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ABSTRACT

Zhou, Zihe MS., Purdue University, December 2019. Optimizing Reflected Brownian
Motion: A Numerical Study. Major Professor: Harsha Honnappa.

Reflected Brownian motion is a canonical stochastic process used to model many

engineered systems. For example, the state of a queueing system experiencing heavy-

traffic is well approximated by a reflected Brownian motion. It has also been used to

model chemical reaction networks, as well as financial markets. The optimization and

design of such systems can be modeled by stochastic optimization problems defined

as additive functionals of reflected Brownian motions over a fixed time horizon. In

this thesis, we are interested in a sub-class of problems where the design variable is

the drift function of the RBM; in the one-dimensional setting we consider, this is

without loss of generality. We also draw further distinctions with the stochastic opti-

mal control problems that are driven by reflected Brownian motion processes, where

the objective is to find an adaptive control policy. In contrast, the optimization prob-

lem here must be solved once at time zero and hence is not a stochastic optimal

control problem. Modulo certain regularity conditions, our problem can be viewed

as a deterministic optimal control problem that is (in theory) amenable to a dy-

namic programming solution. We derive the corresponding Hamilton-Jacobi-Bellman

equation. However, this partial differential equation is both non-linear and with

non-trivial boundary conditions, necessitating numerical solutions. We demonstrate

numerical results from solving the Hamilton-Jacobi-Bellman equation using the finite

element method. However, this approach suffers from the “curse of dimensionality.”

Therefore we develop Monte Carlo simulation optimization methods for solving the

stochastic optimization problem, for a time-discretized approximation of the original

problem. We avoid the curse of dimensionality by using gradient descent to compute
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the optimal (time-discretized) drift. However, the gradient of the objective is not

known in closed form and must be estimated using the simulation sample paths. We

develop a bespoke gradient estimator that exploits the strong Markov property of

the reflected Brownian motion process to express the gradient as a nested expecta-

tion. We compare the corresponding Monte Carlo estimator with the well-studied

simultaneous perturbation stochastic approximation method. Our numerical results

show that the Monte Carlo gradient descent method outperforms the simultaneous

perturbation stochastic approximation method on our specific problem instance.
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1. INTRODUCTION

Reflected Brownian motion (RBM) as a stochastic process with regulation conditions,

has long been a natural instrument to model a variety of practical and technical

problems under different subjects. Proven by Whitt and Iglehart, [1] the limiting

distribution of the workload (e.g. the number of customers waiting to be served)

process follows the distribution of an RBM under certain conditions. The RBM could

thereby be applied to optimization on queueing systems. For instance, RBM could

effectively take part in the hospital patients scheduling problem [2]. In the financial

domain, it is used to model interest rate and stock price with daily trading limits

or ’circuit breakers’. In biophysics, one of the derivatives of RBM, PRBM (partially

reflected Brownian motion) is an efficient model of species’ diffusion/transport across

an interface like cellular membrane [3]. As RBM is a prevailing model for numerous

such problems, a natural topic arises and that is the optimization on RBM, specifically

speaking, optimization on cost functions driven by RBM’s.

In this thesis, we focus on the optimization of RBM, in particular, focusing on

minimizing the expectation of an additive functional of RBM together with terminal

conditions. We are interested in the optimal control process, known as the drift func-

tion of RBM and we seek different approaches to numerically solving the optimization

problem. One way to look at the problem is through a deterministic optimal control

point of view. In this perspective, our objective function’s dynamic is described by

a partial differential equation (PDE) which has a unique solution. The optimization

problem can be posed as a Hamilton-Jacobi-Bellman equation. In general, solving

the HJB equation is nearly impossible analytically, and one must resort to numeri-

cal methods such as the finite element method (FEM). However, FEM suffers from

complex diagnostics. This creates the desideratum for an alternative approach to
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solving the optimization problem. Another approach to the problem is to use Monte

Carlo simulation together with gradient descent or stochastic approximation tech-

niques to solve the optimization. This method entails a discretization of the problem,

resulting in a significant dimension reduction at the cost of increased variance and

approximation error.

In the remainder of this chapter, we present background knowledge regarding

RBM’s. We discuss properties of RBM including the distribution functions and the

role of our optimizer, the drift function. Chapter 2 focuses on the PDE approach.

we derive the HJB equation and discuss the FEM approach to numerically solving

the HJB equation. Followed by limitations and their solutions regarding the PDE

approach, the convexity of the objective function is examined and it leads us to the

chapter focused on simulation. In chapter 3, after arguing the necessity of an exact

simulation method, we present the standard RBM simulation algorithm of Asmussen,

Glynn and Pitman [4]. In chapter 4, we present two simulation-based methods for

gradient estimation of stochastic optimization problems driven by RBM’s. We present

extensive numerical experimentation results in the final chapter. These results reveal

various feasibility, efficiency, and other issues, leading to future research opportunities.

1.1 Reflected Brownian Motion

1.1.1 Definition

The RBM is a stochastic process which is the sum of a Brownian motion and a

reflection term [5].Denote the RBM with respect to time in a time horizon t ∈ [0, T ]

as Xt, the drift function as µt, the diffusion coefficient as σt and the driving Brownian

motion as Bt. The expression for RBM is:

Xt = µt +Bt + Lt,

and it can be seen as the solution to the following stochastic differential equation:

dXt = µ′t + σdBt + dLt,
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where Lt = sup0≤s≤t(−µs − σsBs)
+ and µ′t is the derivative of µt if it is differentiable

anywhere, and defined as the right derivative of µt at t. Lt is called a regulator process

and it regulates RBM from being negative. As it is showed in the following graph.

Whenever the driving Brownian motion reaches a new infimum, the corresponding

RBM is at level 0.

Figure 1.1.: An example of RBM and its driving Brownian motion sample paths

In this thesis, we focus exclusively on the one-dimensional RBM with diffusion

coefficient σt : t ≥ 0 equal to 1 for all t without loss of generality.

1.1.2 Distribution functions of RBM

The cumulative density function (CDF) of an RBM with constant drift µ, diffusion

coefficient σ and starting point X0 = y is [6]:

PXt(x) = 1− Φ(
−x+ y + µt

σ
√
t

)− e2µx/σ2

Φ(
−x− y − µt

σ
√
t

),

where Φ is the standard normal CDF. The probability density function (PDF) can

be easily calculated by taking the derivative of CDF with respect to x:

pXt(x) =
1

σ
√
t
φ(
−x+ y + µt

σ
√
t

)− e2µx/σ2 2µ

σ2
Φ(
−x− y − µt

σ
√
t

) +
e2µx/σ2

σ
√
t
φ(
−x− y − µt

σ
√
t

),
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where φ stands for the standard normal PDF. For simplicity, we assume y = 0 and

σ = 1 for the remainder of the thesis. We will also by a small abuse of notation write

pXt(x) to represent the conditional density pXt|X0(x|y).

When the drift µt is a time-dependent function, the analytical expression for the

density function is much harder to compute in general, and typically involves time-

ordered integrals. For a piecewise constant drift vector ~µ : [µ1, µ2, ..., µbT/∆tc] with a

discretization time step of ∆t, PDF of an RBM at time t could be calculated through

integration of the joint distribution of x1, x2, ..., xbt/∆tc:

pXt(x) =

∫ ∞
0

...

∫ ∞
0

∫ ∞
0

pX1,X2,...,Xbt/∆tc(x1, x2, ..., xbt/∆tc)dx1dx2...dxbt/∆tc

=

∫ ∞
0

...

∫ ∞
0

∫ ∞
0

pX1(x1)pX2|X1(x2|x1)pX3|X2,X1(x3|x2, x1)

...pXbt/∆tc|Xbt/∆tc−1,Xbt/∆tc−2,...,X1(xbt/∆tc|xbt/∆tc−1, xbt/∆tc−2, ..., x1)dx1dx2...dxbt/∆tc

=

∫ ∞
0

...

∫ ∞
0

∫ ∞
0

pX1(x1)pX2|X1(x2|x1)...pXbt/∆tc|Xbt/∆tc−1
(xbt/∆tc|xbt/∆tc−1)

dx1dx2...dxbt/∆tc

following from the strong Markov property of RBM [6, Proposition 1],

where strong Markov property of the RBM says that, denote the RBM Xt at time

T + t, XT+t as X∗t , then a function k(x) = Ex[K(X∗)|Xt,0≤t] = k(XT ) and does not

depend on the history before XT where K(·) is a R→ R function.
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2. PROBLEM DESCRIPTION AND PDE METHOD

2.1 Problem Definition

We are interested in solving stochastic optimization problems driven by RBM.

The design variable in these settings is the drift function of the RBM. We consider

an expected cost function:

J(T ) = E[

∫ T

0

Xt(µt)dt] +G(E[XT (µT )]),

where G : R → R is a given smooth function. The corresponding optimization

problem is:

min
µt∈A

E[

∫ T

0

Xt(µt)dt] +G(E[XT (µT )]). (2.1)

Here, µt : t ≥ 0 is in the function space A. We will assume A ⊂ D, the space of

functions that are right continuous with left limits (RCLL) or càdlàg. Observe that

this is not a stochastic optimal control problem, since µt is optimized for at time zero,

and is not chosen as a function of the current state of the process. For the rest of the

thesis, we focus on the case of linear terminal cost whereG(E[XT (µT )]) = CE[XT (µT )]

and C ∈ R.

2.2 Convexity Analysis

The space of càdlàg functions is a topological vector space (specifically a Banach

space) when one uses the supremum norm to verify the conditions of the vector

space. Consequently, addition is a continuous operator under the supremum norm.

Using this property, we will check the convexity of the objective function without

a terminal cost. By definition, a function f is convex if ∀α ∈ [0, 1], ∀µ1t, µ2t ∈ A:

(1− α)f(µ1t) + αf(µ2t) ≥ f((1− α)µ1t + αµ2t).
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Proposition 1 A function which takes the form f(µt) = E[
∫ T

0
Xt(µt)dt] where Xt is

a RBM and µt is the drift function is convex on the domain A.

Proof

(1− α)f(µ1t) + αf(µ2t)− f((1− α)µ1t + αµ2t)

= (1− α)E[

∫ T

0

(µ1t +Bt + Lt(µ1t))dt] + αE[

∫ T

0

(µ2t +Bt + Lt(µ2t))dt]

− E[

∫ T

0

((1− α)µ1t + αµ2t +Bt + Lt((1− α)µ1t + αµ2t))dt]

= E[

∫ T

0

((1− α)Lt(µ1t) + αLt(µ2t)− Lt((1− α)µ1t + αµ2t))dt]

(because only Lt is dependent on µt)

= E[

∫ T

0

( sup
0≤s≤t

(−(1− α)(µ1s +Bs))
+ + sup

0≤s≤t
(−α(µ2s +Bs))

+

− sup
0≤s≤t

(−(1− α)µ1s − αµ2s −Bs)
+)dt]

(because Lt = sup
0≤s≤t

(−µs + σBs)
+)

= E[

∫ T

0

max( sup
0≤s≤t

(−(1− α)(µ1s +Bs)), 0) + max( sup
0≤s≤t

(−α(µ2s +Bs)), 0)

−max( sup
0≤s≤t

(−(1− α)µ1s − αµ2s −Bs), 0)dt]

≥ E[

∫ T

0

max( sup
0≤s≤t

(−(1− α)(µ1s +Bs)) + sup
0≤s≤t

(−α(µ2s +Bs)), 0)

−max( sup
0≤s≤t

(−(1− α)µ1s − αµ2s −Bs), 0)dt]

≥ E[

∫ T

0

max( sup
0≤s≤t

(−(1− α)(µ1s +Bs)− α(µ2s +Bs)), 0)

−max( sup
0≤s≤t

(−(1− α)µ1s − αµ2s −Bs), 0)dt]

= 0
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The convexity of the objective function with a linear terminal cost f(µ) = E[
∫ T

0
(µt+

Bt + Lt)dt] + CE[µT + BT + LT ] where C is a positive constant can be proven simi-

larly as the objective function without a terminal cost. On the other hand, it is much

harder to prove convexity when C is negative. Observe that,

(1− α)f(µ1t) + αf(µ2t)− f((1− α)µ1 + αµ2)

= (1− α)E[

∫ T

0

(µ1t +Bt + Lt(µ1t))dt] + αE[

∫ T

0

(µ2t +Bt + Lt(µ2t))dt]

− E[

∫ T

0

((1− α)µ1t + αµ2t +Bt + Lt((1− α)µ1t + αµ2t))dt]

+ CE[((1− α)µ1t + αµ2t +BT + LT ((1− α)µ1t + αµ2t))

− C(1− α)(µ1t +BT + LT (µ1t))− Cα(µ2t +BT + LT (µ2t))]

= E[

∫ T

0

((1− α)Lt(µ1t) + αLt(µ2t)− Lt((1− α)µ1t + αµ2t))dt]

+ CE[LT ((1− α)µ1t + αµ2t)− (1− α)LT (µ1t)− αLT (µ2t)]

= E[

∫ T

0

((1− α)Lt(µ1t) + αLt(µ2t)− Lt((1− α)µ1t + αµ2t)

− C

T
((1− α)LT (µ1T ) + αLt(µ2T )− LT ((1− α)µ1T + αµ2T )))dt]

≥ E[

∫ T

0

((1− α)Lt(µ1t) + αLt(µ2t)−
C

T
((1− α)LT (µ1T ) + αLt(µ2T ))

+ (
C

T
− 1)Lt((1− α)µ1t + αµ2t))dt].
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Now, a sufficient condition for f(µ) to be convex in a convex domain A is that for

∀α ∈ [0, 1], ∀µ1t, µ2t ∈ A,

E[(1− α)Lt(µ1t) + αLt(µ2t)−
C

T
((1− α)LT (µ1T ) + αLt(µ2T ))

+ (
C

T
− 1)Lt((1− α)µ1t + αµ2t)]

≥ 0

equivalently,

E[(1− α)Lt(µ1t) + αLt(µ2t) + (C
T
− 1)Lt((1− α)µ1t + αµ2t)]

E[(1− α)LT (µ1T ) + αLt(µ2T )]

≥ C

T

Given this sufficient condition of our objective function’s convexity, an actual

domain for µt where the condition is satisfied is rather hard to find. Indeed, it is

straightforward to see that this condition is not satisfied even when the domain is

convex, as the following example shows: take µ1t = −100t and µ2t = −200t, T = 1,

α = 0.5 and C
T

= 3, then,

(1− α)f(µ1t) + αf(µ2t)− f((1− α)µ1 + αµ2)

= E[

∫ T

0

(1− α)Xt(µ1t) + αXt(µ2t)−Xt((1− α)µ1t + αµ2t)

− 3((1− α)XT (µ1t) + αXT (µ2t)−XT ((1− α)µ1t + αµ2t))dt]

The plot for the integrand: (1−α)Xt(µ1t)+αXt(µ2t)−Xt((1−α)µ1t+αµ2t)−3((1−

α)XT (µ1t) + αXT (µ2t)−XT ((1− α)µ1t + αµ2t)) is as following.
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Figure 2.1.: integrand value vs. time

As it can be observed from the plot, the integrand is always negative within the

integration limit t ∈ [0, 1] so that the integral is also negative. We conclude that:

(1− α)f(µ1t) + αf(µ2t)− f((1− α)µ1 + αµ2) < 0

and f(µt) is not a convex function.

In general, the objective function with a negative linear terminal cost is not nec-

essarily convex within the domain of interest and our algorithms may converge to a

local optimum or even a saddle point.

2.3 Deriving PDE Formulation

The optimization objective (2.1) can be viewed as a deterministic optimal control

problem where EXt is the space variable, t is the time variable and the drift function

µ(·) is the control variable. In the following derivation, we denote EXt as Xt. We

define the optimal cost function U(x, t) as

U(x, t) = inf
µ(·)∈A

{
∫ T

t

r(Xs, µs)ds+ g(XT )},
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where r(Xt, µt) = X
µ(·)
t and g(XT ) = G(XT ), which satisfies the optimality condition

in [7, Theorem 1]:

U(x, t) = inf
µ(·)∈A

{
∫ t+∆t

t

r(Xs, µs)ds+ U(x, t+ ∆t)}.

By [7, Theorem 2], dynamic of U(x, t) can be represented by a Hamilton-Jacobi-

Bellman (HJB) equation in the form,

∂U(x, t)

∂t
+ min

µ∈A
{f(x, µ)∇xU(x, t) + r(x, µ)} = 0.

with a terminal condition:

U(x, T ) = g(x).

Now we informally derive the actual HJB equation for our cost function, observe that,

U(x, t) = inf
µ(·)∈A

{
∫ t+∆t

t

r(Xs, µs)ds+ U(x, t+ ∆t)},

and assuming that there exist such a optimal drift function µ∗(·) ∈ A that achieves

the infimum, it is easy to see that,

U(x, t) = inf
µ(·)∈A

{
∫ t+∆t

t

r(Xs, µs)ds}+ U(x, t+ ∆t)

and:
U(x, t+ ∆t)− U(x, t)

∆t
= −

infµ(·)∈A{
∫ t+∆t

t
r(Xs, µs)ds}

∆t
.

Let ∆t→ 0:
∂U(x, t)

∂t
+
∂U(x, t)

∂x

dX

dt
= −min

µ∈R
{r(x, µ)}

Set the domain of the PDE to be t ∈ (0, T ) and X ∈ (0,+∞). For the reason that t

does not depend on µ(t), the term ∂U(x,t)
∂t

could be left outside the optimization. The

resulting HJB equation is:

min
µ∈R

{∂U(x, t)

∂t
+
∂U(x, t)

∂x

dX

dt
+ r(x, µ)

}
= 0

with the terminal condition:

U(x, T ) = G(x).



11

However, solving this HJB equation requires the knowledge of system dynamic:dEX·
dt

.

In this case, the system dynamic is calculated as: say that the discretization of

(0 ≤ t ≤ T ) is [τ1, τ2, ..., τT ], and for t ∈ [τi−1, τi],

dE[Xt|X0 = z]

dt
=

∫
xτi−1

(

∫
xτt

xτi
d

dt
Pτi−1,t(xτi−1

, dxτi))P0,τi−1
(z, dxτi−1

)

where

d

dt
Pτi−1,t(y, x) =

d

dt

d

dx
P (Zt ≤ x|Zτi−1

)

=
d

dt

d

dx
{Φ(

x− µτi−1
(t− τi−1)

σ
√
t− τi−1

)− e
2µτi−1x

σ2 Φ(
−x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)}

=
d

dx
{φ(

x− µτi−1
(t− τi−1)

σ
√
t− τi−1

)

−µτi−1
σ
√
t− τi−1 − (x− µτi−1

(t− τi−1))σ
2
(t− τi−1)−1/2

σ2(t− τi−1)

− e
2µτi−1x

σ2 φ(
−x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)

−µτi−1
σ
√
t− τi−1 − (−x− µτi−1

(t− τi−1))σ
2
(t− τi−1)−1/2

σ2(t− τi−1)

= φ′′(
x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)I(t, x)
1

σ
√
t− τi−1

+ φ(
x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)
d

dx
I(t, x)

− e
2µτt−1x

σ2
2µtaut−1

σ2
φ(
−x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)I(t, x)

− e
2µτt−1x

σ2 φ′(
−x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)I(t, x)
1

σ
√
t− τi−1

− e
2µτt−1x

σ2 φ(
−x− µτi−1

(t− τi−1)

σ
√
t− τi−1

)
d

dx
I(t, x)}.

The closed form of the system dynamic as derived above is near-impossible to compute

analytically. The HJB equation cannot be solved without the expression of the system

dynamic. This issue leads us to develop an alternative Monte Carlo simulation based

gradient descent method which We present in the next chapter.
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3. RBM SIMULATION

In this chapter, we briefly summarize the RBM simulation algorithm we used in this

thesis. Recall our objective function:

J(T ) = E[

∫ T

0

Xt(µt)dt] +G(E[XT (µT )]).

As noted before, the expectation of the integral is almost impossible to calculate

when (µt : t ≥ 0) is a time-varying function, in general. The PDE method discussed

in the previous chapter requires the creation of a “mesh of grids,” and the resulting

calculations suffer from the curse of dimensionality. An alternative approach, that

avoids the creation of the mesh is to use Monte Carlo sampling and exploit the

connection between parametric PDE’s and the Feynman-Kac Theorem. Choosing

an arbitrary time step as ∆t, drift function µ(t) is discretized into a vector ~µ :

[µ1, µ2, ..., µbT/∆tc]. Now, expectations of the RBM can be estimated using Monte

Carlo simulation of sample paths, and the objective function therefore becomes:

J̃(T ) = Ê[

bT/∆tc∑
i=0

Xi(µi)∆t)] +G(Ê[(XT (µT )])

where Ê is the Monte Carlo estimation of the expectation. Denote N as the Monte

Carlo sample size, {Y1, Y2, ..., YN} as N Monte Carlo samples of a random variable X,

f(·) as any function, the estimator Êf(X) for Ef(X) is:

Êf(X) =
1

N

N∑
i=1

f(Yi)
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3.1 Simulation method

Note that assuming the piece-wise constant drift vector ~µ : [µ1, µ2, ..., µbT/∆tc], we

know the probability distribution of a RBM at time (t : 0 ≤ t ≤ T ) can be calculated

using the iterated integral:

pXt(x) =

∫ ∞
0

...

∫ ∞
0

∫ ∞
0

pX1(x1)pX2|X1(x2|x1)...pXbt/∆tc|Xbt/∆tc−1
(xbt/∆tc|xbt/∆tc−1)

dx1dx2...dxbt/∆tc

as we derived in section 1.1.2. A common approach to simulating a sample path of

a process Yt with discretization time step ∆t is to simulate Y∆t, Y2∆t, · · · as random

variates drawn from the corresponding probability distributions. However, classic

approaches to simulate from distribution are hard (if not impossible) to implement

for the RBM. For instance, with inversion sampling, the inverse of cumulative density

function at time t, FX
−1
t (x), is required to simulate the RBM sample Xt. However,

the analytical expression of this inverse function is nearly impossible to compute.

Alternatively, with rejection sampling, a probability density function gXt(x) that

satisfies pXt(x)
gXt(x)

≤ C ∀0 ≤ Xt ≤ ∞, C > 1 is required. Finding an appropriate gXt(x)

is complicated in the case of RBM. Further, if gXt(x) is chosen so that C >> 1,

the method suffers from a high rejection probability and low efficiency. Usually,

a stochastic process which is the solution of a stochastic differential equation can

be simulated using the Euler-Maruyama method. However, if we simulate RBM

sample paths using the Euler-Maruyama, a systematic error will be incurred at the

discretization time grid. Asmussen, Glynn and Pitman, on the other hand, introduced

an exact simulation method for RBM [4]. They fully utilized the Markov properties of

RBM’s driving Brownian motion and RBM’s running max to obtain this algorithm.

We summarize this method below.

Recall that the expression for a RBM at time t is

Xt = Wt + Lt,
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where Wt = µt +Bt, Lt = sup0≤s≤t(−µs−Bs)
+, µt is the drift function and Bs is the

driving Brownian motion. Note that sup0≤s≤t(−µs −Bs)
+ has the same distribution

as sup0≤s≤t(−µs+Bs)
+ because of symmetry and sup0≤s≤t(−µs+Bs)

+ is the running

maximum of RBM’s driving Brownian motion with drift −µt. By [4, Lemma 3]:

P ( max
0≤t≤T

B(t)− y ≤ x|B(T ) = y) = 1− e−2x(y−x)/T .

Given this CDF, we can simulate the reflection term Lt = sup0≤s≤t(−µs − Bs)
+ D

=

sup0≤s≤t(−µs + Bs)
+ simply by inversion sampling. The driving Brownian motion

Wt can be simulated from the normal distribution N (µt,
√
t). These two samples

added is the RBM sample at time t. Proven in [4], the approximation error vanishes

at the discretization point and the convergence rate estimating Ef(X(t)) is of order

c−1/2 with this algorithm. Here is an example of this exact simulation method to

the contrast of the Euler-Maruyama method. It is obvious that the Euler-Maruyama

Figure 3.1.: An example of RBM sample paths simulated using exact simulation and

the Euler-Maruyama.

method incurs an error and the resulting RBM sample path can even reach a negative

level. Below summarizes this sampling algorithm.



15

RBM Simulation Algorithm

Denote the current Brownian motion process value as B, RBM value as X, the

current time as t, time step as ∆t and simulation time horizon as T .

Algorithm 1: RBM sample paths simulation algorithm [4]

1 Initialize t← 0, W ← 0, X ← 0, M ← 0, ~X ← an empty array

2 Generate (T1, T2) with τ = ∆t

3 Let t← t+ ∆t, M ← max(M,W + T2), W ← W + T1,X ←M −W , append

X to ~X

4 if t < T then return to step 3;

5 else stop algorithm and return ~X;

Where

(T1, T2) = (W (τ), max
0≤t≤τ

W (t))

and for U ∼ uniform(0, 1):

max
0≤t≤τ

W (t))← W (τ)

2
+

√
W (τ)2 − 2(U)

2
.
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4. GRADIENT DESCENT METHOD

In the previous chapter, we discretized time and formed a new objective function:

J̃(T ) = Ê[

bT/∆tc∑
i=0

Xi(µi)∆t)] + Ê[G(XT (µT ))]

computed using the Monte Carlo simulation of RBM sample paths. In this project,

we focus on when G(·) is a linear function so that

J̃(T ) = Ê[

bT/∆tc∑
i=0

Xi(µi)∆t)] + Ê[CXT (µT )],

where C is a constant. The sample average approximation (SAA) optimization prob-

lem is then:

min
~µ∈RbT/∆tc

J̃(T ).

Now we consider the problem of numerically optimizing this new objective. In this

thesis, we focus on first-order methods for numerically computing the optimal drift.

Specifically, we consider the gradient descent (GD) and stochastic approximation (SA)

methods [8] [9]. In this chapter, we present our algorithms applying gradient descent

to this new objective function, and particularly, focus on the gradient estimation

schemes. We start with a summary of the gradient descent method.

4.1 Gradient Descent Method

The GD method iteratively computes an estimate of the optimal drift by moving

in the greatest decrease direction of the gradient at each iteration of the algorithm.

It is well known [9] that the GD/SA method is guaranteed to converge to the optimal

drift when the objective is convex and differentiable. When these conditions are

violated, the GD/SA method is only guaranteed to converge to a first-order critical
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point. As demonstrated before, our objective is, in general, non-convex if the terminal

condition is negative. A further complication that arises in our setting is the fact that

the gradient is not known in closed form. Recall the gradient of the objective function

with respect to the drift vector is:

∇~µJ̃(T ) = [
dJ̃(T )

dµ1

,
dJ̃(T )

dµ2

, ...,
dJ̃(T )

dµbT/∆tc
],

This gradient is unknown analytically, in general. In the remainder of this chapter,

we present two gradient approximation methods.

4.2 SPSA Method

4.2.1 Introduction

A classic approach to approximating the gradient from sample paths is the Kiefer-

Wolfowitz algorithm [9]. The estimator for the ith gradient entry using the Kiefer-

Wolfowitz algorithm is:

∇̂ ~µi J̃i ≈
J̃(~µi + ci∆~ei)− J̃(~µi − ci∆~ei)

2ci
,

where ci is a positive scalar and ci → 0 as the iteration number goes to ∞ and ~∆ei

is a random vector whose ith entry is non-zero and all other entries are 0. However,

because of the fact that for each entry of the gradient estimator ∆~µi is only perturbed

in one dimension, this estimator turns out to have comparatively large error. The

simultaneous perturbation stochastic approximation (SPSA) method is proven to

converge faster than the standard Kiefer-Wolfowitz method by adding perturbations

in each dimension of every entry of the gradient estimator [10] [11] [12]. The SPSA

estimator is simply:

∇̂ ~µi J̃i ≈
J̃(~µi + ci∆~µi)− J̃(~µi − ci∆~µi)

2ci∆~µi
,

where as before, ci is a positive scalar which goes to 0 as the iteration number goes

to ∞ and ∆~µi is a random vector which is non-zero for all dimensions.
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4.2.2 Validation for the SPSA Estimator

The SPSA gradient estimator for the nth iteration in the gradient descent method

is:

∇̂ ~µn J̃ ≈
J̃( ~µn + cn∆ ~µn)− J̃( ~µn − cn∆ ~µn)

2cn∆ ~µn

where ~cn is a positive scalar which goes to 0 as n → ∞ and ∆ ~µn is a random direc-

tional vector drawn from a uniform distribution. The convergence of the estimator is

discussed by Spall in [10]. The bias of the estimator is proven to be of the order of

O(c2
n), and as cn → 0 and the bias also goes to 0. In [10, Proposition 1], the strong

convergence of the estimator and the estimator bias is proved.

4.2.3 Algorithms

Gradient Approximation

Combined with the RBM simulation algorithm, ∇̂~µJ̃ or ∇̂~µĴ can be estimated

using Algorithm 2.

Algorithm 2: Approximating gradient with SPSA

1 Generate random ∆~µ with each entry ∼ Uniform(0, 1)

2 Generate c as from any sequence that goes to zero as the gradient descent

iteration number goes to ∞

3 Generate N RBM sample paths with Algorithm 1 with ~µ+ c∆~µ

4 Generate N RBM sample paths with Algorithm 1 with ~µ− c∆~µ

5 for t ∈ [∆t, 2∆t, ..., T ] do

6 C1 ← 1
N

∑N
i=1 X̂t(~µ+ c∆~µ), State C2 ← 1

N

∑N
i=1 X̂t(~µ− c∆~µ)

7 ∇̂~µE[Xt]← C1−C2

2c∆~µ

8 end

9 ∇̂~µJ̃ ←
∑T

t=1 ∇̂~µE[Xt] and return ∇̂~µJ̃
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Optimization

The gradient estimation from Algorithm 2 is now combined with GD to optimize

J̃(·).
Algorithm 3: Gradient descent optimization with SPSA

1 Input an arbitrary drift, ~µarbitrary and step size, α

2 Initialize a starting drift: ~µ0 ← ~µarbitrary

3 while the stopping criterion is not met do

4 For the nth iteration, estimate ∇̂ ~µn J̃ using Algorithm 2

5 ~µn+1 ← ~µn − α∇̂ ~µn J̃

6 n← n+ 1

7 end

8 Return the optimal drift vector ~µn

4.3 MCGD Method

4.3.1 Introduction

Besides the classic SPSA method, there is another way to estimate the gradient

of the objective function J̃(·). We denote the RBM at the jth time epoch as Xj and

the µi as the ith drift vector entry. Observe that, for i < b T
∆t
c, the ith entry of the

gradient vector can be written as

dJ̃(T )

dµi
=

bT/∆tc∑
j=1

dEXj

dµi
∆t+ (C −∆t)

dEXbT/∆tc
dµi

,

where
dEXj
dµi

is the integral

dEXj

dµi
=

d

dµi
(

∫ ∞
0

pXj(x)xdx).

Here, pXj(x)x is a Lebesgue-integrable function of x for each drift at the ith time

step µi ∈ R, and the derivative d
dµi

(pXj(x)x) exists for all µi ∈ R. However, in order to

interchange the integral and the derivative, by Leibniz’s integral rule, we must show
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that the derivative of the integrand is bounded above by an integrable function. Say

the starting point of the RBM is X0 = 0, the time discretization ∆t = 1, denote the

standard normal PDF as φ and the standard normal CDF as Φ. Then, the derivative

of the RBM density function for the first time step with respect to µ1 is:

d

dµ1

(pX1(x)) =
d

dµ1

(φ(−x+ µ1)− e2µ1x2µ1Φ(−x− µ1) + e2µ1xφ(−x− µ1))

= φ′(−x+ µ1)− e2µ1x4xµ1Φ(−x− µ1)− e2µ1x2Φ(−x− µ1)

+ e2µ1x2µ1φ(−x− µ1) + e2µ1x2xφ(−x− µ1)− e2µ1xφ′(−x− µ1)

≤ φ′(−x+ µ1)− e2µ1xφ′(−x− µ1) + 2e2µ1xφ(−x− µ1)(µ1 + x)

− 4µ1xe
2µ1xΦ(−x− µ1)

=
(x− µ1)√

2π
e
−(x−µ1)2

2 +
3√
2π

(x+ µ1)e
−(x2+µ2

1)

2 − 4µ1xe
2µ1xΦ(−x− µ1)

=: I(x, µ1)− 4µ1xe
2µ1xΦ(−x− µ1)

≤ I(x, µ1) + max(0,−4µ1xe
2µ1xΦ(−x− µ1))

Observe that,∫
x≥0

x|I(x, µ1)|dx ≤ 1√
2π

∫
x≥0

x|x− µ1|e
−(x−µ1)2

2 dx+
3√
2π

∫
x≥0

x|x+ µ1|e
−(x2+µ2

1)

2 dx

≤ 1√
2π

(

∫
x≥0

x2e
−(x−µ1)2

2 dx+ |µ1|
∫
x≥0

xe
−(x−µ1)2

2 dx)

+
3√
2π

(

∫
x≥0

x2e
−(x2+µ2

1)

2 dx+ |µ1|
∫
x≥0

xe
−(x2+µ2

1)

2 dx)

≤ (1 + µ2
1) + µ1|µ1|+ 3e−µ

2
1/2

On the other hand

∫
x≥0

xmax(0,−4µ1xe
2µ1xΦ(−x− µ1))dx ≤

0 if µ1 ≥ 0, and

4|µ1|
∫
x≥0

x2e2µ1xdx if µ1 < 0,
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where we have used the fact that Φ(·) ≤ 1. Using the fact that
∫
x≥0

x2e2µ1xdx = 1
4µ2

1

it follows that∫
x≥0

x |I(x, µ1) + max(0,−4µ1xe
2µ1xΦ(−x− µ1))|dx

≤ (1 + µ2
1) + µ1|µ1|+ 3e−µ

2
1/2 +

|µ1|
µ1

1

µ1

<∞.

Thus, as long as µ1 ∈ [−∞, b) where b < ∞, we can claim integrability of

the function x(I(x, µ1) + max(0,−4µ1xe
2µ1xΦ(−x − µ1))). Therefore, the deriva-

tive d
dµ1

(xpX1(x)) is bounded by an integrable function. We can straightforwardly

generalize this result to all i and j’s and interchange the derivative and the integral,

dEXj

dµi
=

∫ ∞
0

d

dµi
(pXj(x)x)dx,

where pXj(x) is the probability density function (PDF) of the RBM at time j∆t.

This PDF, however, has a non-trivial analytical form. Recall that the PDF of

an RBM is only known in closed form for constant drift coefficients, or homogeneous

RBM’s. Assuming constant drift coefficients for each sub-interval, the actual pXj(x)

function can be computed through a nested integral:

pXj(x) =

∫ ∞
0

∫ ∞
0

...

∫ ∞
0

pX1(x1)pX2|X1(x2|x1)...pXj |Xj−1
(xj|xj−1)dx1dx2...dxj−1.

The expression for the derivative of the expectation depends on the relative ordering

of i and j. It will be shown that the resulting expressions are nested integrals. We

estimate these nested integrals using Monte Carlo sampling of sample paths of the

RBM. Consequently, we term the GD algorithm using this estimator as the Monte

Carlo-based gradient descent (MCGD) method.

4.3.2 MCGD Estimators

There are several cases to consider.

Case 1: i > j: Since future drifts do not affect the current process, the expectation

satisfies,
dEXj

dµi
= 0.
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Case 2: 1 = i = j: Observe that

dEXj

dµi
=

∫ ∞
0

d log pX1(x1)

dµ1

pX1(x1)xdx

= E[
d log pX1(x1)

dµ1

X1],

with the corresponding estimator,

ˆdEXj

dµi
=

1

N

N∑
n=1

d log pX1(x1n)

dµ1

x1n .

Case 3: 1 = i < j:

dEXj

dµi
=

∫ ∞
0

...

∫ ∞
0

d
(

log pX1(x1)
)

dµi
pX1(x1)

j−1∏
n=1

pXn+1|Xn(xn+1|xn)xjdx1dx2...dxj

= EX1 [
d log pX1(x1)

dµ1

E[Xj|X1]],

with the corresponding estimator,

ˆdEXj

dµi
=

1

N

N∑
m=1

(d( log pX1(x1m)
)

dµ1

( 1

N

N∑
n=1

xjm,n
))
.

Case 4: 1 < i = j: The gradient entry is,

dEXj

dµi
=

∫ ∞
0

...

∫ ∞
0

d
(

log pXi|Xi−1
(xi|xi−1)

)
dµi

pX1(x1)
i−1∏
n=1

pXn+1|Xn(xn+1|xn)xidx1dx2...dxi

= E[
d log pXi|Xi−1

(xi|xi−1)

dµi
Xi],

with the corresponding estimator,

ˆdEXj

dµi
=

1

N

N∑
n=1

(d log pXi|Xi−1
(xin|xi−1n)

dµi
xin

)
.

Case 5: for1 < i < j: Finally we have the gradient,

dEXj

dµi
=

∫ ∞
0

...

∫ ∞
0

d
(

log pXi|Xi−1
(xi|xi−1)

)
dµi

pX1(x1)

j−1∏
n=1

pXn+1|Xn(xn+1|xn)xjdx1dx2...dxj

= EXi−1
EXi [

d log pXi|Xi−1
(xi|xi−1)

dµi
E[Xj|Xi]]],

and the corresponding estimator,

ˆdEXj

dµi
=

1

N

N∑
m=1

(d log pXi|Xi−1
(xim|xi−1m)

dµi

( 1

N

N∑
n=1

xjm,n
))
.



23

4.3.3 Validation for MCGD Estimator

Observe that the MCGD estimator is a nested expectation estimator. Consider

the most common case 1 < i < j as an example; the corresponding element is:

ˆdEXj

dµi
=

1

N

N∑
m=1

(d log pXi|Xi−1
(xim|xi−1m)

dµi

( 1

N

N∑
n=1

xjm,n
))
.

This nested Monte Carlo estimator structure is discussed by Rainforth et al. [13] As

shown in [13, Theorem 2], for a Monte Carlo estimator with the form

θ̂ =
1

M

M∑
m=1

(
f
(
Îm
))

=
1

M

M∑
m=1

(
f
( 1

N

N∑
n=1

xjm,n
))
,

where f is a given function, Im = E[X] for allm ∈ {1, 2, ...M} and Îm = 1
N

∑N
n=1 xjm,n ,

the sufficient condition for the estimator to converge almost surely to the true pa-

rameter is that |f(Îm) − f(Im)| → 0 as N → ∞. It is clear that 1
N

∑N
n=1 xjm,n is an

unbiased estimator for Im. We still need to prove that, in our case, f(·) is continu-

ous on its domain to assert that the estimator θ̂ will converge to θ. We check this

condition in the following part.

f(x) =
d log pX|Y (x|y)

dµi

= ((−(−x+ y + µ) ∗ φ(−x+ y + µ)− (2e2µx + 4µxe2µx)Φ(−x− y − µ)

− e2µx(−(−x− y − µ))φ(−x− y − µ) + 2µe2µx + 2xe2µxφ(−x− y − µ)))

/(φ(−x+ y + µ)− 2µe2µxΦ(−x− y − µ) + e2µxφ(−x− y − µ))

This function is essentially a quotient of two continuous functions.

f(x) =
g(x)

λ(x)

where g(x) and λ(x) are compositions of the product, the sum and the difference

of continuous functions. Because that these operations on continuous functions will

maintain the continuity, g(x) and λ(x) can be easily proved to be continuous. The
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denominator λ(x) is the probability density function of the RBM process. By defini-

tion, λ(x) 6= 0 for all x in its domain. Therefore, f(x) is a continuous function and

θ̂ → θ as the Monte Carlo sample size increases.

4.3.4 Simulation for MCGD Method

Observe that each element would require N initial sample paths suppose there are

two layers of averaging in the estimator, the number of sample path branches will

be N2 when the second layer of averaging happens. Consider case 5 as an example;

the estimator is
ˆdEXj
dµi

= 1
N

∑N
m=1

(
d log pXi|Xi−1

(xim |xi−1m )

dµi

(
1
N

∑N
n=1 xjm,n

))
. There will

initially be N sample paths. From time j, each sample paths will have N sample

path branches so that the total number of samples for each time step is N2. An

advantage of the MCGD estimator is that it avoids the curse the dimensionality, unlike

dynamic programming. Specifically, estimating
ˆdEXj
dµi

does not require an increase in

the sample size at each time step. Instead, the sample size is only squared when a

new layer of expectation emerges so that the number of sample paths does not blow

up exponentially.
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4.3.5 Algorithms

Gradient Approximation Algorithm for MCGD Method

Combined with the RBM simulation algorithm, ∇̂~µJ̃ or ∇̂~µĴ can be estimated

with the algorithm below.

Algorithm 4: Approximating gradient with MCGD

1 Initialize an empty list grad vec to store the gradient vector

2 for i ∈ [∆t, 2∆t, ..., T ] do

3 Generate the RBM sample paths with Algorithm 1, initialize

partial sum← 0

4 for j ∈ [∆t, 2∆t, ..., T ] do

5 if 1 = i = j then increment← 1
N

∑N
n=1

d log pX1
(x1)

dµ1
xn,

partial sum← partial sum+ increment;

6 else if 1 = i < j then

increment← 1
N

∑N
m=1

(
d
(

log pX1
(x1)
)

dµi

(
1
N

∑N
n=1 xjm,n

))
partial sum← partial sum+ increment;

7 else if 1 < i = j then

increment← 1
N

∑N
n=1

(
d log pXi|Xi−1

(xin |xi−1n )

dµi
xjn

)
partial sum← partial sum+ increment;

8 else if 1 < i < j then

increment← 1
N

∑N
m=1

(
d log pXi|Xi−1

(xim |xi−1m )

dµi

(
1
N

∑N
n=1 xjm,n

))
partial sum← partial sum+ increment;

9 else if i > j then

10 increment← 0;

11 end

12 Append partial sum to grad vec

13 end

14 Return grad vec as the gradient vector myalg
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Gradient Descent Algorithm for MCGD Method

Algorithm 5: Gradient descent optimization

1 Input an arbitrary drift, ~µarbitrary and step size, α

2 Initialize an arbitrary drift: ~µ0 ← ~µarbitrary

3 while the stopping criterion is not met do

4 For the nth iteration, estimate ∇̂ ~µn J̃ using Algorithm 5

5 ~µn+1 ← ~µn − α∇̂ ~µn J̃

6 n← n+ 1

7 end

8 Return the optimal drift vector ~µn

4.4 Step Size Determination

For both SPSA and MCGD method, α, the step size of the gradient descent

method, is crucial. An overly large step size could increase the Euclidean distance

between drifts from two sequential iterations and the optimal drift may not be found.

A step size that is too small could potentially decelerate the convergence to a local

optimal drift. Therefore, the step size should be chosen carefully.

4.4.1 Combining the Wolfe Conditions

The Wolfe conditions [14] consists of two standards for evaluating the step size:

f(x+ αd) ≤ f(x) + c1αf
′(x; d)

f ′(x+ αd; d) ≥ c2f
′(x; d),

where the function f(·) is smooth. The first condition is called the Armijo rule [15],

also known as the ‘sufficient decrease’ condition. This condition guarantees that,

with proper step size, the decrease of the objective function will be larger than a

benchmark. The benchmark depends on the choice of c1 but it is at the same scale as



27

the slope multiplied by the step size. This condition is imposed so that the step size

will not be too large causing the local minimum to be skipped between the iterations.

The second condition is called the curvature condition. It ensures that the directional

derivative of the objective function is larger (less steep) on the new location versus the

old location. If the opposite situation happens, it follows that the objective function

could have decreased even more along the descent direction and the current step size

is not sufficiently large to exert this potential. The curvature condition prevents the

step size from being too small. The Wolfe conditions are an efficient way to check if

the current step size is feasible.

4.4.2 Determining the Step Size

Below is our algorithm used to determine the step size in the gradient descent

method. Checking the Wolfe conditions requires the knowledge of directional deriva-

tives of the objective. Say for any function f(x), the directional derivative of that

function on any given direction d can be written as

f ′(x; d) = ∇f · d
|d|
.

Since the directional derivative is not directly computable in our settings, we estimate

is as

f̂ ′(x; d) = ∇̂f · d
|d|
,

in the algorithm.
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Algorithm 6: Wolfe condition step size selection algorithm

1 Input any objective function as f

2 Initialize two arbitrary constant c1 and c2 so that 0 < c1 < c2 < 1

3 Initialize a← 0, α← 1 and b←∞

4 Set stopping label← 0

5 while stopping label = 0 do

6 Compute the old directional derivative as f̂ ′(x; d) as the dot product of

the gradient and the descent direction

7 Compute the new function value with the current step size f(x+ αd)

8 Compute the new directional derivative as f̂ ′(x+ αd; d) as the dot

product of the gradient and the descent direction

9 if f(x+ αd) > f(x) + c1αf̂ ′(x; d) then

10 Set b← α and α← 1
2
(a+ b)

11 end

12 else if f̂ ′(x+ αd; d) < c2f̂ ′(x; d) then

13 Set a← α, set α← 2a if b = +∞ and otherwise, set α← 1
2
(a+ b)

14 end

15 else

16 stopping label← 1

17 end

18 if either the total iteration number or the resulting step size exceeds the

thresholds then

19 Set α← 0 to be conservative

20 stopping label← 1

21 end

22 end

23 Return the optimal step size α
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5. RESULTS

We now present numerical experiments illustrating both SPSA and MCGD methods,

as well as comparisons with numerical solutions to the Hamilton Jacobi PDE. We use

the following problem setting:

T = 5,

h = 1,

µ0 = [1, 1, 1, 1, 1],

G(x) = −3E(XT ),

N = 50,

where T is the time horizon, h is the time discretization, µ0 is the initial drift vector

and G(x) is the final condition/cost term if there is one, N is the Monte Carlo

simulation sample size. We also set 10 to be the upper limit for each drift vector

entry and 30 to be maximum step size for Wolfe conditions. All methods are run 30

times with different seeds.
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5.1 SPSA Method Results

(a) With step size 1 (b) With Wolfe conditions

Figure 5.1.: SPSA method without final condition: objective function value vs. iter-

ation.

(a) With step size 1 (b) With Wolfe conditions

(c) With step size 1 (d) With Wolfe conditions

Figure 5.2.: SPSA method without final condition: optimal drift.
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(a) With step size 1 (b) With Wolfe conditions

Figure 5.3.: SPSA method without final condition: objective function value per-

centiles.

Figure 5.1 plots are objective function values against the number of iteration on

5 trial runs, the corresponding optimal drift are plotted in Figure 5.2 and percentiles

of function values against the number of iteration calculated from 30 runs of the

algorithms in Figure 5.3. Both left figures are the results using 1 as a constant step size

and the right figures are the results using Wolfe conditions to determine the optimal

step size. In both methods, the objective function values are not monotonically

decreasing. Instead, there are fluctuations in different scales. The instability of the

decreasing rate can also be observed. As it can be seen from Figure 5.1, the SPSA

method under Wolfe conditions usually achieves a small objective function value after

the first iteration and appears to be more effective than the fixed step size. The

efficiency of Wolfe conditions is more prominent in Figure 5.3 as all the function

value percentiles are lower than those of the fixed step size. The 90th function value

percentile using constant step size deviates from the decreasing trend and rapidly

increases. The spread between the lowest and the highest percentile is significantly

smaller after the Wolfe conditions are applied, implying the variance of the estimator

is decreased.
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(a) With step size 1 (b) With Wolfe conditions

Figure 5.4.: SPSA method with final condition: objective function value vs. iteration.

(a) With step size 1 (b) With Wolfe conditions

(c) With step size 1 (d) With Wolfe conditions

Figure 5.5.: SPSA method with final condition: optimal drift.
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(a) With step size 1 (b) With Wolfe conditions

Figure 5.6.: SPSA method with final condition: objective function value percentiles.

The above figures are results generated using the SPSA method on the objective

function with a terminal cost. With a terminal cost −3G(EXT ), the objective value

could potentially be negative if EXT is sufficiently large. For some trials from either

step size selection methods, the function value did visit a negative level in the begin-

ning according to Figure 5.4. As can be seen from Figure 5.2, The 90th percentile

for both selection methods increases significantly and does not converge after a thou-

sand iterations. Function values of approximately 80% of the runs converge towards

0 as the number of iterations approaches a thousand. A possible explanation for this

phenomenon is that the SPSA method fails to approximate the gradient when the

function value is close to zero so the potential negative level of the objective function

is never reached. An alternative possibility is that 0 could be a local minimum or

a saddle point of the objective function. However, analytically checking this seems

almost impossible, since closed forms for the objectives are not available. In terms

of the convergence rate, the Wolfe conditions slightly accelerate the convergence to-

wards 0 and the spread between the lower and higher percentiles is smaller using

Wolfe conditions.
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5.2 MCGD Method Results

(a) With step size 1 (b) With Wolfe conditions

Figure 5.7.: MCGD method without final condition: value vs. iteration.

(a) With step size 1 (b) With Wolfe conditions

(c) With step size 1 (d) With Wolfe conditions

Figure 5.8.: MCGD method without final condition: optimal drift.
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(a) With step size 1. (b) With Wolfe conditions.

Figure 5.9.: MCGD method without final condition: objective function value per-

centiles.

For both step size selection methods, the function values are not monotonically

decreasing as the iterations number increases. There are obvious transient fluctuations

especially in the early phase of the iterations. Compared to SPSA, the function

values using MCGD did not drastically decrease within the first few iterations, but

gradually decreased trend despite the fluctuations. The trials with a fixed step size

visibly converge slower than those with Wolfe condition. Some trial runs with step

size = 1 experienced more fluctuations and did not converge after 1000 iterations.

Overall, MCGD method combined with the Wolfe conditions converges faster. This

can also be confirmed by Figure 5.9(b) as all percentiles converge to 0 at the end of

the horizon. According to the percentile plots, the higher percentiles for both step

size selection methods no longer diverge. The spread across different percentiles is

visibly more consistent in either case. In contrast to the SPSA method, choosing the

step properly does not affect the convergence rate that significantly for the MCGD

method.
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(a) With step size 1 (b) With Wolfe conditions

Figure 5.10.: MCGD method with final condition: value vs. iteration.

(a) With step size 1 (b) With Wolfe conditions

(c) With step size 1 (d) With Wolfe conditions

Figure 5.11.: MCGD method with final condition: optimal drift.
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(a) With step size 1. (b) With Wolfe conditions.

Figure 5.12.: MCGD method with final condition: objective function value per-

centiles.

Figure 5.10-5.12 plot the outcome from running the MCGD method on an objec-

tive function with a terminal cost −3G(EXT ). For both step size selection methods,

there are fluctuations of the objective value throughout the 1000 iterations. For the

fixed step size case, the objective value did not stabilize after 1000 iterations for

at least 80% of the trial runs according to Figure 5.12. However, 80% of the trial

runs using Wolfe conditions converges after a thousand iterations. Unlike the SPSA

method, the MCGD method can reach a negative level and sample runs appear to

approach the −20 level. The MCGD method appears to be more effective especially

when the function value is around 0. As for the optimal drift, a common trait is that

drifts vectors for the five sample trial runs are initially small and tilted back towards

the upper bound for the last time step.
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5.3 Comparison of PDE and Gradient Descent Methods

5.3.1 Objective Function with a Single Terminal Cost

(a) SPSA function value vs. iteration

and PDE optimal function value

(b) SPSA function value percentiles

(c) SPSA and PDE optimal drift graph (d) SPSA and PDE optimal drift table

Figure 5.13.: Comparison of SPSA and PDE on single terminal cost set-up.

Figure 5.13 compares to SPSA and PDE methods on the objective function with

a single terminal cost −3EG(XT ). As can be seen from Figure 5.13(a) where the

evolution of five trial runs’ are plotted, the function values mostly decayed or sta-

bilized around 0 within the first 100 iterations. There are drastic fluctuations after

100 iterations but as Figure 5.13(b) shows, only the 90th percentile of the function

values deviate from 0 and most of the trial runs end around 0. The resulting optimal

drift vectors are noisy without obvious trends. Generally speaking, SPSA does not
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generate nearly optimal drifts regarding the objective function with a single terminal

cost.

(a) MCGD function value vs. iteration

and PDE optimal function value

(b) MCGD function value percentiles

(c) MCDG and PDE optimal drift graph (d) MCGD and PDE optimal drift table

Figure 5.14.: Comparison of MCGD and PDE on single terminal cost set-up.

Figure 5.14 compares the MCGD and PDE methods on the same objective. Ac-

cording to Figure 5.14(b), up to 70% percentiles of the function values from all 30

trial runs converge to a level similar to the PDE method results. The remaining trial

runs converge around 0 at the end of the 1000 iterations. Regarding the optimal drift

vector, the PDE method gives a clean result where the first few drift entries are the

lower limits for drift vectors and the last entry is the upper limit. Using the MCGD

method, the trend of being negative initially and increasing to the upper bound of
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the drift vector is consistent with PDE method results. Then the MCGD method

appears to be a better choice with terminal costs.
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6. CONCLUSION

From queueing theory, finance to biology and biophysics, RBM is a common model

in many scientific domains. Optimization of cost function driven by RBM’s arise in

many applications and there are many open problems. In this thesis, we formulated

a generic optimization problem driven by RBM that can be specialized to specific

applications. We focused on numerical methods for solving this generic problem.

First, we viewed the optimization problem as a deterministic optimal control prob-

lem and using the dynamic programming principle and some manipulations on the

objective function, an HJB equation was derived. Utilizing the finite element method

(FEM) to numerically approximate the solution over all sub-domains, we obtained

approximate optimal cost as well as the optimal control, i.e. the optimal drift vec-

tor. We analyzed the convexity of the objective function and demonstrated that the

generic objective is not always convex.

Based on the fact that analytical evaluation of the objective function is a near-

impossible task, we developed a Monte Carlo approach to solving this generic problem.

this includes the estimation of the gradient of the objective and developing a gradi-

ent descent algorithm. Approximating gradients using Monte Carlo methods is not

unprecedented, and in this thesis, we used the existing and well established SPSA

method, as well as a new MCGD method that we derived.

Our numerical results show that the PDE method and gradient descent method

produced optimal drifts of similar trends. Carrying out a Monte Carlo estimation

on the objective function using the resulting drifts from both methods generated a

very close objective function value. Overall, the MCGD method out-performs the

SPSA method, in terms of the convergence rate and the final function value. By

using the Wolfe conditions that are commonly used to determine the gradient descent
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step size in deterministic optimization, we demonstrated a significant improvement

in convergence rate. However, we still do not have highly consistent results using

different methods. The optimal drifts computed from gradient descent methods are

rather noisy despite the convergence of the algorithm.

The work in this thesis leads to several interesting and important open problems.

Understanding the properties (e.g. curvature) of the objective function requires fur-

ther analytical work and experimentation. Furthermore, we have not analyzed the

convergence of the MCGD gradient estimator, or the bias and variance trade-off in-

herent in the time-discretization. Further algorithmic questions include the design

of adaptive sampling schemes for the nested estimator. Going back to the optimal

control perspective, the critical issue with that method is that the system dynamics

(i.e., the dynamics of the expectation of RBM) are unknown in closed form. This

turns out to be critical for solving the HJB equation numerically. However, this can

also now be viewed as a reinforcement learning and system identification problem.

What is the connection between our simulation optimization gradient descent method

and policy gradient and policy search methods? It appears that these are closely con-

nected. These questions, however, are outside the scope of this thesis but promise

fruitful future research opportunities.
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