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ABSTRACT

Zhao, Zibo Ph.D., Purdue University, December 2019. Decentralized Price-Driven
Demand Response in Smart Energy Grid . Major Professor: Andrew Lu Liu.

Real-time pricing (RTP) of electricity for consumers has long been argued to be

crucial for realizing the many envisioned benefits of demand flexibility in a smart

grid. However, many details of how to actually implement a RTP scheme are still

under debate. Since most of the organized wholesale electricity markets in the US

implement a two-settlement mechanism, with day-ahead electricity price forecasts

guiding financial and physical transactions in the next day and real-time ex post

prices settling any real-time imbalances, it is a natural idea to let consumers respond

to the day-ahead prices in real-time. However, if such an idea is not controlled

properly, the inherent closed-loop operation may lead consumers to all respond in

the same fashion, causing large swings of real-time demand and prices, which may

jeopardize system stability and increase consumers’ financial risks.

To overcome the potential uncertainties and undesired demand peak caused by

“selfish” behaviors by individual consumers under RTP, in this research, we de-

velop a fully decentralized price-driven demand response (DR) approach under game-

theoretical frameworks. In game theory, agents usually make decisions based on their

belief about competitors’ states, which needs to maintain a large amount of knowl-

edge and thus can be intractable and implausible for a large population. Instead,

we propose using regret-based learning in games by focusing on each agent’s own

history and utility received. We study two learning mechanisms: bandit learning

with incomplete information feedback, and low regret learning with full information

feedback. With the learning in games, we establish performance guarantees for each
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individual agent (i.e., regret minimization) and the overall system (i.e., bounds on

price of anarchy).

In addition to the game-theoretical framework for price-driven demand response,

we also apply such a framework for peer-to-peer energy trading auctions. The market-

based approach can better incentivize the development of distributed energy resources

(DERs) on demand side. However, the complexity of double-sided auctions in an

energy market and agents’ bounded rationality may invalidate many well-established

theories in auction design, and consequently, hinder market development. To address

these issues, we propose an automated bidding framework based on multi-armed

bandit learning through repeated auctions, and is aimed to minimize each bidder’s

cumulative regret. We also use such a framework to compare market outcomes of

three different auction designs.



1

1. INTRODUCTION

1.1 Motivation and Literature Review

In traditional power systems, electricity demand is considered to be highly inflex-

ible and thus more likely to be predictable [1, 2], as consumers have been so used to

the idea of consuming electricity whenever they want to and their behavior patterns

are usually quite fixed. Since the reliable operation of a power system requires the

supply and demand to be balanced at all time, the inflexible demand has added great

pressures on the system to maintain enough redundancies in both generation and

transmission capacities. Such redundancies are very costly, as they are very capital

intensive to build. In addition, the lack of flexibility on the demand side makes the

power system less reliable and vulnerable to attacks, as the outage of a few large

power plants and/or transmission lines may bring down a large part of the highly

interconnected power grid (such as the U.S. Northeast blackout of 2003 [3]).

On the supply side, current trends of developing power systems indicate that re-

newable resources are becoming more and more involved in electricity supply [4,5]. A

NREL report [1] declares that the amount of renewable supply from technologies that

are commercially available today could potentially meet 80% of the US electricity de-

mand on an hourly basis in the year 2050. The main goal of power system operations

has been to dispatch the most economic set of fossil-fuel generations to match the

net-demand, i.e., the demand minus the uncontrollable renewable supply. However,

relying on fossil-fuel generation alone to balance renewable variability will not only

be very expensive, but also environmentally unfriendly. Active demand flexibility has

been considered crucial for future power systems so that the electricity consumption

can be shaped to match the variable and uncertain renewable supply [1].
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With the advent of various smart grid technologies, such as smart meters and

an array of information and communications technologies (ICTs), flexible demand is

more than ever to be closer to reality [6–8]. The direct benefits of flexible demand are

huge, ranging from saving a tremendous amount of money for consumers and making

the power system more robust [9–12]. There are also more subtle benefits, such as

the potential environmental benefits of using the flexible demand to better match

the output from renewable resources [1], such as wind and solar, and hence reducing

air pollutant emissions from fossil fuel plants. However, technologies alone are not

enough to realize flexible demand and its potential benefits. There have to be changes

to the current market operations, which can be on the side of system operators,

utilities or individual consumers. Generally speaking, there are two fundamentally

different approaches to bring demand flexibility: one is the centralized approach;

the other is the decentralized approach [13]. The former approach, as the name

suggests, is to have the system operators or utilities directly manage their load [14–17],

and thus such flexible demand resources can participate in wholesale markets as

generation supply [18]. Various forms of such an approach already exist in the current

system operations. For example, load shedding contracts have been around for many

years. Such contracts provide the system operators the flexibility to cut off certain

load during emergency situations. In return, the other side of the contracts, usually

large industrial customers, will receive lower electricity rates in return. More recent

example of centralized load control is to use smart household thermostats to reduce

peak load [19].

While central load control may be the most efficient in theory, as the system

operators have the entire system’s information and can mange the load to achieve

system-wide efficiency. Such approach may be effective for a few large-scale agents like

industrial plants. However, in reality, the amount of resources that system operators

and utilities can control is limited, partially due to software and computing power

limitation, and thus the approach is not capable of controlling over a large small-

scale distributed population (e.g. potentially millions). Moreover, in smart girds,
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smart home agents have their flexible demand being controlled by some controller

device with embedded algorithms other than being controlled by system operators

or utilities. Though the scale of flexible demand is small for each individual smart

home agent, the aggregation would affect the system more and more significantly as

the fast growth of smart homes. In addition, the central approach may also raise

issues on privacy, as some consumers do not feel comfortable of having someone else

manage their household’s electricity usage, which have been a severe issue for wider

deployment.

The decentralized approach, on the other hand, depends on end-consumers to

make their own electricity consumption decisions independently in a desirable fash-

ion. However, autonomous distributed entities with demand flexibility will neither

be interested nor effective in collaborating to improve the overall system’s capabil-

ity unless appropriate incentives or information sharing mechanisms are provided.

Therefore, through certain incentives or price signals, it is hoped that the collective

consumers’ actions may bring the desired demand flexibility from the system’s per-

spective [9, 20–23], such as balancing the variations in renewable resources. This is

commonly referred to as demand response (DR). The demand-side response will be

less costly and more environmentally friendly than simply relying on fossil-fuel gen-

eration alone to match renewable uncertainty. Within the general term of DR, there

are many different forms. Using the classification in [24–26], there are incentive-based

DR and price-based DR. For the former, it can be similar to the load shedding con-

tract; namely, a consumer receives some incentives (such as lower rates) to promise

to respond to utilities’ call of reducing electricity consumption as needed [25–27].

Other forms of incentive-based DR often involve a baseline; that is, consumers will

receive some incentives if they can bring their energy consumption below a predefined

baseline consumption level. Price-based DR, on the other hand, is usually completely

voluntary (i.e., no contracts), and consumers alone make the decision on when to use

electricity based on some electricity price information they receive from the system

operators or utilities [25, 26, 28–32]. The price information has to reflect to some de-
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gree of power system’s conditions (such as high demand and low supply at a certain

period). What exactly shall be contained in such price information vary greatly for

different time-varing retail prices [33], including time-of-use (TOU) pricing, critical-

peak pricing (CPP), and real-time pricing (RTP). In the RTP mechanism, real-time

wholesale electricity prices (such as hourly or half-hourly prices) are shared with the

end consumers for them to decide their energy consumption. The visionary late MIT

professor Fred Schweppe envisioned an energy future with real-time electricity pricing

and actively engaged demand response back in 1978 [34], as he recognized the many

benefits associated with flexible demand. Moreover, Hogan [35], Borenstein [36], and

others have long argued that RTP is the most efficient market approach to achieve

the potential benefits of DR.

In this work, we focus on priced-based DR coupled with RTP; namely, end-

consumers conduct DR with receiving the information on real-time electricity prices,

and pay their electric bills based on such prices. We believe this is the framework

that can bring the most benefits to the grid for utilizing the flexible demand of the

large autonomous smart home population in future. However, price-driven DR will

bring in new sources of variability and uncertainty from the demand side, which in

turn affect the system dynamics and real-time electricity prices. The study in [37–39]

raise the concern that if the DR behaviors are not controlled properly, the closed-

loop interactions between real-time prices and price-based DR, as shown in Figure

1.1, may result in undesired outcomes, such as increasing price volatility and reducing

system reliability. This is so since real-time electricity prices are only available after

the actual supply and demand are realized. It is no point for consumers to respond

to these ex-post prices. Hence, consumers can only respond to some price forecasts,

which creates a closed-loop system with feedback, as the price forecasts will influence

consumers’ decisions, which in turn will impact the real-time electricity prices and

likely will cause the real-time prices to diverge from the price forecasts. Any price-

based DR implementation without considering such a closed-loop system is doomed

to fail since it not only increases the risk of system instability, but also increases the
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Figure 1.1.: Closed-loop interactions between real-time prices and end-consumers’

behaviors.

price-uncertainty and financial risk faced by the flexible demand. Then the entities

with flexible demand will be discouraged to conduct active demand response.

There have been a large amount of works on how an individual consumer should

make decisions under real-time pricing, such as [40–45]. Though the optimization

models proposed in the literature have been shown to be very helpful for a single

smart home agent, or even a small number of agents, it could be a totally different

story for a large population. This is so since the studies do not consider the closed-loop

dynamics and assume that price signals are exogenous, meaning that the prices are

not affected by the individual consumer’s behavior. However, the collective actions of

scalable population would generate undesired significant demand peaks due to overly-

homogeneous patterns which, in turn, reduce the efficiency and security of the overall

system.

Such a closed-loop system can be managed in a centralized approach. Robust

control and optimization algorithms with complete information for centralized power

system operations have been studied in the literature [9, 21, 46, 46–53]. The work

in [54] solves the centralized problem through approximate dynamic programming.

However, much fewer works exist to study the system-level impacts when a large
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amount of consumers respond to RTP in a fully decentralized way. The existing

works on implementing decentralized control under RTP are mainly of two groups.

The first group is to solve a centralized control problem in a decentralized fashion,

very similar to the popular alternating direction method of multipliers (ADMM) [55]

for solving optimization problems arising from statistical learning. Such works in-

clude [56, 57]. While such a decentralized solution approach can reach system-wide

optimality (under certain conditions), it would require frequent information exchange

between a central controller (such as a system operator or a utility company) and the

distributed resources. Also a system operator would update its economic dispatch

algorithm to facilitate the convergence of the distributed optimization process to a

system-wide optimal solution, and thus such works are not fully decentralized. The

other group of works use heuristic learning on the consumers’ side, such as in [58].

This bears certain similarities to the learning approaches proposed in this paper. The

biggest distinction is that the learning algorithm in [58] is heuristic, without any the-

oretical guarantee on its performance (regardless what the performance measurement

is).

Therefore, there is a void in literature on how to realize a fully decentralized

price-based DR for a large “selfish” population with performance guarantee. Our

study is to fill such a void by proposing fully decentralized online learning algorithms

for distributed agents conducting price-driven1 DR without causing extreme price

volatility or jeopardizing system reliability under a game-theoretic framework.

1.2 Research Objectives and Contributions

In this study, we will first focus on demand-side participation of end-consumers

(e.g. residential sectors) with demand flexibility. One of the research objectives in this

dissertation therefore is to develop theoretic foundation and learning algorithms that

allow electricity consumers with flexible demand to actively participate in price-driven

1In this dissertation, we use price-based and price-driven interchangeably.
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demand response in an efficient manner. Since under RTP the utility (or cost) each

agent receives is highly dependent on the collective actions of all other agents, other

than studying about any individual agent’s behavior, we develop game-theoretical

frameworks that capture the decentralized nature of price-driven response due to

the self-interest of market participants. Under the game-theoretical frameworks, each

single agent makes decisions against the collective actions of all others for maximizing

its own interest. We believe that the game approach is one of the contributions of

this work due to its novelty. Moreover, we propose decentralized regret-based online

learning algorithms for agents to automatically make decisions in games. With agents

learning in games, we show that the performance of the overall system converge to

efficient outcomes.

In this dissertation, two game-theoretical frameworks are presented. One is multi-

armed bandit (MAB) games in which each agent solves its demand response problem

through playing regret-minimizing bandit learning. The study in [59] has built the-

oretical foundations for our work in which it proves that as the population increase

in MAB-game, the overall system converges to the mean filed steady state (MFSS)

with stationary population profile. Such property is desired in the demand response

field since the system demand has less volatility and thus higher stability. Moreover,

we show that the MAB-game for DR by a large population has the smoothness prop-

erty [60] by which the overall system’s performance is bounded by its price of anarchy

(POA). Therefore, the advantages of the MAB-game framework are as follows. First,

it is a completely decentralized approach without needing any operational changes

by system operators; nor does it need two-way information exchange between system

operators and consumers. Yet desirable (though not necessarily optimal) system-level

outcomes bounded by its POA, such as flatter load curves and less volatile real-time

prices, can be achieved. Second, it allows consumers’ heterogeneity and bounded

rationality; meaning that the consumers are not required to optimize to determine

future actions and do not need to use the same bandit strategies/algorithms in re-

sponding to price signals. Also, each individual agent’s regret (for not playing the
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underlying optimal actions) is bounded. Third, the approach is scalable. Even when

numerical simulation may be impractical when the number of consumers increases, the

MAB-game can be shown to converge to a mean-field equilibrium when the consumer

number goes to infinity.

Instead of only utilizing the information observed with the played actions by ban-

dit learning, the other game-theoretical framework we propose is for agents learning

with full realized information feedback. As all agents play low approximate regret

(LAR) algorithms, with the smoothness we show in this dissertation, the overall sys-

tem can approximately converge to efficient outcomes, as established in [61]. Further,

since in the LAR-game framework, agents make decisions based on full information

feedback, we can show that the POA bound for the LAR-game is tighter than that

for the MAB-game, and thus the LAR-game framework result in better system per-

formance in general. Though the LAR-game approach is also fully decentralized,

scalable, and have performance guarantee for both individual agent and the overall

system, it does not enjoy the heterogeneity as MAB-game, and thus for now we need

all agents to use the same learning algorithms for their price-based DR.

In addition to the novel demand response game-theoretical frameworks, we also

propose a peer-to-peer (P2P) energy trading market in distribution systems based on

the MAB-game for better incentivizing participation of demand-side with distributed

generation. As more and more smart homes are equipped with distributed energy

resources (DERs), such resources become a vital part of a smart grid. DERs can

improve system reliability and resilience with their proximity to load, and promote

sustainability, with the majority of DERs being solar and wind resources [62, 63].

To better incentivize investments in DERs, we propose P2P energy trading through

double-side auctions instead of providing fixed feed-in-tariff and time-of-use rates for

end-customers. Further we provide an algorithmic-framework based on the MAB-

game that can be automated to aid consumers and prosumers (i.e. consumers with

generation resources) to participate in repeated double auctions with bandit learning.

Numerical simulations are conducted to study the market outcomes of three differ-
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ent auction designs: a replicate of the wholesale market’s uniform-price auction, a

variant of Vickrey double-side auction [64], and maximum volume matching auction

(which is pay-as-bid/receive-as-ask) [65]. Numerical results indicate the convergence

of the market outcomes of the MAB-game to a steady-state in terms of total cleared

quantities, total social welfare and total normalized reward.

The dissertation proceeds as follows. In the remainder of this chapter, technical

background on two-settlement of electricity markets and real-time pricing will be

provided for readers. Chapter 2 presents the game-theoretical framework of MAB

games in which a large population of end-consumers make decisions regarding their

flexible demand usage by regret-based bandit learning. The performance bounds

for both individual agent and overall system are established. Chapter 3 presents

the other game-theoretical framework LAR-game in which the large population use

LAR learning with realized full information feedback to make DR decisions. The

corresponding individual and system performance bounds are established as well.

Meanwhile, both the theoretical and numerical comparisons between MAB-game and

LAR-game are conducted in the chapter. At the end of the chapter, we use the test-

bed of 8-zone Independent System Operator New England (ISO-NE) [66] to simulate

the proposed gram-theoretical frameworks, and compare to the heuristic approach

in [58] and a naive approach. In Chapter 4, we apply the MAB-game approach for a

P2P energy trading market and simulate the approach under three different double-

side auction designs. Chapter 5 concludes the dissertation and discusses potential

future works.

1.3 Technical Background

1.3.1 Wholesale Electricity Markets

Generally, market participants in wholesale electricity markets can be grouped

into demand side as buyers (e.g. utilities) and supply side as sellers (e.g. generation

plants). There are also financial participants that can be either buyers or sellers in the
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Figure 1.2.: Independent System Operators in North America [67].

markets. Independent System Operators (ISOs), typically non-profit, organizes and

clears the markets through exercising final authority over the dispatch of generation.

ISOs have to preserve reliability and facilitate efficiency, ensure non-discriminatory

access, administer transmission tariffs, ensure the availability of ancillary services,

and provide information about the status of the transmission system and available

transmission capacity [68]. The distribution of current ISOs in North America is

shown in Figure 1.2. In the white areas with no ISO, there are no organized whole-

sale electricity markets and the supply-demand balance is maintained by vertically

integrated utilities.

In reality, The market clear work by ISOs are complex since demand-supply bal-

ance, security, physical, and many other constraints have to be taken into account.

The main idea is to maximize the total social welfare within all the constraints. Sim-

ply speaking, market participants submit offers and bids into the auctions for each
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time slot. In an auction, sellers offer the amount they can generate and ask for a price

(usually at their marginal generation costs), and buyers bid the amount they would

demand and how much they are willing to pay for it. When market closes, demand

bids are sorted downward by prices while supply asks are sorted upward by prices.

The intersection of the two curves clears the market as shown in Figure 1.3. All the

accepted bids and offers take the uniform price P ∗ and the auction clears Q∗ units

of energy. Note that we focus on consumers’ responses to real-time electricity prices,

and hence do not consider active demand bidding in day-ahead markets.

Figure 1.3.: Double-side auction with uniform clearing price.

1.3.2 Two-settlement Process

ISOs usually use a two-settlement fashion, unit commitment (UC) and economic

dispatch (ED), to dispatch energy resources as shown in Figure 1.4. In a day-ahead

(DA) market, an ISO solicits supply bids from power generators to meet the demand

forecasts of each time period in the next day. Such a market acts as the basis for

the market transactions and is used for generation schedules for the next day. The
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market clearing prices for the DA market are referred to as DA prices. In real-

time (RT) on the actual operating day, the ISO matches any supply and demand

deviations with additional generation resources. Such additional balancing produces

the RT electricity prices. Then for each time slot h, a market participant’s total

payment or revenue consists of DA and RT settlement as below:

Settlementh = pDAh · qDAh + pRTh · (qRTh − qDAh ), (1.1)

where Settlementh denotes the total pay/receive settlement, (pDAh , qDAh ) and (pRTh , qRTh )

denote the clearing price and quantity for DA and RT, respectively.

Figure 1.4.: Two settlement for day-ahead market and real-time market.

In day ahead, unit commitment is implemented with constraints like generator

start-up/shut-down limitations and minimum up/down time requirement. An ISO

finds an optimal (i.e., cost minimizing) schedule through solving large-scale linear

programming (or convex quadratic) problems. Meanwhile, locational marginal prices

(LMPs) are achieved as shadow prices associated with transmission flow balacning

constraints. The interested readers are referred to [69, 70] for more details. In this

dissertation, since we study demand response under RTP, a simplified direct current

(DC) model is adopted. The UC model considering time-linking constraints is as

below in (1.2):
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min
g,u,v,x

T∑
t=1

Z∑
z=1

Nz∑
i=1

[cz,i(gz,i,t) + uz,i,t · SUz,i + vz,i,t · SDz,i]

s.t. yz,t =

NZ∑
i=1

gz,i,t − dz,t, ∀z, t (KCL)

Z∑
z=1

yz,t = 0, ∀t, (supply = demand)

− Tl ≤ PTDFl,z · yz,t ≤ Tl, ∀l, t, (KVL)

Kmin
z,i ≤ gz,i,t ≤ Kmax

z,i , ∀z, i, t, (capacity constraint)

−RDz,i ≤ gz,i,t − gz,i,t−1 ≤ RUz,i, ∀z, i, t, (ramping constraint)

uz,i,t ≥ xz,i,t − xz,i,t−1, ∀z, i, t, (start-up)

vz,i,t ≥ xz,i,t−1 − xz,i,t, ∀z, i, t, (shut-down)

xz,i,t − xz,i,t−1 ≤ xz,i,τ , τ = t, . . . , t+MUz,i, (minimum-up time)

xz,i,t−1 − xz,i,t ≤ 1− xz,i,τ , τ = t, . . . , t+MDz,i, (minimum-down time)

(1.2)

The corresponding ED model without time-linking constraints is as below:

min
g

Z∑
z=1

Nz∑
i=1

cz,i(gz,i)

s.t. yz =

NZ∑
i=1

gz,i − dz, ∀z, (KCL)

Z∑
z=1

yz = 0, (supply = demand)

− Tl ≤ PTDFl,z · yz ≤ Tl, ∀l, (KVL)

Kmin
z,i ≤ gz,i ≤ Kmax

z,i , ∀z, i, (capacity constraint)

(1.3)

The descriptions for the notations used in (1.2) and (1.3) are summarized in Table

1.1.
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Table 1.1.: Notations in (1.2) and (1.3).

Notation Description

z, i, t, l index of node, generator, time, and transmission line, respectively.

dz,t, yz,t demand and net demand of node z at time t.

gz,i,t output of node z’s generator i at time t.

cz,i cost function of node z’s generator i.

uz,i,t, vz,i,t start-up and shut-down variable, respectively.

SUz,i, SDz,i start-up and shut-down cost, respectively.

PTDFl,z Power Transmission Distribution Factor between l and z.

Tl transmission capcaity of line l.

Kmin
z,i , K

max
z,i generator capcaity limits.

RDz,i, RUz,i generator’s ramping down/up constraint.

MDz,i,MUz,i generator’s minimum down/up time constraint.

xz,i,t, generator’s running indicator variable .

1.3.3 Real-time Pricing

We differentiate two settings in which the closed-loop dynamics between flexible

demand and pricing can take place. In the first setting, the exact price or incentive

signals for the next time-interval are announced to entities with demand flexibility

before they adjust their demand for the time-interval. This setting is applicable to a

regulated utility (an example is Georgia Power [28]). Further, in the case of a dereg-

ulated utility, this setting is also applicable to a third-party electricity supplier who,

under contractual terms with the consumers, must announce price or incentive signals

for each time-interval before-hand [28]. In contrast, in the second setting, the price of

a time-interval is produced ex-post, i.e., after the demand has been adjusted and real-

ized. This setting is applicable to a customer directly participating in a real-time ISO

market, where payments are settled based on ex-post prices that are computed after
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the interval ends. The setting also works for the situation where a customer receives

price from utility/suppliers that is indexed to the ex-post ISO market prices [28],2 as

shown in Figure 1.5. In our research, we focus on the second setting, and will develop

a framework with learning algorithms for market participants with flexible demand

to learn how to respond to the aggregate actions of other participants, which are only

reflected through the ex-post market price.

Figure 1.5.: Power system under RTP (for both wholesale market and retail end-

consumers).

1.3.4 A real-world case on RTP: ComEd

ComEd is a utility company that provides its customers with RTP service for years,

named as Basic Electric Service–Hourly (BESH) Energy Pricing. The customers who

join the BESH program have access to day-ahead hourly market price and real-time

2On top of the wholesale rates, electric utility companies also impose additional charges to end users
to cover the utilities’ transmission and distribution (T&D) costs. But such charges are fixed; i.e.,
they do not vary over time. Hence, we do not consider any of the fixed charges to consumers in our
models as such charges do not affect any of our research findings.
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hourly market price and will receive Hourly Pricing alerts in addition to other useful

information [71]. Specifically, the day-ahead hourly market price is the PJM day-

ahead hourly market price which provides an indication of what the real-time hourly

market prices could be for the following day. As an BESH Energy Pricing program

participant, it is billed on the real-time hourly market price, not the day-ahead market

price. ComEd simply passes along the PJM real-time hourly market prices with no

mark-up. The real-time hourly market price is determined by the average of the

twelve 5-minute prices from that hour, and thus the averaged real-time hourly price

is not realized until after the hour is passed. With real-time hourly market prices, it

is possible to have negative electricity price for short periods of time. This typically

occurs in the middle of the night and under certain circumstances when electricity

supply is far greater than demand. In the wholesale market, some types of electricity

generators cannot reduce their output due to ramping constraints, and as a result

some generators may provide electricity to the market at negative prices. In this

case, customers under RTP are actually being paid to consume electricity during

negative period hours. Delivery charges always apply to customers. More details

about the ComEd BESH program can be found at its website. 3

In Figure 1.6, we present the ComEd’s real data of day-ahead and real-time prices

for the week 09/01/2019 - 09/07/2019. We can see, without careful design, real-

time prices could deviate from day-ahead forecasts seriously. Especially at 3pm on

09/07/2019, the day-ahead price is 2.8¢/KWh while the real-time price is 64.8¢/KWh.

If such deviations keep happening, customers could have serious financial loss by mak-

ing consumption decisions based on day-ahead prices, and thus could be discouraged

to join the RTP program.

3ComEd hourly pricing program: https://hourlypricing.comed.com/about/
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Figure 1.6.: ComEd hourly real-time and day-ahead prices (¢/KWh) for 09/01/2019

- 09/07/2019 [71].
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2. DEMAND RESPONSE UNDER MAB GAMES

In this chapter, we focus on the MAB-game framework for implementing intelligent

demand response. Under the framework, each agent solves a multi-armed bandit prob-

lem for its own demand response decision-making. The essence of this approach is that

as each agent plays bandit learning with assuming stationary reward distributions, the

overall system will approximately converge a mean field steady state (MFSS) with

stationary population profile. Such property can resolve the demand uncertainties

generated by end-consumers’ “selfish” behaviors. Further, we show that with regret-

minimizing1 bandit learning by agents, the overall system’s outcomes approximately

converge to the price of anarchy (POA) of the utility-maximization games.

The rest of the chapter is organized as follows. In Section 2.1 , we describe the

smart home model with flexible demand and its decision temporal resolution. Before

introducing the MAB-game approach, non-theoretical approaches as baseline are pre-

sented in Section 2.2. Then in Section 2.3, we propose the MAB-game framework in

details. Section 2.4 gives the system performance bound and corresponding proof.

2.1 Smart Home under Real-time Pricing

2.1.1 Smart Home Model

In this section we present a smart home model of an agent that manages its energy

demands usage by maximizing its payoffs (or minimizing electricity bills) under real-

time pricing. Commonly, demands can be classified into base demands and flexible

demands, in which the former does not respond to price signals while the latter

does with flexible usage schedule. A smart home is equipped with an controller

1In this dissertation, we use regret-minimizing and no-regret interchangeably.
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that can automatically make decisions for the usage schedules of its flexible demands

based on price information. Home appliances like washing machines, fridges, heating

ventilation air conditioning (HVAC), and distributed energy resources like electric

vehicles charging fall under the flexible category. In this work, we also consider smart

homes equipped with distributed generation resources like rooftop solar panels and

home batteries which can sell energy back to the grid with responding to price signals.

Before proposing our decentralized control solutions to this, we describe a model

of a smart home with non-thermal and thermal flexible demands and distributed

generation resources. Here, we consider repetitive operating days denoted by d ∈

{1, 2, ...}. Within each day, there are time periods denoted by t ∈ {1, ..., T}. Each

time period consists of Ht consecutive sub-periods without overlapping. The herein

discussion and formulas concern a single period t. For example, a single 4-hour period

t has 4 hourly time-slot arms with Ht = 4. The convergence rate of the MAB-game

framework proposed in this chapter may depend on how many sub-periods that Ht

contains. However, given a fixed Ht, the system outcomes are guaranteed to converge

to the MFSS approximately as the population of agents increase.

Non-thermal Flexible Demands

We assume that for each flexible demand, there is a period that the agent would

like to consume it. For example, people would like to charge their EVs after getting

home. For now, we only consider EV charging as the flexible load. However, our

framework can be extended to the case for a home to have different smart devices

playing regret-minimization algorithms independently. Therefore, instead of modeling

a set of specific appliances’ demands, we consider in each time period t the total

non-thermal flexible demands of a smart home’s EV charging as a fixed amount

lf,nth, where the superscript f denotes flexible and nth denotes non-thermal. Then
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the controller needs to decide in which sub-period to consume the load each day to

minimize its average electric bills across D days under RTP, as follows:

min
xnth
d

1

D

D∑
d=1

H∑
h=1

lf,nth1{xnth
d ==h}p

RT
d,h (2.1)

In the objective (2.1), xnthd ∈ {1, ..., H} denotes the agent’s decision for when to

consume the load lf,nth in period t on day d, and pRTd,h represents the real-time electricity

price. The indicator function 1{xnth
d ==h} means that the smart home agent choose hour

h to act over its non-thermal flexible load on day d. The D here goes to any arbitrary

large number as the agent continues its demand response. Under stationary load

population profile, there exist underlying cheapest time-slots for the agent to act.

Then the agent desires to bound the average regret of D days for not choosing the

cheapest time-slots through bandit learning.

Thermal Flexible demands

Herein, using a similar approach as in [41, 72], we simulate the warm-up demand

of a HVAC system of a smart home with a linear model of indoor and outdoor

temperatures as follows (which can be easily extended to the cool-down case):

lf,thd,h =
1

β
[TEin

h+1 − αTEin
h − (1− α)TEout

h ], (2.2)

where lf,thd,h is the demand of a HVAC system in KWh, TEout
h is the outdoor temper-

ature in ◦F, TEin
h and TEin

h+1 are the indoor temperature for the current and next

time period in ◦F, respectively. The coefficient α is the system inertia2 and β is the

heating efficiency of a HVAC system in ◦F/KWh. The energy consumption from the

warming up process is more significant than maintaining the required temperature.

Therefore, in this work, we do not consider that the agents would respond to price

signals with adjusting their temperature settings of HVAC systems to sacrifice com-

forts for reducing costs. Instead, a smart home controller manages thermostats by

2System inertia of a HVAC system is defined as the ability to oppose the outdoor temperature, and
the α is in [0, 1].
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deciding when to warm up the house to a pre-set temperature such that the costs of

doing so are minimized as follows:

1

D

D∑
d=1

H∑
h=1

lf,thd,h (xthd )pRTd,h , (2.3)

where lf,thd,h (xthd ) is calculated as follows:

s.t. lf,thd,h (xthd ) =


lf,th.LOh xthd > h

lf,th,WM
h xthd = h

lf,th,HIh xthd < h

. (2.4)

In (2.4), x̃d,t denotes the agent’s decision for when to warm up the house. lf,th,LOh and

lf,th,HIh are the load of HVAC for maintaining the indoor temperature at the low and

high temperature setting, respectively, and lf,th,WM
h is the load of HVAC for warming

up the house. The superscripts f and th denote flexible thermal load. LO, HI and

WM denote the scenarios of maintaining at low temperature setting, maintaining at

high temperature setting, and warming up the house from low temperature to high

temperature, respectively. The load of HVAC lf,th,LOh , lf,th,HIh and lf,th,WM
h can be

calculated by Equation (2.2) with the indoor setting and outdoor temperatures of

the hour h and h+ 1. For example, when an agent leaves home for work, the indoor

temperature is set at a low level and the HVAC consumes lf,th,LOh in the hours that

the agent is away. In the period before the agent gets home from work, the controller

decides when to warm up the house to be at the high temperature setting before the

agent gets home and the HVAC consumes lf,th,WM
h for the warming up hour. After

warming up, the HVAC consumes lf,th,HIh for maintaining the indoor temperature at

the setting level.

2.1.2 Real-time Demand and Price

Besides the flexible demand described above, there exist inflexible base demands

which are not affected by agents’ behaviors and do not change across days. The
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system’s base demand in hour h is denoted by Lbh. We consider that the power

system contains a set of n consumers (i.e. agents), where the consumers are indexed

by i ∈ {1, ..., n}. The action xi that each agent takes on day d consists of (xnthi,d , x
th
i,d)

which contains the actions over non-thermal and thermal flexible loads, respectively.

After each agent decides the schedule of their flexible demands, its flexible demand

consumption for time slot h is as:

lf,xii,d,h = lf,nthi · 1{xnth
i,d ==h} + lf,thi,d,h(x

th
i,d), (2.5)

where lf,nthi · 1{xnth
i,d ==h} gives the non-thermal flexible load and lf,thi,d,h(x

th
i,d) gives the

thermal flexible load which can be achieved by (2.2) and (2.4). Then the real-time

aggregated demand is the total consumption including base demand

LRTd,h = Lbh +
n∑
i=1

lf,xii,d,h, (2.6)

which is for ∀h ∈ {1, ..., Ht} and ∀t ∈ {1, ..., T} and ∀d ∈ {1, 2...}. Though the

decisions by each individual agent cannot affect the real-time prices, the collection

of all agents behaviors can affect real-time prices pRTd,h , and the impact to real-time

prices depend on the scale of flexible load.

2.2 Non-game Control Strategies

2.2.1 Naive-response Model

In the naive-response model, agents respond to day-ahead prices to determine

when to act for each period in the next day. From the ISO’s perspective, the key of

day-ahead operations is how to forecast the demand for the next operating day. A

more sophisticated approach is to recognize the closed-loop dynamics between price

forecasts and the actual demand; that is, the ISO will anticipate how the consumers

would respond to a set of day-ahead price forecasts. Such an approach will require

the ISO to employ methods from dynamic programming and optimal control, as
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studied in [54]. As our focus here is to study what the market outcomes would be

when agents’ respond to real-time pricing under the current market operations, we

do not consider the closed-loop approach of the ISO. Instead, we assume that the

ISO forecasts the next day demand based on the past W days of realized real-time

demand. More specifically, the ISO demand forecast for day d + 1, denoted as LDAd,h
for ∀h, is as follows:

LDAd+1,h =
1

W

W∑
w=1

LRTd+1−w,h. (2.7)

With the day-ahead demand forecasts in (2.7), the day-ahead market clearing

process produces the day-ahead prices, denoted as pDAd+1,h. Based on the day-ahead

prices, in period t, agents choose the period with the lowest prices to act. Since

all agents receive the same day-ahead price signals, and the decision rules are the

same across the agents, then a large population of agents could move in the same

direction. Then the resulting real-time prices will exhibit both large deviations from

the day-ahead prices and high volatility, when the percentage of distributed flexible

demand is sufficiently high for a large population. Our simulation results in Chapter

3’s Section 3.2 have confirmed the conjecture.

2.2.2 Adaptive-response Model

While the naive-response model may be too primitive in realizing demand re-

sponse, we consider another decentralized approach in [58], referred to as an adaptive

mechanism. More specifically, for each period t, agent i gradually adapts its decision

towards the optimal selection x̃∗i based on the day-ahead price information, as follows:

xi,d+1 = xi,d + α(x̃∗i,d+1 − xi,d), where α ∈ [0, 1] is the adaptive rate. With applying

different adaptive rate, such approach relieves the effects of large population moving

in the same direction. However, the choice of the rate is totally heuristic based on

agents’ experience and preference. We can see that when α = 1, the adaptive-response

is exactly the naive-response model.
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2.3 MAB-game Model

Under a real-time pricing mechanism, each individual agent’s electric bill depends

on the collection of behaviors of other agents. Therefore, this is a classic situation of

a non-cooperative game in the game theory literature. However, this is not a simple

static game, as when to consume the flexible load of each period (or sell the energy

from distributed generations) needs to be decided on a daily basis, which makes it

an instance of a dynamic game. Moreover, since agents do not know how many

competitors are in the game, nor do they know the explicit payoff functions of the

others, this is also an incomplete information game. In such a dynamic game with

many agents, the standard equilibrium concept is Perfect Bayesian Nash Equilibrium

(PBNE), which requires modeling of each agent’s beliefs [73]. Specifically, a PBNE

requires that agents play optimally after any history of the games by maintaining

beliefs over their competitors’ payoff functions based on the Bayes’ rule, which is

implausible for a large number of agents. In addition, as each agent’s strategy profile

is a function which maps the entire history to its feasible set of actions, choosing an

optimal strategy profile requires exceedingly complex state information [59]., which

is impractical for electricity consumers in reality.

Instead of finding the best possible strategy associated with PBNE, we can find an

approximately optimal strategy by relaxing the Bayes’ updating requirement. Here,

we quantify an approximately optimal strategy with the concept of regrets that mea-

sure the cumulative differences between what the best response would be and what

the agent chose based on a strategy across the games. Therefore, agents would like

to adopt a regret minimization strategy to make decisions in the games based on the

knowledge learned from history. The smart home model under real-time pricing in

Section 2.1 resembles the well-studied multi-armed bandit (MAB) problem, and can

use a regret-minimizing approach for the sequential decision-making based on past

realized payoffs under real-time pricing. When all agents are solving their own MAB
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problem with interactions, it forms a MAB-game. In the following Section 2.3.1, we

discuss the MAB-game approach in details.

2.3.1 Game Settings

As presented in Section 2.1.1, in each period t of an operating day, each agent

decides in which sub-period h ∈ {1, ..., Ht} to consumer its flexible load. The decision-

making resembles choosing an arm to play in a Ht-armed MAB problem. Before the

end of each period, the agents would not know the real-time price and the electric

bill associated with choosing each sub-period h. Once all agents’ decisions are made,

each agent’s electric bill of the period is known in the end. Thus, for each period

across repetitive operating days, each agent faces the trade-off between exploration

versus exploitation; that is, an agent would like to trying more different choices to

explore all the possibilities or staying with the choice that gives the best payoff so

far to exploit it. MAB problems have been well studied, and we refer the interested

readers to [74], [75], [76] and Chapter 6 in [77] for an overview.

In many classic bandit scenarios, a stationary environment is assumed in which

reward on each arm has a stationary distribution. For MAB games, however, agents’

collective actions would result in non-stationarity of rewards returned. A recent

breakthrough on MAB games in [59] has provided the theoretical foundations in

studying the dynamic interactions among agents in price-based DR as an MAB game.

Each period t ∈ {1, ..., T} across operating days is considered as a series of repetitive

Ht-armed MAB games. The specific settings within each period t are presented below.

Decision epochs and arms.

Each agent makes its decision xi for period t to determine within which sub-

period to act. Therefore, each sub-period h ∈ {1, ..., Ht} is considered as an arm for

the Ht-armed MAB games.
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States.

For agent i, the state for period t in day d, denoted by zi,d, is a simplification

of the history of the Ht-armed MAB games. The same is in [59], zi,d contains 2Ht

elements, with Ht being defined before as the number of arms (i.e. time slots). The

first Ht elements record the number of times that each arm has been chosen by the

agent; while the second Ht denote the average rewards associated with each arm3. In

addition, we let Zi,d be the set of all possible states for agent i at day d.

Policies.

For period t, let Ξ = {ξ = (ξ1, ..., ξHt) :
∑Ht

h=1 ξh = 1} ∈ [0, 1]Ht be the set of

randomized actions over the arms. Then in the Ht-armed bandit problem, the policy

used by each agent i is a function that maps from the current state space to the action

space, denoted by σi : Zi,d → Ξ. The choice made by policy σi is a random variable

that depends on the agent’s current state, denoted by xi,d(zi,d) ∈ {1, ..., Ht}. We use

σi(zi,d, h) to denote the probability of agent i choosing arm h. Then the probability

distribution of xi,d(zi,d) is as follows:

P(xi,d(zi,d) = h) = σi(zi,d, h),∀ zi,d ∈ Zi,d. (2.8)

Rewards.

We define the reward as the negative of each agent’s electric bill. For each period

t, after real-prices, pRTd,h for h ∈ {1, ..., Ht}, are realized, each agent’s reward can be

determined according to its choice as follows:

Uk
d (xi,d) = −

Ht∑
h=1

[lbi,h + lfi,h(xi,d)]p
RT
d,h (2.9)

3The dimensions of the state can be beyond 2Ht, such as 3Ht, 4Ht and so on, for recording more
information associated with each arm. For example, for algorithm UCB1-Normal [74], Ht elements
are used for recording the average squared rewards associated with each arm.
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Dynamic population profile.

Since each agent’s electric bill depends on the population-wide behaviors, we de-

fine the concept of population profile as the histogram of system-wide real-time net

demand of each arm, denoted by fd,h:

fd,h =
LRTd,h∑Ht

h=1 LRTd,h
(2.10)

Besides the decisions of agents, the regeneration of agents contributes to the dynamics

of population profile. We assume that for each period t at each day d, agent i has a

turnover probability 1− β to regenerate. When an agent is regenerated, its policy is

changed arbitrarily, its type (i.e. non-thermal flexible load amount or HVAC settings)

are changed, and its state variables zi are re-initialized to 0’s. An important role for

the regeneration mechanism is to ensure that even when the system reaches a steady-

state, the agents continue to learn without stopping exploring arms.

2.3.2 Control Strategies

Regrets and regret-minimizing policies.

If an agent assumes that the population profile f = (f1, . . . , fHt) over arms is

stationary across days, then the expected reward corresponding to choosing arm h

for the agent will remain the same across days. As a result, we can ignore the index d

in the reward expression in Equation 2.9 and define u∗ as the highest expected value

of ui over h ∈ {1, ..., Ht}, where ui ∈ [0, 1] is the normalized reward as defined in

Definition 2.3. As a result, the average regret of agent i for a fixed number of D days

in the Ht-armed MAB games under σi is as follows:

Ri(D) := u∗ − 1

D
E[

D∑
d=1

ui(σi,d,f)]. (2.11)

We consider the number of arms, Ht, to be fixed in our scenario. For the algorithms

based on Upper Confidence Bound (UCB) [74] or Thompson Sampling [78], we have
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logarithmic regret bounds, i.e. Ri(D) < Γ(D)
D

, where Γ(D) = αln(D) for some con-

stant α. Therefore, when agent i uses a regret-minimizing policy under stationary

population profile, it plays approximately optimally. As pointed out in [59], the con-

vergence to a steady state with stationary population profile does not depend on the

specific policy chosen. Since D is the agent’s regeneration life which is geometric with

parameter β, we take expectation in Equation 2.11. In this case the policy is referred

to as γ-optimal with γ =
∑∞

D=1(1− β)βD−1 Γ(D)
D

[59]:

u∗ −ED[
1

D

D∑
d=1

Ht∑
h=1

ui(h,f)σi(zi,d, h)] < γ. (2.12)

Convergence to steady state.

Let φ ∈ Φ denote a joint distribution over all agents’ state space, where Φ is the

space of all Borel probability measures on the joint state space of all agents. We

let f denote the dynamics of population profile {f 1,f 2, ...} across days, where the

number subscripts are the days. In [59], a pair (φ, f) is defined as a mean field steady

state (MFSS) of an MAB-game if it satisfies two conditions: first, given a station-

ary population profile f (i.e. population profile boldsymbolfi’s are the same across

days), which will influence the state transition, can yield a steady state distribution φ;

second, based on the joint steady state distribution φ of all agents’ states, the station-

ary population profile f can indeed emerge from the MAB-game. Strong theoretical

results regarding MFSS have been shown in [59], including existence, uniqueness,

and asymptomatic convergence to a MFSS when the population in the MAB-game

approaches to infinity. The last property is especially useful in the context of decen-

tralized demand response in energy markets, as the number of price-responsive agents

can be very large. In the case of non-stationary population profile with finite agents,

the average regret over D days is defined as follows:

R̃i(D) :=
1

D
E[

D∑
d=1

u∗d −
D∑
d=1

ui,d(σi,f
n
d(σ))], (2.13)
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where fnd(σ) denotes the population profile on day d under the n-agent system with

policies σ = (σ1, . . . , σn). The proposition below gives the bound of the regret in

Equation 2.13.

Proposition 2.1 When |ui(fh)−ui(f ′h)| ≤ L|fh− f ′h| for ∀h ∈ (1, . . . , H) and β(1 +

L) < 1 hold, there exists ε > 0 such that

R̃i(D) ≤ γ +
2Hε(1− β)

β(1− β(1 + L))
(2.14)

where ε → 0 as total population demand L approaches to infinity with an infinite

number of agents playing regret-minimizing algorithms.

Proof Since the proposition is for an individual agent in a sequence of games in

period t across days, we ignore the index t. Now, we let u∗d := ui(h
∗
d,f

n
d), where fnd

represents the population profile in day d of an n-agent system, and h∗d is the choice

of sub-period that gives the best reward in day d. Meanwhile, we let u∗ in (2.11)

be ui(h
o,f), where f represents the stationary population profile of infinite agents

and ho is the underlying best choice. In addition, we let hnd be the choice of agent i

under policy σi in day d under the n-agent system, and hd be the choice under the

infinite-agent system. Then we can write (2.13) as follows:

R̃i(D) =
1

D
E[

D∑
d=1

u(h∗d,f
n
d )−

D∑
d=1

u(hnd ,f
n
d )]

=
1

D
E[

D∑
d=1

(
u(h∗d,f

n
d )− u(ho,f) + u(ho,f)− u(hnd ,f

n
d )
)

]

(2.15)

where the first two items in (2.15) can be further written as:

u(h∗d,f
n
d )− u(ho,f)

= u(h∗d,f
n
d )− u(h∗d,f) + u(h∗d,f)− u(ho,f)

≤ L
H∑
h=1

|fnd,h − fd,h|+ u(h∗d,f)− u(ho,f)

= L
H∑
h=1

|fnd,h − fd,h|

, (2.16)
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where the second last step is by the condition |ui(fh)−ui(f ′h)| ≤ L|fh−f ′h|. In the last

step, u(h∗d,f) and u(ho,f) are both under the infinite-agent system. In our context,

when there are infinite agents in the system and population profile are stationary,

it must be that the demand population in each time-slot h are equal to each other.

Otherwise, agents will learn the time-slots with lower demand and commit to it, which

will make the demands equal again after a while of learning. Since the population

demand are equal under stationary profile, the resulted rewards will be the same.

Thus we can have u(h∗d,f)− u(ho,f) = 0.

In [59], it has been proved that for the given population n, there exists ε such

that:

E[ sup
h
|fnd,h − fd,h|] ≤

ε(1− β)

Lβ(1− β(1 + L))
, (2.17)

where ε→ 0 as n→∞. After we plug (2.17) into (2.15), we will have:

R̃i(D) ≤ Hε(1− β)

β(1− β(1 + L))
+

1

D
E[

D∑
d=1

u(ho,f)− u(hnd ,f
n
d )]. (2.18)

Now, use the same trick as in (2.16) to the last two terms in (2.15):

1

D
E[

D∑
d=1

u(ho,f)− u(hnd ,f
n
d )]

=
1

D
E[

D∑
d=1

u(ho,f)− u(hd,f) + u(hd,f)− u(hnd ,f
n
d )]

≤ γ +
1

D
E[

D∑
d=1

u(hd,f)− u(hnd ,f
n
d )] (by (2.11))

= γ +
1

D
E[

D∑
d=1

u(hd,f)− u(hnd ,f) + u(hnd ,f)− u(hnd ,f
n
d )]

= γ +
1

D
E[

D∑
d=1

u(hd,f)− u(hnd ,f)]

≤ γ +
Hε(1− β)

β(1− β(1 + L))

. (2.19)

Plugging (2.19) into (2.18) completes the proof.

In Proposition 2.1, we can see γ goes to 0 as D goes to infinity, the individual regret

under non-stationary population profile will converge to a constant level. Further, ε
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goes to 0 as n goes to infinity, the regret bound in the proposition will converge to

the regret bound γ for stationary population profile.

In our context, the number of agents can be very large. If all agents’ smart home

have automation control devices coded with a regret-minimizing algorithm, combined

with the strong results associated with MFSS, each agent will achieve a bounded regret

as in (2.14). As the number of agents approaches infinity, each agent’s regret bound

converges to the result as in (2.12) and the system converges to its MFSS. Note that

a MFSS is in general not a PBNE to the corresponding dynamic game, as there may

exist certain histories of the game under which an agent i may have the incentive to

deviate from its MFSS policy σi in order to maximize its discounted expected payoffs

(this is so since regret-minimization may not be the same as discounted expected

payoff optimization). As the the system converges to MFSS, the population profile

will stabilize eventually, which gives stable load across days under real-time pricing.

2.4 Smoothness of Utility-maximization Game

When all agents’ individual regrets are bounded, we want to know if the total

social welfare of the system will converge to some efficient outcomes compared to the

outcomes from centralized control. The discussion in this section is for consumers

with non-thermal flexible load only as a starting point. Herein, the formulas concern

a single game period t ∈ {1, . . . , T} across days4. To bound the total social welfare

subject to decentralized “selfish” behaviors of the agents, we define the centralized

optimum of the system as follows:

OPTU = max
σ

∑
i

ui(σi,f(σ)). (2.20)

In a large class of games, termed smooth games by Roughgarden [79], no-regret

learning dynamics converge to approximately optimal social welfare. In the following,

4As mentioned before, a day can be divided into T periods, i.e. T independent sequences of games
here.
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we introduce the concept of smooth games, and further prove that the MAB games’

smoothness.

Definition 2.1 Smooth game [79]: A utility maximization game is called (λ, µ)-

smooth if for all policy profiles σ and σ∗:∑
i

ui(σ
∗
i ,f(σ−i)) ≥ λ

∑
i

ui(σ
∗
i ,f(σ∗))− µ

∑
i

ui(σi,f(σ)). (2.21)

It is relaxed-smooth if the inequality holds for any policy σ and an optimal policy

profile σ∗ that achieves the OPTU in (2.20).

The price of anarchy (PoA) [80] measures the sub-optimality caused by agents’

“selfish” behaviors. The PoA of a game is defined as the ratio between the worst

outcome of a Nash Equilibrium and the optimal outcome. Therefore, a bound (a lower

bound for utility maximization or an upper for cost minimization) on the PoA applies

to every equilibrium and obviates the need to predict asingle outcome of “selfish”

behaviors [79]. The PoA for utility-maximization games are defined as follows:

Definition 2.2 PoA for utility-maximization games is defined as the ratio between

the minimum social utility of a Nash Equilibrium and the maximum social utility

among all action profiles, i.e. minσ∈NEU(σ)/OPTU , where U(σ) is the total social

utility of all agents.

For utility maximization smooth games, the price of anarchy is at most (1 +µ)/λ,

meaning that Nash equilibria of the game, as well as regret minimizing learning

outcomes, in the limit have total social welfare at least λ
1+µ

OPT. Consider the util-

ity maximization game for a large population of consumers in a stage game with

Ht arms. To construct the smoothness property, we assume affine price functions

pRTh (LRTh (σ)) = ahLRTh (σ) + bh, where ah, bh ≥ 0 for each time slot h and LRTh (σ) is

the total real-time demand on time slot h. Using the same calculation in (2.9), the

cost for agent i under the policy profile σ is as below:

costi(σ) =
H∑
h=1

[ahLRTh (σ) + bh][l
b
i,h + lfi,h(xi,d)]. (2.22)
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The cost in (2.22) can be normalized with being divided by the maximum individual

cost among all consumer agents. With the normalized cost ci(σ), we define the

normalized utility as below

Definition 2.3 For policy profile of n agents σ = (σ1, . . . , σn), the total normalized

social cost is

C(σ) =
n∑
i=1

ci(σ), (2.23)

where ci(σ) ∈ [0, 1] is the normalized cost of agent i. Then the corresponding normal-

ized utility of agent i is ui(σ) = 1− ci(σ) which is in [0, 1], and the total normalized

utility is

U(σ) =
n∑
i=1

ui(σ)

= n− C(σ).

(2.24)

Minimum social cost OPTC: the system cost that suffers efficiency loss due to the

independently selfish behavior of the agents is lower bounded by

OPTC = min
σ

n∑
i=1

ci(σ), (2.25)

and corresponding maximum social utility OPTU in (2.20) is

OPTU = n−OPTC. (2.26)

Now, we let lf denote the maximum individual flexible demand among agents

(where superscript f denotes flexible), and Lb := min
h
LBD(h) denote the minimum

total base demand among all time slots in (1, . . . , Ht). Let ρ = lf/Lb. Due to the

small scale of each single agent, we can safely assume that lf << Lb with a large

population of n smart home agents, and thus we have lf << Lb ≤ LRTh (σ) and

ρ << 1 for any time slot h under any policy profile σ. Aggregated base demands

increase as the population increases, and consequently, ρ approaches 0.

Lemma 2.2 For ∀α, β ∈ Z≥0, we have [81]

β(α + 1) ≤ 5

3
β2 +

1

3
α2. (2.27)
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For ∀α, β ∈ Z≥0 and ∀a, b ≥ 0, by (2.27), we have [79]

β[a(α + 1) + b] ≤ 5

3
(aβ + b)β +

1

3
(aα + b)α. (2.28)

Lemma 2.3 For a large population n, and any arbitrary policy profiles σ∗ and σ,

we have
n∑
i=1

ci(σ
∗
i ,σ−i) ≤ (

5

3
+ ρ) · C(σ∗) +

1

3
· C(σ). (2.29)

Proof By individual cost in Eq. (2.22), we have total system cost under policy

profile σ as below

Cost(σ) =
n∑
i=1

costi(σ)

=
n∑
i=1

H∑
h=1

(ahLRTh (σ) + bh)(l
b
i,h + lfi,h(xi,d))

=
H∑
h=1

(ahLRTh (σ) + bh)
n∑
i=1

(lbi,h + lfi,h(xi,d))

=
H∑
h=1

(ahLRTh (σ) + bh)LRTh (σ)

(2.30)

The total demand on each time slot h under policy profile (σ∗i ,σ−i) is at most

lf more than that under σ, and this time slot h contributes to precisely real-time

demand terms LRTh (σ) under (σ∗i ,σ−i). Then for any policy profile σ and σ∗, we

have

n∑
i=1

costi(σ
∗
i ,σ−i) ≤

H∑
h=1

(ah(LRTh (σ) + lf ) + bh)LRTh (σ)

=
H∑
h=1

(ah(LRTh (σ) + 1 + lf − 1) + bh)LRTh (σ∗)

=
H∑
h=1

[(ah(LRTh (σ) + 1) + bh)LRTh (σ∗) + ah(lf − 1)LRTh (σ∗)]

≤
H∑
h=1

5

3
(ahLRTh (σ) + bh)LRTh (σ) +

H∑
h=1

1

3
(ahLRTh (σ∗) + bh)LRTh (σ∗)
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+
H∑
h=1

ah(lf − 1)LRTh (σ∗) (by Lemma 2.2)

≤ 5

3
Cost(σ∗) +

1

3
Cost(σ) +

H∑
h=1

ahρ(LRTh (σ∗))2

≤ 5

3
Cost(σ∗) +

1

3
Cost(σ) + ρ

H∑
h=1

(ahLRTh (σ∗) + bh)LRTh (σ∗)

= (
5

3
+ ρ)Cost(σ∗) +

1

3
Cost(σ). (2.31)

Then normalizing on both sides completes the proof.

Proposition 2.4 Consider an optimal policy profile σ∗ that results in OPTC and

OPTU . Let γ denote the ratio of n to OPTC, i.e. γ = n
OPTC

≥ 1. For any η that

satisfies

η ≥ ρ+ 1

γ − 1
, (2.32)

by Lemma 2.3 the utility maximization game has relaxed-smoothness of (λ = 2
3
−η, µ =

−1
3
) for any arbitrary policy profile σ as below

n∑
i=1

ui(σ
∗
i ,σ−i) ≥ (

2

3
− η) ·OPTU +

1

3
· U(σ). (2.33)

Proof Consider any policy profile σ and an optimal profile σ∗ that achieves OPTC

and OPTU . Then we can have

n∑
i=1

ui(σ
∗
i ,σ−i) =

n∑
i=1

[1− ci(σ∗i ,σ−i)] (by Definition 2.3)

= n−
n∑
i=1

ci(σ
∗
i ,σ−i)

≥ n− (
5

3
+ ρ) · C(σ∗)− 1

3
· C(σ) (by Lemma 2.3)

= (
5

3
+ ρ) · [n− C(σ∗)] +

1

3
· [n− C(σ)] + [1− (

5

3
+ ρ)− 1

3
] · n

= (
5

3
+ ρ) · U(σ∗) +

1

3
· U(σ)− (ρ+ 1) · n (by Eq. (2.24)).

(2.34)
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By Eq. (2.32), we can have

(ρ+ 1 + η) · C(σ∗)− η · n ≤ 0. (2.35)

With adding Eq. (2.35) to the last line in Eq. (2.34), we have

n∑
i=1

ui(σ
∗
i ,σ−i) ≥ (

5

3
+ ρ) · U(σ∗) +

1

3
· U(σ)− (ρ+ 1) · n+ (ρ+ 1 + η) · C(σ∗)− η · n

= (
5

3
+ ρ) · U(σ∗) +

1

3
· U(σ)− (ρ+ 1 + η) · (n− C(σ∗))

= (
5

3
+ ρ) · U(σ∗) +

1

3
· U(σ)− (ρ+ 1 + η) · U(σ∗) (by Eq. (2.24))

= (
2

3
− η) · U(σ∗) +

1

3
· U(σ).

(2.36)

Substituting U(σ∗) in (2.34) by OPTU completes the proof.

By Proposition 2.4, the utility-maximization game is a (λ, µ)−smooth game with

λ = 2
3
−η and µ = −1

3
, and the corresponding POA is λ

1+µ
= 1− 3

2
·η. When η reaches

at the lower bound in Eq. (2.32), the tightest POA bound is achieved as 1− 3
2
· ρ+1
γ−1

.

One thing that needs attention here is the POA bound is meaningful (i.e. λ
1+µ

> 0)

only when γ > 5+3·ρ
2

, where ρ << 1. A very simple example here. Consider γ = 2,

which means OPTC = 1
2
·n, then 1− 3

2
· ρ+1
γ−1

= 1− 3
2
· (1 + ρ) < 0. In another example

considering the extreme case in which base demands are 0 and all n agents have the

same amount of flexible demand. Then for a game of H time slots, the worst action

profile is that the whole demand population choose the same time slot, while OPTC

can be achieved when there are 1
H

of the demand population on each time slot5. In

this case, the price (affine and linear) ratio is very close to H to 1, and thus OPTC is

close to n
H

. Then γ = H and POA is close to 1− 3
2
· 1
H−1

. For example, when H = 4,

POA is very close to 1
2
.

Therefore, when the system’s OPTC is much smaller than n, the ratio γ is much

larger than 1. Then the resulting η will be small and the POA bound achieved by

the game’s utility-maximization smoothness will be tight.

5In this case, we assume that the supply curve does not change across time slots (1, . . . ,Ht)



37

Proposition 2.5 If all n agents use γ − optimal regret-minimizing policies with

Γ(D) = αln(D) in a (λ, µ)-smooth MAB-game, with parameter ε̃ = 2Hε(1 − β)/β,

then for the action profile drawn from σ,

1

D

D∑
d=1

E[Ud(σ)] ≥ λ

1 + µ
OPT− n

1 + µ
(γ + ε̃) (2.37)

where
∑

dE[Ud(σ)] =
∑

d

∑
iE[ui,d(σi,f(σ))], OPT = 1

D

∑
dOPTU ,d, and (λ, µ) =

(2
3
− η,−1

3
).

Proof By adding up the bounded regrets in Proposition 2.1, we have:

1

D

D∑
d=1

E[Ud(σ)] ≥ 1

D
E[

D∑
d=1

n∑
i=1

u∗d]− n(γ + ε̃) (2.38)

Then we conduct summation across D days over the inequality in Definition 3.3, we

can have:

µ
1

D

D∑
d=1

E[Ud(σ)] ≥ λOPT− 1

D
E[

D∑
d=1

n∑
i=1

ui,d(σ
∗
i ,f(σ−i))] (2.39)

Add (2.38) to (2.39), we have:

(1 + µ)
1

D

D∑
d=1

E[Ud(σ)] ≥ λOPT− n(γ + ε̃) + ∆ (2.40)

where

∆ =
1

D

D∑
d=1

(
E[

D∑
d=1

n∑
i=1

u∗d]−E[
D∑
d=1

n∑
i=1

ui,d(σ
∗
i ,f(σ−i))]

)
(2.41)

Since u∗d is the best choice in each day, we always have u∗d ≥ ui,d(σ
∗
i ,f(σ−i)). There-

fore, ∆ ≥ 0, which lead (2.40) to as follows:

1

D

D∑
d=1

E[Ud(σ)] ≥ λ

1 + µ
OPT− n

1 + µ
(γ + ε̃) (2.42)

In (2.37), given any population n, as the games repeatedly go on, γ goes to 0. As

discussed before, due to the convexity of generation costs, OPTU is achieved when
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demands are equal among time slots. Therefore, each individual agent’s normalized

utility is a constant under OPTU regardless of the population. Since OPTU is the

total normalized utility (i.e.
∑

i ui), OPTU is O(n), and thus OPT is O(n). Further,

ε̃ → 0 as n → ∞. Therefore, as the population increases, OPT increases in order

O(n) and ε̃ goes to 0, which means OPT grows faster than n · ε̃, and thus the system

dynamics approximately converge to efficient outcomes guaranteed by the price of

anarchy.



39

3. DEMAND RESPONSE WITH LOW APPROXIMATE

REGRET LEARNING IN GAMES

In this chapter, we propose a game-theoretic framework in which all smart home

agents decide their flexible demand consumption strategy in a decentralized way by

playing a learning algorithm that guarantees small regret. Such learning utilize full

information feedback instead of only looking at the actions played. In a (λ, µ) cost-

minimization smooth game, the price of anarchy (PoA) is λ/(1− µ) [79]. While

the environment is constantly changing due to each agent’s choice of strategy, such

decentralized no-regret dynamics are guaranteed to converge to the system’s PoA if

all agents play low approximate regret learning algorithms, and the speed at which

the game outcomes converge to the approximate optimality is governed by individual

agents’ regret bounds [61]. Through the learning in games, the regrets of individual

agents and the total social cost of the overall system are both bounded.

The rest of the chapter is structured as follows. In Section 3.1, we will describe

smart home agents with flexible loads conducting learning under RTP scheme for

having approximate no-regret costs. Then in Section 3.2, numerical simulations are

presented by comparing the learning approach proposed in this work with the decen-

tralized demand management approaches described in Chapter 2.

3.1 Low Approximate Regret Learning in Games

3.1.1 Learning Dynamics

Each agent has an action space Si with cardinality H1, i.e. |Si| = H, and a cost

function costi : S1 ×· · · × Sn → [0, 1] that maps an action profile s = (s1, . . . , sn)

1The action space of each agent doesn’t have to be of the same. Herein, for the simplicity of
illustration, we only assume that the agents’ action space have the same cardinality.
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to the normalized cost of agent i. Further, we let w = (w1, . . . ,wn) denote a list of

probability distribution over all agents’ action space, where wi ∈ ∆(Si) and wi,x is

the probability of action x ∈ Si. Time period T is repeated for D days, on each day

d each agent i picks a probability distribution wdi over actions and draws their action

sdi from this distribution, i.e. choose a time slot to consume their flexible demand.

After each day, each agent i receives realized feedback in terms of real-time ex

post prices of period T , and observes the costs they would have received had they

chosen any action x ∈ Si given the realized actions taken by the other agents. The

underlying assumption here is that the shifting of any single agent’s choice does not

affect the real-time prices due to its small scale. Specifically, we let cdi,x = costi(x, s
d
−i),

where sd−i is the set of realized strategies of all but the ith agent on day d, and let

cdi = (cdi,x)x∈Si
. Accordingly, the expected cost of agent i in period T on day d

conditioned on the other agents’ realized actions is the inner product 〈wdi , cdi 〉.

Learning algorithms that satisfy the property Low Approximate Regret (LAR) [61],

defined in Definition 3.1, can give the agents the cumulative cost multiplicatively

(i.e. multiplied by a constant) approximate to the cost of the best action (i..e. the

minimum cost) they could have chosen in hindsight.

Definition 3.1 Low Approximate Regret (LAR) [61]: for some parameter ε > 0 and

function R(H,D), a learning algorithm for agent i satisfies the LAR property if for

all action distributions w∗ ∈ ∆(Si),

(1− ε)
D∑
d=1

〈wdi , c
d
i 〉 ≤

D∑
d=1

〈w∗, cdi 〉+
R(H,D)

ε
. (3.1)

A learning algorithm has LAR property against shifting experts if for all action dis-

tribution sequences w∗,d ∈ ∆(Si) for d ∈ {1, . . . , D}, it satisfies the inequality below,

(1− ε)
D∑
d=1

〈wdi , c
d
i 〉 ≤

D∑
d=1

〈w∗,d, cdi 〉+ (1 +K)
R(H,D)

ε
, (3.2)

where K =
∑D

d=2 ||w∗,d −w∗,d−1||1 is the number of action distribution shifts.
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The arbitrariness of the distribution w∗ in Definition 3.1 includes the best action

in hindsight. For instance of LAR algorithms, the Hedge algorithm [82] achieves

LAR with R(H,D) = log(H) by using any fixed ε > 0 as learning rate, Optimistic

Hedge [83] satisfies LAR with R(H,D) = 8log(H), and Noisy Hedge [61] with learning

rate ε has R(H,D) = 2log(H · D) for achieving LAR against shifting experts. The

learning procedures of Noisy Hedge are presented in Algorithm 1. In our context,

agents can use such algorithms to choose a time slot to consume its flexible demand

in time period T on each day, and have LAR compared to the realized cheapest time

slot.

Algorithm 1 Noisy Hedge

Initialization:

1. Fix θ ∈ [0, 1], ε > 0.

2. Let π be the uniform distribution over [H].

3. Let w1 = π.

Learning:

For d = 1, 2, . . . :

1. w̃hd+1 = whd · e−εc
h
d ;

2. ghd+1 = w̃hd+1/
∑

j∈[H] w̃
j
d+1;

3. wd+1 = (1− θ) · gd+1 + θ · π.

3.1.2 Cost-minimization Smooth Game

Traditional learning dynamics has been shown to converge to approximately op-

timal social welfare in smooth games [79]. In [61], we see fast convergence of learning

dynamics to approximate PoA of the system when LAR is coupled with smooth

game. For electricity price p that is an affine function of total demand L, i.e.

ph(Lh) = ahLh + bh with ah, bh ≥ 0 for h ∈ {1, . . . , H}, the cost-minimization game

has smoothness. Use the definition in Chapter 2, we have
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Definition 3.2 Social cost: for an action profile s = (s1, . . . , sn), the social cost is

C(s) =
n∑
i=1

costi(s). (3.3)

Minimum social cost OPTC: the system cost that suffers efficiency loss due to the

independently selfish behavior of the agents is bounded by

OPTC = min
s

n∑
i=1

costi(s). (3.4)

Definition 3.3 Cost-minimization smooth game [79]: a cost-minimization game is

(λ, µ)− smooth, with λ > 0 and µ < 1, if for every two action profiles s and s∗,

n∑
i=1

costi(s
∗
i , s−i) ≤ λ · C(s∗) + µ · C(s). (3.5)

Definition 3.4 PoA for cost-minimization games is defined as the ratio between the

maximum social cost of a Nash Equilibrium and the minimum social cost among all

action profiles, i.e. maxs∈NEC(s)/OPTC, where C(s) is the total social cost of all

agents.

In a (λ, µ) − smooth cost-minimization game, the cost imposed on any agent by

the actions of the others is bounded, and the PoA is at most λ/(1 − µ), i.e. each of

its Nash equilibria and no-regret learning outcomes in the limit have social cost at

most λ
1−µOPT [61,79]. In Proposition 3.1 below, we show that the cost-minimization

game formed by a large population of smart home agents is (5/3 + ρ, 1/3)− smooth,

where ρ << 1 is the ratio of the maximum flexible demand among agents to the

minimum total base demand among time slots in period T , i.e. ρ = max
i

lfi /min
h

Lbh

with Lbh =
∑n

i=1 l
b
i,h, exactly the same as defined in Chapter 2.

Proposition 3.1 By Lemma 2.3, the cost-minimization game formed by a set of n

smart home agents has smoothness of (5/3 + ρ, 1/3) − smooth with affine real-time

price functions, where n is a reasonable large number and ρ << 1.
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Proposition 3.1 implies an upper bound of (5+3ρ)/2 on the PoA of Nash equilibria,

as well as no-regret learning outcomes, of the cost-minimization game formed by

smart home agents. As the number of agents n increases, the ratio ρ goes to 0, and

thus the PoA’s upper bound goes to 5/2. The individual cost can be normalized

to [0, 1] for agents learning with LAR algorithms described in Section 3.1.1. In the

following, we show that as every agent conducts learning with LAR algorithms, the

cost-minimization game converges to the PoA bound approximately.

3.1.3 Learning with Full Information Feedback

In period T across D days, as agents select a time slot to consume their flexible

demand, they can always observe the real-time ex post prices of all time slots after

each day, even for the time slots they had not chosen. Therefore, we consider agents

receive full information feedback regarding real-time ex post prices which reflect the

demand situations of time slots because of the RTP scheme. Further, as mentioned

in Section 3.1.1, the form of feedback is referred to as realized feedback since for

agent i it only depends on the realized actions sd−i sampled by the opponents from

their distributions wd−i. Therefore, at the end of each round (or day), agents observe

their own entire cost vector cdi = costi(x, s
d
−i)x∈Si

through the real-time price ex post

prices, but are not aware of other agents’ costs in the game. Based on the realized

full information feedback on round d (day d in our context) and a time-invariant

cost-minimization action profile s∗ that achieves OPT , we define the hypothetical

additional cost for agent i had it used the action s∗i instead of sdi as below

ri(s
d) = costi(s

∗
i , s

d
−i)− costi(s

d), (3.6)

where ri(s
d) can be positive or negative for an arbitrary action profile sd, and be

non-negative when sd is a Nash equilibrium. In a (λ, µ)− smooth game as defined in

Definition 3.3, using the smoothness property in (3.5) to ri(s
d) in (3.6), we have
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C(sd) ≤ λ

1− µ
· C(s∗)− 1

1− µ

n∑
i=1

ri(s
d). (3.7)

Consider a sequence of action profiles sd for d = 1, . . . , D, averaging (3.7) over D

rounds (or D days in our context) and rearranging the double summation terms give

us

1

D

D∑
d=1

C(sd) ≤ λ

1− µ
· C(s∗)− 1

1− µ

n∑
i=1

(
1

D

D∑
d=1

ri(s
d)). (3.8)

If every agent i experiences vanishing average external regret in the outcome

sequence sd for d = 1, . . . , D, meaning that the additional cost [
∑D

d=1 ri(s
d)]/D is

bounded above by a o(1) term that goes to 0 as D →∞, then we can have [79]

1

D

D∑
d=1

C(sd) ≤ [
λ

1− µ
+ o(1)] · C(s∗). (3.9)

The inequality above indicates the convergence to PoA of the smooth game when

every agent i has vanishing average external regret. The LAR defined in Definition

3.1 relaxes the regret bound and thus relaxes the quality of approximation from the

bound guaranteed by smoothness [61]. Simple ”off-the-shell” LAR algorithms that

can obtain fast convergence are ubiquitous, such as Hedge and its varaints mentioned

above, and they only ask for feedback based on realized outcomes instead of expected

outcomes. If all agents use LAR algorithms for deciding when to consume their

flexible demand in the (λ, µ)− smooth game we have shown in Section 3.1.2, efficient

outcomes established in [61] can be achieved by the overall system.

Proposition 3.2 [61] If all agents use LAR algorithms satisfying inequality (3.1)

with parameter ε > 0 and function R(H,D) in a (λ, µ)− smooth game, then for the

action profiles sd drawn on round d from the corresponding actions of the agents by

the LAR algorithms, we have,

1

D

D∑
d=1

E[C(sd)] ≤ λ

1− µ− ε
OPTC +

n

D
· 1

1− µ− ε
· R(H,D)

ε
. (3.10)
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The proof for Proposition 3.2 is starightforward by using (3.1) and (3.5) with s∗

resulted by w∗. When ε << (1− µ), the approximation factor λ/(1− µ− ε) is very

close to the PoA λ/(1− µ). Therefore, for R(H,D)/D bounded above by o(1), LAR

learning dynamics quickly converges to outcomes with social cost arbitrarily close

to the social cost guaranteed for Nash equiliria by the PoA. Moreover, agents can

experience fast convergence with high probability with LAR learning.

Proposition 3.3 [61] If all agents use LAR algorithms satisfying inequality (3.1)

with parameter ε > 0 and function R(H,D) in a (λ, µ)− smooth game, then for the

action profiles sd drawn on round d from the corresponding actions of the agents by

the LAR algorithms and γ = 2ε/(1 + ε), with probability at least 1− δ for ∀δ > 0, we

have,

1

D

D∑
d=1

C(sd) ≤ λ

1− µ− γ
OPTC +

n

D
· 1

1− µ− γ
· [4R(H,D)

γ
+

12log(n log2(D)/δ)

γ
].

(3.11)

If R(H,D) = O(log(H)), then with probability at least 1− δ for ∀δ > 0, we have,

1

D

D∑
d=1

E[C(sd)] ≤ λ

1− µ− ε
OPTC +

n

D
· 1

1− µ− ε
· [O(log(H))

ε
+
O(log(n log2(D)/δ))

ε
].

(3.12)

Smart home agents in the cost-minimization smooth game established in Section

3.1.2 can use online learning algorithms of order O(log(H)) like Hedge to achieve

LAR when they decide when to consume its flexible demand, and the overall system

can thus quickly converge to the PoA bound (5 + 3ρ)/2 approximately.

3.1.4 Dynamic Population by Regeneration

In previous sections, the repeated games are conducted among the exact same set

of agents whose flexible demand in period T do not vary across D days. To mimic

the dynamic flexible demand in reality more closely, we introduce the regeneration
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mechanism [59] in this section. Same as the MAB-game model, at each round (or day)

d, every agent i is regenerated with a probability β which is termed as regeneration

rate. When an agent is regenerated, its flexible demand amount is changed and thus

its cost function is updated accordingly. As described in Section 3.1.3, the agents re-

ceive realized full information feedback about their cost vector cdi = costdi (x, s
d
−i)x∈Sd

i

through real-time ex post prices. The regeneration mechanism can account for two

situations, one is that an agent changes its flexible demand amount in period T , the

other is that an existing agent leaves while a new agent joins the game.

With dynamic population, the benchmark OPTC defined in (3.4) is not time-

invariant anymore. Instead, there existing a sequence of shifting optimal experts s∗,d

achieving minimum social cost OPTC,d due to the regeneration rate β. Therefore,

agents need to have low regret against the shifting experts s∗,di to guarantee low

overall social cost using the smoothness property discussed in Section 3.1.2 and 3.1.3.

The work in [61] and [84] show that if the following three conditions can be met, the

PoA still can be achieved approximately. Concretely, if 1. there exists a relatively

stable sequence of action profiles whose outcomes at each round approximate OPTC,d

by a factor of η; 2. all agents using low adaptive regret algorithms [85]; and 3. the

regeneration rate β is bounded above by a function of ε, then at least a ηλ/(1−µ− ε)

fraction of the optimal outcome is guaranteed. Further, in [61], it has shown that in

dynamic population smooth games, if every agent uses an online learning algorithm

that achieves LAR against shifting experts as in (3.2), the overall system can converge

to the fraction result ηλ/(1−µ−ε) approximately, which extend the efficient outcome

in Proposition 3.2 to the proposition below.

Proposition 3.4 [61] If all agents use LAR algorithms satisfying inequality (3.2)

with parameter ε > 0 and function R(H,D) in a dynamic population (λ, µ)− smooth
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game, then for the action profiles sd drawn on round d from the corresponding actions

of the agents by the LAR algorithms, we have,

1

D

D∑
d=1

E[C(sd)] ≤ 1

T
· λ · η

1− µ− ε

D∑
d=1

E[OPTC,d] +

n+E[
∑n

i=1 Ki]

D
· 1

1− µ− ε
· R(H,D)

ε
,

(3.13)

where Ki denotes the number of action changes of agent i in the stable sequence s∗,1:D
i ,

and s∗,1:D is near-optimal with
∑n

i=1 cost
d
i (s

∗,d) ≤ η ·OPTC,d.

To approximate the bound by PoA more closely, in (3.13), algorithms withR(H,D)

of lower order in D can allow higher regeneration rate β with higher E[
∑n

i=1Ki]. As

mentioned in Section 3.1.1, Noisy Hedge with learning rate ε can achieve LAR against

shifting experts with R(H,D) = 2log(H ·D), thus thus satisfies (3.13). In the next

section, numerical simulations are conducted in which agents use Noisy Hedge with

regeneration.

3.2 Numerical Simulations

3.2.1 Simulation Data

ISO-NE Test System.

An 8-Zone test system based on the power system and electricity wholesale mar-

ket organized by New England Independent System Operator (ISO-NE) is devel-

oped in [66, 86], consisting of zones Maine (ME), Vermont (VT), New Hampshire

(NH), Northeastern Massachusetts & Boston (NEMA & BOST), West-central Mas-

sachusetts (WCMA), Southeastern Massachusetts (SEMA), Connecticut (CT), and

Rhode Island (RI). As shown in Figure 3.1, there are 76 thermal generation units

(represented by red spots) distributed around 8 zones (represented by green spots).

The 76 thermal generation units are selected for inclusion in the benchmark genera-

tion mix, each treated as an independent generator, which have a combined installed
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Figure 3.1.: Transmission grid for the 8-Zone ISO-NE Test System and generation

units distribution [86].

generation capacity of 23, 100MW and account for about 70% of the total actual ISO-

NE capacity. Each generation unit j has fuel type among Coal (BIT), Coal (SUB),

Fuel Oil, Natural Gas, and Nuclear, and has a quadratic dispatch cost function ($/h)

as

Cj(Gj) = aj(Gj)
2 + bjGj + cj, (3.14)
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where Gj(MW ) denotes generator j’s power output. The cost coefficients aj and bj

in (3.14) are all non-negative as shown in Table 3.1, and thus electricity price by

marginal cost is an affine function of demand due to supply-demand balance. More

detailed data of the generators can be found in [66].

Table 3.1.: Generation cost coefficients by fuel type [66].

Fuel type a ($/MWˆ2h) b ($/MWh) c ($)

Coal 0.000116 - 0.001667 18.28 - 19.98 236 - 3043

Fuel Oil 0.0059 - 0.0342 150 - 233 0 - 10379

Natural Gas 0.002 - 0.008 21.13 - 57.03 0 - 3859

Nuclear 0.00015 - 0.00023 5-11 1000 - 1500

In addition, the 8 zones are connected by a transmission grid of 12 lines. For our

testing purpose, instead of matching real-word data, we set all transmission lines’

capacity to be 1000MW . Moreover, at each zone there are hourly fixed base-demand

that do not respond to price signals, as shown in Figure 3.2. Also, in each zone there

are distributed smart home agents that control their flexible demand to respond to

price signals.

Wind Generation.

Besides the thermal generation units provided by ISO-NE Test System, we also

consider wind power generation whose marginal generation cost is treated as zero

in our simulations. Since ready-made wind power data are not available for the

simplified ISO-NE system, we build up a time series model to generate wind speed,

and further to generate wind power output. Because of the highly nonlinear mapping

of wind speed to wind power generation, we model wind speed instead of wind power

at the most beginning [52]. With generated wind speed, we follow the approach in [52]

and [87] of using an aggregated power curve to map wind speed to wind power output
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Figure 3.2.: Zonal base demands for 24 hours in 8-Zone ISO-NE Test System.

for an entire zone. The assumption here is that wind turbines have the same power

curves and are powered by the same wind speed in each zone, respectively. In the

data report [88] by the National Renewable Energy Laboratory (NREL), the states

covered by ISO-NE have onshore wind generation capacities as in Table 3.2. Then we

scale up a single wind turbine’s power curve according to each zone’s total capacity to

be the aggregate power curve for the entire zone node without changing the turbine’s

speed specifications, and in our numerical simulations we adopt wind turbine GE 1.5-

MW which has cut-in speed 3m/s, rated speed 12m/s and cut-out speed 25m/s [89].

Specifically, we let {Vk,h;h = 1, 2, . . . } denote the kth zonal wind speed series of Vh,

where h denotes the time dimension. We use vector autoregression (VAR) model of

order p to represent the K-zone (K = 8 in our case) Gaussian autoregressive base

process (denoted as VARK(p)) as below [90]:

Vh =

p∑
j=1

αjVh−j + εh, (3.15)

where {αj ; j = 1, 2, . . . , p} are fixed K × K autoregressive coefficient matrices and

εh is the underlying white noise with K-dimension. The noise term εh has covari-
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Table 3.2.: State totals of onshore wind generations in ISO-NE

ME MA VT CT NH RI Total

Capacity

(MW)
5863 2166 2019 919 2371 1039 14377

ance matrix Σε which should be selected appropriately to ensure that each Vk,h is

marginally standard normal. Such a model can capture both autocorrelation and

spatial correlation of wind speed. Using the time series model in (3.15), we randomly

generate the noise εh to get wind speed data series. However, the model suffers the

problem that negative values can be generated. To overcome the problem, we trans-

form the wind speed generated in (3.15) and assume that the transformed wind speed

data Vk,h follow the inverse Gaussian distribution IGk,h, respectively. That is, wind

speed data in each zone have inverse Gaussian distributions with different parameters

for different time periods due to diurnal effects. Similarly, we can adjust the param-

eters for different seasons for seasonal effects. The reason for choosing the inverse

Gaussian distribution is that in [52] and [87], the inverse Gaussian distribution is

found to provide the best fit to wind speed. Specifically, we transform the wind speed

as below:

V ′k,h = F−1
IG (N(Vk,h)), (3.16)

where V ′k,h is the transformed wind speed which follow the inverse Gaussian distri-

bution, F−1
IG (·) is the inverse of the cumulative distribution function (CDF) of the

inverse Gaussian distribution and N(·) is the CDF of the normal distribution. Once

we obtain the transformed wind speed data through transformation in (3.16), we feed

it into the zonal aggregate power curves to get wind power outputs.
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Two-settlement Mechanism.

We consider that ISO-NE conducts economic dispatch optimization in a two-

settlement mechanism on an hourly basis. As we focus on the decentralized DSM

control strategies by consumers, we do not consider any demand-side active bidding

into the wholesale market. In the day-ahead market at each day, the ISO solicits

supply bids from power generators to match the demand forecasts of each hour in

the next day, and results in day-ahead prices. Since day-ahead forecast is out of

the research scope, herein we simply use rolling average of last 10 days real-time

net demand as forecast for each hour. At each zone, the net demand is the realized

total demand minus the wind generation. In real-time, the ISO matches any supply

and demand deviations with additional generation resources, and produces real-time

prices. Under RTP, consumers are charged the real-time electricity prices.

Decision Epochs and Temporal Resolution.

In our numerical studies, we conducted 4 simulation epochs and in each simulation

epoch there are 100 decision rounds (i.e. 100 days). The number of decision rounds

is just an arbitrary number set to be large enough for the repeated games to display

convergence. In addition, we consider the 4-hour peak period 17:00-21:00 as our T ,

and each hour is a time-slot for smart home agents to choose for consuming their

flexible demand in the period. Therefore, we have D = 100 and H = 4. For the

simulation purpose, we intentionally drag down the base demand at hour 20:00, as

shown in Figure 3.3. Such intention is to see if our algorithms can shift more flexible

demand to the hour with lower total base demand, and the system can have flatter

total demand with better stability if so.
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Figure 3.3.: Aggregate system demand: original v.s. dragged-down

Control Strategies by Smart Home Agent.

We consider 5000 heterogeneous smart home agents at each zone, i,e, 40000 agents

in total. Each agent controls its flexible demand sampled from beta-distribution

Beta(2, 2) × 0.5MWh with regeneration rate 0.05. In our simulations, we compare

four different decentralized DSM control strategies for smart home agents. Besides

the LAR algorithm Noisy Hedge proposed in this work, Naive-response, Adaptive-

response [91], and MAB-game approaches are simulated as follows. In Naive-response,

agents make decision based on the day-ahead forecast. In Adaptive-response, agents

sample their adaptiverate uniformly in [0, 1], respectively. In MAB-game, every agent

chooses its own bandit learning algorithm from UCB1, UCB1-Tuned, UCB1-Normal,

UCB-2, ε-greedy, and εn-greedy [74] for managing its flexible demand.
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3.2.2 Simulation Results

In this section, we compare four decentralized flexible demand management ap-

proaches (LAR learning by Noisy Hedge, MAB-game, Adaptive-response, and Naive-

response) under RTP scheme and the simulation framework described in Section

3.2.1. Intuitively, Noisy Hedge and MAB-game both conduct online learning, and

thus would perform better than heuristic approaches Adaptive-response and Naive-

response. Further, Noisy Hedge utilize full information feedback while MAB-game

only let agents learn from the feedback resulted by the action taken in each round.

Therefore, Noisy Hedge would be more advanced for using more information to make

decisions. Adaptive-response would have better performance than Naive-response

because agents have less chance of moving to the same time-slot. Our simulations

results in the following validate the intuitions.

System Demand

In Figure 3.4, we present ISO-NE system demands of Hour 17:00-21:00 across 100

days. Four simulation epochs represented by different colors are conducted for each

decentralized control approach, respectively. The black horizontal line in each subplot

is the system base demand of the hour, and Hour 20 has much lower base demand

than the other three hours. From Row 1 to Row 4, the most advanced approach Noisy

Hedge to the least one Naive-response are presented, respectively. We can easily see

that for more advanced control approach, the system has flatter demand curve and

thus less demand volatility. Noisy Hedge and MAB-game enable the system to have

its demand converge very fast while Adaptive-response and Naive-response keep the

system demand fluctuating. The high demand volatility with extreme peaks would

make dispatch work by ISO impractical and would physically endanger the whole

power system.

If we further look at the system net demands ( in Figure 3.5 through Figure

3.8, we can see with wind uncertainties, Noisy Hedge and MAB-game still generate
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Figure 3.4.: ISO-NE real-time system demand (MWh) of Hour 17:00 - 21:00 across

100 days.

much flatter demand curves. Moreover, since Noisy Hedge and MAB-game solve the

closed-loop issue using game-theoretic frameworks, the divergence between day-ahead

forecast and real-time realized demands are much less, which is further reflected by

the day-ahead and real-time prices.

LMP at NEMA & BOST

In Figure 3.9 - 3.12, we present the day-ahead and real-time locational marginal

prices (LMP) of Zone NEMA & BOST. The selected zone is a load pocket without

any thermal generation around, as shown in Figure 3.1. The other zones have very
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Figure 3.5.: ISO-NE system net demand (MWh) of Hour 17:00 - 21:00 across 100

days under Naive-response: (a) day-ahead; (b) real-time.

Figure 3.6.: ISO-NE system net demand (MWh) of Hour 17:00 - 21:00 across 100

days under Adaptive-response: (a) day-ahead; (b) real-time.

similar LMP patterns. We can see the LMPs are structured similarly to the net

system demands shown above. Specifically, Noisy Hedge results in the most flatter

LMP curve for each hour while Naive-response generates a number of price spikes.

Such price spikes would bring about undesired financial risks to energy customers.
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Figure 3.7.: ISO-NE system net demand (MWh) of Hour 17:00 - 21:00 across 100

days under MAB-Game: (a) day-ahead; (b) real-time.

Figure 3.8.: ISO-NE system net demand (MWh) of Hour 17:00 - 21:00 across 100

days under Noisy Hedge: (a) day-ahead; (b) real-time.

In addition to the price volatility for each hour, we are also interested in the price

volatility across hours. To quantitatively study the consecutive price volatility, we

define the incremental mean volatility (IMV) as below:

IMV =
1

D

D∑
d=1

1

H − 1

H∑
h=1

|pRTd,h+1 − pRTd,h |, (3.17)

and the corresponding log-scaled incremental mean volatility (LIMV) is as below:
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Figure 3.9.: Zone NEMA & BOST LMP ($/MWh) of Hour 17:00 - 21:00 across 100

days under Naive-response: (a) day-ahead; (b) real-time.

Figure 3.10.: Zone NEMA & BOST LMP ($/MWh) of Hour 17:00 - 21:00 across 100

days under Adaptive-response: (a) day-ahead; (b) real-time.

LIMV =
1

D

D∑
d=1

1

H − 1

H∑
h=1

|log(pRTd,h+1)− log(pRTd,h )|. (3.18)

The value of IMV indicates on average how much price difference there are between

two consecutive hours. In Table 3.3, we present the both IMV and LIMV for each

method. We can easily find that for consecutive hours, we also have less price volatility

under more advanced approach. Therefore, advance game-theoretic approaches can



59

Figure 3.11.: Zone NEMA & BOST LMP ($/MWh) of Hour 17:00 - 21:00 across 100

days under MAB-Game: (a) day-ahead; (b) real-time.

Figure 3.12.: Zone NEMA & BOST LMP ($/MWh) of Hour 17:00 - 21:00 across 100

days under Noisy Hedge: (a) day-ahead; (b) real-time.

generate less volatile prices for both the same hour across days and consecutive hours.

To further validate the results in Table 3.3, we run 20 simulation epochs and get

95% Confidence Interval (CI) for IMV of each approach. We have [1.48, 1.51] for

Noisy Hedge, [8.55, 8.63] for MAB-game, [16.57, 16.76] for Adaptive-response, and

[45.38, 45.64] for Naive-response.
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Table 3.3.: Zone NEMA & BOST: real-time LMP volatility

Noisy Hedge MAB-game Adaptive-response Naive-response

IMV 1.49 8.60 16.71 45.50

LIMV 0.06 0.27 0.48 0.82

Besides price volatility, when real-time price deviates from day-time price largely,

customers under RTP could have serious financial loss. We can see that the more

advanced approach demonstrates less divergence between day-ahead and real-time

prices. Numerically, we present average difference in absolute value $/MWh and

percentage % (the percentages are calculated based on day-ahead prices) for each

approach in each hour in Table 3.4 and 3.5, respectively.

Table 3.4.: Zone NEMA & BOST: average LMP divergence in absolute difference

($/MWh) between day-ahead and real-time

Hour 17 Hour 18 Hour 19 Hour 20

Noisy Hedge $0.62 $1.08 $1.20 $0.74

MAB-game $4.27 $5.98 $6.30 $2.51

Adaptive-response $4.62 $12.05 $8.36 $5.06

Näıve-response $26.78 $26.41 $26.73 $28.26

System-level Costs

Moreover, in Figure 3.4, we can find that by the online learning approaches, besides

the resulting flat demand curve in each hour across days, agents consume more flexible

demand in hour with lower system base demand, which could result in demand with

lower volatility across hours as well. Thus the system would enjoy lower dispatch costs

for meeting less volatile demand due to the convexity of generation costs. In Figure
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Table 3.5.: Zone NEMA & BOST: average LMP divergence in percentage (%) between

day-ahead and real-time.

Hour 17 Hour 18 Hour 19 Hour 20

Noisy Hedge 2.42% 3.43% 3.89% 3.10%

MAB-game 16.31% 21.65% 22.24% 11.06%

Adaptive-response 19.38% 39.64% 19.43% 21.53%

Näıve-response 100.96% 98.46% 96.64% 106.56%

3.13 and Table 3.6, we present ISO-NE system economic dispatch costs for meeting

demands associated with agents’ decentralized demand response under RTP which

have been averaged across days and simulation epochs for each hour, respectively.

We can find that more advanced control approaches have less total economic dispatch

costs, and Naive-response has about 30% more than Noisy Hedge.

Figure 3.13.: ISO-NE average system economic dispatch costs of Hour 17:00 - 21:00.

Besides, when demand fluctuates with high volatility, the system network would

suffer from congestion due to potential critical peaks. In Figure 3.14 and Table 3.6,

we present the average congestion costs for each approach in each hour. We can see

the similar trend as economic dispatch costs, i.e. more advanced control approaches
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Table 3.6.: ISO-NE average system economic dispatch costs of Hour 17:00 - 21:00 in

4 simulation epochs.

Hour 17 Hour 18 Hour 19 Hour 20 Total

Noisy Hedge $124,845.07 $129,117.32 $128,118.72 $104,183.77 $486,264.88

MAB-game $129,427.85 $135,434.51 $133,423.21 $97,809.11 $496,094.69

Adaptive-response $102,066.08 $139,018.08 $170,608.74 $106,445.55 $518,138.44

Näıve-response $160,606.45 $162,621.42 $159,921.95 $161,484.65 $644,634.47

Figure 3.14.: ISO-NE average system congestion costs of Hour 17:00 - 21:00.

Table 3.7.: ISO-NE average system congestion costs of Hour 17:00 - 21:00 in 4 simu-

lation epochs.

Hour 17 Hour 18 Hour 19 Hour 20 Total

Noisy Hedge $381.69 $478.71 $602.30 $130.38 $1,593.06

MAB-game $2,820.75 $4,027.52 $4,362.46 $1,129.72 $12,340.45

Adaptive-response $2,162.31 $7,026.47 $9,563.96 $2,268.60 $21,021.33

Näıve-response $29,785.54 $24,580.85 $19,384.64 $16,975.09 $90,726.12
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have less total congestion costs. Since Noisy Hedge has the flattest demand curve

with nearly no demand peak, associated congestion costs are thus very low. In the

opposite, Naive-response has extremely high congestion costs which are about 60

times the costs of Noisy Hedge.

With involving wind generation uncertainties, the results of the online LAR learn-

ing presented in this section still validate the system level convergence shown in Sec-

tion 3.1, and its advantages against other decentralized approaches further motivate

us to design our agent-based demand-side management mechanism more carefully

under RTP and large population.

To further validate the results, we run 20 simulation epochs for each approach,

respectively. The 95% Confidence Intervals (CI) for the system costs are summarized

as below:

Table 3.8.: 95% CI for Economic Dispatch (ED) costs and Congestion (CG) costs.

ED Cost CG Cost

Noisy Hedge [486263.28, 486266.21] [1592.13, 1595.97]

MAB-game [496093.26, 496098.61] [12337.04, 12342.70]

Adaptive-response [518134.47, 518140.77] [21017.44, 21022.99]

Nave-response [644630.81, 644638.54] [90722.25, 90729.06]
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4. MULTI-AGENT LEARNING IN DOUBLE AUCTIONS

FOR P2P ENERGY TRADING

Distributed energy resources (DERs) are a vital part of a smart grid, as such resources

can improve system reliability and resilience with their proximity to load, and pro-

mote sustainability, with the majority of DERs being solar and wind resources [62,63].

While we believe that RTP is crucial to realize the benefits of demand flexibility, in-

cluding the distributed generations (DG), such pricing mechanisms for end-customers

have not been widely adopted yet. Thus, currently to incentivize investments in

DERs, there are two general approaches: non-market-based versus market-based.

The most common and widely used policy in a non-market-based approach is feed-in-

tariff (FIT) [92] (including net-metering). While effective in promoting DERs, it may

create equity issues as consumers without DERs would face increased electricity rates

to pay for the FIT. In a market-based approach, a marketplace exists for consumers

and DER owners, also referred to as prosumers, to buy or sell energy, in a distribu-

tion system under the wholesale market. The actual rates that market participants

pay/receive would fluctuate over time, reflecting the dynamic supply and demand

conditions.

In a bilateral marketplace, a leading mechanism to match supply and demand

is through a double-side auction. While auction designs have been well studied in

the field of economics and game theory [64, 65, 93, 94], several special features of a

peer-to-peer (P2P) energy market require special attention. To name a few, a P2P en-

ergy market inherently involves repeated auctions and exogenous uncertainties (e.g.,

wind/solar availability), making the analysis of market participants’ bidding/asking

strategies much more difficult. In addition, market participants are likely to have

bounded rationality in the sense that they do not know their own valuation of en-

ergy production and consumption. Furthermore, their (implicit) valuations are likely



65

dependent, such as in a hot summer day, all buyers would value high of energy con-

sumption for air conditioning. This feature alone would nullify the assumptions of

most of the works in auction theory.

To address the theoretical difficulties, and to provide an algorithmic-framework

that can be automated to aid consumers and prosumers to participate in a repeated

double-auction, we propose a multi-agent, multi-armed bandit learning approach.

We run multiple simulations to study the market outcomes of three different auction

designs: a replicate of the wholesale market’s uniform-price auction, a variant of

Vickrey double-side auction [64], and maximum volume matching auction (which is

pay-as-bid/receive-as-ask) [65]. Numerical results indicate the convergence of the

market outcomes of a MAB game to a steady-state. Based on the simulations, from

market participants’ perspective, the uniform-price auction outperforms the other

two as it can offer higher clear quantities, total social welfare and total normalized

reward.

The rest of the dissertation is structured as follows. In Section 4.1, we will describe

in details how market participants bid/ask through bandit learning in MAB-game

auctions. Then in Section 4.2, three double-side auction mechanisms are presented

for P2P energy trading market. Numerical simulations are presented in Section 4.3

by comparing learning results in three different auction mechanisms.

4.1 Learning under MAB-game Framework

Without a P2P energy market, DER owners can only sell their generated energy

to the utility or distribution system operator (DSO) at some pre-defined fixed FIT.

Similarly, consumers and prosumers can only buy energy from the utility under some

agreed pricing contract. In this work, we consider time-of-use (TOU) pricing, widely

applied by utilities in the U.S., for customers buying energy, i.e a fixed rate for

each time period (e.g. hourly), respectively. While in a bilateral P2P marketplace,

consumers and prosumers can trade with each other at rates accepted by both buy-
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side and sell-side. Intuitively, a marketplace is desired by both sides if it can provide

agents with some rate higher FIT and lower than TOU rate. Otherwise, agents can

simply sign contract with the utility to buy/sell at TOU/FIT.

To incentivize the growth of DERs, a double-side auction can be organized for

clearing bids/asks from market participants in each time period. Agents need to de-

cide their unit price and quantities of energy for submitting bids/asks to the auctions.

In this work we assume that with some smart devices using historical and weather

data agents can accurately forecast how much energy themselves will consume or gen-

erate in very near future (e.g. in one hour), and thus quantities can be easily decided

for the auctions. While agents’ implicit valuations of energy are much more difficult

to decide. To address the difficulties, we propose a MAB-game learning approach

for a multi-agent system in which bidding/asking prices of agents are automatically

chosen by bandit learning algorithms, respectively.

More specifically, consider a double-auction where supply and demand bids are

submitted in each time period h (e.g., hourly) in each day d. Within each h, we assume

that market participants only choose a price to ask/bid, not quantities of energy. We

further discretize per-unit price bids (i.e., ¢/KWh) into K possible choices. When

each agent decides which price to bid/ask, it is similar to choosing one slot machine,

out of K such machines, to pull the arm. In this case, the agents are uncertain if they

will win (bids cleared) or lose (bids not cleared), and in the case of winning, how much

the payoff would be. This is similar to the classic multi-armed bandit (MAB) learning

problem which has been well studied in a wide of litarture, such as [74, 77, 95, 96].

A key difference here, however, is that one agent’s probability of winning and the

payoff distributions (of each arm) depend on how other market participants bid/ask.

A MAB-game [59] is formed when all agents apply bandit learning for deciding their

bid/ask with incomplete information feedback. The central idea in a multi-agent

MAB game is that each agent assumes that the winning probability, and the payoff

distribution, though both unknown to the agent, are stationary, and hence can define

cumulative regrets for the auction in period h up to day D.



67

For illustration purposes, the herein presented formulas concern a single trading-

period h (e.g. 1 hour) across days. We consider a set of agents A = Ab ∪ As, where

Ab and As are the sets of buyers and sellers, respectively. Further, we let PFIT and

PTOU denote the FIT and TOU rate in ¢/KWh, respectively, and we only consider

the situation where the FIT is lower than the TOU rate, i.e. PFIT < PTOU .

4.1.1 Discrete Price Arms

The majority of DERs are solar and wind resources, and thus we consider their

generation marginal costs as zero despite of fixed installment and maintenance fees.

Therefore, any rate higher than FIT would be attractive to DER owners. Similarly,

energy buyers desire for any rate lower than TOU rate. Therefore, any rate (in

¢/KWh) in the range [PFIT , PTOU ] would profit both energy buyers and sellers, and

any reasonable agent i ∈ A has a bidding/asking price space Pi ∈ Z≥0 which contains

both PFIT and PTOU .

Herein, each discrete unit price in space Pi is a price arm that can be picked up for

the agent’s bid/ask. How to choose a price arm is complicated due to the dynamics of

auctions. For each individual agent, it prefers a lower/higher auction clear price if it

is a buyer/seller. However, it is not necessary that an agent’s bidding/asking price is

the auction clear price which depends on the collection of bids and asks. Since agents

are not bidding/asking based on their implicit valuations (which are not known by

agents), under some auction designs, like uniform price double auction, some agents

may take chance by bidding/asking some extreme high/low unit price to make their

bids/asks more likely to be accepted by the auction while enjoy the more profitable

clear price. In Section 4.1.3, we will discuss the performance bound (i.e regret bound)

of picking up price arms in the auction games by bandit learning for agents.
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4.1.2 Rewards

The reward each agent receives in the auction represents the normalized level of

the actual sent/received payment, Λi, between the lower and upper benchmarks by

PTOU and PFIT which are denoted by Λi and Λi, respectively. Herein, we let qi denote

the demand/supply of agent i, and qi is negative for a buyer and positive for a seller,

i.e. qi < 0|i∈Ab
and qi > 0|i∈As . For a buyer agent, the lower and upper benchmarks

refer to buying all of qi at PTOU and PFIT , respectively. In the opposite, a seller agent

has its lower and upper benchmarks with selling qi at PFIT and PTOU . Therefore, we

have

Λi = qi · [PTOU · 1{i∈Ab} + PFIT · 1{i∈As}], (4.1)

Λi = qi · [PFIT · 1{i∈Ab} + PTOU · 1{i∈As}]. (4.2)

The actual sent/received payment of each agent ∀i ∈ A consists of two parts

for trading in the auction and with the utility, which are denoted by Λau
i and Λut

i ,

respectively. Thus, we have

Λi = Λau
i + Λut

i . (4.3)

With attending the auction, market participants send/receive payments based on

the clear result. Specifically, each agent’s sent/received payment in the auction is

calculated according to its clear price, paui , and clear quantity, qaui , as below

Λau
i = paui · qaui . (4.4)

In auctions like uniform price double auction, all agents have the same clear price.

While in the maximum volume matching auction [65], the agents may have different

clear price since they pay/receive at their bid/ask price.

However, it is not necessary that all agents are buying/selling in the P2P market

since some agents’ bids/asks may not be (fully) cleared by the market. In this case,

for not wasting the (renewable) energy from DERs, prosumers are allowed to sell the

unclear energy to the utility at PFIT . Also, consumers always can buy their demand
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not satisfied by the P2P market from the utility at PTOU . Therefore, the sent/received

payment to/from the utility for agent i is as below

Λut
i = puti · quti , (4.5)

where puti = PFIT if i ∈ As and puti = PTOU if i ∈ Ab, and quti denotes the unclear

energy quantity.

Then we have qi = qaui + quti . When the agent’s auction clear price paui ∈

[PFIT , PTOU ], we have Λi ∈ [Λi,Λi] and thus we have the normalized reward πi ∈ [0, 1]

calculated as below

πi = (Λi − Λi)/(Λi − Λi). (4.6)

In Eq. (4.6), we can see for paui = PFIT , a buyer agent has πi = 1 while a

seller agent has πi = 0, and for paui = PTOU we have the opposite values. However,

in Section 4.1.1 we mentioned that the agent’s bidding/asking price space Pi con-

tains PFIT and PTOU , and thus the agent may bid/ask some price outside the range

[PFIT , PTOU ]. Though it is counter-intuitive, the auction clear price paui could be out-

side [PFIT , PTOU ], even in the uniform-price double auction if a significant population

are doing so. In the case paui < PFIT , we consider πi = 1|i∈Ab
and πi = 0|i∈As ; for

paui > PTOU , πi = 0|i∈Ab
and πi = 1|i∈As . Combined with Eq. (4.6), we have

πi =


1 · 1{i∈Ab} + 0 · 1{i∈As}, for paui < PFIT

(Λi − Λi)/(Λi − Λi), for PFIT ≤ paui ≤ PTOU

0 · 1{i∈Ab} + 1 · 1{i∈As}, for paui > PTOU

, (4.7)

where Λi, Λi, and Λi can be achieved by Eq. (4.1), (4.2), and (4.3), respectively.

4.1.3 Pricing by Bandit Learning

As in Eq. (4.7), we can see the reward πi of each agent highly depends on its

clear price in auction which further depends on its bid/ask and the collection of other

agents’ bids/asks. The dynamic auction games result in nonstationary clear prices,
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which makes the bidding/asking decision-making difficult for agents. In regular game

theory literature, the standard equilibrium concept for dynamic games of incomplete

information is Perfect Bayesian Nash equilibrium (PBNE) [73, 97]. In a PBNE, the

collection of each agent’s action profile maps the entire history of the games to each

agent’s feasible set of actions, under the assumption that each agent maintains their

beliefs of other competitors’ distribution of action space based on the Bayes’ updating

rule. For a large population, the assumption requirement is impractical and implau-

sible for small-scale (in terms of computation power) agents in P2P energy trading

auctions. This is where MAB-game comes in. Instead of tracking their competitors’

tremendous states, agents only need to look at their own history in repeated games.

A recent breakthrough on MAB-game in [59] has provided us with the theoretical

foundations in studying the auction games with a large population in this work. A

key point in MAB-game with many agents is that as every agent conducts its own

stochastic no-regret bandit learning independently in repeated games, the finite sys-

tem will approximately converge to the unique mean field steady state (MFSS) of

the infinite population system. The population profile (i.e. the proportion of pop-

ulation on each arm) is stationary in the MFSS, and the approximation gets better

as the finite population increase. Under the stationary population profile, efficient

outcomes will be achieved since each individual agent can solve its MAB problem

with stationary reward distributions as in classic MAB problem settings.

We let f denote the energy quantities’ stationary population profile of the agent

set A, where f(k) represent the distribution of buying and selling energy quantities

on price arm k. With stationary population profile f , each agent has its underlying

optimal bid/ask price arms whose associated clear price results in the optimal reward

as below

π∗i (f) = max
k∈Pi

E[πi(f , k)], (4.8)

where πi(f , k) denotes the reward of agent i for picking up price arm k under popu-

lation profile f .
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Suppose that for the trading-period h across D days (i.e. D rounds in our context),

agent i uses a policy σ which is an algorithm picking up the next price arm based

on its learning history. The history is only about the agent’s own sequence of played

price arms and corresponding observed rewards, which largely reduces the knowledge

dimension that the agent has to maintain. Though the underling optimal reward

π∗i (f) is unknown to the agent, the policy σ enables the agent to learn about the

distributions of rewards for each price arm. Let Nσ(D, k) be the number of times

price arm k has been picked up by the policy σ during all the D rounds. Then for

agent i, we define its cumulative regret under the policy σ for every D rounds as

below

∆σ = π∗i (f) ·D −
∑
k∈Pi

E[πi(f , k) ·Nσ(D, k)]. (4.9)

The regret ∆σ in Eq. (4.9) is the expected loss due to the fact that the policy does

not necessarily always pick up the optimal price arm under the stationary population

profile which is unknown to the agent. The policy σ is a no-regret bandit learning

policy if the regret in Eq. (4.9) satisfies:

1

D
∆σ < R(D,K), (4.10)

for some o(1) function R in terms of D; where K is the cardinality of Pi, i.e. |Pi| = K.

Then R(D,K) gives an upper bound to the average regret under the policy σ. For

the bandit learning algorithms based on UCB [74], such as UCB1, UCB-tuned and

UCB2, we have logarithmic regret bounds that are o(1) in terms of total rounds D:

R(D,K) = α(K)· 1
D
ln(D). Therefore, as the auction games go on, the agent’s average

regret goes to 0.

4.2 Double Auction Designs

In this section, we first define the individual monetary utility, corresponding total

social welfare, and auctioneer’s profit with a P2P energy market auction. Then we

discuss about three different double-side auction designs that can be applied for the
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market clear: the uniform-price auction, a variant of Vickrey double-side auction [64],

and the maximum volume matching auction [65].

4.2.1 Social Welfare and Auctioneer’s Profit

As mentioned above, agents are rarely aware of their private valuation of energy

production and consumption. To define agents’ individual monetary utility, we con-

sider it as profit for energy sellers and costs reduction for buyers with participating

the P2P market. Since for renewable DER owners, the marginal cost is almost zero,

the total profit of energy seller i ∈ As is as below

ui|i∈As = paui · qaui + PFIT · quti , (4.11)

which has the same value as Λi in Eq. (4.3). For consumers, they have to pay at

PTOU without the P2P market, thus we have the cost reduction as

ui|i∈Ab
= (PTOU − paui ) · |qaui |. (4.12)

In spite of the auctioneer’s profit, the total social welfare of all agents, denoted

by UA, is simply the aggregation of all agents’ utility, i.e. UA =
∑

i∈A ui. For the

auctioneer (which can be played by the utility or DSO), the total auction trading

surplus it earns is the sum of bid-ask price difference for each energy unit traded in

the auction, which is calculated as below

UM =
∑
i∈Ab

(paui · |qaui |)−
∑
i∈As

(paui · qaui ), (4.13)

where UM denotes the auctioneer’s profit.

4.2.2 Uniform-Price Double Auction

If price is plotted as a function of aggregate energy quantity following the conven-

tion in economics, then the energy demand and supply curves slope downward and

upward, respectively, as shown in Figure 4.1. Graphically, the intersection (P ∗, Q∗)
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Figure 4.1.: A uniform-price double auction market.

of the supply and demand curves clears the market at which the quantity demanded

is equal to the quantity supplied. The price P ∗ is the equilibrium price, and the corre-

sponding energy quantity is the equilibrium quantity. As such, all agents pay/receive

at the uniform price P ∗, and the quantity Q∗ in total is traded in the auction. Then

the rest supply Qs −Q∗ is sold to the utility at PFIT , in which Qs denotes the total

energy supplied by DERs, i.e. Qs =
∑

i∈As
qi. Also, the unsatisfied demand is pur-

chased from the utility at PTOU . Therefore, in Figure 4.1, the shadow area in light

purple represents the total social welfare UA, i.e.

UA = PTOU ·Q∗ + PFIT · (Qs −Q∗). (4.14)

Since paui = P ∗ for all agents i ∈ A, and both
∑

i∈Ab
|qaui | and

∑
i∈As

qaui are equal to

Q∗, by Eq. (4.13) the auctioneer earns zero profit in the auction, i.e. UM = 0.
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Figure 4.2.: A Vickrey-like double auction market (Case I).

4.2.3 Vickrey Variant Double Auction

Instead of paying/receiving at the uniform equilibrium price, we consider the

Vickrey-like auction clear on both sides of the market., i.e. paying/receiving the

price at Q∗ on the demand/supply curve, respectively. The mechanism works as fol-

lows. Similar to the uniform-price auction, all bids/asks are sorted down/up by price,

and we can have stair-wise demand/supply curves as shown in Figure 4.2, in which

each stair represents the collective bids/asks at price arm pbn/psm. At the critical

intersection point (P ∗, Q∗) where the aggregate demand and supply meet, there are

collective bid (pbN , qbN) and ask (psM , qsM). Then we consider two cases. Case I (as

shown in Figure 4.2):

pbN ≥ psM ≥ pbN+1, (4.15)

M−1∑
m=1

qsm ≤
N∑
n=1

qbn ≤
M∑
m=1

qsm, (4.16)
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and Case II:

psM+1 ≥ pbN ≥ psM , (4.17)
N−1∑
n=1

qbn ≤
M∑
m=1

qsn ≤
N∑
n=1

qbm. (4.18)

Herein, we describe the clear mechanism for Case I; Case II is similar.

Rule 1

If
∑N−1

n=1 qbn ≥
∑M−1

m=1 qsm, there is overdemand. All the asks with m < M sell

all their supply qsm at price psM ; all the asks with m ≥M sell their supply at PFIT

to the utility. All the bids with n < N buy at pbN and each of them buys a volume

equal to qbn − (
∑N−1

n=1 qbn −
∑M−1

m=1 qsm)/(N − 1); all the unsuccessful bids buy at

PTOU from the utility.

Rule 2

If
∑N−1

n=1 qbn ≤
∑M−1

m=1 qsm, there is oversupply. All the bids with n < N buy all

their demand qbn at price pbN ; all the bids with n ≥ N buy their demand at PTOU

from the utility. All the asks with m < M sell at psM and each of them sells a volume

equal to qsm − (
∑M−1

m=1 qsm −
∑N−1

n=1 qbn)/(M − 1); all the unsuccessful asks sell at

PFIT to the utility.

According to the clear rules, the total trade volume in the auction is

Qau = min(
N−1∑
n=1

qbn,

M−1∑
m=1

qsm). (4.19)

Then the total social welfare for all agents can be calculated as below (which is

represented by the light purple area in Figure 4.2)

UA = [(PTOU − pbN) + psM ] ·Qau + PFIT · (Qs −Qau). (4.20)

The auctioneer’s profit represented by the yellow shadow area in Figure 4.2 is as

below

UM = (pbN − psM) ·Qau. (4.21)
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4.2.4 Maximum Volume Matching Double Auction

Other than chasing socail welfare for agents or profit for acutionner, the auction

design proposed in [65] is for maximizing the traded volume given a set of bids and

asks. The idea of market clear can be intuitively and graphically illustrated in Figure

4.3. Suppose the demand/supply curves are based on the bids/asks shown in Fig 4.1.

The supply curve is flipped horizontally and then shifted right towards the demand

curve until the two curves touch. The distance, denoted by Qau, that it can move

is the minimal horizontal distance between the flipped supply curve and the demand

curve which is exactly the maximum trading volume of the auction can be achieved.

Then for the energy quantity 0 through Qau, the corresponding bids (pbn, qbn) on the

demand curve and asks (psm, qsm) on the shifted supply curve are matched, and then

successfully matched buyers/sellers pay/receive at their bid/ask price, respectively.

Let Sb and Sa denote the set of successful bids and asks, respectively. The supply

amount Qs −Qau of the unsuccessful asks is sold to the utility at PFIT , and also the

unsatisfied demand is bought at PTOU .

According to the clear mechanism, the total social welfare of all agents is as below

(represented by the light purple shadow area in Figure 4.3)

UA =
∑
n∈Sb

(PTOU − pbn)qbn +
∑
m∈Sa

psmqsm + PFIT (Qs −Qau). (4.22)

The auctioneer’s profit is still the auction trading surplus (represented by the

yellow shadow area in Figure 4.3) as below:

UM =
∑
n∈Sb

(pbn · qbn)−
∑
m∈Sa

(psm · qsm). (4.23)

4.3 Numerical Simulations

In this section, we present the simulation results with distributed bandit learning

corresponding to the three double-side auction designs for P2P energy trading as

described in the previous section.
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Figure 4.3.: A maximum volume matching auction market.

4.3.1 Input Data

Decision epochs and temporal resolution

As a starting point, we do not consider time-linking constraints in our models,

and each trading window is independent of others in a day. The simulations presented

herein concern a single one-hour trading period for the peak hour 17:00 - 18:00 across

300 days, i.e. D = 300.

TOU/FIT and decision space

We consider fixed TOU/FIT across days, and we let PTOU = 11 ¢/KWh and

PFIT = 5 ¢/KWh. All agents has the same decision space P that contains all the

discretized price arms through 0 ¢/KWh to 14 ¢/KWh, and thus PTOU/PFIT are

included in P .
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Bandit learning algorithms for pricing

For picking up price arms to bid/ask in the auctions, each agent i ∈ A uniformaly

chooses its bandit learning algorithms among UCB1, UCB-tuned, UCB2, and ε −

greedy. Interested readers can refer to [74] for the details of the algorithms.

Consumers and energy demand to buy

In the numerical test cases, we simulate 2000 distributed residential household

consumers that participate in the auctions, i.e. |Ab| = 2000. According to the Resi-

dential Residential Energy Consumption Survey (RECS) by U.S. Energy Information

Administration (EIA) [98], a residential customer consumes about 30 KWh per day

on average. Consider it is a peak hour, we naively let consumers repeatedly sam-

ple their energy demand quantities from a Uniform distribution U(1.5, 2) in KWh,

independently, for the hour across days, which is slightly higher than the average

consumption level.

Prosumers and energy supply to sell

On the sell-side, we also consider 2000 prosumers with DERs, i.e. |As| = 2000.

For the DERs, we only consider two renewable resources, solar and wind, for small-

scale distributed agents in this work. Due to the popularity of distributed residential

solar panels (especially in western), we assume 4/5 of the prosumers have solar-based

distrbuted generation, and the other 1/5 have wind-based. In the simulations, we

use System Advisor Model (SAM) [99] developed by National Renewable Energy

Laboratory (NREL) to model residential generation by solar and wind. The weather

resource data for Arizona State by NREL is used for the simulations in SAM.

For the solar generation, we consider all panels have nameplate capacity as 2

KWdc with DC to AC ratio of 1.2 and inverter efficiency of 96%. For each distributed

solar resource owner, the module type and array type have equal chance to be one of
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Table 4.1.: Wind turbine models

Model KW Rating

Energy Ball HEA V100 1.1m 0.6KW 0.5

Bergey BWC XL.1 1

True North Power Arrow 2m 1KW 1.23

Future Energy FE1048U 1.8m 1KW 1.5

Hummer 3.1m 1KW 2

Energy Ball HEA V200 1.98m 2.5KW 2.23

Southwest Windpower Skystream 3.7m 1.9KW 2.63

Westwind 3.7m 3KW 3.1

{Standard, Premium, Thin Film} and {Fixed Open Rack, Fixed Root Mount, 1 Axis

Tracking, 1 Axis Backtracking, 2 Axis Tracking}, respectively. All other inputs are

set as default in the Photovoltaic PVWatts simulations for distributed residential in

SAM. More details about photovoltaic simulations can be found in [99–101].

For the simulations of distributed residential wind generation, each wind-based

prosumer samples its turbine model uniformly from the 8 wind turbine models listed

in Table 4.1, and the number of turbines owned by the prosumer is uniformly sampled

among 1 through 4. All other inputs are set as default in the Wind Residential

simulations in SAM. The turbines’ specifications, such as wind power curves and

turbine layout, can be found in [99,101].

4.3.2 Numerical Results

The three different auction designs are simulated with the input data. We use UP,

VV, and MV to denote uniform price auction, Vickrey variant auction, and maximum

volume matching auction, respectively.
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In Figure 4.4, the clear quantity results of the auctions are presented, and we can

see the results all have a trend of convergence. The counter-intuitive phenomenon is

that in the later phase, UP is more likely to have a higher level of traded volume than

MV which is designed to maximize traded volume. The reason is that with bandit

learning, agents are updating their bids/asks dynamically, and thus the collective

bids/asks schedules are not necessarily the same for different auctions. Besides the

volume, we can see after a while of learning, UP’s total clear quantity has smaller

volatility than the other two auction designs. Therefore, in terms of auction clear

quantity, UP outperforms VV and MV, and thus the auction design can let more

renewable DERs be utilized.

Similar to the clear quantity, agents’ total social welfare also display the conver-

gence trend in the auctions, as shown in Figure 4.5. Associated with more clear

quantity, buyers and sellers in UP have higher social welfare (in $) than in the other

two auctions in the later auctions. The performance of VV and MV are close to each

other. Accordingly, for the total normalized reward, the results display very similar

patterns as shown in Figure 4.6. Though UP outperforms the other two auctions for

benefiting market participants and incentivizing DERs, it is not necessary that the

auctioneer prefers it as well. As discussed in Section 4.2, the auctioneer has no profit

in UP due to the zero trading surplus, which is validated by our simulations as shown

in Figure 4.7. According to the results, the auctioneer can achieve the most profit in

MV, though the profit fluctuations of MV are much higher than VV’s.

To further validate the results, we conduct four simulation epochs with the same

input settings for each auction mechanism. We compute the average of 300 auction

rounds for each simulation epoch. The summaries for energy clear quantity, total

social welfare of all agents, total normalized rewards of all agents, and auctioneer’s

profit are presented in Table 4.2 to Table 4.5, respectively. We can clearly see that the

UP auction has the best performance on average from agents’ perspective and it can

clears the most energy quantity for DERs. The MV auction can bring the auctioneer

the most profit on average.
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Figure 4.4.: Total clear energy quantities (KWh) in the auctions.

Figure 4.5.: Total social welfare ($) of all buyers and sellers in the auctions.
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Figure 4.6.: Total normalized reward of all buyers and sellers in the auctions.

Figure 4.7.: Auctioneer’s profit ($) in the auctions.
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Table 4.2.: Average total clear quantity (KWh) of all agents in the auctions.

Auction Sim 1 Sim 2 Sim 3 Sim 4 Average

UP 2238.63 2238.13 2234.67 2242.38 2238.45

VV 1876.11 1859.64 1887.67 1840.89 1866.08

MV 2031.05 2035.79 2018.3 2024.96 2027.52

Table 4.3.: Average total social welfare ($) of all agents in the auctions.

Auction Sim 1 Sim 2 Sim 3 Sim 4 Average

UP 267.61 267.55 267.30 267.87 267.58

VV 230.19 229.94 231.77 229.13 230.26

MV 214.19 215.31 213.06 214.57 214.28

Table 4.4.: Average total normalized reward of all agents in the auctions.

Auction Sim 1 Sim 2 Sim 3 Sim 4 Average

UP 1521.38 1520.91 1518.39 1523.36 1521.01

VV 1083.80 1083.24 1110.08 1075.95 1088.27

MV 1117.32 1127.74 1103.35 1113.70 1115.53

Table 4.5.: Average auctioneer profit ($) in the auctions.

Auction Sim 1 Sim 2 Sim 3 Sim 4 Average

UP 0 0 0 0 0

VV 16.20 15.82 15.05 15.10 15.54

MV 40.96 40.10 41.26 40.26 40.64
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5. CONCLUSIONS AND FUTURE WORK

In this dissertation, we study different decentralized approaches to implement real-

time pricing and demand response in an energy market: the naive-response model,

the adaptive-response model, the MAB-game model, and the LAR-game model. The

resulting real-time prices from the naive-response model exhibit large variations on a

daily basis, confirming the concerns raised in [38]. This large variation is fundamen-

tally due to operating a closed-loop system in an open-loop fashion. Based on simula-

tion results, we see that such an issue can be overcome by introducing learning-based

algorithms to consumers, which will bring randomization into their decision making,

and hence, avoiding the problem of having all consumers move to the same direction

at the same time. While the adaptive mechanism is designed along this line, we see

through simulations that the game-theoretical approaches can achieve much greater

benefits from a system perspective. Also, we establish the performance bounds for

both MAB-game and LAR-game approaches, and we can see as agents in LAR-game

utilize full information feedback, the overall system thus converges to more efficient

outcomes.

The game-theoretical approaches introduced in this work, however, has several

limitations. First and foremost, while its feature of not relying on any price forecasts

(and only learns through the history under real-time pricing) may be considered as

a strength, it can also be viewed as a weakness, especially when the power system

is experiencing some emergency situations, such as the sudden loss of generation as-

sets/transmission lines. Demand response is expected to be able to provide emergency

response in such situations. However, this is not possible within the current MAB-

game framework. We are investigating approaches for consumers to incorporate price

forecasts (or any emergency signals sent from ISOs) in their bandit learning algo-

rithms. Second, the theoretical results are obtained without exogenous uncertainty.
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In this context, however, uncertainties (such as renewable outputs, forced outage of

physical assets) are prevalent. To extend the results in this dissertation to the case

of exogenous uncertainty (faced by all agents) would be a significant endeavor.

We propose a MAB-game approach for market participants choosing price for their

energy bid/ask in P2P double-side auctions. The bandit learning approach allows each

individual agent to make a decision according to its own history other than its belief

about other agents which is impractical and implausible to maintain under a large

pop- ulation. We conduct simulations for the approach under three different double

auction designs, and the results indicate the convergence of clear quantities, total

social welfare and total normalized reward for agents. Moreover, the uniform-price

double auction outperforms the other two in terms of market participants’ benefits.

For auctioneer, the maximum volume matching offers the highest profit. In future,

potential research directions are studying about the robustness of the approach un-

der large external uncertainties, and the interactions between auctions in different

locations or distribution systems under transmission constraints.
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