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ABSTRACT

Chen, Fu-Chen PhD, Purdue University, December 2019. Deep Learning Studies for
Vision-based Condition Assessment and Attribute Estimation of Civil Infrastructure
Systems . Major Professors: Mohammad R. Jahanshahi and Edward J. Delp.

Structural health monitoring and building assessment are crucial to acquire struc-

tures’ states and maintain their conditions. Besides human-labor surveys that are

subjective, time-consuming, and expensive, autonomous image and video analysis is

a faster, more efficient, and non-destructive way. This thesis focuses on crack de-

tection from videos, crack segmentation from images, and building assessment from

street view images. For crack detection from videos, three approaches are proposed

based on local binary pattern (LBP) and support vector machine (SVM), deep con-

volution neural network (DCNN), and fully-connected network (FCN). A parametric

Näıve Bayes data fusion scheme is introduced that registers video frames in a spa-

tiotemporal coordinate system and fuses information based on Bayesian probability

to increase detection precision. For crack segmentation from images, the rotation-

invariant property of crack is utilized to enhance the segmentation accuracy. The

architectures of several approximately rotation-invariant DCNNs are discussed and

compared using several crack datasets. For building assessment from street view im-

ages, a framework of multiple DCNNs is proposed to detect buildings and predict

their attributes that are crucial for flood risk estimation, including founding heights,

foundation types (pier, slab, mobile home, or others), building types (commercial,

residential, or mobile home), and building stories. A feature fusion scheme is pro-

posed that combines image feature with meta information to improve the predictions,

and a task relation encoding network (TREncNet) is introduced that encodes task

relations as network connections to enhance multi-task learning.
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1. INTRODUCTION

Structural health monitoring and building assessment are crucial to acquire struc-

tures’ states and maintain their conditions. Periodic inspections for structures and

buildings are necessary to obtain the up-to-date estimations for any possible defect

on them. Remote visual testing (VT) is a common method to inspect the surface

defects as a non-destructive testing (NDT). Due to the developments of robotics and

camera systems, various types of inspection data can be collected more efficiently via

using swarm robot [1], unmanned aerial vehicle (UAV) [2–4] or depth sensor [5–10],

for instance. Recently, autonomous image-based or video-based approaches have been

developed that provide faster, inexpensive, and objective data analysis for structural

conditions and allow more frequent inspections [11–14]. Without enough inspections

or assessments, the unseen defects might deteriorate and cause serious hazards.

For instance, the U.S. is the world’s largest supplier of commercial nuclear power.

In 2015, 100 commercial reactors produced a total of 797 terawatt-hours of electric-

ity accounting for 19.5% of the nation’s total electric energy. Before 2010, eight of

the nuclear power plant incidents cost more than 140 million in property damage

in the U.S. [15]. Aging degradation is the main cause that leads to function losses

and safety impairments caused by cracking, fatigue, embrittlement, wear, erosion,

corrosion, and oxidation [16]. Aging components in nuclear power plants are suscep-

tible to the hazardous environments of radiation, reactive chemicals, high heat, high

pressure, borated water, and synergistic effects. One important factor for causing

incidents is cracking that may result in leaking. For instance, in 1996 a leaking valve

caused an accident in the Millstone Nuclear Power Station in Waterford, Connecticut

which cost 254 million [15]. In 2010, leaked radioactive tritium from deteriorating

underground pipes cost 700 million in the Vermont Yankee Nuclear Power Plant in

Vernon [15]. Periodic inspection of reactors in nuclear power plants is crucial to en-
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sure safe operations. Due to the hazardous environments aforementioned, a direct

inspection is not feasible. Currently, many of the nuclear power plants conduct re-

mote VT with radiation-hardened video systems [17] for inspecting reactors. A typical

system includes a robotic arm that maneuvers a camera to remotely record videos

of underwater component surfaces. Then, technicians review the videos and iden-

tify the cracks. This human-involved task is subjective, time-consuming and tedious.

Recent blind testing indicated that the reliability of the VT needs to be increased

since reviewing large amount of complex data affords ample opportunity for human

error while enhanced data analytics tools can significantly reduce potential human

errors [18].

As a result, this thesis focuses on developing new frameworks and approaches

for autonomous vision-based structure and building inspections, including crack de-

tection from videos, crack segmentation from images, and building assessment from

street view images. For crack detection from videos, three approaches are proposed

based on local binary pattern (LBP) and support vector machine (SVM), deep con-

volution neural network (DCNN), and fully-connected network (FCN). To leverage

the spatiotemporal coherence of video frames, a parametric Näıve Bayes data fusion

scheme is developed that registers video frames in a spatiotemporal coordinate sys-

tem and fuses detection scores based on Bayesian probability to increase detection

accuracy. For crack segmentation from images, the rotation-invariant property of

crack is utilized to improve the segmentation precision. The architectures of two ap-

proximately rotation-invariant DCNNs are evaluated on different crack and corrosion

datasets. For building assessment from street view images, a framework of multiple

DCNNs is proposed to detect buildings and predict their attributes that are critical

for flood risk assessment, including founding heights, foundation types (pier, slab, mo-

bile home, or others), building types (commercial, residential, or mobile home), and

building stories. In the framework, a feature fusion scheme is proposed that combines

image feature with meta information to improve the prediction of foundation height.



3

Also, a task relation encoding network (TREncNet) is introduced that encodes task

relations as network connections to enhance multi-task learning.
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2. CRACK DETECTION FROM VIDEOS

2.1 Introduction

The U.S. is the world’s largest commercial nuclear power supplier that has 99

nuclear power reactors in 30 states, operated by 30 different power companies. Un-

fortunately, eight severe nuclear power plant incidents have happened in the U.S,

each cost more than 140 million USD in property damage [15]. Many nuclear power

plants are suffering from aging degradation that is the main cause of function losses

and safety impairments from cracking, fatigue, embrittlement, wear, erosion, corro-

sion, and oxidation [16]. In 1996, a leaking valve resulted in an incident in Millstone

Nuclear Power Station that cost 254 million USD [15]. In 2010, radioactive tritium

leaked from deteriorating underground pipes that cost 700 million USD in Vermont

Yankee Nuclear Power Plant [15].

To prevent critical incidents from happening, frequent inspection of nuclear power

plant internal components is necessary. Typically, the internal components, including

reactors, are under the hot water with radiation, which makes direct inspections not

feasible. Thus, current practices conduct remote visual testing (VT) with radiation-

hardened robotic systems for the inspections [17] where robotic arms maneuver cam-

eras to record videos of underwater component surfaces remotely. Then, human

technicians need to review the videos and identify the cracks, which is costly, subjec-

tive, time-consuming and tedious. As indicated by recent blind tests, reviewing large

amount of complex data affords ample opportunity for human errors. Autonomous

data analytic tools can significantly reduce the potential errors and enhance the reli-

ability of VT [18].

Although several vision-based crack detection approaches are developed for con-

crete, rock, or pavement surfaces, only a few approaches consider crack detection on
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metallic surfaces. Non-destructive techniques have been reviewed in [19] for creep

damage detection in power plant steels where only two vision-based approaches are

reported and none of them focuses on crack detection. Recent vision-based steel

surface inspection systems have been reviewed in [20] including crack detection algo-

rithms. Although those algorithms might achieve more than 90% true positive rates

in their applications, they fail to detect cracks on metallic surfaces in nuclear power

plants [21].

The existence of tiny cracks and noisy patterns on metallic surfaces makes detect-

ing cracks a very challenging task since most of the noisy patterns have linear shapes

and stronger contrast compared to the tiny cracks. Fig. 2.1a shows a sample video

frame with a crack and its surrounding noisy patterns that include a scratch, a grind

mark, and a weld. Fig. 2.1b demonstrates samples of tiny cracks with low contrast

and variant brightness that are hardly visible.

The majority of existing approaches focus on detecting cracks in a single image.

If a crack is not detected or a noisy pattern is falsely detected as a crack in the image,

no other information is available to correct the detection results. Also, if a stitched

image from video frames is used for crack detection, the stitching process might blur

or even completely remove high frequency components (e.g., edges) by blending the

overlapping regions of frames. This makes detecting tiny cracks much harder. As

a result, this study proposes a new data fusion scheme based on Näıve Bayes that

considers the spatiotemporal coherence of video frames and achieves higher hit rates.

2.2 Related Work

Edge detection and morphological operations are popular approaches that extract

local changes in image intensity for detecting cracks. They perform well for concrete

or pavement surfaces while the cracks have stronger edges than noisy patterns. Edge

detection algorithms, including Sobel, Canny, fast Fourier transform, and fast Haar

transform, were evaluated in [22] for crack detection where the fast Haar transform
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(a)

(b)

Fig. 2.1.: Challenges of detecting cracks from inspection videos of nuclear power

plants: (a) a crack with noisy patterns around it, and (b) tiny cracks with low contrast

and variant brightness.
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yielded the best performance. A crack detection approach [23] used noise removal,

multi-scale Hessian matrix, probabilistic relaxation, and adaptive thresholding for

concrete surfaces. Erosion, dilation, opening, closing, top-hat transforms, and cur-

vature evaluation were adopted in [24] to segment cracks in buried sewer pipes. An

enhanced top-hat operation with multiple structuring elements was employed in [25]

to detect cracks of different orientations. In most cases, they could achieve more than

90% detection accuracy.

However, since these methods only consider the linearity and continuity of cracks,

they fail to detect them if noisy patterns exist in the scene with similar (or even

stronger) linearity and continuity. For more complicated cases where the noisy pat-

terns have edge-like shapes, considering more complex image features is a better strat-

egy to differentiate cracks from them. For more complicated scenes, using complex

image features is a better strategy to detect cracks. An image percolation method [26]

was proposed to segment the concrete cracks based on the connectivity and shape.

Early termination procedures were conducted to reduce the execution time.A LBP

operator with a look-up table was adopted in [27] to distinguish crack and non-crack

pixels for pavement surfaces. A study [28] used the features of crack blobs to classify

cracks and non-cracks using neural networks and SVM. An AdaBoost classifier was

trained in [29] using Gabor features to detect pavement cracks. In [30], SVM and

wavelet features were used to detect bridge cracks in noisy and complex images.

For metallic surfaces, vision-based crack detection methods have been reviewed

in [20] for steel surface inspection during production. For steel billet, discrete wavelet

transform and morphological operations were applied in [31] to detect corner cracks

with 97.6% detection accuracy. The method was improved in [32] with wavelet recon-

struction, double thresholding, and SVM. A study in [33] achieved 96.7% accuracy

for detecting cracks, spots, and dark lines in steel bars with edge-preserving filter and

double thresholding. For detecting cracks on steel plates, undecimated wavelet and

Radon transforms were implemented in [34] that led to 90.2% true positive rate. Ga-

bor filtering, double thresholding, and SVM were applied in [35] that achieved 94.5%
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true positive rate. Näıve Bayes classifier, principal component analysis, and anomaly

detection were used in [36] to detect line segments of cracks and filter out welds in

nuclear power plants that yielded 62% true positive rate.

Recently, deep learning methods have dominated the speech recognition as well as

vision-based pattern recognition techniques [37]. In particular, CNNs have brought

breakthroughs toward object detection and recognition [38, 39]. The computational

model of a CNN consists of multiple layers that learn representative features of data

with multiple levels of abstraction. Unlike neural networks [40], CNNs require less

computation due to convolution and pooling layers that maintain the spatial cor-

respondences of data and lead to better generalization of features. The recent de-

velopment of powerful graphic processing units (GPUs) has helped accelerating the

computations and made the implementation of CNNs practical. CNN requires a huge

amount of annotated data for training and many researchers have constructed large

image datasets for this purpose, including MNIST [41], ImageNet [42], CIFIA-10, and

CIFAR-100 [43].

Several researches have been conducted for a variety of applications using CNN.

To detect objects in real time, R-CNN [44], Fast R-CNN [45], and Faster R-CNN [46]

were developed. Rather than scanning the whole image, R-CNN extracts a small

number of possible object candidates (i.e., region proposals) and only applies CNN

to these candidates. Thus, R-CNN saves lots of computations and achieves real time

object detection. For object detection from videos, T-CNN was proposed in [47]

based on R-CNN that won the object-detection-from-video (VID) task in the Ima-

geNet Large-Scale Visual Recognition Challenge 2015 (ILSVRC 2015) [48]. Although

R-CNN achieves real time object detection, it has a limitation that the width-height

ratio of rectangular region proposals cannot be too large or small. In nuclear power

plant inspection videos, cracks are typically thin and long with variant shapes and

orientations. Thus, R-CNN is not applicable since the region proposals of the cracks

may violate the aforementioned limitations. Due to CNN’s outstanding performance,

several recent studies applied it for system identification [49] and defect detection
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including railroad defects on steel surfaces [50], road cracks [51], sewer pipelines [52],

and concrete cracks [53]. A CNN was employed in [54] to identify cracks in nuclear

power plant inspection videos. In [55], a fully convolutional network (FCN) [56] was

proposed to detect concrete cracks in images, but it required pixel-level labels for

training that are time-consuming to collect. Moreover, many crack detection ap-

proaches based on CNN or FCN focus on analyzing one single image [57, 58]. For

nuclear power plant inspections, however, the cracks need to be identified from mul-

tiple consecutive video frames. If each frame is analyzed independently, the false

positives appear in some frames cannot be filtered out while the miss-detected cracks

cannot be restored.

Instead of analyzing video frames separately, several approaches have been de-

veloped that leveraged the spatiotemporal coherence in videos to detect objects. T-

CNN [59] incorporated spatiotemporal information with object tubelets and won the

object-detection-from-video (VID) task in the ImageNet Large-Scale Visual Recogni-

tion Challenge 2015 (ILSVRC 2015) [48]. However, T-CNN is based on rectangular

box detection [46] that is not suitable for detecting crack and its detection score

fusion scheme is not the best among other fusion approaches [60]. The fusion of de-

tection score and motion saliency score was proposed in [61] to detect action tubes,

but it is also based on rectangular box detection [46] and the motion saliency scores

are not available in the nuclear inspection videos. For detecting wildfire smoke in

real-time, a 3D FCN using pyramid classification (3D-PFCN) was proposed in [62]

to extract spatiotemporal features. 3D-PFCN requires 0.028 seconds to analyze a

256×256 frame, thus it might not achieves real-time for larger frame resolution (e.g.,

1920×1080). Also, it was designed for the videos from static cameras where most of

the background remain stationary.

To sum up, CNN-based approaches have achieved successful results for crack de-

tection while the processing speed is the concern when patch scanning is used. While

FCN-based approaches may take less processing time, they requires pixel-level labels

for training which are time-consuming to collect. Also, several approaches have been
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proposed to leverage the spatiotemporal coherence of objects in videos, but those

approaches need to be modified and optimized for the inspection videos in this study.

2.3 Data Collection

2.3.1 Inspection Videos

To develop and evaluate the proposed framework, videos of 20 underwater speci-

mens, that represented internal nuclear power plant components, were collected. The

specimens were made of 304 stainless steel with media blasting to limit glare from

the camera lights. The widths and heights of the specimens were approximately 267

mm. Each specimen had weld crowns, different number of grinding marks, scratches,

and cracks on the surface that are normally found on internal nuclear power plant

components.

An underwater camera system commonly used in the field recorded the videos

with 30 fps and 720×540 pixels resolution. The specimens were located inside a test

tank filled with water where a robotic arm scanner maneuvered the camera (Fig. 2.2).

The dimensions of the scanner system were 122 cm×152 cm×305 cm, and it had four

degrees of freedom (i.e., X, Y, Z and rotation). The camera was placed approximately

10 cm from the specimen surface and moved slowly during data collection. During

each recording, the camera’s field of view remained constant. The image scales ranged

from 56.1 to 74.3 µm per pixel and the crack widths varied from two to six pixels

(i.e., 112.2 to 445.8 µm). The total length of collected videos was 199 minutes and

18 seconds (358,740 frames).

Current practices specify that the surfaces and the water must be clean and clear

for video recording. Before and after an inspection, the examiners should be able

to clearly see a set of characters on a resolution card. Thus, all the recordings were

performed in “good” water condition. The cleaning procedures specify that they

would not produce highly reflective component surfaces, so no severe reflectivity issue

existed in the videos. Although the light source mounted near the camera lens ensured
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(a)

(b)

Fig. 2.2.: (a) a sample specimen, and (b) the underwater camera system with a

robotic arm scanner for video recording.
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enough illumination for inspection, the image brightness varied due to auto-exposure

feature of the camera.

2.3.2 Image Patch Dataset

To train and validate the proposed frameworks, this study generated crack and

non-crack image patches of 120×120 pixels from the video frames. Originally, 5,326

crack image patches were extracted from manual crack centerline annotations. Most

of the cracks in the dataset were horizontal or vertical with at most ±15◦slants. To

detect cracks of different orientations and increase the variety of the dataset, the

crack image patches were first rotated by 22.5◦, 45◦, and 67.5◦, and then flipped

and rotated by 90◦, 180◦, and 270◦. The pixel values of each image patch were also

multiplied by a truncated Gaussian random variable, ranging from 0.85 to 1.20 with

1.00 mean and 0.08 standard deviation, to simulate brightness variations. Non-crack

image patches were randomly cropped from background regions of the video frames.

The final dataset contained 147,344 crack and 149,460 non-crack image patches. Fig.

2.3 shows samples of crack centerline annotations and Fig. 2.4 illustrates samples of

image patches. The large size and diversity of the dataset are crucial for training the

detection models and establishing the statistics for the Näıve Bayes decision making.

Fig. 2.3.: Samples of crack centerline annotations (red pixels) for generating image

patches for training and validation.
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(a) Sample crack image patches. (b) Sample non-crack image patches.

Fig. 2.4.: Samples of 147,344 crack and 149,460 non-crack image patches. The dataset

contains images of different brightness, contrast, and crack orientations from 0◦to

180◦.
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2.4 The Proposed Framework Based on Patch Scanning

Fig. 2.5 demonstrates the overview of the proposed framework, and Algorithm

1 shows its pseudocode. “Video Motion Estimation” estimates the motion vector

between successive frame pairs. “Crack Patch Detection” uses the detection models

of LBP-SVM or NB-CNN to detect crack patches in each frame where one frame

per second is analyzed. “Data Fusion” aggregates the information obtained from

multiple frames. It consists of three parts: “Spatiotemporal Registration”, “Näıve

Bayes Decision Making”, and “Tubelet Clustering”. The first one registers crack

patches to a global spatiotemporal coordinates and forms crack tubelets, the second

one determines whether a crack tubelet is a real crack or not, and the last one groups

tubelets into crack clusters and generates crack bounding boxes.

Fig. 2.5.: The overview of the proposed framework.

2.4.1 Video Motion Estimation

This procedure aims to estimate the frame movements for “Crack Patch Detec-

tion” and “Data Fusion”. During the recordings, the camera’s field of view and the

surface-camera distance remained constant. Thus, only translation occurred in the
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Procedure 1 The proposed framework.

Input: m video frames

for i = 1 to m− 1 do

estimate MVi and obtain MOV1,i+1

end for

for each framei per second do

for all patches pi,j in framei do

obtain sc of pi,j

end for

end for

shift all pi,j by −MOV1,i

form tubelets Tk from all pi,j

for all Tk do

if
∑

p∈Tk
HNB(sc of p) ≤ θt then

discard Tk

end if

end for

Group all Tk into clusters Ct

for all Ct do

if
∑

Tk∈Ct

∑
p∈Tk

HNB(sc of p) ≤ θc then

discard Ct

else

output the bounding box of Ct

end if

end for

Output: crack bounding boxes in each frame
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videos. As a result, this procedure applies a block-based motion estimation to com-

pute motion vectors between successive frame pairs. Based on template matching, the

motion vector MVi is the displacement between a central inner block region within

framei and its best match among a search range in framei+1. To this end, the sum

of absolute difference (SAD) of pixel intensities is used as the matching criterion.

Having all the motion vectors, the movement MOVi,i+k from framei to framei+k

equals MVi + MVi+1 + ... + MVi+k−1 for k > 0. For accurate template matching,

the inner block region needs to contain sufficient number of pixels (e.g., more than

5,000 pixels). Also, the search range should be large enough to cover the maximum

movement in the video. In this study, the inner block region has half the width and

height of the video frame (i.e., 360×270 pixels). The search range is 10 pixels larger

than the inner block region in width and height. Only 1 out of 16 pixels are sampled

when calculating SAD to reduce computation cost.

2.4.2 Crack Patch Detection

At this stage, each video frame is scanned with patches of size 120×120 pixels in

raster scan order with step size of eight pixels. Each scanning has a 2D offset ranging

from (0, 0) to (7, 7) as illustrated in Fig. 2.6. The offset of framei equals −MOV1,i

modulo eight (i.e., the step size). These offsets ensure the spatiotemporal consistency

of patches that is discussed in more details in Section 2.4.5.

The detection models of LBP-SVM or NB-CNN classifies each patch as a crack

or non-crack patch by giving the score of being a crack (denoted as sc). The right

side of Fig. 2.6 shows samples of detected crack patches where some of them are false

positives. These false positives will be discarded by utilizing “Näıve Bayes Decision

Making” during data fusion among multiple frames at a later stage. Detecting cracks

in every frame is unnecessary since successive frames have significant overlap. So, one

frame per second is analyzed in this study. Section 2.4.3 and 2.4.4 describe the two

detection models in details.
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Fig. 2.6.: An illustration of “Crack Patch Detection” procedure: rasster scan of the

frame with 120×120 patches with an initial offset (left), and detected crack patches

(right).
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2.4.3 LBP-SVM detection model

In this detection model, for each patch its LBP features are extracted and a two-

stage SVM is used to generate the score of being crack (sc). If sc is larger than zero,

the patch is classified as a crack; otherwise, it is a non-crack patch. This detection

model is optimized that requires less computations, thus it is suitable for CPU-only

platforms.

LBP feature extraction

LBP is an illuminant-invariant image feature descriptor for texture classification

and object recognition [63, 64]. In inspection videos, we need to distinguish cracks

from other textures, such as scratches, welds, and grind marks. LBP is a powerful

tool for this purpose. The illuminant-invariant property of LBP is important because

lighting conditions often change and some cracks are very tiny and have low contrast.

For a given pixel p, LBP compares the pixel intensity value with those of all

neighboring pixels qk ∈ pnei to generate a binary code b1b2...b|pnei|, and converts the

binary code to decimal LBP value LBP (p) as follows:

LBP (p) =

|pnei|∑
k=1

bk2k−1, bk =

1, if qk ≥ p

0, otherwise

, qk ∈ pnei (2.1)

Fig. 2.7 shows an example of generating the LBP value where pnei is an 8-neighbor

of p, starting at the top-left corner and proceeding clockwise . As an example, in

this figure, once p is compared with all qks, the binary code becomes 01110101 and

the corresponding decimal LBP value is 117. Different LBP values represent different

textures around the pixel of interest. Fig. 2.8 shows some typical textures with their

corresponding patterns, where the bright pixels correspond to bk = 1 and dark pixels

to bk = 0. To generate the LBP feature vector of a patch, all LBP values of pixels in

the patch are first computed. Then, for every predefined region inside the patch, the

histogram of LBP values inside the region is computed. The histogram represents the
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concurrence of different textures in that region. The LBP feature vector is formed

by concatenating the histogram of each region. Neighboring pixels and regions are

defined using free parameters, and lead to varying performance and complexity.

Fig. 2.7.: An example of generating an LBP value given the intensity values around

a pixel.

Fig. 2.8.: Different types of textures and their LBP patterns. The red arrows indicate

the bit transitions of the binary code.

It has been shown that multi-scale LBP performs better than single-scale LBP

[65–67]. The multi-scale LBP is obtained by changing the distances between pairs

of neighboring pixels, computing their histograms separately, and concatenating all

histograms. Different distances between neighboring pixels capture the texture at dif-

ferent scales. For example, one can define neighboring pixels as uniformly distributed

eight points on a circle, compute the histogram when the radius of the circle is 1, 2,

and 3, and concatenate the three consequent histograms as an LBP feature vector.

Not all LBP values represent meaningful texture. In fact, some of them can simply

be noisy patterns. A type of LBP called “uniform LBP” retains only meaningful

patterns of textures, which not only reduces feature dimension, but also yields better
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performance. Uniform LBP only allows at most two “1 to 0” or “0 to 1” bit transitions

in binary code, including the transition between the least-significant bit (LSB) and

the most-significant bit (MSB). For instance, 00000000, 00111100, and 11000011 are

valid binary codes of a uniform LBP, but 11001011 and 10001000 are not. Fig. 2.8

shows examples of uniform and invalid (non-uniform) LBP where the red arrows

indicate the bit transitions of the binary code. When computing the histogram of

uniform LBP, the method accumulates each LBP value in a separate bin and keeps

all invalid LBP values in a single bin. For example, an 8-neighbor uniform LBP has

58 valid binary codes. Consequently, it accumulates these valid LBP values into 58

bins and places all invalid values in a separate bin.

In this study, we use a four-scale, 8-neighbor uniform LBP where the neighboring

pixels are the corners and mid-points of the edges of 3 × 3, 5 × 5, 7 × 7, and 9 × 9

blocks. Furthermore, the histograms of six regions inside each 120 × 120 patch are

computed: three rectangular regions that equally divide the patch in the horizontal

direction and three in the vertical direction (see “6 regions” in Fig. 2.9). Thus, our

feature dimension is 59× 4× 6 = 1416.

Fig. 2.9.: Sample three kinds of regions for extracting LBP features and computing

histograms. “6 regions” is used in this study.

Integral LBP histogram

In order to detect cracks in a frame, the entire frame is scanned with overlap-

ping patches in raster scan order. It is computationally expensive and inefficient to

separately compute the LBP features of all patches. Since the scanned patches have
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overlaps and LBP features are actually the histograms of LBP values of specific rect-

angular regions, we can benefit from the concept of the integral histogram [68] that

quickly computes all required histograms first. Then, We only need to perform a

simple computation to get the histogram of any region.

Let Hist(x, y) be integral histogram that is the histogram of rectangular region

([0, x], [0, y]) of an image. Using the recursive relation that Hist(x, y) = Hist(x −

1, y)+Hist(x, y−1)−Hist(x−1, y−1)+Q(x, y) where Q(x, y) is the corresponding

bin of pixel (x, y), all the integral histograms of whole image can be computed in a

single raster scan. Then, for any rectangular region ([x1, x2], [y1, y2]), its histogram

can be computed by Hist(x2, y2) +Hist(x1−1, y1−1)−Hist(x2, y1−1)−Hist(x1−

1, y2) where the addition and subtraction signs represent the sum and the subtract

of the number of the same bins in the histograms, respectively. Hence, we only need

to perform two histogram additions and two histogram subtractions to obtain the

histogram of a region of interest after obtaining all the integral histograms of an

image. Fig. 2.10 shows an illustration of computing of the histogram of rectangular

region ([x1, x2], [y1, y2]).

Fig. 2.10.: The computation of the histogram of region ([x1, x2], [y1, y2]) by adding

two integral histograms Hist(x2, y2) and Hist(x1 − 1, y1 − 1) and subtracting the

other two integral histograms Hist(x2, y1 − 1) and Hist(x1 − 1, y2).
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Two-stage SVM classification

Following the computation of the LBP feature vector of a patch, a trained SVM

classifier [69] is used to determine whether the patch contains a crack. The SVM has

different kinds of kernels. In general, the linear kernel is the fastest but less accurate

than certain other kernels. On the contrary, while the radial basis function (RBF)

kernel is the most powerful, it requires more computation time for classification. A

long time is needed to apply an RBF SVM to every patch in a frame. Since most

patches are non-crack in video frames (e.g., more than 95%), we apply a two-stage

SVM classification scheme to speed-up the process. This is similar to cascade object

detection [70]. In addition to training an RBF SVM with high precision and recall

rate, we trained a linear SVM with specific parameters such that it has 100% recall

rate but also a higher false-positive rate (e.g., 25%). Thus, the linear SVM retains

100% cracks and 25% non-cracks, and filters out the remaining 75% non-cracks. For

each patch, we apply the linear SVM classifier in the first stage. If a patch is classified

as a crack by the linear SVM, the RBF SVM is applied in the second stage. Only a

patch regarded as a crack by both the linear and the RBF SVM is considered a crack

patch. We can hence exclude 75% of the non-crack patches in the first stage with

the linear SVM, which is considerably faster than the RBF SVM, thus saving almost

75% computation time.

2.4.4 NB-CNN detection model

In this detection model, for each patch the proposed deep CNN is used to extract

image features and generate the score of being crack (sc) ranging from zero to one.

If sc is larger than 0.5, the patch is classified as a crack; otherwise, it is a non-crack

patch. This detection model requires lots of computations for deep CNN and the

computations can be significantly accelerated by using GPUs. Thus, it is suitable for

the platforms with GPUs.
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Overall Architecture of the Proposed CNN

The proposed CNN consists of multiple layers. The basic layers include convolu-

tion, activation, pooling, and fully-connected layers. The first three aim to extract

features from data and the last one performs classification. Some layers such as

batch normalization and dropout layers are beneficial to prevent over-fitting, accel-

erate training, and improve accuracy. Fig. 2.11 presents the overall architecture of

the proposed CNN. The architecture follows the model used in TensorFlow [71] CNN

tutorial with some modifications. More layers were added until the validation error

did not improve anymore, and the hyperparameters were fine-tuned based on the

guidelines described in [72].

Fig. 2.11.: The overall architecture of the proposed CNN. The numbers below layers

indicate the output data size of each convolution or fully-connected layer. Conv: con-

volution layer; BN: batch normalization layer; Pool: pooling layer; ELU: Exponential

Linear Unit layer; FC: fully-connected layer.

The input of CNN is 3D data: a 120×120 image patch of R, G, and B channels.

The image normalization linearly scales each channel to have zero mean and unit

L2-norm. Then, the data go through four series of convolution, batch normalization,

Exponential Linear Unit (ELU), and pooling layers. Next, the data pass through two

fully-connected layers with ELU and dropout layers in the middle. Finally, a softmax

layer predicts whether the input image patch is a crack or not. Table 2.1 lists the

configurations of convolution, pooling, and fully-connected layers. The convolution

layers increase the depth (i.e., number of channels) of data while the pooling layers
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down-sample the data in width and height. The first fully-connected layer flattens

the 3D data to 1D for classification. These layers are discussed in details as following.

Table 2.1.: Convolution, pooling, and fully-connected layer configurations of the pro-

posed CNN.

Layer Kernel shape Kernel # Stride Variables

Conv1 11×11×3 32 1 11,648

Pool1 7×7×1 - 2 -

Conv2 11×11×32 48 1 185,904

Pool2 5×5×1 - 2 -

Conv3 7×7×48 64 1 150,592

Pool3 3×3×1 - 2 -

Conv4 5×5×64 80 1 128,080

Pool4 3×3×1 - 2 -

FC1 5120 96 - 491,616

FC2 96 2 - 194

Convolution Layer

A convolution layer performs a 3D convolution with several kernels (i.e., filters). In

image processing, a convolution operation is actually a finite impulse response (FIR)

filtering that can extract edges and corners of different frequencies and orientations.

The training process, described in Section 2.4.4, computes the optimum variables for

each kernel such that the 3D convolutions extract useful features for classification.

Each kernel has a smaller width and height than the layer input while it has the

same depth as the input. The 3D convolution operation moves the kernel across the

first two dimensions (i.e., width and height) of the input data with a given step size

(i.e., stride). For each location, it performs the summation of element-wise multipli-
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cations of the kernel and the input data. Then, it adds a bias, that is also a trainable

variable, to the summation. This study applies “zero padding” that pads zero values

around the data such that the input and the output data at each convolution layer

have the same width and height when stride equals one.

Fig. 2.12 illustrates an example of 3D convolution of a 4×4×3 RGB image with

a 3×3×3 kernel using zero padding. Each channel of the image is convolved with the

corresponding channel in the kernel with a stride equal to one. Then, the output is

the summation of convolution results of each channel in addition to a bias. In this

example, the output data has only one channel since only one kernel is used. When

multiple kernels are used, each 3D convolution from one kernel forms a channel of

the output data. Thus, the number of channels of output data equals the number of

kernels (see Table 2.1). Fig. 2.13 shows the visualizations of 32 trained kernels in the

first convolution layer of the proposed CNN. Some kernels with black line segments

work as edge detectors to extract features of cracks. Some kernels with irregular

patterns perform as texture feature extractor that can help distinguish cracks from

background.

Fig. 2.12.: An example of 3D convolution of a 4×4×3 RGB image with a 3×3×3

kernel using zero padding where both stride and bias equal one.



26

Fig. 2.13.: Visualizations of 32 trained kernels in the first convolution layer of the

proposed CNN. Some kernels with black line segments work as edge detectors to

extract features of cracks. Some kernels with irregular patterns perform as texture

feature extractor that can help distinguish cracks from background.

Batch Normalization Layer

Batch normalization [73] acts as a regularizer, enables higher learning rates to

speed up training, and improves the performance of CNN. During training, changes

in the variables modify the output distribution of each layer. These changes accumu-

late and propagate to successive layers, resulting in noisy input for them. To solve

this issue, batch normalization linearly transforms the data in each channel such that

they have a distribution of zero mean and unit variance. Then, it linearly transforms

the normalized data again using two trainable variables γ and β. These two vari-

ables enhance the representational power of the layers. The overall transformation is

BN(xi) = γ(xi−µ)/σ+β where xi is the data from a channel and µ and σ are channel

mean and standard deviation, respectively. The values of µ and σ are different for

training and testing where the details about how to obtain these two values can be

found in [73]. The effect of bias variable in the aforementioned convolution layer is

eliminated by subtracting µ. So, the bias variable is omitted since its role is replaced

by β in this layer.
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ELU Activation Layer

Activation layer nonlinearly transforms the data to generate a nonlinear classifier.

Before 2010, the most common transformation was a sigmoid function (e.g., f(x) =

tanh(x)). Then, Rectified Linear Unit (ReLU) [74] was introduced for activation using

the transformation f(x) = max(x, 0). Different from the sigmoid function whose

maximum value is one, ReLU has no upper bound and its gradient equals either zero

or one. These characteristics allow faster computations and larger activation values

that make the classification more accurate. Recently, ELU [75] was proposed that

performs even better than ReLU using the following transformation:

f(x) =

x if x > 0

ex − 1 otherwise

. (2.2)

Besides having no upper bound and easy gradient computation, ELU allows neg-

ative activation such that the mean activations become closer to zero similar to what

batch normalization does. ELU outperformed any other activation function regard-

ing learning rate and generalization performance [75]. So, this study adopts it for

activation layers.

Pooling Layer

The purpose of pooling is to apply a nonlinear transformation locally and down-

sample the data. It has only one kernel with smaller width and height compared to

the input data, and has depth equal to one. The kernel has no trainable variables.

For each channel, the kernel is moved across the input data with a given step size

(i.e., stride). This process takes either the mean or the maximum value of the data

inside the kernel, referred to as mean or max pooling, respectively. The output of this

layer has the same depth as the input data. This study applies “zero padding” here

such that the output has half the width and height of the input data when the stride

equals two. Max pooling works better for image data since taking maximum values
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applies nonlinear transformation and passes the strongest activation to the successive

layers [76]. So, this study chooses max pooling for pooling layers.

Fully-connected Layer

All the other layers prior to this layer aim to extract features from the data where

the data have spatial coherence in the first two dimensions. This layer breaks the

coherence by flattening the processed data through prior layers into a 1D feature

vector. This layer contains several kernels with trainable variables where the number

of these variables equals the feature vector length. For each kernel, the summations

of element-wise multiplications of the kernel and the feature vector are computed.

Then, a trainable bias is added to each summation. The first fully-connected layer in

the proposed CNN performs as a nonlinear feature transformation since it is followed

by an ELU activation layer. The second fully-connected layer with a softmax com-

putation works as a logistic regression classifier that gives the final two scores (i.e.,

decision values) of being a crack and non-crack for each patch. The two scores range

from zero to one and sum up to one. The proposed CNN identifies the input as a

crack patch if the score of being a crack (denoted as sc) is greater than 0.5, and a

non-crack patch otherwise.

Dropout Layer

For a complex model containing several trainable variables, overfitting during the

training phase can be an issue where the model is too adaptive to the training dataset

such that it fails to perform well on validation and test datasets. Dropout layer [77]

resolves this issue where during each training iteration, some connections are ran-

domly disconnected with a certain rate. This is an approximation of geometric model

averaging for nonlinear networks to train a more generalized model. As suggested

in [77], this study uses 50% dropout rate.
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Training

To optimize the variables in the convolution, batch normalization, and fully-

connected layers, this study uses stochastic gradient descent (SGD) [78] with a simple

momentum. Initially, the values of the variables are randomly assigned. At each iter-

ation, SGD takes a batch of n image patches and their corresponding labels as input.

For each patch label yi, yi = 0 means the patch is a non-crack, and yi = 1 means it is

a crack. Then, SGD computes the gradients and updates the variable values. After

all the patches are taken (i.e., one epoch), SGD randomly reorders the patches and

performs the next iteration. This process ends when a preset iteration or epoch limit

is reached. The loss function L is defined as:

L =
n∑

i=1

1∑
j=0

{yi = j} logSij + λ
l∑

k=1

wk, (2.3)

where {·} is the indicator function, Sij is the detection score of the ith patch being

a crack (j = 1) or non-crack (j = 0), wk is the kth variable value of the fully-

connected layers, l is the number of variables in the fully-connected layers, and λ is the

regularization weight. In this equation, the first term penalizes the miss-classifications

and the second one prevents large variable values in the fully-connected layers that

cause overfitting. Each trainable variable wp in convolution, batch normalization, and

fully-connected layers is updated as

wp = m · wp − τ
∂L

∂wp

, (2.4)

where L is the loss function, ∂L
∂wp

is the gradient, τ is the learning rate, and m is the

momentum. The standard SGD might have slow convergence rate after the initial

steep gains. The momentum aims to include inertia that can move the objective much

faster along a shallow ravine during the optimization.

In this study, the training took place on an Exxact deep learning Linux server

with Ubuntu 14.04. The server included two Intel Xeon E5-2620 v4 CPUs, 256 GB

DDR4 memories, and four NVIDIA Titan X Pascal GPUs. TensorFlow [71] was used

to train the CNN in Python. The batch size was n = 64, the initial learning rate was
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τ = 0.002 which decayed by 0.1 every 350 epochs, and the regularization weight was

λ = 0.0001. One GPU was used for training where the training converged after 70

epochs (i.e., 32,535 seconds).

2.4.5 Spatiotemporal Registration

One major advantage of detecting objects in videos is that an object can be

observed at different video frames (i.e., times). Analyzing more frames results in a

more robust detection compared to processing only one frame. After obtaining the

detection score sc for each patch in different frames, patches of the same physical

regions are registered based on their spatiotemporal coherence.

The concept of “tubelets” was introduced in [47] where the observations of the

same object in different video frames were used in conjunction with a CNN to detect

objects. This approach was called T-CNN. The locations of an object in different

frames were estimated based on object tracking and optical flow. In the current study,

however, the patches are registered into a global spatiotemporal coordinate system

where the spatiotemporal coordinates represent the physical locations of patches on

the surface that is under inspection. To this end, every patch in framei is shifted by

−MOV1,i. All the shifted patches from different frames that have the same position in

the spatiotemporal coordinate system correspond to the same region on the physical

surface. Fig. 2.14 shows an example of the aforementioned registration. In this figure,

both framei and framek include a corresponding crack patch. After registration,

the shifted patches correspond to the same crack region on the physical surface in

the spatiotemporal coordinate system as shown in Fig. 2.14. The scanning offsets

introduced in Section 2.4.2 compensate the frame movements to align corresponding

patches in the spatiotemporal coordinates that are obtained from different frames.

Without the offsets, the corresponding patches do not cover the same exact regions

of the physical object.
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Fig. 2.14.: An example of the spatiotemporal registration: framei and framek both

include a corresponding crack patch (left). After the registration, the shifted patches

correspond to the same region on the physical surface in the spatiotemporal coordinate

system (right).
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All the shifted patches that correspond to the same position in the spatiotemporal

coordinate system form a tubelet if at lease one of them is a detected crack patch (i.e.,

has the detection score of sc > 0 for LBP-SVM and sc > 0.5 for NB-CNN). In other

words, a tubelet contains the observations (i.e., detection scores) of a physical location

on the surface at different times in the video. During this process, miss-detected crack

patches may be included in tubelets while false positives will form falsely-detected

tubelets. Such falsely-detected tubelets are discarded through “Näıve Bayes Decision

Making” as described in Section 2.4.6.

2.4.6 Näıve Bayes Decision Making

To determine whether a tubelet is a crack or not, a general machine learning

classifier that requires fixed-size input (e.g., SVM) is not applicable since each tubelet

has different number of patches (i.e., observations). This study uses Bayes’ theorem

to provide a robust decision making. Assume a tubelet consists of n patches, and

P (Ccrk|sc1, ..., scn) and P (Cncrk|sc1, ..., scn) represent the posterior probabilities of being

a crack and non-crack, respectively. The decision making determines the tubelet as

a crack if
P (Ccrk|sc1, ..., scn)

P (Cncrk|sc1, ..., scn)
> θ, (2.5)

where θ controls the sensitivity of the decision making and sci is the score obtained

from the CNN for the ith patch. Since detection models compute sc for each patch

independently from other patches, a näıve conditional independence assumption is

used where f(sci |sci+1, ..., s
c
n, C) = f(sci |C) while f(·) is the probability density function

(PDF). Rewriting the above equation and taking log on both sides, the equation

becomes:

log
P (Ccrk)

∏n
i=1 f(sci |Ccrk)

P (Cncrk)
∏n

i=1 f(sci |Cncrk)
> log θ, (2.6)

or
n∑

i=1

(log f(sci |Ccrk)− log f(sci |Cncrk)) =
n∑

i=1

HNB(sci) > θt, (2.7)
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where f(sci |Ccrk) and f(sci |Cncrk) are likelihood functions, HNB(·) converts the detec-

tion scores to a logarithmic likelihood ratio, and θt = log θ−logP (Ccrk)+logP (Cncrk)

controls the sensitivity. Estimating the prior probabilities P (Ccrk) and P (Cncrk) is not

necessary since θt already contains them. By applying detection models to validation

data, the statistics for the likelihood functions are estimated. For a given tubelet,

the summation of all likelihood ratios is computed. If the summation is greater than

θt, the tubelet is classified as a crack; otherwise, the tubelet and the patches within

it are discarded as being false positives (i.e., non-cracks).

Figures 2.15c and 2.15d show the estimated likelihood functions and HNB(·) for

LBP-SVM, and Figures 2.15a and 2.15b show the estimated likelihood functions and

HNB(·) for NB-CNN. The y-axis in Fig. 2.15a is in logarithmic scale since more than

98% of the samples lie on the first and last bars of the PDF. As shown in Fig. 2.15b,

the originalHNB(·) function contains fluctuations. So, the smoothedHNB(·) is used in

this study that is approximately an increasing function. The increasing characteristic

of likelihood ratio matches the intuition that a higher detection score results in a

larger likelihood ratio. Figures 2.16a and 2.16b illustrate samples of crack patches

before and after applying the proposed decision making scheme. Although several

false positive patches exist in Fig. 2.16a, this procedure discards them successfully

(Fig. 2.16b).

2.4.7 Tubelet Clustering

Each tubelet only presents a portion of a crack. To address this issue, nearby

tubelets are grouped together as clusters after the false positive tubelets are discarded

by Näıve Bayes decision making. This grouping is based on a hierarchical clustering

approach that uses Euclidean distance as the grouping criterion with the cutoff equal

to 20 pixels (i.e., if the Euclidean distance between two tubelets is less than 20 pixels,

they are grouped together).
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(a) (b)

(c) (d)

Fig. 2.15.: Likelihood functions and ratios: (a) Likelihood functions for the proposed

CNN, (b) likelihood ratio (HNB(·)) for the proposed CNN, (c) likelihood functions for

LBP-SVM, and (d) likelihood ratio (HNB(·)) for LBP-SVM. The y-axis in (a) uses

logarithmic scale.
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(a)

(b)

(c)

Fig. 2.16.: (a) Sample crack patches that include false positives before applying the

proposed data fusion scheme, (b) sample crack patches after applying “Spatiotem-

poral Registration” and “Näıve Bayes Decision Making” where false positives are

discarded, and (c) sample crack bounding boxes (red line) and the corresponding

ground truth boxes (blue dashed line) after applying “Tubelet Clustering”.
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For each cluster, the likelihood ratios for all the tubelets within the cluster are

added together. If this summation is greater than a threshold θc, the cluster is

identified as a real crack; otherwise, the cluster is discarded as a false positive. In

each frame, the smallest rectangle that contains all the patches corresponding to a

detected crack cluster is used as the bounding box for that crack. θc controls the

sensitivity of the overall detection.

The non-crack tubelets are discarded by Näıve Bayes decision making before

tubelet clustering since tubelets have stronger spatiotemporal coherence than clus-

ters. All the patches in a tubelet correspond to the same physical location in the

spatiotemporal coordinate system. Thus, all of them should simultaneously be crack

or non-crack patches. On the other hand, a non-crack tubelet might happen to be

adjacent to a set of crack tubelets. Without discarding non-crack tubelets first, a

cluster might be a mixture of crack and non-crack tubelets. This will affect the Näıve

Bayes decision making and the shape of crack bounding boxes. As shown in Fig. 2.16,

the proposed data fusion scheme successfully discards false positives and generates

the bounding boxes of crack clusters that can truly represent the real cracks (Fig.

2.16c).

2.5 The Proposed Framework Based on FCN

In the previous framework based on patch scanning (Section 2.4), during “Crack

Patch Detection,” a frame is scanned by 120×120 overlapping patches with step size

of eight pixels. Then, the detection score sc of each patch is generated by either

LBP-SVM or NB-CNN. For LBP-SVM, integral LBP histogram is used to share the

computation of LBP histograms since nearby patches have larger overlapping areas.

For NB-CNN, however, the computation cannot be shared since there is a patch-wised

image normalization layer before the CNN to normalize the contrast of each patch.

As a result, another framework based on FCN [56], referred to as NB-FCN, is

proposed where the computation of CNN layers can be shared and thus requires much
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less processing time. In this framework, an architecture design principle for FCN is

introduced that can take image patches for training, which is different from other

crack segmentation approaches based on FCN that requires pixel-level annotations

(e.g., [55]). Also, a parametric näıve Bayes data fusion scheme (referred to as pNB-

Fusion) is developed that leverages the spatiotemporal coherence of videos by fusing

crack score maps and improves detection precision.

Fig. 2.17 illustrates the overview of the proposed NB-FCN approach. First,

“Video Motion Estimation” estimates 2D frame movements based on template match-

ing using the same procesdure described in Section 2.4.1. Then, “FCN Crack Score

Generation” applies an FCN to obtain crack score map for each frame where one

frame per second is analyzed. Finally, “Parametric Näıve Bayes Data Fusion” fuses

all the score maps according to the spatiotemporal coherence in videos and outputs

detected crack contours.

Fig. 2.17.: The overview of the proposed NB-FCN approach: “Video Motion Estima-

tion” estimates 2D frame movements, “FCN Crack Score Generation” obtains crack

score map for each frame, and “Parametric Näıve Bayes Data Fusion” fuses all the

score maps and outputs detected crack contours.
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2.5.1 FCN Crack Score Generation

Overview

In this step, video frames are analyzed by an FCN called FCN-120s8 to generate

crack score maps. Each score, ranging from zero to one, represents how probable

a specific location is a portion of a crack. Unlike patch scanning that needs to

analyze several overlapping image patches with a CNN (e.g., NB-CNN [60] scans

4,028 patches for a 720×540 frame), an FCN only needs to analyze a single frame

where the computation of convolutional features of adjacent scores can be shared.

Thus, FCN-based approaches require much less processing time than patch scanning.

It is unnecessary to detect cracks in every frame since consecutive frames have large

overlaps. So, one frame per second is analyzed in this study.

Design Principle of FCN-120s8

Typically, an FCN is trained from images with pixel-level labels that are time-

consuming to annotate. Also, as being seen in Fig. 2.1b, the cracks in this study are

very tiny where its pixel-level segments can be hardly defined and annotated. Thus,

this study provides a design principle for FCN such that the FCN can be trained

from fixed-sized image patches that are much easier to annotate where only crack

centerlines are needed, as illustrated in Fig. 2.3. The first rule is that the receptive

field (i.e., the range of pixels used for computation) of the last layer in FCN must

match the size of image patches where zero padding is not used during training. For

layer i in an FCN, its receptive field’s width wr
i is:

wr
i = wr

i−1 + (wk
i − 1) · di−1 (2.8)

where wk
i is the width of convolution or pooling kernel, di is the down-sampling factor

that equals the multiplication of all the strides of current and previous layers, and

wr
0 = d0 = 1. The calculation of receptive field’s height hri is in the same manner.

The second rule is that patch-wise image standardization cannot be applied. The
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final rule is that batch normalization [73] should not be adopted since image patches

for training and video frames for inference will have different batch distributions.

By following the aforementioned rules, TABLE 2.2 lists the configuration of FCN-

120s8 designed for this study. The receptive field of FCN-120s8 has 120×120 pixels

that matches the patch size described in Section 2.3. The architecture of FCN-

120s8 was optimized based on the guidelines in [72]. More layers and kernels were

added until the validation accuracy saturated, and the hyper-parameters of layers

were fine-tuned. The activation functions in FCN-120s8 adopt exponential linear unit

(ELU) [75] and there is a dropout layer [77] between Conv4 and Conv5 to avoid over-

fitting. Some advanced CNN modules (e.g., inception [39] or residual [79] modules)

were not included since FCN-120s8 already achieved high true positive rates during

the validation. The total number of trainable parameters in FCN-120s8 is 473,458,

and the down-sampling factor of score map equals eight pixels.

One disadvantage of training an FCN with image patches is that during inference,

the output crack segments will be slightly wider than the real crack segments. The

reason is that the FCN is trained with image patches and thus cannot distinguish

the border of crack very precisely. This disadvantage, however, is not critical for

many inspection applications since the identification of damages is more urgent than

estimating accurate damage segments. Another disadvantage is that the deconvo-

lution layers [80] for up-sampling the score map cannot be trained. Yet, the true

up-sampling can be achieved with atrous convolutions [81] that will be described in

Section 2.6.4.

The FCN-120s8 was designed to demonstrate how to train a FCN from 120 ×

120 image patches and generate crack score map where its network architecture is

simple with only convolutional and pooling layers. The FCN-120s8 can be replaced

by any advanced network architectures (e.g., Inception [39] or Resnet [79]) as long as

the receptive field matches training image patch size. Also, any other segmentation

approaches (e.g., Mask R-CNN [82]) can also be used to generate crack score map foe

each video frame.
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Table 2.2.: The configurations of FCN-120s8. Conv*: convolution layers. Pool*:

maximum pooling layers. wk and hk: width and height of kernel. d: down-sampling

factor. wr and hr: width and height of receptive field.

Layer wk × hk Kernel # Stride Repeat d wr × hr

Conv1 3×3 32 1 6 1 13×13

Pool1 4×4 - 2 1 2 16×16

Conv2 3×3 48 1 5 2 36×36

Pool2 3×3 - 2 1 4 40×40

Conv3 3×3 64 1 5 4 80×80

Pool3 3×3 - 2 1 8 88×88

Conv4 5×5 96 1 1 8 120×120

Conv5 1×1 2 1 1 8 120×120
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Training

The image patch dataset described in Section 2.3 was used to train FCN-120s8.

The training took place on an Exxact deep learning Linux server with Ubuntu 16.04.3

LTS, two Intel Xeon E5-2620 v4 CPUs, 256 GB DDR4 memories, and four NVIDIA

Titan X Pascal GPUs. TensorFlow r1.10 was utilized for training. The optimization

method was stochastic gradient descent (SGD) [78] with a simple momentum of 0.9

weighting. The batch size was 64, the initial learning rate was 0.002 which decayed

by 0.5 for every 75 epochs, and the regularization weight was 0.004 for Conv4 and

Conv5 layers. One GPU was used for training where the training converged after 138

epochs (i.e., 84,920 seconds).

2.5.2 Parametric Näıve Bayes Data Fusion

Overview

Different from other approaches that focus on detecting objects from a single

image, in this study, a crack will be observed multiple times in different video frames.

Fusing the scores obtained from multiple video frames can improve the detection

precision and help discarding false positives. After obtaining all the score maps

from FCN-120s8, the score maps are registered to a global spatiotemporal score map

where the original scores of being cracks sc are fused into scores spNB based on the

proposed pNB-Fusion scheme. Each spNB represents how likely a location in the

spatiotemporal score map is a crack portion. Then, the crack contours and bounding

boxes are generated on the top of spatiotemporal score map. Fig. 2.18 illustrates

the overview of pNB-Fusion scheme and the details are explained in the following

sections.
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Fig. 2.18.: An illustration of the proposed pNB-Fusion scheme. Both framei1 and

framei2 observe the same crack region in the virtual surface image. After shifting

their score maps by −MOV1,i1 and −MOV1,i2, the shifted scores sc of the same

location will be fused to a score spNB in spatiotemporal score map that represents

how likely the location is a crack portion.
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Spatiotemporal Registration

In this step, all the original score maps are registered based on the frame move-

ments where the score map of framei is shifted by −MOV1,i to the spatiotemporal

coordinate system. In other words, the spatiotemporal coordinate system is built

from the virtually stitched surface image from video frames where each coordinate in

the system corresponds to a physical location on the real surface. Then, the shifted

scores sc with the same locations are fused into scores spNB and form a global spa-

tiotemporal score map in the next step.

In “FCN Crack Score Generation”, a 2D offset is introduced at the left-top corner

for each frame. The offset equals −MOV1,i modulo eight (i.e., the down-sampling

factor of original score maps). Thus, the offset’s x or y value ranges from zero to

seven. Only the lower right rectangular region to the offset (e.g., blue or orange

dashed rectangle in Fig. 2.18) will be analyzed by FCN-120s8 to obtain the score

map. This 2D offsets compensate the frame movements to precisely align the shifted

scores sc such that the distances between adjacent shifted scores remains eight pixels.

For more complex camera movements, the registration process can be done in

similar manners by estimating the perspective transformation among video frames.

Then, the score maps can be warped to the spatiotemporal coordinate system based

on the homographies.

Parametric Logarithmic Likelihood Ratio

After registering all the score maps, many locations in the spatiotemporal coor-

dinate system will have multiple shifted scores sc that represent the observations of

the same physical region from different frames. This step fuses the scores sc of the

same locations based on näıve Bayes probabilities and forms a global spatiotemporal

score map of scores spNB.

Assume a location in the spatiotemporal coordinate system has n shifted scores sci ,

and P (Cp|sc1, ..., scn) and P (Cn|sc1, ..., scn) are the posterior probabilities of being a crack



44

and non-crack portion, respectively. The ratio r of these two probabilities represents

how likely a location is a crack portion. Since the FCN analyzes sc independently

for each frame, a näıve conditional independence assumption is adopted. Then, r

becomes

r =
P (Cp)

∏n
i=1 f(sci |Cp)

P (Cn)
∏n

i=1 f(sci |Cn)
(2.9)

where f(·) is the likelihood function. Taking log on both side, Equation 2.9 becomes

log r =
n∑

i=1

(log f(sci |Cp)− log f(sci |Cn)) +K (2.10)

or

sNB = log r −K =
n∑

i=1

HNB(sci) (2.11)

where K = logP (Cp)− logP (Cn) is a constant, HNB(sc) = log f(sci |Cp)− log f(sci |Cn)

is logarithmic likelihood ratio used in [60], and sNB is log r shifted by constant −K.

The likelihood functions f(·) can be estimated during patch-based validation and

HNB(·) is obtained from f(·). Intuitively, HNB(·) should be an increasing function.

However, the estimated f(·) might be noisy and results in a fluctuating HNB(·) (Fig.

2.19a and 2.19b). If the validation samples are insufficient, the estimated f(·) and

HNB(·) might even become unrealistic (Fig. 2.19c and 2.19d).

As a result, this study proposes a parametric logarithmic likelihood ratio HpNB(·)

that is a strictly increasing function and much smoother than HNB(·). By observing

Fig. 2.19b and 2.19d, the slope of HNB(·) is extremely steep when sc is close to zero

or one. Thus, HpNB(·) is defined as a logit function

HpNB(sc) = a log
sc

1− sc
+ b (2.12)

where a and b can be estimated by minimizing the sum of square errors between

HpNB(·) and HNB(·). Then, the fused score spNB becomes

spNB =
n∑

i=1

HpNB(sci). (2.13)

In this study, (a, b) equals (0.7772, 0.8782) for Fig. 2.19b when 59,264 samples were

used to estimate f(·) or (0.5579, 0.1267) for Fig. 2.19d when only 6,000 samples were

used. To avoid infinite values, HpNB(·) is bounded by −7 and 9.
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(a) (b)

(c) (d)

Fig. 2.19.: (a) likelihood functions from FCN-120s8, estimated with 59,264 samples

(b) HNB(·) and HpNB(·) from (a), (c) likelihood functions from FCN-120s8, estimated

with 6,000 samples, and (d) HNB(·) and HpNB(·) from (c). The y-axises in (a) and

(c) use logarithmic scale.
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For the locations with at least one sc > 0.5, its spNB will be computed based on

Equation 2.13. After getting all the spNB in spatiotemporal score map, the score map

is binarized with a threshold θb. Then, the connected components in binary map are

generated where nearby scores whose distances are less than 24 pixels are considered

as neighbors. Finally, the connected components whose summation of spNB scores

is less than a threshold θc are discarded and the contours of remaining connected

components are outputted. θb controls the thickness and sensitivity of connected

components and its optimal value equals −12.9 in this study, based on the evaluation

described in Section 2.6.2. θc controls the overall precision and recall of detection that

is similar to the score threshold after non-maximum suppression for object detection

approaches [46].

2.6 Experimental Result

2.6.1 Patch-based Evaluation

To evaluate the performance of the detection models for crack patch detection,

80% of the image patches were used for training and 20% for generating the receiver

operating characteristic (ROC) curves. In the figures of ROC curves, the true positive

rate (TPR) is the number of true positives divided by the total number of positives,

and the false positive rate (FPR) is the number of false positives divided by the total

number of negatives. A classifier with low FPR (e.g., smaller than 1%) is desirable to

detect crack patches without generating too many false positives in a given a frame.

LBP and other feature descriptors

To evaluate the performance of LBP, we tested three other feature descriptors:

local directional pattern (LDP) [83], local directional number pattern (LDNP) [84],

and histogram of gradients (HoG) [85]. LDP and LDNP compare the strength of the

edges of eight orientations in a 3×3 block to generate texture code, and compute the
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histograms of texture codes in regions, like LBP does. HoG computes the histograms

of gradient values of predefined blocks in a patch. Since LDP and LDNP do not

support multi-scale features, we used one-scale LBP with a 3× 3 block. We used six

regions (see Fig. 2.9) for histogram computation for LBP, LDP, and LDnP. For HoG,

we optimized the blocks to enhance its performance. The feature vector dimensions

of LBP, LDP, LDnP, and HoG were 354, 336, 384, and 648, respectively. From Fig.

2.20, we see that LBP yielded the best performance when the false positive rate was

below 0.3. Thus, we use the LBP descriptor in this study.

Fig. 2.20.: ROC curves of LBP and other feature descriptors.

SVM and other machine learning classifiers

Table 2.3 summarizes the overall validation error rates of different machine learn-

ing classifiers using LBP features. Näıve Bayes [86] is a linear classifier where coef-

ficients are computed with strong independence assumptions between features. The

second and third classifiers used the Bayesian decision rule whereby the probability

density function (PDF) was estimated using maximum likelihood estimation (MLE)

and the Parzen window [87]. The fourth classifier was also a linear classifier where the

coefficients were computed based on linear discriminant analysis (LDA) [88]. Table

2.3 shows that the linear SVM and the RBF SVM outperformed other classifiers.
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Table 2.3.: The overall validation error rates of different machine learning classifiers.

Näıve Bayes with Bayes with Linear classifier Linear RBF

Bayes [86] MLE Parzen win. [87] with LDA [88] SVM SVM

Error
37.2% 32.6% 10.7% 7.8% 4.5% 2.5%

rate
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LBP-SVM, NB-CNN, NB-FCN, and other approaches

To compare the performance of the proposed detection models, three state-of-

the-art crack detection algorithms were evaluated. Wu et al. [34] used undecimated

wavelet transform (UWT) to detect cracks and scratches on steel plates during pro-

duction. The interscale correlation coefficients of horizontal and vertical components

at scales two and three were computed to binarize the image. Morphological erosion

was then applied to remove spotted noisy blobs and Radon transform was conducted

to compute the linear singularity of the image. The overall TPR was 90.2% but FPR

was not reported. Jahanshahi et al. [25] applied morphological operations including

a modified top-hat operator based on structuring elements of several orientations and

scales to detect cracks on concrete surfaces, which will hereafter be referred to as

Morph. Otsu’s method [89] was used to adaptively determine the threshold for bina-

rizing the image. The small blobs in binary image were filtered out and the large ones

were classified as crack or non-crack using a trained neural network. This method

achieved 84.1% TPR with 25.5% FPR. Choi et al. [35] also detected seam cracks on

steel plates during production using Gabor filter. Two images filtered by Gabor filters

of different frequencies were merged and adaptive double thresholding was applied to

binarize the merged image. The features of blobs and gray image were extracted and

SVM was used to classify the image. It yielded 94.5% TPR with only 0.3% FPR. For

fair comparisons, all the parameters and configurations of the above methods were set

to optimize their performance during the evaluation. For instance, in Morph method,

a set of structuring elements with eight orientations and scales of two to six pixels

were used that matched the orientations and sizes of cracks in this study. The Gabor

filters also were set to have eight orientations with proper frequencies.

Fig. 2.21a illustrates the ROC curves of the proposed NB-FCN, NB-CNN, LBP-

SVM, and the aforementioned three state-of-the-art approaches UWT, Morph, and

Gabor [25, 34, 35] for crack patch detection. This figure shows that NB-FCN, NB-

CNN, and LBP-SVM have much higher TPRs than the other three approaches. Fig.
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2.21b provides a closer view of the ROC curves. Although FCN-120s8 in NB-FCN

has less trainable parameters than NB-CNN and does not have patch-wise image

normalization and batch normalization layers, in Fig. 2.21b the ROC curve of NB-

FCN is close to NB-CNN’s curve and higher than LBP-SVM’s curve. Against 0.1%

FPR, NB-FCN achieves 99.4% TPR and NB-CNN obtains 99.9% TPR.

(a) (b)

Fig. 2.21.: (a) ROC curves of the proposed NB-FCN, NB-CNN [60], LBP-SVM [21],

and three state-of-the-art approaches [25, 34, 35] for crack patch detection, and (b)

close view of ROC curves for the proposed NB-FCN, NB-CNN [60], and LBP-SVM

[21].

2.6.2 Frame-based Evaluation

Although the proposed detection models have high TPRs with very low FPRs,

they may still yield to false positive patches as shown in Fig. 2.16a. To address this

issue, the proposed data fusion scheme maintains the spatiotemporal coherence of the

patches and discards false positive tubelets based on Näıve Bayes decision making.

This section shows how the hit rates are improved for the overall crack detection in

videos when the data fusion is applied.

For evaluation purposes, 65 video segments (i.e., 41,370 frames) with cracks, and

41 video segments (i.e., 45,180 frames) without cracks were used. In these video
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segments, the scanned area by the camera varied from 67.7×30.3 to 114.4×40.1 mm2.

In this study, one frame per second was processed that led to total 2,885 frames for

the evaluation process.

To obtain the ground truths of crack bounding boxes, first, the smallest bounding

box for each crack was manually annotated. Since the proposed method obtains crack

bounding boxes from patches of 120×120 pixels, these bounding boxes are slightly

larger than the manually annotated ones. To conduct a fair evaluation, this study

extended the annotated boxes by 120 pixels in width and height. The extended boxes

served as the ground truths. To compute hit rates, the rules in the PASCAL Object

Detection Challenge [90] were used: a detected crack bounding box hits the ground

truth if
area(Bd ∩Bgt)

area(Bd ∪Bgt)
≥ 50%, (2.14)

where Bd and Bgt are detected and ground truth bounding boxes, respectively.

Overall Hit Rate Comparison

Fig. 2.22 show the precision-recall curves and TABLE 2.4 lists the average preci-

sion (AP) and processing time of the proposed NB-FCN, NB-CNN, and LBP-SVM.

As aforementioned, the convolutional computations of nearby locations can be shared

in FCN, thus the proposed NB-FCN is much faster than NB-CNN and LBP-SVM.

Also, the proposed pNB-Fusion improves the AP for all the three approaches by 3.8%

to 10.0%. Overally, the proposed NB-FCN achieves the highest 98.6% while requir-

ing only 0.017 seconds to process a 720×540 frame and 0.1 seconds for a 1920×1080

frame that is more accurate and efficient than NB-CNN and LBP-SVM.

Fig. 2.23 shows sample detection results from the proposed NB-FCN. In this

figure, the white contours are the detected crack contours from NB-FCN, the red

boxes are the detected crack bounding boxes from NB-FCN, the blue dashed boxes

are the ground truth boxes, and the orange boxes show the enlarged views of crack
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Fig. 2.22.: Precision-recall curves of the proposed NB-FCN, NB-CNN [60], and LBP-

SVM [21].

Table 2.4.: Average precision (AP) and processing times of the proposed NB-FCN,

NB-CNN [60], and LBP-SVM [21].

NB-FCN NB-CNN [60] LBP-SVM [21]

AP 94.8% 93.8% 69.0%

AP with pNB-Fusion 98.6% 98.3% 79.0%

Time@720×540 0.017 sec. 2.55 sec. 1.87 sec.

Time@1920×1080 0.1 sec. 17.15 sec. 12.58 sec.
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regions. As shown in this figure, even in frames that contain noisy patterns and the

cracks are very tiny, the proposed NB-FCN still detects the cracks successfully.

Fig. 2.23.: Sample detection results obtained from the proposed NB-FCN. White:

detected crack contours; Red: detected crack bounding boxes; Blue dashed: ground

truth; Orange: enlarged views of crack regions.

Fusion Scheme Comparison

To show the effectiveness of the proposed pNB-Fusion scheme that fuses scores

sc into spNB based on Equation 2.13, this study compares four other fusion schemes.

The first one ssum intuitively sums up the scores shifted by 0.5. The second one

stop−k takes the top-k (i.e., the kth largest) score that was used in T-CNN [47]. The

third one sSB is adopted in [21] that sums up the likelihood ratios based on a simpler

model of Bayes’ theorem. The final one sNB follows Equation 2.11 that was used

in [60]. TABLE 2.5 lists the AP of all the schemes where the values of θb and k

are optimized. It shows that the proposed pNB-Fusion scheme that generates spNB

achieves the highest AP. Furthermore, as mentioned in Section 2.5.2, if there are

insufficient samples for estimating f(·), the resulting HNB will be unrealistic and

affect the calculation of sNB. The last two columns in TABLE 2.5 also lists the AP

of sNB and spNB when only 6,000 samples were used to estimate f(·) (Fig. 2.19c and
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2.19d). The insufficient samples reduce the AP of sNB by 0.3% and spNB by only

0.2%, meaning that the proposed parametric logarithmic likelihood ratio HpNB(·) is

less sensitive to insufficient samples than HNB(·).

Table 2.5.: The average precision (AP) of different score fusion schemes. *: used only

6,000 samples to estimate f(·).

ssum stop−k [47] sSB [21] sNB [60] spNB sNB [60]* spNB*

97.4% 98.2% 98.0% 98.5% 98.6% 98.2% 98.4%

2.6.3 Processing Time Overhead for LBP-CVM and NB-CNN

In the proposed framework, “Crack Patch Detection” (Section 2.4.2) consumes

most of the computation time while other procedures take only 0.05 seconds to process

a 720 × 540 frame. For LBP-SVM, we evaluated the average processing time for

“Crack Patch Detection” on a Windows 7 64-bit OS with 8-core Intel i7-4790 CPU

and 8 GB RAM. The LBP extraction was implemented in MATLAB and C++, with

and without the use of the integral histogram. SVM classification was carried out

using LIBSVM [91] in C++. Table 2.6 shows how integral histogram and two-stage

SVM shortened processing time. As shown in the table, integral histogram saves 61%

computation time for LBP extraction and implementing it in C++ saves up to 95%

computation time. For classification, two-stage SVM saves 80% computation time

since most patches are not cracks and filtered out in the first stage of the linear SVM.

The average processing time is 0.64 + 1.23 = 1.87 seconds for a 720× 540 frame with

integral histogram and two-stage SVM implemented in C++.

For NB-CNN, “Crack Patch Detection” was implemented using TensorFlow [71]

in Python. Using the hardware system specified in Section 2.4.4, it took about 2.55

seconds to perform “CNN Crack Patch Detection” on a 720×540 frame. Although

the computation time of NB-CNN is a little bit longer than LBP-SVM’s (i.e., 1.87

seconds), NB-CNN provides better detections. The value of patch scanning step size
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Table 2.6.: Average processing time of crack detection for a 720 × 540 frame using

different methods and programming languages (IH: integral histogram).

LBP SVM

Without IH With IH With IH RBF SVM 2-stage SVM

Matlab Matlab C++ C++ C++

Time (sec.) 32.15 12.65 0.64 6.08 1.23
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in “CNN Crack Patch Detection” affects the density of patches in a frame and the

computation time. Table 2.7 lists the computation times for a 720×540 frame and

the average AUCs of different scanning step sizes using NB-CNN. For step sizes four

to eight, the corresponding AUC values are very close. The AUC starts to decrease

when the step size is over 12. This study chooses step size of eight since it has the

highest AUC and a reasonable computation time.

Table 2.7.: The computation times of NB-CNN for a 720×540 frame and the average

AUCs of different scanning step sizes in “CNN Crack Patch Detection.”

Step size 4 6 8 12 16 20

Time (sec.) 9.35 4.10 2.55 1.16 0.69 0.43

AUC 96.3% 96.2% 96.8% 96.0% 95.1% 94.7%

2.6.4 Score Map Up-sampling with Atrous Convolution for NB-FCN

As discussed in Section 2.5.1, one disadvantage of training an FCN from image

patches is that the deconvolution layers [80] for up-sampling the score map cannot be

trained. However, this disadvantage can be overcome by utilizing atrous convolutions

to change the down-sampling factor d of score map [81]. To achieve this, the strides

and atrous rates (i.e., the distances of nearby pixels to be convolved or pooled) need

to be adjusted for a targeting d while keeping the receptive field of FCN the same

(e.g., 120× 120 pixels for FCN-120s8.)

TABLE 2.8 lists the stride and atrous rate configurations of FCN-120s8 and cor-

responding processing time and AP when changing down-sampling factor d where the

parentheses indicate the adjusted values of strides and atrous rates. The processing

time depends on the shared computation of each layer where larger step size might

not result in shorter processing time (e.g., see the processing time for d = 4 and 6).

For d = 2, the score map density is 16 times the density of original d = 8 while the
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processing time only increases from 0.017 to 0.0276 seconds. The AP have similar

values for d = 2 to 8 and decreases when d becomes larger. Although smaller d does

not necessary result in higher AP, it provides denser score maps and thus more precise

crack contours as illustrated in Fig. 2.24.

Table 2.8.: The stride and atrous rate configurations of FCN-120s8 and corresponding

processing time and average precision (AP) when changing down-sampling factor d.

The parentheses indicate the adjusted values of strides and atrous rates.

d 2 4 6 8 (original) 12 16 20 24

stride rate stride rate stride rate stride rate stride rate stride rate stride rate stride rate

Conv1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pool1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Conv2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pool2 (1) 1 2 1 (1) 1 2 1 2 1 2 1 2 1 2 1

Conv3 1 (2) 1 1 1 (2) 1 1 1 1 1 1 1 1 1 1

Pool3 (1) (2) (1) 1 (1) (2) 2 1 (1) 1 2 1 (1) 1 2 1

Conv4 1 (4) 1 (2) (3) (4) 1 1 (3) (2) (2) 1 (5) (2) (3) 1

Conv5 1 (4) 1 (2) 1 (4) 1 1 1 (2) 1 1 1 (2) 1 1

Time@720×540 (sec.) 0.0276 0.0175 0.0274 0.0170 0.0174 0.0163 0.0167 0.0160

AP (%) 98.5 98.5 98.5 98.6 97.6 96.0 89.0 77.0

(a) (b)

(c) (d)

Fig. 2.24.: Samples of crack contours from the proposed NB-FCN when the down-

sampling factor d = (a) 8, (b) 6, (c) 4, or (d) 2. Smaller d can provide more precise

crack contours.
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2.6.5 Hyperparameters Analysis

Hyperparameters for LBP

LBP has flexible configurations (e.g., definition of neighbors, scales, regions) and

choosing the optimal configuration improves the overall performance. Fig. 2.25a

illustrates the ROC curves of LBP with different scales and neighbors, where 1-scale

is based on a 3×3 block, 2-scale is based on 3×3 and 5×5 blocks, and so on. In this

study, an 8-neighbor LBP is used where it performs slightly better than a 4-neighbor

one (see Fig. 2.25a); however, a 4-neighbor is typically used in other applications

for its smaller feature dimensionality. The Fig. also shows that a greater scale could

lead to higher accuracy. However, when the FPR is below 0.2, the TPR of 4- and

5-scale LBP are very close. Thus, 4-scale LBP is chosen because it has smaller feature

dimension than 5-scale LBP.

The selection of regions within a patch to compute LBP features is also an impor-

tant factor. Three kinds of region selections were evaluated. The “6 regions” used

three 120×40 and three 40×120 non-overlapping rectangular regions, the “9 regions”

used nine 40×40 nonoverlapping square regions, and the “11 regions” used the same

nine square regions in addition to one 120×40 and one 40×120 overlapping rectan-

gular regions that crossed the center of a patch. Fig. 2.9 shows the drawings of the

regions and Fig. 2.25b shows the ROC curves of these region selections. The perfor-

mances of the “9 regions” and “11 regions” setups are very close and the setup of this

article (“6 regions”) has comparable TPR when the FPR is between 5% and 20%.

Thus, “6 regions” is used in this study, which has the smallest feature dimension and,

consequently, is computationally most efficient.

Fig. 2.25c shows the comparison between two-stage SVM and RBF SVM as well

as the effect of uniform and nonuniform LBP. As seen in the figure, the performances

of the “RBF SVM + uniform LBP” setup and the proposed setup (“two-stage SVM

+ uniform LBP”) are very close, which means that the two-stage SVM not only main-

tains performance but also saves computation time in comparison with the RBF SVM.
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(a) Different scales and neighbors of LBP.

(b) Different number of regions for LBP.

(c) Non-uniform LBP and 2-stage SVM.

Fig. 2.25.: ROC curves of different configurations of LBP and SVM.
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The RBF SVM + nonuniform LBP curve used 4-scale nonuniform LBP to extract

feature vectors with feature dimension of 256×4×6 = 6144, whereas the other curves

used 4-scale uniform LBP. Although nonuniform LBP yields slightly better perfor-

mance than uniform LBP, its feature dimension is approximately three times larger

than that of uniform LBP, which results in an approximately quadruple processing

time. For this reason, uniform LBP is chosen due to its time efficiency.

Hyperparameters for Näıve Bayes Decision Making

To analyze the performance over hyperparameters for Näıve Bayes Decision Mak-

ing, the curves of hit rates versus false positive per frame (FPPF) were calculated and

area under the curves (AUCs) were used for evaluations. Fig. 2.26 shows the average

AUCs versus different θt values in [-60, 60] interval for NB-CNN. The maximum AUC

corresponds to θt = −28. The standard deviation of the AUCs is 1% that indicates

the overall performance is not sensitive toward θt within [-60, 60] interval. Note that

for θt values less than -60 and greater than 60, the average AUC decrease. To obtain

the optimum value for θt, this study takes average AUC as the objective. Another

reasonable objective function for obtaining the optimum value for θt is the hit rate

against a specific FPPF (e.g., 0.1) based on the application. A more complex way is

to collect a dataset of tubelets (not image patches) with crack or non-crack labels,

acquire the statistic of the likelihood ratios (
∑
HNB(sci)), and find the optimum value

for θt (e.g., by using a 1D Bayesian classifier). The latter approach requires larger

video dataset so that enough tubelets exist in the dataset. This approach leads to the

highest accuracy for classifying tubelets; however, it does not guarantee to achieve

the best objectives (e.g., hit rate or AUC). In some cases where none of the above

methods is applicable, θt can be computed as θt = − logP (Ccrk) + logP (Cncrk) by

setting θ = 1 in Equation 2.6. In this way, the priors P (Ccrk) and P (Cncrk) are em-

pirically estimated. Alternatively, it is assumed that the prior probabilities are equal

which leads to θt = 0.
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Fig. 2.26.: The average AUC versus different θt values for NB-CNN.
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Table 2.9 lists the hit rates and FPPFs of different θc values when θt = −28. As

seem from this table, the hit rate approximately reaches its maximum when FPPF is

greater than 0.2. Since θc controls the overall detection sensitivity, its value should

be set according to the allowable FPPF for the application of interest, or by targeting

a desired hit rate based on Table 2.9 or Fig. 2.22. This study achieves 98.3% hit rate

against 0.1 FPPF when θt = −28 and θc = 8.7 for NB-CNN.

Table 2.9.: The list of hit rates and FPPFs of different θc values when θt = −28 for

NB-CNN.

Hit rate 91.3% 96.4% 98.3% 99.7% 99.7%

FPPF 0.01 0.05 0.1 0.2 0.3

θc 1153.2 191.7 8.7 -18.6 -27.1

For NB-FCN, Fig. 2.27 shows the average area under the hit rate curves (AUCs)

versus θt in [-40, 40] interval. The maximum AUC occurs when θt equals -23. The

standard deviation of AUCs in Fig. 2.27 is 0.8% that indicates the overall performance

is not sensitive toward θt. To obtain the optimum value for θt, this study takes

maximizing the average AUC as the objective. Another reasonable objective to select

θt is the hit rate against a specific FPPF (e.g., 0.1), depending on the targeting

application.

Fig. 2.27.: The average area under the hit rate curves (AUCs) versus θt for the

proposed NB-FCN.
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Table 2.10 lists the hit rates versus FPPF for different θc values for NB-FCN when

θt = −23. The hit rate starts at 94.6% when FPPF equals 0.01 and approximately

reaches the maximum value when FPPF is greater than 0.1. Since θc controls the

overall detection sensitivity, its value can be set according to the allowable FPPF for

the application of interest, or by targeting a desired hit rate based on Table 2.10 or

Fig. 2.22. This study achieves 98.5% hit rate against 0.1 FPPF when θt = −23 and

θc = 20.9.

Table 2.10.: Hit rate values versus false positive per frame (FPPF) for different θc

values when θt = −23 for NB-FCN.

Hit rate 94.6% 94.6% 95.6% 96.5% 98.5% 98.5% 98.5%

FPPF 0.01 0.05 0.07 0.09 0.1 0.15 0.2

θc 335.5 196.5 110.0 31.2 20.9 0.3 -12.0

2.7 Conclusion

Frequent inspection of nuclear power plant internal components is necessary while

current human-involved practice is costly, subjective, and time-consuming. Detecting

cracks on nuclear power plant internal components is a challenging task since there are

noisy patterns and tiny cracks on the metallic surfaces of components that are typi-

cally submerged underwater. The proposed LBP-SVM [21] and NB-CNN [60] outper-

formed other state-of-the-art approaches [25,34,35] for detecting cracks from nuclear

inspection videos. However, LBP-SVM and NB-CNN require 1.87 and 2.55 seconds

to analyze a 720×540 frame, and 12.58 and 17.15 seconds to analyze a 1920×1080

frame, respectively. Their processing times are too long for real-time autonomous

nuclear power plant inspection. Thus, a NB-FCN framework is also proposed that

detects cracks from nuclear inspection videos in real-time with high precision. An

architecture design principle is introduced for FCN that can take image patches for

training without pixel-level labels. A pNB-Fusion scheme is proposed that registers
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video frames in spatiotemporal coordinate system and fuses crack scores with a para-

metric logarithmic likelihood ratio function that outperforms other fusion schemes.

The proposed NB-FCN achieves 98.6% detection AP and requires only 0.017 seconds

for a 720×540 frame and 0.1 seconds for a 1920×1080 frame. Based on its capability

and efficiency, the proposed NB-FCN is a significant step toward nuclear power plant

inspection that creates a potential of analyzing inspection videos in real-time during

data collection phases and makes fully autonomous nuclear inspection possible.
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3. CRACK SEGMENTATION FROM IMAGES

3.1 Introduction

3.1.1 Motivation

The detection of defects in structures is paramount for safe operations. Remote

visual testing (VT) is a common non-destructive testing (NDT) method to inspect

the surface defects. Cracking is one common defect that appears at the early stage

of structural impairment on different types of surfaces including road pavement [92],

nuclear power plant [21, 60], and tunnels [93]. Estimating the status of cracks can

give the up-to-date structure conditions. As a result, beside detecting crack locations,

quantifying cracks is also necessary to keep track on cracks’ status. Crack opening

dimension (i.e., crack width) and crack length are the quantities that are usually used

to measure the severity of cracking defect. Crack width is a difficult characteristic

to describe accurately in a single number since it varies along the centerline of crack.

One method to characterize crack width in a single number is calculating the root

mean square (RMS) of crack width measurements along the crack centerline [94,95].

This requires having numerous width measurements along the crack. Taking manual

measurements of crack widths and lengths is very labour and time-consuming process.

The measurements can also be subjective due to each person’s own judgement who

measures the cracks. An autonomous approach that detect or segment cracks in

pixel level from images can help remove human subjectivity and provide much more

measurements than human labors [96].

In general, cracks have linear or curvilinear shapes. Thus, the detection of cracks

from images was formulated as edge detection [22] or line detection [97] which are

fundamental problems in computer vision research field. Both approaches work well
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when the background is clear and the contrast of cracks is strong. However, in

practice the detection of cracks usually suffer from noisy pattern in the background,

discontinuity of cracks, and low contrast, which degrade the performance of traditional

approaches.

In the recent decade, the development of deep learning [37] has dominated com-

puter vision research field using deep CNN or FCN [56] by learning the image features

from training data. When using deep learning for edge or line detection [98, 99], it

has been observed that high-level features are learned to detect the coarse structure

of edges while low-level features describe the boundary details of edges. Thus, deep

learning can also effectively distinguish cracks from background and is widely used

for crack detection [100–102].

The performance of deep learning-based approaches heavily relies on its CNN or

FCN architecture. A network with huge number of parameters can learn more fea-

tures for complex problems, but it also has a risk of overfitting during training. If

the property of data can be encoded into network architecture, it can reduce the

number of parameters to be learned, help the generalization of learning, and improve

the performance [103]. For cracks, it can be observed that a crack could be detected

from an image with any in-plane camera orientation. This means one of the funda-

mental property of cracks is that they are actually rotation invariant. Most crack

detection approaches, however, exploit this property simply by data augmentation

that randomly rotates training images during training. As a result, the number of

parameters in the networks are not reduced and the risk of overfitting still remains.

To address this issue, this study proposes a ARF-Crack FCN that encodes the ro-

tation invariant property into the architecture. Thus, ARF-Crack needs much less

number of parameters to extract features of cracks and leads to better generalization

of learning. Experimental results show that the proposed ARF-Crack outperforms

other state-of-the-art crack detection FCN for detecting cracks or corrosion in pixel

level.
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3.1.2 Related Work

Pixel-level crack detection, also known as crack segmentation, is a procedure to

binarize each pixel as being either crack or non-crack in an image. Traditional ap-

proaches apply thresholding [104,105], edge detection [22,23], image percolation [26],

or morphological operations [28] that perform well when the contrasts of cracks are

high and background is clear.

Recently, deep learning techniques have outperformed other algorithms and domi-

nated image-based object detection or recognition tasks using deep CNN. Thus, many

recent approaches apply deep CNN to detect or segment cracks. Deep CNN was first

used in [51] to classify crack patches, but the crack widths were too wide when ap-

plying it for crack segmentation. The approaches in [53, 100, 106] utilized deep CNN

to detect cracks in images, but those approaches are grid-based that only provide

approximate crack locations that are presented by fixed-sized grids. The studies

in [107,108] provide pixel-wise crack segmentation from images using deep CNN, but

they used patch-scanning or pixel-scanning approaches that would be very slow for

high resolution images. Different from patch-scanning approaches based on CNN,

FCN-based approaches [55, 101, 102, 109] take the whole image as the input to reuse

the computation of nearby convolution layers, which results in much faster processing

time. One major issue of using FCN is the down-sampling effect caused by the strides

of pooling or other layers. That is, the convolution feature maps and the final crack

score map will be down-sampled by FCN. To obtain a crack score map with the same

resolution as the input image, bilinear up-sampling or deconvolution layers [80] can

be adopted to increase the resolution of convolution feature maps and crack score

map.

Many objects, including cracks, have a fundamental property where they are ro-

tation invariant. Encoding the rotation invariant property within CNN or FCN ar-

chitectures will help the generalization of learning and improve the performance.

Rotation invariant convolutional filters were learned in [110] for texture classification.
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However, most of the filters learned have circular patterns that are not suitable for

detecting cracks that have linear shapes. A rotation invariant layer is introduced

in [111], but it is a different form of fully-connected layers where the rotation invari-

ant property is not encoded in convolution layers. Similarly, in [112, 113] the input

image was augmented by rotating it with multiple orientations (referred to as input

rotation augmentation (IRA) approaches in this study). Then, the same network

was applied to all the augmented images and the resulting convolution features from

different orientations of images were concatenated before fully-connected layers. To

actually encode the rotation invariant property, active rotating filter (ARF) was pro-

posed in [103] that actively rotate convolution layers to produce feature maps that

have several orientation responses explicitly encoded. Yet, in [103] the ARFs were

adopted in CNN architectures for image classification tasks and had never been used

in FCN for pixel-level segmentation, to the best of authors’ knowledge.

To conclude, deep FCN have been widely used for pixel-level crack detection.

However, the rotation invariant property of cracks have never been actually exploited

in network architectures. While ARF encode the property by actively rotating con-

volution layers, its effect on FCN for detecting cracks needs to be evaluated and

optimized.

3.1.3 Contribution

This study proposes a ARF-Crack that is a rotation invariant FCN for pixel-level

crack detection. The architecture of ARF-Crack adopts a state-of-the-art FCN called

DeepCrack [102] and ARF [103] to encode the rotation invariant property of cracks

within the network. The proposed ARF-Crack is evaluated on three benchmark

datasets including concrete cracks, pavement cracks, and corrosion images. Evalua-

tion results show that ARF-Crack requires less number of parameters to learn and

outperforms DeepCrack and IRA-based approaches.
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3.1.4 Scope

The remaining of this article is organized as the following: Section 3.2 describes

the three image datasets used for training and evaluation, Section 3.3 elaborates the

details of DeepCrack, IRA, ARF, and the proposed ARF-Crack, Section 3.4 shows

the evaluation results, and Section 3.5 summarizes the conclusion.

3.2 Image Dataset

The first dataset adopted in this study is from DeepCrack [102] that consists of

537 RGB images of 544× 384 pixels with concrete and pavement cracks. 300 images

were used for training and 237 images were used for evaluation. The second one is

CFD dataset [114] that contains 118 RGB images of 320× 480 pixels with pavement

cracks taken by an iPhone5. The images contain noisy backgrounds including shad-

ows, oil spots, water stains, and non-uniform illuminations. 102 images were used

for training and 16 images were for evaluation. To further evaluate the robustness of

ARF-Crack, 600 images containing corrosion [115,116], that is also a rotation invari-

ant defect, were collected by digital cameras or from internet where the annotations

were manually labelled in this study. The resolution of images is from 224 × 144 to

976 × 640 pixels. In this dataset, 494 images were used for training and 106 images

were for evaluation. All the images from these three datasets have pixel-level annota-

tions of being crack/non-crack or corrosion/non-corrosion. Figure 3.1 shows sample

images and pixel-level annotations of the three datasets. As being seen from Figure

3.1, the cracks in DeepCrack dataset have high contrast but the background is com-

plex. In CFD dataset, the background is more uniform but the cracks are tiny with

low contrast. For corrosion dataset, the corrosion has variant shapes and detailed

boundaries.
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(a)

(b)

(c)

Fig. 3.1.: Sample images and pixel-level annotations from the datasets used for train-

ing and evaluation in this study: (a) DeepCrack, (b) CFD, and (c) corrosion.
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3.3 Proposed Approach

To encode the rotation invariant property into network architecture, this study

proposes a ARF-Crack that integrates a state-of-the-art FCN called DeepCrack [102]

with ARFs [103]. To compare ARF-Crack with different rotation invariant FCN, an

FCN based on DeepCrack and IRA [112,113] (referred to as IRA-Crack) was also im-

plemented and evaluated. Figure 3.2 illustrate the FCN architectures of DeepCrack,

IRA-Crack, and the proposed ARF-Crack. Each convolution or ARF layer is followed

by a rectified linear unit (ReLU) [74] and each pooling layer applies maximum pool-

ing. Also, unlike the original DeepCrack, the parameters in deconvolution layers are

bilinearly initialized and then optimized during training. The details are explained

in the following sub-sections.

3.3.1 DeepCrack

As being shown in Figure 3.2a, DeepCrack [102] consists of five series of 3 × 3

convolution layers and 2 × 2 pooling layers with stride of two to down-sample the

feature map. Each series is followed by a 1× 1 convolution layer and a softmax layer

to generate crack score map. If the score map is down-sampled, a deconvolution layer

is applied to up-sample the score map to the original resolution of input image. Thus,

five crack score maps of scales 1, 2, 4, 8, 16 will be generated where the score maps

with large scales detect the coarse structures of cracks while the boundary details of

cracks are described in the score maps with small scales. In the end, the five crack

score maps are concatenated and followed by a 1× 1 convolution layer to generated

the fused crack score map, which is the final prediction of pixel-level crack detection.

The total number of network parameters is about 14.7 million.
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(a)

(b)

(c)

Fig. 3.2.: The FCN architectures of (a) DeepCrack, (b) IRA-Crack, and (c) the

proposed ARF-Crack. Each convolution or ARF layer is followed by a rectified linear

unit (ReLU) [74] and each pooling layer applies maximum pooling. H: height of filter

kernel, W: width of filter kernel, K: number of filter kernels, S: stride, N: number of

orientations for ARF, and OR pooling: oriented response pooling.
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3.3.2 IRA-Crack

In the original IRA approaches [112, 113] for image classification tasks, the input

image, which needs to have square shape, is rotated by multiple orientations and

the same network is applied to all the rotated images. Finally, all the resulting

features from different orientations are concatenated before fully-connected layers.

To apply IRA for FCN, one way is to simply rotate the entire network by switching

or interpolating the weights in convolution and deconvolution layers. Another way

is to rotate the input image by certain degrees (e.g., by 90 degrees), apply the same

network to extract feature maps, and inversely rotate the output feature maps back

(e.g., by -90 degrees) to its original orientation.

IRA-Crack uses exactly the same DeepCrack architecture and applies IRA for 0,

90, 180, and 270 degrees. Thus, each series of convolution and pooling layers will

generate four feature maps from 0, 90, 180, and 270 degrees that represent crack

features from different orientations. Then, oriented response pooling (OR pooling)

[103] is applied to pool the feature values from different orientations. Finally, the

same procedures used in DeepCrack generate all the crack score maps where the

fused score map is the final prediction. The total number of network parameters is

about 14.7 million.

3.3.3 The Proposed ARF-Crack

Different from IRA-based approaches [112,113] that simply rotate the entire net-

work, the proposed ARF-Crack adopts ARFs [103] that explicitly extract feature from

multiple orientations. Figure 3.3 shows the illustration of an ARF layer. Each ARF

layer takes N feature maps M0, ..., MN−1 as input and output the same number of

feature maps. For the first ARF where the input is the original image, the image is

duplicated N times as N input feature maps. Each feature map represents the feature

responses for a certain orientation. In this study N = 4 and the feature maps M0,

M1, M2, and M3 represent the feature responses of 0, 90, 180, and 270 degrees. For
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each feature map Mi, it has a corresponding convolution filter bank Fi that operates

as a conventional convolution filter. For instance, in Figure 3.2c, the first ARF has

four filter banks F0, F1, F2, and F3. Each of them consists of 3× 3 convolution filters

of 16 kernels.

Fig. 3.3.: The illustration of an ARF [103] layer with four orientations (N = 4).

To generate the output feature map M0 of 0 degree orientation, each input feature

map Mi convolves with Fi. Then, all the convolution outputs are summing together

to form output M0. For the output feature map with orientation larger than 0 degree,

the same procedure is taken while all the filter banks are rotated by the same degrees

of that orientation. For instance, in Figure 3.3, M1 in layer n+1 is generated from

the summation of convolving M0, M1, M2, and M3 in layer n with filter banks F0,

F1, F2, and F3 that are rotated by 90 degrees. By doing this, each output Mi is a

fusion of convolution outputs from the previous layer while it captures the feature

response of a certain orientation. Similar to IRA, the rotation of filter banks can be

implemented by either 1) switching or interpolating the weights in convolution layers,

or 2) rotate the input feature map, apply the convolution operation, and inversely

rotate the output feature map back.

Figure 3.2c shows the details of ARF-Crack. It has a similar architecture as Deep-

Crack [102] while all the convolution layers are replaced by ARFs of four orientations

(N = 4). Since the feature responses of four orientations (0, 90, 180, and 270 degrees)

have already been represented in M0, M1, M2, and M3, the filter banks in each ARF

requires much less number of kernels than the original DeepCrack to extract features
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of different orientations, which results in a significant reduction in the number of

network parameters. Similar to IRA-Crack, OR pooling is applied to pool the feature

values from different orientations, and the same procedures are taken to generate all

the crack score maps where the fused score map is the final prediction. The total

number of network parameters is about 3.7 million that is 25% to the number of

parameters in DeepCrack and IRA-Crack.

3.3.4 Training

All the training and evaluations of networks took place on an Exxact deep learning

Linux server with Ubuntu 16.04.3 LTS. The server had two Intel Xeon E5-2620 v4

CPUs with total 32 cores, 256 GB DDR4 memories, and four NVIDIA Titan X Pascal

GPUs. One GPU was used at a time to train and evaluate the network. The training

parameters were the same for all the networks and datasets. During training, every

network was trained for 1,000 epoches with batch size of one. The piece-wise learning

rates were used where the initial rate equaled 2e-5 and changed to 5e-5, 2e-4, 1e-4,

5e-5, and 2e-5 after 10, 20, 300, 450, and 600 epoches. The initial small warming-up

learning rates reduced the risk of divergence. Then, large learning rate was used to

speed up the convergence and gradually decayed for seeking global optimum with

smaller gradient steps. There was no batch normalization layers [73] in all the net-

work in this study since data augmentation was applied that randomly rotated the

training images. The resolution and orientation of training images changed rapidly

and resulted in unstable batch distribution during training that will degrades the

performance of batch normalization.

The loss to be optimized during training was the summation of the regularization

loss and the prediction loss. The regularization loss equaled the sum of square values

of all the parameters in 1×1 convolution layers with 0.001 loss weight. The prediction

loss equaled the sum of cross entropy between ground-truth annotations and all the

crack score maps (i.e., scale 1, 2, 4, 8, 16, and fused) with weights w1, w2, w4, w8, w16,
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and wfused. Although only the fused crack score map is the final prediction, including

the losses from crack score maps of different scales will help the generalization of

network during training. In this study, wfused = 5 and all the other weights equaled

1.

3.4 Experimental Result

3.4.1 Evaluation on Image Datasets

Three datasets [102, 114] described in Section 3.2 are used to train and evaluate

DeepCrack [102], IRA-Crack, and the proposed ARF-Crack. For DeepCrack dataset,

the effect of data augmentation that randomly rotate training image is also evaluated.

Different OR pooling scenarios are compared including no pooling (i.e., concatenated

all the feature maps from different orientations), average pooling, and maximum

pooling. Table 3.1 lists the average precision (AP) (i.e., area under the precision-

recall curve) values from the evaluation. In this table, the proposed ARF-Crack

achieves the highest AP over all the dataset. ARF-Crack requires less parameters

in the network but can extract feature response from different orientations explicitly.

Thus, ARF-Crack has better network generalization and outperforms DeepCrack and

IRA-Crack.

Table 3.1.: The average precision (AP) of DeepCrack [102], IRA-Crack, and the

proposed ARF-Crack on three different datasets. The OR pooling scenarios (no,

average, and maximum) are listed below IRA-Crack and ARF-Crack.

Dataset
Data

Deep Crack
IRA-Crack ARF-Crack

augmentation no average max no average max

DeepCrack
85.5% 83.5% 83.3% 77.8% 85.6% 85.0% 77.3%

� 91.6% 91.6% 91.3% 91.6% 90.5% 91.8% 91.4%

CFD � 54.6% 58.2% 60.4% 57.4% 66.9% 66.1% 64.5%

corrosion � 93.7% 94.5% 94.1% 94.5% 94.9% 92.9% 94.4%
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In addition to the highest AP values, there are several observations that can be

seen from Table 3.1. First, the data augmentation significantly improves all the AP

values. This means data augmentation is still an important step to train rotation

invariant networks. Second, for OR pooling, no pooling slightly outperforms average

pooling while maximum pooling has unstable performance. The reason might be that

no pooling keeps the most number of feature dimensions while average pooling pro-

vides orientation normalization (i.e., the resulting feature map will be identical after

average pooling if the input is rotated). Although max pooling also has orientation

normalization, it only keeps the maximum response while the small responses are

discarded that might also be important for the final predictions. Finally, the AP val-

ues of DeepCrack, IRA-crack, and ARF-Crack are very close in DeepCrack dataset.

This might be due to that the cracks in DeepCrack dataset have high contrast and

are easier to be detected, regardless the network is rotation invariant or not. For

CFD and corrosion datasets, however, the AP values of ARF-Crack are much higher

than the values of DeepCrack and IRA-Crack, meaning that ARF-Crack outperforms

the other two approaches very much for these two datasets. CFD dataset has tiny

cracks with low contrast while corrosion dataset has detailed corrosion boundaries

that make the detecting of cracks or corrosion very challenging where ARF-Crack has

the capability to extract features from different orientations explicitly and performs

better than the others.

Figure 3.4 shows samples of input image, ground-truth pixel-level annotations,

and the predictions from DeepCrack, IRA-Crack, and ARF-Crack for all the datasets.

For DeepCrack dataset, all the three approaches performs well where the shapes of

detected cracks are close to the ground-truth without obvious false positives. For CFD

dataset, however, both DeepCrack and IRA-Crack have more false positives (e.g.,

small white dots around the detected cracks) and discontinuity of detected cracks

than the detections of the proposed ARF-Crack. For the first image of corrosion

dataset, DeepCrack does not detect the details of left corrosion very well with an

obvious false positive while IRA-Crack miss-detects many portions of right corrosion.
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For the second image of corrosion dataset, both DeepCrack and IRA-Crack have more

false positives than the detections of ARF-Crack.

Fig. 3.4.: Samples of input image, ground-truth pixel-level annotations, and the pre-

dictions from DeepCrack [102], IRA-Crack, and the proposed ARF-Crack for Deep-

Crack [102], CFD [114], and corrosion datasets.
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3.4.2 Number of Parameters vs Processing Time

Table 3.2 lists the number of network parameters and average processing times

of DeepCrack [102], IRA-Crack, and the proposed ARF-Crack on the three datasets.

Although ARF-Crack has the least number of parameters, each ARF layer executes

convolution operations for N2 times where N is the number of orientations (see Figure

3.3 where N = 4 in this study). Thus, ARF-Crack requires longer processing time.

Similarly, IRA-Crack execute convolution operations for N times and also requires

longer processing time. Overally, all the three approaches can process a single image

efficiently within 0.1 seconds. Thus, in practice, the longer processing time of ARF-

Crack can be neglected.

Table 3.2.: The number of network parameters and average processing times of Deep-

Crack [102], IRA-Crack, and the proposed ARF-Crack on three different datasets.

DeepCrack IRA-Crack ARF-Crack

# of parameters 14.7 M 14.7 M 3.7 M

Average DeepCrack 0.018 0.070 0.083

processing CFD 0.014 0.053 0.071

time (sec.) corrosion 0.013 0.050 0.070

3.5 Conclusion

For pixel-level crack detection, this study proposes an ARF-Crack FCN that

adopts a state-of-the-art FCN called DeepCrack [102] and ARF [103] to encode the

rotation invariant property of cracks into the network. In ARF-Crack, the ARF lay-

ers explicitly extract feature responses from multiple orientations. Thus, ARF-Crack

requires less number of network parameters and has better network generalization.

Three datasets of cracks or corrosion images are used to compare the performance

of ARF-Crack with other approaches. Experimental results show that ARF-Crack
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achieves the highest AP values of 91.8%, 66.9%, and 94.9% and requires 0.083, 0.071,

and 0.070 second in average to process an image for DeepCrack [102], CFD [114],

and corrosion datasets. Thus, the proposed ARF-Crack is an effective and efficient

approach to detect crack and corrosion in pixel level, and has a potential to detect

other types of defects that are also rotation invariant.
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4. BUILDING ATTRIBUTE ESTIMATION FROM

STREET VIEW IMAGES

4.1 Introduction

4.1.1 Motivation

Floods are a very common natural disaster, occurring worldwide and causing eco-

nomic losses and human casualties. Expected climate changes over the next century,

including sea level rise [117,118], more frequent extreme precipitation events [119,120],

and more intense cyclone activity [121, 122], pose existential threats to coastal cities

hosting the large majority of human life and activity [123]. To achieve comprehen-

sive coastal protection, for instance, the state of Louisiana in the U.S. has produced

its Comprehensive Master Plan for a Sustainable Coast, a fifty-year, legislatively-

mandated plan consisting of approximately $50 billion USD of coastal protection

and restoration projects [124]. In coastal areas, governments, individual homeown-

ers, landlords, and businesses all need accurate information about current and future

flood risk to make effective decisions about risk mitigation.

Damage calculations in the Coastal Louisiana Risk Assessment (CLARA) model

primarily follow methods developed for the FEMA Hazus Multi-Hazard model (Hazus-

MH) [125–127]; direct economic losses associated with flooding are calculated as a

function of the building’s replacement cost, the depth of flooding relative to the

building’s first-floor elevation above grade, and building characteristics such as the

number of stories, foundation type, and asset type (e.g., single-family residential, mo-

bile home, or commercial). The latter three characteristics are combined and referred

to below as the “building characteristics.” The replacement cost is itself estimated as

a function of attributes such as square footage and construction quality.
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For example, assume a structure, of building characteristics i with size s and

construction quality q, is being retrofitted to elevate its foundation to a height of

h feet above the current foundation. The depth-damage function for buildings of

characteristics i is denoted as Di(e) and is a monotonically increasing function of e,

the elevation of flooding relative to the top of the building’s foundation. Define the

probability distribution function of flood elevations occurring in a given year to be

f(e). Then, Di(e) is expressed as the proportion of the structure’s replacement cost,

V (s, q), incurred as damage in order to repair or reconstruct the building after a flood

event. Elevating the structure directly reduces the effective flood depth experienced

in comparison to its current foundation height, so the expected annual losses are:

L(h) = V (s, q) ·
∫ ∞
−∞

Di(e)f(e+ h)de = V (s, q) ·
∫ ∞
−∞

Di(e− h)f(e)de. (4.1)

The set of structural attributes relevant to CLARA model guided the selection of

features to estimate. However, such data are expensive to collect and, as a result,

often obsolete. For instance, in large parts of Louisiana coast in the U.S. where

significant effort has been taken to study flood risk since Hurricane Katrina struck

in 2005, the most recent data about the height of building foundations above grade

were from street-level surveys performed by the U.S. Army Corps of Engineers in

1991 [128]. Obviously, the data are out of date due to post-Katrina reconstruction

and retrofits, but the state has no better estimates in some areas to rely on for

making decisions about investments in coastal protection measures. A patchwork of

data related to post-Katrina reconstruction and tax records have improved estimates

of structural features in a small number of Louisiana parishes, but the coverage of

high-quality data is far from complete as there are more than 780,000 buildings in

the Louisiana coastal zone. In other states and particularly developing countries,

individual structure-level data either do not exist or are scattered across multiple

agencies and jurisdictions, making them prohibitively expensive and time-consuming

to collect.

To tackle the grand challenge of managing flood risk, this study proposes a frame-

work based on deep learning [37] that can collect comprehensive data of building
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structural attributes effectively and efficiently without human-involved street surveys.

First, the GSV images of buildings in the areas of interests are gathered. Then, the

proposed framework can estimate multiple structural attributes of buildings simulta-

neously that are crucial for assessing the flood risks from the GSV images. Conse-

quently, combining the estimated structural attributes with geography data and flood

risk models (e.g., CLARA model) will directly improve flood risk assessments for the

areas of interest. Figure 4.1 shows the overview of online flood risk decision support

system [129] developed by Louisiana’s Coastal Protection and Restoration Authority

(CPRA) that visualizes flood risk information integrated for public individuals and

businesses to access where the proposed framework will analyzes GSV images and es-

timates building structural attributes for flood risk models. The estimated attributes

include each building’s foundation height (feet above adjacent grade), foundation type

(pier, slab-on-grade, mobile home, or other), building type (commercial, residential,

or mobile home), and number of stories (one story or more). Figure 4.2 shows sample

GSV images of typical buildings that have certain above attributes.

Fig. 4.1.: The overview of online decision support system for flood risk [129] de-

veloped by Louisiana’s Coastal Protection and Restoration Authority (CPRA) where

the proposed framework will analyzes Google street view (GSV) images and estimates

building structural attributes for flood risk models.
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(a) (b) (c) (d) (e) (f)

Fig. 4.2.: Sample GSV images of typical buildings that (a) have great foundation

heights, (b) have pier foundations, (c) have slab foundations, (d) are mobile homes,

(e) are commercial buildings, and (f) have two or more stories.

By integrating the proposed framework into Louisiana’s master planning and com-

munity resilience programs, individual homeowners, especially in vulnerable commu-

nities that do not currently have structural protection provided by levee and floodwall

systems, can directly benefit from the complete flood risk assessments that can help

homeowners’ decision making and reduce the impacts of future flood risks. While this

study focuses on predicting building attributes for managing flood risk, the proposed

framework can be extended to predict different attributes for other hazards, including

hurricane, tornado, or seismic hazards.

4.1.2 Related Work

Image classification [130] and object detection [131] are two popular computer

vision research topics in recent decades. The former one focuses on classifying the

content of images, and the latter one identifies, localizes, and categorizes the ob-

jects in images. Recently, deep learning [37] has dominated computer vision research

fields including image classification and object detection by using convolutional neu-

ral networks (CNNs) [38,39]. Unlike traditional approaches that extract ‘engineered’
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features from images, CNNs can learn representative features from training data and

achieve higher accuracies. To train and validate CNNs, a huge amount of annotated

data (usually more than 10,000 samples) need to be provided. For image classifica-

tion, ImageNet dataset [42] contains 1.2 million annotated images of 1,000 classes for

researches to evaluate and compare different classification approaches. For object de-

tection, COCO dataset [132] consists of more than 200,000 annotated images with 1.5

million object instances with 80 object categories, and ILSVRC dataset [48] contains

more than 450,000 annotated images with 478,807 object instances with 200 object

categories.

Several CNN architectures have been developed to improve classification accura-

cies for ImageNet dataset [42]. At first, Alexnet [38] obtained 62.5% accuracy that

consisted of regular convolution, maximum pooling, and fully-connected layers. Then,

much deeper networks such as VGG-16 and VGG-19 [133] were proposed that acquired

71.1% to 71.5% accuracies. Later on, Inception network families [39,73,134,135] got

accuracies from 69.8% to 80.2% by concatenating feature maps from multiple se-

ries of different convolution kernels. Residual network (ResNet) families [79, 136]

gained 75.2% to 79.9% accuracies by connecting layer inputs to outputs to learn

residual functions. Recently, Inception-ResNet [135] combined Inception and residual

networks and achieved 80.4% accuracy while NASNet [137] reached 82.7% accuracy

by learning the network architectures from ImageNet dataset [42]. After a CNN is

well-trained on ImageNet dataset, it can be reused for other applications via transfer

learning [138] where the variable weights in CNN are fine-tuned from the original net-

work on a different dataset. For instance, ImageNet pre-trained VGG networks [133]

were fine-tuned on relatively small datasets for pavement distress detection [139] and

structural damage recognition [140]. Although the above CNNs have achieved suc-

cessful results in different image classification or recognition studies, estimating or

quantifying objects’ physical attributes (e.g., building characteristics or foundation

heights in this study) has seldom been discussed where the problem is not only clas-

sification but also regression that predicts values from images.
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Before estimating buildings’ attributes, they need to be detected from images first.

Several approaches have been proposed to improve object detection precision as well

as processing speed for COCO and ILSVRC datasets. In general, every approach can

pair up with any CNN architecture. Also, the bounding box regression for detection

and the class probabilities for categorization were trained simultaneously by multi-

task learning [141]. Faster R-CNN [46] predicted objectness scores, bounding box

shifts, and class probabilities from the last CNN feature layers with 3 × 3 sliding

windows. Similar to faster R-CNN, R-FCN [142] analyzed the objectness scores within

sliding windows where the objects that were partially occluded could be detected. To

speed up detection process, YOLO [143] was proposed as a single-shot detection on the

last CNN feature layer while SSD [144] performed the single-shot detection on multi-

scale layers. Unfortunately, the object categories in COCO or ILSVRC dataset do not

include buildings that could be used in this study. Thus, the CNNs pre-trained from

COCO or ILSVRC dataset could not be directly used, and the detection precision and

processing speed of different approaches need to be analyzed for detecting buildings.

To predict multiple labels simultaneously, multi-task learning [141] is a technique

to train a CNN on multiple tasks (e.g., predicting multiple building attributes) at

the same time where the tasks share the same CNN feature layers. Multi-task learn-

ing provides the opportunity to transfer knowledge and exploit commonalities and

differences across tasks, which can result in improved learning efficiency and predic-

tion accuracy [145, 146]. Traditionally, each task has independent fully-connected

layers. Recent studies [147, 148] have shown that the implicit relations among tasks

can be learned by soft layer ordering or multiple gating with task-specific parame-

ters, which improves prediction accuracies. However, the case where the tasks have

actually explicit relations (i.e., the relations we have prior knowledge about) has sel-

dom been discussed. Besides processing only image data, combining different types of

data [149,150] is another way to improve CNNs’ performances. Unfortunately, those

data are typically from other sensors (e.g., audio or depth) that are not available for

GSV images in this study.
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To conclude, although several researches have been made for general image clas-

sification and object recognition tasks, the prediction of objects’ physical attributes

has seldom been discussed. While multi-task learning and different types of data may

improve the prediction accuracy, those approaches need to be revised and optimized

for building attribute prediction tasks in this study.

4.1.3 Contribution

As illustrated in Figure 4.2, the buildings have diverse appearances and multiple

combinations of attributes that make estimating their attributes quite challenging.

This study proposes a framework based on deep learning that can analyze GSV im-

ages and estimate building attributes accurately and efficiently for flood risk assess-

ment. As indicated in Section 4.1.2, several approaches have been proposed for image

classification, object detection, and improving CNNs’ performances. However, none

of them can be directly applied to detect buildings or estimate building attributes.

Thus, this study improves and optimizes the estimation performances with the fol-

lowing contributions: 1) an extensive evaluation regarding different object detection

approaches and CNN architectures for building detection, 2) a feature fusion scheme

that combines image features with meta information to improve estimation accuracies,

3) a TREncNet that encodes explicit and implicit task relations as network connec-

tions to enhance multi-task learning, and 4) an overall building attribute estimation

framework with 0.58-feet foundation height prediction MAE and prediction accura-

cies of 82.1% for foundation type, 93.7% for building type, and 98.3% for building

stories. Based on its capability, the proposed framework can process comprehensive

data effectively and efficiently without human-involved street surveys for flood risk

assessment, which would save time and money for flood risk management.
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4.1.4 Scope

The remainder of this paper is organized as follows: Section 4.2 describes the col-

lected building dataset for training and evaluation, Section 4.3 elaborates the details

of the proposed framework, Section 4.4 discusses the evaluation results, and Section

4.5 summarizes the conclusions and future works.

4.2 Building Dataset Generation

To train the CNNs in the proposed framework and validate the estimation perfor-

mance, ground-truth building attributes along with the corresponding GSV images

need to be collected. Several field surveys have been conducted in coastal Louisiana

areas that collected the attributes and GPS coordinates of 80,109 buildings where

73,781 buildings had all the attribute information and the other 6,328 buildings had

only foundation height information. This building-level data was primarily originated

from three studies performed by the U.S. Army Corps of Engineers: the Morganza

to the Gulf Reformulation study, Southwest Coastal Louisiana Feasibility study, and

West Shore Lake Pontchartrain Feasibility study. Coverage includes part or all of

Calcasieu, Cameron, Iberia, Jefferson Davis, Lafourche, St. Charles, St. James, St.

John, and Terrebonne parishes (i.e., county-level units of governance in Louisiana).

Foundation heights from FEMA Elevation Certificates for 2,471 buildings in Jef-

ferson Parish were also obtained from a parish floodplain manager. Although the

ground-truth building attributes used in this study might not be absolutely accu-

rate as they were collected by human’s judgement and measurements, to the best

of author’s knowledge, they are the most reliable and up-to-date building attribute

data for Louisiana coastal areas. Based on the GPS coordinates, the buildings’ GSV

images (640 × 640 resolution and 75◦field of view) were autonomously extracted us-

ing GSV’s application programming interface (API). Then, the bounding boxes of

buildings were manually annotated in the GSV images as shown in Figure 4.3a.
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(a)

(b)

Fig. 4.3.: Sample GSV images of buildings in coastal Louisiana areas: (a) good

views with annotated building bounding boxes, and (b) unacceptable views that were

removed from the dataset where buildings were blocked by front objects, no building

in the scene, buildings were too small, or no GSV available.
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Not all the GSV images had good views of buildings. Sometimes the major parts

of buildings were blocked by front objects (e.g., fences, trees, or cars) or the buildings

were too small in the images (e.g., with width or height less than 80 pixels). Due to

the inaccuracies of collected building coordinates and GSV API, some images did not

have building in the scenes and some coordinates did not have GSV image available.

Figure 4.3b shows sample GSV images with unacceptable views of buildings. Those

images with unacceptable views were removed from the dataset where the remaining

dataset contained 42,415 GSV images with good views of buildings. Figure 4.4 shows

the distributions of building attributes in the dataset. The distributions are imbal-

anced where the dominant attributes that have the largest percentages are 0.5-feet

foundation height, slab foundation, residential building, and one-story building.

Fig. 4.4.: The distributions of building attributes in the dataset. The distributions

are imbalanced where the dominant attributes are 0.5-feet foundation height, slab

foundation, residential building, and one-story building.

4.3 Proposed Framework

Figure 4.5 shows the overview of the proposed framework. Given a GSV im-

age, “CNN building detection” detects the bounding box of building. The pixels in

bounding box are scaled to a fixed-sized image of that building. Then, “CNN feature

extraction” extracts the image feature vector from the fixed-sized image. “Feature

fusion” extracts the meta information of building and concatenates the information
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with image feature vector to form a fused feature vector. Finally, in “Task relation en-

coding network” the proposed TREncNet encodes task relations and predicts all the

building attributes simultaneously from the fused feature vector, including the build-

ing’s foundation height (feet), foundation type (pier, slab, mobile home, or others),

building type (commercial, residential, or mobile home), and building stories (one

story or more). The details of each step are explained in the following sub-sections,

and the training of CNNs is described in Section 4.4.

Fig. 4.5.: The overview of the proposed framework.

4.3.1 CNN Building Detection

As mentioned in Section 4.1.2, although several object detection approaches based

on deep learning have been proposed and achieved successful results for COCO [132]

and ILSVRC [48] datasets, the object categories do not include buildings. Thus,

the CNN architectures cannot be directly used and the performance of each approach

needs to be evaluated for detecting buildings. In this study, the detector’s localization

accuracy is important since the pixels inside the building bounding box will affect the

accuracy of attribute prediction. If the bounding box is too large, the pixels will

include too many background areas. If the bounding box is too small, some pixels of

building will be missing. In the meanwhile, the detector’s speed is also a concern as

there is a large number of buildings in coastal areas (e.g., more than 780,000 buildings

in coastal Louisiana). After an extensive evaluation about different object detection

approaches and CNN architectures to compare the accuracy/speed trade-offs, this

study chose Faster R-CNN [46] along with Inception-ResNet [135] to detect building
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bounding boxes in GSV images. Details about the survey is explained in Section

4.4.2. If more than one building bounding box is detected in a GSV image, only the

box with the highest detection score will be kept.

4.3.2 CNN Feature Extraction

After the building bounding box is detected in a GSV image, the pixels in bound-

ing box are scaled to a fixed-sized image. Then, a CNN takes the scaled image

(224 × 224 or 299 × 299 pixels depending on the CNN architecture) as input and

extracts the image feature vector through convolution and pooling layers. This study

compared several CNNs that achieved high accuracies for ImageNet dataset [42]. The

CNNs were pre-trained on Imagenet dataset and fine-tuned on the building attribute

dataset in this study. The feature vector of each CNN was extracted from the final

global pooling layer and had vector dimension of 1,024 or 1,536 depending on the

CNN architecture. In this study, Inception-ResNet [135] was chosen to extract im-

age feature vector. Details about the comparison of different CNNs are described in

Section 4.4.3.

4.3.3 Feature Fusion

As described in Section 4.1.2, although many studies have achieved successful

results in different image classification or recognition tasks, estimating or quantify-

ing objects’ physical attributes has seldom been discussed. Besides image pixels,

additional information describing objects’ physical properties might improve predic-

tion accuracies. One property that can be considered is camera-building distance.

However, due to the inaccuracies of distance calculation and building or camera co-

ordinates, the camera-building distances might not be completely accurate. Figure

4.6 shows sample GSV images whose calculated camera-building distances are not

accurate. If the camera-building distances are directly used to predict foundation

heights (e.g., predict heights in pixels and then convert heights to feet based on the
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distances), those inaccurate distances will result in wrong predictions. Other possible

properties include the building’s physical width, height, and width-height ratio. Yet,

the calculations for those properties still depend on the bounding box detection or

camera-building distances that are not absolutely accurate.

(a) (b) (c) (d)

Fig. 4.6.: Samples of GSV images whose calculated camera-building distances are

not accurate: (a) 2.13 m, (b) 6.14 m, (c) 43.83 m, and (d) 49.88 m. The buildings in

(a) and (b) should be farther from the camera and the buildings in (c) and (d) should

be closer to the camera than the calculated distances.

Thus, this study proposes a feature fusion scheme that extracts the meta informa-

tion of the building and concatenates the information with the image feature vector

to form a fused feature vector for final attribute prediction. The meta information in-

clude seven values: camera-building distance in feet (d), scale (s) representing pixels

per feet for the building in image, building bounding box width and height in pixels

(wp and hp), width and height in feet (wf and hf ), and width-height ratio (r). Even

though the meta information might not be completely accurate, during training, the

proposed TREncNet determines how to interpret the information and improve the

prediction accuracies. For each GSV image, d can be obtained by using Haversine

formula

d = 2R arcsin

(√
sin2(

latc − latb
2

) + cos(latc) cos(latb) sin2(
lonc − lonb

2
)

)
(4.2)

where R is the radius of earth and latc, lonc, latb, and lonb are the latitudes or

longitudes of camera or building, respectively. The value of R depends on the latitude
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and equals 20,908,173 feet by taking the latitude as 30.0417542◦for Louisiana coastal

areas in this study. Then, s can be calculated by using

s =
W

2d tan(θ/2)
(4.3)

where W is the width of GSV image in pixels and θ is the camera’s field of view. In

this study, W equals 640 pixels and θ equals 75◦. Finally, wp and hp are acquired from

the detected building bounding box, wf = wp/s, hf = hp/s, and r = wp/hp. After

calculating all the values of meta information, each value is normalized by dividing

it with a constant (100, 10, 640, 640, 100, 100, and 5 for d, s, wp, hp, wf , hf , and r,

respectively) such that the value is approximately within the range [0,1] to keep the

numerical consistency with the values in image feature vector. After calculating all

the values, the values are concatenated with the image feature vector to form a fused

feature vector for final attribute prediction.

4.3.4 Task Relation Encoding Network

After getting the fused feature vector from the CNN and meta information, the

final step is to predict all the building attributes simultaneously from the feature vec-

tor based on multi-task learning [141]. The tasks in this study include one regression

for foundation height and three classifications for foundation type, building type, and

building stories. Traditionally, each task has its own fully-connected layers with one

hidden layer as illustrated in Figure 4.7a.

This study proposes TREncNet that encodes the explicit and implicit relations

of tasks as network connections to improve the prediction accuracies. Figure 4.7b

illustrates the architecture of TREncNet. The first explicit relation is that the classes

“mobile home” in foundation type and building type tasks are actually identical.

Thus, these two tasks share the same logit value of “mobile home” before softmax.

The second explicit relation is that a mobile home always has one story. As a result,

the final logit value for “one story” is the maximum value of the original “one story”

logit and “mobile home” logit. By doing this, if a building has a small original “one
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(a)

(b)

Fig. 4.7.: (a) Traditional multi-task learning that treats each task independently

with separate fully-connected layers, and (b) the proposed TREncNet that encodes

tasks’ explicit and implicit relations.
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story” logit value but classified as “mobile home,” it might still be classified as a

one-story building since the logit value of “mobile home” will be large. Although

the above explicit relations can be enforced by a prediction post-processing, Section

4.4.3 shows that the proposed TREncNet improves the accuracies much more than

the post-processing.

Besides explicit relations, the tasks also have implicit relations. For instance,

the buildings with foundation type “pier” tend to (but not necessarily) have higher

foundations. Also, “commercial” buildings usually (but not always) have foundation

type “other.” In this study, such hidden dependencies among tasks are encoded by

using the prediction results from one task to help predicting other tasks. To do this,

the logits from one task are concatenated with the feature vector for other tasks.

In this study, the story task uses the original feature vector, the building type task

uses the feature vector plus the logits from story task, the foundation type uses the

feature vector plus the logits from story and building type tasks, and the foundation

height task uses the feature vector plus the logits from all the other tasks. The above

concatenating order is determined by the tasks’ prediction difficulty (i.e., story task

is the easiest and foundation height task is the hardest). To prevent creating loops

in the network, the logits for “mobile home” and “one story” are not concatenated

with the feature vector.

4.4 Experimental Result

4.4.1 Evaluation Pipeline

Figure 4.8 illustrates the overall evaluation pipeline in this study to evaluate the

performances of different building detection and attribute prediction models. Based

on the building attribute dataset described in Section 4.2, the buildings’ GSV images

were collected and filtered. Then, about 80% (33,822) of the GSV images were used

to train a building detection model and the remaining 20% (8,593) GSV images were

used to evaluate the detection mean average precision (mAP) of the model. After
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that, the building bounding boxes were cropped and scaled based on the ground-truth

annotations for those 80% GSV images (red boxes in Figure 4.8) and detected boxes

from the trained model for the remaining of 20% GSV images (white-dashed boxes in

Figure 4.8). Finally, the 80% and 20% scaled building images were used to train the

attribute prediction model and evaluate the regression error for foundation height

task and classification accuracies for foundation type, building type, and building

story tasks. The evaluation took place on an Exxact deep learning Linux server with

Ubuntu 16.04.3 LTS, two Intel Xeon E5-2620 v4 CPUs with total 32 cores, 256 GB

DDR4 memories, and four NVIDIA Titan X Pascal GPUs. One GPU was used at a

time to train and evaluate the detection and prediction models.

Fig. 4.8.: The evaluation pipeline in this study: about 80% (33,822) of GSV images

were used to train building detection and attribution prediction models and 20%

(8,593) of GSV images were used to evaluate the performance.
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4.4.2 Evaluation of Building Detection Scheme

Detection Approaches and Training

A Tensorflow object detection API [151] was utilized to evaluate the accuracy/speed

trade-offs for detecting building bounding boxes from GSV images. The detection

approaches and CNN architectures that achieve more than 24% mAP for COCO

dataset [132] were selected for performance comparison. The detection approaches

included Faster R-CNN [46], R-FCN [142], and SSD [144]. The CNN architectures

included Inception V2 [73], ResNet 50 and 101 [79], MobileNet V1 [152], Inception-

ResNet V2 [135], and NASNet [137]. The variable weights for each CNN were pre-

trained from COCO dataset and fine-tined using the building bounding box anno-

tations described in Section 4.2. Each training took 35 epoches using the optimized

training parameters provided by [151].

Overall Performance of Building Detection Approaches

Table 4.1 lists the detection mAP at different intersection over union (IoU) thresh-

olds, the training time, and the inference time for different detection approaches and

CNN architectures. The IoU threshold defines how much the minimum IoU between

detected and ground-truth bounding boxes. The mAP at [0.5:0.95] thresholds takes

the average of mAPs for IoU thresholds equal to 0.5, 0.55, ..., 0.95 (0.05 increments)

that is the primary challenge metric for COCO dataset [132].

Table 4.1 shows that most of detection approaches and CNN architectures achieve

more than 98% mAP at 0.5 IoU threshold. This means most of the buildings can

be successfully detected. However, in order to obtain actual pixels of buildings for

attribute prediction, a precise detection model that achieves high mAP at high IoU

threshold is preferred. The most precise detection model in Table 4.1 is Faster R-

CNN [46] with Inception-ResNet V2 [135] that has the highest 79.6% mAP at 0.75

threshold and 66.6% mAP at [0.5:0.95] thresholds. It takes 0.405 seconds to process
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Table 4.1.: The evaluation results of different detection approaches and CNN archi-

tectures for building bounding box detection.

Detection CNN mAP@IoU Training Inference time (sec.)

approach architecture 0.5 0.75 [0.5:0.95] time (day) GPU CPU

SSD [144]

MobileNet V1 [152] 98.2% 77.4% 65.1% 1.2 0.034 0.311

Inception V2 [73] 98.2% 77.6% 65.8% 1.1 0.026 0.165

ResNet 50 [79] 98.4% 78.6% 65.8% 1.4 0.046 0.528

Faster R-CNN [46]

Inception V2 [73] 98.2% 78.5% 65.8% 1.1 0.056 0.391

ResNet 50 [79] 98.2% 77.8% 65.2% 1.7 0.109 1.338

ResNet 101 [79] 98.2% 77.8% 65.3% 2.4 0.125 1.662

Inception-ResNet V2 [135] 98.3% 79.6% 66.6% 6.9 0.405 6.591

NASNet [137] 97.9% 78.0% 65.0% 6.9 0.305 2.965

R-FCN [142] ResNet 101 [79] 98.3% 76.3% 64.7% 2.1 0.072 0.601
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a 640× 640 GSV image and less than four days for 0.8 million GSV images in coastal

Louisiana areas with one GPU. Thus, Faster R-CNN [46] with Inception-ResNet

V2 [135] has reasonable processing speed for this study and its detection results

were used to evaluate the attribute prediction in Section 4.4.3. For computation

environments without GPU, SSD [144] with ResNet 50 [79] is a feasible choice by

considering its accuracy/speed trade-off. It achieves the second highest 78.6% mAP

at 0.75 threshold and 65.8% mAP at [0.5:0.95] thresholds. With two CPUs of total

32 cores, it takes 0.528 seconds to process a GSV image and less than five days for

0.8 million GSV images.

4.4.3 Evaluation of Attribute Prediction Scheme

CNN Architectures and Training

Since Inception-ResNet V2 [135] achieved the highest mAP for building detec-

tion, it was chosen for “CNN feature extraction” to evaluate the attribute prediction

accuracy of the proposed framework. To show the effectiveness of the proposed fea-

ture fusion scheme and TREncNet, three other CNNs were also evaluated, including

MobileNet V1 [152], Inception V2 [73], and Inception V4 [135]. MobileNet V1 and

Inception V2 take a 224 × 224 scaled image as input and extract the CNN features

of 1,024 dimensions where Inception V4 and Inception-ResNet V2 take a 299 × 299

scaled image and extract the CNN features of 1,536 dimensions. The variable weights

of CNNs were pre-trained using ImageNet dataset [42] with a TensorFlow model li-

brary [153] and fine-tuned using the building attribute dataset described in Section

4.2. The architecture of TREncNet allows end-to-end training where the variable

weights of CNN and TREncNet were fine-tuned together.

During fine-tuning, the loss function to be minimized included a Huber loss with

δ = 15 for the regression task and three cross entropy values for the classification

tasks. The loss weights equaled 0.25 for regression task and 1.0 for classification

tasks to balance the training loss for each task. If a GSV image did not have certain
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building attributes (e.g., some images in the dataset only have foundation height

data), the loss weights of corresponding tasks would be zero for that image. The loss

function also included a regularization term that equaled the sum of square values of

all the variables in TREncNet with 0.004 loss weight. The number of hidden layer

nodes in TREncNet was 128 for each task in this study. To prevent over-fitting, each

hidden layer had 0.5 dropout rate [77] during fine-tuning. The learning rate was

initially 0.001 for MobileNet V1 and 0.002 for all the other CNNs with 0.6 decay rate

for every 40 epoch. Each CNN was fine-tuned for 160 epochs with 32 batch size. The

training images were randomly augmented in each batch including horizontal flipping

and ±10% brightness, ±20% contrast, ±20% saturation, and ±2.5◦ hue adjustments.

Overall Performance of Attribute Prediction Approaches

Table 4.2 lists the evaluation results of different CNN architectures. MAE is

used to evaluate foundation height regression task. The accuracy for foundation

type, building type, or building story classification task equals the number of correct

predictions divided by total number of samples. To make an overall comparison, an

overall loss value for each model is defined as the foundation height MAE multiplied

by 0.25 (i.e., loss weight for foundation height regression task durning training) plus

all the classification error rates (i.e., 100% - accuracy). For each CNN, the baseline

model is the model without feature fusion and TREncNet. Then, the loss reduction

is the reduced amount of overall loss from the model with feature fusion and/or

TREncNet.

Table 4.2 shows that for all the CNNs, the proposed feature fusion scheme de-

creases the foundation height MAEs while TREncNet primarily increases classifi-

cation accuracies. Either feature fusion or TREncNet reduces the loss values and

combining them results in the smallest loss values. Thus, the proposed feature fu-

sion scheme and TREncNet effectively improve the attribute prediction accuracies. In

this study, Inception-ResNet V2 [135] with feature fusion and TREncNet achieves the
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Table 4.2.: The evaluation results of different CNN architectures without or with

the proposed feature fusion scheme and TREncNet for building attribute prediction.

MAE: mean absolute error. F.: foundation. B.: building.

CNN Feature TREnc
Loss

Loss MAE (feet) Accuracy (%) Inference time (sec.)

architecture fusion Net reduction F. height F. type B. type B. story GPU CPU

MobileNet V1 [152]

- - 0.4492 - 0.66 81.2 92.3 98.1

0.006 0.081
� - 0.4290 4.5% 0.56 81.0 92.3 97.9

- � 0.4425 1.5% 0.69 81.9 93.1 98.1

� � 0.4235 5.7% 0.59 81.7 92.8 97.9

Inception V2 [73]

- - 0.4528 - 0.67 80.7 92.8 98.0

0.012 0.101
� - 0.4233 6.5% 0.59 81.1 93.1 98.2

- � 0.4351 3.9% 0.66 82.1 93.1 97.8

� � 0.4224 6.7% 0.57 81.4 92.7 97.8

Inception V4 [135]

- - 0.4240 - 0.64 81.8 93.5 98.2

0.029 0.307
� - 0.4181 1.4% 0.58 81.5 93.1 98.1

- � 0.4200 1.0% 0.63 81.9 93.4 98.3

� � 0.4085 3.7% 0.58 82.0 93.5 98.2

Inception-ResNet V2 [135]

- - 0.4203 - 0.63 82.3 93.3 98.1

0.038 0.483
� - 0.4072 3.1% 0.58 82.3 93.3 98.2

- � 0.4173 0.7% 0.63 82.3 93.6 98.1

� � 0.4051 3.6% 0.58 82.1 93.7 98.3
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lowest 0.4051 loss that has 0.58-feet foundation height MAE, 82.1% foundation type

accuracy, 93.7% building type accuracy, and 98.3% building story accuracy. With

one GPU, it takes 0.038 seconds to process a 299 × 299 scaled image and less than

nine hours for 0.8 million building images in coastal Louisiana areas. Even with two

CPUs of total 32 cores, it takes 0.483 seconds to process a scaled image and less

than five days for 0.8 million images. Figure 4.9 shows sample detected and cropped

building images whose attributes are correctly predicted by the proposed framework

while the prediction errors for foundation heights are all less than 0.5 feet. Although

the buildings in Figure 4.9 have a variety of appearances, the proposed framework

can predict their attributes accurately and efficiently.

TREncNet vs. Post-processing

As mentioned in Section 4.3.4, instead of being encoded by TREncNet, the ex-

plicit relations of tasks can be enforced by a prediction post-processing. In the post-

processing, if one of the prediction scores of “mobile home” after softmax is the highest

over all the other scores in foundation and building types, both the predictions for

foundation and building types are enforced to be “mobile home” and the building

story is enforced to be one. Otherwise, the predictions of foundation and building

types are enforced to be a class other than “mobile home”.

For comparison, the models without TREncNet and the post-processing were used

as the baseline models. Table 4.3 lists the losses and loss reductions of baseline models

and the models with either TREncNet or the post-processing. As it is seen, TREncNet

always reduces the losses while the post-processing has minor or even negative loss

reductions. The reason is that although the explicit task relations are enforced by

the post-processing, such enforcement is done after the predictions. If the predictions

are initially wrong (e.g., the “mobile home” score is the highest but the building is

actually not “mobile home”), the post-processing may lead to wrong enforcement. On

the other hand, TREncNet encodes the explicit task relations as network connections
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Fig. 4.9.: Sample detected and cropped building images whose attributes are correctly

predicted by the proposed framework.
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where the variable weights of TREncNet and the CNN are optimized together during

multi-task learning. Thus, the network learns better generalizations for those task

relations from TREncNet, which leads to more accurate predictions.

Table 4.3.: The losses and reductions from the proposed TREncNet and the prediction

post-processing for different CNNs. Overall, TREncNet always reduces the losses

while the post-processing has minor or even negative loss reductions.

CNN Feature Baseline TREncNet Post-processing

architecture fusion loss Loss Loss reduction Loss Loss reduction

MobileNet V1 [152]
- 0.4492 0.4425 1.5% 0.4494 0.0%

� 0.4290 0.4235 1.3% 0.4293 -0.1%

Inception V2 [73]
- 0.4528 0.4351 3.9% 0.4527 0.0%

� 0.4233 0.4224 0.2% 0.4229 0.1%

Inception V4 [135]
- 0.4240 0.4200 1.0% 0.4242 0.0%

� 0.4181 0.4085 2.3% 0.4181 0.0%

Inception-ResNet V2 [135]
- 0.4203 0.4173 0.7% 0.4200 0.1%

� 0.4072 0.4051 0.5% 0.4062 0.3%

Influence of Imbalanced Data

As being shown in Figure 4.4, the distributions of building attributes in the dataset

are imbalanced. In this case, the predictions of the dominant attributes may be more

accurate while the predictions of the tail attributes with less training data may be

less accurate. To evaluate the influence of imbalanced data, Table 4.4 lists the height-

wise MAEs and class-wise accuracies of two models: the original one and the weighted

one. For foundation height prediction, only the MAEs of heights that had more than

2% of testing data (i.e., 172 testing GSV images) are shown. The original model

used uniform loss weight for all the classes and heights during training. For weighted

model, the loss weight for each class or height equaled the inverse of its percentage in

training data to increase the influence of tail attributes during training. For instance,
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the loss weight for “pier foundation” equaled 100%/26% since there were 26% “pier

foundation” in the training data (see Figure 4.4). To prevent too large loss weights

that might cause model diverging during training, all the loss weights were clipped at

10. Also, the initial learning rate was set to 0.00005 for weighted model as its total loss

was larger due to weightings. Table 4.4 shows that all the dominant attributes (0.5-

feet foundation height, slab foundation, residential building, and one-story building)

have more accurate predictions. Although the weighted model improved some of

the tail attribute predictions, its overall accuracies and MAE became worse than

the predictions from the original model with uniform loss weights. For flood risk

assessment, the overall performance is more important than height-wise and class-

wise performance since there are less buildings that have tail attributes in the areas

of interest. As a result, this study use the original model to predict building attributes

for assessing the flood risk.

Table 4.4.: The height-wise MAEs and class-wise accuracies of original model us-

ing uniform losses and weighted model using weighted losses durning training. *:

dominant attributes with the most number of training data.

Foundation height (feet) 0.5* 1.0 1.5 2.0 3.0 4.0 Overall

MAE (feet)
Original 0.23 0.38 0.44 0.80 0.91 1.45 0.58

Weighted 0.40 0.48 0.43 0.71 0.88 1.38 0.65

Foundation type Building type Building stories

Attribute Pier Slab* Mobile Others Overall Comm. Resi.* Mobile Overall 1 story* 2+ stories Overall

Accuracy

(%)

Original 70.2 89.7 70.6 74.8 82.1 71.5 97.7 70.8 93.7 99.1 90.0 98.3

Weighted 66.9 89.9 71.1 73.0 81.3 71.7 97.3 71.9 93.4 98.9 91.2 98.2

4.5 Conclusion and Future Work

To collect comprehensive and up-to-date data for assessing flood risks without

human-involved street surveys, this study proposes a deep learning-based framework

that can estimate multiple building attributes simultaneously from GSV images. In

this study, an extensive evaluation is made to select the optimal building detection
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model. Furthermore, a feature fusion scheme is proposed that combines image fea-

tures with meta information that improves the prediction of foundation heights. Ad-

ditionally, TREncNet is introduced to encode task relations as network connections

for multi-task learning that enhances the predictions for classification tasks. The pro-

posed framework achieves 0.58-feet foundation height prediction MAE and prediction

accuracies of 82.1% for foundation type, 93.7% for building type, and 98.3% for build-

ing stories while requiring 0.405 seconds for building detection and 0.038 seconds for

attribute prediction. Based on its capability and efficiency, the proposed framework

would save time and money for flood risk management. Also, it creates a potential

of predicting building attributes for other hazards, including hurricane, tornado, or

seismic hazards.

In this study, to train and evaluate the detection and prediction models correctly,

the GSV images in dataset with unacceptable views of buildings (e.g., blocked views

of buildings) were removed manually. During inference phase, the quality of views can

be determined autonomously by the detection of buildings. If no building is detected,

the detection score is low, or the detected bounding box is too small, the camera’s

location, direction, and field of view can be adjusted in GSV to capture the building

from a better view. One future work could be an object recognition model that can

estimate view quality in details for better GSV camera adjustments. For instance,

it is quite useful to develop a model that can predict if the building is blocked by

vehicles or trees, the building is partially visible in the given view, or the view is from

the backside of building for view quality estimation. Another future work could be a

data fusion scheme that aggregates the detection and prediction results from multiple

GSV images of the same building to increase the robustness of estimation.
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5. SUMMARY AND FUTURE WORK

5.1 Summary

Structural health monitoring and building assessment play crucial roles to main-

tain their conditions. As human labor-based inspection is time consuming and ex-

pensive, having autonomous systems that can analyze the data and identify the de-

fects would save time and money and result in more frequent inspections. With the

recent developments of deep learning algorithms, many challenging computer vision

tasks, including object detection and recognition, have huge breakthroughs with much

higher prediction accuracies than before. Thus, this thesis focuses on inventing new

deep learning frameworks and approaches for autonomous vision-based structure and

building inspections, including crack detection from videos, crack segmentation from

images, and building attribute estimation from street view images.

For crack detection from videos, this thesis proposes LBP-SVM [21] and NB-

CNN [60] approaches based on patch scanning that outperforms other state-of-the-art

approaches [25, 34, 35] for detecting cracks from nuclear inspection videos. However,

LBP-SVM and NB-CNN require 1.87 and 2.55 seconds to analyze a 720×540 frame,

and 12.58 and 17.15 seconds to analyze a 1920×1080 frame, respectively. The process-

ing times are too long for real-time autonomous inspection. Thus, another approach

named NB-FCN is also proposed that detects cracks from videos in real-time. An

architecture design principle is introduced that can take image patches for training

an FCN without pixel-level annotations. A pNB-Fusion scheme is developed that

registers video frames in spatiotemporal coordinate system and fuses crack scores via

a parametric logarithmic likelihood ratio function, which outperforms other fusion

schemes. Overall, the proposed NB-FCN achieves 98.6% detection AP and requires

only 0.017 seconds for processing a 720×540 frame and 0.1 seconds for a 1920×1080
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frame. With its capability and efficiency, the proposed NB-FCN creates a potential

of analyzing nuclear inspection videos in real-time during data collection phases and

makes autonomous nuclear inspection possible.

For crack segmentation from images, this thesis focuses on exploiting a fundamen-

tal property of cracks where they are rotation invariant in images. An ARF-Crack

FCN is proposed that integrates a state-of-the-art DeepCrack [102] with ARF [103] to

encode the rotation invariant property into the network architecture. The ARF layers

explicitly extract crack features from different orientations and requires less convo-

lution parameters, which results in a better network generalization. Three datasets

that consist of crack or corrosion images are used for evaluation. Among other crack

segmentation approaches, the proposed ARF-Crack achieves the highest AP values

of 91.8%, 66.9%, or 94.9% and requires 0.083, 0.071, or 0.070 second to process an

image in DeepCrack [102], CFD [114], or corrosion datasets, respectively. While only

the crack and corrosion images are evaluated in this thesis, the proposed ARF-Crack

has the potential of detecting other types of structural defects that are also rotation

invariant.

For building attribute estimation from street view images, a framework is intro-

duced that detects building bounding boxes from images and predict their attribute

from the pixels inside the boxes. A feature fusion scheme is proposed that concate-

nates image features with meta information that improves the prediction of foundation

heights. To enhance multi-task learning, a TREncNet is developed that encodes the

explicit relations of tasks into network connections. Overall, the proposed frame-

work achieves 0.58-feet foundation height prediction MAE and prediction accuracies

of 82.1% for foundation type, 93.7% for building type, and 98.3% for building stories.

It requires 0.405 seconds to detect a building bounding box and 0.038 seconds for

predicting the attributes. With its capability and efficiency, the proposed framework

can save time and money for flood risk management and create a potential of pre-

dicting building attributes for other hazards, including hurricane, tornado, or seismic

hazards.
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To conclude, although object detection and recognition tasks have recently achieved

successful results due to the developments of deep learning, the gaps exist between

object detection and recognition approaches and autonomous inspection tasks. For

general object detection and recognition approaches in computer vision research field,

the data used for evaluation are different from the data used for autonomous inspec-

tion that are usually collected from the fields. Thus, the approaches that performs

well for computer vision datasets might not be the optimal solution for autonomous

inspection in practice. The three studies in this thesis tackle the gaps between com-

puter vision algorithms and practical applications. For crack detection from nuclear

inspection videos, instead of using bounding boxes-based approaches, patch-based

approach and score map-based approach are developed to detect cracks of various

shapes and lengths. Also, spatiotemporal coherence is leveraged by using data fusion

based on Bayesian probabilities. The efficiency of crack data annotation is also con-

sidered and discussed. For crack and corrosion segmentation, the rotation invariant

property is leveraged to improve the segmentation precision. Finally, for building

attribute estimation, the task relations were encoded into CNN network architecture

to improve the prediction accuracies. Thus, this thesis demonstrates how to deal with

the gaps between computer vision approaches and field applications by analyzing the

problems, revising the algorithms, and developing new frameworks. As suggestions to

future computer vision researchers who are interested in field applications: 1) analyze

the problem carefully and choose suitable computer vision algorithms; 2) identify the

properties of field data to be processed; 3) revise or develop new approaches that fits

the problem and field data.

5.2 Future Work

For crack detection from videos, the proposed data fusion scheme could be ex-

tended to fuse video frames with any perspective camera transformation. Thus, one

possible future work is to revise the proposed detection framework for other types of
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structural surface inspection videos (e.g., videos captured by UAVs for bridge inspec-

tion). Also, it would be interesting to explore the probability meaning behind the

proposed parametric logarithmic likelihood ratio function HpNB(·) and extend it for

multi-class cases. For crack and corrosion segmentation, it would be interesting to see

if ARF-based FCN can improve the detection precision for other types of rotation-

invariant defects. Also, combining ARF with more advanced FCN architectures that

contain encoder-decoder layers and atrous separable convolution layers [154] could

be another valuable topic. For building attribute estimation from GSV images, one

future work could be an object recognition model that can estimate view quality in

details for better GSV camera adjustments. Another future work could be a new data

fusion scheme that aggregates the detection and prediction results from multiple GSV

images of the same building to increase the robustness of estimation.
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p. 3017, 2018.

[5] A. Mahmoudzadeh, A. Golroo, M. R. Jahanshahi, and S. Firoozi Yeganeh,
“Estimating pavement roughness by fusing color and depth data obtained from
an inexpensive RGB-D sensor,” Sensors, vol. 19, no. 7, p. 1655, 2019.

[6] S. Firoozi Yeganeh, A. Golroo, and M. R. Jahanshahi, “Automated rutting
measurement using an inexpensive RGB-D sensor fusion approach,” Journal of
Transportation Engineering, Part B: Pavements, vol. 145, no. 1, p. 04018061,
2018.

[7] Y. L. Chen, M. Abdelbarr, M. R. Jahanshahi, and S. F. Masri, “Color and depth
data fusion using an RGB-D sensor for inexpensive and contactless dynamic
displacement-field measurement,” Structural Control and Health Monitoring,
vol. 24, no. 11, p. e2000, 2017.

[8] Y. L. Chen, M. R. Jahanshahi, P. Manjunatha, W. Gan, M. Abdelbarr, S. F.
Masri, B. Becerik-Gerber, and J. P. Caffrey, “Inexpensive multimodal sensor fu-
sion system for autonomous data acquisition of road surface conditions,” IEEE
Sensors Journal, vol. 16, no. 21, pp. 7731–7743, 2016.

[9] M. Abdelbarr, Y. L. Chen, M. R. Jahanshahi, S. F. Masri, W.-M. Shen, and
U. A. Qidwai, “3D dynamic displacement-field measurement for structural
health monitoring using inexpensive RGB-D based sensor,” Smart Materials
and Structures, vol. 26, no. 12, p. 125016, 2017.



113

[10] M. R. Jahanshahi, F. Jazizadeh, S. F. Masri, and B. Becerik-Gerber, “Unsu-
pervised approach for autonomous pavement-defect detection and quantification
using an inexpensive depth sensor,” Journal of Computing in Civil Engineering,
vol. 27, no. 6, pp. 743–754, 2012.

[11] M. R. Jahanshahi, J. S. Kelly, S. F. Masri, and G. S. Sukhatme, “A survey and
evaluation of promising approaches for automatic image-based defect detection
of bridge structures,” Structure and Infrastructure Engineering, vol. 5, no. 6,
pp. 455–486, 2009.

[12] M. R. Jahanshahi, S. F. Masri, and G. S. Sukhatme, “Multi-image stitching and
scene reconstruction for evaluating defect evolution in structures,” Structural
Health Monitoring, vol. 10, no. 6, pp. 643–657, 2011.

[13] E. Bertino and M. R. Jahanshahi, “Adaptive and cost-effective collection of
high-quality data for critical infrastructure and emergency management in
smart Cities—Framework and challenges,” Journal of Data and Information
Quality (JDIQ), vol. 10, no. 1, p. 1, 2018.

[14] R.-T. Wu, A. Singla, M. R. Jahanshahi, E. Bertino, B. J. Ko, and D. Verma,
“Pruning deep convolutional neural networks for efficient edge computing in
condition assessment of infrastructures,” Computer-Aided Civil and Infrastruc-
ture Engineering, vol. 34, no. 9, pp. 774–789, 2019.

[15] B. K. Sovacool, “A Critical Evaluation of Nuclear Power and Renewable Elec-
tricity in Asia,” Journal of Contemporary Asia, vol. 40, no. 3, pp. 369–400,
Aug. 2010.

[16] U.S. Congress, Office of Technology Assessment, “Aging nuclear power plants:
Managing plant life and decommissioning,” U.S. Congress, Office of Technology
Assessment, pp. 1–183, Sep. 1993.

[17] S. E. Cumblidge, M. T. Anderson, S. R. Doctor, F. A. Simonen, and A. J. Elliot,
“An Assessment of Remote Visual Methods to Detect Cracking in Reactor
Components,” Pacific Northwest National Lab., Tech. Rep. PNNL-SA–57384,
2008.

[18] P. Murray, G. West, K. Law, S. Buckley-Mellor, G. Cocks, and C. Lynch,
“Automated video processing and image analysis software to support visual
inspection of AGR cores,” Proc. 5th EDF Energy Generation Ltd Nucl. Graphite
Conf., pp. 1–7, May 2016.

[19] G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, “A review of non-
destructive techniques for the detection of creep damage in power plant steels,”
NDT & E International, vol. 43, no. 7, pp. 555–567, Oct. 2010.

[20] N. Neogi, D. K. Mohanta, and P. K. Dutta, “Review of vision-based steel surface
inspection systems,” EURASIP Journal on Image and Video Processing, vol.
2014, no. 1, pp. 1–19, 2014.

[21] F.-C. Chen, M. R. Jahanshahi, R.-T. Wu, and C. Joffe, “A texture-Based Video
Processing Methodology Using Bayesian Data Fusion for Autonomous Crack
Detection on Metallic Surfaces,” Computer-Aided Civil and Infrastructure En-
gineering, vol. 32, no. 4, pp. 271–287, Apr. 2017.



114

[22] I. Abdel-Qader, O. Abudayyeh, and M. E. Kelly, “Analysis of Edge-Detection
Techniques for Crack Identification in Bridges,” Journal of Computing in Civil
Engineering, vol. 17, no. 4, pp. 255–263, Oct. 2003.

[23] Y. Fujita and Y. Hamamoto, “A robust automatic crack detection method from
noisy concrete surfaces,” Machine Vision and Applications, vol. 22, no. 2, pp.
245–254, Feb. 2010.

[24] S. Iyer and S. K. Sinha, “Segmentation of Pipe Images for Crack Detection in
Buried Sewers,” Computer-Aided Civil and Infrastructure Engineering, vol. 21,
no. 6, pp. 395–410, Aug. 2006.

[25] M. R. Jahanshahi and S. F. Masri, “Adaptive vision-based crack detection using
3D scene reconstruction for condition assessment of structures,” Automation in
Construction, vol. 22, pp. 567–576, Mar. 2012.

[26] T. Yamaguchi and S. Hashimoto, “Fast crack detection method for large-size
concrete surface images using percolation-based image processing,” Machine
Vision and Applications, vol. 21, no. 5, pp. 797–809, Feb. 2009.

[27] Y. Hu and C.-X. Zhao, “A Novel LBP Based Methods for Pavement Crack
Detection,” Journal of Pattern Recognition Research, vol. 5, no. 1, pp. 140–147,
2010.

[28] M. R. Jahanshahi, S. F. Masri, C. W. Padgett, and G. S. Sukhatme, “An
innovative methodology for detection and quantification of cracks through in-
corporation of depth perception,” Machine Vision and Applications, vol. 24,
no. 2, pp. 227–241, Dec. 2011.
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