CTotal(P)) through the basin-scale network 

model simulation considering both point- and diffuse-sources P loads (with nutrient loads input 

conditions in 2010s). Seven different frequencies for steady-state river discharges over the entire 

basin (in Section 3.5.1) were applied to ameliorate the limitation of dealing with two QR conditions 

(QR50; QR90) in the Ccum(P) calculation.  

Compared to Cmeas,post(P), the estimated CTotal(P) showed two distinct trends over stream 

orders (Figure 7.5a). First, for the highest two orders (ω = 6-7), median value of CTotal(P) 

significantly represented that of Cmeas,post(P) dataset (  
, ( ) ( )meas post P Total PC C ~ 1; p<0.01 from Mann-

Whitney test). This result suggests that the inclusion of diffuse-source P loads filled the largest 

difference between Cmeas,post(P) and CPS(P) in ω = 6-7 (  
, ( ) ( )meas post P PS PC C ~ 3.4; p<0.01 from Mann-

Whitney test) (Figure 7.5b). Second, for the other lower orders (ω =1-5), the calculated values of 

CTotal(P) were over-estimated than Cmeas,post(P) dataset (0.6 ≤  
, ( ) ( )meas post P Total PC C ≤ 0.9; p<0.01 from 
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Mann-Whitney test), and further their median ratio decreased for lower-order stream (Figure 7.5b). 

Seemingly, the discrepancy between CTotal(P) and Cmeas,post(P) in ω =1~5 might indicate less correct 

input loads estimation (e.g., over-estimation of diffuse-source P loads input), or missing 

complexity in the model (e.g., under-estimated nutrient attenuation process). However, I interpret 

those potential factors not as the first-order impact on the discrepancy, because of the well-

represented model result for the highest two orders streams receiving more aggregated P loads. 

Rather, the discrepant result would be induced by the application of the identical relative 

proportion for a given QR percentile into all river streams, which employed as an alternative simple 

approach. In fact, smaller streams are in highly heterogeneous environments such as hydro-

climatic conditions (larger variabilities in CVQ* for lower ω; mentioned in Section 2.3.1) and 

combination of land cover types (shown in Figure 2.7). Thus, I anticipate that employing a certain 

percentile river discharge derived from unique hydro-climatic factors would be a significant key 

to straightforwardly demonstrate the consistency between estimated CTotal(P) and recorded 

Cmeas,post(P) for lower-order streams. 
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Table 7.1 Key statistics over H-S orders, for the measured concentration for inorganic P (Cmeas(P) 
[mg/L]) during the Pre-WFD period (Tpre = 1979 – 1999) and the Post-WFD period (Tpost = 2000 

– 2015). 

H-S 
order  
(ω) 

Cmeas(P) during Tpre  Cmeas(P) during Tpost 

Number  
of data 

Statistics 
Number  
of data 

Statistics 
Median 
[mg/L] 

Mean 
[mg/L] CV Median 

[mg/L] 
Mean 

[mg/L] CV 

1 2905 0.24 0.44 1.3 4863 0.12 0.19 1.4 

2 5050 0.21 0.32 1.2 6871 0.13 0.16 0.9 

3 6140 0.21 0.33 1.2 7659 0.13 0.16 0.7 

4 3855 0.26 0.34 0.8 4543 0.14 0.18 0.8 

5 753 0.29 0.39 0.8 1505 0.16 0.18 0.5 

6 1119 0.31 0.38 0.8 798 0.18 0.19 0.6 

7 265 0.27 0.33 0.6 90 0.17 0.21 1.1 

 

Table 7.2 Key statistics over H-S orders, for the measured concentration for inorganic N (Cmeas(N) 
[mg/L]) during the Pre-WFD period (Tpre = 1979 – 1999) and the Post-WFD period (Tpost = 2000 

– 2015) 

H-S 
order  
(ω) 

Cmeas(N) during Tpre  Cmeas(N) during Tpost 

Number  
of data 

Statistics 
Number  
of data 

Statistics 

Median 
[mg/L] 

Mean 
[mg/L] CV Median 

[mg/L] 
Mean 

[mg/L] CV 

1 2641 4.99 5.64 0.7 5632 3.80 4.42 0.6 

2 4454 4.31 5.52 0.8 7713 3.64 4.20 0.6 

3 7172 4.82 5.56 0.6 8726 3.86 4.37 0.6 

4 3695 4.81 5.07 0.5 5035 3.60 3.86 0.5 

5 628 5.20 5.17 0.3 1269 3.83 4.02 0.3 

6 913 4.61 4.62 0.2 795 3.48 3.54 0.3 

7 218 4.92 4.79 0.2 90 3.37 3.55 0.3 
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Figure 7.4 Comparisons among inorganic P concentrations over H-S orders. (a) 
Monitoring data pooled into the two periods (Cmeas,pre(P) for 1979-1999; Cmeas,post(P) for 

2000-2015), and the basin-scale estimated concentration (Ccum(P)) under both the median 
and low-flow conditions. Red line inside each box represents median value. Upper and 

lower values of each box are 25th and 75th percentile. Upper and lower whiskers for each 
box are 10th and 90th percentile. (b) Ratio between median values of Cmeas,post(P) and Ccum(P) 

(i.e.,  
, ( ) ( )meas post P cum PC C ). 
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Figure 7.5 Over H-S orders, comparisons of in-stream P concentrations resulted from both 
point- and diffuse-sources P loads by using the basin-scale network model. (a) Monitoring 
data pooled into the two periods (Cmeas,pre(P) for 1979-1999; Cmeas,post(P) for 2000-2015), and 

the model estimated P concentration (CPS(P) for only point-source loads; CDS(P) for only 
diffuse-source loads; CTotal(P) for both) under the estimated seven different occurrence 
frequency for river flow. Red line inside each box represents median value. Upper and 

lower values of each box are 25th and 75th percentile. Upper and lower whiskers for each 
box are 10th and 90th percentile. (b) Median ratios for Cmeas,post(P) compared to CPS(P) and 
CTotal(P). Triangle- and circle-markers show the multiplying factor for the median values of 

each CPS(P) and CTotal(P) to be the median of Cmeas,post(P). 
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 CONCLUSIONS AND IMPLICATIONS 

The contents of this section are mainly based on the conclusions & implications sections of 
following published papers: (1) Soohyun Yang, Kyungrock Paik, Gavan S. McGrath, Christian 
Urich, Elisabeth Krueger, Praveen Kumar, and P. Suresh C. Rao, (2017). Functional Topology of 
Evolving Urban Drainage Networks. Water Resources Research; (2) Soohyun Yang, Olaf Buettner, 
James W. Jawitz, Rohini Kumar, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial 
organization of human population and wastewater treatment plants in urbanized river basins. Water 
Resources Research; (3) Soohyun Yang, Olaf Buettner, Rohini Kumar, Christoph Jaeger, James 
W. Jawitz, P. Suresh C. Rao, and Dietrich Borchardt, (2019). Spatial patterns of water quality 
impairments from point source nutrient loads in Germany's largest national River Basin (Weser 
River). Science of the Total Environment. 

8.1 Topology and evolution / UDN 

The analyses suggest that as the drainage area of UDNs increases in a growing city, 

topological features increasingly resemble those of river networks, despite differences in the 

underlying generative processes. Three findings from the analyses of UDN data stand out:  

( )P A δ≥  plots for UDNs exhibit exponential tempering (c > 0), while abrupt truncation 

(c ~ 0) is evident in those for rivers. The relationship between main sewer line length and drainage 

area follows a power-law, like Hack’s law in river networks, dissected into two segments: an 

upstream segment with h ≈ 1, and a downstream segment with h ≈ 0.6. I found that with increasing 

UDN size, UDN topology increasingly resembles that of river networks in two ways: (1) decrease 

in the constant c with the UDN size which implies the sharper truncation of power-law ( )P A δ≥  

resulting from finite-size effects, and (2) extension of the downstream segment with h ≈ 0.6 in 

length-area relationship. Nevertheless, the relationship of ε+h ≈ 1 for river networks does not 

necessarily hold for UDNs because the space-filling constraints in river networks are not relevant 

for UDNs.  

The power-law exponent ε for a UDN depends on the network size and can be larger than 

that reported for river networks. This suggests that these engineered networks have a greater 

hierarchical density, expected of an imperfect non-random branching tree topology. Analyses of 

UDN data from multiple cities will help identify the range in ε values, and factors that contribute 

to variability among diverse UDNs. 
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Different UDN subnets in a city evolve through both expansion and densification, but at 

heterogeneous growth rates, reflected in the decreasing rate of the tempering constant c with 

growth. Observed variability among UDN subnets within a city and among UDNs for different 

cities is reflective of engineering constraints that generate an imperfect, non-random tree structure. 

Adjustments or additions to growing UDN necessitate adaptive design improvements in 

order to maintain functionality throughout a UDN. Such incremental engineering changes at local- 

and city-scale have strong parallels to “self-organization,” where the city and its infrastructure 

networks continually evolve, and are adjusted to meet expansion and changing needs. Indeed, 

several studies have shown that cities evolve to exhibit fractal geometries, with optimal space-

filling physical networks and assets (Batty et al., 1989; Batty & Longley, 1994; Shen, 2002).  

Lu & Tang (2004) showed that as cities grow to occupy increasingly larger areas, the urban 

spaces are filled more densely by city roads, which are increasingly more fractal, providing more 

efficient access to all locations within the city. Geospatial co-location of roads and sewers suggests 

similar functional topology for UDNs and roads. The importance of “local” engineering 

optimization evident in small subnets of UDNs diminishes as the “global” optimization becomes 

more dominant at larger scales. Thus, large UDNs appear to be “self-organized” though differently 

to rivers. Further analysis of other UDNs from other cities is required to support or contradict these 

conclusions; such efforts are currently underway. 

8.2 Implications of UDN topology analysis to flow modeling 

The analyses of UDN topology suggest that the rich literature on flows in river networks 

can be extended to the prediction of urban water flows in UDNs. Examples include successful 

efforts to model UDN hydrograph time-series based on geomorphological width functions (Seo & 

Schmidt, 2012) or deriving instantaneous unit hydrographs (Seo & Schmidt, 2014) based on 

network topological features. Linking UDN hydrological responses to geochemical and ecological 

impacts in receiving waters (rivers) can also be fruitful lines of investigation. 

8.3 Organization patterns of human population, PE, and WWTPs 

For three German river basins (Weser, Elbe, and Rhine), the spatial hierarchies of POP, 

PE, and the total number of WWTPs over H-S orders follow scale-invariant distributions, as 
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quantified by extended Horton scaling ratios (RPOP, RPE, and RWWTP), analogous to conventional 

Horton ratios found for river networks. Narrow ranges for the three extended Horton scaling ratios 

across the three German basins indicate consistent patterns over H-S orders for: (1) degree of scale-

invariance of German population distribution; (2) an increasing trend for PE agglomeration; and 

(3) a decreasing trend for the total number of WWTPs.  

The location and degree of PE spatial clustering vary among WWTP class-sizes. The PE-

clustering location of higher (lower) class-size WWTPs is relatively further downstream 

(upstream). The degree of clustering for PE served by lower class-size WWTPs is stronger than 

that for higher class-size WWTPs. Note that unique patterns of the size and location of urban 

agglomerations significantly affect the spatial distributions of PE served by each class-size along 

hydrological flow paths.  

Three scaling indices I proposed here capture correlated spatial organization of POP, PE, 

and WWTPs distributions embedded in the hierarchy of river networks. I find that population 

distributions reveal neutral or weak preference for settlement in eigen-area of higher H-S orders. I 

also find that WWTPs discharging to higher H-S orders treat more non-sanitary wastewater, and 

that WWTPs discharging to higher H-S order streams consist of a smaller number of WWTPs but 

with higher class-sizes. 

8.4 Potential extensions of scaling indices to EU countries and outside Europe 

High connectivity (>90%) to urban sanitary infrastructure in Germany (WHO/UNICEF, 

2015a) reflects a conscious choice made to improve public health, and the environmental 

regulations mirror pragmatic choices made to minimize adverse ecological impacts on receiving 

streams (BMUB/UBA, 2016). However, lack of regulations on nutrient loads discharged from 

smaller WWTPs (class sizes 1-3), which comprise the vast majority (~77%) of the WWTPs in 

Germany but serve a small fraction (~10%) of the total PE, may have potential adverse hydrologic 

and water-quality implications to low-order streams (ω ≤ 3).  

Even with common environmental regulations across EU, such as the Water Framework 

Directive 2000/60/EC (European Commission, 2000), the fraction of the national population 

connected to WWTPs varies widely between member countries (EEA, 2017b). For example, 

central European countries (Austria, Belgium, Denmark, Netherlands, Germany, Switzerland, 

Luxembourg) had overall high connectivity (>90%) to WWTPs in 2015. The connection rate was 
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similar for northern countries (~86%), but was somewhat lower for eastern, southern, and 

southeastern countries (75% to 78%). Variability in connection to WWTPs that implement tertiary 

treatment was also surprisingly large. For example, the highest connection rate to WWTPs with 

tertiary treatment was >77% of total population in central and northern Europe (e.g., ~93% for 

Germany), while the lowest (~20%) was in southeastern Europe (EEA, 2017b). Socio-economic 

variability and percentage of population in urban areas are contributing factors to such variability. 

For example, urban fraction was >80% in central and northern Europe, ~76% in southern, and ~65% 

in eastern and southeastern Europe, respectively (WHO/UNICEF, 2015a).  

Given the aforementioned variabilities within Europe, extension of the findings for the 

three large urbanized basins in Germany to other river basins within Germany, and diverse basins 

in other EU countries requires further data analyses. Of the seven other major river basins in 

Germany, three coastal basins (Eider and Scheli/Trava, both <10K km2; Warnow/Penne, ~21K 

km2) are entirely within the territorial boundaries, similar to the Weser River. The findings should 

also be applicable to these smaller German basins. Two others are international river basins with 

larger drainage areas within Central Europe. Drainage within Germany are: for Meuse, ~4K km2, 

rest in Belgium, France, Netherlands, and Luxembourg; and for Ems of ~17K km2, rest in 

Netherlands. Given similarities in connectivity to WWTPs and socio-economic factors, the 

findings may be also applicable to these river basins. Upstream drainage area (~56K km2) for the 

Danube River basin is within Germany, but large portions (~93%) of the basin are in multiple 

European countries. A small area of Odra basin (~10K km2) is within Germany, with large areas 

(~92%) in Czech Republic and Poland. Differences in the connectivity and treatment technologies 

among the EU countries are especially important for the analyses of spatial patterns of POP, PE 

and WWTPs in international river basins, even though all river networks share same fractal 

geometries. While human settlements have similar globally scale-invariant patterns (Fang et al., 

2018), variabilities among smaller sub-basins within large basins also need to be investigated.   

Extrapolating the observed patterns to urbanized river basins in OECD (Organization for 

Economic Co-operation and Development) countries might be possible if I assume that spatially 

organized patterns of population, PE and WWTPs follow the scaling rules I found here. Additional 

analyses are required with data for urbanized catchments in other continents. However, extending 

the findings to urbanized river basins in Asia, Africa, and South/Central America is challenging 

for two key reasons. First, accessibility to reliable data of WWTPs at country or regional scales is 
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limited, confounding analyses similar to what I presented here. Second, in many countries I expect 

low levels of connectivity to sanitary networks and well-managed centralized wastewater 

treatment systems (WHO/UNICEF, 2015b; WWAP, 2017).  

8.5 Spatial pattern of water quality pollution affected from point-source pressure 

Treated wastewater effluents discharged from WWTPs can alter hydrologic and 

geochemical regimes of receiving river networks. I investigated the potential for such alterations 

at ~845 WWTP discharge locations in the Weser River basin in Germany to identify the reach- 

and basin-scale impacts based on (1) Urban Wastewater Discharge Fraction (Φ) as a measure of 

likely dilution, and (2) nutrient concentrations (Creach; Ccum) for N and P as a measure of water 

quality impairments. For the Weser River basin, hydrologic alternations are not likely to be 

significant, because the volumetric discharge of WWTPs effluents is sufficiently diluted by larger 

natural river flows. I found Φ to decrease with increasing stream-order, representing smaller 

dilution capacity of lower-order streams. Also, when larger WWTPs discharge to smaller streams, 

hydrologic impacts of WWTPs discharge may be large, especially under the low-flow conditions 

or during persistent drought periods. 

I estimated that overall, ~20% of all stream reaches receiving WWTP nutrient loads are 

likely to have P-impaired water quality at the reach-scale for median flow (~2% for N-impairment). 

Such alterations are more likely in lower-order streams (ω<3), mostly with discharge from larger 

class-size WWTPs (k>3). However, smaller WWTPs (k<3) discharging to the lower-order streams 

can also impair water quality when the magnitude of WWTPs discharge is close to or larger than 

the discharge of the receiving stream, even though the WWTP discharge is within the regulated 

range for the class-size of the WWTP. Dry-weather conditions (i.e., low-flow) exacerbate water 

quality impairment compared to median flow. Basin-scale analyses suggest that the role of in-

stream nutrient uptake diminishes with increasing stream-order, while dilution plays an 

increasingly important role in reducing nutrient concentrations in larger streams with larger river 

discharge from converging flows.  

The findings for the Weser River align with the European Commission report on the WFD 

implementation in Germany (European Commission, 2012). For total 1,414 surface water bodies 

(rivers, lakes, transitional and coastal waters) in the Weser basin, point source pressure is likely to 

prevent ~21% of them from reaching Good status regarding nutrients, while diffuse source nutrient 
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loads affect ~85% of them. The fact that rivers comprise ~97% of the Weser surface water bodies 

implies the dominant influence of the diffuse source loads on nutrient enrichment in the Weser 

River. Indeed, the dominant diffuse sources are exported from agricultural land-use, comprising 

~67% of the Weser basin drainage area (IWRM-net, 2010; Hirt et al., 2012; Heidecke et al., 2015). 

In addition, geomorphic alterations of streams also play a major role in habitat loss and 

fragmentation, thus threatening biodiversity (BMUB/UBA, 2014; Fuller et al., 2015; Geist & 

Hawkins, 2016).  

8.6 Implications of point- and diffuse-sources on ecological status 

The decreased role of WWTPs point-sources compared to diffuse-sources has been evident 

over the past two decades in Germany (BMUB/UBA, 2016). Total nutrient emissions from diffuse- 

and point-sources to all German river basins decreased from ~1,088 kton N/yr and ~92 kton P/yr 

during 1983-87 period to ~688 kton N/yr and ~33 kton P/yr during 1998-2000 period. Contribution 

of P loads from WWTPs during this period had declined from ~62% to ~25% of total loads, while 

total N loads from WWTPs decreased from ~28% to ~17% (Behrendt et al., 2003). Since the 

declaration of the EU WFD in 2000, the total nutrient loads decreased continuously to ~594 kton 

N/yr and ~26 kton P/yr during 2006-2008 period (~45% and ~72% reduction compared to 1983-

1987). Especially, significant reduction in P inputs is mainly attributed to the decrease in WWTPs 

loads, primarily through the implementation of tertiary treatment technologies of WWTPs and the 

introduction of phosphorous-free detergents (BMUB/UBA, 2014; Ibisch et al., 2016).  

Nutrient loads from WWTPs are likely causing reach-scale water quality impairments at 

several low-order streams, resulting in eutrophication. Persistent presence of benthic algal mats in 

smaller streams, sustained by WWTP loads, might serve as chronic (erosion) and episodic 

(scouring) sources for downstream pelagic algal loads. These algal sources combined with diffuse 

nutrient loads in larger streams might exacerbate algal blooms in larger streams.  

Furthermore, reductions in P loads at the end-of-pipe may not always guarantee the 

recovery of ecological improvements in river networks (Westphal et al., 2019), similar to the well-

known hysteretic impairment-recovery trajectories in lakes and coastal systems shown in recent 

global analysis (McCrackin et al., 2017). Engineered hydraulic structures (e.g., dams and weirs) 

constructed in mid- and downstream sections on larger river reaches are likely to play a crucial 

role in delaying the decline of P loads and extending algal blooms, even though they contribute to 
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significant removal of sediments and sorption of contaminants by providing longer retention times 

(Stanley & Doyle, 2002; Maavara et al., 2015; Westphal et al., 2019). For example, Westphal et 

al. (2019) estimated ~30% P removal from construction of weirs and dams in the Ruhr River basin, 

a part of the Rhine River basin in Germany (~4500 km2, ~2 million population; 66 WWTPs; ~220-

km long). However, P release from legacy loads accumulated in sediments in impoundments as 

well as river networks (e.g. desorption; resuspension) contributes to the delayed recovery. 

8.7 Implications of climate change on river water quantity/quality 

The impacts of climate change on the integrity of diverse water bodies and their ecosystems 

have been broadly investigated (Moss et al., 2011; Charlton et al., 2018; Trolle et al., 2019). Here, 

I considered the variation of river flows, median (QR50) and low-flow (QR90) for normal and drier 

climate condition, respectively. Weser River basin is more likely to experience significant 

alterations to the hydrological regime and geochemical regimes under the low-flow condition. For 

basins in more arid zones (e.g., central Spain with semi-arid climate), severe adverse impacts from 

point source nutrient loads would be experienced because of persistent or episodic occurrence of 

much lower river discharge and large variation in flow conditions (i.e., CVQ* > 1). 

Recent prolonged heat wave and dry conditions experienced in Central Europe in 2018 

(DWD, 2018). Such extreme hydro-climatic conditions during only one year increased water 

quality impairments and aquatic ecological disruptions (algal blooms; fish-kills) (JRC-EDO, 2018). 

Indeed, much lowered river discharge is a primary signal. The measured record of river discharge 

at the “Hemelingen” gauge, the closest to the Weser basin outlet but not influenced by tide (Hirt 

et al., 2008), was 112 m3/s on average during May through November 2018 (BfG, 2018). This 

discharge corresponds to the 5th-percentile of mHM-simulated QR time-series (111 m3/s) at the 

Weser outlet for 1956-2015 period. In fact, the extreme hydro-climatic conditions are more likely 

under climate-change scenarios (EEA, 2017a; Duncombe, 2019). This implies more frequent 

occurrence for water quality impairments and threats to aquatic ecosystems integrity (Whitehead 

et al., 2009; Michalak, 2016; Paerl et al., 2016). Thus, inter-disciplinary research across diverse 

academic fields with integrated management perspectives is required for assessments at multiple 

spatial and temporal scales (Woznicki et al., 2016; Molina-Navarro et al., 2018; Riley et al., 2018; 

Le Moal et al., 2019). 
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 RESEARCH OUTLOOK: MONITORING, MODELING, AND 
MANAGEMENT 

During my PhD projects, I identified the characteristics of the coupled natural (rivers) – 

humans – engineered (urban drainage infrastructure) systems, inspired by analogy, coexistence, 

and causality. Urban sanitary sewer networks in two cities in different countries revealed scale-

invariance in their binary and multinary structures like natural rivers. Joint organizations of rivers, 

human population, and WWTPs were quantified and showed consistent patterns in three large 

German rivers. Discharges (treated wastewater and nutrient loads) from five different class-sizes 

(across three orders of magnitude in PE) WWTPs posed hydrological alteration and eutrophication 

risk on smaller streams, at both reach- and basin scales under steady-state river flow condition. In 

this last section, my PhD research findings are revisited through the three lenses of monitoring, 

modeling, and management, synthesizing research findings and guiding future research paths. 

Dataset recorded at monitoring stations are valuable for not only understanding the diverse 

environmental parameters (physicochemical, water quality, ecological etc.), but also testing the 

system modeling results, and sequentially guiding researchers to revise the model through 

physical-processes addition or model-parameters range/value modification. Note that the 

monitoring stations in the Weser River basin were extracted from all monitoring stations where 

samples were collected across Germany. While analyzing the confidential dataset of Weser 

monitoring stations in my PhD project, I found that for a given stream order ω, the number of 

monitoring stations per one stream is lower than that of WWTPs acting as point-source pressures, 

around 3 times on average over all seven stream orders. For smaller streams, one monitoring 

station exists per ~12 streams (ω =1) or ~ 3 streams (ω =2), whereas other streams with ω ≥3 are 

monitored by at least one monitoring station.  

Interpreting the findings from comparing the number of monitoring stations, WWTPs, and 

river stream segments led me to set a hypothesis: Smaller streams in the Weser River would not be 

monitored sufficiently although monitoring them is necessary. The hypothesis posed a question: 

How could I identify smaller streams requiring regular monitoring in the near future? As 

synthesizing my PhD work, I propose the potential of the data-model synthesis approach to 

characterize for environmental conditions of sub-basins where the current monitoring stations are 

in place; and to suggest which additional streams need to be monitored. To do this, basic platform 
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used is the ternary diagram constructed using the relative proportions of the three main land covers 

(as shown in Figure 2.7).  

Here, the analysis results on the first-order sub-basins are presented by focusing on their 

importance as provision of diverse habitats and maintenance of species diversity. Examined 

objects are all sub-basins for a given stream order (Figure 9.1a). To reflect the impacts of point- 

and diffuse-source loads on each sub-basin, the nutrient concentration estimated with only diffuse-

source at the sub-basin outlet through the basin-scale network model (Figure 9.1b), and the 

presence of WWTPs within a sub-basin (Figure 9.1c) are considered. Then, the data on the 

existence of monitoring stations within the sub-basin is incorporated (Figure 9.1d). Most of the 

current monitoring stations are in sub-basins mainly occupied by agricultural area (80 ~ 90%). I 

applied two significant criteria to prioritize sub-basins to be monitored, one is the existence of 

WWTPs because their discharges alter water quality and aquatic ecosystems composition (Ortiz 

& Puig, 2007; Aissa-Grouz et al., 2015; Inostroza et al., 2018), and the other is the estimated CDS(P) 

under mean river flow ≥ 0.1 mgP/L (CP*) of Good-status threshold in the EU WFD. Since around 

95% of total first-order sub-basins have CDS(P) ≥ 0.1 mgP/L, the criterion for WWTP-existence 

played a key role in determining sub-basins where preferentially monitoring plans are required 

(Figure 9.1e). Then, sub-basins in Zone-U (Figure 9.1b) manifesting the remarkable effect of urban 

area dominance could be considered as secondary candidates for initiating monitoring programs. 

Furthermore, on the framework to prioritize monitoring-necessary sub-basins, relevant other 

criteria (e.g., N to P molar ratio) or more detailed properties (e.g., class-size of WWTPs) can also 

be incorporated to classify the urgent level for sub-basins to be monitored. 
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In addition, I point out the necessity of increasing monitoring frequency for biological 

quality elements (BQEs) (e.g., phytoplankton and macrophytes) or their corresponding properties 

(e.g., chlorophyll a concentration) over larger spatial scale within a river basin. Since the EU WFD 

implementation in 2010, the BQEs have received more attention because they are the most critical 

determinants on ecological status assessment result (i.e., ‘one-out all-out’ principle), and only ~18% 

of all German river bodies are likely to achieve the WFD objectives by the end of second 

management cycle in 2021 (BMUB/UBA, 2016). In fact, under regulations of the EU WFD, the 

EQEs have been monitored at least once per one to three years (surveillance monitoring sites) and 

at least once every three years (operational monitoring) (Arle et al., 2016). Although the required 

frequency and interval for monitoring BQEs might be sufficient to assess ecological status of 

Europe-wide surface water bodies every seven years of WFD management cycle, the monitoring 

records are too sparse to be used in understanding long-term trajectory of aquatic communities 

Figure 9.1 For each 1st-order sub-basin in the Weser River, ternary plots representing (a) the
proportion of three land cover types, (b) the model-estimated P concentration for diffuse-source 
loads under mean annual flow, (c) the number of WWTPs, (d) the number of monitoring stations
(MSs), and (e) the suggested sub-basins to be monitored. Ternary axes are based on three dominant
land cover types (Class 1 = Artificial surface; Class 2 = Agricultural areas; Class 3 = Forest / Semi-
natural areas). Each dot represents a sub-basin. Color-bar in (a) and (e) means the distance to the
Weser River outlet from the outlet of each sub-basin. 
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responses to anthropogenic pressures, and in developing a system dynamic model purposed to 

establish applicable measures to meet the WFD goal (Aissa-Grouz et al., 2018; Westphal et al., 

2019). Meanwhile, long-term high-resolution monitoring data (e.g., weekly records over 30 years) 

are generally available at the most downstream site or near the basin outlet. That might be 

attributed to less recognized importance of aquatic ecosystems before the WFD era or limited 

financial budget to set monitoring sites up.  

Since high spatial variability in P concentration over large area of Weser River basin was 

shown in this thesis, its corresponding heterogeneity in aquatic ecosystems responses (e.g., algae; 

benthic communities) would be inevitable, necessitating larger spatial coverage to monitor status 

of water quality and aquatic ecosystems. Compared to traditional in situ monitoring methods, small 

and low-cost unmanned aerial systems can be the most promising solution in near future to collect 

temporally and spatially high resolution monitoring data over large surface water bodies (Su & 

Chou, 2015; Shang et al., 2017; Becker et al., 2019). The high resolution monitoring results will 

be essential resources for scientists to develop models which assess water quality and aquatic 

communities, for managers to establish achievable measures for the WFD commitment, and for 

the public to recognize the current status of the water environmental issues and encourage them to 

reduce anthropogenic pressures.  

The basin-scale network model studied in my PhD works was essentially targeted to 

estimate in-stream nutrient concentration for a given spatially heterogeneous point- and diffuse-

sources, under steady-state river flow condition. Using the model results, river streams at risk of 

eutrophication could be identified based on the WFD regulatory thresholds for a given nutrient. 

As a linkage of in-stream trophic status and aquatic ecosystems, incorporating responses of algal 

communities to a given nutrient into the current model can be one of future research topics. Main 

idea for generating algae responses is that constant discharges of P loads from WWTP located on 

small upstream reaches are likely to sustain a persistent mat of benthic algal biomass at each 

WWTP location. Algal biomass released through steady erosion and episodic disruption of these 

benthic mats (Biggs, 2000) can be transported to downstream reaches and contribute to growth of 

pelagic algae, supported by larger P concentrations from diffuse sources and absent competition 

from benthic algae in larger streams (Jäger & Borchardt, 2018). Thus, for the Weser river basin, 

low-order streams which mainly dominated by WWTP nutrient loads are expected to be impacted 

by benthic algae blooms, while larger downstream reaches with persistent algal sources from 
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diffuse-source nutrient loads can sustain larger pelagic algal biomass. The separation distance 

between successive WWTPs might play a key role in to mitigate the additional impact of benthic 

algal source controlled by a carry-over effect. 

Indeed, the advanced model concept encompasses River Ecology and River Eutrophication 

influenced by People, Loads from point- and diffuse-sources pressures, Attenuation by engineered 

systems such as WWTPs, and Natural attenuation such as nutrient uptake in hyporheic zones. Next 

paramount procedure for the “RE-PLAN” model improvement is to introduce temporal 

variabilities in nature. Considering that hydro-climatic forcing fundamentally controls the 

availability of natural water resources, rainfall pattern variabilities in frequency, and magnitude 

are priority to be integrated into the model framework. Inevitably, the temporal fluctuations of 

rainfall induce temporally varying responses of the coupled natural-human-engineered systems in 

urbanized river basins as following examples. In natural river bodies, river discharge time-series 

mirror temporal patterns of rainfall (Marengo, 2005; Botter et al., 2007; da Silva et al., 2015). For 

human societies, daily water use of urban residents increases during dry weather from rainfall 

deficit (Protopapas et al., 2000; Balling Jr. et al., 2008). For urban drainage systems, the probability, 

frequency and duration of combined sewer overflows occurrence are strongly determined by 

rainfall patterns properties (Sandoval et al., 2013; Fortier & Mailhot, 2015; McGrath et al., 2019). 

Thus, establishing temporal dynamics of rainfall into the model platform is of significance to 

address interdisciplinary issues across hydrological, biogeochemical, ecological, engineering, and 

socio-economic factors, and further climate change impact on the coupled natural (river)-human-

engineered systems. Scenario-based analysis results of the envisioned model can provide us crucial 

insights to formulate societal adaptation strategies to the impacts of climate change and integrated 

watershed management guidelines at national- and international-scales.  
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