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ABSTRACT

Qian,Cheng M.S, Purdue University, December 2019. Evaluation of Deep Learning-
Based Semantic Segmentation Approaches for Autonomous Corrosion Detection on
Metallic Surfaces. Major Professor: Mohammad R Jahanshahi.

The structural defects can lead to serious safety issues and the corrosponding

economic losses. In 2013, it was estimated that 2.5 trillion US dollars were spent on

corrosion around the world, which was 3.4% of the global Gross Domestic Product

(GDP) [1]. Periodical inspection of corrosion and maintenance of steel structures are

essential to minimize these losses. Current corrosion inspection guidelines require

inspectors to visually assess every critical member within arm’s reach. This process

is time-consuming, subjective and labor-intensive, and therefore is done only once

every two years.

A promising solution is to use a robotic system, such as an Unmanned Aerial

Vehicle (UAV), with computer vision techniques to assess corrosion on metallic sur-

faces. Several studies have been conducted in this area, but the shortcoming is that

they cannot quantify the corroded region reliably: some studies only classify whether

corrosion exists in the image or not; some only draw a box around corroded region;

and some need human-engineered features to identify corrosion. This study aims to

address this problem by using deep learning-based semantic segmentation to let the

computer capture useful features and find the bounding of corroded regions accu-

rately.

In this study, the performance of four state-of-the-art deep learning techniques for

semantic segmentation was investigated for corrosion assessment taskincluding U-Net,

DeepLab, PSPNet, and RefineNet. Six hundred high-resolution images of corroded

regions were used to train and test the networks. Ten sets of experiments were per-

formed on each architecture for cross-validation. Since the images were large, two
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approaches were used to analyze images: 1) subdividing images, 2) down-sampling

images. A parametric analysis on these two prepossessing methods was also consid-

ered.

Prediction results were evaluated based on intersection over union (IoU), recall

and precision scores. Statistical analysis using box chart and Wilcoxon singled ranked

test showed that subdivided image dataset gave a better result, while resized images

required less time for prediction. Performance of PSPNet outperformed the other

three architectures on the subdivided dataset. DeepLab showed the best performance

on the resized dataset. It was found Refinenet was not appropriate for corrosion

detection task. U-Net was found to be ideal for real-time processing of image while

RefineNet did not perform well for corrosion assessment.
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1. INTRODUCTION

1.1 Motivation

Metals are widely used in civil infrastructure systems since they can offer more

tensile capacity than other materials such as concrete and wood. However, the capac-

ity of metals can decrease due to corrosion which can eventually lead to the collapse

of the structures. Rehabilitation and replacement of a structurally deficient member

represent not only a great expenditure to the owner, but also a significant indirect cost

to the users due to partial or complete closure of the structure. A fast and efficient

autonomous inspection system is needed to assess corrosion rate correctly. There-

fore, the steel structures can be inspected more frequently, and more cost-effective

maintenance can be performed to extend service lives of these structures.

1.1.1 Problem Statement

Steel is one of the most commonly used materials in civil infrastructure systems.

American Institute of Steel Construction (AISC) claimed that steel, as a framing

material for buildings, takes a 46% market share for non-residential and multi-story

residential construction in 2017 [2]. The National Bridge Inventory (NBI) reported

that more than 34% of highway bridges in the US use steel as structural supports [3].

However, these steel structures are not at good conditions. In 2016, 9.1% of the

bridges in the US, or a total of 56,007, were suffering structural defects and needed

to be repaired [4]. Corrosion as the primary cause of structural defects on steel [5]

is causing a great amount of economical loss around the world. In 2016, National

Association of Corrosion Engineers (NACE) conducted a study on the measurement

of protection, application, and economy of corrosion internationally [1]. Based on the
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measure, 2.5 trillion US dollars were spent on corrosion around the world, which was

3.4% of the global Gross Domestic Product (GDP) in 2013.

One main reason that have caused such great loss is that structures are not fre-

quently inspected for corrosion assessment. For example, most highway bridges are

typically inspected once every two years. Great amount of corrosion can develop

during this long period. Section loss caused by corrosion on the critical members can

greatly reduce the capacity of the bridge. Once the load rating, calculated by dividing

capacity of the member by maximum live load on the member, is less than 1, actions

will need to be taken [6]. The owner need to decide to either post a weight restriction,

or to rehabilitate the bridge. Common rehabilitation practices will be adding steel

plates or welding. If the capacity of the bridge is less than 3 tons, the critical member

or even the whole bridge will be replaced [6]. These practices are very expensive, and

require partial or complete closure of the bridge.

If the structures can be inspected more frequently, corrosion can be detected

at an early the stage that does not affect the capacity of the structure. The low-

cost maintenance can be performed at this stage: the rust will be cleaned and spot

repainting will be applied to prevent further corrosion. A good coating on metal

surfaces can protect the structure for up to 25 years [7], and the spot coating can

elongate the service life of coating for around 10 years [8]. Based on life-cycle cost

analysis (LCCA), the price of maintenance activity, such as washing and re-coating

steel girders, is much smaller than the cost of one-time rehabilitation replacement [8].

Therefore, frequent inspection of steel structures can not only increase the life of the

structures but also decrease the economic loss.

1.1.2 Objectives of the Research

Although more inspections are required to reduce the loss, current manual in-

spection procedures are time-consuming, labor-intensive, costly and in some cases

dangerous. Inspection guidelines, such as National Bridge Inspection Standard, re-
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quire inspectors to visually assess every critical member within arm’s reach (i.e., two

feet) [9]. However, in many cases, it is difficult to conduct a visual inspection of the

structures, especially when they are at a high elevation or at water level. Inspec-

tors need to hang from ropes or stand on a scaffold positioned on a boat to inspect

inaccessible regions.

An alternative approach is to use robots to help engineers to inspect structures

using high-resolution images. Bertino and Jahanshahi [10] conculded the framwork

and challenges for collecting and qualifying the image data for civil infrastructures.

An inexpensive approach is to use UAVs to inspect the structures [11, 12]. A $200

UAV can fly for 25 minutes and capture 1080p videos and images. Currently, there

are several companies that provide engineers with service to capture high-quality

images or videos. The images captured using UAVs can also be used for three-

dimensional (3D) point reconstruction, and the defects can be assessed on the 3D

models of civil infrastructures [13]. Reconfigurable swarm robots (RSR) can also be

used for inspection at a low cost. Jahanshahi et al. [14] concluded the challenges and

achievements of using RSR to monitor civil infrastructures.

Although advanced technologies enable engineers to collect data to visualize the

whole structures, the more important issue is how to extract useful information from

the captured images. It is still time-consuming and labor-intensive to have a human

to assess corrosion in the images. The purpose of this study is to use state-of-art

computer vision algorithms to assess visible corrosion on the metal surfaces.

1.2 Related Work

Several studies have used computer vision technologies to assess corrosion in im-

ages. Jahanshahi et al. [15], Ahuja et al. [16] and Spencer et al. [17] reviewed mon-

itoring applications in civil engineering which have benefited from computer vision

technologies and UAVs in recent years. These applications are not only used for dam-

age detection but also for other inspection applications (e.g. structure component
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recognition), and monitoring applications (e.g. measurement of static displacement

and dynamic responses). To this end, there are mainly three kinds of techniques

used for corrosion assessment: image classification, object detection, and semantic

segmentation.

Image classification algorithms can be used to identify whether or not there is

corrosion in an image. Livens et al. [18] and Pidaparti et al. [19] extracted features

from the wavelet decomposition of corrosion images and then classified the images as

pit formation or cracking using a Learning Vector Quantization (LVQ) network and

fractal dimension (FD) analysis. Chun et al. [20] evaluated the degree of shadow cast

by the flaky corrosion, and classified the corrosion in images into five grades, from

early stage of rust to laminated flaky corrosion.

Object detection algorithms draw a box around the corrosion, therefore the lo-

cation of the corrosion can be defined. Cha et al. [21] used a Faster Region-based

Convolutional Neural Network (Faster R-CNN) to detect four types of defects on

steel structures: corrosion at middle and high levels, and corrosion on bolt and steel

delamination. Bounding boxes were drawn around the defect and labeled with the

type of damage. Atha and Jahanshahi [22] subdivided images into small patches,

and then used image classification to determine if there is corrosion in each image

patch. Therefore, an approximate shape of the corrosion could be identified. How-

ever, since corrosion takes irregular shapes, image classification and object detection

have difficulty finding the accurate area of corrosion.

The solution is to use semantic segmentation to draw an accurate boundary around

the corroded region. Semantic segmentation algorithms have shown the ability to

assess cracks from image and video data [23–28]. Since semantic segmentation algo-

rithms identify accurate shapes of the corrosion, rate of corrosion can be evaluated

by quantifying the corrosion at different rounds of inspection. Also, engineers can

reinspect the surface to determine whether the corroded region has expanded since

the last inspection [29]. Most corrosion assessments using semantic segmentation are
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based on color or texture analysis since corrosion typically has a red-brown color and

a rough texture.

The most commonly used color-based segmentation algorithm for corrosion seg-

mentation task is thresholding. It means there will be a threshold value set to separate

different kinds of pixels. Chen and Chang [30] used the neuro-fuzzy recognition ap-

proach (NFRA) to find the threshold values and then used image thresholding to

segment corrosions from the grayscale images. Lee and Chang [31] performed sta-

tistical analysis on scatter plots of the RGB color space, and concluded that the

most significant variables for rust defect recognition were the mean value of red,

the difference value in green, and the difference value in blue. Shen et al. [32] used

Fourier-transform to detect the defects on the coating of steel bridges, and then used

K-Means Algorithm to recognize the rust defects on the coating.

Some studies also integrated the thresholding algorithm with other color-based

algorithms to perform the segmentation task. Liao and Lee [33] detected corrosion

on steel bridges by first detecting corrosion pixels using K-means algorithm on Hue

(H) value of pixels, and then using double-center-double-radius (DCDR) algorithm

on RGB and HSI color spaces to detect if there are more corrosion pixels in the rest

of image. The detector could provide a good result on most images; however the

accuracy was low when there was a large or dark rust area in the image. Diaz et

al. [34] developed a Matlab program to detect corrosion in images. First, the red

channel images extracted from RGB images of corrosion were transferred to grayscale

images, then a threshold was set to segment corrosion from background. Although

the approach reached a true positive rate of 90 percent, only 20 pictures were tested.

More data are required to prove the accuracy and effectiveness of the program.

Texture analysis-based segmentation uses features such as roughness to detect

corrosion. Xie [35] reviewed studies that use texture analysis methods to detect

defects on metallic surfaces. Jahanshahi and Masri [36] evaluated the effect of different

parameters, such as color space, color channel, and the window size of sub-images on
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the wavelet-based texture analysis algorithms. It was shown that HSI color space was

not suitable for the task, and CbCr color channels enhanced the performance.

Haralick et al. [37] used gray level co-occurrence matrices (GLCMs) to statisti-

cally analyze the frequency of different gray level combinations within a corrosion

image. Some studies integrated GLCM analysis with color analysis to capture as

much information as possible for corrosion detection [38], [39]. Bonnin-Pascual and

Ortiz [38] developed a corrosion detection algorithm based on a cascade of weak clas-

sifiers. First, GLCM was calculated to measure the roughness of each patch of the

image. The image patch with energy value higher than a threshold would be further

inspected. Subsequently, pixels were classified based on Hue-Saturation-Value (HSV),

which is a representation of Red Green Blue (RGB) color space. Medeiros et al. [39]

calculated GLCM probabilities to measure the roughness, and analyzed Hue Satu-

ration Intensity (HSI) color histogram to identify color change caused by corrosion.

Then, the texture and color information were combined to optimize the performance

of the classifier.

Another type of texture-based segmentation uses filter-based approaches. Ghanta

et al. [40] performed a one-level Haar wavelet transform on the input images and then

used entropy and energy values in the wavelet domain to train a Least Mean Squares

classifier to determine if each 8 × 8 image patch is corrosion or not. Jahanshahi et

al. [15] evaluated vision-based approaches for corrosion detection, it was concluded

that both texture and color analyses should be applied to enhance the corrosion

detection performance.

Some studies use machine learning algorithms to optimize the parameters for

corrosion segmentation algorithms based on color and tecture analyses. Son et al.

[41] first converted the images in the RGB color space to the HSI color space, then

used machine learning algorithms, such as support vector machine (SVM) and back-

propagation neural network (BPNN)to classify the pixels as corrosion or not. Shen et

al. [42] trained an artificial neural network to allocate the corroded segments, which

resulted in relatively high accuracy. But it was computational epensive, and it took
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over fifteen seconds to process each image. Some studies, such as Livens et al. [18]

and Ghanta et al. [40] used color or texture analysis to capture the features first,

then used machine learning algorithms to segment pixels based on these features.

Although the parameters in the algorithms are optimized through machine learning,

these approcaes still require human engineers to define the features to be learned,

which is subjective

In recent years, Convolutional Neural Networks (CNNs) [43], which will be ex-

plained in section 2, significantly enhanced the capabilities of computers for classifi-

cation tasks. Cha et al. [21] and Atha and Jahanshahi [22] used CNN-based object

detection algorithms to locate the corrosion, but failed to compute the accurate area

of corroded regions.

Several semantic segmentation algorithms were designed based on deep convolu-

tional neural networks (DCNNs) in recent years. Some researches also used these

algorithms to segment corrosion on civil facilities. Ty et al. [44] used U-Net to de-

tect the corrosion in the penstocks using the photos taken by a Micro Aerial Vehicle

(MAV). The accuracy was low since there was large amount of noise in the images

caused by the dark environment and water left in the penstocks. Nash et al. [45]

compared the performance of the same Fully Convolutional Network (FCN) trained

using a large dataset including 250 poorly labeled images and a small dataset includ-

ing 10 images labeled by subject matter experts. It was shown that the quantity of

the images in the dataset is more important than the quality of the labels. Hoskere et

al. [46] developed a multi-scale parallel DCNN architecture. The architecture was first

used as a damage classifier to segment the defects on the structures into six different

classes, including steel corrosion, and then used a damage segmenter to differentiate

between pixels that represent damage and background. It was shown that damage

segmenter successfully reduced the possibility of false detection. Although there has

been a few studies where CNN algorithms are used to segment corrosion in images,

most of them only applied the most basic semantic segmentation architectures, such
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as DCNN and FCN, while there have been many CNN-based semantic segmentation

networks developed for other applications.

1.3 Scope

The objective of this study is to investigate state-of-the-art deep learning tech-

niques for semantic segmentation for the corrosion assessment task, so that better-

informed decisions for maintenance of metal structures can be made. Section 2 in-

troduces the principles of deep learning techniques used for semantic segmentation.

Section 3 describes the four algorithms used and evaluated in this study. Section 4

describes the training process, including data generation and fine-tuning for the se-

mantic segmentation model. Section 5 gives an explanation of the evaluation metrics

and statistical analysis used in this study. Section 6 presents sample results obtained

from the models and evaluates the performance of four models based on Intersection

over Union (IoU), precision and recall scores, and cost of computation. Section 7

summarizes the main conclusions of this study and suggests improvements for further

work.
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2. PRINCIPLES OF DEEP LEARNING-BASED SEMANTIC

SEGMENTATION

In this study, semantic segmentation is used to let the computer classify each pixel

in the image as corrosion or background. In this chapter, the principles of deep

learning-based semantic segmentation algorithms will be explained along with their

use in corrosion recognition.

2.1 Fully Convolutional Network (FCN)

The most basic deep learning-based semantic segmentation algorithm is called

FCN [47]. It was designed by UC Berkeley in 2014. It was trained on the dataset

called PASCO VOC [48]. This dataset consists of 6,929 images for semantic segmen-

tation, and twenty classes including humans, animals, vehicles, and indoor furniture.

FCN showed an Intersection over Union (IoU) score, which evaluates the accuracy

of semantic segmentation algorithms, of 62.2% accuracy on the test set of PASCO

VOC.

The input to the network is an image, where the image is represented by a tensor

with the size of W×H×3, where W and H are the original width and height of the

input image, and 3 represents Red, Green and Blue (RGB) values. The output of

the network is a W×H binary image. For corrosion assessment task, each white pixel

shows that the corresponding pixel in the input image is corrosion, and the black

pixel shows the corresponding pixel in the input image is background. The network

includes multiple convolution, activation, pooling, and transpose convolution layers

that are introduced below.
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2.1.1 Convolution Layer

Convolution layers use kernels to slide over the input image to extract features and

store them in the feature map. Figure 2.1 shows a 2-D example of convolution using

a 2×2 kernel on a 4×4 input at the stride of 2 to produce a 4×4 feature map. The

values in the kernel are first multiplied with the corresponding values in the yellow

region of the input. And the sum of the products are recorded in the corresponding

yellow region of the output feature map. For instance, the 1 in the output is calculated

by 0×1 + 1×2 + 0×3 + 0×4 = 2. Then, the kernel moves two steps to the right.

The same calculation for the numbers in the green region give the output of 3. After

the kernel slides over the whole input image, the output feature map is generated.

In order to keep the output at the same size as input, zero padding is added to the

input. For instance, as shown in Figure 2.2, zeros are first padded around the input.

Then, a 3×3 kernel convolves over the 4×4 input at the stride of 1 to produce a 4×4

feature map. The same computation takes place between the values in the input and

the kernel including zero padding.

Changing the values in the kernel, which are called weights, helps the network

to capture different features during convolution. For instance, as shown in Figure

2.3, the first kernel outputs the embossed objects and helps to capture texture in-

formation. The second kernel outputs the outline of the object, enabling extraction

of object boundaries. The third kernel outputs the blurred image, which decreases

the difference between adjacent pixels. Kernels will be optimized during the train-

ing process, to help the network find the most useful information. The algorithm of

optimizing the weights will be discusses later in this chapter.

The size of the kernel is usually very small compared to the input image (e.g.,

3×3, 5×5, or 7×7). So, the first few convolution layers can only capture low-level

features such as lines, curves, or edges. The next few convolution layers can combine

these small features to learn parts of the boundary or the texture. These features

help the network to recognize the whole object.
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Input
(4 x 4)

Kernel
(2 x 2)

Output Feature Map
(2 x 2)

Stri
de =

2

Figure 2.1.: 2-D example of convolution using a 2×2 kernel, on a 4×4 input at the

stride of 2 to produce a 4×4 feature map.

2.1.2 Activation Function

The values, stored in the feature maps, representing the features captured by the

kernels are called activations. Since not all the features extracted from the images are

useful for the task of detection, activation functions are used after the convolutions

to define which features are important to the task [49]. In the semantic segmentation

tasks dealing with RGB images, negative activations are not useful. Therefore, an

activation function that turns all the activations to positive values should be used.

The activation function used in most of the CNN based architectures is ReLU [50]. It

is used since the computation is very simple, which is suitable for the complex CNN

networks. The expression of the ReLU function is:

ReLU(x) =

x if x > 0

0 if x ≤ 0

(2.1)
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Input
(4 x 4)
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(3 x 3)
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Figure 2.2.: 2-D example of convolution with zero padding: a 4×4 input is convolved

using a 3×3 kernel at the stride of 1 to produce a 4×4 feature map.

It means that if the number in the output feature map tensor is less than zero, then

it will be replaced by zero. However, if the number is greater than zero, the number

could keep its value.

An FCN architecture can be built by adding up the convolution layers, as shown

in Figure 2.4. D means D feature maps generated by D kernels at each step. Since

there are only 2 classes, corrosion and background, in the corrosion detection task,

the feature maps at the last step has the size of W×H×2. Activation functions can be

added between convolution layers to improve the results. Since the output prediction

should have the same size as the input image, the sizes of the feature maps are kept

the same. And many convolution layers are added to make sure that enough features

can be captured. The consequence of this is a large amount of computation.
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Figure 2.3.: Sample convolution using different kernels.

2.1.3 Down-Sampling and Up-Sampling

In order to reduce the amount of computation for FCN architectures, the feature

maps are first down-sampled to a small size, at a low resolution, and then up-sampled

to the original size at a high resolution, as shown in Figure 2.5.

Pooling

The down-sampling process is called pooling. There are two kinds of pooling:

max pooling and average pooling. Figure 2.6 shows an example of max pooling with

2×2 kernel at stride of 2. As the figure shows, the greatest value in every 2×2 patch

is stored in the corresponding region in the output feature map. For example, the

greatest value in the upper left, yellow region, is 6, so, 6 is stored in the upper left

corner of the output feature map. Average pooling is similar to max pooling. Instead

of exporting the maximum number to output, the average of the values in each patch
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Figure 2.4.: FCN architecture composed of convolution layers, while keeping the size

of the feature maps the same as the input image.

would be exported. Most semantic segmentation algorithms use max pooling since

the most important features can be preserved. Average pooling is not preferred since

it counts all the features including those not important for the detection task [51].

Transpose Convolution

There are several methods of up-sampling. Transpose convolution the most pop-

ular one since it can learn how the convolution layers can up-sample the feature map.

Figure 2.7 shows an example of a 2-D transpose convolution where a 2 × 2 kernel at

the stride of 2 is used to up-sample a 2 × 2 input feature map to the size of 4 × 4.

The values in the kernel are first multiplied with the value in the upper left corner of

the input where these products are recorded in the corresponding yellow region of the

output feature map. Then, the kernel moves to the right, and the same computation
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Figure 2.5.: Down-sampling and up-sampling: the feature map is down-sampled to a

lower size then up-sampled back to the same size as the input image.

takes place for the values in the green region. Since the kernel convolves at the stride

of 2, the values result from multiplication are stored in the green elements, which are

two steps right to the yellow ones. After the kernel slides over the whole input image,

the output feature map is generated. In some cases, the kernel convolves the feature

map at the stride of 1, which means the new values are stored one step right to the

previous ones. In this case, there will be some overlap when storing the values in the

output. The sum of the product values will be taken at these regions.

2.2 Prediction

After building up the network to capture and decode the features, activation

functions are used to find the probability of each pixel being corrosion. Because the

activations are expected to be the probabilities in the range of zero to one, activation
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Input Feature Map Output Feature Map

Figure 2.6.: Sample of max pooling process in 2-D. The max value in the input feature

in a 2×2 patch is stored in the output feature map.

functions that can transfer the activations to the values between zero and one should

be used. The two most commonly used activation functions to give outputs of the

network are the sigmoid function and the softmax function that can be calculated by

Equations 2.2 and 2.3. Sigmoid function is used for binary classification. S in the

function represents the probability, and z represents the output value for the pixel

calculated by the network. Softmax function is used for multi-class classification. Sj

computes the probability for each class. zj represents the output value for a given

pixel identified as class j, and K represents total number of classes. Since the corrosion

detection task is a binary classification task, K for this task is 2.

Sz =
1

1 + e−z
(2.2)
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Input Feature Map
(2 x 2)

Output Feature Map
(4 x 4)
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Figure 2.7.: 2-D example of transpose convolution using a 2×2 kernel, on a 2×2 input

at the stride of 2 to produce a 4×4 feature map.

Sj =
ezj∑K
j=1 e

zj
(2.3)

2.3 Training

After computing the probability of each pixel being corrosion, the probability is

compared with the expected results. The network will be trained to minimize the

difference. For example, for a corrosion pixel, the expected prediction is 1. However,

the probability calculated from the network could be 0.6. The network will be trained

to increase this probability.
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2.3.1 Loss Function

Loss function is calculated in order to find how the network should be trained.

It is a function that quantifies the difference between the prediction and the ground

truth.

J = −y ∗ log(S) (2.4)

Cross-entropy loss [52] is the mostly used loss function for deep learning. It can be

calculated using Equation 2.4, where y indicates ground truth label of the pixel, and

S indicates predicted probability of the pixel being y. A large value of loss means

the error is large, and the model performs poorly. In order to get better models, the

weights in kernels should be trained to minimize the value of loss function J.

2.3.2 Gradient Descent

The process to minimize loss is called optimization. The optimization algorithm

used for semantic segmentation is gradient descent [53]. It is a iterative process.

Figure 2.8 shows a 1-D representation of gradient descent of loss function J controlled

by the weight w. After passing the images through the network, the loss can be

calculated, represented by the point on the loss function J. The loss is expected to

decrease in the direction of the slope at the point at step α. The new loss can be

calculated using Equation 2.5, where α represents a learning rate that controls the

length that each step of gradient descent will have. In order to increase the speed of

training, several images are set together as one batch to be processed. After training

over one batch the weights of kernels will be updated. This process will be repeated

until the loss value is minimized. Training over one batch is called one step, and

training over all training data is called one epoch.

wn := wn−1 − α
dJ(w)

dw
(2.5)

The optimization process is much more complicated than the 1-D example shown

in Figure 2.8. It can be very slow and inefficient to use a constant learning rate for
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𝐽(𝑤)

Figure 2.8.: Sample of gradient descent on a 1-D loss function J controlled by the

weight w.

gradient descent. Therefore, several optimization functions built based on gradient

descent are developed to update the learning rate after every iteration to increase the

speed of training [54]. The optimizers used in this study are Momentum Optimizer

[55], Adam Optimizer [56], and RMSProp Optimizer [57]. Momentum Optimizer

adds a vector calculated from previous step to the current step to increase the speed

of training. RMSProp optimizer uses the average of square root of past gradient

descent. Adam optimizer includes average of exponentially decaying gradients while

updating the gradients. The direction and the size of gradient descent depends on

the previous step, and therefore the network converges at a more accurate direction.
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2.3.3 Back Propagation

Back propagation is the process of adjusting the weights in the whole network

based on gradient descent. Using gradient descent analysis, the direction and amount

of expected changes of the activations in the last layer can be determined. How-

ever, the changes of activations are controlled by the weights in the kernels and the

activations in the previous layer. Therefore, the expected change in activations is

determined first. Then, the weights will be adjusted to make these desired changes,

and the expected change in the last second layer is recorded. This calculation prop-

agates backward from the last layer to the first layer of the network, which is the

input image. As a result, the adjustments in all the weights will lead to the expected

activations in the last layer determined by gradient descent.

2.4 Network Architectures

Performance of the network can be primarily affected by the arrangement of con-

volution, pooling and activation layers. There are many architectures of convolution

neural networks (CNNs) built to allow the model to perform the pixel classification

task better. These architectures can be used in down-sampling and up-sampling

processes to help improve the performance of semantic segmentation.

Two architectures will be used in this paper to identify the corroded regions better.

The first one is Visual Geometry Group-16 (VGG16) [58]. Visual Geometry Group at

the University of Oxford developed this architecture to win the ImageNet Large Scale

Visual Recognition Challenge in 2014 (ILSVRC) [59]. The model is composed of five

convolution blocks: In the first two convolution blocks. There are two convolution

layers with a kernel size of 3× 3, and one max pooling layer with kernel size of 2× 2,

and stride of 2. The last three convolution blocks are composed of three convolution

layers with a kernel size of 3 × 3, and the same max pooling layer as previous two

blocks. After the input image passes through these five blocks, two fully connected

layers are used to transfer the feature maps to the size of 1 × 1 ×N , where N is the
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number of classes that need to be classified. At last, an activation function is used to

predict the class of the image.

Another architecture that is used in this study is the Residual Networks (ResNet)

[60]. Microsoft research team developed this architecture to win ILSVRC in 2015

(ILSVRC) [59]. In order to get better results, several architectures are designed

to be very deep. However, these models are complicated to train since there are

many parameters to be optimized. When optimizing the model, the gradient that

back propagated through the model to update weights disappears before the first few

convolution layers, which is called vanishing gradient. In ResNet, the residual block

is designed to solve this problem and allow the network to be deep. The equation of

the residual block is given in Equation 2.6:

y = F (x) + x (2.6)

Convolutional Layer

Convolutional Layer

+𝐹 𝑥 + 𝑥

𝐹 𝑥

𝑥

ReLu

ReLu

Figure 2.9.: Single residual block in ResNet.
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Equation 2.6 means that the input feature map is added to the output of the

feature map passed by convolution layers and activation functions. As shown in

Figure 2.6, in each residual block, there is one convolution layer, followed by a Relu

function, and another convolution layer. Based on the number of total convolution

layers in the whole network, the network has the name ResNet-18, ResNet-34, ResNet-

50, ResNet-101, and ResNet- 152. For example, ResNet-18 includes 18 convolution

layers. Although these networks have different depths, all of them follow a similar

stream. The feature map first has half of the input image size, then 1/4, 1/8, 1/16

of the input, and ends up with the size of 1/32 of the input image. At the end of the

network, the average pooling layer is connected to the output of the last convolution

layer. Then, the fully convolution layer and activation function are applied to get the

predictions. As the number of layers increases, the number of parameters needed to

be trained increases. The ResNet network should be chosen based on the size of the

training data set.
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3. SEMANTIC SEGMENTATION ALGORITHMS

Although FCNs can be used for semantic segmentation problems with the strategy of

down-sampling and up-sampling to save the amount of computation, there are still

some issues that prevent the FCNs from achieving a good performance. First, the

models are very slow to be trained since there are several duplicated computations

caused by the similarity among the neighboring pixels. Second, the location informa-

tion of the pixels can be lost during the process of down-sampling and up-sampling.

In order to resolve these issues, many models are designed based on FCNs.

Several deeep learning-based semantic segmentation algorithms have been de-

signed for PASCO VOC [48] to detect humans, animals, vehicles, and furniture. Some

algorithms are designed for automatic driving to identify different kinds of objects in

the images of streets. Some are designed for bio-medical research to recognize cells

or vessels. Several algorithms have shown good performances for these tasks, so this

research aims to evaluate their performance on the corrosion assessment task.

Most of the algorithms are designed only for good detection performances, such

as SegNet [61], Deep Lab series [62], and PSPNet [63]; some are designed for small

amounts of training data, such as U-NET [64]; some are designed for high resolution

images, such as RefineNet [65]; and some are designed for real-time segmentation,

such as ShuffleNet [66], LinkNet [67], and MultiNet [68]. Four algorithms are selected

for the segmentation of a varity of corroded region in high resolution images. These

algorithms are discussed in this chapter.

3.1 U-Net

U-Net [64] is a simple but efficient model that won the International Symposium

on Biomedical Imaging (ISBI) challenge in 2015. As the winner, U-Net showed the
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ability to segment the cells in 512 × 512 pixel images in less than one second with

the support of a graphics processing unit (GPU). In the competition, only 30 images

were provided for training. U-Net achieved the IoU score of 0.9203 and 0.7756 for

two different datasets provided in the challenge. It showed the segmentation ability

where limited amount of training samples are available, and also where the cells in

the images have different shapes.

U-Net is named after the shape of the model. The network structure is shown

in Figure 3.1 and represents the down-sampling and then up-sampling process of

the architecture. On the left hand side of the network, the feature map is down-

sampled to the size of 1
256

of the original image, where there is a concern that too

much information is lost during this process. The feature maps in each block before

pooling are concatenated to the up-sampled feature maps at the same level. This

helps the model to preserve the information and better combine the location and

RGB information of the pixels.

3.2 DeepLab V3+

DeepLab is a series of semantic segmentation algorithms, developed in recent

years. DeepLab V3+ [69] is the most recent version. It achieved the IoU score of

85.7% while testing on the PASCAL VOC testing set. DeepLab was designed to solve

two problems of FCN: First, the down-sampling process reduces the resolution of the

feature map. Second, it is difficult for FCNs to detect both large and small objects.

In order to adress these two issues, two strategies were implemented in DeepLab.

First, instead of a sequence of the process of down-sampling, convolution, and then

up-sampling, atrous convolution was used. Figure 3.2 shows a 2-D example of atrous

convolution using 3×3 kernel, at the atrous rate of 1 and stride of 1. The kernel skips

one pixel during the convolution process. So, using traditional convolution, as shown

in the left hand side of the figure, a 3 × 3 kernel can, for instance, extract features

from the patches with the size of 3 × 3. However, using atrous convolution as shown
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Down-sample Up-sample

Concatenate

Figure 3.1.: U-NET architecture: the feature maps in each block before pooling are

concatenated to the up-sampled feature maps at the same level.

in the right hand side of the figure, a 3 × 3 kernel can only extract features from the

patches with the size of 5 × 5. With zero padding, the resulting feature map will

have the same size as the input image. Compare to down-sampling and up-sampling

process in FCNs, where only part (i.e., 1
4
) of information is preserved after pooing,

atrous convolution extracts information from every pixel. Therefore, the resolution

of the feature map resulting from atrous convolution will be higher than that of the

feature map resulting from down-sampling and up-sampling process.

In order to solve the second problem, the strategy called atrous spatial pyramid

pooling (ASPP) is used. As shown in Figure 3.3, input feature map is convolved

with the kernel at the same size, 3 × 3, but at different rates of 6, 12, 18 and 24.

The four different output feature maps are then merged together. This strategy

allows the kernels to capture the features at different levels. Therefore, DeepLab
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Figure 3.2.: Sample of Atrous Convolution in 2-D.

can capture the shapes of the objects with different sizes, while preserving the very

detailed information.

3.3 PSPNet

A pyramid scene parsing network (PSPNet) [63] is another good model for seman-

tic segmentation. Using this network, the IoU score reached 82.6% on the PASCAL

VOC testing set. PSPNet is designed to solve three issues: first, the relationship

between the objects and their neighbors or background is difficult to learn; second,

there are some categories that easily confuse the identifier; third, shows an example

of a 2-D transpose convolution where a 2 × 2 kernel at the stride of 2 is used to

up-sample a 2 × 2 input feature map to the size of 4 × 4. PSPNet is chosen in this

study since the third problem may occur in corrosion detection tasks: some corrosion

parts are so small that the identifier may not be able to detect them. Also, there
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Figure 3.3.: 2-D representation of Atrous Spatial Pyramid Pooling, using 3×3 kernel,

at the rate of 6, 12, 18 and 24.

are many cases in which a small uncorroded region is bounded by corrosion where

the classifier may missclassify this region as corrosion. In order to solve these issues,

PSPNet is designed to fuse the information of small areas with the information of

the whole image so that the relationship between the objects and background can be

learned.

PSPNet uses a pyramid pooling module as shown in Figure 3.4. Max pooling is

performed in this module. In order to obtain the information with different receptive

fields, the input feature map is pooled into different bins: 1 × 1, 2 × 2, 3 × 3, and

6 × 6, as the example shown in the figure. The feature map of size 1 × 1 is obtained

from global average pooling of the whole image where the 1 × 1 bin preserves the

information from the whole image. Each value in a 2×2, 3×3 and 6×6 feature map

captures the information from 1
4
, 1

9
and 1

36
of the whole image. The output feature

maps are up-sampled to the same size as the input feature maps and are concatenated
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Figure 3.4.: Four-level pyramid pooling used in PSPNet

together with the input feature maps. The pyramid pooling module helps the network

to capture the information from different regions of the image so that the relationship

between the pixels is better preserved and both large objects and small objects can

be detected accurately.

3.4 RefineNet

Although DeepLab used atrous convolution to solve the problem of losing resolu-

tion during the down-sampling process, the high-resolution feature maps require large

GPU memories to support computations. In order to resolve this issue, a cascaded

network is designed and the name of the model is called RefineNet [65]. The net-

work achieved the IOU score of 83.4% on the PASCAL VOC testing set. RefineNet

multi-resolution fusion block, as shown in Figure 3.5, was used to fuse the feature

maps at different resolutions to help the network to gather features at different levels.
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The left hand side of the figure shows feature maps at different down-sampling levels

(i.e., 1/4, 1/8, 1/16, and 1/32 of the input image). The smallest feature map with

the size of 1/32 of the input image is first convolved and then up-sampled to the size

of 1/16 of the input image. Then, the resulting feature map is added to the feature

map with the size of 1/16 of the input image. The resulting feature map is convolved,

up-sampled, and added to the larger feature map until the resulting feature map has

the size of 1/4 of the input image. This block helps the model to fuse the feature maps

with different resolutions together in order to reduce the loss of resolution caused by

down-sampling [65].

Convolution

Convolution

Convolution

Convolution1/4

1/8

1/16

1/32 1/32

1/16

1/8

1/4

Initial Feature Maps Output Fused Feature Maps

Figure 3.5.: Multi resolution fusion block in RefineNet architecture: Feature maps

1/4, 1/8, 1/16 and 1/32 representively fused together from lower level to high level
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3.5 Transfer Learning

Although the four algorithms have improved the efficiency of computation from

FCNs, they are still complex. There are over 10 millions parameters to be trained in

each network. However, the information from the images in the dataset is limited.

This can lead to a issue, overfitting [70]. It means the network fits the training data

too well, and cannot make correct prediction on new data. It is likely to happen

when a complex network is traind using a small dataset, because there are limited

information to be learned.

Transfer learning [56] is an effective method to prevent overfitting. It means

the model is already trained for another task on a large dataset. For example, in

this study, a pre-trained model of ResNet is employed in PSPNet and refined as the

encoder. The ResNet model was pre-trained on the ImageNet dataset [71]. The

data-set includes 1.4 million labeled images that are categorized into 1000 classes.

Since the original dataset is quite large and covers very board classes, it can already

capture many generic features before training, so training based on the pre-trained

model using a relatively small learning rate can enhance the training performance of

a network. As a result, transfer learning uses a pre-trained model to help training a

better model in a shorter time.
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4. TRAINING PROCESS

4.1 Dataset

The dataset used in this study consists of 600 images. 399 images were captured

on the Purdue campus using different digital cameras. The resolutions of these images

were 3024 × 4032, 3024 × 3024 or 2592 × 1944 pixels. The rest of the images were

downloaded from the Internet. These images have a variety of sizes, and most of

them were larger than 2000 × 2000 pixels.

4.1.1 Data Generation

Figure 4.1.: Image polygonal annotations generated by connecting short lines along

the boundary of corrosion.
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The labels were made manually by connecting short lines along the boundary of

corroded regions, as shown in Figure 4.1. The area bounded by the lines is corrosion,

and the remaining parts of the images are defined as background. The images were

zoomed in several time to make sure that each boundary is accurately drawn. For

labeling, a pixel that represents corrosion is set to one; otherwise, it is set to zero.

4.1.2 Computing Platform

All the experiments were performed on a server with a Linux system. All the four

networks were implemented in TensorFlow [72]. Tensorflow is a popular open source

machine learning environment developed by Google. Since deep learning algorithms

are computationally expensive, four state-of-art Nvidia Titan X Pascal GPUs were

used to perform training and testing. GPUs were used in this study for calculation

instead of Central Processing Unit (CPU), the nerve center of a computer, because

it consumes less memory and is much faster in speed. Nvidia Titan X Pascal GPUs

used for this study has a memory capacity of 12 GB, and can perform the calculation

at the speed of 11.4 Gbps.

4.1.3 Preprocessing the Data

Since the images in the dataset had a pixel size greater than 2000× 2000, a GPU

with the memory size of 12GB could not process the whole image at a time. In

order to perform the test on the available GPUs, the images were pre-processed to

have the size of 512 × 512 or smaller. Two methods were chosen to process large

images. First, the images were subdivided into 512× 512 sub-images. For example, a

2048×2560 image, would be subdivided into twenty 512×512 training images. Since

the original images had different sizes, some of the processed images had smaller

sizes. After deleting some images with petite sizes (e.g., 12 × 512), the subdivided

dataset included 12,854 images. Subdividing the large images enabled the dataset to

be relatively large. Alternatively, the images were resized to the size of 512 × 512, so



33

no matter how large the original image was, the output image after resizing always

had the size of 512 × 512. This method allows the model to view the whole image,

so that the shape of the corrosion parts could be learned. Another advantage of this

method is that the whole image could be segmented at one time, and there is no

need to merge the small images in order to see the whole image. The disadvantage of

this method is that information was lost during resizing. Since two different methods

of pre-processing images have different advantages and disadvantages, both data-sets

were used for training and testing and the results of the two datasets were compared.

4.1.4 Cross-validation

In order to perform statistical analysis on the models, cross-validation was em-

ployed so that variability of the models could be evaluated. The dataset was first

divided into five equal subsets so that for the subdivided dataset, there would be

2,569 images in each subset; and for resized dataset, there would be 120 images in

each subset. Then, for each test, four subsets were used as training data, and the

remaining one subset was used as testing data. The subset used as testing data was

shuffled so that the subdivided dataset and the resized dataset each had five sets of

training and testing data.

Since five sets of data are not enough for the statistical evaluation of the perfor-

mance of the models, another five sets of data were generated by randomly distribut-

ing 80 percent of images into the training set and the rest into the testing sets. As

a result, ten sets of data were used for training and testing of each model, for both

subdivided and reseized datasets.

4.1.5 Image Augmentation

Since the number of images in the resized dataset was small, the training set was

augmented to enlarge the dataset to avoid overfitting. The following augmentations

were applied to the training set: rotation within the range of 40 degrees; width
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and height shift with the range of 20 percent; shear within the range of 20 percent;

horizontal flip; and zoom within the range of 20 percent. Data augmentation enlarged

the training set to include 0.5 million images.

4.2 Training Parameters

All the training parameters were set to the same values as those suggested in the

original papers. The values of learning rate and number of epochs were changed based

on the value of loss during the training. The previous studies used a base learning rate

of train the model to learn at a fast speed. However, the the optimizer can overshoot

the minimum loss and fail to find the optimal set of weights. Therefore, a smaller

learning rate can be used to find the global minimum loss and the trade-off is the long

training time [73]. To find the most suitable training rate for the experiment, the loss

was recorded during the training process. When the loss of the training decreases

at first few epochs of training but remained relatively constant during the rest of

training, the learning rate would be set as one-tenth of the original value. Then, the

same training process would be conducted, and the IoU score of the validation data

would be calculated. If the IoU score increased, then the lower learning rate would be

used for training. Training parameters used for different models are summarized in

Table 4.1. The batch size was set based on the GPU memory capacity that can process

these images at one time. A suitable optimizer could help the model approach the best

hypothesis efficiently. Adam, momentum, and RMSProp, as described in Chapter 2,

are the three most commonly used optimizers for deep learning tasks. Since these

optimizers all perform well for the task, the choice of the optimizer was based on the

original papers. However the base learning rate used for the optimizer was fine-tuned

based on training loss.
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Table 4.1.: Parameters used during the training process for the four models

U-NET DeepLab PSPNet Refinenet

Training

Steps

10000 20000 30000 8400

Training

Batch Size

5 12 4 5

Optimizer Adam Momentum Momentum RMSProp

Loss Function Sigmoid Cross

Entropy

Softmax Cross

Entropy

Softmax Cross

Entropy

Softmax Cross

Entropy

Base

Learning

Rate

1 e−5 1 e−4 1 e−4 1 e−7
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5. STATISTICAL EVALUATION

5.1 Evaluation Metrics

For semantic segmentation, accuracy is not a fair metric to be used to evaluate

different algorithms. Instead, intersection over union (IoU), recall, and precision are

chosen to evaluate the four semantic segmentation algorithms discussed in Chapter

4. IoU is the most popular evaluation metric for semantic segmentation algorithms.

IoU =

Area of
Overlap

Area of
Union

Ground Truth

Prediction
Recall =

Area of
Overlap

Area of
Ground
Truth

Ground Truth

Prediction
Precision =

Area of
Overlap

Area of
Prediction

Ground Truth

Prediction

Figure 5.2.: Graphical representation of evaluation metrics.

As shown in Figure 5.2, IoU is calculated by dividing the area of overlap by the area

of union of the ground truth and prediction. A poor prediction, which means there

is little overlap between ground truth and prediction, results in a low IoU. A good

prediction, which means the prediction is very similar to the ground truth, results in

a high IoU.

The other two evaluation metrics used are recall and precision. These two metrics

help users to define the best architectures for different applications. Recall is the

area of overlap between ground truth and prediction divided by the area of ground

truth. A low recall value means several corroded regions are not recognized by the

network. Therefore, if the user wants to make sure as much corrosion as possible is

detected, the architecture resulting in a high recall value should be used. Precision is

the overlap area divided by prediction. A high precision score shows that relatively
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small number of background pixels are mistakenly detected as corrosion. Therefore,

precision scores should be compared if the user wants to get a high quality prediction.

In order to calculate the areas for corrosion and background with irregular shapes,

a confusion matrix need to be introduced. Confusion matrix is a table that is typically

used while evaluating machine learning algorithms. A binary confusion matrix used

in this study is shown in Figure 5.3. If the the result of prediction is corrosion, then

the prediction is said to be positive(P). Likewise, if the the result of prediction is

background, then the prediction is said to be negative(N). If the prediction is correct,

then the result is said to be true(T); if the prediction is incorrect, then the result is

said to be false(F). Therefore, there will be four kinds of results. True Positive (TP)

means the corroded pixel is classified as corrosion; False Positive (FP) means the

uncorroded pixel is detected as corrosion, which is a wrong prediction; False Negative

(FN) means the corroded pixel is not detected as corrosion by the model, which is also

a wrong decision; True Negative (TN) means the background is correctly detected as

uncorroded pixel.

After dividing the results into four different classes, the evaluation metrics can be

calculated by Equations 5.1, 5.2 and 5.3. For instance, the area of overlap between

ground truth and area of union can be calculated by counting the number of TP

pixels in the image. And area of union can be calculated by counting the number of

TP, FP, and FN pixels in the image. Then IoU can be calculated. The equations of

these functions are given by:

IoU =
TP

TP + FP + FN
(5.1)

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)
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Figure 5.3.: Confusion matrix used for corrosion assessment, where TP represents

True Positive, FP represents False Positive, FN represents False Negative, and TN

represents True Negative.

5.2 Box Plots

Upper whisker
Maximum value
Q3

Minimum value

Q1

Median
Mean

Lower whisker
Outlier

1.5 x IQR

IQR = Q3-Q1

1.5 x IQR

Upper whisker

Figure 5.4.: Sample of Box Plot.

Box plots [74] are used to help visualize the results and to help make statistical

decisions. IOU, precision, and recall scores are plotted in Figure 5.4. Each box in

the figure shows the value of ten sets of scores calculated based on ten sets of data,

evaluating the performance of each model trained and tested using subdivided or
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resized datasets. The line in the box shows the median of the scores, and the triangle

in each box represents mean. Upper bound and lower bound of each box are the third

quartile (Q3) and the first quartile (Q1) values, respectively. Since Q1 represents the

median between the minimum value and the median of the scores, and Q3 represents

the median between the maximum value and the median, the variance of the scores

can be observed from the size of the box. If the interquartile range (IQR), calculated

by (Q3 - Q1), is large, then the variance of the scores is significant. The lines above

and below the box show the maximum and minimum scores, respectively. The circles

represent the outliers that are greater or smaller than the upper or lower whiskers,

where the upper whisker is calculated by Q3 + 1.5IQR, and the lower whisker is

calculated by Q1 - 1.5IQR.

5.3 Test for Significant Difference

The inferential statistic is used to find the best architecture by testing whether

there is a difference between two sets of results.

5.3.1 Wilcoxon Signed Rank Test

Wilcoxon signed-rank test [75] is used in this study to test whether there is a

significant difference between two sets of data, when the small samples do not have a

normal distribution. For the Wilcoxon test, the differnce between pairs of data in the

samples are calculated. If there are N data x in each sample, the difference between

pairs of data are calculated and ranked from small to large so that each pair has a

rank Ri . Then, statistic W can be calculated using Equation 5.4. Table 5.1 shows

an example of Wilcoxon Signed Rank Test on two samples x1 and x2. Assuming x1

and x2 are two sets of sample results to be compared. In order to calculate statistic

W, first, difference between each sample result, (x1,i − x2,i), is calculated. Then,

the absolute values of the differences are ranked from 1, recorded as Ri. Lastly, W
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is calculated by summing up the products between (x1,i − x2,i) and Ri as shown in

Equation 5.4. If W is large, then there is a great difference between two samples.

Table 5.1.: Example of Wilcoxon Signed Rank Test on two samples x1 and x2

i x1,i x2,i (x1,i − x2,i) Ri

1 10 10 0 1

2 11 10 -1 3

3 12 10 -2 6

4 13 15 2 6

5 14 15 1 3

6 15 15 0 1

The p-value for this test is the probability of getting statistic W if a new sample

is randomly generated and compared with x1. It can be either determined using

Wilcoxon single ranked table [76], or using the built-in functions in the mathematics

or statistics software (i.e., Python) The similar samples will result in a high p-value.

In order to make statistical decision, the p-value is compared with a critical p-value.

The critical p-value used for most researches is 0.05. Thus, when the p-value is lower

than 0.05, there is a significant difference between two groups of data.

W =
Nr∑
i=1

[sign(x2,i − x1,i) ·Ri] (5.4)
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6. EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, the performances of four state-of-the-art semantic segmentation mod-

els trained on subdivided and resized datasets are evaluated based on IoU, precision,

and recall scores. Also, the time required to segment corroded region, GPU memory

required to perform the test, and number of parameters in each network are compared.

6.1 Performance Evaluation of Semantic Segmentation Models

Performance of different networks can be visualized and compared using the box

charts in Figure 6.1. The dark blue boxes are the results for the subdivided dataset,

and the light blue boxes are the results for the resized dataset.

6.1.1 IoU Scores

The first chart shows the results of IoU scores. It is obvious that RefineNet

performs poorly on the resized dataset where the mean value of IoU scores is less

than 45%, and the interquartile range of the results was around 8%, which is huge.

So RefineNet is not recommended to be used on the resized dataset. The conclusion is

reasonable since RefineNet is originally designed for high-resolution images. Too much

information is lost during the resizing process. Therefore, RefineNet failed to extract

useful information from the resized images. For U-Net and PSPNet, the mean IoU

scores for resized dataset are lower than the subdivided dataset. The Wilcoxon test

confirmed this observation. Both sets had a p-value much smaller than 0.05, which

means there is a significant difference between the results for the two sets. Thus, for

U-Net and PSPNet, the subdivided dataset is preferred. It is interesting to note that

DeepLab results in a little bit higher mean IoU score, and less variance on the resized
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(a)

(b)

(c)

Figure 6.1.: Performance of the four state-of-art semantic segmentation models

trained on subdivided and resized images: (a) IOU scores, (b) precision scores, and

(c) recall scores.
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dataset than on the subdivided dataset. However, the Wilcoxon test showed that

there is no significant difference between the sets. Therefore, users can choose to use

the subdivided or resizsed dataset based on different applications when using Deeplab

Network. Since for most networks the subdivided dataset leads to better results, the

comparison of different architectures will be made for the subdivided dataset, plotted

in dark blue boxes. Firstly, RefineNet provides a mean value around five percent lower

than the other networks. The Wilcoxon test confirms this observation. Therefore,

RefineNet is not recommended for the corrosion detection task. IoU scores of the

other three models are very similar in Figure 6.1(a), So the Wilcoxon test is used to

further compare these models. The test shows that DeepLab outperforms U-Net while

the results for DeepLab and PSPNet are very similar. In order to further evaluate

these models, precision and recall scores were computed as discussed in Section 6.2.2.

6.1.2 Precision and Recall Scores

As discussed in Section 5.1 if the user wants to make sure as much corrosion

as possible is detected, recall scores should be compared. Figures 6.1(b) and (c)

provide the boxplot charts for precision and recall respectively. From these figures, it

is evident that the subdivided dataset leads to better precision and recall compared

to the resized dataset for both U-Net and RefineNet. So, a resized dataset is not

recommended for these two networks. For DeepLab and PSPNet, the results on

resized datasets have a lower mean recall score but higher mean precision score. This

means that when these two networks are tested on resized dataset, the algorithm tends

to predict less corrosion to keep the quality of prediction is high. Therefore, if the user

wants to make sure no corrosion is missed, the subdivided dataset is rcommended to

be used for DeepLab and PSPNet.

Considering recall scores, PSPNet has a mean value much higher than the other

three networks for the subdivided dataset. The Wilcoxon test confirmed this ob-
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servation. Therefore, if the user intends to perform a more conservative inspection,

PSPNet should be used.

6.1.3 Effect of Batch Size on the Performance of DeepLab

For training the DeepLab V3+ model, it is recommended to use a batch size

larger than 12 [77]. Batch size means the number of images to be trained at one

time. Larger batch size requires larger GPU memory to process the images. There

are four GPUs on the server, and the allowable GPU memory of each GPU device is

12 gigabytes (GB). In order to set the batch size to 12, all four GPU devices need to

run at the same time for training. If the batch size is set to 8, only two GPU devices

are needed. Since four GPUs are not always available for training, an experiment was

performed to test how the model is affected by the batch size used during training.

The experiment was performed on a subdivided dataset. All the training parameters

were set the same, and only batch size was changed from 12 to 8. IOU scores of test

results were calculated. The results show that when the training batch size decreased

from 12 to 8, the IOU score also decreased from 0.87 to 0.67. It can be concluded

that training the models using a larger batch size leads to a better result.

6.1.4 Cost of Computation of Each Model

The time required to process each 512 × 512 image, the number of parameters

in each model, and GPU memory required to run the test are summarized in Table

6.1. Since test time listed for subdivided dataset is for an image with the size of

512 × 512, the time required to test the whole image would depend on how many

512×512 images the original image is subdivided into. The time required to perform

the test is very different for the four models. U-Net takes the least time to perform the

detection task. PSPNet uses 2.2 seconds to process a single image which is relatively

slow. Furthermore, the standard deviation of the test time is small enough that can

be ignored. All the models have a very similar number of parameters. Only RefineNet
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has a number of parameters that is around twice that of other models. All of the

models require large GPU memory to perform the test. PSPNet requires the least

GPU memory.

Table 6.1.: Average values of time in seconds required to test each 512×512 image, the

number of parameters in million (M), and GPU Memory in GB required for testing

U-Net DeepLab PSPNet RefineNet

Test Time (s) 0.062 0.28 2.2 0.49

Number of Parameters (M) 31 29 37 67

Memory (GB) 12 12 7 9.6

6.2 Samples of Segmentation Results

Three sample test results obtained by different models used in this study that

are trained on subdivided or resized datasets are shown in Figures 6.2, 6.3, 6.4, and

6.5. In order to visualize the results, the sample outputs were converted to black and

white image, with white pixels (i.e., 255) representing corrosion and black pixels (i.e.,

0) representing background.

6.2.1 Results of U-Net

While visualizing results produced by U-Net, it was found that the pixels detected

as corrosion had different values of gray scale. A possible reason for this kind of result

is that the outputs of the model represent the possibilities of pixels to be corrosion.

In order to get the results that could be evaluated a threshold was set so that only the

pixels with the gray scale values greater or equal to the threshold would be defined

as corrosion. In order to find the value of the threshold that could best identify the

corrosion, four thresholds were tested on both subdivided and resized datasets. These

four thresholds were chosen based on the percentage of the gray scale: 0.3, 0.4, 0.5,
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Table 6.2.: IOU, precision, and recall scores of U-Net model, when different thresholds

were used to segment the predicted results

Crop Resize

Threshold 77 102 128 153 77 102 128 153

IOU 0.68 0.72 0.66 0.71 0.62 0.63 0.62 NA

Precision 0.77 0.80 0.83 0.81 0.69 0.72 0.75 NA

Recall 0.87 0.86 0.77 0.83 0.87 0.84 0.79 NA

and 0.6 of 255, which are 77, 102, 128, and 153, respectively. The results are shown

in Table 6.2. NA in the table means no corrosion was detected using the threshold.

From the table, it can be observed that for both subdivided and resized datasets, the

highest IOU score is obtained when the threshold of 102 is used. Thus, for all results

of U-Net, the pixels with grayscale values greater or equal to 102 were classified as

corrosion.

Three samples of results are shown in Figures 6.2, 6.3, 6.4, and 6.5. From Figure

6.2, it can be seen that U-Net performs well if the boundary of the corrosion is

clear. However, when there are some background pixels having color values similar

to corrosion, the network tends to falsely classify them as corrosion. Also, when the

boundary of the corrosion is not clear, as the third image shows, U-Net does not lead

to an accurate segmentation.

As shown in Figure 6.3, DeepLab performs well on most sets. It only fails to

detect parts of corrosion when the corrosion does not have a clear boundary when

the resized dataset is used.

As shown in Figure 6.4, PSPNet also makes good predictions. The problem is

that for the subdivided dataset, when there is no corrosion in the sub-image, PSPNet

tends to classify anything with a bounday as corrosion. For example, in the second

image in Figure 6.4, PSPNet detected part of the sky as corrosion.
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Figure 6.5 shows that RefineNet performs the worst. Especially on the resized

dataset where it fails to generate detailed predictions.

Prediction
(Resized)

Image Ground Truth Prediction
(Original)

Figure 6.2.: Sample results of U-Net.
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Prediction
(Resized)

Image Ground Truth Prediction
(Original)

Figure 6.3.: Sample results of DeepLab.

Prediction
(Resized)

Image Ground Truth Prediction
(Original)

Figure 6.4.: Sample results of PSPNet.
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Prediction
(Resized)

Image Ground Truth Prediction
(Original)

Figure 6.5.: Sample results of RefineNet.
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7. CONCLUSIONS AND FUTURE WORK

The objective of this study was to evaluate the performance of four state-of-the-

art deep learning-based semantic segmentation models, U-Net, DeepLab, PSPNet,

and RefineNet, on corrosion assessment, a critical task in civil engineering. Cross-

validation on ten sets of high-resolution digital images was performed for each network

for statistical analysis where two cases of subdivided images versus resized (i.e., down-

sampled) images of 512 × 512 where used to this end. Performance evaluation of the

models was based on the IoU, precision, and recall scores. Box plots and Wilcoxon

signed-rank test were used to analyze whether there is a significant difference between

the performance of different models or not.

The results showed that the subdivided dataset provides better accuracy and

robustness, and resized dataset enables the prediction in a shorter time. Based on

statistical analyses, PSPNet is recommended if the subdivided images are used and

it is found that this model is conservative for corrosion detection. DeepLab makes as

good predictions on the resized dataset as on the subdivided dataset. Although U-Net

could not achieve equally good results, it predicts the results very quickly which can

be used for real-time assessments. It is found that RefineNet is not appropriate for

corrosion assessment tasks. Regarding the cost of computation, PSPNet requires a

long time to process each image but requires the least GPU memory to perform the

corrosion detection task. Furthermore, RefineNet has twice the number of parameters

in the network than other models which makes it inefficient to be incorporated into

robotic systems.

Future work need to focus on improving the efficiency of algorithms to be incorpo-

rated into robotic systems and, hence, help engineers make better-informed decisions

regarding the maintenance and rehabilitation processes. A depth sensor can be in-

corporated into the system to quantify the corroded regions in unit area (i.e., in2)
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instead of pixels [78–82]. Additionally, the regions of interest (e.g., bolts) need to be

identified so that the robotic system can focus on corrosion detection in critical re-

gions. In order to improve the corrosion detection accuracy, a large number of labeled

images need to be developed to enable the development of deep learning solutions and

architectures from scratch which can lead to more efficient algorithms. Network prun-

ing [83], which deletes the least important weights, needs special attention for more

efficient computations.
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