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ABSTRACT

Perna, Allison M.S., Purdue University, December 2019. Modeling and Optimizing
Irradiance Distributions in Agrivoltaic Systems. Major Professor: Peter Bermel.

Land use constraints have motivated investigation into the spatial coexistence of

solar photovoltaic electricity production and agricultural production. Previous work

suggests that agriculture-photovoltaic (agrivoltaic) systems either decrease crop yield

or are limited to shade-tolerant crops. Existing experimental work has also empha-

sized fixed south-facing configurations with traditional commercial panel shapes, and

modeling work is sparse. In this work, the effects of different photovoltaic array con-

figurations and panel designs on field insolation spatial and temporal variation are

explored in detail to determine photovoltaic design routes that may increase expected

crop yield in agrivoltaic systems. It is found that photovoltaic row orientation is the

most influential factor on insolation homogeneity due to shadow migration paths.

Additionally, it is shown that utilization of mini-modules in patterned panel designs

may create more optimal conditions for plant growth while using the same area of

PV, thus improving the land efficiency ratio of the agrivoltaic system. Different solar

tracking algorithms are explored to optimize the trade-off between electricity pro-

duction and expected crop growth. The feasibility of select agrivoltaic systems is

explored for multiple U.S. locations. This thesis concludes with recommendations for

photovoltaic system designs corresponding with specific crop growth considerations.
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1. INTRODUCTION

The global population is expected to increase to nearly 10 billion by 2050 [1]. With

this population increase, a substantial rise in food and energy demands is anticipated.

Additionally, increasing desires to mitigate climate risks and improve energy indepen-

dence are pushing humanity to shift to carbon-free forms of energy production. In

this renewable energy shift, wind and solar are expected to dominate the renewable

energy landscape [2]. However, these are two highly land-intensive technologies in

terms of land area required for equivalent net electricity compared to fossil fuels [3].

Utility scale PV parks in the U.S. generate 4-11 W m−2 of land with a national av-

erage of 7 W m−2 [3, 4]. Power spatial density is even lower for wind farms, which

typically generate 1-3 W m−2 [3].

Increased deployment of land-intensive energy technologies paired with increased

food demand creates a competition for land, potentially threatening current agricul-

ture. Recent work has demonstrated that there is insufficient land for widespread

PV or wind deployment in a 100% renewable energy economy by taking into account

the complexities of land use constraints. This suggests that novel systems need to

be utilized to overcome land use constraints of deploying photovoltaic systems as the

primary energy source in the U.S. [3]. Even without a goal of 100% renewable energy,

similar competition for land resources exists in densely populated regions with high

energy demand and in regions with significant land that’s unsuitable for PV [5].

1.1 Co-production of Agriculture and Electricity

To address this competition in a sustainable and renewable fashion, systems

achieving sustainable co-production of energy and food on the same land area have

been proposed [3,5,6]. In these co-production systems, electricity generation can take
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the form of photovoltaic arrays, wind farms, or utilization of plants for biofuel [3, 7].

Wind resources are often utilized for food and energy co-production purposes with

wind turbines occupying the same land as agricultural activity (crop or pasture),

however, wind resources are regionally limited and wind turbine spatial power den-

sity is smaller than that of commercial photovoltaic arrays [3]. Biofuel co-production

is also unlikely to be viable [7]. Since the solar resource is available year-round for

the majority of agricultural regions [8, 9], it is likely that a synergistic approach be-

tween the dominant renewable energy technologies (wind and solar) and agricultural

land production is both promising and necessary to comprehensively address land

constraints as society strives to meet future food and energy demands [3].

1.1.1 Agrivoltaics

Agrivoltaic or agrophotovoltaic (APV) systems combine agricultural production

and renewable solar photovoltaic energy production on the same land area. In con-

trast to common ground-mounted PV arrays, APV systems are elevated by multiple

meters to allow for movement of agricultural equipment or to allow room for grazing

animals [10]. In addition, APV systems often have wider spacing between photo-

voltaic rows than their energy-oriented PV field counterparts to allow for increased

irradiance available to the crops growing below the PV array [11–13]. Though it is

expected and often observed that crop yield diminishes with decreased irradiance [14],

agrivoltaic systems have the potential to improve agricultural production. When ir-

radiance levels are detrimentally high, photovoltaic panels can provide shading that

improves crop yield. This has been achieved by Fraunhofer ISE in 2018 during an

exceptionally hot summer [12]. By decreasing the radiation reaching crops by roughly

30% via an APV system, potato and winter wheat yields increased by 3% each and

celery yield increased by 12% compared to the reference plot [12]. Controlled track-

ing can mitigate this irradiance reduction, as demonstrated in France by Valle [15].

Additionally, there is potential for controlled tracking to optimize field irradiance for
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heat and light sensitive crops [16], offering potential as a resource-efficient sustainable

system [10]. Because of this potential for irradiance control, agrivoltaic systems have

high potential for synergistic effects in semi-arid and arid regions with excessively

high irradiance such that the reduced irradiance mitigates light and heat stress and

water loss experienced by crops [10,17].

1.1.2 APV System Metrics

There are two major schools of thought within the agrivoltaic community on how

to achieve sustainable food and energy co-production. The most common argument

is an increase in overall land productivity, typically at the cost of both agricultural

and electricity production when comparing net production of the agrivoltaic system

to expected production on the same land area with single-use, either photovoltaic or

agriculture.

To quantitatively describe this increase in land productivity, the similar metrics

“Land Use Efficiency” [11, 12] and “Land Equivalent Ratio” (LER) [7] have been

recently adopted. LER is used to assess the productivity of mixed systems by com-

paring the land required to achieve the productivity of the mixed system to the land

equivalent to achieve the same productivity in single-use systems, such as intercrop-

ping compared to monocrop systems [7]. Land use efficiency is defined similarly but

emphasizes the increase in production on the same land by implementing a dual-use

strategy. LER of any aglectric system is defined as:

LER =
Ycrop, aglectric

Ycrops only

+
Yelectricity, aglectric

Yelectricity only

(1.1)

For the agrivoltaic system, Ycrop,aglectric is the crop yield in the agrivoltaic system,

Ycrops only is the crop yield expected from a monocrop agricultural system on the

same land area, Yelectricity, aglectric is the electricity yield from PV in the agrivoltaic

system, and Yelectricity only is the electricity yield for the PV system that would have
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utilized the same land area. Reference plots for PV and for agriculture are often used

in conjunction with experimental APV systems to determine appropriate values for

Ycrops only and Yelectricity only.

Fraunhofer ISE has demonstrated 186% land use efficiency in an APV system

growing potatoes [12]. Dupraz (2011) has modeled LER values of 1.73 and 1.35 for

their full density (1.6 m PV row spacing) and half density (3.2 m PV row spacing)

systems, respectively. These systems were modeled to experience a 27% (full density)

and a 17% (half density) reduction in crop yield. Weselek (2019) reviewed existing

APV technology, concluding that APV can increase overall land productivity by

70% [10].

Another approach that has more recently gained traction is the idea of designing

the PV system for agriculture such that zero crop loss is experienced [3, 10]. In this

realm, the term ‘aglectric’ is used, referring to systems with vertical development

of land to include electricity production without reducing net agricultural output,

thereby improving overall land productivity per unit area and ultimately maintaining

global food supply [3].

1.1.3 Proposed and Existing Systems

The first agrivoltaic paper was published by Goetzberger and Zastrow in 1982 [6].

This foundational work proposed an analytical model that estimates radiation distri-

butions on the ground below south-facing elevated PV arrays, laying the groundwork

for the agrivoltaic field. Goetzberger founded Fraunhofer Institute for Solar Energy

Systems ISE in 1981. Decades later, Fraunhofer ISE published work on their first

agrivoltaic systems using the fixed-tilt south-facing elevated array design proposed

by Goetzberger [6, 11,12].

In the past decade, some theorized agrivoltaic systems have been implemented

in Europe with varying success [11–13, 15, 18]. These are divided into commercial

systems (Table 1.1) and research systems (Table 1.2). All commercial APV systems
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examined in [10] utilize solar tracking, while research APV systems vary in their use

of tracking. All systems, commercial and research, use existing PV panel technology,

instead varying array-level parameters such as the row spacing between panels to

increase irradiance available to crops [13]. Solar tracking algorithms are implemented

to either mitigate adverse effects on crops from irradiance loss during key hours of

the day [15] or to increase electricity production [18]. All systems are elevated, as

well, varying between about 3 and 5 m [10].

Most existing APV systems cultivate minor commercial crops, frequently focusing

on shade-tolerant plants that are likely to still thrive under low irradiance conditions

such as lettuce and potatoes [7, 11–13]. The common approach is fitting the crop to

the PV system, and a significant number of studies in the agrivoltaic field to date

have been conducted agronomy specialists. Some APV technology seeks to design the

PV system for crop growth, however, focusing on novel panel designs, both geometric

and spectrally selective, and on novel tracking algorithms to optimize the trade-off

between crop yield and electricity production [3, 15, 18].

1.2 Modeling Agrivoltaic Systems

APV systems have many different factors influencing their overall functioning,

requiring the combination of multiple separate models of varying complexity to un-

derstand [10]. To this end, irradiance distribution models, PV electricity yield models,

crop models, and microclimate models are all utilized [10]. It is well-known in the

literature and the PV community how to model anticipated electricity yield from a

given PV system. However, PV system impact on agronomic aspects of the APV sys-

tem is not well-understood nor thoroughly explored, giving crop models an important

purpose in understanding the possible effects on crop growth [10].
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Table 1.1.: Existing Commercial Agrivoltaic Systems (Adapted from [10])

Ref. Site, Country Capacity (kWp) Solar Tracking Cultivated

Crops

[19, 20] Monticelli DOngina, Italy 3230 Dual-axis Winter wheat,

maize

[19,20] Castelvetro, Italy 1294 Yes Winter wheat,

maize

[19,20] Virgilio, Italy 2150 Yes Winter wheat,

maize

[21] Abruzzo, Italy 800 Yes Pasture, tomato,

watermelon,

wheat

[20] Anhui province, China 544 Yes Unknown

[22] Zhejiang province, China 544 Yes Rice

1.2.1 PV System Modeling

Photovoltaic systems can be modeled with various levels of complexity. To es-

timate power capacity of a given system, the single-diode model can be used [23].

This model, however, does not take into account system level losses, such as mutual

PV row shadowing that causes mismatch losses [24]. More complex models take into

account module and array level losses, which can also be characterized by a single

metric, the performance ratio. The performance ratio for photovoltaics is an interna-

tionally established metric for measuring PV system performance loss from less light

utilization, temperature variation, and various system-level losses and failures [25,26].
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Table 1.2.: Existing Research Agrivoltaic Systems (Adapted from [10])

Ref. Site, Country Capacity

(kWp)

Solar

Tracking

PV System Di-

mensions

Cultivated

Crops

[16] Arizona, USA Unknown No Cabbage, chard,

kale, tomato, onion

[13,15] Montpellier,

France

Unknown Fixed-tilt

(25◦tilt,

11◦E of S)

and E-W

tracking

(standard

and con-

trolled)

Fixed: 0.8-m wide

panels, 22.4-m long

rows, 4-m height,

1.6-m and 3.2-m

row spacing; Track-

ing: 1.98-m wide

panels, 5-m height,

19-m long rows

Cucumber, durum

wheat, French

bean, lettuce

[10] Heggelbach,

Germany

194 Fixed-tilt – Winter wheat,

clover grass,

celeriac, potato

[27,28] (Fraunhofer

Chile Research)

Santiago de

Chile, Chile

Unknown Fixed-tilt 13-m row length, 8

rows 2.5-m PV row

spacing

Various cabbage

varieties (broccoli,

cauliflower, kale),

potato, pumpkin

[10] Chiba Prefec-

ture, Japan

Unknown Fixed-tilt 750-m2 and 7.7

acres farmland, 3-

m and 5-m height,

row spacing 5-m,

panels separated

along row length

Cabbage, cucum-

ber, eggplant,

peanut, tomato,

taro, yam
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1.2.2 Agricultural System Modeling

The effects that APV has on microclimate have not been thoroughly explored in

either experimental or modeling literature [10, 14]. At the time of writing, this is a

goal of the InSPIRE project at the National Renewable Energy Laboratory in Golden,

CO [29] The potential of APV systems for specific crops has been explored using a

combination of models [5, 7]. These studies have focused on existing PV technology.

Recently modeling work has demonstrated irradiance distributions at the crop level

for certain existing and novel APV system designs [3, 30].

1.2.3 Analytical Models

Goetzberger and Zastrow [6] developed the first analytical models for south-facing

fixed tilt agrivoltaic systems in the 1980s. Their analytical model assumed i) a south-

facing array infinite in x and y directions, ii) the mounting structure does not con-

tribution to shadowing, iii) the PV panels are ideal absorbers, iv) an isotropic diffuse

sky model, and v) direct radiation integrated over daylight hours will be spatially

uniform in x and y for sufficient panel height. They developed a trigonometry-based

analytical model and used it to calculate spatial radiation distributions for two ex-

ample PV configurations, finding an insignificant variation in diffuse light for the

isotropic sky case. However, assumption (v) on uniform diffuse light is incorrect.

This is elaborated upon in Chapter 2. This thesis proposes corrections to the model

and complex simulation work to account for the true spatial variation of direct light.

1.3 Design Considerations

To design high performing agrivoltaic systems, one must understand the effects

that irradiance levels and different shading conditions can have on crop biomass and

quality [10]. For photovoltaic panels, it is worth discussing both the design parameters
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for PV systems that are specially-designed for APV, existing photovoltaic panels

available off-the-shelf, and common practices in PV array installation.

1.3.1 Crop Needs

Whether one is designing a PV system for APV applications, choosing a suitable

crop for a given APV system, or optimizing an APV system with both approaches,

crop irradiance and other microclimate needs must be strongly considered. Major

agricultural crops in the U.S. generally undergo one of two major photosynthesis

types: C3 or C4. As distinct metabolic pathways, they experience different utiliza-

tion of resources such as water, CO2, and photosynthetically active radiation (PAR).

In the case of C3 plants, the photosynthetic rate generally saturates at lower levels

of irradiance (i.e. photosynthetic saturation irradiance, Isat). This behavior sug-

gests that redirecting the irradiance of crops for electricity production may not affect

crop yield, which is corroborated by our collaborators at Purdues Department of

Agronomy [31], as well as a recent review paper on APV crop yields [10]. Cotton

and rice, two major crops, have saturation irradiance values of approximately 1300

µmol m−2 s−1 of photosynthetically active radiation [33, 34], which corresponds to

GHI values of approximately 650 W m−2 of the full AM1.5G spectrum, which is

significantly lower than the average midday irradiance for many warm major agri-

cultural regions during the summer growing season [8, 32], suggesting redirection of

part of the solar spectrum in these regions may not greatly negatively affect net crop

yield. It is also well established that other factors such as water availability in non-

irrigated agricultural fields oftentimes provide more of a constraint on crop growth

than irradiation availability.

Still, there are multiple requirements associated with sunlight to maintain crop

yield. For field crops, homogeneity of irradiance reductions is crucial for most single-

crop farming practices. Additionally, the duration of direct shadows during periods of

low irradiance (near sunrise and sunset) may push plants into low photosynthetic rate
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regimes, or possibly into respiratory regimes, which can negatively impact plants [31].

There is limited literature on the effects of shading on plant characteristics due to

the complexity of crop growth, type of shading conditions, and the plethora of plant

attributes [10]. Literature on shading effects was recently compiled [10] showing that

a variety of negative and positive effects on plant yield and quality are observed,

depending on the plant and the shading condition. Since changes in microclimate

beyond shading in APV systems can affect crop yield [13], it is suggested that there

is a strong need for studies on crop cultivation in APV systems [10].

1.3.2 Photovoltaic System

The design of the photovoltaic system component of APV systems is instrumental

to the APV system productivity. PV installation methods are typically high-impact

on the land. Furthermore, APV systems may require heavy machinery for installa-

tion of physically-stable elevated structures that support the weight of off-the-shelf

PV modules. Low-impact PV installation can support the existing and continued

utilization of land for agriculture [29]. Current PV installation practices utilize heavy

machinery that can damage the existing landscape. They are typically low to the

ground. APV systems, however, are highly elevated thus requiring specialized instal-

lation.

Photovoltaic panels available commercially are typically large at 65” by 39” for

60-cell residential panels and 78” by 39” for 72-cell commercial panels and weighing

31-44 lbs [35]. ‘Mini modules’ have potential in APV systems that utilize patterning,

as is suggested by this thesis.

1.4 Overview of this work

For this work, we sought to investigate how different photovoltaic panel patterns

and system configurations affect irradiance distributions on the field. Studies of the

crop-level microclimate in an agrivoltaic system showed that crop-level irradiance is
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the most impacted microclimate factor in an agrivoltaic system compared to typical

agricultural fields [14].

The shadowing effects in both small-scale experimental agrivoltaic farms and large

commercial farms are important for the field of agrivoltaics. Furthermore, variation

along the panel length and width for certain proposed panel patterns [3] required the

development of a 3-dimensional model comprehensive enough to capture shadowing

effects caused by these 2-dimensional patterns that vary in both areal directions. To

this end, a non-periodic mode to capture edge effects and an infinite periodicity mode

were developed to simulate a broad range of realistic systems. Both modes represent

the ground as an MxN finite element matrix. Further details of this model and the

corresponding simulation framework are described in Chapter 2.

Using this model, shadowing effects of PV systems in agrivoltaic farms were mod-

eled. Based on this initial understanding of the interplay between diurnal solar mo-

tion, irradiance composition and intensity, and PV system array configuration, the

trade-off between solar power capacity and expected crop biomass is quantified and

maximized in Chapter 3, using Pareto front optimization. In Chapter 4, an early

study of tracking algorithms that minimize shadowing is conducted for APV systems

requiring high irradiance levels on the field for specific times of day or months of

the year. We conclude this work by proposing system designs that most effectively

account for different crop needs to maximize biomass and electricity output, and by

outlining potential paths to enhance the performance of APV systems.
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2. MODELING SHADOW PATTERNS IN AGRIVOLTAIC

FARMS

2.1 Models

The model functionally flows as described in Fig. 2.1. We define a physical descrip-

tion of the panel system, which includes the panel pattern and dimensions, tracking or

fixed-tilt with corresponding specifics, and electrical properties for calculating power

capacity. We also define PV system properties such as row width, number of panels

for the non-periodic mode, and period dimension (north-south and east-west) for the

infinite periodicity mode. Environment parameters are defined, including latitude,

longitude, altitude, and various irradiance parameters. For the simulations in this

thesis we imported environmental data from NASA [32] (see Irradiance Model sec-

tion for details). Lastly, the simulation time frame is defined. Though any time frame

can be supported, simulations in this thesis calculate outputs on a daily basis or show

the time variation of an output.

Internally, the program then develops a daily irradiance model including solar

position using Sandia’s Solar Positioning Algorithm (SPA) as implemented by PVLib

[36,37] for all time steps. A time resolution of 1 minute was chosen for all simulations

in this thesis unless otherwise noted to capture diurnal shadow migration with high

accuracy. Next, the program determines tracker angle and panel position based on

the daily solar position model. Using the irradiance model and panel position as

a function of time, shadow positions are mathematically calculated for each time

step and the shadowed area is recorded in the finite square element matrix using a

line-drawing algorithm implemented by MATLAB [38]. Direct and diffuse radiation

is integrated for each finite element, and temporal variation in direct and diffuse

radiation is calculated for select points in the plot.
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Fig. 2.1.: Flowchart of simulation framework.
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2.1.1 Irradiance Model

PVLib is used to implement the solar positioning algorithm (SPA) using 22-year

averaged monthly temperature data from NASA [32, 37]. The Haurwitz clear sky

model is used to generate GHI, which is then normalized by 22-year averaged monthly

global horizontal irradiance (GHI) from NASA using the apparent solar zenith angle

[32].

GHI(t) = GHIHaurwitz(t)

[
GHINASA

mean(GHIHaurwitz(t))

]
(2.1)

GHI is then decomposed into the diffuse and direct components using the Orgill

and Hollands model [40]. Fig. 2.2 shows the resulting irradiance model for a low diffuse

light region (Fig. 2.2 (a), Fresno, CA) and a high diffuse light region (Fig. 2.2 (b),

West Lafayette, IN). The correction from normalization is not significant for sunny

California where the clear sky assumption is close to reality, but this correction from

the clear sky model is necessary in frequently overcast regions such as Indiana.

Having an accurate diffuse to direct ratio is critical for this agrivoltaic model

because diffuse and direct light are treated differently. It is assumed that 100% of

direct light does not reach area on the ground that is in direct shadow. We refer

to this assumption ’binary direct shadowing’ to indicate that direct light is 100% or

0% included at each ground element depending on the direct shadowing. See section

2.1.3 for details on error introduced by this assumption. It is also assumed that, due

to the high elevation of panels simulated in this work (5 m) that all diffuse light that

is not incident on the panels reaches the ground uniformly. Error introduced by this

assumption is assumed to be negligible and is not calculated in this work. The fraction

of incident light on the panels is determined by the Perez model as implemented by

PVLib [36,39], which is subtracted from the total diffuse irradiance at each time step

then distributed on the ground to maintain energy conservation.
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DHIground(t) = DHItot(t) −DHIPV (t) (2.2)

Fig. 2.2.: Examples of Irradiance Models.

2.1.2 Shadow Position Algorithm

The program uses a finite element mesh of M ×N elements to represent the flat

ground. Each element is square with dimensions 0.001 m × 0.001 m (unless otherwise

specified). The ground is not patterned and the elevation is at 0 m (unless otherwise

specified).

The physical location of shadows is determined mathematically at each time step

by mapping rays from each opaque panel segment to the ground modeling the sun as

a plane source. Noting the angular diameter of the sun is 0.53◦, this assumption is

reasonable for larger panel sizes and lower panel elevations from the ground. However,

this work presents shadow dimension and intensity data for certain combinations of

panel dimensions and elevations that may be significantly different from reality.

Using the solar elevation angle (θel), solar azimuth angle (ψaz), and coordinate

positions (xc, yc, zc) of each corner of each opaque panel segment, shadow positions are
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mathematically determined. Solar azimuth angle is shifted to Cartesian coordinate

system with +x axis as South and 0, +y axis as East and 90, and +z axis towards

the Zenith. ψaz will hereby be assumed to be the solar azimuth angle with respect to

this coordinate system for the remainder of the thesis.

xshadow =
zc

tan θel
cos (ψaz + 180) + xc (2.3)

yshadow =
zc

tan θel
sin (ψaz + 180) + yc (2.4)

These absolute points in physical space are inputed to the MATLAB function

poly2mask.m, which connects the four points in the finite element mesh using a line

drawing algorithm for grids [38]. It converts all covered points, s(i, j), to ’false’ from

’true’ to indicate direct shadow. The resulting mesh is multiplied by direct irradiance

normal to the ground (Idir(t)), the fraction of diffuse light incident on the ground

(Eqn. 2.5) is added, and net energy incident on each element of area ∆A, E(i, j, t),

over each timestep, is determined. It is assumed that zero irradiance is available

before sunrise and after sunset.

Idif,g = Idif (1 − fPV (t)), (2.5)

where fPV (t) is the fraction of diffuse light incident on the panel using a diffuse light

model such as Perez or isotropic sky.

E(i, j)g,dir

t=sunset∑
t=sunrise

s(i, j, t)Idir(t)∆t∆A (2.6)

E(i, j)g,dif =
t=sunset∑
t=sunrise

Idif,g(t)∆t∆A (2.7)

E(i, j)g = E(i, j)g,dir + E(i, j)g,dif (2.8)
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The total reference incident energy for a given day of year on the ground is similarly

calculated for an open-field system (no PV):

E(i, j)ref,dir =
t=sunset∑
t=sunrise

Idir(t)∆t∆A (2.9)

E(i, j)ref,dif =
t=sunset∑
t=sunrise

Idif,g(t)∆t∆A (2.10)

E(i, j)ref = E(i, j)ref,dir + E(i, j)ref,dif (2.11)

To compare the effect that PV in agrivoltaic systems has on irradiance across

systems, we developed a metric called ’shadow depth.’ Shadow depth (SD) is the

percent reduction in incident solar energy on a given area of land over a given period

of time. This metric eliminates dependence on the absolute value of GHI for a given

day. Radiation spatial distribution is then dependent on the fraction of direct vs.

diffuse irradiance, and on solar diurnal migration, which is a function of latitude,

longitude, and day of year. For this thesis, shadow depth refers to energy integration

from sunrise to sunset for a given day of year unless otherwise noted. As a function

of position, it is given by:

SD(i, j) = 100% ∗
[
E(i, j)g + E(i, j)ref

E(i, j)ref

]
(2.12)

Shadow depth can also be defined in terms of diffuse fraction, kd(t):

IGHI(t) = Idif (t) + Idir(t) (2.13)

Idif (t) = kd(t)IGHI(t) (2.14)

SD(t) = IGHI(t) [(1 − kd(t))Asun(t) + kd(1 − fPV (t))] (2.15)
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Fig. 2.3.: Percent error in calculated shadow dimension for various panel dimensions

and elevation from ground (height). This is for the case of the sun at the zenith

point above a horizontal panel.

2.1.3 Error

Fig. 2.3 shows the percent error in calculated shadow dimension for a flat panel

case with the sun at zenith. This plot compares calculated shadow size from modeling

the sun as a plane source to the calculated shadow size from modeling the sun as a

point source with 0.53◦angular spread. The plane source model overestimates shadow

dimension with greater error for small panel dimension and high panel elevation.

However, we keep the assumption of modeling the sun as a plane source because

of the simplicity and because this introduced error causes our results to be more

detrimental than expected in reality.
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Fig. 2.4.: Maximum panel dimensions to eliminate shadows.

Fig. 2.4 shows the minimum panel dimension to eliminate shadows for various

panel distances from the ground. These values are calculated for the flat panel case

(0◦ tilt to the horizontal) and with the sun directly overhead at the Zenith. We find

that very small panel dimensions are required to effectively eliminate full shadows,

approximately 1 cm panel dimension for each meter of elevation from the ground.

Results from Fig. 2.3 and Fig. 2.4 tell us that care must be taken when analyzing

results for small (<1 m) panels. We assume binary direct shadowing in this model. In

experiments, we expect shadow edge softening that can be confirmed by observation

and a corresponding gradient of irradiance that is not reflected by the harsh lines

caused by this binary direct shadowing assumption.
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2.1.4 Electrical Power Model

Power capacity as a function of time, PPV (t), is calculated using a light intensity

dependent solar cell model [23] to account for the varying light intensity over the

course of a day and to compare power capacity across locations.

The concentration factor X is calculated using time-dependent GHI (W/m2) with

a reference of 1 sun (1000 W/m2):

X(t) =
GHI(t)

1000
(2.16)

Open circuit voltage (VOC) short circuit current (JSC), and fill factor are then

adjusted accordingly, assuming an ideality factor n = 1 and a temperature of 300 K:

V
′

OC(t) = VOC +
nkT

q
ln (X(t)) (2.17)

J
′

SC(t) = JSCX(t) (2.18)

v
′

OC(t) =
q

nkt
V

′

OC (2.19)

FF
′
(t) =

v
′
oc(t) − ln (v

′
oc(t) + 0.72)

v′
oc(t) + 1

(2.20)

η
′
(t) =

V
′
OC(t)J

′
SC(t)FF

′
(t)

GHI(t)
(2.21)

Power calculations are then performed based on the angle of incidence (AOI) be-

tween solar rays and the panel for tracking and fixed-tilt modes. AOI is determined

using PVLib [36]. Power is calculated in terms of W per m2 of land because agri-

voltaics are land area dependent systems [3]. As such, the ground coverage ratio, also

known as packing fraction, is calculated and defined as the ratio between PV area,
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APV and ground area. For the infinite periodicity mode with unit cell of dimensions

pNS and pEW , this is:

GCR =
APV

(pNS)(pEW )
(2.22)

Note that this formulation assumed that all PV area contributes to power capacity.

Pdir(t)[W/m
2 of land] = η

′
(t)DNI(t) cos (AOI)(GCR) (2.23)

The Perez model is used to determine the fraction of diffuse light incident on the

panel surface. Blocking of light from other PV panels is not accounted for.

Pdif (t)[W/m2 of land] = η
′
(t)DHIPV,Perez(t)(GCR) (2.24)

Daily power capacity is the sum of Pdir(t) and Pdif (t) averaged over 24 hr. Table

2.1 lists the IV characteristics used for power capacity calculations in this work,

indicative of high efficiency commercial silicon PV modules [42].

Table 2.1.: Device IV Characteristics for Electrical Power Model

Parameter Value

VOC 0.7 mV

JSC 40 mA/cm2

FF 80 %
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2.1.5 Code Availability and nanoHUB Tool

An online accessible closed source tool to use this program is available online at

nanohub.org/tools/agpvsim with a corresponding user guide. Code is available in a

Git repository upon request.

2.2 Estimating Crop Yield

As described in Chapter 1, shading conditions can have significantly varied effects

on crops. In many cases, a given shading condition can have both negative and pos-

itive effects [10]. Both the temporal variation of shading and the shading intensity

affect crop growth, however the literature is not sufficiently comprehensive or conclu-

sive to use simple metrics to accurately estimate crop yield. Complex crop models

are typically used to predict performance for various microclimate conditions, include

radiation levels [7, 10].

The purpose of this work is to analyze irradiance distributions in APV systems

at both the crop and PV level. Utilization of crop models for specific case studies or

generalized modeling is beyond the scope of this thesis. In lieu of more accurate yield

predictions, estimates of yield can be inferred using photosynthetic rate vs. levels of

photosynthetically active radiation with subsequent saturation irradiance levels. To

this end, we calculate the fractional reduction in insolation integrated for a single day

(called ‘shadow depth’) and assume yield is proportional to this metric.
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3. DESIGNING OPTIMIZED AGRIVOLTAIC

STRUCTURES FOR COPRODUCTION OF SOLAR

ENERGY AND CROP BIOMASS

In this section, field irradiance distributions and the trade-offs between APV power

production and expected crop yield are analyzed. We first investigate the effects that

PV array configuration has on underlying field irradiance. Array-level parameters

of row spacing, panel width, and panel orientation are investigated and compared

to experimental data in the literature. We then explore how novel geometric panel

patterns that utilize ‘mini modules’ affect field irradiance metrics. Promising patterns

and configurations are then explored in detail.

3.1 Effects of PV System Configuration

System configuration perhaps plays the most influential role in determining the ra-

diation spatial distribution in the agricultural field. Existing experimental agrivoltaic

systems that use fixed tilt south-facing panels have measured significant periodic

non-uniformity in radiation along the N-S axis [14,15]. We corroborate this periodic

spatial non-uniformity in radiation via simulation (Fig. 3.1), showing that high levels

of spatial non-uniformity in integrated radiation, in J-m−2 d−1, occur in the present

of PV arrays.

An elevated fixed latitude-tilt south-facing array with high row width was modeled

for three major agricultural regions in the U.S.: West Lafayette, IN (40.4, -86.6);

Fresno, CA (36.6, -119.9); and Lubbock, TX (33.5, -101.8). Fig. 3.1(Case A) shows a

spatial map of the resulting shadow depth on June 1, 2018 for the Texas region. We

see that this configuration (1.5 m panel width, 5 m height, 7.62 m row width) produces

regions of high shadow depth, dubbed shadow trenches, which can reach upwards of
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60% when integrated over a single day. Elevated E-W tracking configurations were

explored (Fig. 3.1(Case D, Case E)) showing similar net losses in radiation, however

insolation homogeneity, given by the spatial standard deviation in shadow depth,

and PV power production increased (Table 3.2). High insolation homogeneity is

expected due to the east-west nature of diurnal shadow migration, and may explain

the decreased yield of agrivoltaic systems that implemented south-facing structures

[4]. Marrou (2013) detected, in experimental south-facing agrivoltaic systems, high

periodic spatial variability and a decrease of nearly half of available sunlight for high-

density (GCR = 0.5) systems. Valle (2017) measured homogeneous insolation for

their E-W tracking APV systems [15], corroborating the results of this model.

S S S 

Fig. 3.1.: Shadow depth of different configurations in West Lafayette, IN. [30]. PV

system parameters in Table 3.1. Case E utilizes checkerboard patterning elaborated

on in section 3.3.

The model implemented assumes that diffuse irradiance reaches the ground uni-

formly due to the exceptional height of simulated systems (5 m). Based on this

assumption, days and regions with low values of diffuse index, kd, will show higher

spatial and temporal non-uniformity in radiation. This is demonstrated in Table 3.2

for regions with high kd (Indiana), moderate kd (Texas), and low kd (California).

In Table 3.2, fixed south-facing configuration is at a latitude-tilt, and E-W tracking

configuration has 90◦tracking range. Higher kd corresponds with higher standard de-
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Table 3.1.: Parameters and metrics for systems in Fig. 3.1 and related [3].

Configuration Panel

pattern

Row

spacing

(m)

Average

shadow

depth (%)

Shadow

depth

s.d.(%)

Land with

less than

25% shadow

depth (%)

A South facing None 3.81 35.2 15.2 41.0

B South facing Checker 3.81 17.6 7.6 74.7

C EW tracking None 3.81 31.5 0.6 0

D EW tracking None 7.62 21.4 0.6 100.0

E EW tracking Checker 7.62 11.5 1.1 100.0

viation (i.e. less spatial homogeneity) for fixed-tilt south-facing systems. However,

higher kd also corresponds with lower average insolation loss.

Table 3.2.: PV effects on insolation for different locations and diffuse indices.

Configuration Location kd [32] Shadow

Depth mean

Shadow

Depth s.d.

Power (W/m2)

Fixed S-facing CA 0.19 34.6% 20.8% 16.6, 22% from DNI

E-W tracking CA 0.19 27.2 % 0.8% 22.2, 20% from DHI

Fixed S-facing TX 0.31 35.2% 15.2% 11.8, 45% from DHI

E-W tracking TX 0.31 31.5% 0.6% 15.1, 41% from DHI

Fixed S-facing IN 0.41 35.0% 10.1% 8.1, 62% from DHI

E-W tracking IN 0.41 34.6% 0.3% 10, 43% from DHI

3.1.1 Case study: ACRE Farm

In this section, spatial maps of the modeled cumulative radiation spatial distri-

bution in an experimental agrivoltaic system at Purdue University are presented,
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demonstrating the impact of edge effects on the irradiance distribution and other

spatial metrics in agrivoltaic systems. This is of utmost importance to understand

because most agrivoltaic research plots are small-scale (Table 1.2), creating significant

edge effects across the growing season that must be accounted for.

The ACRE system utilizes parameters (Table 3.3) that are believed to be con-

ducive to the needs of crops that require high levels of irradiance, such as maize, and

implements novel panel geometric arrangements proposed in [3]. Half of each PV row,

referred to as pattern A, utilizes conventional full size 72-cell modules. The other half,

pattern B, utilizes a checkerboard pattern with half size 36-cell modules. The panel

outlines at 0◦tilt are overlaid on the radiation spatial maps in Fig. 3.2. Only direct

radiation and the corresponding shadow depth from direct radiation is considered in

this study. Diffuse light is expected to remain relatively homogeneous for these plots,

but only due to this system’s low GCR (0.165 and 0.076, respectively for patterns A

and B) and high (6 m) height from the ground, as per analytical analysis of diffuse

light in APV systems in [6].

Table 3.3.: Purdue ACRE Agrivoltaic System Parameters.

Parameter Value

Height 6 m

PV row spacing 9.91 m

PV row length 14.5 m

PV width (A, B) 1.778 m, 1.5 m

It is visually evident that, even with 4 rows of PV panels, edge effects play a

major role in the radiation distribution for pattern A both temporally and spatially.

For pattern B, the difference is less extreme due to the lower ground coverage ratio.

This case study emphasizes the importance of modeling irradiance distributions for

the entire growing seasons in small-scale agrivoltaic systems.
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Fig. 3.2.: Direct shadow depth spatial maps at Purdue ACRE farm for four months

of the growing season: a) May 1, 2019, b) June 1, 2018, c) July 1, 2018, and d)

August 1, 2018. Photovoltaic panels are displayed in semi-transparent gray at 0◦tilt

from the horizontal.

3.2 Row Width, Panel Width

To better understand how array configuration affects field insolation and output

power, the parameters row width and panel width were examined. From the shadow

depth spatial distribution map of a south-facing system (Fig. 3.1(a)), it is evident that

increased panel width will widen the high-loss ’shadow trench’ and that increased PV

row spacing will separate the ’shadow trench’ rows. To quantify their effects, the

metrics shadow depth and shadow duration vs. power density (capacity) are used.
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It is known and intuitive that increasing the distance between panel rows, also

known as row width, increases the radiation available per unit area to crops [6,7,13,

15]. Here we calculate a 1
r

dependence of shadow depth on row spacing. The reason is

that, by law of energy conservation and the model assumption of complete absorption

described in Chapter 2, shadow depth is directly proportional to the GCR, which is

inversely proportional to row width (Eqn. 2.22). Note that the exact relationship be-

tween shadow depth and row width requires modifications for solar angle of incidence

on the panel, and for direct and diffuse radiation as functions of time and space in

the solar dome.

Fig. 3.3.: Effect of row width on shadow depth.

Fig. 3.3 shows row width vs. shadow depth for an E-W tracking system on June

1, 2018 in West Lafayette, IN. E-W tracking was chosen because of the high spatial

uniformity. However, this spatial uniformity breaks down at high row spacing due to

the temporally-changing relationship between shadow position and irradiance levels

over a given day. This is because shadow depth is a function of cumulative time in

shadow and irradiance as a function of time (Eqn. 2.12, Eqn. 2.15).
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By increasing panel width, agrivoltaic systems can generate more electricity by

the principle that PV area is directly proportional to power generation due to the

increased area of PV intercepting radiation. However, the cost is decreased total

radiation available to crops and increased duration of shadowing over a given region

of the field. In Fig. 3.4, a very large row spacing of 10 m was used to isolate shadowing

effects of adjacent PV rows. Infinite PV axis length was used to ensure variation along

a single cardinal axis for each system, mimicking a 2D simulation.

Fig. 3.4.: Effect of panel width on shadow depth.

The ratio of panel width to row spacing can give insight into trends of radiation

distribution and shadow duration. Fig. 3.4 shows the east-west tracking system with

varying panel width and row width to demonstrate the variation in spatially averaged

shadow depth, temporal variation in shadow depth, and shadow duration over given

points in the field. Infinitely periodic rows of PV were simulated to demonstrate

effects of a realistic PV farm.
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3.3 Panel Patterning

In this section, different panel patterns (Fig. 3.5) are explored for a given set of

array-level parameters. Since it was found in the previous section that E-W systems

outperform fixed-tilt south-facing systems in terms of insolation homogeneity, results

in this section emphasize E-W tracking systems. Tracking parameters are listed in

Table 3.4.

a) Checkerboard b) Perpendicular 
Stripes 

c) Parallel  
Stripes 

P
an

el
 a

xi
s 

Gap size 

Module 
size 

100% transparent 

Fig. 3.5.: Panel patterns.

Table 3.4.: Tracking Parameters for data set in Fig. 3.6, Fig. 3.7, Fig. 3.8, and

Fig. 3.9.

Parameter Value

Rotation Axis Single, N-S axis

Backtracking Off

Max Angle 45◦

Panel Width Varied

Panel Length Infinite
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To understand the operating regimes for different panel patterns in the E-W

tracking configuration, multiple panel dimensions and corresponding ground cover-

age ratios were explored. Optimizing the trade-off between power spatial density and

shadowing effects is a multi-objective problem with no inherent constraints, therefore

Pareto front optimization is used in this analysis. In this method, a data point, a,

is considered dominant over another data point, b if it is closer to the origin in both

axes. A data point, a, that is closer in one axis to another data point, c, but is further

in the other axis, may be considered along the Pareto front, given that no other data

points are dominant over it.

It is found that average shadow depth has a linear relationship with power den-

sity (Fig. 3.6). This is expected because, with all tracking and electrical parameters

remaining fixed across systems, the law of energy conservation defines a linear re-

lationship between irradiance incident on the panels and irradiance incident on the

field. When this irradiance is integrated and averaged, a linear relationship between

average shadow depth and power density is observed. Of interest is the dependence

of slope on location for a given day of year. The diffuse fraction, kd, and the total

GHI dictates this relationship. Regions with low GHI, such as in Indiana, have lower

power density. Fig. 3.6(a-c) shows this trade-off for June 1, 2018, where smaller kd

has a larger slope. Fig. 3.6(d-f) shows that shadow depth remains approximately con-

stant across systems and locations with only power differing, and analysis indicates

the difference is due to small variations in solar migration paths. This data supports

the claim that APV systems regions with high GHI and high kd may have the highest

performance.

Panel pattern is shown to have a significant and consistent effect on shadow depth

spatial homogeneity. Spatial homogeneity is given by the spatial standard deviation

in shadow depth plotted in Fig. 3.7. It is evident that the parallel stripes pattern

produces the most homogeneous shadowing, below 3% in TX, CA, and IN locations

when including contributions from diffuse light (Fig. 3.7(a-c)), and below 4% when

only considering direct light contributions (Fig. 3.7(d-f)).
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Fig. 3.6.: Pareto front visualization of shadow depth average vs. spatial power

density, simulated for June 1, 2018. Shadow depth from GHI given in (a-c); shadow

depth from direct horizontal irradiance only given in (d-f) for California (kd=0.19),

Texas (kd=0.31), and Indiana (kd=0.41) locations. Checkerboard (CB),

perpendicular (perp.) and parallel (par.) patterns shown.
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Fig. 3.7.: Pareto front visualization of shadow depth homogeneity (spatial standard

deviation) vs. spatial power density, simulated for June 1, 2018. Shadow depth from

GHI given in (a-c); shadow depth from direct horizontal irradiance only given in

(d-f) for California (kd=0.19), Texas (kd=0.31), and Indiana (kd=0.41) locations.

Checkerboard (CB), perpendicular (perp.) and parallel (par.) patterns shown.

For the temporal component of APV shadowing, Fig. 3.8 shows shadowing from

sunrise to sunset and Fig. 3.9 shows shadowing during peak irradiance hours, 10 a.m.
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to 4 p.m. local time. The average maximum shadow duration at each point in the plot

is less for midday shadows than full-day shadows for all cases. This is because mutual

shading of PV panels couples otherwise distinct shadows. For parallel stripes, this

effect is enhanced in the spatial standard deviation of maximum shadow duration in

the plot (Fig. 3.9(d-f)). Upon analysis, we see mutual shading is eliminated for most

cases, leaving panel width as the primary influencing factor for shadow duration.

Table 3.5.: Input parameters for parallel and perpendicular stripes data sets in

Fig. 3.7, Fig. 3.6, Fig. 3.8, and Fig. 3.9. The same panel dimensions are used for

both systems. Length is varied to ensure proper infinite periodicity of each pattern,

not affecting results that are per unit area.

Panel width Module size Gap size no. stripes Row spacing (m)

1.90 m 0.50 m 0.20 m 3 4, 5, 6, 7, 8, 9, 10

1.30 m 0.30 m 0.20 m 3 4, 5, 6, 7, 8, 9, 10

2.30 m 0.30 m 0.20 m 5 4, 5, 6, 7, 8, 9, 10

1.60 m 0.40 m 0.20 m 3 4, 5, 6, 7, 8, 9, 10

3.00 m 0.20 m 0.50 m 5 4, 5, 6, 7, 8, 9, 10

2.60 m 0.20 m 0.50 m 4 4, 5, 6, 7, 8, 9, 10

1.90 m 0.20 m 0.50 m 3 4, 5, 6, 7, 8, 9, 10

3.45 m 0.75 m 0.15 m 4 4, 5, 6, 7, 8, 9, 10

2.85 m 0.60 m 0.15 m 4 4, 5, 6, 7, 8, 9, 10

3.3.1 Checkerboard Pattern

Examining the effects of checkerboard pattern in isolation, we look at the blue

data sets in Fig. 3.7. Two designs with checkerboard pattern of dimension 0.25 m

by 0.25 m and 0.5 m by 0.5 m checkers are shown. Higher dimension checkerboard
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Fig. 3.8.: Pareto front visualization of spatially averaged maximal shadow duration

for each field finite element from sunrise to sunset vs. spatial power density,

simulated for June 1, 2018. Standard deviation of this spatial average shown in

(D-F). Minimal shadow duration and maximal power production are desired for

optimal APV system performance. Checkerboard (CB), perpendicular (perp.) and

parallel (par.) patterns shown.
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Fig. 3.9.: Pareto front visualization of spatially averaged maximal shadow duration

for each field finite element from 10 a.m. to 4 p.m. local time vs. spatial power

density, simulated for June 1, 2018. Standard deviation of this spatial average

shown in (D-F). Minimal shadow duration and maximal power production are

desired for optimal APV system performance. Checkerboard (CB), perpendicular

(perp.) and parallel (par.) patterns shown.
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pattern (0.5 m by 0.5 m) has a higher slope proportional to the row spacing (lower

row spacing has higher spatial power density for the same panel system). By reducing

the checker dimension by a factor of 2, and subsequently the area of each PV checker

by a factor of 4, shadow depth standard deviation is decreased by more than half.

Fig. 3.10.: Effect of checkerboard dimensions on shadow depth [30].

We explored the effects of the checkerboard design further in east-west tracking

systems by varying the mini-module dimensions (Fig. 3.11). This metric allows us

to observe the “worst case” spatially for a given agrivoltaic system. We demonstrate

that, while power production will correspondingly vary, shadow depth can be ma-

nipulated by varying the photovoltaic module dimensions. It is also demonstrated

that regions with smaller fractions of diffuse light (Fresno, CA) are more impacted

by agrivoltaic system shadowing effects. For long rectangular checkerboards with the
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same PV area, we see that increasing the N-S dimension from 1 to 5 m increases the

maximum shadow depth by an absolute 10%. Panel width is fixed at 1.5 m and row

spacing is fixed at 7.62 m.
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Fig. 3.11.: Effect of checkerboard dimensions on shadow depth [30].

Examining the effects of checkerboard on shadow duration, we find that smaller

checkerboard dimensions create shorter average maximum shadow duration. Fig. 3.12

shows binary time-series data for representative points in the field where black indi-

cates that the point is in direct shadow. For the fixed-tilt south-facing system, the

representative point is within the shadow trench where the majority of shadowing

occurs. It is shown that fine checkerboard pattern decreases average shadow duration

by multiple hours. For the E-W tracking system, average maximum shadow dura-

tion does decrease, but the temporal distribution varies. The spatial homogeneity in

E-W tracking systems is distributed over the entire plot rather than a sub-area, the
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‘shadow trench’, in fixed-tilt south-facing systems because the PV length extends over

the entire N-S axis. Therefore, the temporal variation in shadow depth is dependent

on the spatial position examined for E-W tracking systems.

We conclude that checkerboard pattern decreases average shadow duration and

improves shadow homogeneity (Table 3.6). Though total radiation incident on the

field will be maintained for a given PV area and array configuration, the tempo-

ral distribution can be controlled by using this checkerboard pattern. It should be

noted that in practice, direct shadow duration will be shorter due to the plane source

approximation error explained in Chapter 2.

Table 3.6.: Checkerboard Shadow Effects. Spatial average and standard deviation in

shadow depth. Spatially average maximum shadow duration in time for midday and

full day [30].

Texas Shadow

Depth (%)

Midday

(10AM-

4PM) (min)

Full Day

(min)

E-W tracking, full panels 28.9 ± 0.4 69.7 ± 2.6 71.3 ± 1.5

E-W tracking, 0.15m x 0.15m 28.6 ± 1.0 9.8 ± 2.9 40.6 ± 9.1

E-W tracking, 0.3m x 0.3m 28.6 ± 1.5 15.8 ± 3.7 38.6 ± 8.6

Fixed S-facing, full panels 18.8 ± 19.3 67.1 ± 126.4 98.1 ± 128.4

Fixed S-facing, 0.15m x 0.15m 18.8 ± 13.1 4.4 ± 4.8 16.6 ± 3.1

Fixed S-facing, 0.3m x 0.3m 18.8 ± 13.1 7.4 ± 8.0 17.1 ± 3.1

3.3.2 Parallel Stripes

It is shown in Fig. 3.13 that parallel N-S axis stripes in N-S axis tracking systems

have the most uniform shadow depth. However, this shadowing effect has an optimal
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E-W Single-axis Tracking 

Sunrise Sunset 

Fixed tilt South-facing 

Sunrise Sunset 

Fig. 3.12.: Effect of checkerboard dimensions on shadow duration [30]. Time-series

data for the California location on June 1, 2018. Black indicates direct shadow.

Checkerboard dimensions are 0.15m x 0.15m and 0.3m x 0.3m and the same PV

area is used (1.5m width vs. 3m width for 50% PV density checkerboard).

row width. Fig. 3.13 shows varied homogeneity for different row widths where each

color indicates a different pattern. Though there is an optimal value for highest ho-

mogeneity, the difference is so small (1.5%) that we anticipate no significant variation

in experiment.

The parallel stripes pattern in the E-W tracking configuration is shown to provide

the highest field insolation spatial homogeneity. This pattern also offers direct control

of shadow duration.
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Fig. 3.13.: Homogeneity of parallel stripes vs. row width. Each color is a different

data set from Table 3.5. The minima correspond to the 7 m row width for the

Indiana location on June 1, 2018.

3.4 Summary and conclusions

In this chapter, a range of APV array configurations, with varying panel width,

row spacing, and panel patterns were simulated to predict their effect on field irra-

diance distributions and spatial power density. Based on this study, it is clear that

south-facing configurations produce regions of high shadow depth. East-west track-

ing configurations provide increased spatial power density from the added tracking,

and create highly homogeneous radiation distributions on the field. Panel patterning

shows that while overall shadow depth is maintained for a given PV area and configu-

ration, patterning can affect radiation homogeneity and shadow duration. Temporal

data shows that spacing the PV modules along the E-W PV axis reduces shadow

duration over a given point in the field, barring elongation from shadow overlap in

PV mutual shading conditions.
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It is recommended that APV design incorporate panel patterning when shadow

duration is of concern. Parallel stripes and checkerboard pattern may be most physi-

cally realizable from a circuitry perspective. It is also recommended that APV systems

be installed facing east-west (rather than south) if shadow homogeneity is required.
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4. TRACKING ALGORITHMS TO MANIPULATE

SHADOWS

Solar tracking algorithms can be implemented to manipulate the amount and dura-

tion of intercepted radiation by the PV array to optimize plant growth. Valle (2017)

demonstrated this experimentally by using a controlled tracking system with the in-

tentions of minimizing morning and evening shading and maximizing midday shading

to reduce adverse affects of high irradiance [15]. Controlled tracking (CT) in a 3-row

dynamic APV system was implemented by moving the photovoltaic panels nearly

parallel to incoming solar rays (90◦ away from conventional solar tracking) in the

morning and evening, with conventional solar tracking implemented from 11 a.m. to

4 p.m. [15]. To compare, they implemented a standard solar tracking (ST) 4-row PV

array and a fixed-tilt high density (HD) PV array (1.6 m row spacing). They measured

+51% and +18% increases in electricity for ST and CT, respectively, on a cloudy day

relative to HD electricity production and +74% and -23% electricity production, re-

spectively, for a sunny day. For field irradiance, CT transmitted approximately 80%

of total radiation in spring and summer while ST transmitted approximately 60%.

Transmitted radiation was converted into biomass (biomass (g)/cumulative radia-

tion (mol)), showing a statistically significant difference between CT, and ST, with

CT exhibiting results statistically similar to the full sun control group.

From these results, it is evident that APV systems with controlled tracking algo-

rithms that minimize radiation loss on the field have the potential to effectively mirror

agricultural production in full sun conditions while generating electricity. Further-

more, these algorithms may be most useful in cloudy conditions with bifacial panels

to maximize electricity output [15].
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4.1 AOI Manipulation

Maximizing the angle of incidence, AOI, up to 90◦, between the solar ray and

the photovoltaic, PV, module active face normal at a given time minimizes direct

shadow area on the field created by an elevated PV module and minimizes intercepted

radiation. Subsequently, maximizing this angle of incidence minimizes the direct

radiation loss on the field due to PV module radiation interception. Radiation energy

Etot available to the field is defined as:

Etot =

∫ t2

t1

IGHI(t) Afield dt, (4.1)

where Afield = total area of the field.

The intercepted radiation by the PV module over a time period from t1 to t2 is

given by the equations:

EPV,direct =

∫ t2

t1

IDNI APV sinAOI(t)α(AOI) dt (4.2)

EPV,diffuse =

∫ t2

t1

IDHI APV f(AOI(t))α(AOI) dt (4.3)

EPV = EPV,direct + EPV,diffuse (4.4)

where:

EPV = Energy intercepted by the PV module

EPV,direct = Energy intercepted by the PV module from direct solar rays

EPV,diffuse = Energy intercepted by the PV module from diffuse solar rays

APV = Area of a PV module face

α = Angular-dependent absorption coefficient of PV module

f = Fraction of diffuse irradiance intercepted by the PV module, dependent on AOI

Radiation available to the field is then given by:

Efield = Etot − EPV − Er,atmosphere (4.5)

where Er,atmosphere is energy from solar radiation reflected back to the atmosphere.
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According to the Perez model, diffuse light is maximal around the solar disc, de-

creasing with distance away from the solar disc in the celestial sphere [39]. We can

then assume that the factor f(AOI) will mimic the behavior of the angular term,

sinAOI in Eqn. 4.2. Therefore, barring abnormalities from weather patterns, max-

imization of the AOI of direct solar rays on the PV module active face to minimize

shadow area will also minimize diffuse radiation loss on the field due to PV module

radiation interception. The active face is the width by length face (both sides in a

bifacial PV module, one side in a monofacial PV module, which is primarily respon-

sible for generating the majority if not all of the electricity), and the inactive faces

are the width by thickness and the length by thickness faces. AOI (Fig. 4.1, Fig. 4.2)

is defined in [44] as:

AOI = arccos [cosTm cosZs + sinTm sinZs cos (AZs − AZm)] (4.6)

where: AOI = Solar angle of incidence on PV module (deg)

Tm = Tilt angle of module ((deg), 0◦is horizontal)

Zs = Solar zenith angle (deg)

AZs = Solar azimuth angle ((deg), North=0◦, East=90◦)

AZm= PV face azimuth angle ((deg), North=0◦, East=90◦)

4.2 Summary

Solar tracking algorithms that minimize radiation loss, ‘anti-tracking’ algorithms,

in the field for the entire operating season can be considered an extreme case for APV

systems cultivating crops requiring high irradiance levels, such as maize and other C4

crops. It should also be noted that conventionally tilted PV systems are known to

affect other microclimate conditions [14]. Therefore the combined use of solar tracking

and anti-tracking to optimize irradiance distribution and microclimate conditions may

be most advantageous for crop growth. Further investigation is required to determine

the proper anti-tracking algorithms for practical PV degrees of freedom.
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47

5. SUMMARY, RECOMMENDATIONS, AND FUTURE

WORK

5.1 Summary and Recommendations

The field of agrivoltaics is relatively young, with the first experimental agrivoltaic

farm being built in France less than a decade ago [7, 13, 15]. Experimental work has

been limited to early and mid-stage experimental agrivoltaic farms in France [7,13,15],

Italy [18], and Germany [11,12]. Modeling work has been limited and mostly from the

aforementioned groups to simulate expected results from their individual agrivoltaic

systems. All work, aside from work presented in this thesis, has focused on array-level

modifications to traditional PV systems such as increased elevation from the ground

and increased row width.

This thesis has examined and quantified relationships between agrivoltaic system

output (electricity production and expected crop yield) and array-level modifications.

This work has also investigated agrivoltaic designs that may improve crop yield by

manipulating the duration, homogeneity, and intensity of shadows. It is found that

insolation on the field can be made homogeneous by orienting PV arrays along the

N-S axis. Furthermore, the relationship between panel width and spacing between

panel rows has been defined for multiple tracking options, providing insight into APV

system design that meets specific crop irradiance needs. Since shadow duration may

affect crop yield, geometric panel patterns were explored, finding that, in a striped

pattern, shadow duration is directly proportional to stripe width. Additionally, the

relationship between packing fraction of the panel, ground coverage ratio, and APV

system metrics is defined.

However, many concepts of potential technological benefits to the agrivoltaic field

have yet to be explored. Notably, bifacial PV is a promising technology to be applied
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to this niche field. Modeling of elevated bifacial PV systems in with experimentally-

validated surface albedo from many commercial crops would provide an understanding

of the potential of bifacial photovoltaics in an agrivoltaic context. Additionally, it is

known that only a subset of the solar spectrum, photosynthetically active radiation

(400 to 700 nm), is necessary for most plant photosynthesis. Researchers can take

advantage of this plant characteristic to design systems that redistribute solar radi-

ation not utilized by crops to the photovoltaic panels to increase electricity output

and therefore increase the net land use efficiency of the agrivoltaic system.

The work in this thesis can and should be expanded upon to enhance our under-

standing of agrivoltaic systems. The dearth of experimental irradiance distribution

data in agrivoltaic systems has limited our ability to experimentally validate this

radiation interception model. The only experimental irradiance distribution data

available is from Valle (2017), but this data provides a limited view of agrivoltaic

systems as discussed in detail in Chapter 3. However, we expect more of this relevant

data to be made available in time due to promising work currently being conducted

by Purdue and expected growth of the agrivoltaic field.

5.1.1 Updates to Model

The current model assumes the sun is a plane source. As quantified in Fig. 2.3,

this introduces error that is significantly pronounced for small panel dimensions,

particularly at high panel elevation from the ground. This model should be updated

to reduce error introduced by the solar plane source approximation, the uniform

diffuse light assumption, and the binary direct light intensity assumption. These

assumptions were detailed in Chapter 2.

5.1.2 Bifacial PV

Monofacial photovoltaic panels are constructed to only absorb light that is incident

on the top surface typically due to an opaque back surface. Bifacial photovoltaics,
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however can absorb light that is incident on both sides of the panel directly from the

atmosphere and from albedo, thus increasing photovoltaic electricity production per

unit area. For rooftop solar, it has been demonstrated that bifacial PV can increase

electricity output by 50% by collecting albedo light [45]. It has also been simulated

that globally, ground-mounted vertical bifacial farms with 2 m row spacing can pro-

duce a 10%-20% increase in electricity output compared to monofacial farms [46].

5.1.3 Spectrally-Selective PV Systems

Plant photosynthesis requires a subset of the solar spectrum called photosynthet-

ically active radiation (PAR), defined as the 400-700 nm wavelength range. Solar

photovoltaics, however, can utilize a greater subset of the solar spectrum. In addi-

tion to manipulating radiation intensity, there is potential to optimize the spectral

component of solar radiation to meet both crop and photovoltaic needs. Spectrally

selective PV that transmits the visible spectrum has been developed [47]. Electricity

yield per unit area of PV compared to conventional PV will decrease because less of

the spectrum is available for electricity conversion, with the theoretical limit reaching

22% [48]. However, with an ideal PV module, 100% of PAR will be transmitted,

eliminating adverse effects from irradiance reduction and allowing for increased GCR

(i.e. increased electricity output).

5.1.4 Advanced Tracking

The work in Chapter 4 demonstrates the unique potential for APV systems with

effectively zero direct shadowing. In regions with low diffuse index, crops high high-

irradiance needs have the potential to thrive in such APV systems. Additionally, in

regions with high diffuse index, bifacial PV that can absorb a higher fraction of diffuse

light than monofacial PV can offset the electricity yield loss caused by anti-tracking

algorithms. In most systems, it is expected that a combination of solar tracking and

anti-tracking will be employed, as demonstrated by Valle and colleagues [15].
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With the rise of tracking APV systems (Tables 1.1, 1.2) further exploration into

anti-tracking algorithms in combination with research into crop temporal irradiance

needs may enable enhanced APV production for both food and electricity compo-

nents. Additionally, research into optimal anti-tracking angles is necessary for APV

systems with limited degree of freedom, such as single-axis tracking or fixed-tilt sys-

tems.
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