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ABSTRACT 

Author: Mendes Candido de Oliveira, Gabriella. PhD 
Institution: Purdue University 
Degree Received: December 2019 
Title: Modeling Microbial Inactivation Subjected to Nonisothermal and Non-thermal Food 

Processing Technologies 
Committee Chair: Osvaldo H. Campanella 
 

Modeling microbial inactivation has a great influence on the optimization, control and 

design of food processes. In the area of food safety, modeling is a valuable tool for 

characterizing survival curves and for supporting food safety decisions. The modeling of 

microbial behavior is based on the premise that the response of the microbial population to the 

environment factors is reproducible. And that from the past, it is possible to predict how these 

microorganisms would respond in other similar environments. Thus, the use of mathematical 

models has become an attractive and relevant tool in the food industry. 

This research provides tools to relate the inactivation of microorganisms of public health 

importance with processing conditions used in nonisothermal and non-thermal food processing 

technologies. Current models employ simple approaches that do not capture the realistic behavior 

of microbial inactivation. This oversight brings a number of fundamental and practical issues, such 

as excessive or insufficient processing, which can result in quality problems (when foods are over-

processed) or safety problems (when foods are under-processed). Given these issues, there is an 

urgent need to develop reliable models that accurately describe the inactivation of dangerous 

microbial cells under more realistic processing conditions and that take into account the variability 

on microbial population, for instance their resistance to lethal agents. To address this urgency, this 

dissertation focused on mathematical models, combined mathematical tools with microbiological 

science to develop models that, by resembling realistic and practical processing conditions, can 

provide a better estimation of the efficacy of food processes. The objective of the approach is to 

relate the processing conditions to microbial inactivation. The development of the modeling 

approach went through all the phases of a modeling cycle from planning, data collection, 

formulation of the model approach according to the data analysis, and validation of the model 

under different conditions than those that the approach was developed. 
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A non-linear ordinary differential equation was used to describe the inactivation curves 

with the hypothesis that the momentary inactivation rate is not constant and depends on the 

instantaneous processing conditions. The inactivation rate was related to key process parameters 

to describe the inactivation kinetics under more realistic processing conditions. From the solution 

of the non-linear ordinary differential equation and the optimization algorithm, safety inferences 

in the microbial response can be retrieved, such as the critical lethal variable that increases 

microbial inactivation. For example, for nonisothermal processes such as microwave heating, 

time-temperature profiles were modeled and incorporated into the inactivation rate equation. The 

critical temperature required to increase the microbial inactivation was obtained from the 

optimization analysis. For non-thermal processes, such as cold plasma, the time-varying 

concentration of reactive gas species was incorporated into the inactivation rate equation. The 

approach allowed the estimation of the critical gas concentration above which microbial 

inactivation becomes effective. For Pulsed Electric Fields (PEF), the energy density is the integral 

parameter that groups the wide range of parameters of the PEF process, such as the electric field 

strength, the treatment time and the electrical conductivity of the sample. The literature has shown 

that all of these parameters impact microbial inactivation. It has been hyphothesized that the 

inactivation rate is a function of the energy density and that above a threshold value significant 

microbial inactivation begins.  

The differential equation was solved numerically using the Runge-Kutta method (ode45 in 

MATLAB ®). The lsqcurvefit function in MATLAB ® estimated the kinetic parameters. The 

approach to model microbial inactivation, whether when samples were subjected to nonisothermal 

or to non-thermal food processes, was validated using data published in the literature and/or in 

other samples and treatment conditions. The modeling approaches developed by this dissertation 

are expected to assist the food industry in the development and validation process to achieve the 

level of microbial reduction required by regulatory agencies. In addition, it is expected to assist 

the food industry in managing food safety systems through support food safety decision-making, 

such as the designation of the minimal critical parameter that may increase microbial inactivation. 

Finally, this dissertation will contribute in depth to the field of food safety and engineering, with 

the ultimate outcome of having a broad and highly positive impact on human health by ensuring 

the consumption of safe food products. 
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 INTRODUCTION 

1.1 What is model, why models, and how are models built: the modeling cycle 

A mathematical model is a mathematical expression that builds a relationship between 

dependent and independent variables. This relationship involves constants (or parameters) that 

may or may not be related to intrinsic and/or extrinsic factors (Brandão & Silva, 2009). The goal 

of a mathematical model is to describe real systems (a physical model) by using mathematical 

equations based on the most significant physical characteristics of the systems. As a result, 

responses of the systems to external input conditions can be estimated by the mathematical 

equations describing and representing the physical models. For a given system or process, a 

mathematical model estimates its response based on the values of the input variables (Pérez-

Rodríguez & Valero, 2013) according the following schematic structure: 

 

  
Input 

Mathematical 
function 

  
Response 

 

A model may also be a simplified description of a relationship between observations of the 

system (responses) and the input factors that are more likely to cause the observed responses. In 

addition to describing a collection of data, a mathematical model may also represent a hypothesis 

or series of hypotheses about underlying relationships between the independent variables that lead 

to the response or observations (data). The modeling approach describing the data without a 

physical representation of the system is termed as ‘empirical’ model (McMeekin et al., 2008). 

Empirical models, therefore, simply describe the data with a generic mathematical relationship, 

often as a polynomial expression (Ross, McMeekin, & Baranyi, 2014). Whereas the approach of 

summarizing the understanding or knowledge that leads to the observations is called ‘mechanistic’ 

(or ‘deterministic’) model (McMeekin et al., 2008). In other words, ‘mechanistic’ models are based 

on fundamental mechanisms involved in a process defining the system under study (Brandão & 

Silva, 2009). Both approaches are capable of predicting the response of the system to the changes 

in the variables and have been widely applied in food engineering (McMeekin et al., 2008). 

The development of sound modeling approaches usually goes through a modeling cycle 

basically performed in four phases: (1) planning, (2) data collection, (3) mathematical description, 
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and (4) model validation. The first phase, planning, involves gathering of existing knowledge that 

can explain and/or simplify observations of the system behavior, e. g. microbial behavior 

(Valdramidis, 2016). The next phase is data collection. If the treatment conditions or experimental 

design to collect the data are done wisely, the adequacy of the model can be tested, the parameter 

estimation can be improved and a clear assessment of the main variables affecting the system can 

be obtained. However, if the experimental data set is poor, no sophisticated modeling or complex 

data analysis will provide a realistic modeling approach (Brandão & Silva, 2009). Following 

experimental data collection, data analysis is the stage used to formulate the mathematical 

model. The suitability of the model is assessed by defining a function that is a suitable measure 

of the deviation between the experimental data and the values calculated by the model. At this 

phase, the objective is to minimize that deviation in order to calculate/optimize the model 

parameters that achieve that minimum. Thus, this optimization is the core value of parameter 

estimation. The least-square method is the common routine used for optimization which 

consists of finding the parameter values that minimize the squared difference between the 

model predicted values and the experimental data (Brandão & Silva, 2009). A suitable model 

needs to be in line with the accuracy of the fit, has to be able to predict the untested combination 

of factors, incorporate all relevant factors, possesses a minimum number of parameters, a low 

correlation between the parameters as well as providing parameters that are realistic and with 

biological meaning. Reparameterization for improving statistical properties should also be 

considered during model development (Valdramidis, 2016). The final phase of a modeling cycle 

is model validation. Model validation involves comparing model predictions with analogous 

observations, but different than the ones used to develop the model (Ross et al., 2014). In other 

words, a mathematical model is validated when is applied to successfully describe more complex 

systems, running at experimental conditions different from those used to develop the model 

(Valdramidis, 2016). Data for model validation can be generated using different conditions or may 

come from the literature (Guillier, 2016). Models can also be validated in media, but especially, 

they should be validated in real food products (Devlieghere, Francois, Vermeulen, & Debevere, 

2009). In this way, model predictions can be used to predict the results at a set of conditions, to 

test the hypotheses incorporated in the model and, if necessary, to revise and improve the model 

and the hypotheses if the predictions do not match the observations (data). Finally, modeling 

provides a systematic way to improve the understanding of the underlying processes, and with that 
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understanding, the researcher is better prepared to predict, control, or improve system performance 

wisely (McMeekin et al., 2008). 

1.2 The role of modeling in food safety 

Food safety is a complex area that depends on several factors. Interconnected factors like 

environmental, cultural or socioeconomic factors can lead to exposure to dangerous 

microorganisms. Factors related to the human host (host’s age, gender, health, and dietary 

practices), or related to the handling of the food during preparation in the home or in the food 

service establishment, or related to food handler hygiene, or to water quality, can also result in 

unsafe foods. Harmful microbes or pathogens can be also introduced during processing and 

handling or through other cross-contamination routes such as between fresh and cooked foods. 

Hazardous levels can increase during distribution and storage if these steps are not properly done. 

Food safety is, therefore, not an issue only for microbiologists. Nowadays, the scientific 

community is moving towards gathering multidisciplinary teams with a wide range of expertise, 

from microbiology, engineering, genetics, and immunology, to understand the interrelated factors 

that lead to the emergence of food safety issues (IFT EP, 2000). 

Foodborne disease is a major cause of morbidity worldwide, resulting in significant costs 

in both developed and developing countries (Käferstein & Absussalam, 1999). The United States’ 

approach to managing food safety has contributed to its classification as one of the safest in the 

world (IFT EP, 2000). However, the incidence of foodborne diseases is an issue not fully solved. 

Numerous outbreaks have been harming the American population up to our days. Only in 2019, 

for instance, the Center for Diseases Control and Prevention (CDC) reported outbreaks in a variety 

of products: in raw milk outbreak due to Brucella RB51 was reported with one case confirmed in 

New York and potentially hundreds of people were exposed to RB51 in 19 states, Salmonella 

infections were linked to pre-cut melons in 10 states and 137 people infected, ground beef products 

were linked to Escherichia coli O103 in 10 states and 196 people infected, imported oysters 

contaminated with multiple pathogens (Vibrio, Shigella, norovirus, STEC, and Campylobacter) 

infected 16 people in 5 states, Salmonella Concord infections were linked to imported Karawan 

brand in products made with tahini such as hummus, E. coli O26 infections were linked to flour in 

8 states and 17 people infected (CDC, 2019). Clearly, the existing approach to food safety 

management is, in some cases, insufficient to prevent food-related outbreaks.  
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CDC estimates the burden of foodborne diseases with alarming numbers of 48 million 

people getting sick, 128 thousand being hospitalized and 3 thousand dying from foodborne 

illnesses each year in the United States (CDC, 2018). Furthermore, unsafe foods represent a global 

health threat. According to the World Health Organization (WHO) (2019), 550 million people get 

sick and 230 thousand deaths are due to the consumption of contaminated foods. The most 

vulnerable people are infants, young children, pregnant women, elderly, and those with an 

underlying illness. Within the 220 million children that contract diarrheal diseases, 96 thousand 

die every year (WHO, 2019). The complex nature of food safety ensures that new challenges will 

continue to emerge (IFT EP, 2000).  

In the area of food safety, modeling has become increasingly important (Brandão & Silva, 

2009). The modeling of microbial behavior (growth or inactivation) is based on the premise 

that the response of the microbial population to the environment factors is reproducible. And 

that from the past, it is possible to predict how these microorganisms would respond in other 

similar environments (Ross et al., 2014). 

Mathematical models compromise a wide range of applications, such as the description 

of the introduction of the pathogens in foods, the microbial growth over time, the inactivation 

of microorganisms exposed to traditional or innovative treatments, or the use of models to 

describe the consumption of microorganisms that the food is carrying and the subsequent 

illness (Gougouli & Koutsoumanis, 2016). 

The development of mathematical models and their application in food safety fits into 

the discipline of predictive microbiology, or predictive modeling in foods (Membré & 

Valdramidis, 2016). Predictive microbiology, in turn, combines disciplines of food 

microbiology, engineering, and statistics, which combine tools to provide predictions of the 

behavior of microorganisms in food systems (Schaffner & Labuza, 1997). 

The foundation for managing food safety and quality systems is composed of 

prerequisite programs (e.g. good manufacture practices and good hygiene practices), and the 

Hazard Analysis Critical Control Points (HACCP) plan (Membré & Valdramidis, 2016). 

Quantitative microbiological tools for food safety management have become an attractive and 

pertinent tool in the food industry (Gougouli, & Koutsoumanis, 2016). Thus, mathematical 

models have a vast range of potential applications within the food industry. Current applications 

are summarized in Table 1 (Pérez-Rodríguez & Valero, 2013). 
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Table 1. Potential application of mathematical models 

Application Context 

Hazard Analysis and Critical 
Control Points (HACCP) 
 

- Preliminary hazard analysis 
- Identification and establishment of critical control 

points 
- Corrective measures 
- Evaluation of variables interaction 

  

Risk Assessment and Risk 
Management 
 

- Estimation of microbial population dynamics along 
the food chain 

- Exposure assessment toward a specific pathogen 
- Design of scientifically based management 

strategies to assure food safety 
  

Shelf life studies 
 

- Growth prediction of spoilage or pathogenic 
microorganisms in foods 

  

Innovation and development of a 
new product 
 

- Evaluation of the impact of microbial spoilage in a 
food product 

- Effect of processing on food quality and safety 
- Evaluation of the effect of other additional factors 

throughout the food chain 
  

Hygienic measures and 
temperature integration 
 

- Evaluation of the consequences of chill chain 
application on microbial spoilage 

- Optimization of thermal and nonthermal 
inactivation processes 

  
Education - Education of both scientific and nonscientific staff 

- Implementation and training of computing-based 
decision systems 

  

Experimental design 
 

- Estimation of the number of samples to be prepared 
- Definition of intervals within each factor to be 

analyzed 
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In an industrial perspective, Membré and Lambert (2008) categorized the applications 

of predictive modeling into three groups: (1) Product innovation and development, (2) 

Operational support, and (3) Incident support. 

1. Predictive models can be used to develop new products and processes, to formulate 

existing products, to determine storage conditions and shelf-life, by the assessment 

of the growth of spoilage and pathogenic microorganisms, assessing growth limits, 

or inactivation rates associated with particular food formulations and/or process 

conditions; 

2. Predictive models support food safety decisions when implementing or executing a 

food manufacturing operation. Decisions such as the design of in-factory heating 

regimes and the setting of critical control points (CCPs) in HACCP are just a few 

examples. In addition, predictive models support the assessment of the impact of 

process deviations on microbiological safety and the quality of food products; 

3. Predictive models can estimate the impact on consumer safety or product quality in 

case of problems of products occurring in the market. Thus, models are useful in 

incident reporting. 

The importance of mathematical models for the food industry (HACCP, shelf-life 

determination, product formulation) and their risk assessment capability has been explicitly 

endorsed by regulatory agencies, e.g. European Commission Regulation (EC) No2073/2005 

referred to the use of predictive mathematical modeling established for the food in question, using 

critical growth or survival factors for the micro-organisms of concern in the product (Membré & 

Valdramidis, 2016). 

As predictive models provide an alternative to the traditional microbiological 

assessment of food safety and quality and product development continues to grow in most food 

manufacturing areas, the use of mathematical models has become a useful tool recognized by 

leading food industries. Unilever and Nestlé, for instance, have used predictive microbiology 

in a variety of applications (Membré & Lambert, 2008). To name a few, Unilever developed a 

model of probabilistic exposure assessment to assess the safety of refrigerated processed foods 

of extended durability in relation to Bacillus cereus. The model was structured to provide the 

probability of having 5 log CFU/g or more of B. cereus at the point of consumption (Membré, 

Kan-King-Yu, & Blackburn, 2008). Nestlé developed a modeling software to predict growth/no-
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growth of Salmonella Poona as a function of pH, salt, acetate, and sorbate. The model 

calculated the minimum pH (3.81) and minimum 𝑎ௐ (0.948) for the growth of Salmonellae 

agreed with the range of values reported in the literature (Lambert & Bidlas, 2006; Membré & 

Lambert, 2008). 

Within a safety frame, mathematical modeling is a continuously developing tool in the 

food industry and is far from being complete. The valuable role of mathematical modeling to 

assist design, control, and optimization of food processes, as well as supporting the 

management of food safety systems will continue, as well as other scientific developments in 

modeling, microbiology, and food engineering techniques (Membré & Lambert, 2008). With 

the well-guided and interdisciplinary work between scientists, microbiologists, engineers, and 

statisticians, the use of modeling approaches to a wide range of process endeavors will be 

achievable (Brandão & Silva, 2009). 

1.3 Research motivation, objectives and expected impact 

Models describing the inactivation of pathogenic microorganisms are indispensable for 

designing processes to produce safe foods. Conventionally, the efficacy of food processes is 

based on the assumption that survival curves can be represented by a linear equation. From 

this equation, a theoretical value is assumed to predict the time needed to reduce the microbial 

population by a factor of ten. However, the calculation of this value has several flaws that can 

lead to undesirable consequences in the food product, including increasing the risk of microbial 

contamination if the product is underprocessed, or reducing the amount of nutritious 

compounds if the product is overprocessed. The deficiency of linear or first-order kinetic 

models also underlies in the theories on which they are based, such as that the microbial 

population is completely identical, and that a uniform lethal agent would inactivate all the 

organisms at the same time. Unfortunately, ample evidence indicates that the microbial 

population consists of several subpopulations, each with its own spectrum of resistance. These 

different patterns result in survival curves with different shapes, which leads to the emergence of 

non-linear survival curves. For this reason, there is a gap in the conventional approach since it 

cannot accurately describe the inactivation of microbial population in realistic scenarios. Therefore, 

there is an urgent need to develop reliable mathematical models that describe real systems by 

using mathematical equations based on the most important properties of the system. To address 
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this urgency, the dissertation developed a modeling approach that relates the process variables 

to the description of the microbial inactivation. This work focused on nonisothermal and non-

thermal food processes because none of the modeling approaches reported in the literature provides 

a useful application.  

The design of effective food treatments that promote the safety level required by U.S. FDA 

regulations depends on the knowledge of the kinetics of microbial destruction. Thus, the overall 

goal of this research was to develop, evaluate and validate a mathematical modeling approach that 

accurately describes the inactivation kinetics of microorganisms subjected to traditional and 

innovative technologies. The objective of this dissertation was to develop a flexible modeling 

approach capable of incorporating the process variables into the description of microbial 

inactivation in nonisothermal and non-thermal food processes. The specific aims were to (1) model 

the inactivation of spoilage bacterial spores such as Bacillus subtilis subjected to cold plasma 

sterilization; (2) to model the inactivation of microorganisms of public health concern, such as 

Escherichia coli O157:H7 and Salmonella Typhimurium in apple juice processed with microwave 

heating, and (3) to model the inactivation of these pathogenic cells under Pulsed Electric Fields 

(PEF).  

This research has a key impact on the food industry as it is aimed to develop the best set of 

process conditions to reduce the incidence of costly food-related outbreaks. The modeling 

approaches developed in this dissertation are expected to assist the food industry in the 

development and validation process to achieve the level of microbial reduction required by 

regulatory agencies. In addition, it is expected to assist the food industry in the management of 

food safety systems by supporting food safety decisions, such as defining critical parameters that 

can enhance microbial inactivation when the product is subjected to the technologies investigated 

by this research. In addition to assist the establishment of critical control points in HACCP systems 

for microwave, PEF, and cold plasma, and to indicate which process factors need to be monitored 

during the production process. Finally, this dissertation will contribute in depth to the field of food 

safety and engineering, with the ultimate outcome of having a broad and highly positive impact on 

human health by assuring the consumption of safe food products. 
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1.4 Organization of the Dissertation 

The content of this dissertation is organized in six chapters which are briefly 

summarized as follows: 

Chapter 1 provides background on mathematical models, their role in food safety, and 

their vast potential applications in the food industry. Research motivation, objectives, and 

expected impacts are introduced. 

Chapter 2 presents a review of mathematical models for microbial inactivation applied 

in traditional and innovative food processes. Critical review of current models used for 

microbial inactivation in microwave heating, pulsed electric fields, and cold plasma processes 

are discussed along with the identified gaps in the literature. 

Chapter 3 proposes a modeling approach to describe the inactivation curves of Bacillus 

subtilis spores under cold plasma sterilization, correlating the inactivation kinetics with the 

dynamic conditions of one of the important lethal gas specie originated in the cold plasma 

process. The modeling approach is validated with published data obtained from the literature. 

Chapter 4 proposes a modeling approach to describe the inactivation curves of 

Escherichia coli O157:H7 and Salmonella Typhimurium under microwave pasteurization of 

apple juice at temperatures between 80 to 90°C. The modeling approach was able to describe the 

inactivation kinetics with the nonisothermal characteristics of microwave treatments. The 

validation of the modeling approach was performed in other juice samples inoculated with the 

target microorganisms and processed under different conditions. 

Chapter 5 proposes a modeling approach to describe the inactivation curves during 

Pulsed Electric Fields. Apple cider inoculated with Escherichia coli O157:H7 or Salmonella 

Typhimurium was used to build the modeling approach. The approach correlated the PEF 

process parameters with the inactivation characteristics. The proposed modeling approach was 

validated in other samples, and in other juices with data obtained from the literature. 

Chapter 6 discusses the general conclusions of this work, in addition to give 

recommendations for future research. 
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 LITERATURE REVIEW 

Food process engineering aims not only to create new products but also to improve the 

quality of the existing ones to satisfy consumer demands (Rahman & Ahmed, 2012). Thermal 

processing is the most common method used as a preservation method in food processing to obtain 

convenient and safe products with minimal risk of having harmful bacteria (Rosnes, Fernandez, 

Periago, & Skara, 2012). Among the benefits of using thermal processing, the inactivation of 

foodborne pathogens and the extension of shelf-life boost the application of the thermal process in 

several types of products. A complete review of the benefits of thermal processing can be viewed 

in van Boekel et al. (2010). Although conventional thermal processes such as canning and 

pasteurization effectively inactivate microorganisms and enzymes, negative impacts reported on 

the color, taste and nutritional quality of foods prevent consumer demands from being met (Misra, 

Schlüter, & Cullen, 2016). Novel emerging technologies are currently under investigation to 

substitute conventional pasteurization to fulfill the expanding consumer demands for safe foods 

with high nutritional value and “fresh-like” taste (Carbonell-Capella, Buniowska, Esteve, & 

Frígola, 2017; Toepfl, Siemer, Saldaña-Navarro, & Heinz, 2014). The quantification of the 

microbial inactivation is one of the main areas targeted by food process calculations. Microbial 

thermal death has been modeled since 1921 starting with the Bigelow model (McKellar & Lu, 

2004; Membré & Valdramidis, 2016). Throughout the years, different mathematical models, 

based on empirical or biological concepts, have been proposed to describe microbial 

inactivation (Skandamis & Panagou, 2017). 

This dissertation focuses on the modeling of inactivation kinetics of emerging technologies 

that are included in the nonisothermal or non-thermal categories, such as microwave heating, 

pulsed electric fields, and cold plasma. This chapter gives an overview of the previous and the 

current modeling approaches used to model microbial inactivation. The subsequent chapters 

propose a new modeling approach for microwave heating, pulsed electric fields, and cold plasma. 
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2.1 Classical Linear Models 

In 1908, the first-order linear model for bacteria disinfection was proposed by Chick 

(1908). In thermal processing, it is assumed that thermal destruction of microorganisms 

follows the kinetics of a first-order chemical reaction, i.e. mathematically modeled with the 

assumption that the rate of the chemical reaction is proportional to the concentration of one 

key reactants. Concerning food processing, the first-order kinetics approach was first 

established to quantify Clostridium botulinum spore’s inactivation in low acid canned products 

(McKellar & Lu, 2004) and have been the modeling basis of the canning industry for over 90 

years (Ross et al., 2014; Skandamis & Panagou, 2017). Eq. (1) is the mathematical expression 

to describe a first-order kinetics model: 

ቐ

𝑑𝑁(𝑡)

𝑑𝑡
=  −𝑘′ 𝑁(𝑡)      (0 ≤ 𝑡 < +∞)

𝑁(0) = 𝑁଴                (𝑁଴  > 0; 𝑡 = 0)
 

(1) 

𝑁(𝑡)  and 𝑁଴  are the microbial concentration at time 𝑡  and zero, respectively; 𝑘′  is the 

inactivation rate constant. If the inactivation rate constant 𝑘′ is considered constant over time, 

integration of Eq. (1) for a fixed time period is expressed as: 

න
𝑑𝑁(𝑡)

𝑁(𝑡)

ே೑

ேబ

=  න −𝑘′ 𝑑𝑡
௧೑

௧బ

 
(2) 

The integration of the above equation results in the following equation: 

𝑁(𝑡) =  𝑁଴ exp(−𝑘′𝑡) (3) 

Another way of expressing Eq. (3) is by defining the survival ratio or microbial reduction 𝑆(𝑡) =

𝑁(𝑡)/𝑁଴ and taking the natural logarithm to yield (McKellar & Lu, 2004): 

ln 𝑆(𝑡) = ln ቆ
𝑁(𝑡)

𝑁଴
ቇ =  −𝑘′𝑡 

(4) 

Since it is easier to think in microbial destruction quantified by factors of 10 (e.g. 10, 100, 1000, 

etc), the model is expressed as decimal logarithm: 

log 𝑆(𝑡) =
−𝑘′𝑡

𝑙𝑛10
=  −𝑘 𝑡 

(5) 

Which can be further rearranged into: 

log 𝑆(𝑡) = −
1

𝐷
𝑡 

(6) 
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Where 𝐷  is the decimal reduction time ( 𝐷 = 2.303/𝑘′ , units in minutes or seconds). 

Theoretically, inactivation data and the first-order model are schematically depicted in Fig. 1. 

 

Fig. 1. Linear survival curve. Dots represent the theoretical data, and the line the linear model 
to determine the D-value. 

 

A linear fit applied to the data is used to determine the value of D either graphically or 

by running a linear regression routine on the experimental data. The D-value is known as the 

decimal reduction time, e.g. the time required to decrease the number of microorganisms by a 

factor of 10 (or to reduce their population by 90%). D-values are specific to the temperature, 

to the microorganism and to the food product (Morgan, Lund, & Singh, 2010). A drawback of 

this model is that it is only valid for determining the death of microorganisms at a specific 

temperature. This means that the product would instantaneously be heated to a specific 

temperature, held for a fixed time (t minutes or seconds), and then cooled instantaneously. 

Obviously, a process impossible in practice (Morgan et al., 2010). D-value is also a way to 

look at the heat resistance of microorganisms. For instance, microorganisms with a higher D-

value have a higher heat resistance (Kumar & Sandeep, 2014). D-values can be expressed as 

(McKellar & Lu, 2004): 

𝐷 =
𝑡

𝐿𝑜𝑔 𝑁଴ − 𝐿𝑜𝑔 𝑁௧
 

(7) 

By plotting the log 𝐷-values against temperatures, provided the plot is a straight line, 

the reciprocal of the slope can be calculated, and its value is called the 𝑧-value. z is the change 

in temperature (°C) required to reduce the value 𝐷 by 90%. In other words, z is the temperature 

increase needed to reduce 𝐷 by a factor of 10, so as to increase the destruction rate by a factor 

of 10. The z value can be calculated following Eq. (8) (Pérez-Rodríguez & Valero, 2013) as: 
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𝑧 =
𝑇௥௘௙ − 𝑇

𝐿𝑜𝑔 𝐷 − 𝐿𝑜𝑔 𝐷௥௘௙
 

(8) 

𝐷௥௘௙ is the D-value at the reference temperature, 𝑇௥௘௙ (121.1°C or 250°F for sterilization). The 

reference temperature is specified at 121.1°C (250°F) because 90% of the Clostridium botulinum 

spore population is inactivated in 0.21min at that temperature (Morgan et al., 2010). 

The effect of temperature on D-value is described by Eq. (9), which rearranged gives 

the thermal-death-time model (Eq. 9). This model is based on early work by Bigelow (1921). 

𝐿𝑜𝑔 ቆ
𝐷்

𝐷௥௘௙
ቇ =

𝑇௥௘௙ − 𝑇

𝑧
 

(9) 

𝐷் = 𝐷௥௘௙ 10
(்ೝ೐೑ ି  ்)

௭  
(10) 

𝐷்  is the D-value at temperature T, and Eq. (10) assumes that z-value is constant for all 

temperatures.  

D and z-values are considered the basis of thermal process calculations and are used to 

design thermal processes (Kumar & Sandeep, 2014). The ratio of 𝐷௥௘௙ and 𝐷்  is the lethal rate 

or lethality factor 𝐿 (Kumar & Sandeep, 2014): 

𝐿 = 10
்ି்ೝ೐೑

௭  
(11) 

Thermal death time (TDT) or F value is the process time, in a given food at some 

reference temperature T and z-value, to achieve the desired log reduction in microorganisms 

(Kumar & Sandeep, 2014). Referring to Eq. (2) and substituting Eq. (10) in place of 𝑘′, results 

in (Morgan et al., 2010): 

න
 −1

𝑁
𝑑𝑁

ே೑

ேబ

= න
2.303 

𝐷௥௘௙ 10
(்ೝ೐೑ ି  ்(௧))

௭

𝑑𝑡
௧೑

௧బ

 
(12) 

F value can be calculated in terms of lethal rate for the process when the temperature T 

is function of time as (Kumar & Sandeep, 2014): 

𝐹௭
௥௘௙ = න 𝐿 𝑑𝑡 = න ቆ10

்(௧)ି்ೝ೐೑

௭ ቇ 𝑑𝑡 =  −𝐷௥௘௙ log
𝑁௧

𝑁଴

௧

଴

௧

଴

 
(13) 

For a constant temperature process, for instance in an insulated holding tube, T(t) is 

approximately constant (Morgan et al., 2010), the above equation reduces to (Kumar & 

Sandeep, 2014): 
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𝐹௭
௥௘௙ = 𝑡௛௢௟ௗ 10

்ି்ೝ೐೑

௭    
(14) 

For the reference temperature 121°C (250°F) and the z-value 10°C (18°F) the F value 

is referred to as F0 (Kumar & Sandeep, 2014; Linton, 2010). 

Regarding the production of low-acid canned foods (pH > 4.5), the F value is usually set 

at a 12D value to give a theoretical 12 log cycle reduction of C. botulinum, one of the most heat-

resistant and perhaps the more lethal spore-forming microorganism in canned food. C. botulinum 

is an anaerobic pathogen that could grow in anaerobic conditions inside a sealed container and 

then produce the botulinum toxin, which is 65% fatal in humans (Fellows, 2009). Because of this 

extreme hazard toxin, a 12D process has traditionally been considered a requirement for public 

health protection (Ahmed, Dolan, & Mishra, 2012). This implies, for example, that if a canned 

food has 1000 spores and a 12D process is applied, the initial 10 3 spores would be reduced to a 

theoretical 10-9 living spores per can, or in theory, one living spore per 10 9 cans of the product 

(one spore per one billion cans) (Fellows, 2009). The 𝐷ଵଶଵ°஼ for C. botulinum is 0.21min, thus the 

F0 for a 12D process is 2.52min. Combinations of time and temperature can yield an equivalent 

lethality. For instance, Eq. (14) can be used to find out what would be the hold time or the F 

value for a process at 275°F, or at 225°F, to yield a 12D process. The corresponding values 

would be 0.103min and ~62min, respectively. Usually, a 12D reduction is used for commercial 

sterility and a 6D reduction is used for pasteurization (Tucker, 2012). 

For almost 100 years since Bigelow works in 1921, the first-order kinetic model with 

𝐷, 𝑧 and F values have been used to quantify the inactivation of several pathogens in a variety 

of foods. To name some examples, Escherichia coli O157:H7 in ground beef and chicken 

(Juneja, Snyder, & Marmer, 1997), in apple juice (Splittstoesser, McLellan, & Churey, 1996), 

strawberry puree (Hsu, Huang, & Wu, 2014), in fish (Rajkowski, 2012); Salmonella spp. in 

chicken (Juneja, Eblen, & Ransom, 2001; Murphy, Marks, Johnson, & Johnson, 2000), peanut 

butter (Li, Huang, & Cheng, 2014), fish (Rajkowski, 2012); Listeria monocytogenes in chicken 

meats (Murphy et al., 2000), sausages (Felício et al., 2011); Yersinia enterocolitica in liquid 

egg products (Favier, Escudero, & de Guzman, 2008), were modelled by first-order kinetics. 

However, the calculation of those values has several flaws that can lead to undesirable 

consequences on the food product. 

First, the association between F value, survival ratio, and reference temperature is 

erroneous when the log survival curve is not log linear. Consequently, for such scenarios, the 
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D-value has no meaning (Peleg, 2006). Survival curves deviated from first-order kinetics, as 

having shoulders or tails, upward or downward curvatures, have long been discussed (Cerf, 

1977; Moats, Dabbah, & Edwards, 1971; Peleg & Cole, 1998; van Boekel, 2002). 

Microorganisms that are examples of such deviation are: Clostridium botulinum (Anderson, 

McClure, Baird-Parker, & Cole 1996), Escherichia coli (Juneja & Marks, 2005; Kaur, Ledward, 

Park, & Robson, 1998), Salmonella spp. (Buzrul & Alpas, 2007; Humpheson, Adams, 

Anderson, & Cole, 1998), Listeria monocytogenes (Buzrul & Alpas, 2007; Chiruta, Davey, & 

Thomas, 1997), and Staphylococcus aureus (Buzrul & Alpas, 2007). The use of the D-value 

as a standard method to design thermal process, when the survival curve clearly deviates from 

linearity is a flaw (Peleg, 2006) that could seriously mislead processing calculation (Moats et 

al., 1971). 

In addition, the approach of ignoring the curvature of the survival curve and forcing a 

straight line through the data would lead to a number of problems, such as over or under 

processing of the food (Peleg & Penchina, 2000). For example, as illustrated in Fig. 2(a), in 

the cases of an upward concavity, forcing a straight line through the data could be a safe 

approach to ensure the inactivation of the microorganisms given that more than the necessary 

heating time would be applied. However, the approach can also lead to excessive processing 

of food and, as a result, the degradation of nutrients and vitamins sensitive to heat. Conversely, 

when the survival curve follows a downward concavity, Fig. 2(b), forcing a straight line 

through the data can lead to insufficient processing time to inactivate targeted microorganisms. 

Although this processing condition would not negatively affect nutrients as much, it would 

certainly endanger the safety of the product (Peleg, 2006; Skandamis & Panagou, 2017). 

Another argument for the inadequacy of the use of first-order kinetics (and D-values) 

is based on the mechanism underlying the use of this model to describe microbial inactivation. 

The first-order kinetics assume that the lethal agent acts by destroying a single target in a 

theoretical homogenous microbial population (Stringer, George, & Peck, 2000). As a result, 

the cell may have two different fates; either the target is not sufficiently damaged and the cell 

is alive, or the target is damaged, and the cell is dead. This assumption is not true, since an 

intermediate level, such as sublethal injury has long been reported, for instance, for 

Escherichia coli O157:H7 (Bromberg, George, & Peck, 1998). The assumption of a 

homogenous population, in practice, is also a debatable assumption because if all treated cells 
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are alike or completely identical, then a uniform lethal temperature would kill or inactivate all 

the organisms at the same time. This pattern of mortality has rarely or never been observed 

(Peleg, 2006). However, studies have shown the opposite, bacterial cells or spores are inactivated 

sooner or later than others due to the existence of a spectrum of resistance to the treatment within 

the microbial population (Peleg & Cole, 1988). If the population of bacteria or spores has a 

spectrum of resistance, then the inactivation is ultimately a random process (Fredrickson, 1966). 

The microbial distribution of resistance to the treatment indicates that the microbial population 

consists of several subpopulations, each with its own inactivation patterns. These different patterns 

result in survival curves with different shapes, which leads to the rise of non-linear survival curves 

(Ahmed et al., 2012). This emphasizes the need for models capable of describing the shape of 

the survival curves and having predictive ability. All that can be concluded at this point is that 

only when the underlying assumption that the microbial population is homogenous, and, 

therefore, the organisms are inactivated at the same time, could be verified experimentally for 

a whole lethal range, the first-order kinetic model with 𝐷, 𝑧 and F values will be valid for the 

calculation and design of the thermal processes. 

 

(a) (b) 

  

Fig. 2. Schematic representation of inactivation curves with upward (a) and downward (b) 
concavities. Dots represent the theoretical data and pink line the linear model. 

 

 



34 
 

2.2 The Non-linear Case 

The deviation of the linearity of the survival curves led to the development of several 

alternatives to the first-order models. Among them are the modified Gompertz equation (Bhaduri 

et al., 1991), the biphasic (Cerf, 1977), the Buchanan (Buchanan, Golden, & Whiting, 1993), log-

logistic (Cole, Davies, Munro, Holyoak, & Kilsby, 1993) and the Baranyi model (Baranyi & 

Roberts, 1994). These and other alternative models have been extensively reviewed by Li, Xie, 

and Edmondoson (2007), and by Xiong, Xie, Edmondson, and Sheard (1999). However, those 

models did not get much popularity because they can only be used for specific situations, and only 

for certain microorganisms (Li et al., 2007). The model that gained widespread acceptance, for 

modeling log-linear and non-linear survival curves for a variety of microorganisms and treatments, 

due to its simplicity and flexibility, is the Weibull model (Ahmed et al., 2012). 

2.2.1  Weibull model 

Traditionally, the Weibull distribution is used to describe the time to failure in electronic 

and mechanical systems. But not only that, its application can be also extended for the analysis of 

survival data (van Boekel, 2002). In this regard, the inactivation process is seen as a failure 

phenomenon in which the microorganism fails to resist the adverse conditions after a certain time 

(Peleg, 2006). In order words, the Weibull model provides a statistical account of a failure time 

distribution (van Boekel, 2002). This feature makes sense and justify the use of the Weibull 

distribution to describe survival curves because there probably no single cause of death, that is, 

many different biophysical processes that cause the death or inactivation of organisms, either 

directly or through a cascade of events, must exist which characterizes a failure distribution (Peleg, 

2006; van Boekel, 2002). The Weibull model can be written by the following equation (Peleg & 

Cole, 1998): 

log 𝑆(𝑡) = − 𝑏 𝑡௡ (15) 

𝑆(𝑡) is the survival ratio, 𝑏 the scale parameter, and 𝑛 the shape parameter. The parameter 𝑏 

can be considered as a non-linear rate constant which reflects the steepness of the isothermal 

survival curve for the case when 𝑛 is fixed (Peleg, 2006). The shape of survival curve can be 

described by 𝑛. Upward concave curves have values of 𝑛 < 1, downward concave curves have 

values of 𝑛 > 1, and when 𝑛 = 1 the survival curve will appear as linear, thus, the appearance of 
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a first-order model (Peleg & Cole, 1998). Another way of expressing the Weibull for isothermal 

survival curves of a microbial population is: 

log 𝑆(𝑡) = − 𝑏(𝑇) 𝑡௡(்) (16) 

where 𝑏(𝑇) and 𝑛(𝑇) can be temperature-dependent constants (Peleg & Penchina, 2000). 

The Weibull model has been used to model the inactivation of Bacillus cereus spores, 

Bacillus stearothermophilus spores, Campylobacter jejuni, Clostridium botulinum spores, 

Clostridium sporogenes spores, Escherichia coli, Listeria monocytogenes, Salmonella 

Typhimurium, Salmonella Enteritidis, Staphylococcus aureus, and Yersinia enterocolitica (Buzrul 

& Alpas, 2007; Chen & Hoover, 2004; Fernández, Collado, Cunha, Ocio, & Martínez, 2002; 

Fernández, Ocio, Rodrigo, Rodrigo, & Martínez, 1996; Fernández, Salmerón, Fernández, & 

Martínez, 1999; Fernández, López, Bernardo, Condón, & Raso, 2007; González, Skandamis, & 

Hänninen, 2009; Juneja, Cadavez, Gonzales-Barron, & Mukhopadhyay, 2015; Juneja, Cadavez, 

Gonzales-Barron, Mukhopadhyay, & Friedman, 2016; Mafart, Couvert, Gaillard, & Leguerinel, 

2002; Peleg & Cole, 1998; Virto, Sanz, Álvarez, Condón, & Raso, 2005; Villa-Rojas et al., 2013). 

2.3 Nonisothermal model 

For nonisothermal conditions, that is, when the temperature or other lethal agent varies 

over time, a methodology for estimating survival parameters was proposed by Peleg and Penchina 

(2000). The authors assumed that the momentary inactivation rate in nonisothermal heat treatments 

is that which corresponds to the momentary temperature 𝑇(𝑡), in the time corresponding to the 

momentary survival ratio log 𝑆(𝑡) (Peleg & Penchina, 2000; Peleg, Normand, & Corradini, 

2005). In other words, the survival or inactivation curve log 𝑆(𝑡) has a slope at a given time 𝑡 

corresponding to the slope of an isothermal survival curve at the momentary temperature 𝑇(𝑡), i.e. 

−𝑏(𝑇) 𝑛(𝑇) 𝑡∗௡(்)ିଵ   at a momentary time 𝑡∗  wich corresponds to the momentary survival 

ratio log 𝑆(𝑡), i.e. 𝑡∗ = ቀ
ି௟௢௚ ௌ(௧)

௕(்(௧))
ቁ

೙(೅)షభ

೙(೅)  (Peleg, Penchina, & Cole, 2001). Simply put, at very small 

time periods, the change (slope/derivative) of the survival curve at a momentary time can be 

happening at isothermal conditions. The proposed nonisothermal inactivation rate model can be 

calculated as (Peleg & Penchina, 2000): 
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d log 𝑆(𝑡)

𝑑𝑡
=  −𝑏[𝑇(𝑡)] 𝑛[𝑇(𝑡)] ൬

−𝑙𝑜𝑔 𝑆(𝑡)

𝑏(𝑇(𝑡))
൰

௡[்(௧)]ିଵ
௡[்(௧)]

 

(17) 

For nonisothermal treatments, the integration of Eq. (17) up to a processing time 𝑡 results 

in the survival of the microbial population for that given time. The solution of this equation can be 

obtained by numerical integration, for example using Mathematica® or by programming a 

numerical integration routine in a computing language such as MATLAB® (Campanella, 2016). 

The boundary condition to solve this equation is specified at 𝑡 = 0  log 𝑆(0) = 0  (Peleg & 

Normand, 2004). In addition, if the temperature history 𝑇(𝑡)is known, it can be inserted in the 

differential equation, Eq. (17), along with the 𝑏[𝑇(𝑡)] and 𝑛[𝑇(𝑡)] relationships, to calculate the 

microbial survival curve, 𝑙og 𝑆(𝑡)  vs. time (Peleg et al., 2001; Campanella, 2016). The 

applicability of the nonisothermal inactivation rate model has been demonstrated with 

experimental data of Salmonella Typhimurium (Mattick, Legan, Humphrey, & Peleg, 2001), 

experimental data of a cocktail containing Salmonella Typhimurium, Salmonella Enteritidis, 

Salmonella Copenhagen, Salmonella Montevideo, Salmonella Thompson and Salmonella 

Heidelberg (Takhar, Head, Hendrix, & Smith, 2009) and published data of Listeria monocytogenes 

(Peleg et al., 2001). 

The next step is to define the 𝑏(𝑇) and 𝑛(𝑇) functions. It was found empirically that in 

the lethal range, 𝑛(𝑇) has a weak relation with temperature or with other lethal agents (Chen 

& Hoover, 2004; Chen, Campanella, & Barbosa-Cánovas, 2012; Fernández et al., 2002) and, 

therefore, it can be assumed to be constant (Peleg & Normand, 2004) or it can be an optimized 

parameter obtained from the numerical interactions after solving Eq.(17). As explained by 

Peleg (2006), the parameter 𝑏(𝑇) reflects the steepness of the survival curve thus it can be 

considered as a non-linear rate constant or as the rate of killing. Typically, the rate of killing 

is a function of the treatment temperature. To describe such relationship the function 𝑏(𝑇) 

could be, for instance, taken as an analogy with a chemical reaction and, therefore, be 

represented by the Arrhenius equation: 

𝑘(𝑇) = 𝐴 𝑒
ିாೌ
ோ்  

(18) 

𝐴 is the frequency factor (also called the pre-exponential factor), 𝐸௔ is the activation energy, 𝑅 is 

the ideal gas constant, and 𝑇 is the absolute temperature in Kelvin degrees. This equation was 

originally formulated to describe the effect of temperature on the rate of chemical reactions in 
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which the covered temperature range is very large. For chemical reactions, the equation can be 

represented by the logarithm of the reaction rate 𝑘 and the reciprocal of the temperature expressed 

in Kelvin, 𝑇௞. Thus, the plot Ln 𝑘(𝑇) vs. 1/(𝑇) (T in°K) describes a linear relationship between 

these terms. However, this linear relationship may not be a true representation of food systems. 

For example, the quality loss of a food at 15°C is different than that at 25°C but, if the quality loss 

is assumed to follow Arrhenius approach, those temperatures would be converted to 0.00335 and 

0.00347°K-1; an interval of values so small that give a misleading impression that there may be no 

significant difference of their impact. Likewise, the effect of temperature on the inactivation of 

spores, either at 120°C or at 110°C, requires different process times. But if inactivation is assumed 

to follow the Arrhenius eq., then these temperatures would be converted to the indistinguishable 

0.00261 and 0.00245 °K-1, which leads to the erroneous supposition that there is not much 

difference between those process temperature (Peleg, Normand, & Corradini, 2012). 

To differentiate the inactivation patterns at different process temperatures, an alternative 

model for calculating the effect of temperature on the inactivation rate is the log-logistic equation: 

𝑏(𝑇) = 𝐿𝑛 {1 + exp[𝑘 (𝑇 − 𝑇௖)] (19) 

𝑇௖  is the critical temperature where inactivation intensifies, 𝑘  represents the rate that 𝑏(𝑇) 

increases with the temperature after the critical temperature is exceeded. The almost perfect fit of 

the log-logistic equation to describe the inactivation data as function of temperature was first 

proposed by Campanella and Peleg (2001) when modeling the thermal inactivation of Clostridium 

botulinum spores. Later, the suitability of the Eq. (19) inserted in Eq. (17) has been demonstrated 

with published data of E. coli (Corradini & Peleg, 2004), Salmonella (Peleg & Normand, 2004), 

and experimental data of Bacillus sporothermodurans (Periago et al., 2004). The main advantages 

of assuming that the inactivation rate follows Eq. (19), rather than the traditional Arrhenius eq., 

are that it does not imply that the destructive effect of heat is the same either at low or high 

temperatures and that, consequently, there is a qualitative difference between lethal and non-lethal 

temperatures (Corradini & Peleg, 2004; Peleg et al., 2005). For this reason, this equation was 

chosen in this dissertation to account for the lethal effects when modeling survival curves. The 

inadequacy of using the Arrhenius equation for predictive purposes is shown in Chapter 4.  
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2.4 Microwave heating: current models used for modeling inactivation curves 

Microwave heating is a technology that is gaining popularity in the food processing 

industry due to its wide applications including, but no limited to, pasteurization, sterilization, 

cooking, baking, and drying (Kumar & Sandeep, 2014). Recent reviews of the diverse portfolio of 

the application of microwave heating, and the use of the technology to assist other food processing 

interventions can be found in the literature (Chandrasekaran, Ramanathan, & Basak, 2013; 

Chizoba Ekezie, Sun, Han, & Cheng, 2017; Salazar-González, San Martín-González, López-Malo, 

& Sosa-Morales, 2012). It is quite likely that the use of microwave heating as an alternative to 

conventional heating will become more prevalent in the next decade (Kumar & Sandeep, 2014). 

Consequently, mathematical models for describing microbial inactivation will be required to 

design adequate microwave treatments. 

As in conventional thermal processes, time and temperature are the main parameters used 

to calculate thermal inactivation kinetics. Only a few researchers attempted to model microbial 

inactivation under microwave heating, the few who tried, mostly used the same first-order kinetics 

model. 

Tajchakavit, Ramaswamy, and Fustier (1999) processed apple juice under continuous 

microwave conditions (700W, 2450MHz) to the selected outlet temperatures of 52.5–65°C. Juices 

were inoculated with Saccharomyces cerevisiae and Lactobacillus plantarum, and the destruction 

of these spoilage microorganisms was described using first-order kinetics. The authors calculated 

the D and z values of both microorganims and compared their values with conventional heating 

using a water bath at the same selected temperatures. There was a lot of differences between results. 

For example, the D-value for Saccharomyces cerevisiae at 55°C under microwave heating was 

2.1s, while in the water bath heating it was 25s. The calculated z value were 13.4 and 15.9°C for 

S. cerevisiae and Lactobacillus plantarum, suggesting that the former is more sensitive to 

temperature changes than the later. The authors argueed that these values could be strain specific, 

specific to the heat treatment conditions or the media used. However, what is intriguing about this 

study is that the authors clearly obtained downward concave curves, and yet first order kinetics 

were used to model the survival curves. Therefore, the calculation of D and z-values would make 

the results highly questionable. 

Cañumir, Celis, Bruijin, and Vidal (2002) also explored first order models to describe the 

pasteurization of apple juice using microwave heating to inactivate nonpathogenic E.coli at the 
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power levels 270W, 450W, 720W, and 900W using a home 2450MHz microwave. The reported 

outlet temperatures were, respectively, 38, 58.5, 76.2, and 70.3°C. The calculated D-values were 

3.88, 0.99, 0.48, 0.42 min, respectively. The reported z-value was 58.5°C, which is a extremely 

high value. The z-value, for instance, of Escherichia coli O157:H7 in heat treated apple juice in 

the range 52-58°C is 4.8°C (Splittstoesser et al., 1996). Yet, the survival curves, particularly for 

higher powers such as 720W and 900W, which achieved almost 6 log reductions, were 

downwardly concave, questioning what is the usefulness of assuming linear modeling for these 

cases? Why is the D-value even calculated when the actual survival data from which it is derived 

are not really log linear? 

Gentry and Roberts (2005) pasteurized apple juice at 71°C for 6s using a continuous-flow 

microwave system at 2000W (2450MHz). The authors calculated the lethality following Eq. (11) 

using 𝑇௥௘௙ equal 80°C and z-value equal 6°C. By assuming a 𝐷଼଴°େ equal to 0.755s, the authors 

calculated a thermal death time (F-value) following Eq. (13) and found the value of 3.9s. From 

that equation, the theoretical log reduction was calculated, and resulted in a 5.13 log10 

reduction. This calculated value agrees with the reported experimental inactivation reduction. 

However, the reference temperature of 80°C, the z-value, and D-value chosen appear to have 

been purposely selected at specific values, so that the calculated and the experimental log 

reduction could match. Therefore, calculating the survival ratio using this arbitrary reference 

temperature becomes ambiguous and questionable at best. 

Benlloch-Tinoco et al. (2014) also used first-order kinetic models to describe the 

inactivation kinetics of Listeria monocytogenes in kiwifruit puree under power levels 600W, 900W, 

and 1000W with processing times ranging from 50 to 340s. The authors calculated 𝐷଺଴°େ values 

for each power level, resulting, respectively, in the values 42.85s, 17.35 and 17.04s. When 

calculating the F-value, the maximum temperature reached during each microwave process was 

considered as 𝑇௥௘௙. As discussed earlier, the selection of these reference temperatures appears 

to be completely arbitrary, since no reasoning for doing those selections are discussed on these 

articles. For historical reasons, industrial microbiologists feel more comfortable calculating 

the efficacy of the heat treatment using an arbitrary reference temperature so that the treatment 

can theoretically be related to an isothermal process at that temperature (Peleg, 2006). 

However, microwave heating is far from isothermal. So, what is the point of calculating the 
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lethality of the process and relating it to an isothermal process? Even when the fundamentals 

of 𝐹௭
௥௘௙  are questionable in the first place? 

Valero, Cejudo, and García-Gimeno (2014) used two modeling approaches, the ‘log linear 

+ shoulder’ model, and the modeling approach by Mattick et al. (2001), to describe the inactivation 

kinetics of Salmonella Enteritidis in potato omelet under power levels of 300W, 450W, 600W, and 

800W. The inactivation curves showed a downward concave shape, so it makes sense to describe 

these curves with models different than first-oder kinetics. The ‘log linear + shoulder’ model was 

described as: 

𝑁 = 𝑁଴  𝑒
ି௞೘ೌೣ௧  

𝑒௞೘ೌೣ  𝑆𝑙

1 + (𝑒௞೘ೌೣௌ௟ − 1)𝑒ି௞೘ೌೣ௧ 
 

(20) 

𝑁  is the cell concentration (CFU/mL) after a treatment time 𝑡  (s), 𝑁଴  is the initial cell 

concentration (CFU/g), 𝑘௠௔௫ is the maximum inactivation rate (s-1), and 𝑆𝑙 is the shoulder length 

(s) (i.e. the length of the lag phase) (Valero et al., 2014). The objective was to fit the data and 

estimate 𝑘௠௔௫ and 𝑆𝑙. The use of Mattick approach consisted of using the non-linear model, Eq. 

(17), and the 𝑏(𝑇) and 𝑛(𝑇) functions defined as: 

𝑏(𝑇) = 6.841/{1 + exp [(76.14 − 𝑇)/4.204]} (21) 

𝑛(𝑇) = 0.670/{1 + exp [(𝑇 − 80.14)/3.785]} (22) 

Eq. (17) was solved numerically using the fourth-order Runge-Kutta method (Valero et al., 2014). 

According to the authors, a better agreement between experimental and predicted values was 

obtained when the Mattick approach was used. The modeling approach shows merit due to the 

good agreement between predicted and observed values, and also because the authors used a 

nonisothermal modeling approach to describe the inactivation kinetics of Salmonella Enteritidis 

under microwave heating, which makes perfect sense. Yet, the authors did not validate the 

modeling approach at other microwave conditions. 

The ‘log-linear + shoulder’ model, Eq.(20), and the Weibull model, Eq.(15), were used to 

describe the inactivation curves of Escherichia coli O157:H7, Salmonella Typhimurium, and 

Listeria monocytogenes in peanut butter treated by a 915 MHz microwave oven specified at 2, 4, 

and 6kW power levels, for up to 5 min (Song & Kang, 2016). According to the authors, both 

models described the survival curves of these pathogens, with the ‘log linear + shoulder’ model 

resulting in the best fit to the data. Although this article has shown improvement in using non-

linear models to describe the inactivation curves, the potential relationship between temperature 
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changes and microbial inactivation was completely ignored. Thus, it is questioned what is the 

utility of such a modeling approach to optimize the microwave heating pasteurization process for 

peanut butter when a realistic and omnipresent condition of microwave processing is ignored in 

the optimization process? 

More recently, Siguemoto, Gut, Martinez, and Rodrigo (2018) described the inactivation 

kinetics of Escherichia coli O157:H7 and Listeria monocytogenes in apple juice treated with 

microwave heating at power levels 400, 600, 800 and 1000W at heating times between 50 and 

390s, using a 2450MHz microwave oven adapted with fiber-optic temperature probes. The authors 

used the Weibull model to describe the survival curves. The Weibull parameters were calculated 

for conventional heating using a water bath set at temperatures 55, 60, 65 and 70°C. The Weibull 

scale parameter was related to the temperature using the Bigelow model. The z-value was 

calculated for each microorganism at a reference temperature of 70°C. Based on the integral form 

of the Peleg’s nonisothermal model, the predicted survival ratio was calculated in which the 

microwave temperature history and the Weibull parameters obtained under conventional heating 

were incorporated. According to the authors, this approach showed a good agreement between 

predicted and experimental values. This study showed an improvement in the development of 

models for microwave heating by incorporating the dynamic microwave temperature profile. 

However, the calculation of the survival ratio was still related to a first-order kinetics and the z-

value, which seriously challenge the suitability of the approach, mainly because the survival curves 

all desviated from linearity. In addition, no validation analysis was performed. 

Clearly, all studies that attempted to model microbial inactivation under microwave heating 

presented problems associated with their methodologies. In some cases, either the survival curves 

were assumed to be linear, although they were clearly non-linear, or the approach did not 

incorporate the microwave temperature profile, neither the resulting model was validated using  

other samples or conditions such as power levels. These limitations open the opportunity for the 

development of more rigorous models that could relate microbial inactivation with the temperature 

profile during the microwave heating. To fill this gap, this dissertation proposes a modeling 

approach based on the omnipresent nonisothermal condition in microwave processing to describe 

the inactivation kinetics of pathogens of concern at temperatures and process times similar to those 

of conventional pasteurization protocols. The reader is referred to Chapter 4 to see more details of 

this work. 
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2.5 Pulsed Electric Fields (PEF): current models used for modeling inactivation curves 

Pulsed Electric Field (PEF) processing is one appealing novel technologies for food 

preservation (Altunakar & Barbosa-Cánovas, 2011). The technology is considered non-thermal 

because inactivation of spoilage and pathogenic microorganisms occur at comparatively low to 

moderate temperatures (50–60°C) which makes it a promising alternative to traditional 

pasteurization methods (Arroyo & Lyng, 2016; Buckow, Ng, & Toepfl, 2013; Saldaña, Puértolas, 

Monfort, Raso, & Álvarez, 2011). Most of the studies available for food treatment have reported 

the use of microseconds or milliseconds pulse duration, and field strength of 20−90kV/cm (Liang, 

Mittal, & Griffiths, 2002).  

Various models have been proposed to describe the kinetics of microbial inactivation by 

PEF. To highlight a few studies, Álvarez, Mañas, Condón, and Raso (2003a) used the Weibull 

distribution to model the inactivation of Salmonella Enteritidis and Salmonella Typhimurium with 

electric field strengths from 5.5 to 28 kV/cm, square-waves of 2µs width, pulse frequency of 1Hz, 

using a PEF system consisting of electrodes with area 2.01cm2 and 0.25cm gap distance. The 

obtained survival curves did not show a linear behavior and thus, the Weibull distribution was used 

to estimate the inactivation parameters. The authors reported that the scale parameter decreased 

when the electric field strength applied increased. The shape parameter varied randomly and not 

as a function of the electric field strength. For both serovars, there was a linear relationship between 

𝑙𝑜𝑔ଵ଴ of 𝑏 and the electric field strength in the range of 19 to 28 kV/cm (Table 2). From these 

linear equations, the authors calculated the inverse of the slope of the regression line as a way of 

estimating a parameter like the z value, which the authors called as ZPEF. A tertiary model was then 

built based on the Weibull distribution and on the calculated ZPEF (Table 2). Results indicated that 

the proposed tertiary model reasonably described the inactivation kinetics of Salmonella 

Enteritidis and Salmonella Typhimurium by PEF in the range of 19 to 28 kV/cm of electric field 

strengths. The article has merit by using non-linear models, such as the Weibull model, when 

clearly the survival curves deviate from linearity. On the negative side, the reason why the article 

brings the Z value of the linear thermal models for the PEF field is unclear. The reason for a linear 

relationship between the log of the parameter 𝑏 and the strength of the electrical field would be 

indicating that the range of electrical strength used was small, and that the resistance of the 

microbial population to inactivation by the electrical field is constant, so the presence of a critical 

value for the electrical strength is ignored. In addition, the fact that an arbitrary electric field 
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strength could be selected to be any value within the range investigated makes the approach 

questionable at best. Ultimately, the incorporation of the so-called ZPEF value into the Weibull 

model does not make much sense. 

Álvarez, Virto, Raso, and Condón (2003b) studied the inactivation of E. coli K-12 

inoculated in citrate-phosphate buffer subjected to an electric field strength in the range 15-28 

kV/cm, square waves of 2µs pulse width, pulse frequency of 1 Hz and electrodes with an area of 

2.01 cm2. The survival curves were concave upwards; thus, the curves did not present a linear 

behavior. To describe the survival curves, four mathematical models were employed and compared: 

a two-term exponential model, the Weibull model, a sigmoidal equation, and an empirical equation. 

The four models are summarized in Table 2 along with a description of model parameters. 

According to the authors, the selected models were able to fit the experimental data and to describe 

the non-linear behavior of survival curves of E. coli processed by PEF in the entire range of electric 

field intensities investigated. In addition, the Weibull model was reported to better fit the survival 

curves obtained at 15 and 19kV/cm. Secondary models were also proposed in which the electric 

field strength was correlated to the model parameters (Table 2). The developed modeling approach 

has its significance, but it has not proven to accommodate the effect of the environmental 

conditions as the authors claimed it did. Factors like pulse width, pulse repetition rate, conductivity 

and residence time, for instance, were not considered in the modeling equations. 

Rodrigo, Barbosa-Cánovas, Martínez, and Rodrigo (2003) investigated the PEF 

inactivation kinetics of E. coli in orange juice mixed with carrot juice. The electric field strengths 

ranged from 25 to 40 kV/cm, applied between 40 to 340µs in bipolar square-waves of 4µs width 

using the OSU-4D bench-scale continuous PEF system. The survival curves were fitted to THE 

Bigelow, Hülsheger, and the Weibull model (Table 2). For each model, survival parameters were 

obtained by adjusting the experimental survival data to these mathematical models. The goodness 

of fitting was evaluated by the mean square error (MSE). The authors reported that the best fit was 

obtained by Weibull distribution (lowest MSE). The Weibull parameters were then correlated with 

the electric field strength and carrot juice concentration by multiple linear regression (Table 2) and 

fitted to the data. The authors argued that the modeling developed can help to determine the 

combination of electric field strength, conductivity and treatment time to maximize PEF 

applications. The limitation of this article is that the approach was not validated at other PEF 

processing conditions. 
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Gómez, García, Álvarez, Condón, and Raso (2005) studied the inactivation kinetics of 

Listeria monocytogenes resuspended in citrate-phosphate McIlvaine buffer with different pH and 

treated by PEF. L. mono was more sensitive to PEF in media of low pH for all the investigated 

electric field strengths. Survival curves were obtained by plotting the log10 of the survival ratio 

versus treatment time at different field strengths and pH. The curves were fitted by the Weibull 

model. A multiple linear regression model containing three predictor variables (E, E2, pH2) was 

used to describe the relationship between the scale parameter 𝑏, the electric field intensity E, and 

the pH of the medium. In addition, the authors described the relationship between the parameter 𝑛 

and the pH by the Gompertz equation. Both were introduced into the Weibull model to generate a 

tertiary modeling approach. The approach was tested with published data of L. mono in apple juice 

and, according to the authors, resulted in satisfactory predictions. The article presents merit by 

examining a non-linear model, such as the Weibull distribution, as an alternative to first-order 

kinetics. However, it is not clear how variables like E2 and pH2 could be useful in practice. This 

discussion was not addressed by the authors. Consequently, the lack of such a discussion does not 

clarify whether the proposed approach is useful. 

García, Somolinos, Hassani, Álvarez, and Pagán (2009) used the Weibull distribution to 

model the inactivation of E. coli O157:H7 in apple juice by PEF during storage under refrigeration 

at 4°C for up to 3 days. The pathogen was inoculated in commercial apple juice and PEF treated 

with the electric field strengths of 17.6, 19.9, 23.1, 27.5, 30, 35, and 40kV/cm, with pulse repetition 

rate of 1Hz. The PEF chamber had an area of 2.01 cm2 and 0.25 cm distance between electrodes. 

The scale and shape parameters of the Weibull distribution were correlated with the storage time 

and the electric field strength by means of multiple linear regression (Table 2). These equations 

were inserted into the Weibull model to obtain a tertiary equation. The authors validated this 

approach in another sample of apple juice sample under randomly selected treatment conditions 

within the original range tested. A plot of predicted versus observed values showed a moderate 

agreement between empirical and model values. According to the authors, this serves as proof of 

the validation of the modeling approach. Similarly, as discussed for the other papers, it is unclear 

how variables like E2, Et or Et2 could be useful in practice for modeling PEF processes. These 

issues were not addressed by the authors, thus undermining the usefulness of the approach. 

Rodríguez-González, Walkling-Ribeiro, Jayaram, and Griffiths (2011) provided an 

additional insight on the mathematical analysis of PEF inactivation of microbial cells. Escherichia 
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coli O157:H7 cells were subjected to exponential decay shaped electric pulses of 1.5µs width, 

frequencies of 20 Hz, and electric field strengths between 0.8 and 2.8kV/mm. The Weibull model 

was used to describe the microbial inactivation under PEF. The scale parameter was correlated to 

temperature increase and it was assumed to follow a log-logistic equation. The log-logistic 

equation was inserted into the Weibull distribution, resulting in the Weibullian-Log-Logistic 

(WeLL) model. A description of this mathematical approach is given in Table 2. According to the 

authors, the approach allowed the prediction of an onset inactivation temperature (Tc) which was 

different for each treatment setup. For example, in the higher electric field strength, lower 

temperatures were required to initiate inactivation. The results indicated that the WeLL model was 

able to predict microbial inactivation by PEF with dynamic temperature conditions. The article 

brings a new way of looking at inactivation modeling by correlating the scale parameter of the 

Weibull model with a theoretical onset inactivation temperature and such relation described by a 

log-logistic equation. It is a different perspective, especially for not assuming multiple linear 

regression as done by previous authors. However, the authors did not validate the modeling 

approach with other samples or treatment conditions, neither did they include other important 

parameters in the modeling, such as the electric field strength and the repetition rate. Thus, there 

is still an opportunity to consider such parameters for modeling of PEF processes. 

Zhao, Yang, Shen, Zhang, and Chen (2013) developed a modeling approach that aims to 

account for lethal and sublethal injury of Escherichia coli, Listeria monocytogenes, 

Staphylococcus aureus inoculated in milk after PEF processed. The applied electric field strengths 

ranged from 15 to 30kV/cm, using square-waves of 2µs pulse width applied from 0 to 600µs and 

repetition rate set at 200Hz. The percentage of injured cells was calculated based on the proportion 

of counts of CFU/mL in selective media or non-selective media. The Hülsheger model was used 

to study the inactivation kinetics. To describe the survival curves, two versions of the Hülsheger 

model were proposed. For a specific treatment time, the first equation assumed a linear relationship 

between the logarithm of the surviving fraction and the electric field intensity. From this equation, 

a critical electric field could be calculated. For a specific electric field intensity, a second equation 

related the logarithm of survivor faction to the logarithm of treatment time. From such a 

relationship, a critical treatment time could be calculated. A description of these modelling 

approaches can be seen in Table 2. The model parameters obtained from the optimization routines 

included 𝐸௖, 𝑡௖, 𝑘ா, and 𝑏௧. According to the authors, critical electric field strength and critical 
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treatment time, which caused sublethal injuries, were lower than those that caused lethal injury. 

The study has its merits because the critical electric field and critical time are incorporated into the 

modeling analysis. However, the model approach has not been validated to confirm its predictive 

capacity in other treatment conditions, leaving the window open for future research that can 

validate models that consider treatment time, and a critical electric field as one of the main 

parameters. 

Huang, Yu, Wang, Gai, and Wang (2014) investigated the effect of electric field strength, 

treatment time, and specific energy on the PEF resistance of Escherichia coli DH5 𝛼 , 

Staphylococcus aureus, Saccharomyces cerevisiae in grape juice. The electric field strengths used 

ranged from 9 to 27kV/cm using monopolar square-waves, applied between 34 to 275µs with a 

minimum pulse width of 2.6µs, a frequency of up to 400Hz, and juices at an initial treatment 

temperature of 40°C. Survival curves were modeled using Weibull distribution in terms of 

treatment time and specific energy. The authors reported that the logarithm of the scale parameter 

(referred to in this study as 𝛿), expressed in terms of treatment time and specific energy, decreased 

when the electric field strength increased. A multiple linear regression equation described the 

relationship of scale parameter 𝛿 and the electric field strength. The shape parameter (referred to 

in this study as 𝑝) varied randomly with electric field strength and, consequently, was defined as 

its mean value for each strain. A tertiary model was developed by replacing the 𝑙𝑜𝑔ଵ଴ 𝛿(𝐸) 

relationship in the Weibull model. A summary of the models used in this study can be found on 

Table 2. The authors argued that the Weibull model could be safe to model inactivation of the three 

strains PEF-treated in grape juice. However, as discussed for the other studies, one might ask how 

variables like E2 and 𝐸ଷ are useful practically in modeling microbial inactivation? Finally, the 

approach is challenged to be validated under other conditions and samples, which was not 

attempted by the authors. 

Walter, Knight, Ng, and Buckow (2016) studied the inactivation of E. coli and 

Pseudomonas fluorescens in whole milk treated by PEF. The OSU-4G PEF system composed of 

four treatment chambers, electrodes gap distance of 3.53mm and treatment volume of 8.98µL was 

used in this study. Electric field strengths of 30 and 35kV/cm, pulse width set to 2µs, pulse 

frequency in the range of 209-626Hz, and a flow rate of 120mL/min were the PEF treatment 

conditions applied. In addition, the inlet temperature was adjusted for each treatment combination 

to obtain an outlet temperature of 30, 40, and 50°C. The goal was to investigate synergistic effects 



47 
 

of temperature and PEF variables in the microbial reduction. For instance, milk treated at 35kV/cm, 

50µs and 50°C achieved greater than 6 log reduction of E. coli. Yet, when thermally treated, in a 

stainless-steel coil submerged in a controlled oil bath, at 56°C for 18min the E. coli population 

was only reduced by 1.2 log reduction. Survival curves showed deviations from log-linearity, and 

according to the authors, the Weibull model did not yield satisfactory fits (data not shown). The 

curves were modeled by a log-logistic equation which the authors called a log-decay model. The 

coefficients of the model such as 𝑘, inactivation rate constant, and 𝜆, decay constant, increased 

with increasing the temperature during thermal and PEF processes. Thus, empirical models were 

related to the temperature through equations that had empirical coefficients (e.g. A, B, C, and D), 

and a reference temperature of 50°C (𝑇଴). These empirical models can be seen in Table 2. The 

modeling approach was fitted to the data by a statistical package and, according to the authors, it 

resulted in a satisfactory performance. Although the idea of incorporating the temperature into the 

modeling of PEF inactivation kinetics is valid, the authors failed to explain the reason why the 

temperature of 50°C was chosen. Besides, the usefulness of the empirical coefficients A, B, C, and 

D was completely ignored. The lack of these discussions shows that the selection of such 

temperature or coefficients were rather arbitrary. Moreover, clearly there was a significant effect 

of the PEF parameters that yielded a 6-log reduction of E. coli, but yet, these parameters were not 

included in the developed modeling approach. There is no reason to believe that the approach 

would be useful to illustrate the influence of the temperature on the effectiveness of PEF processes, 

as claimed by the authors. Lastly, no validation of the approach was attempted which leaves room 

for the development of predictive modeling in PEF processes that can be validated in other 

treatment conditions and samples. 

  Following the interests of the PEF in the dairy industry, Simonis et al. (2019) studied the 

inactivation of Saccharomyces sp. and Lactobacillus sp. in acid whey concentrate by PEF 

treatments with electric field strengths of 39, 95, and 92kV/cm, pulse duration of 60, 90 and 

1000𝑛𝑠 and number of pulses of up to 100 pulses. Acid whey, or sour whey, is a byproduct of the 

cottage cheese or strained yogurt manufacture processes which contains several bioactive 

compounds of interests for the management of human diseases such as hypertension and 

cardiovascular diseases. The limitation is that this product may have its useful life reduced by 

spoilage microorganisms. In this study, two PEF apparatuses were used to inactivate spoilage 

microorganisms, and the resulting survival curves were modeled. The stationary apparatus 
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consisted of cuvettes with cylindric stainless steel electrodes with a diameter of 5.3mm and gap 

distance of 0.75mm, exposed to square-wave monopolar pulses with a duration of 60 and 90𝑛𝑠. 

Samples were treated with electric field strengths 92 and 95kV/cm. The other apparatus consisted 

of cuvettes connected to a peristaltic pump at a flow rate of 2mL/min. Electrodes area of 130mm2, 

2mm gap distance and a volume of 0.26mL were used to treat the samples. A field strength of 

39kV/cm of a unipolar exponential damped pulse of  1µ𝑠 and pulse number of up to 32 pulses 

were applied. The survival curves the curves were plotted as a function of the number of pulses 

(pn). The Weibull model was used to model the non-linear characteristics of the curves. Like 

previous studies, the shape of the curves was properly described by the Weibull model. However, 

there were many modeling opportunities that the authors could have explored in this article. For 

instance, the different pulse widths (micro or nanoseconds) could have been used in modeling the 

inactivation curves, along with the treatment residence time and the electric field strengths. Yet, 

none of these parameters were discussed or accounted into the model. This highlights the need for 

models that are more practical in the design of PEF treatments. Treatments that have a vast range 

of applications, such as obtaining spoilage-free acid whey, could benefit from modeling strategies 

to optimize the PEF processes. 

Another recent article, using the Weibull model to describe inactivation curves, 

investigated the effect of PEF on the inactivation of Acetobacter sp. cultured in samples containing 

different concentrations of ethanol. Acetobacter sp. is a group of spoilage microorganisms that 

negatively affect the quality of wine. Because thermal processes can damage the flavor, taste, and 

color of wines, PEF provides an opportunity to avoid these deleterious effects, resulting in 

treatment temperatures lower than those of traditional thermal methods. Niu et al. (2019) 

investigated PEF treated Acetobacter sp. cultivated in different ethanol concentration to access the 

effect of different ethanol concentrations on the resistance of Acetobacter to PEF. Cells were 

suspended in sterile distilled water and treated by a PEF system described elsewhere. Bipolar 

square wave of 40µs with electric field strengths of 10, 15, 20 and 25kV/cm and pulse frequency 

of 1kHz were applied. The Weibull model accurately described the shape of the survival curves. 

However, this study could have contributed more to understanding of the kinetics of inactivation 

of Acetobacter sp. if processes parameters such as electric field strength, repetition rate, pulse 

width, and residence time were accounted for in the model. It is important to describe the shape of 
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the inactivation curves, but still the objectives of the mathematical models are not fully explored 

if they are limited only to modeling a concave up or down shape. 

An overview of current applications and new opportunities for the use of PEF in the food 

industry can be found in Barba et al. (2015). Buckow et al. (2013) also presented an overview of 

the application of PEF processing to orange juice and its impact on microbial, enzymatic, 

nutritional and quality attributes. A complete review of the kinetic models used for describing the 

inactivation of microorganisms and enzymes exposed to PEF can be found in Huang, Tian, Gai, 

and Wang (2012). 

Mathematical modeling is an important tool for optimizing processing parameters. To 

establish PEF processing protocols that provide safe or spoilage-free products, inactivation models 

are indispensable. Therefore, there is an urgent need to develop reliable mathematical models that 

accurately describe the inactivation kinetics of microbial populations in real food systems but, that 

also consider the wide range of PEF parameters in the modeling. Different authors have proposed 

the use of the Weibull model to describe survival curves, and most of these studies used multiple 

linear regression to correlate the electric field strength with the scale parameter. In some cases, pH 

and concentration were also factors incorporated in the models by means of multiple linear 

equations. Such approaches help to understand how different variables can maximize PEF 

treatment, and for the most part the authors were able to describe the shape of the survival curves 

by the Weibullian shape parameter. This model represents a great improvement in quantitative 

microbiology as compared to the use of the conventional first-order kinetic model in which data is 

forced through a straight line, which as a result can lead to a number of under or over-processing 

problems. Despite the important advances made by the Weibull model, to date no study has 

considered practical PEF parameters being incorporated at the same time in the description of 

inactivation curves. To fulfill this gap, this dissertation is proposing a modeling approach that does 

just that. The reader is directed to Chapter 5 for a full description of this study. 
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Table 2. Models used to describe microbial inactivation under Pulsed Electric Fields 

Primary Model Secondary Model Description of 
parameters 

Reference 

 
Bigelow 

𝑙𝑜𝑔 𝑆(𝑡) = −
𝑡

𝐷
 

 
 

 
____ 

 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (𝜇𝑠) 
𝐷: decimal reduction 
time (min) 

 
Rodrigo et al., 

2003 

Empirical model 
 

𝑙𝑜𝑔ଵ଴ 𝑆(𝑡) =  −𝑎𝐿𝑛(1 + 𝑐𝑡) 
 
 

 
 

𝑐 = 0.0005𝐸ଶ − 0.0007𝐸 + 0.0003 

 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (𝜇𝑠) 
𝑎 : scale parameters 
𝑐 : shape parameters 
𝐸: electric field strength 
(kV/cm) 
 

 
Álvarez et al., 

2003b 

Sigmoidal equation 
 
𝐶𝐹𝑈(𝑡) = 𝐶𝐹𝑈(0)

∙ ൫1 + 𝑒(௧ି௠)/௦మ
൯

ିଵ
 

 

 

 
 

𝑚 = 0.006𝐸ଶ − 0.370𝐸 + 6.521 

 

𝐶𝐹𝑈(𝑡) : concentration 
of survivors 
𝐶𝐹𝑈(0) : initial 
concentration of the 
population 
𝑡 : 𝐿𝑜𝑔ଵ଴of the 
treatment time (𝜇𝑠) 
𝑚 : 𝐿𝑜𝑔ଵ଴of the time 
necessary to destroy the 
50% of the population 
(𝜇𝑠) 
𝑠 : parameter 
proportional to the 
standard deviation of  

Álvarez et al., 
2003b 
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Table 2. Continued 

  
the PEF 
resistance(𝜇𝑠଴.ହ) 

 

Two-term exponential model 
 

𝑆(𝑡) = 𝑝𝑒ି௞భ௧ + (1 − 𝑝)𝑒ି௞మ௧ 
 

 

 
 

____ 
𝑆(𝑡): fraction of total 
survivors 
𝑡 : treatment time (𝜇𝑠) 
𝑝 : fraction of survivors 
in population 1 
1 − 𝑝: fraction of 
survivors in population 
2 
𝑘ଵ: specific death rate 
of subpopulation 1 
𝑘ଶ : specific death rate 
of subpopulation 2 
 

 
Álvarez et al., 

2003b 

Weibull distribution 
 

𝑙𝑜𝑔ଵ଴ 𝑆(𝑡) =  − ൬
1

2.303
൰ ൬

𝑡

𝑏
൰

௡

 

 
 

 
 

𝑙𝑜𝑔ଵ଴ 𝑏 = −0.058𝐸 + 2.040 

 
 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (𝜇𝑠) 
𝑏 : scale parameters 
𝑛 : shape parameters 

 
 

Álvarez et al., 
2003a 

   
 

  
 

𝐿𝑜𝑔ଵ଴ 𝑏 = 130.68𝐸ିଵ.ହ଻଺ 
 

 
Álvarez et al., 

2003b 
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Table 2. Continued 

 

𝑙𝑛 𝑆(𝑡) =  − ൬
𝑡

𝑎
൰

௡

 

 
𝑙𝑛(𝑎) = 8.46 + 0.019 𝑥 (% 𝑐𝑎𝑟𝑟𝑜𝑡 𝑗𝑢𝑖𝑐𝑒)

+ 0.0003 𝑥 (% 𝑐𝑎𝑟𝑟𝑜𝑡 𝑗𝑢𝑖𝑐𝑒)ଶ

− 0.29 𝑥 𝐸 + 0.0026 𝑥 𝐸ଶ 
 
 

𝑛 = 0.003 𝑥 (% 𝑐𝑎𝑟𝑟𝑜𝑡 𝑗𝑢𝑖𝑐𝑒) + 0.53 
 

 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (𝜇𝑠) 
𝑎 : scale parameters 
𝑛 : shape parameters 

Rodrigo et al., 
2003 

 

𝑙𝑜𝑔ଵ଴ 𝑆(𝑡) =  − ൬
1

2.303
൰ ൬

𝑡

𝑏
൰

௡

 

 
𝑙𝑜𝑔ଵ଴ 𝑏 = 4.82 − 0.37𝐸 + 0.0056 𝐸ଶ

+ 0.63 𝑝𝐻ଶ 
 
 

𝑛 = 0.38 + 63.33 𝑒ି௘(షబ.మఱ ೛ಹశయ.యళ)
 

 

 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (𝜇𝑠) 
𝑏 : scale parameters 
𝑛 : shape parameters 
𝐸: electric field strength 
(kV/cm) 

Gómez, et al. 
2005 

 

 

𝑙𝑜𝑔ଵ଴ 𝑆(𝑥) =  − ቀ
𝑥

𝑎
ቁ

௡

 

 
 

𝑙𝑜𝑔ଵ଴ 𝑏 = 8.09 − 0.38𝐸 + 0.006 𝐸ଶ

− 0.003𝐸𝑡 + 0.00003 𝐸𝑡ଶ 
 

𝑛 = 0.68 − 0.40 𝑒ି௘[షభ.మమ(೟షఱ.ఱఱ)]
 

 
𝑆(𝑥): survival fraction 
𝑥 : number of pulses 
𝑏 : scale parameters 
𝑛 : shape parameters 
 

García et al., 
2009 

 

 
𝑙𝑜𝑔ଵ଴ 𝑆[(𝑡)] =  −𝑏(𝑇) 𝑡௠ 

 
𝑏(𝑇) = ln[1 + 𝑒ି[௞ (்ି ೎்)]] 

 

 
𝑏: inactivation rate 
(𝜇𝑠)ିଵ 
𝑡 : treatment time (𝜇𝑠) 
𝑚: shape parameter 
𝑘: rate 
𝑇: temperature (°C) 
𝑇௖: temperature level of 
inactivation onset (°C) 

Rodríguez-
González et al., 

2011 
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Table 2. Continued 

 

𝑙𝑜𝑔ଵ଴ 𝑆(𝑥) =  − ቀ
𝑥

𝛿
ቁ

௣

 

 

 
𝑙𝑜𝑔ଵ଴൫𝛿(𝐸)൯ = 𝐴଴ + 𝐴ଵ𝐸 + 𝐴ଶ𝐸ଶ + 𝐴ଷ𝐸ଷ 

 
𝑆(𝑥): survival fraction 
𝑥: treatment time (𝜇𝑠) 
or specific energy 
(kJ/kg) 
𝑝 : shape parameter 
𝛿: scale parameter 
 

Huang et al., 
2014 

𝐿𝑅 = − 𝑙𝑜𝑔 ൬
𝑁

𝑁଴
൰ 

 

𝐿𝑅 = ൬
𝑝𝑛

𝑝𝑛௥௘ௗଵ
൰

௣

 

 
 

____ 

𝐿𝑅: log reduction 
𝑁: number of colony 
forming units in treated 
suspension 
𝑁଴: number of colony 
forming units in 
untreated suspension 
𝑝𝑛௥௘ௗଵ: pulse number 
required viable cell 
count reduction by one 
log 
𝑝𝑛: pulse number 
𝑝: shape parameter 
 
 

Simonis et al., 
2019 

 

 

𝑙𝑜𝑔ଵ଴ (𝑁/𝑁଴) =  − ቀ
𝑥

𝑎
ቁ

௕

 

 

 
 

____ 

𝑁: number of survivors 
after treatment 
𝑁଴: number of survivors 
before treatment 
𝑥: electric field strength 
(kV/cm) or treatment 
time (ms) 
𝑎: scale parameter 
𝑏: shape parameter 

Niu et al., 2019 
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Table 2. Continued 

 
Hülsheger 
 

𝑙𝑛(𝑆) =  −𝑏 (ln 𝑡 − ln 𝑡௖) 
 
 

 
 

____ 

 
𝑏: regression coefficient 
𝑡: treatment time (𝜇𝑠) 
𝑡௖: critical time (the 
longest treatment for 
which the survival 
fraction is 1) 
 

Rodrigo et al., 
2003 

 
𝑙𝑛(𝑆) =  −𝑘ா(𝐸 − 𝐸௖) 

 
𝑙𝑛(𝑆) =  −𝑏௧ 𝑙𝑛(𝑡/𝑡௖) 

 

 
____ 

 

𝑆: ration between the 
number of survivors and 
the number of initial 
microorganisms after 
PEF treatment 
𝐸: electric field strength 
(kV/cm) 
𝐸௖: critical electric field 
strength 
𝑡: treatment time (𝜇𝑠) 
𝑘ா: regression 
coefficient (𝜇𝑠ିଵ) 
𝑏௧: independent 
constant 
 

Zhao et al., 
2013 

  



 
 

 55 

Table 2. Continued 

 
Log decay model 
 

𝑙𝑜𝑔ଵ଴ 𝑆(𝑡) =  −
𝑘 𝑡

1 +  𝜆 𝑡
 

 

 
 
 

𝑙𝑛(𝑘) =  𝐴 + 𝐵 (𝑇 − 𝑇଴) 
 

𝑙𝑛(𝜆) =  
1

𝐶 + 𝐷 (𝑇 − 𝑇଴) + 𝐺 (𝑇 − 𝑇଴)ଶ
 

 
 

 
 
𝑆(𝑡): survival fraction 
𝑘: inactivation rate 
constant (𝑠ିଵ) 
𝜆: decay constant (𝑠ିଵ) 
𝑇଴: reference 
temperature at 50°C 
𝑇: temperatures 30, 40, 
50°C 
𝑡: treatment time (𝜇𝑠) 
 

 

Walter et al., 
2016 
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2.6 Cold plasma: current models used for modeling inactivation curves 

Cold plasma is a relatively new technology included among all emerging non-thermal 

technologies (Mandal, Singh, & Singh, 2018). Cold plasma is referred to the fourth state of matter 

that is produced by excitation of gas molecules through exposure to electrical discharges (Pasquali 

et al., 2016). It is a partially or fully ionized mixture of gases containing reactive gas species such 

as positive and negative ions, electrons, free radicals, excited or non-excited gas molecules, and 

photons (Mandal et al., 2018).  

Non-thermal plasma induced by electrical discharges is of great interest for application in 

the food industry because of its potential relevance for processing food at low temperatures 

(Chizoba Ekezie, Sun, & Cheng, 2017). When cold plasma is generated, most of the energy applied 

is focused on electrons rather than heating the gas stream. Consequently, the gas molecules remain 

around the ambient temperature (Mandal et al., 2018). Although there is no convention with 

respect to the temperature range, typically plasma sources operating below 60°C can be considered 

as cold plasma (Misra, Yepez, Xu, & Keener, 2019). The technology offers the advantages of 

minimal water usage, low operating temperatures, minimal destruction of nutrients or loss of 

sensorial properties, inactivation of pathogenic and spoilage microorganisms, including the 

eradication of bacterial biofilms and the inactivation of spores (Chizoba Ekezie et al., 2017; 

Hertwig, Reineke, Ehlbeck, Knorr, & Schlüter 2015; Mahnot, Mahanta, Keener, & Misra, 2019; 

Tseng, Abramzon, Jackson, & Lin, 2012; Ziuzina, Han, Cullen, & Bourke, 2015). 

Main cold plasma processing parameters include the concentration of reactive species, the 

treatment time, the input powers and the mode of exposure (Liao et al., 2018). For example, the 

type and the concentration of the gas employed determines what reactive species will be produced 

and their amount. The exposure model, whether direct or indirect, is also a factor that influences 

the efficiency of cold plasma (Chizoba Ekezie et al., 2017). Generally, direct exposure leads to 

faster inactivation than indirect exposure (Patil et al., 2014). For the technology to be adopted in 

food processing, it is essential that the inactivation kinetics be quantitatively based and that the 

treatment times necessary to eliminate harmful and resistant microorganisms are accurately 

predicted. 

Becker et al. (2005) investigated the inactivation of Bacillus subtilis sand Bacillus 

stearothermophilus under capillary plasma electrode discharge using various gas mixtures (pure 

He, He—N2, He—air, dry air and humid air), as well as the inactivation of Chromobacterium 
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violaceum biofilm-forming cells exposed to an atmospheric plasma jet generated by using He flow 

in conjunction with N2 gas flow. The study has relevance because spore-forming bacteria, 

particularly of the Bacillus genera, exhibit resistance to common treatments in the food industry. 

In the same way, biofilms negatively impact industrial processes and have undesirable effects on 

the safety of the process and the final product. The use of cold plasma provides an opportunity to 

remove or destroy these resistant organisms. However, in terms of modeling, this study has not 

advanced considerably. The authors used first-order kinetics to model the inactivation curves of 

the Bacillus genera and calculated D-values with the hope of facilitating comparison within this 

genus (Table 3). While for the biofilm inactivation curve, exhibiting a clear upward concave curve, 

no modeling strategy was attempted. The assumption of first-order kinetics is a serious 

shortcoming because it assumes that all spores are alike and that under certain lethal condition, 

they would all die or be inactivated at the same time; which obviously is not the case. A quick 

research in the literature (Setlow & Setlow, 1993, 1996) would give a glimpse of the several factors 

that can affect spore resistance. These factors suggest that the assumption of a spectrum of 

resistance within the spore population is more plausible than that of instantaneous mortality.  

There are about five possible physical mechanisms that can cause plasma microbial 

inactivation, including reactive species, charged particles, electric field, heat and UV photons. 

Deng, Shi and Kong (2006) differentiated the role of each of these mechanisms and concluded that 

the reactive oxygen species are dominant in the inactivation of Bacillus subtilis spores. The results 

showed that oxygen atoms, metastable oxygen molecules, ozone and OH were highly bactericidal, 

while other charged particles, electric field, and UV photons made minor contributions in the 

inactivation. The primary mechanisms of inactivation were related to leakage of the contents of 

cytoplasm and the complete rupture of the spore membrane. Likewise, Tseng et al. (2012) also 

reported that plasmas had a primary effect on damage to spores’ coat/inner membrane, which lead 

to subsequent spore leakage and inactivation. However, the focus of this dissertation is on 

inactivation models and their value for designing food processes, the mechanisms of inactivation 

of spores and their biophysics should not concern us here, therefore, the subject will not be further 

discussed. The reader is referred to the literature for more information on the topic (Deng et al., 

2006; Tseng et al., 2012). 

Perni, Deng, Shama, and Kong (2006) employed the Baranyi model, Weibull model, and 

an empirical model based on a third order polynomial to describe published inactivation data of 



58 
 

Bacillus subtilis spores in non-thermal plasmas (Table 3). The shape of the survival curves showed 

a deviation from linearity that the authors called as an inverse-S shape. The R2 was used to assess 

the adequacy of fit, and according to authors, the three models were adequate to fit the survival 

curves. The article has the value of extending the application of the Weibull and Baranyi models 

to non-thermal plasmas, however, it does not seem to go beyond a fitting exercise. From a practical 

standpoint, the proposed models were not correlated with plasma reactive species. Consequently, 

the use of these models for the design of real plasma processes seems to be very restricted. 

Roth, Feichtinger, and Hertel (2010) fitted the inactivation of Bacillus subtilis spores 

undergoing low-pressure nitrogen-oxygen cold plasma treatment to a biphasic inactivation model 

(Table 3). The inactivation curves were upwardly concave with a rapid inactivation phase followed 

by a slow inactivation phase. From the biphasic model two constants were calculated, 𝑘ଵ and 𝑘ଶ 

which translated the rate of inactivation for the two distinct phases. D-values were estimated from 

these rates by 𝐷ଵ = ln 10/(𝑘ଵ)  and 𝐷ଶ = ln 10/(𝑘ଶ) . According to the authors, the biphasic 

model was well suited to represent the experimental data. However, the approach of calculating 

two rate constants and the resulting D-values does not seem to be practical for industrial 

application of plasma sterilization. In addition, no validation analysis was performed to confirm 

the “suitability” of the approach to other plasma conditions or exposure time. Therefore, the lack 

of validation opens the opportunity for the development of a modelling approach that can be 

validated under other cold plasma conditions and samples. 

Liang, Zheng, and Ye (2012) compared models to describe the survival curves of 

Penicillium expansum exposed to low-temperature plasma. The authors used first-order kinetics, 

Weibull and the simplified Baranyi model to fit the Penicillium inactivation process (Table 3). 

Among the models, the first-order model was chosen as the most appropriate one based on the 

calculation of the coefficient of determination. However, of the nine plasma treatments, only for 

two of them the coefficient of determination was greater than those of the Weibull and Baranyi 

models. Therefore, the article has conceptual errors that lead to erroneous conclusions. It seems 

that the authors oversight the meaning of the coefficient of determination and inferred conclusions 

from them related to the fitting approach. In addition, the survival curves are clearly non-linear, 

but, still, the author assumed them to be linear. Subsequently, a model correlating the D-value with 

the plasma discharge-power (P) and air-flow (F) was constructed based on the response surface 

methodology. Needless to say, that parameters like (P x F) do not provide much physical 
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information on the reason of their relevance or a physical meaning of their effects on microbial 

inactivation.  

Lee, Kim, Chung and Min (2015) investigated the effects of cold plasma to inactivate, 

Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Typhimurium in cabbage, 

lettuce and figs. The initial plasma-forming gas was composed of N2, or a He—O2 mixture. L. 

monocytogenes was chosen as the model microorganism. The effect of treatment power (400, 474, 

650, 826, 900W) and time (1.0, 2.3, 5.5, 8.8, 10min) on the inactivation of L. monocytogenes in 

cabbage was investigated using modeling and response surface analysis. The experimental data 

were fitted to the first-order model, the Fermi’s kinetic model, and the Weibull model (Table 3). 

When power was assumed as the key variable, the treatment time was set at 5.5 min. On the other 

hand, when time was assumed as the key variable, the power was set at 650W. The modeling 

results suggest that when power was the key variable of the process, the models did not fit the data 

closely as they did when time was selected as the key variable. According to the authors, both first-

order and the Weibull models were adequate to describe the data, while little was said about the 

modeling ability of Fermi’s model. The study is relevant in investigating the inactivation of 

important foodborne pathogens that were linked to outbreaks of fresh produce in the U.S. However, 

it did not provide a full modeling approach. The authors mentioned that the reactive nitrogen 

species, and the reactive oxygen species such as O2+, O2
-, O, O3 can damage cellular structures, 

lipids, membranes and DNA, however these important lethal agents were not considered into the 

modeling. Consequently, there are opportunities to consider these gas species in the modeling of 

microbial death exposed to cold plasma treatments. 

Ren-Wu et al. (2015) studied effects of plasma created with He gas in the inactivation of 

E. coli and found that bacterial cells were completely killed in 60s. The modeling of E. coli 

inactivation was also attempted in this work. The authors began the modeling analysis by inferring 

that the inactivation process was similar to a chemical reaction process, and that one E. coli cell 

would be killed by αROS (Reactive Oxygen Species) (Table 3). The ROS concentration was 

considered constant, and the modeling approach was reduced to a first order kinetics. However, 

this assumption represents a serious flaw. The literature has reported that the concentration of 

reactive species actually increases with plasma processing time (Patil et al., 2014). Therefore, 

considering a constant concentration of ROS so that the modeling approach can be simplified is a 

serious shortcoming. Furthermore, the outcomes of such oversimplification would not accurately 
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describe the inactivation of bacterial cells and, in some situations, the method would lead to under 

processing and, as a consequence, lead to an increased risk. Therefore, the modeling approach 

attempted in this work may have a little impact in industrial applications. 

Recently, Hertwig, Reineke, Rauh, and Schlüter (2017) studied the factors involved in the 

wild-type and mutant Bacillus spore’s resistance to cold atmospheric pressure plasma. Different 

process gasses, such as dry air, N2, O2, and CO2 were used as the starting gas to generate the 

reactive species. The cold plasma generated from O2, and CO2 had nearly no UV ligh emission, 

but generated high concentration of reactive oxygen species like ozone. The high concentration of 

ozone was considered the cause of the greater inactivation of certain type of Bacillus subtillis 

strains treated with O2-generated cold plasma. The inactivation curves were non-linear and the 

Weibull model was used to describe the curves (Table 3). Based on the statistical indices, such as 

Adjusted R2 and RMSE, the authors concluded that the inactivation kinetics were adequately 

described by the Weibull model. The article provides a good study on different strains of Bacillus 

subtilis spores and their inactivation under a variety of cold plasma gases. Although the authors 

showed higher correlation between ozone concentration and spore inactivation, this relationship 

was not included in the modeling analysis. Instead, the Weibull model was fitted to the data solely 

to confirm its ability to describe the curvature of the survival curves. Nevertheless, the lack of a 

model that relates the dynamic formation of reactive species like ozone to the non-linear 

inactivation curves of Bacillus subtilis spores evidences the need for modeling approaches that are 

practical and therefore useful for industrial applications. Chapter 3 of this dissertation proposes a 

modeling approach that fills this gap in cold plasma sterilization research. 
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Table 3. Models used to describe microbial inactivation under Cold Plasma 

Primary Model Description of parameters Reference 
 
Bigelow 

𝑙𝑜𝑔 𝑆(𝑡) = −
𝑡

𝐷
 

 
 

 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (𝑠) 
𝐷: decimal reduction time (𝑠) 

 
Becker et al., 2005 

Empirical model 
 

𝑙𝑜𝑔ଵ଴ 𝑁(𝑡) =  𝑦 = 𝑎𝑡ଷ + 𝑏𝑡ଶ + 𝑐𝑡 + 𝑑 
 
 

 
𝑁(𝑡): spore concentration at time 𝑡 
𝑎, 𝑏, 𝑐, 𝑑: fitting parameters 

 
 

Perni et al., 2006 

Baranyi model 
 

𝑁(𝑡) =  𝑁଴𝑒ି௞೘ೌೣ௧  ൬
1 +  𝐶௖(0)

1 +  𝐶௖(0)𝑒ି௞೘ೌೣ௧
൰ 

 
 

 
𝑁଴: initial bacterial concentration 
𝑘௠௔௫ : maximum inactivation 
constant 
𝐶௖: “critical component” which may 
or may not be a real substance 
𝐶௖(0): initial concentration of the 
critical component  
 

 
 

Perni et al., 2006 

Simplified Baranyi 
 

𝑁 = 𝑚 x 𝑁଴ + (1 − 𝑚)𝑁଴ x 10ି௕௧ 
 

 
 

𝑁: cell concentration at time t 
𝑁଴: initial cell concentration 
𝑚: moduli 
𝑏: moduli 

 

 
 

Liang et al., 2012 
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Table 3. Continued 

First-order kinetics 
 

log 𝑁 = log 𝑁଴ − 𝑏𝑡 
 
 

 
𝑁: cell concentration at time t 
𝑁଴: initial cell concentration 
𝑏 : modulus that characterizes the 
inactivation intensity 
 

 
Liang et al., 2012 

 
𝑙𝑛(𝑅𝑀) = − 𝑘ଵ𝑃 

 
ln(𝑅𝑀) =  −𝑘ଶ 𝑡 

 
 
 

 

 
𝑅𝑀 : residual microbial 
concentration 
𝑘ଵ: first-order kinetic constant 
𝑃: treatment power (W) 
𝑘ଶ: first-order kinetic constant 
𝑡: treatment time (min) 
 

 
 

Lee et al., 2015 

 
𝛼ROS + 𝐸. 𝑐𝑜𝑙𝑖(alive) →  𝐸. 𝑐𝑜𝑙𝑖(dead) 

 
d 𝐶(𝑡)

dt
=  −𝑘଴𝐶ோைௌ

ఈ  𝐶(𝑡) 

 

𝑙𝑛 ൬
𝐶(𝑡)

𝐶଴
൰ =  −𝑘଴𝐶ோைௌ

ఈ  𝑡 =  −𝑘଴
ᇱ  𝑡 

 
 
 

 
 
𝐶(𝑡) : E.coli concentration at the 
treatment time (𝑡) 
𝑘଴: rate constant of reaction 
𝐶ோைௌ

ఈ : concentration of reactive 
species assumed to be constant 
𝑘଴

ᇱ : constant 

 
 

Ren-Wu et al., 2015 

Fermi’s kinetic model 
 

𝑅𝑀 =  
1

1 + exp ቀ
𝑃 − 𝑃௛

𝑎 ቁ
 

 

 
 

𝑅𝑀: residual microbial 
𝑃: power (W) 
𝑃௛: treatment power (W) 
 

 
 

Lee et al., 2015 

 



 
 

 63 

Table 3. Continued 

 𝑎: parameter indicating the slop of 
the curve around 𝑃௛ 

 

 

Biphasic inactivation model 
 

𝑁/ 𝑁଴ = 𝑓𝑒ି௞భ௧ + (1 − 𝑓)𝑒ି௞మ௧ 
 
 

𝑁: number of survivors 
𝑁଴: number of initial population 
𝑡 : treatment time (min) 
𝑓  : constant designating the 
transition from the first phase to the 
second 
𝑘ଵ : inactivation rate for the first 
phase  
𝑘ଶ : inactivation rate for the second 
phase 
 

Roth et al., 2010 

Weibull model 
𝑁(𝑡) = 𝑁଴ 10ି(௧/ఋ)೛

 
 
 

 
𝑁(𝑡): spore concentration at time 𝑡 
𝑁଴: initial bacterial concentration 
𝛿 : time required to reduce the 
viability of the cell population by 
90% 
𝑝: shape parameter 
 
 

Perni et al., 2006 

 
log(−𝑁/ 𝑁଴)) = log 𝑏 + 𝑛𝑙𝑜𝑔 𝑡 

 
 

 
𝑁: cell concentration at time t 
𝑁଴: initial cell concentration 
𝑏: moduli 
𝑛: moduli 

 
Liang et al., 2012 
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Table 3. Continued 

 

log 𝑁 = log 𝑁଴ − ൬
𝑡

𝛿
൰

௦

 

 

𝑁: number of survivors 
𝑁଴: number of initial population 
𝑡: treatment time (min) 
𝑠 : shape parameter 
𝛿: scale parameter 
 

Lee et al., 2015 

 
log 𝑆(𝑡) = − 𝑏 𝑡௡ 

 
𝑆(𝑡): survival fraction 
𝑡 : treatment time (min) 
𝑏 : scale parameter 
𝑛 : shape parameter 

Hertwig et al., 2017 
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 MODELING THE INACTIVATION OF BACILLUS 
SUBTILIS SPORES DURING COLD PLASMA STERILIZATION 

This chapter was published in the Journal Innovative Food Science and Emerging Technologies 

doi.org/10.1016/j.ifset.2018.12.011 

3.1 Abstract 

Cold plasma sterilization is an emerging non-thermal technology that is receiving great 

attention in the food processing area. Plasma is a neutral ionized gas composed of reactive gas 

species that inactivate bacteria or spores in a variety of food materials without compromising the 

main physico-chemical characteristics of the food. Survival curves of Bacillus subtilis spores were 

obtained after spore strips samples containing am initial spore population of 1.5-2.5 x 106 cfu/strip 

were subjected to plasma treatment. The shape of the survival curves was clearly not linear 

indicating that spores exhibit a spectrum of inactivation resistances to the plasma treatment. A 

Weibull model was used to describe these curves. In order to capture the effects of the typical 

variability in the concentration of the inactivating reactive gas species during plasma processing, 

time-varying concentrations were incorporated in the calculating approach. The result was an 

ordinary differential equation (ODE) that was numerically solved using MATLAB. This approach 

was successfully applied to describe the survival of Bacillus subtilis spores during plasma 

processing as well as data obtained from the literature for B. atrophaeus. Ozone was assumed the 

lethal reactive gas species responsible for spore inactivation. Modeling plasma processing is of 

great interest because it may provide an accurate estimation of time and conditions required for a 

complete plasma-based sterilization process. 

 

Key words: Bacillus subtilis; cold plasma; survival curve; Weibull model; spore inactivation; non-

thermal technology 
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3.2 Introduction 

Cold plasma is a non-thermal process that is receiving great attention as an innovative 

emerging technology to sterilize foods without changing their main physical properties and 

composition (Li & Farid, 2016; van Bokhorst-van de Veen et al., 2014). It has been used to 

inactivate pathogens and spores of public health concern, such as Salmonella spp., Escherichia 

coli O157:H7 and Listeria monocytogenes (Kim et al., 2015; Lee, Kim, Chung, & Min, 2015; 

Pasquali et al., 2016; Ziuzina, Patil, Cullen, Keener, & Bourke, 2014; Ziuzina, Han, Cullen, & 

Bourke, 2015). Patil et al. (2014) achieved inactivation of Bacillus atrophaeus inside of sealed 

packages, showing the suitability of the process to treat foods packaged in materials sensitive to 

temperature (van Bokhorst-van de Veen et al., 2014). Inactivation of endogenous enzymes has also 

shown the potential of cold plasma to ensure enzymatic stability while retaining initial product 

quality (Bußler, Steins, Ehlbeck, & Schlüter, 2015; Tappi et al., 2015). Non-food applications 

include sterilization of medical instruments that are sensitive to heating (Patil et al., 2014; Venezia, 

Orrico, Houston, Yin, & Naumova, 2008). Recently, the uses of cold plasma processing in a 

number of applications have been discussed in several reviews (Li & Farid, 2016; Misra, Tiwari, 

Raghavarao, & Cullen, 2011; Scholtz, Pazlarova, Souskova, Khun, & Julak, 2015) in a number of 

applications.   

Plasma is defined as a partially or fully ionized gas composed of photons, ions, and free 

electrons as well as atoms in their fundamental or excited states having a net neutral charge (Misra, 

et al., 2011; Moreau, Orange, & Feuilloley, 2008). Two classes of plasma, namely thermal and 

non-thermal, are defined depending on the conditions they are generated. Thermal plasmas are 

obtained at high pressure and require higher power (up to 50 MW) to be created (Fridman, Gutsol, 

& Cho, 2007; Moreau et al., 2008). They can be found in plasma torches and electric arcs, for 

instance. In contrast, non-thermal plasmas are generated in lower pressure and require lower power 

(Moreau et al., 2008). Nonthermal plasmas can be generated by dielectric discharges in low-

pressure gases or using microwaves. Plasma generated at atmospheric pressure, and with a 

temperature close to ambient, is of technical and industrial interests because they do not impose 

extreme conditions to the product (Misra et al., 2011; Moreau et al., 2008). A variety of terms can 

be used to describe plasmas of this type including atmospheric pressure plasma, cool plasma, cold 

plasma, among other comparable terms (Niemira, 2012). Cold plasma discharges can be produced 

by a variety of means including dielectric barrier discharges (DBD), the corona discharge, radio 
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frequency plasma, and the gliding arc discharge (Fridman et al., 2007; Misra et al., 2011). A 

discussion on the various cold plasma techniques, their use for decontamination or sterilization, 

their properties and limitations can be found on the literature (Moreau et al., 2008; Niemira, 2012, 

2014). For decontamination and sterilization purposes of nonthermal plasmas in contact with 

liquids, a useful reference is the review of Bruggeman and Leys (2009), which emphasizes the 

generation mechanisms and physical characteristics of these plasmas in a great detail. 

Dielectric barrier discharges (DBD) is one of the most convenient ways to generate plasmas 

(Ziuzina, Patil, Cullen, Keener, & Bourke, 2013). This type of discharges has a broad range of 

industrial applications because they operate at non-equilibrium conditions at atmospheric pressure 

and at reasonably high power levels without using sophisticated pulsed power supplies (Fridman 

et al., 2007; Moreau et al., 2008). Through the flexibility of DBD configurations in terms of the 

electrode geometrical shape and the dielectric material employed, optimized laboratory scale 

experiments can be scaled up to large industrials installations (Kogelschatz, Eliasson, & Egli, 1997; 

Ziuzina et al., 2013). For these reasons, DBD discharges were employed in this study to produce 

cold plasma.  

The cold plasma generated through a dielectric barrier discharge burns in the presence of 

natural or synthetic air, plus other gases such as nitrogen, oxygen, hydrogen, argon or their 

mixtures (Scholtz et al., 2015). The gases that pass through the discharge are ionized by high-

energy electrons accelerated in an electrical field (Misra et al., 2011) and the result is a fully or 

partially ionized mixture of reactive gas species capable of killing bacteria or inactivating spores 

(Venezia et al., 2008; Ziuzina et al., 2013). The reactive species generated include reactive oxygen 

species (ROS), reactive nitrogen species (RNS), energetic ions, ultraviolet (UV) radiation, and 

charged particles. It has been revealed that the concentration of reactive gas species increases 

significantly with plasma exposure time. Keener et al. (2012) and Patil et al. (2014), for instance, 

have shown the increase in ozone concentration for different plasma sterilization treatments.  

Traditionally, the inactivation of microbial and spore cells has been assumed to follow first-

order kinetics, and this model has been used to quantify risk assessments in food safety (Gomez-

Jodar, Ros-Chumillas, & Palop, 2016). The approach, required by regulatory agencies, is used in 

the canning industry to predict the effects of different processing conditions on the survivability 

of lethal anaerobic microorganisms such as Clostridium botulinum. The assumption of first-order 

kinetics to describe the inactivation reaction yields log-linear survival curves that are used to 
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predict the inactivation of an organism exposed to given processing conditions (Chen, Campanella, 

& Corvalan, 2007). Although first-order kinetics have been extensively used, many survival curves 

reported in the literature have shown nonlinear relationships with either downward or upward 

concavity (Campanella, 2016; Van Boekel, 2002). Thus, for these cases, the first-order kinetics 

fails to describe the mortality of microbial cells. Therefore, a model considering different shapes 

of microbial inactivation should be used (Aspridou & Koutsoumanis, 2015; Campanella & Peleg, 

2001; Chen et al., 2007; Peleg & Penchina, 2000; Peleg, Normand, & Campanella, 2003). 

Furthermore, the first order kinetics does not take into account the heterogeneity of cell 

communities as a source of variability in population dynamics (Koutsoumanis & Aspridou, 2016), 

and assumes that microorganisms have identical resistance to the lethal agent, which does not 

appear to be a realistic assumption. Some microorganisms are inactivated sooner or later than 

others, thus showing a spectrum of resistance in their population (Peleg & Cole, 1998). The 

different spectrum of resistances of the microbial population to an inactivation process leads to the 

conclusion that the mortality of microorganisms is ultimately a random process (Fredrickson, 

1966); and the shape of the survival curves is determined by the microorganisms’ distribution of 

resistance to the treatment. More specifically, a probabilistic model examines shapes of mortality 

curves that are in relation to the statistical properties of the distribution of resistances of the 

individual cells or spores to the lethal agents (Aspridou & Koutsoumanis, 2015; Peleg & Cole, 

1998). A number of non-linear models have successfully described the shapes of mortality curves 

or inactivation curves, and one of the more commonly used is the Weibull distribution (Mafart, 

Couvert, Gaillard, & Leguerinel, 2001; Peleg & Cole, 1998; Peleg & Penchina, 2000; Peleg & 

Normand, 2004; Van Boekel, 2002).  

The Weibull model was selected in this work to describe the inactivation parameters from 

experimental data of B. subtilis spores subjected to cold plasma sterilization. In order to capture 

the varying conditions of ozone concentration, these temporal variations were incorporated in the 

model to calculate the microorganism’s inactivation during the process. This approach was first 

proposed by Peleg et al. (2003) and was applied to thermal sterilization.  In this work, the approach 

is extended for application to cold plasma sterilization. To test the applicability of the approach in 

plasma processing, B. subtilis spores were used as the target microorganism because it is a heat-

resistant spore that often compromises the thermal efficacy of heat processes (Gomez-Jodar, Ros-

Chumillas, & Palop, 2016). There are multiple mechanisms involved in spore resistance that 
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appear to be conserved across Bacillus species, and most of the studies on mechanisms of spore 

resistance have used B. subtilis spores (Setlow, 2006). B. subtilis is a non-pathogenic bacterium 

that has been extensively used as surrogate microorganism for pathogenic bacteria. When direct 

measurements are feasible, the use of the surrogate microorganisms of high resistance are often 

used; for instance, for parasites such as Giardia lamblia and Cryptosporidium parvum 

(Yousefzadeh et al., 2018) as well as surrogates for bioterrorism agents like Bacillus anthracis 

(DeQueiroz & Day, 2008). Besides their use as surrogates for a broad range of microorganism, the 

ease of count and identification of these cells on laboratory conditions has contributed significantly 

to the decision of selecting these spores as the target for other investigations and the present study. 

Concerning this manuscript, once the model was developed to describe the inactivaion of the 

surrogate spores the approach was tested to describe the inactivation of B. atrophaeus spores using 

data found in the literature. The treatments involved cold plasma treatments with two types of 

sterilizing gases (air and a mixture of 90% N2 and 10% O2) and two exposure modes, direct and 

indirect exposure of samples to the plasma gases (Patil et al., 2014).   

Until now, models that consider the generation of ozone over time and their relation to 

microbial death have not been investigated. Therefore, the aim of the present work was to develop 

a model able to assess how dynamically changing ozone concentration affect the inactivation of 

microbial cells during plasma treatment. The development of a suitable model has remarkable 

industrial relevance because it contributes to accurately predict the treatment time necessary to 

achieve a safe reduction in microbial viability using real processing conditions. 

3.3 Material and methods 

3.3.1 log-lineal or first-order kinetics 

The assumption of first-order kinetics to a plasma process yields, upon integration, the 

following equation: 

𝑁 (𝑡) =  𝑁଴ exp(−𝑘′𝑡 )  (1) 

N(t) is the number of microorganisms or spores alive after treatment of time t with a certain plasma 

gas concentration,  N0 is the initial concentration of spores and k’ is a rate constant. Another way 

of expressing Eq. (1) is by defining the survival ratio or spore reduction S(t) = N(t)/N0 and after 

rearrangements of Eq. (1) the following equation is obtained: 
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log  𝑆(𝑡) =  −
1

𝐷
𝑡 =  −𝑏 𝑡 

 (2) 

Eq. (2) is an alternative way of expressing the microbial survival as a function of an exponential 

distribution function. The exponential distribution function is one of the many parametric models 

used for analyzing survival data. However, this type of distribution assumes that the hazard rate b 

is constant, which implies that the probability of microbial death remains constant as the plasma 

treatment progresses. It also implies that the probability of microbial depends exclusively on the 

processing time considered (Machin, Cheung, & Parmar, 2006, chap.4) at a specific processing 

condition.  The hazard rate b is also a function of the lethal agent, thus the fact that the 

concentrations of the reactive species are not constant during plasma processing invalidates the 

assumption that the parameter remains constant during the process. Moreover, when the hazard 

rate is considered constant, the spores have identical resistance to the lethal agent. However, 

studies have shown that some spores are inactivated sooner or later than others due to the existence 

of a spectrum of resistance to the treatment within the microbial population (Peleg & Cole, 1998). 

Therefore, an exponential distribution function assumed when the first order kinetics is considered 

would not be appropriate for analyzing spore survival data for more realistic situations. 

3.3.2 The Non-Linear Survival Kinetics 

A model able to describe different shapes of mortality curves is the Weibull model. The 

Weibull distribution assumes that the hazard rate is not constant, but rather increases or decreases 

with time (Machin et al., 2006 chap. 4). Perni, Deng, Shama, and Kong (2006) have shown that 

this model is useful to describe the inactivation kinetics of plasma processing. For constant 

concentration of the reactive species, it can be assumed the following format of the model (Peleg 

& Cole, 1998; Peleg & Normand, 2004): 

𝑙𝑜𝑔 𝑆(𝑡) =  −𝑏 (𝐶) 𝑡௡(஼) 
 

(3) 

where 𝐶  is the concentration of the reactive species, and 𝑏(𝐶)  and 𝑛(𝐶)  are concentration 

dependent survival kinetics parameters. The shape of the survival curves is given by the parameter 

𝑛. When n>1 the curve has a downward concavity, it is a straight line when n=1 (lineal case – Eq. 

(2)) and has an upward concavity when n<1 (Campanella, 2016). For the present study, 𝑛 is treated 

as a concentration-independent parameter because its values are randomly distributed as ozone 

concentration changes. The coefficient b(C) is the rate of killing of spores and increases with the 
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concentration of the reactive gas species. It can be further assumed that during the treatment no 

growth or recovery of spores is taking place.  

The relationship between the parameter 𝑏(𝐶) and the reactive species concentration 𝐶 is 

assumed to follow the log logistic equation (Campanella & Peleg, 2001; Peleg & Normand, 2004): 

𝑏 (𝐶) = ln[1 + exp (𝑘(𝐶 − 𝐶஼))] 
 

(4) 

𝑘 and 𝐶௖  are parameters that specifically depend on the type of spore. A critical or threshold 

concentration, CC, is a concentration above which the inactivation of that microorganism or spore 

becomes effective, while k measures the effects of a gas specie concentration on b(C) at the 

inactivation region. It should be noted that the above two equations imply that the concentration 

of reactive and inactivating species remain constant during the treatment, which is an assumption 

that rarely holds for real plasma treatments.  Plasma gases are generated and vary over time, so a 

model to describe the concentration of these time varying reactive species could be used. Peleg et 

al. (2003) used the following model: 

𝐶(𝑇) =
𝑡

𝐶ଵ + 𝐶ଶ𝑡
 

 

(5) 

Eq. (5) could be replaced for experimental data of reactive species versus time, and an interpolation 

function could be used instead. Furthermore, since the concentration of reactive species generated 

is non-constant, it is preferable to use the local rate of change of survived spores, which can be 

calculated by differentiating Eq. (3) with respect to time. Peleg and Penchina (2000) proposed this 

methodology to estimate survival parameters under nonisothermal conditions in thermal processes 

by assuming that the local slope of the nonisothermal survival curve was a function of the 

momentary temperature 𝑇(𝑡). By applying the same assumption for plasma processing with non-

constant reactive species concentrations, the corresponding survival curve of spores can be 

described by the differential equation: 

d log 𝑆(𝑡)

𝑑𝑡
=  −𝑏[𝐶(𝑡)] 𝑛[𝐶(𝑡)] ൜

−𝑙𝑜𝑔 𝑆(𝑡)

𝑏(𝐶(𝑡))
ൠ

௡[஼(௧)]ିଵ
௡[஼(௧)]

 

 

(6) 

Eq. (6) can be solved using the initial condition log S(t)=0 at t=0. Given the non-linear 

characteristics of Eq. (6), it has to be numerically solved as an initial value problem using a 

software such as MATLAB® (Mathworks®, Natick, MA, USA) to estimate the survival curve in 

terms of the log S(t) versus t, under conditions of non-constant reactive gas species concentrations. 
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It must be noted that the numerical approach does not provide a solution when the initial condition 

is used because the logarithm of S(t) =1 is not defined at the initial conditions. Thus, if the initial 

condition at t=0 is replaced by a small value such as log S(t) = 10-7, the numerical integration 

provides the right solution. Several small initial values were used with no changes in the result of 

the integration. The applicability of the approach is demonstrated with experimental inactivation 

data from B. subtilis spores assuming ozone as the leading reactive gas species responsible for 

spore inactivation. 

3.3.3 Microbial Survival data 

3.3.3.1 Spore population and sample preparation 

Bacillus subtilis var. niger (B. atrophaeus) spore strips (NAMSA, Northwood, OH, USA) 

with size 3.2 cm × 0.6 cm were used. Each spore strip contained a spore population of 1.5-2.5 × 

10
6
cfu/strip. Single spore strips were loaded into an open sterile polystyrene petri plate, which was 

then placed inside the treatment package made from a Cryovac® B2630 high barrier film (Sealed 

Air Corp., NC, USA). The samples were placed in the center of the electrodes and directly exposed 

to cold plasma.  

3.3.3.2 Cold plasma treatment 

Dielectric barrier discharges (DBD) plasmas were employed to inactivate B. subtilis spores. 

Fig. 3 shows a schematic view of the DBD utilized for the cold plasma treatment.  Ionization 

electrodes consisted of rectangular wrappings of copper wire coils approximately 7.5 cm x 11.5 

cm placed directly above and below the center of the treatment package. The packages (22 cm x 

30 cm) were sealed, purged and filled with 1.76 l of the working gas containing 22%O2, 30%N2, 

40%CO2 and 8% Ar, using a calibrated flow meter. The ionization system was run at 50 kV (65-

75W @ 0.5-0.8mA) with an electrode gap or depth of 2.5 cm. Samples exposures time to the cold 

plasma discharge were 0, 15, 30, 60, and 120s. The tests were replicated five times, and average 

values are reported. All treated packages were stored for 24h at room temperature (22°C), and then 

bacterial spore recoveries were conducted using standard microbiological methods. In addition, 

plates were monitored up to 72 hours post-recovery to monitor any potential regrowth from injured 

cells. 
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3.3.3.3 Spore recovery 

Spore recoveries and aseptic methods were followed as indicated per manufacturer 

(NAMSA, Northwood, OH, USA) for the population estimation of the B. subtilis spore strips. 

After the ionization treatment and 24h storage, each strip was aseptically removed from its 

treatment package and transferred into sterile 20 x 150 mm test tube containing 9.6 ml of 0.1% 

sterile peptone. Twelve sterile 6-mm glass beads were then added to each test tube. Each test tube 

was vortexed (model vortexer 59, Denville Scientific, Inc., Metuchen, NJ, USA) on high speed for 

2-3 min or until the spore strip was fully macerated. Test tubes were then heat shocked to fully 

germinate spores in a 90°C water bath and held for 10 minutes. Test tubes were transferred to a 

cold tap water bath for 2min, and then to ice water bath to rapidly cool the test tubes to 0-4°C. The 

test tubes were then removed from the ice bath, and serial dilutions were performed including 10-

2, 10-3, 10-4, and/or 10-5 based on the treatment or recoveries of positive (+) controls (Bacillus 

populations of 1.5-2.5 x 106/strip, or 6.2-6.4 log). The required aliquot volumes from the 

corresponding serial dilutions were then plated into respective sterile petri plates (100 x 15mm) 

containing sterile Tryptic Soy Agar (TSA, Becton, Dickison and Co., Sparks, MD, USA) prepared 

per DifcoTM manual specifications for spore colony enumeration. TSA plates were incubated at 

35°C and colony growth, and recoveries were monitored at 24h, 48h, and 72h. 

3.3.4 Gas measurements of reactive species 

The working gas, containing 22%O2, 30%N2, 40%CO2 and 8% Ar, was certified by the 

manufacturer (People’s Welding, West Lafayette, IN). The sealed packages (22 cm x 30 cm) were 

filled with 1.76 L of gas at a rate of 2.1 L/min using a calibrated flow meter (Model 2260, Gilmont 

Instruments, Inc., Barrington, IL, USA) with an average fill time of 50s. The packages were then 

stored at room temperature (22°C). Gas concentration in the sealed packages was verified using a 

calibrated oxygen analyzer (Mocon®, Model 302, Minneapolis, MN, USA). Ozone and nitrogen 

oxide gas concentrations were measured using the Drager® gas analysis system (Dräager Safety 

AG & Co., Lübeck, Germany) immediately after treatment and after 24h at room temperature 

storage (22°C). The system was selected for ease of use with the given experimental setup and 

rapid measurement capabilities. Tubes containing a colorimetric reagent, which changed color 

upon contact with the specified gas were calibrated for specific sampling volumes. These tubes 

were connected to a bellows hand pump, Drager® Accuro Gas Detector Pump (Drager Safety AG 
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& Co., Lübeck, Germany), and calibrated such that one pump equals 100 ml of gas. Ozone tubes 

(Mfr no. CH 21001) had a measured range between 20 and 300 ppm whereas the measurement 

range for nitrogen oxide (Mfr no. CH 24001) was 20-500 ppm. A cross-sensitivity of 5 ppm NOx 

per 100 ppm ozone was identified and corrected for in reported values. Carbon monoxide tubes 

(Mfr no. CH 33051) had a measurement range of 25-300 ppm. It was noted that carbon monoxide 

tubes had interference with ozone. Thus, carbon monoxide measurements could not be taken with 

ozone present. Initial concentrations of carbon monoxide were determined from measuring half-

life decay at 24 hours and extrapolating to initial conditions. Measurements of reactive gas species 

such as ozone, nitrogen oxide, and carbon monoxide were performed, and it was found that ozone 

concentration was 12 and 29 times greater than the concentration of nitrogen oxide and carbon 

monoxide, respectively. Moreover, unlike the other gases whose concentration varied randomly, 

the concentration of ozone was progressively increasing with time. Thus, it was assumed that 

ozone was the key reactive gas promoting inactivation of the spore cells. In order to capture the 

steady increasing ozone concentration, this time variation of ozone concentration was incorporated 

in the model to estimate spores’ reduction potential during the process. This approach was first 

proposed by Peleg and Penchina (2000) and was applied to thermal sterilization, which is extended 

in this manuscript to estimate the efficacy of cold plasma sterilization.  

In order to determine ozone values when testing high concentrations, smaller gas sample 

volumes (2 or 5 ml) were collected in a 5 ml syringe. The syringe was connected to the detection 

tube by small (2 cm length) flexible tubing. A syringe volume was expelled into the detection tube 

and then removed allowing the total flow volume of 100 ml to occur. The observed gas 

concentration was then multiplied by the volume ratio of the detection tube volume over the 

syringe volume (x50 or x20). For 24-hour ozone sampling, a low concentration ozone tube (Mfr. 

no. 6733181) was used with a measurement range of 0.05-0.7 ppm. The Drager® portable gas 

detection system had a precision of ±15% (Drager Safety AG&Co., Lübeck, Germany). 

3.3.5 Model development 

Traditionally the parameters b(C) and n, at specific concentrations, are estimated by fitting 

the experimental survival curve with the kinetics model selected to describe the inactivation of the 

microorganisms. However, in these calculations is assumed that those parameters are determined 

under constant concentrations conditions, which are difficult to achieve in the cold plasma 
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treatment. Thus, the changes in the inactivating reactive gases with time have to be incorporated 

in the calculations. As discussed, the generation of reactive species (ozone in this case) can be 

properly described by Eq. (5). This expression is empirical and itself irrelevant as long as it can 

ably describe the reactive gas species concentration as a function of time and be able to be 

incorporated into Eq. (6) along with Eq. (4), which in this manuscript describes how the Weibull 

parameters are affected by the concentration of the reactive species. 

Given the non-linear characteristics of the ordinary differential equation (ODE), the 

solution of Eq. (6) along with Eqs. (4) and (5), requires a numerical approach such as the Runge-

Kutta method that is implemented in software like MATLAB®, used in this research.  The Runge-

Kutta method was deemed to be appropriate for these calculations because it is suitable to solve 

ODE when moderate accuracy (≤10-5) is required (Press, Teukolsky, Vetterling, & Flannery, 1992, 

chap. 16). Specifically, the ordinary differential equation solver ode45 was used in the solution of 

Eq. (6), where the effect of the concentration of reactive species C on the kinetics parameters b is 

described by Eq. (4) whereas the time dependence of the ozone concentration C(t) by Eq. (5). The 

ode45 tool was selected because includes a variable time step allowing for efficient computation 

(Bober, Tsai, & Masory, 2010, chap. 6). The solution of Eq. (6), with C(t) described by Eq. (5), 

can be used to adjust the inactivation parameters k, CC, and 𝑛 that better describe the experimental 

data by minimizing the SSE determined from the experimental data and the solution of the model. 

A Matlab script was written and a special search was utilized to find the set of parameters that 

minimized the square deviation between the values of the microbial population estimated from the 

model and the mean value of the microbial population at a processing time. Survival population at 

times 0s, 15s, 30s, 60s and 120s were recorded, and the corresponding SSE values were determined. 

The global minimum SSE for the whole process was obtained from the SSE obtained at each time 

interval. For further analysis, the RMSE value was defined as: 

𝑅𝑀𝑆𝐸 = ඨ
𝑆𝑆𝐸

𝑚 − 𝑝
 

 

(7) 

where m is the number of observations and p is the number of parameters estimated. 
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3.4 Results and discussion 

3.4.1 Model application on B. subtilis data 

3.4.1.1 Traditional Approach – calculations based on the concentration of inactivating gas 
constant 

The inactivation curve of B. subtilis spores resulting from plasma treatment is shown in 

Fig. 4. This figure clearly shows that the inactivation of spores does not follow first-order kinetics 

and is clearly not linear; it also displays a concave upward shape. The results indicate a microbial 

population reduction greater than six logarithmic cycles in viable cell concentration after 

approximately 120 seconds of plasma treatment, corroborating the efficacy of the sterilization 

treatment.  

A typical fitting approach of the experimental data using Excel™ was performed to obtain 

the survival kinetics parameters defined by Eq. (3). Average parameter values estimated from five 

replicates are shown in Table 4. 

 

Table 4. Survival parameters estimated from the Weibull model assuming constant concentration 
conditions: 

Parameter Estimate 

n 0.142 

b 0.808 

 

It is important to note that these parameters are obtained with the assumption that the 

concentration of the reactive lethal gas remains constant during the process. However, this is not 

the case for cold plasma processing (refer to Fig. 5). Thus, the Weibull model parameters given in 

Table 4 do not provide a true representation of the survival kinetics because they ignore that the 

concentration of ozone is varying with time. Despite the incorrect assumption, a reasonable fit of 

the Weibull model to B. subtilis spore’s survival data is observed in Fig. 4, with a RMSE of 0.76. 

Concerning the shape of the survival curve, if profoundly scrutinized, it can be observed that the 

Weibull model described it as an upward concavity (i.e., 𝑛 < 1 see Table 1). However, it does not 

appear to be the case, as it can be clearly seen a shoulder at t = 15s with a downward concavity 

after that time. About this, a survival curve showing a shoulder should yield the shape parameter 

greater than 1 (i.e. ,𝑛 > 1) revealing a downward concavity shape. This highlights the inherent 
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difficulties in attempting to use this model for cold plasma processing. It also suggests that due to 

the expected varying concentration of reactive gases over time in the treatment, this condition 

should be incorporated into the modeling approach. In fact, the initial low concentration of the 

reactive gases in the beginning of the treatment was probably not sufficient to inactive the spores, 

but once this concentration reached the critical or threshold value, spores were inactivated at a 

higher rate exhibiting a downward concave shape (𝑛 > 1). Indeed, application of the classical 

approach assuming constant concentration of the reactive gas using a linear kinetics, Weibull, or 

any other kinetics would lead to incorrect information.   

The reactive gases species ozone, nitrogen oxide, and carbon monoxide yielded maximum 

concentrations of 5900 ppm, 485 ppm and 200 ppm respectively [data not shown]. By considering 

the highest concentration generated corresponded to ozone, this gas was considered as the major 

lethal agent in the process. This assumption appears to be solid and supported for practical 

experience because ozone, which is included in the ROS group, is considered one of the most 

important antimicrobial agents playing a key role in the inactivation of spores (Lu, Patil, Keener, 

Cullen, & Bourke, 2014; Misra et al., 2011). In order to describe the variation of ozone 

concentration with time during the process, the experimental data was fitted with Eq. (5).  Results 

are illustrated in Fig. 5, where a R2 = 99.4% indicates an excellent fit with model parameters C1 

and C2 yielding values 0.0043 and 0.0006, respectively. The shortcoming in using an empirical 

model is that it is not related to the plasma chemistry.  Relationships between the plasma chemistry 

and the concentration of the reactive lethal gas is a subject currently under study. Although not 

mathematically/physically rigorous, the proposed empirical model for ozone concentration 

reproduced the ozone generation fairly well, as observed in Fig. 5. Further developments could 

potentially relate these empirical model parameters to physical features of ozone generation from 

plasma processing, and with other reactive gas species that may play a role in spore inactivation. 

3.4.1.2 Modeling Approach – calculations based on time-varying concentration of inactivating 
gases 

To address the difficulties in applying the Weibull model for a constant concentration of 

the principal reactive lethal agent, the model described as Eq. (6), which includes a variable 

concentration of ozone. The speed and convergence of the solutions depend on the specified range 

of initial guesses used for the parameters n, k, and CC. In order to assess the convergence of the 

approach and test the result of the shape parameter on the solution, two value ranges for the 
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variable n were considered: [0.25–1.5] and [0.25–2.0] with six or seven values within that range, 

respectively. The range for k was [10-5 to 10-2] with 1000 values considered within this range, 

whereas the range for CC was [102 to 104] considering 100 values within this range. As discussed, 

the best estimation of the n, k, and CC parameters was based on the minimization of the global SSE.  

Thus, although the computation was a formidable task, the software was able to converge to a 

solution in a relatively short time. The range the guesses used for the parameter n affected 

especially the parameter CC; however, some values obtained for this parameter did not have 

physical meaning, so the corresponding range was discarded.  For instance, if the range of guesses 

for n was [0.25–2] the obtained value for the Cc parameter was 6800, which exceeded the 

maximum ozone concentration of 5900pm generated in the plasma treatment (see Fig. 5).  In other 

words, the value of the critical or threshold concentration Cc is never reached during that treatment, 

which under these conditions would result in no inactivation. Some of the conditions necessary to 

discharge some unrealistic solutions are straightforward in the approach. Peleg et al. (2003) 

discussed the physical meaning of the threshold parameter Tc in thermal treatments, and similar 

concepts apply to plasma processing.  

Survival parameters estimated from the modeling approach presented in this work in which 

the variation of ozone concentration is being considered, as well as the corresponding RMSE value, 

are presented in Table 5. Besides providing more realistic values of the survival kinetics 

parameters, values of RMSE indicate an improvement on the goodness of fitting of the model to 

the experimental data. It is clear from Fig. 6 that the description of the survival curves was 

significantly improved by using the approach developed in this work. The major advantage of the 

program written in MATLAB® to solve Eq. (6) is that it can extract a set of inactivation parameters 

that take into account realistic scenarios in which the concentration of ozone, or in fact other 

reactive gases used alone or in combination, changes with time. The approach also provides a more 

realistic explanation of the results confirming the expectation that n >1, which would lead to 

survival curves with downward concavity. As illustrated in Fig. 6, this result is in a better 

agreement with experimental data and better describe the presence of the shoulder in the survival 

curve. The observed initial downward concavity would be indicating that the spores are weakened 

by the exposure to the lethal agent, and the time needed to inactivate them is progressively shorter. 

A slight tail in the survival curve observed for times between 60s and 120s of treatment is also 

captured by the proposed model (Fig. 6). This tail most likely is showing that after 60s, the weaker 
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spore population is completely inactivated and it becomes more difficult to inactivate more 

resistant spore populations. By comparing Fig.4 and 6 is possible to see that the modeling approach 

was able to reproduce better the experimental survival curve of B. subtilis spores, and thus 

estimates inactivation parameters for this microorganism under more realistic processing 

conditions. Comparing the survival curves illustrated in Figs. 6B and C, it can be observed that 

results are very similar and there is only a small difference between their RMSE. Choosing 

between them would be a matter of checking which one would result in a more meaningful critical 

concentration parameter (CC). This could be done by checking the maximum amount of ozone 

generated in the process and comparing that value with the value of CC obtained from the approach. 

As illustrated in Fig. 5, the highest ozone concentration generated was approximately 5900 ppm, 

and since the critical concentration should be smaller than that value a CC = 3600 ppm would be a 

more feasible value than CC = 6800 ppm. Consequently, the best set of model parameters n, k, and 

CC that realistically captures the inactivation of B. subtilis spores are respectively 1.5, 0.0025 ppm-

1 and 3600 ppm. 

 

Table 5. Estimated inactivation parameters, n, k, and CC of Bacillus subtilis data subjected to 
plasma treatment under a concentration of ozone changing with time. 

Method n k (ppm-1) CC (ppm) RMSE 

Modeling approach 
ozone concentration constant 

with time  

0.81 0.0067 1800 1.05 
 
 

 
Modeling approach 

ozone concentration changing 
with time 

1.5 
 

0.0025 3600 0.46 
 

1.75 0.0012 6800 0.38 
 

 

3.4.1.3 Model Application to other Bacillus species (Bacillus atrophaeus) 

The reduction of B. atrophaeus spores as a function of time for two different modes of 

plasma exposure (direct and indirect), and two different gas types (air and a mixture of 90%N2 and 

10% O2) is illustrated (Fig. 7) using data from the literature (Patil et al., 2014). As observed in the 

figure, B. atrophaeus survival curves are clearly non-linear, and the inactivation of these spores 

certainly does not follow a first-order kinetics.  
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For the two different gas types, the critical concentration of ozone (Cc) was assumed equal 

to the maximum concentration of ozone reported by Patil et al. (2014). Application of the model 

to the experimental survival curves and the experimental concentration of gases versus time 

resulted in a set of survival kinetics parameters, which describe the experimental data through the 

minimization of SSE reasonably well. The obtained parameters are reported in Table 6. 

 

Table 6. Survival parameters, n, k, and CC for Bacillus atrophaeus obtained from the model 
applied to experimental data from Patil et al. (2014). 

Gas Type Mode of 
exposure 

n k Cc √𝑆𝑆𝐸 

Air 
Direct 0.75 0.0012 5230 1.27 

Indirect 0.75 0.0012 7000 3.62 

90% N2+10% O2 
Direct 0.75 0.0021 4000 0.65 

Indirect 0.25 0.0086 4400 1.57 
 

It is important to point out that the values of √𝑆𝑆𝐸 are reported instead of the RMSE values 

because the number of data points are different. Some treatments had three data points and others 

five data points. If Eq. (7) is applied to calculate RMSE values, m=3 and p=3 for the data set of 3 

points m-p is zero and RMSE cannot be determined. Therefore, √𝑆𝑆𝐸 was selected to estimate the 

goodness of the fit of the model to describe the experimental data. Interestingly, the parameter n 

did not change for most of the treatments except when the treatment was indirect, and the gas was 

a mixture of N2 and O2. Moreover, if the air gas is particularly considered, it can be seen that the 

parameter k did not change regardless of the mode of exposure. Whether this similarity was due to 

the gas type and the maximum ozone generated, or to particular characteristics of the strains, it 

cannot be determined from the available data. However, the objective of the present work was to 

evaluate the feasibility of the modeling approach to estimate survival kinetic parameters of the 

same microorganism. Thus, this observed agreement is not of concern for the purposes of this 

study. 

The survival parameters obtained from the solution of the model, which are reported in 

Table 6, were used to calculate survival curves, which are plotted along with the experimental data 

in Fig. 7. In Figs.7A and B, the difference in treatment times used with the two modes of exposure 

is because a treatment time of 60s resulted in complete inactivation of spores for direct exposure 

and, thus, model-based calculations were performed until that time. As illustrated in Fig. 7, the 
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curves closely described the data when direct plasma exposure was employed. The model was 

tested with data from the literature with a different strain and different treatment modes, and the 

goodness of the fitting was reasonable, despite the little information on the gases concentration 

and its dependence with time. Thus, it is expected that the modeling approach could be used for 

other applications of plasma processing from where a more complete data set can be obtained. 

3.5 Conclusions 

The work shows that experimental survival curves of B. subtilis spores are far from being 

linear and showed noticeable downward concavity when plotted in semi-logarithmic plots. The 

Weibull distribution was used in this research to describe the non-linear behavior of the 

inactivation of B. subtilis. However, other models could be implemented in the proposed approach 

without losing generality.  

Regarding processing, the generation of reactive gas species during the plasma treatment is 

a naturally random process, and the concentration of lethal reactive gases generated is far from 

being constant during the process. When dealing with non-constant concentration conditions, the 

rate of change of survival spores is better described through a model that takes into account the 

change of the reactive gas (ozone in this case) concentration with time. Despite the apparent 

complexity of the model, equations can be solved numerically with software like MATLAB® 

without major difficulties. The main advantage of the approach is that it captures the inherent 

varying concentration conditions during plasma sterilization and, therefore, it is useful to estimate 

inactivation parameters of microorganisms (e.g., Bacillus subtilis and Bacillus atrophaeus spores) 

under more realistic processing conditions. 

Admittedly, the suggested empirical model used to portray the concentration of reactive 

gas species as a function of time have yet to be related to plasma physics. This leaves the window 

open for potential future research on modeling inactivation of spores and microorganisms 

considering more elaborate physical models and inactivation using several reactive gases. Models 

of such scenarios are yet to be developed, and it is expected that the approach presented in this 

work will be useful for developing such models, not only to other spores and treatments but also 

to additional microorganisms subjected to plasma sterilization. 
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3.6 Figures 

 

Fig. 3. Schematic diagram of the dielectric barrier discharge (DBD) used to generate cold 
plasma. The reactive gas species formed are illustrated as pink circles. 
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Fig. 4. Microbial inactivation curve of plasma treated Bacillus subtilis spores fitted with the 
Weibull model Eq. (3). Error bars indicate one standard error of five replicates. 
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Fig. 5. Generation of ozone over time and the fit of the data with Eq. (5). Error bars indicate one 
standard error of five replicates. 
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Fig. 6. Survival curve of Bacillus subtilis spores under plasma treatment. (A) n and b calculated 
by fitting experimental survival data to the Weibull Eq. (3), i.e. without considering that the 

reactive lethal gas is changing with time during the process. (B) and (C) experimental survival 
curve considering non-constant concentration conditions model expressed by Eq. (6); (B) 

assuming that the value of n is in the range 0.25-1.5. (C) assuming that the value of n is in the 
range 0.25-2.0. Error bars indicate one standard error of five replicates. 
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Fig. 7. The experimental reduction of spore population of Bacillus atrophaeus fitted with Eq. 6 
(ODE Model) for different range of ozone concentration and different mode of exposure. (A) 

Gas type: air. (B) Gas type: 90% N2 +10% O2. The inactivation parameters are listed in Table 6. 
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 MICROWAVE PASTEURIZATION OF APPLE JUICE: 
MODELING THE INACTIVATION OF ESCHERICHIA COLI O157:H7 

AND SALMONELLA TYPHIMURIUM AT 80-90°C 

This chapter was subtmitted to the Food Microbiology Journal and is under revision 

4.1 Abstract 

Although due to their acidity some fruit juices are considered safe, several outbreaks have 

been reported. For processing fruit juices, microwave heating offers advantages such as shorter 

come-up time, faster and uniform heating, and energy efficiency. Thus, it could be a beneficial 

alternative to conventional pasteurization. The objective of this study was to study the inactivation 

kinetics of Escherichia coli O157:H7 and Salmonella Typhimurium under microwave 

pasteurization at temperatures between 80 to 90°C, i.e., at conditions like those employed in 

conventional pasteurization. Inoculated juices were treated at different power levels (600W, 720W) 

and treatment times (5s, 10s, 15s, 20s, 25s). Time-temperature profiles were obtained by fiber-

optic sensors in contact with the samples allowing continuous data collection. The log-logistic and 

Arrhenius equations were used to account for the impact of the temperature history; thus, yielding 

two modeling approaches that were compared for their prediction abilities. Survival kinetics 

incorporating nonisothermal conditions were described by a non-linear ordinary differential 

equation that was numerically solved by using the Runge-Kutta method (ode45 in MATLAB ®). 

The lsqcurvefit function in MATLAB® was employed to estimate the corresponding survival 

parameters, which were obtained from freshly made apple juice, whereas the prediction ability of 

the obtained kinetic parameters was evaluated on commercial apple juice samples. Results 

indicated that inactivation increased with power level, temperature, and treatment time reaching a 

microbial reduction up to 7 Log10 cycles. The study is relevant to the food industry because it 

provides a quantitative tool to predict survival characteristics of pathogens at other nonisothermal 

processing conditions.  

 

Keywords: Microwave, Escherichia coli O157:H7, Salmonella, mathematical modeling, 

Arrhenius, log-logistic equation 
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4.2 Introduction 

The demand for fruit juices with fresh-like characteristics has substantially risen over the 

last years, mostly associated with the consumption of unprocessed fruit juices (Manzocco, 

Plazzotta, Spilimbergo, & Cristina, 2017). Due to their inherent acidity, fruit juices were 

historically thought to be safe (Sung, Song, Kim, Ryu, & Kang, 2014). However, several outbreaks 

have been associated with the consumption of unpasteurized juices contaminated with pathogens 

such as Escherichia coli O157:H7 and Salmonella spp. From 1995 through 2005, for instance, 

twenty-one outbreaks occurred in the United States due to the consumption of juice or cider 

(Gurtler, Rivera, Zhang, & Geveke, 2010; Vojdani, Beuchat, & Tauxe, 2008). Among these events, 

five of the outbreaks were caused by Salmonella, and five were caused by Escherichia coli 

O157:H7 (Vojdani et al., 2008). 

Apple juice, which is considered one of the most popular juices in the U.S., was implicated 

in 10 of the 21 outbreaks reported to CDC (Vojdani et al., 2008). The emergence of juice-

associated outbreaks led the FDA to issue a Hazard Analysis and Critical Control Point (HACCP) 

regulation on juices, which requires the process to achieve a minimum of 5-log reduction of the 

target pathogens of public health concern (USFDA, 2001).  

Commercial heat pasteurization of apple juice typically involves temperatures of 68°C held 

for 20 to 30 minutes or 82°C for 20 to 30s (Zhao, Doyle, & Besser, 1993). Heating protocols 

involving temperatures ranging from 77-88°C for 25-30s have also been previously reported 

(Moyer & Aitken, 1971). Although, pasteurization at high temperatures and short times may 

appear as a mild heat treatment, the low penetration of the heat and the non-uniform temperatures 

reached in the product during conventional thermal processing may induce physical and chemical 

changes in the juice that result in losses of its nutritional value and organoleptic properties (Gouma, 

Álvarez, Condón, & Gayán, 2015; Tajchakavit, Ramaswamy, & Fustier, 1999). One way to 

address the challenge of retaining the quality of fresh juices that consumers are demanding is to 

utilize suitable alternatives to conventional thermal preservation techniques (Contreras, Rodrigo, 

Polite, & Kingdom, 2017). Application of microwave heating has attracted significant attention as 

one of the promising alternative technologies to conventional pasteurization (Contreras et al., 2017; 

Matsui, Granado, Oliveira, & Tadini, 2007; Tang, Hong, Inanoglu, & Liu, 2018). Microwave 

heating of foods differs from conventional heating due to the capacity of microwaves to penetrate 

into the food and dissipate energy in its interior by the interaction of the microwave radiation with 



106 
 

water molecules (Bhattacharya & Basak, 2017; Sumnu & Sahin, 2012). This interaction heats the 

food rapidly due to the internal heat generation that takes place in parallel with heat convection 

and conduction transfer. Conventional heating processes rely on heat transfer from external heat 

sources which often requires long heating times resulting in deleterious effects on the product 

quality and its nutritional attributes (Wang & Sun, 2012). Since the heat penetration depth of 

microwaves is significantly larger than that of conventional heating, the conversion of energy into 

heat is more efficient and uniform in the food product (Tang et al., 2018). Thus, presenting 

advantages such as shorter come-up time, faster heating, shorter processing time, greater energy 

efficiency, all resulting in products with improved nutritional and sensorial qualities (Peng et al., 

2017; Salazar-González, San Martín-González, López-Malo, & Sosa-Morales, 2012). Microwave 

heating also offers advantages in in-package microwave pasteurization because reduces processing 

time and is suitable for pre-packaged heat sensitive multicomponent meals (Tang et al., 2018). 

A discussion on the several benefits of microwave processing, its numerous advantages, 

applications, and effects on quality attributes of food products can be found in the literature 

(Bornhorst, Liu, Tang, Sablani, & Barbosa-Cánovas, 2017; Chandrasekaran, Ramanathan, & 

Basak, 2013; Ekezie, Sun, Han, & Cheng, 2017; Guo, Sun, Cheng, & Han, 2017; Tang et al., 2018). 

In order to select appropriate processing conditions able to produce high quality and safe 

food products, models describing microbial inactivation kinetics are essential. Therefore, the 

objectives of this study were to (1) investigate the effect of microwave pasteurization on the 

inactivation of the target microorganisms Escherichia coli O157:H7 and Salmonella Typhimurium 

in freshly prepared apple juice; (2) develop a modeling approach that incorporates the microwave 

temperature history in the estimation of the inactivation rate, and survival parameters calculated 

considering nonisothermal heating protocols; (3) compare two modeling approaches, one approach 

describing the effect of temperature on the inactivation rate constant by the log-logistic equation 

whereas the other describing this temperature dependence by the commonly employed Arrhenius 

equation, and (4) validate the modeling approaches and the obtained survival parameters in a 

commercially pasteurized apple juice inoculated with the target microorganisms and processed at 

other conditions (e.g. at other power level).  

Specifically, Escherichia coli O157:H7 and Salmonella Typhimurium were chosen as 

target microorganisms because of their potential incidence in wounded fruit or fresh-cut apple 

slices (Janisiewicz, Conway, Brown, Sapers, & Fratamico, 1999), and also because of the 
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numerous food poisoning outbreaks involving these microorganisms in apple juice (Vojdani et al., 

2008). The modeling approaches were applied on freshly prepared apple juice inoculated with the 

target microorganisms and subjected to temperatures achieving values of 80°C and 90°C in 25s. 

The selection of the processing conditions was based on heating protocols used for conventional 

pasteurization of apple juice as described by Zhao et al. (1993), and Moyer and Aitken (1971). 

Survival parameters obtained from these tests were used to predict survival curves of commercial 

apple juice samples inoculated with the target microorganims and subjected to different heating 

conditions. 

4.3 Materials and methods 

4.3.1 Apple juice 

Fresh apple juice was prepared using “Golden delicious” apples (Malus domestica Borkh, 

cv. Golden Delicious) purchased from a local supermarket and maintained at 4°C until use. This 

particular variety was selected because Golden Delicious apples are within the top 5 varieties 

produced in the U.S. and are frequently used to produce fresh apple juice (USAPPLE, 2016). 

Moreover, recent literature has also explored the applicability of alternative food technologies to 

process Golden Delicious fresh apple juice (Bot et al., 2017; Manzocco et al., 2017). Fresh juice 

was obtained using a domestic juicer (Breville 800 JEXL Juice Fountain® Elite, Breville USA 

Inc., Torrance, CA, United States), filtered through two layers of cheesecloth to remove impurities 

and coarse particles, centrifuged at 5000 rpm (1677 x g) for 5 min, and filtered again by using two 

layers of cheesecloth. The resulting clear apple juice having a soluble content of 12.2±0.96 °Brix 

and pH of 3.43±0.073 was inoculated with the targeted microorganisms and immediately treated. 

A fresh apple juice was prepared for every trial. 

4.3.2 Defining the microwave power levels to be used in this study to achieve the targeted 
temperatures 

Preliminary tests were conducted to determine suitable heating ranges using three key 

processing conditions (i.e., intensity of microwave power, final temperature reached, and treatment 

time) which affect the reduction of Escherichia coli O157:H7 on apple juice. Four power levels, 

1200 W (100%), 720W (60%), 600W (50%) and 480W (40%), were applied for times ranging 

from 5 to 25s on 3 mL of juice inoculated with E. coli O157:H7. Prior to treatment, the juice had 
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an initial temperature of 25°C. The objective of these preliminary tests was to determine the 

combination of microwave processing conditions that would pasteurize the juices at temperatures 

ranging from 80-90°C for treatment times of up to 25s, as these conditions are reported to achieve 

commercial pasteurization of apple juice. After these conditions were determined, tests were 

conducted at the selected treatment and replicated three times at random. The electrical energy 

input consumed at those four power levels were also recorded using a power meter installed in the 

outlet where the microwave system was plugged in. The objective of this measurement was solely 

to assess the efficiency (power consumed/power produced) of the microwave oven used in the 

research. Results reported as the electrical energy input, the actual power level delivery to the food, 

and the final juice temperature raise by applying these power levels, as well as inactivation level 

of E. coli O157:H7 are summarized in Table 7. 

  

Table 7. Preliminary tests and results to select suitable treatment conditions reported as energy 
input, power delivered, final temperature increased after 25s, and log reduction for E. coli 

O157:H7 in apple juice. 

Energy input (Watts) Power delivered (Watts) 

/ Power Setting 

Final temperature 

(°C) 

Log10 reduction 

1800 1200 / 100% 102 7.0 

1080 720 / 60% 90 7.0 

900 600 / 50% 80 6.9 

720 480 / 40% 63 2.3 

 

4.3.3 Microwave treatments 

From the preliminary results (Table 7) was found that power levels of 60% (720W) and 

50% (600W) would produce temperature profiles with final temperatures ranging from 80-90°C 

in approximately 30s. In this work, the target temperatures were achieved in 25s. For that reason, 

these power levels were used in the study to generate results employed in the modeling approach. 

Aliquots of 3 mL of inoculated apple juice samples were transferred to cylindrical glass tubes 2.5 

x 5.5cm (diameter x height) placed at the center of the microwave turntable and subjected to 

microwave heating at two selected power levels (600W, 720W) with temperatures rising to 80°C 

and 90°C respectively, with a process time of 25s. A Microwave Work Station™ (Fiso 



109 
 

Technologies Inc., Quebec, Canada) was used in the present study. The Microwave Work Station 

(MWS) is an integrated system used along with FISO fiber-optics sensors which record 

temperatures in a customized Panasonic microwave oven (2450 MHz, 1200 W) equipped with a 

rotating unit, a Workstation Commander control, and data collection software. Real-time data 

acquisition was performed by using three FISO fiber-optic sensors directly inserted in the juice 

samples. Temperatures were collected every 0.45s at the selected power. Considering the sample 

volume used in this study and the high penetration of the microwave, it was assumed that at the 

end of the process the temperature was uniform within the sample. 

4.3.4 Experimental design and statistical analysis 

Experiments were carried out as a randomized complete block design. The inoculated 

juices were treated at 600W and 720W power levels at treatment times of 5s, 10s, 15s, 20s, and 

25s. Microorganisms were distributed into blocks, and treatment times were randomly assigned to 

the experimental units within a block. All the experiments were performed independently in 

triplicate in different days, and the microbial analysis was performed in duplicate for each 

power/treatment time combination applied. Inactivation data were analyzed using the Statistical 

Analysis System software (SAS 9.4, SAS Institute Inc, Cary, NC, USA). The General Linear 

Model (GLM) module of SAS was used to evaluate treatment time and microorganism as fixed 

effects. Significant mean differences were calculated by Tukey’s test at p<0.05. 

4.3.5 Temperature measurement 

During microwave pasteurization the temperature was measured by three FISO fiber-optics 

sensors (FOT-L-BA Model, Fiso Technologies Inc., Quebec, Canada) inserted inside the samples, 

and recorded using data collection software. 

4.3.6 Apple juice soluble solids content and pH determinations 

Soluble solid content (°Brix) was measured using a digital laboratory refractometer (Model 

LR-01, Maselli Misure, Parma, Italy). The pH was measured using a benchtop pH-meter (Thermo 

ScientificTM OrionTM 2- Star Benchtop pH Meter, Waltham, MA, USA) previously calibrated with 

standard buffer solutions. 
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4.3.7 Microbial growth conditions and analysis 

Strains of Escherichia coli O157:H7 B6-914 and Salmonella Typhimurium ATCC 14028 

were obtained from Purdue University, Center of Food Safety Engineering (West Lafayette, IN, 

USA). Concentrated pure strain suspensions of these bacteria were maintained at -80°C in cryovial 

tubes; Escherichia coli O157:H7 was stored as 7% dimethyl sulfoxide (DMSO) frozen stocks and 

Salmonella Typhimurium as 50% glycerol frozen stocks. Frozen stocks cultures of each strain 

were cultured independently in 5mL Tryptic Soy Broth (TSB) and incubated at 37°C with 

continuous agitation at 110 rpm for 18h. A transfer of 50µL was made into 5mL TSB and incubated 

at 37°C for 18h with continuous agitation (110 rpm) prior to experiments. The initial cell 

concentration of each bacterial culture was approximately 108-109 CFU/ml. Bacterial cultures were 

harvested by centrifugation at 6000 rpm (2415 x g) for 10 min, the resulting pellets were washed 

in 0.1M phosphate buffer (PB; 0.1M, pH 7.0) and centrifuged again. The supernatant removed, 

and the resulting pellets were resuspended in 1mL of 0.1M PB before inoculation. Finally, cells 

were inoculated in apple juice at a 1:5 ratio to obtain populations of 7-8 Log CFU/ml. Aliquots of 

3 mL of inoculated apple juice samples were pasteurized by microwave heating at previously 

determined conditions. 

4.3.8 Enumeration of survivors 

Immediately after microwave treatments samples were 10-fold serially diluted in 0.9mL of 

sterile 0.1 M PB, and 0.1 mL of sample was spread-plated in duplicate onto selective media 

(Sorbitol MacConkey Agar - SMAC - for Escherichia coli O157:H7; Xylose Lysine Tergitol 4 

Agar - XLT4 - for Salmonella Typhimurium). Due to dilution process the samples were rapidly 

cooled before plating. All dilutions were plated in duplicate and plates were incubated at 37°C for 

24h before enumeration. 

4.3.9 Modeling of survival curves 

Survival curves were obtained by plotting the log10 of the survival ratio (N(t)/N0) versus 

treatment time (s). 𝑁(𝑡)  is the number of microorganisms surviving the treatment at time t 

(CFU/mL), and 𝑁଴ is the initial number of the microbial population. 

The Weibull model (Eq. 1) has been extensively applied to describe the inactivation of 

microorganisms in foods over the years. The model has gained wider acceptance to study the 
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survival kinetics of spores and vegetative cells because of its simplicity and flexibility. It has two 

parameters:  𝑏 , a scale parameter, and 𝑛 , a dimensionless shape parameter, which are able to 

describe non-liner survival kinetics (Mafart, Couvert, Gaillard, & Leguerinel, 2001; Van Boekel, 

2002). Considered as a primary kinetic model, is given by the following equation (Corradini, 

Normand, & Peleg, 2008; Peleg & Cole, 1998; Peleg, Normand, & Corradini, 2005): 

Log ൬
𝑁(𝑡)

𝑁଴
൰ = 𝐿𝑜𝑔 𝑆(𝑡) =  −𝑏 𝑡௡ 

(1) 

Under true isothermal conditions, survival curves can be constructed simply by plotting the 

decimal log10 of the survival ratio versus treatment time at a given temperature. The parameters 𝑏 

and 𝑛 can be obtained by minimization of the sum of squares error (SSE) between the model and 

the experimental values, using tools like Solver or Power Trend in Microsoft Excel™ or other 

statistical packages. 

For nonisothermal conditions such as those occurring during microwave heating (Fig.8), 

the Weibull model as expressed by Eq. (1) does not account for the previous thermal history to 

which the population is subjected (Peleg & Penchina, 2000). Thus, the dependence of the primary 

model relevant parameters, e.g. b and n for the Weibull model or k (or D) for the first order model, 

with the lethal agent, temperature in this case, needs to be established. It should be noted that for 

non-isothermal conditions, the processing temperatures varies with time and so do the parameters 

of the survival model. Therefore, it is necessary to link Eq. (1) with the variation of the model 

survival parameters with temperature and time. Peleg and Penchina (2000) proposed a model for 

the calculation of survival ratio of a given microorganism under non constant processing 

conditions where nonisothermal conditions are clearly noticeable, which is the existing condition 

in the present research. The approach assumes that under nonisothermal conditions, the momentary 

slope of the survival curve can be considered as the change in microbial survival at that momentary 

temperature. In other words, it assumes that at the current processing time, the change 

(slope/derivative) of the survival curve at that time is happening at a isothermal condition. 

Therefore, the calculation of the lethality achieved during the whole process involves an 

integration over the range of temperatures existing during the process. This calculation is 

expressed by the following equation (Corradini et al., 2008; Chen, Campanella, & Corvalan, 2007; 

Peleg et al., 2005; Peleg & Penchina, 2000): 
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𝑑 𝑙𝑜𝑔 𝑆(𝑡)

𝑑𝑡
=  −𝑏[𝑇(𝑡)] 𝑛[𝑇(𝑡)] ൬

−𝑙𝑜𝑔 𝑆(𝑡)

𝑏(𝑇(𝑡))
൰

௡[்(௧)]ିଵ
௡[்(௧)]

 

(2) 

It must be noted from Eq. (2) that the survival model parameters are expressed as a function 

of non-uniform temperature expressed as 𝑇(𝑡), which results in an non-linear ordinary differential 

equation that must be solved using well established numerical tools such as the Runge-Kutta 

method. The differential equation solver (ode45) in MATLAB ® (Mathworks®, Natick, MA, USA) 

was used to solve this equation and thus to estimate the resulting nonisothermal survival curve 

𝑙𝑜𝑔 𝑆(𝑡)  versus 𝑡  under the existing processing temperature conditions. However, in order to 

provide a detailed description of the microbial inactivation by the solution of Eq. (2), is necessary 

to know how the temperature, the process lethal agent in this case, affects the survival model 

parameters. Models that provide such a description are known as secondary models and several 

models have been used extensively to calculate thermal and non-thermal processes. Some of them, 

taking a thermodynamics perspective, have used Arrhenius-like equations whereas others, on a 

more empirical bases, have used the Bigelow model as secondary models (Nunes, Swartzel, & 

Ollis, 1993). However, it is well known that microbial inactivation becomes more effective when 

the heating temperature reaches a certain threshold level, and beyond that temperature level, 

microbial inactivation rate increases significantly with temperature. The parameter b, which in an 

isothermal process is considered as the reciprocal of the microbial resistance to the treatment, 

under nonisothermal conditions is referred to as the rate of killing. To describe a relationship 

between the rate of killing and the processing temperature history having those characteristics, the 

log-logistic equation (Eq. 3) was selected (Campanella & Peleg, 2001): 

𝑏[𝑇(𝑡)] = 𝐿𝑛 {1 + exp[𝑘 (𝑇(𝑡) − 𝑇௖)]} (3) 

 𝑘  and 𝑇௖  are the corresponding survival parameters; 𝑇௖  indicates the critical or threshold 

temperature from where significant inactivation starts, and 𝑘 is the rate at which the inactivation 

rate rises after the temperature reaches that critical level (Peleg & Normand 2004). Eq. (3) is 

considered as a secondary kinetics model. The approach of solving equations (2) and (3) 

simultaneously is referred in this manuscript as the Peleg−log-logistic approach. 

As discussed, another secondary model to describe the effect of the temperature on the 

inactivation rate has been using an Arrhenius-like equation (Eq. 4) which applied to the parameter 

𝑏 (𝑇) yields: 
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𝑏(𝑇) = 𝐴 𝑒
ିாೌ
ோ்  

(4) 

𝐴 is the frequency factor (also called the pre-exponential factor), 𝐸௔ is the activation energy, 𝑅 is 

the ideal gas constant, and 𝑇 is the absolute temperature in Kelvin degrees (Jay, Loessner, & 

Golden, 2008). The Arrhenius equation is commonly used to describe the impact of the 

temperature on a chemical reaction rate, 𝑘. Thus, as an analogy, the reaction rate can be interpreted 

as the rate of killing or the rate of inactivation of microorganisms (André et al., 2019). The 

approach of solving equations (2) and (4) is referred in this manuscript as Peleg−Arrhenius 

approach. 

The ode45 function was combined with the nonlinear least-squares solver function, 

lsqcurvefit of the MATLAB ® Optimization Toolbox. This optimization function solves nonlinear 

curve-fitting problems to obtain the best model parameters that minimize the sum of squared error 

(SSE) between predicted and observed experimental data. During each iteration, the ode45 

function numerically solved the differential equation (Eq. 2), and lsqcurvefit adjusted the model 

parameters to minimize the difference between the survival data and the results of the numerical 

integration in that iteration. The iteration was repeated until the parameters that minimize SSE are 

achieved. The parameters 𝑘, 𝑇௖, and 𝑛 for the Peleg−log-logistic approach, and the parameters 𝐴, 

𝐸௔, and 𝑛 for the Peleg−Arrhenius approach were obtained by this procedure. 

The goodness of fitting of the two modeling approaches was evaluated by the mean square 

error (MSE) and the adjusted coefficient of determination (R2-adj). A larger R2-adj value (as it 

approaches 1) is indicative of good-fitting, whereas MSE measures the average of the squared 

deviation between the observed and the fitted values; a smaller MSE value (as it approaches 0) 

indicates a better fit of the model to the data. 

4.3.10 Modeling temperature profile 

Under nonisothermal conditions, a nonlinear empirical equation such as Eq. (5) can be used 

to describe these dynamic conditions. If this empirical equation is based on experimental data and 

no extrapolation is applied, it can be used as the experimental temperature profile. The apple juice 

temperatures recorded by the fiber-optic sensors in small time intervals (0.45s) are represented by 

a temperature vector 𝑇 = [𝑇଴ , 𝑇ଵ, 𝑇ଶ, … , 𝑇௙], which is input in MATLAB ® to describe temperature 

changes as a function of time. 𝑇଴ is the initial temperature of the juice whereas 𝑇௙  is the final 

temperature reached in the process. The temperature at different time intervals, 𝑇(𝑡)௜ , was 
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calculated based on the previous temperature data point by Eq. (5). Constants 𝛼  and 𝛽  were 

estimated by nonlinear regression using the Solver tool from Microsoft Excel 2016™ and were 

inserted as constants in the MATLAB ® script. The coefficient of determination (R2) and MSE was 

used to evaluate the goodness of fitting. 

𝑇(𝑡)௜ = 𝑇௜ିଵ +
𝑡

𝛼 + 𝛽𝑡
 

(5) 

An experimental heating curve was obtained for each target pathogen and power levels 

used in the study, and the values 𝛼 and 𝛽 determined were used for the integration of Eq. (3) and 

Eq. (4) to capture changes in the inactivation rate of the microorganisms for temperature conditions 

that are a function of time. 

4.3.11 Model validation 

The model parameters obtained from the Peleg−log-logistic and Peleg−Arrhenius 

approaches were used for predicting the inactivation curve of Escherichia coli O157:H7 and 

Salmonella Typhimurium under microwave heating. For model validation and prediction 

capabilities independent experiments were carried out on commercially pasteurized apple juice 

inoculated with the target microorganisms and subjected to four power levels (480W, 600W, 720W 

and 1200W).  All tests were run in duplicate at the specified treatment times to yield a total of 16 

experimental survivor curves and models were utilized to predict the inactivation of both target 

pathogenic microorganisms under selected processing conditions. Pasteurized apple juice was 

purchased at a local supermarket (West Lafayette, Indiana) and stored at 4°C prior to treatment. 

The commercial juice has a solid soluble content of 11.5±0.03 °Brix, and a pH of 3.24 ±0.014, and 

after inoculation the samples were immediately subjected to microwave processing. The goodness 

of fit of the two modeling approaches was evaluated by the adjusted coefficient of determination 

(R2-adj) and mean squared error (MSE). 

4.4 Results and discussion 

4.4.1 Modeling temperature profile of fresh apple juice during microwave processing 

Time-temperature profiles of the apple juice samples during microwave heating were 

obtained by using the FISO Microwave Workstation™. The temperature histories followed similar 

patterns but with differences in the final temperature reached, which depended on the power level 



115 
 

applied. For instance, for the 720W power level, the final temperature reached was 90.4°C in 25s 

for fresh apple juices inoculated with Escherichia coli. However, when a 600W power level was 

applied for 25s, the final temperatures of the same sample reached 81.9°C. Typical real time-

temperature histories for the fresh apple juice inoculated with Escherichia coli O157:H7 at the two 

microwave power levels (600 and 720W) are illustrated in Fig.8 along with the fitting of Eq. (5). 

The parameters of Eq. (5) along with the R2 and MSE are presented in Table 8, indicating 

a good agreement between data and the empirical model. 

 

Table 8. Coefficients for the empirical heating regime (Eq. 5) fitted to the temperature profile for 
E.coli O157:H7 and Salmonella Typhimurium inoculated in fresh apple juice processed at the 

specified power levels: 

   Fresh apple juice 

Pathogens Power level (W)  𝛼 𝛽 R2 MSE 

E.coli O157:H7 720  3.28 0.72 0.9994 0.0728 

 600  5.79 0.68 0.9995 0.0459 

S. Typhimurium 720  3.95 0.65 0.9991 0.1350 

 600  6.11 0.65 0.9994 0.0571 

  

4.4.2 Inactivation of foodborne pathogens in apple juice by microwave pasteurization 

Fig. 9 illustrates survival curves for E. coli O157:H7 and Salmonella Typhimurium in 

inoculated fresh apple juices during microwave treatment at the specified power levels of 600W 

and 720 W, which heated the samples to final temperatures of approximately 80°C and 90°C, 

respectively. Given the sample size and the heat penetration characteristics of the microwave 

radiation, it is reasonable to assume that temperatures in the sample were uniform. Inactivation 

data were determined every 5s starting at 5s until up to 25s. Statistical analyses suggested that the 

randomized complete block design employed was significant at the 95% confidence level for both 

used power levels. Microbial inactivation started after 10s of microwave heating for the two power 

levels used. Significant differences between treatment means were found after 10s until up to 25s 

for the 600W power level, but no significant differences were found between 20 and 25s when the 

720W power level was used. Results indicated that the thermo-dependence of microwave lethality 

when lower power levels are applied is different between microorganisms possibly suggesting that 
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blocking in separate treatments, instead of using a mixed culture cocktail, was probably helpful in 

improving the precision to establish a comparison of treatment means. For more discussion of the 

used experimental design, refer to Montgomery (2013). 

A 5-log reduction of E. coli O157:H7 and S. Typhimurium in fresh apple juices was 

accomplished when processing times were higher than 20s and 25s for 720 and 600W power levels, 

with final temperatures reaching up to 90 and 80°C, respectively. Thus, the selected processing 

parameters (power level, final temperature, treatment time) were able to meet the 5 Log10 reduction 

criteria requested by the U.S. FDA guidelines (USFDA, 2001). Another important characteristic 

of the survival curves obtained for all power levels and juices studied is the lack of linearity. Based 

on this characteristic, only non-linear models can be used to describe the effect of treatment time 

and temperature on the kinetic parameters. 

4.4.3 Nonisothermal models used to describe survival curves 

As illustrated in Fig. 9, E.coli O157:H7 and Salmonella Typhimurium survival data did not 

follow linear inactivation curves for any processing condition applied. For this reason, the Peleg 

non-linear model (Eq. 2) was used to describe the effect of treatment time and temperature on the 

kinetic parameters, and linear modeling was not employed. The microwave inactivation of the 

target microorganisms increased with treatment exposure time following a concave downward 

profile. As the exposure time progresses the microbial survivors are weakened, and gradually 

shorter times are necessary to destroy them. As a result, a characteristic downwardly concave 

survival curve is depicted (Peleg & Penchina, 2000). Related literature also showed downward 

survival curves due to microwave treatments (Goldblith & Wang, 1967; Papadopoulou et al., 1995; 

Song & Kang, 2016; Valero & Cejudo, 2014), which were similar to our findings. First-order 

kinetics are also described by the Weibull model when n=1 and, for these cases applying this model 

would result in under-processing of the juices and thus, a safety concern. The other reason of 

getting downward concave survival curves is that the temperature history is a function of time and 

as indicated by the secondary kinetics models (i.e. either the log-logistic or the Arrenhius equations 

used in this work – Eqs., 2 and 3) the lethal rate parameters increase with temperature and so does 

the microbial inactivation. The effects of temperature history are incorporated in Peleg’s model 

given by Eq. 2. 
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By using the Runge-Kutta method (ode45) to solve the differential equation Eq. (2), and 

the lsqcurvefit function to find the optimal kinetics parameters that best fit the solution of this non-

linear differential equation to the experimental data, the values of the kinetic parameters were 

obtained. They were 𝑘, 𝑇௖ , and 𝑛 for the Peleg−log-logistic approach and 𝐴, 𝐸௔ , and 𝑛 for the 

Peleg−Arrhenius approach. Table 9 presents the optimal parameters for both pathogenic 

microorganisms for the microwave treatment with power levels 600W and 720W and that yielded 

final target temperature of 80 and 90⁰C, respectively. As discussed, the goal was to build a 

modeling approach at power levels that would generate temperature rises equivalent to those 

obtained in conventional pasteurization methods, i.e. 80-90⁰C, in 25-30s. In this study, the target 

temperatures were achieved in 20-25s. 

MSE and R2-adj fell between 0.0078–0.2553, and 0.9230–0.9957, respectively for E. coli 

O157:H7, and between 0.0212–0.0755 and 0.9661–0.9902, respectively for S. Typhimurium, 

using the Peleg−log-logistic approach. For the Peleg−Arrhenius approach, these performance 

indices ranged from 0.0236 to 0.3467, and from 0.8865 to 0.9870, respectively for E. coli O157:H7; 

and 0.0260 to 0.1099 and 0.9502 to 0.9879, respectively for S. Typhimurium. Thus, the developed 

models were able to accurately predict the exposure treatment needed to achieve 5 Log10 reductions 

of the target pathogens in fresh apple juice by microwave pasteurization. Fig. 9 demonstrates that 

the models were highly satisfactory to describe inactivation for the two power levels examined. 

However, the statistics parameters MSE and R2-adj indicate that the Peleg−log-logistic approach 

is slightly superior. The other aspect to be noted from the parameters obtained with the 

Peleg−Arrhenius approach is the inconsistency of the parameters 𝐸௔  (Table 3, data for S. 

Typhimurium at power level of 600W). That inconsistency is due to the nature of the Arrhenius 

model. From Eq. (4), it can be seen that the parameter 𝐸௔ can be calculated as the slope of a plot 

of 𝑏(𝑇)  as a function of  1/𝑇 , where T is the absolute temperature. The inversion of the 

temperatures, which in absolute values are high, compress the range the variation of that variable 

whereas on the other hand experimental error in the determination of the parameter 𝑏  could 

increase with a result of a large variation in the slope and thus the value of 𝐸௔. Therefore, on this 

basis, it is demonstrated that the Arrhenius model is not a suitable secondary model to study 

microwave processing. Further evidence of the inadequacy of the Arrhenius model as compared 

with the log-logistic model is its low prediction capabilities which are discussed below.
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Table 9. Optimized kinetic parameters after solving (Eq. 2 and Eq. 3) and (Eq. 2 and Eq.4) to describe survival data for E.coli 
O157:H7 and Salmonella Typhimurium inoculated in freshly prepared apple juice and treated by microwave heating at two specified 

power levels: 

Pathogens Power level 

(W) 

Nonisothermal survival model (Eq.2) 

  Peleg−log-logistic approach  Peleg−Arrhenius  approach 

  𝑘(°C-1) 𝑇௖ (°C) 𝑛 R2-adj MSE  𝐴 (s-1) 𝐸௔(J.mol-1) 𝑛 R2-adj MSE 

E.coli O157:H7          720 0.1175 53.691 0.340 0.9230 0.2353  0.052 4178.096 2.009 0.8865 0.3467 

 600 0.1168 53.275 0.405 0.9957 0.0078  0.010 3839.160 2.430 0.9870 0.0236 

             

S. Typhimurium 720 0.0765 50.291 0.403 0.9661 0.0755  0.039 2350.123 1.850 0.9506 0.1099 

 600 0.0881 50.948 0.473 0.9902 0.0212  0.005 596.876 2.314 0.9879 0.0260 
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4.4.4 Model validation 

To test the accuracy and the prediction capability of the kinetic parameters obtained from 

the two modeling approaches reported in Table 9, a new set of experiments was performed using 

commercial apple juice samples inoculated with the target microorganisms and subjected to four 

power levels of microwave heating (480, 600, 720, and 1200W). Data of survival curves are 

represented as means and standard errors. The empirical temperature profiles obtained with those 

power levels, along with the fitted non-linear heating regime (Eq. 5), are presented in Fig. 10. The 

survival parameters obtained from the two modeling approaches, the Peleg−log-logistic approach 

(Eq. 2 and 3) and the Peleg−Arrhenius approach (Eq. 2 and 4) reported in Table 9, were used to 

predict the inactivation curve of E.coli O157:H7 and Salmonella Typhimurium in commercial 

apple juice inoculated with the target microorganisms and treated at other microwave conditions 

(power levels 480, 600, 720, and 1200W). The statistical performance indices of the validation 

analysis are listed in Table 10. 

Fig. 11 shows predictions for E.coli O157:H7 survival using parameters obtained from the 

Peleg−log-logistic approach (Fig. 11A) and parameters obtained from the Peleg−Arrhenius 

approach (Fig. 11B). Moreover, Fig. 11C illustrates predictions of Salmonella Typhimurium using 

paramaters obtained from the Peleg−log-logistic approach and Fig. 11D predictions with 

parameters obtained from the Peleg−Arrhenius approach. It must be noted that all these predictions 

on inoculated commercial apple juice samples were obtained using survival parameters obtained 

from inoculated fresh apple juice samples processed at the 600W power level, i.e. they can be 

considered true predictions. 

Fig. 12 shows inactivation prediction of the target pathogens using survival parameters 

obtained from treatements using the 720W power level and tested on freshly prepared apple juice 

(see Table 9). The predicted survival curves were quite similar, with a slightly better prediction 

using the 600W power level data.  In Figs. 11 and 12 is clear that the Peleg-log-logitistic approach 

has a superior prediction capacity. The advantage of using this approach is that the rate of killing, 

as expressed by Eq. (3), provides a more realistic description of the inactivation process which is 

based in the critical temperature parameter 𝑇௖ beyond which inactivation is enhanced. According 

to this model (Eq. 3) the inactivation rate 𝑏 (𝑇)~0 at 𝑇 ≤ 𝑇௖ , and at 𝑇 ≥ 𝑇௖ 𝑏 (𝑇)~ 𝑘 (𝑇(𝑡) − 𝑇௖), 

i.e. the inactivation rate increases sharply at temperatures higher than the critical or threshold 

temperature (Peleg et al., 2002; Peleg & Normand, 2004). The assumption that the inactivation 
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rate is approximately zero below the critical temperature is adequate, as the log reductions for 

times between 0 to 10s were not significantly different according to a Tukey’s analysis (difference 

between the means were less than the Tukey’s minimum significant difference). Thus, possibly 

indicating that the inactivation rate was approximately zero whitin that period range. The 

magnitude of 𝑇௖  obtained for S. Typhimurium was within 50-51⁰C, and 53-54⁰C for E.coli 

O157:H7. The threshold range for E.coli is in accordance with Siguemoto et al., (2018) who 

reported that for conventional thermal processing no inactivation of E.coli O157:H7 was detected 

at temperatures below 55⁰C. The slightly lower value of the critical temperature for Salmonella is 

in agreement with its observed higher log reduction level of 0.497 to 2.480 when exposed to 600W 

from 10s to 15s, whereas for the E.coli O157:H7 population the log reduction changed from 0.340 

to 1.687 under the same conditions (see Fig. 9); thus, suggesting that the inactivation of Salmonella 

started at lower temperature when compared to E.coli O157:H7. Similarly, Song and Kang (2016) 

observed that Salmonella Typhimurium showed less resistance than E.coli O157:H7 to microwave 

heating. The observed differences in the microorganism’s heat sensitivity are of no concern for the 

purposes of this investigation. However, the threshold range of 50-54⁰C necessary to promote 

microbial inactivation should assist juice processors in determining the target temperature required 

to enhance the inactivation level the of these pathogens. 

The most important criterion to test the suitability of a modeling approach to describe a 

food process is to asses if it can be used to predict survival of similar microorganisms in a similar 

or related medium, but treated at different processing conditions. In that sense, the performed 

validation analysis demonstrated that the experimental data obtained for all power levels can be, 

almost invariably, appropriately described by parameters obtained from the Peleg−log-logistic 

approach, regardless if the survival parameters were obtained at 600 or 720W power levels (Figs. 

11 and 12). However, the Peleg-Arrhenius approach did not have good prectiction ability. In other 

words, predicting the inactivation kinetics of the target pathogens using the Peleg−Arrhenius 

approach did not result in a substantial agreement between the experimental data points and the 

predicted survival curves, independently if the parameters were obtained at 600 or 720W power 

levels (Figs. 11B, D and Figs. 12B, D). As discussed, originally the Arrhenius equation was 

developed to describe succesfully the effects of temperature in chemical reactions. However, 

results of this study show that a simple analogy between chemical reaction rate and microbial 

inactivation rate is not always applicable. As can be seen in Figs. 11B, D, and Figs. 12B, D, when 
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the pathogens were exposed to different power levels, the Peleg−Arrhenius model did not capture 

the pertinent aspects of the inactivation as a function of the temperature history correctly. One can 

argue that it may have somewhat worked to describe survival curves of inoculated fresh apple juice 

samples treated at the two power levels, from which the survival parameters were obatined (Fig. 

9), but that was a simple a fitting procedure and not prediction. However, Figs. 11 and 12 are 

clearly showing that the approach would not be a recommendable one to predict survival curves 

for other microwave processing conditions and other materials. 

Despite the numerous and even recent reports about the use and suitability of the Arrhenius 

equation to describe inactivation curves (André et al., 2019; Dahlquist-Willard et al., 2016; Lee, 

Heinz, & Knorr, 2011; Murphy, Marks, Johnson, & Johnson, 2000; Fachin, Van Loey, Indrawati, 

Ludikhuyze, & Hendrickx, 2002), it appears that its validity has actually been taken for granted 

(Peleg & Corradini, 2011). Originally the Arrhenius equation was utilized to model simple 

collisions of gas molecules that would react when they acquire enough kinetic energies to 

overcome electrons repulsion. Similarly, the equation could also describe the disintegration of 

molecules (Peleg & Corradini, 2011; Vallance, 2017). However, as stated by Peleg, Normand and 

Corradini (2012) and also experimentally and theoretically demonstrated in this work, using the 

Arrhenius equation to predict microbial inactivation does not see to be appropiate. Furthermore, 

including the gas constant (R= 8.314 J mol-1K-1) in calculations involving microorganisms may be 

confusing. In a potential energy pathway, for an exothermic reaction, the difference between the 

transition state and the reactants is called the energy of activation with units of joule per mole 

(Vallance, 2017). In light of this concept, the quantities of the reactants are expressed in “moles”. 

But using the Arrhenius reaction rate as an analogy to describe inactivation rate, and then 

calculating the energy of activation in joule per mole of bacteria, leads to a simple but challenging 

question like for example, what is the mass of a a mole of bacterial cells? By using some simple 

assumptions Peleg et al. (2012) estimated that 1 mol of bacteria may have a mass of 6x105 metric 

tons. Moreover, literature using the Arrhenius equation for kinetic studies would assume that the 

inactivation process caused by heat has a fixed energy of activation, or that the inactivation effects 

of heat is qualitatively the same at low and high temperatures (Peleg et al., 2005). Such 

assumptions are not appropriate, considering that inactivation effects are enhanced when the 

temperature is increased (see for example data of E. coli and S. Typhimurium in Figs. 11 and 12) 

and even at temperatures below Tc inactivation is not statistically significant. For these reasons, 
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the application of the Arrhenius equation to systems that are different than the ones for what the 

equation was derived must be seriously challenged (Peleg et al., 2012). The findings of this 

manuscript clearly show its lesser adequacy in terms of prediction ability. The comparison of the 

two modeling approaches suggests that the higher quality of the Peleg−log-logistic  approach to 

predict microbial survival at other microwave processing conditions would be the preferred one 

for modeling and prediction purposes. 

Literature has shown that there is interest in studying microbial inactivation kinetics under 

microwave heating for a variety of foods and microorganisms. Although the relevant and reviewed 

literature in microwave inactivation kinetics presents their worthiness (Chapter 2), none of the 

studies actually explored the validation potential as it is explored in the present study. Therefore, 

this investigation is among the first reports on the development and validation of a mathematical 

modeling approach to predict the inactivation of pathogenic microorganisms in apple juice 

subjected to microwave heating. To the best of our knowledge, no previous studies have used the 

Peleg nonisothermal differential equation in combination with a log-logistic equation and the 

temperature history. Neither a comparison of the prediction ability of this approach with other that 

employs the widely used Arrhenius equation has been reported to model and predict inactivation 

of E. coli O157:H7 and Salmonella Typhimurium in apple juices treated by microwave. The 

developed model was proven to be reasonably accurate for predicting the inactivation of E. coli 

O157:H7 and Salmonella Typhimurium in fresh apple juices using microwave heating for 

pasteurization at 80-90°C for 20-25s. Therefore, the developed model may be further used to 

facilitate parameter selections to scale up or optimize microwave heating as a pasteurization 

intervention for apple juice. 

Regarding microwave effects, the debate whether there are non-thermal inactivation effects 

due to the microwave process is a subject of constant discussion in the scientific community. As 

reviewed by Chandrasekaran et al. (2013), there is no proof of lethal effects of microwave radiation 

in the absence of temperature or other stress conditions. In fact, a study conducted by the U.S. 

Department of Agriculture at Wyndmoor (PA), developed a system to distinguish thermal and non-

thermal effects of microwave energy. The study was conducted to inactivate E.coli K-12, Listeria 

monocytogenes, Enterobacter aerogenes, Pediococcus sp. and yeast, in fluids such as liquid egg, 

beer, water, apple juice, apple cider, and tomato juice. The researchers found that there is no 

evidence that microwave energy can inactivate microorganisms without thermal energy or other 
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stresses such as pH (Kozempel, Cook, Scullen, & Annous 1999). From a chemical reaction 

perspective, Kappe, Pieber, and Dallinger (2013) argued that the energy of the microwave photon 

is far too low to induce chemical reactions and that the observed effects in organic reactions are 

purely a result of bulk thermal phenomena. Ultimately, the U.S. FDA (2000) resolved that 

considering non-thermal inactivation effects is inadequate to explain microbial inactivation under 

microwave heating. In modeling inactivation kinetics of microwave heating, it is therefore 

recommended to include only thermal effects in the modeling (Chandrasekaran et al., 2013; US 

FDA, 2000). 
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Table 10. Statistical performance indices of the validation and prediction analysis.  

Pathogens Model built in the Power level (W)  Nonisothermal survival model (Eq.2) 

 power level (W) for validation Peleg−log-logistic approach  Peleg−Arrhenius approach 
   R2-adj MSE  R2-adj MSE 

E. coli O157:H7 600W 1200 0.9158 0.2497  * 27.5752 
 

  720 0.8582 
 

0.4604  0.6528 
 

1.1272 

  600 0.9815 
 

0.0424  0.9705 
 

0.0676 
 

  480 0.9550 0.0152  * 3.6483 

 720W 1200 0.9431 
 

0.1688  * 18.5556 

  720 0.8033 0.6387  0.8375 0.5275 

  600 0.9057 
 

0.2158  0.9002 0.2286 

  480 0.7714 0.0774  * 6.7117 

S. Typhimurium 600W 1200 0.9612 0.1675 
 

 * 9.6296 
 

  720 0.9360 0.1585  0.9572 
 

0.1059 

  600 0.9118 0.2187 
 

 0.9793 
 

0.0514 
 

  480 * 0.5527  * 6.4328 

 720W 1200 0.7849 0.9285  * 7.1954 

  720 0.9454 
 

0.1353  0.9735 0.0656 

  600 0.7181 
 

0.6990  0.9303 0.1728 

  480 0.0560 0.3419  * 7.1490 

*Negative values were obtained indicating that the model could contain terms that do not help to predict the response. 
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4.5 Conclusions 

Microwave processing occurs under nonisothermal conditions. The present work 

developed a reliable model to describe inactivation kinetics of E. coli O157:H7 and Salmonella 

Typhimurium under those conditions by incorporating into the process calculation the temperature 

history. All experimental survival curves lacked linearity, thus a first-order kinetics model was not 

adequate and not employed. Survival curves were modeled through the solution of the Peleg non-

linear differential equation. The kinetic parameters were obtained by a numerical approach using 

MATLAB ®. Fresh apple juice was pasteurized by temperatures reaching up 80-90⁰C in 25s with 

log pathogen reduction achieving 7-log units, thus meeting the FDA guidelines for processed 

juices. The modeling approach developed in the present work was further validated using other 

processing conditions and other samples. The validation analysis of the model showed that there 

was reasonably agreement between experimental and predicted data, but more specifically, the 

Peleg−log-logistic approach showed better prediction capability. It also showed a means to 

determine the critical temperature level to enhance microbial inactivation under microwave 

heating. Results clearly showed that, although the two approaches were able to appropriately 

describe the survival curves under nonisothermal treatment, the use of the Arrhenius approach did 

not have any prediction capabilities (Figs. 11B, D and 12B, D). Although the Arrhenius equation 

has been largely used to asses the effect of temperature on the rate constants of chemical reactions, 

its application to food processing has been seriously challenged (Peleg & Corradini, 2011; Peleg 

et al., 2002, 2012), and its less prediction capability is clearly demonstrated in this article.   

U.S. FDA specifies that it is the juice processor’s responsibility to validate the food process 

in order to assure its safety effectiveness by consistently achieving a 5-log or greater reduction. 

Thus, it is expected that the modeling approach presented and its validation in this work should 

assist the food industry in accomplishing this mission. 
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4.6 Figures 

 
 
 

     

Fig. 8. Experimental temperature profile of fresh apple juice inoculated with E. coli O157:H7 for 
(A) 50% power: 600W, (B) 60% power: 720W, and fit of experimental values by Eq. (5).  

 



127 
 

 
 
 

     
 

      
 

Fig. 9. Survival curves of E. coli O157:H7 and Salmonella Typhimurium in fresh apple juice 
during microwave heating. Dashed blue line represent the Peleg−log-logistic approach and the 

red line represents the Peleg−Arrhenius approach. 
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Fig. 10. Temperature profile of inoculated commercial apple juice used for validation purposes 
treated with four microwave power levels and modeled by Eq. (5). Dots represent data and 

dashed lines the model: dark blue color illustrates:1200 W; light blue color illustrates: 720W; 
green color illustrates: 600W; orange color illustrates: 480 W. 
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Fig. 11. Prediction and validation analysis at other power levels and using commercial apple 
juice samples. Symbols are experimental points and lines are model prediction. 1200W (dashed 

dark blue symbol and line); 720W (dashed light blue symbol and line; 600W (dashed green 
symbol and line), and 480 W (dashed symbol and orange line). (A) Peleg−log-logistic approach 
and (B) Peleg−Arrhenius approaches for Escherichia coli O157:H7; (C) Peleg−log-logistic and 

(D) Peleg−Arrhenius approaches for Salmonella Typhimurium in commercial apple juice. 
Prediction parameters were obtained using a treatment with a 600W microwave power level on 

fresh apple juice samples. 
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Fig. 12. Prediction and validation analysis at other power levels. Symbols represent experimental 
points whereas lines are predictions. 1200W (dashed dark blue symbol and line); 720W (dashed 
light blue symbol and line); 600W (dashed green symbol and line), and 480 W (dashed orange 

and line): (A) Peleg−log-logistic and (B) Peleg−Arrhenius approaches for Escherichia coli 
O157:H7; (C) Peleg−log-logistic and (D) Peleg−Arrhenius approaches for Salmonella 

Typhimurium in commercial apple juice. Prediction parameters were obtained using a treatment 
with a 720W microwave power level on fresh apple juice samples. 
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 MODELING INACTIVATION OF ESCHERICHIA COLI 
O157:H7 AND SALMONELLA TYPHIMURIUM IN JUICES BY PULSED 

ELECTRIC FIELDS; THE ROLE OF THE ENERGY DENSITY 

5.1 Abstract 

Electric field intensity, pulse repetition rate, treatment time, and food electrical 

conductivity are the main parameters for microbial inactivation by PEF processing. The objective 

of this study was to integrate these parameters into one factor, energy density, and correlate the 

inactivation rate of Escherichia coli O157:H7 and Salmonella Typhimurium with this integral PEF 

factor. A continuous bench scale PEF system (OSU-4H) treated the inoculated apple cider samples. 

Non-linear survival curves were modelled by numerically solving a differential equation using the 

Runge-Kutta method (ode45 in MATLAB ®). The lsqcurvefit function in MATLAB ® estimated 

the kinetic parameters. Samples were treated under four combinations of electric field strength (20, 

25, 30 and 35 kV/cm), and five pulse repetition rates per second (500, 750, 1000, 1250, 1500 pps). 

The developed model successfully described the survival of these pathogens. The validation with 

different juices and PEF treatment conditions demonstrates that the model satisfactorily predicted 

the experimental data as well as the data from literature. This suggests that the model is suitable 

for simply and precisely estimating the inactivation rate of foodborne pathogens in juices by PEF 

processing.  

 

Key words: pulsed electric fields, E. coli O157:H7, Salmonella, modeling, validation, energy 

density 

5.2 Introduction 

Pulsed electric field (PEF) is a promising nonthermal alternative to food processing 

(Altunakar & Barbosa-Cánovas, 2011). In the PEF process, the food is treated between two 

electrodes and exposed to a high intensity electric field (typically 20-80 kV/cm) (Barbosa-Cánovas, 

Pierson, Zwang, & Schaffner, 2000) for a short period of time from microseconds to milliseconds 

(Barba et al., 2015; Mohamed & Eissa, 2012). Literature has shown the capacity of the PEF 

treatment to inactivate a range of microorganism present in several food products (Evrendilek, 
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Zhang, & Richter, 1999; Evrendilek et al., 2000; Gurtler, Bailey, Geveke, & Zhang, 2011; Gurtler, 

Rivera, Zhang, & Geveke, 2010; Liang, Cheng, & Mittal, 2006; Liang, Mittal, & Griffiths, 2002; 

Mosqueda-Melgar, Raybaudi-Massilia, & Martín-Belloso, 2008a, 2008b, 2008c; Niu et al., 2019; 

Wei, Yang, Shen, Zhang, & Chen, 2013) while preserving nutritional and quality attributes 

(Caminiti et al., 2011; Elez-Martínez & Martín-Belloso, 2007; Guo et al., 2014; Jin, Guo, & Yang, 

2014; Jin, Yu, & Gurtler, 2017; Kantar et al., 2018; Turk, Vorobiev, & Baron, 2012). The 

application of PEF has been discussed in several reviews (Barba et al., 2015; Buckow, Ng, & 

Toepfl, 2013; Li & Farid, 2016; Vega-Mercado et al., 1997), and many of them have focused in 

the design of the treatment chamber and main processing parameters (Huang & Wang, 2009; 

Toepfl, Siemer, Saldaña-Navarro, & Heinz, 2014). 

PEF process parameters affecting microbial inactivation include electric field intensity, 

shape and width of the pulse, pulse frequency and treatment time (Altunakar & Barbosa-Cánovas, 

2011; Martín-Belloso & Soliva-Fortuny, 2011). Among them, the electric field intensity and the 

number of pulses applied (treatment time) are considered key parameters (Altunakar & Barbosa-

Cánovas, 2011) of the process. 

Inactivation of microorganisms increases with applying higher electric field strengths 

(Amiali & Ngadi, 2012; Martín-Belloso & Soliva-Fortuny, 2011; Zhang, Barbosa-Cánovas, & 

Swanson, 1995).  The critical electric field intensity (Ec) is a threshold parameter below which no 

significant effects on microbial viability occur (Schoenbach, Joshi, & Stark, 2000) or conversely, 

above which  the microbial inactivation rate increases with the applied electric field (Zhang et al., 

1995). Effects of electric fields on microbial inactivation can be explained by a mechanism of pore 

formation in the cell membrane (Schoenbach et al., 2000). When an electric field is applied, 

charges accumulate at the cell membrane generating a transmembrane potential that increases with 

the electric field. The increase in the transmembrane potential leads to structural changes in the 

membranes that culminate in the formation of pores and, ultimately, irreversible breakdown occurs 

leading to a mechanical destruction of the membrane and subsequent cell death (Buckow et al., 

2013; Pagán & Mañas, 2006; Schoenbach et al., 2000). 

 Treatment time plays a significant role in inactivation as its increase generally results in 

increased microbial inactivation (Mosqueda-Melgar et al., 2008b; Toepfl et al., 2014). The 

treatment time can be calculated by multiplying the pulse repetition rate, the pulse width, the 

residence time of the product in the chamber, and the number of PEF treatment chambers (Jin, 
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2017). However, the chamber geometry may influence the electric field remaining above the 

critical electric field, this happens for instance, with co-linear configurations for which the field 

intensity distribution must be taken into account when calculating the residence time. 

Consequently, the energy density is a parameter that has been suggested as a PEF control/intensity 

factor (Heinz, Álvarez, Angersbach, & Knorr, 2002; Toepfl et al., 2014).  

The energy density accounts for the influence of the electric field intensity, the pulse 

repetition rate and its width, along with the treatment and residence times, in addition to the 

electrical properties of the treated food such as the electrical conductivity (Jin, 2017). The aim of 

this study was to correlate the kinetics of microbial inactivation with this integrated PEF parameter 

in order to facilitate the selection of adequate PEF processing parameters in the production of safe 

food products. 

Escherichia coli O157:H7 and Salmonella Typhimurium have been involved in several 

food poisoning outbreaks in a variety of food products including juices and ciders (Vojdani, 

Beuchat, & Tauxe, 2008). In response to these juice-associated outbreaks, the FDA published the 

Hazard Analysis and Critical Control Point (HACCP) regulation that requires that juice processors 

apply a treatment that achieve at least a 5-log reduction of pathogens of public health concern 

(USFDA, 2001). Based upon foodborne illness outbreak data, Salmonella is accepted as one of the 

pertinent pathogen in citrus juices and Escherichia coli O157:H7 in apple juice (Danyluk, 

Goodrich-Schneider, Schneider, Harris, & Worobo, 2012). 

The design of effective PEF treatments to achieve the safety level required by the HACCP 

regulation can be facilitated if mathematical models to predict microbial inactivation are developed. 

Therefore, this research is proposing a modeling approach to predict microbial inactivation under 

more realistic PEF conditions.  

For the development of the model, it is hypothesized that the microbial population 

inactivation rate is a function of the energy density, and when the external electric field reaches a 

critical threshold, microbial inactivation starts. To test this hypothesis, the specific objectives were: 

(1) to investigate the effects of the energy density parameter  in the PEF treatment on the 

inactivation of the target microorganisms Escherichia coli O157:H7 and Salmonella Typhimurium; 

(2) to develop a modeling approach that incorporates the energy density to estimate inactivation 

of the targeted pathogens; (3) to estimate the corresponding survival parameters; (4) to validate 

the modeling approach and the model survival parameters in other commercially operations 
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involving pasteurized apple cider, as well as published data for other juices and other PEF 

conditions, and ultimately (5) to test the modeling approach’s capability in estimating survival 

parameters using a PEF system having a different number of treatment chambers set at other pulse 

repetition rates, pulse width, residence time, and electric field strengths. 

5.3 Materials and Methods 

5.3.1 Apple Cider 

Apple cider (Zeigler’s ®, Landsdale, PA) was purchased at a local retail grocery store 

(Wyndmoor, PA, USA) stored at 4°C and used for the model development. Apple cider for 

validation analysis was provided by a cooperating industry partner, wishing to remain anonymous. 

This apple cider was also stored at 4°C.  

Soluble solid content (°Brix) for the samples was measured using a digital laboratory 

refractometer (AR200 Reichert, Reichert Inc., Depew, NY, USA). The pH was measured using a 

benchtop pH-meter (TS625 Thomas Scientific, Thermo Electron Corp., Beverly, MA, USA) 

previously calibrated with standard buffer solutions. The electrical conductivity was measured 

using a conductivity meter (CON6, Oakton Instruments, Vernon Hills, IL, USA). 

5.3.2 Pulsed electric field system 

A continuous flow bench-scale PEF processing system (OSU-4H Model) located at the 

Eastern Regional Research Center (ERRC), Agricultural Research Service, USDA (Wyndmoor, 

PA), which can discharge bipolar square-waves pulses was used to process the apple cider samples. 

The PEF system is composed of six co-field treatment chambers in series, each containing two 

stainless steel electrodes with diameter of 0.23cm and a gap distance of 0.29cm. After passing 

through each pair of treatment chambers, the juice sample was cooled by passing it through a 

cooling coiled stainless steel tube submerged in a water bath set at 5⁰C (Polystat®, Cole-Parmer, 

Vernon Hills, IL, USA) in order to avoid temperature rises during the PEF treatment. Type K 

thermocouples attached to a multiple input digital thermometer (Omega HH374, Omega 

Engineering, Inc., Norwalk, CT, USA) were used to monitor the sample inlet and outlet 

temperatures. The pulse waveform, voltage, and current were monitored using an oscilloscope 

(TDS-210, Tektronix, Beaverton, OR, USA) connected to the PEF apparatus. The high voltage 

pulse generator (Model 9410, Quantum Composers, Inc., Bozeman, MT, USA) provided bipolar 
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square-wave pulses with the pulse repetition rate (frequency) 500 – 2000 pulses per second (pps) 

and a pulse width (pulse duration) of 2μs. The sample flow rate, set at 60ml/min, was controlled 

by a digital gear pump (Digital pump 75211-30, Cole-Parmer, Vernon Hills, IL, USA) previously 

calibrated following pump manufacturer specifications. Before and after each treatment the PEF 

fluid handling system was cleaned with a 10% household bleach solution and rinsed with sterile 

deionized water. Prior to treatment, autoclaved juice samples were circulated through the PEF 

system for 10 min, followed by pumping the inoculated apple cider to be treated. After treatment, 

PEF fluid handling system was disinfected by pre-rinsing the system with high flow-rate deionized 

water, followed by a recirculation with a 10% household bleach solution for 1 hour, and a final 

rinse with sterile distilled water for 30min. The absence of microorganisms in the wash water after 

disinfection confirmed no cross contamination of apple cider samples. 

5.3.3 Pulsed electric field processing 

Apple cider samples (12.5°Brix, pH 3.45, conductivity of 2088μS/cm) were treated with 

electric field strengths of 20, 25, 30, 35kV/cm at repetition rates of 500, 750, 1000, 1250 and 

1500pps. Treatment combinations of these process parameters were selected to reduce bacterial 

populations from 1 to 6 log CFU/ml. All the variables combinations, except 1250 and 1500pps at 

35kV/cm, were tested. Repetition rates of 1250 and 1500pps at 35kV/cm were not tested because 

the target 5 log reduction was achieved at 30kV/cm, thus it was not necessary to increase the field 

strength beyond that point. All the experiments combinations were performed in triplicates and 

repeated three times in different days. 

5.3.4 Microbial growth conditions and inoculation 

Escherichia coli O157:H7 (ATCC 43894) and Salmonella Typhimurium (ATCC 14028) 

were from ERRC culture collection and were stored on Tryptic Soy Agar slants (TSA, Difco, 

Becton Dickinson, Sparks, MD) in borosilicate screw-cap test tubes at 4°C. A loop full of culture 

was inoculated into 10ml of Tryptic Soy Broth (TSB, EMD, Merck KGaA, Darmstadt, Germany) 

and incubated at 37°C for 18h with continuous agitation (110 rpm) prior to experiments. Bacterial 

cultures were harvested by centrifugation at 4000rpm at 4°C for 10 min, the resulting pellets were 

washed in sterile 0.1% peptone water (BD/Difco Laboratories, Sparks, MD, USA) and centrifuged 

again. The supernatant removed, and the resulting pellets were resuspended in 10ml of 0.1% 
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peptone water. The initial cell concentration of each bacterial culture was approximately 109 

CFU/ml. Finally, cells were inoculated in apple cider at a 1:50 ratio to obtain initial populations 

of 7 log CFU/ml and immediately PEF treated. 

5.3.5 Enumeration of survivors 

After PEF treatments, sample volumes of 1ml were 10-fold serially diluted in 9ml of sterile 

0.1% peptone water, and 0.1ml of the diluted sample was spread-plated in duplicate onto selective 

media Sorbitol MacConkey Agar (SMAC) for E. coli O157:H7, and Xylose Lysine Tergitol 4 Agar 

(XLT4) for S. Typhimurium. All dilutions were plated in duplicate and plates were incubated at 

37°C for 24h before enumeration.  

5.3.6 Experimental design and statistical analysis 

Experiments were carried out as a randomized block factorial design to evaluate the effects 

of pulse repetition rate (500, 750, 1000, 1250, 1500pps) and electric field strength (20, 25, 

30kV/cm) in the population reductions of E. coli O157:H7 and S. Typhimurium specified as blocks. 

Mean and standard errors were calculated for each treatment. Inactivation data were analyzed 

using the Statistical Analysis System software (SAS 9.4, SAS Institute Inc, Cary, NC, USA). The 

GLIMMIX procedure of SAS was used to evaluate pulse repetition rate, field strength, and 

microorganism as fixed effects. Tukey’s test was used to determine whether treatment 

combinations were significantly different (p<0.05). 

5.3.7 Energy density input 

The energy density (J/ml) delivered to the apple cider sample, as above discussed an 

integrated parameter during PEF processing, was calculated by Eq. (1) (Jin, 2017): 

∆𝐸 = 𝐸ଶ ∗ 𝑓 ∗ 𝜏 ∗ 𝜎 ∗ 𝑅௧ ∗ 𝑛𝑐 (1) 

where 𝐸 is the electric field strength (kV/cm), 𝑓 is the repetition rate (pulses per second), 𝜏 is the 

pulse width (µs), 𝜎 is the electrical conductivity of the sample (S/cm), 𝑅௧ is the residence time (s) 

calculated by Eq. (2), and 𝑛𝑐 is the number of PEF chambers, whereas 𝑣 is the volume of the 

chamber (cm3), 𝑞 is the flow rate in ml/s. 

𝑅௧ =
𝑣

𝑞
 (2) 



144 
 

5.3.8 Modeling of survival curves 

A mathematical model based on the Peleg and Penchina (2000) approach was used to 

model the survival curves of E. coli O157:H7 and S. Typhimurium at different energy densities. 

The Peleg and Penchina (2000) equation was originally developed to calculate the survival ratio 

of a given microorganism to nonisothermal heat treatments. The applicability of this equation can 

be extended to PEF treatments in the present study and presented as follow: 

d log 𝑆(𝜒)

𝑑𝜒
=  −𝑏(𝜒) 𝑛(𝜒) ൬

−𝑙𝑜𝑔 𝑆(𝜒)

𝑏(𝜒)
൰

௡(ఞ)ିଵ
௡(ఞ)

 

(3) 

where 𝑆(𝜒) is the survival fraction; 𝜒 is the specific energy ∆𝐸 or energy density in J/ml. The 

logarithm of survival ratio 𝑆(𝜒) = (𝑁௙/𝑁଴) can be plotted against a variety of energy densities 

calculated for each repetition rate applied at different electric field strengths. 𝑁௙ is the final number 

of survivors after treatment (CFU/ml) and 𝑁଴ is the initial number of the microbial population 

(CFU/ml).  

This non-linear differential equation was solved numerically as an initial value problem 

(the initial condition specified at log 𝑆(0) = 10ି଻ to avoid numerical problems associated to the 

singularity of the log function at the zero value) using the Runge-Kutta method. The mathematical 

software MATLAB ® (Mathworks®, Natick, MA, USA) and its solver ode45 was used to solve 

Eq. (3) numerically. 

In thermal processing, microbial inactivation is more effective as the temperature reaches 

a lethal level. Beyond this ‘transition’ or critical level, inactivation increases linearly with 

temperature (Peleg & Normand, 2004). The same concept can be applied to PEF processing but, 

instead of temperature, the energy density applied to the system (Eq.1) can be assumed as the 

control parameter that defines that critical level. The energy density dependence pattern of 

microbial inactivation can be described the log−logistic equation (Campanella & Peleg, 2001): 

𝑏(∆𝐸) = 𝐿𝑛 {1 + exp[𝑘 (∆𝐸 − ∆𝐸௖)]} (4) 

𝑘 and ∆𝐸௖  are characteristic survival parameters and as discussed  ∆𝐸௖  indicates the critical or 

threshold energy density after which significant inactivation starts, whereas 𝑘 is the rate at which 

the inactivation rate rises after the energy density reaches that critical level (Peleg & Normand, 

2004). 𝑛(∆𝐸) is a power parameter that indicates a deviation of the linearity of the corresponding 

survival curve.  
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The ode45 function, which implements the Runge-Kutta method with a variable step, was  

used along a nonlinear least-squares solver, lsqcurvefit, in the MATLAB® Optimization Toolbox 

For the optimization process, an initial set of values for the parameters 𝑘, ∆𝐸௖, and 𝑛 was provided 

and at each iteration, the ode45 solver solved the differential equation Eq. (3). The lsqcurvefit 

function was used to minimize the sum of the squared residuals (SSR) defined as the difference 

between the experimental data and the solution of the differential equation. The iteration was 

repeated until a minimum of SSR was achieved. As a result, the survival parameters 𝑘, ∆𝐸௖, and 

𝑛 corresponding to the PEF process were obtained. From the critical energy density ∆𝐸௖ value a 

critical electric field 𝐸௖  was calculated. Mean square error (MSE) (Eq. 5), and the adjusted 

coefficient of determination (R2-adj), were used to indicate the adequacy of the model to describe 

the experimental data. R2-adj values close to one, and a small MSE value close to zero, are 

indicative of good agreement between model and experimental data. 

𝑀𝑆𝐸 =  
∑(𝑦௣௥௘ௗ − 𝑦௢௕௦)ଶ

𝑛௢௕௦ − 𝑝
 

(5) 

where 𝑛௢௕௦  is the number of observations, 𝑝 is the number of model coefficients, 𝑦௣௥௘ௗ is the 

predicted model coefficient value, and 𝑦௢௕௦ is the experimental data. 

5.3.9 Model validation 

The modeling approach developed by this study was validated in a commercial apple cider 

provided by a company partner. The above procedure was tested to inactivate E. coli O157:H7 at 

conditions within the original experimental range tested and following treatment combinations that 

resulted in the 5-log reduction standard required to the juice industry by FDA regulations. All tests 

were run in triplicate and the process was replicated twice. The developed modeling approach was 

also validated with data published the literature for orange and strawberry juices treated in a PEF 

system that is similar to the one used in this project but subjected to other electric field intensities, 

repetition rates, and residence times. In addition, the applicability of the modeling approach 

developed in this research was further challenged to predict microbial inactivation of juices having 

different conductivities, treated at other pulse widths, pulse frequencies, residence times, and in a 

PEF system having a different number of treatment chambers. The modeling approach prediction’s 

capability was evaluated by calculating the absolute error between experimental and model 

predictions. 
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5.4 Results and discussion 

5.4.1 Inactivation of pathogens in apple cider by PEF 

Figs. 13 and 14 illustrate survival curves for E. coli O157:H7 and S. Typhimurium 

inoculated in apple cider after PEF processing at different treatment combinations of electric field 

strength and repetition rates. Statistical analyses demonstrated that the randomized block factorial 

design employed was significant at the 95% confidence level. When the microbial population were 

considered as blocks, effects of the repetition rate, the electric field strength, and the interaction 

between repetition rate and electric field, on the inactivation were significantly different. When 

the repetition rate and the electric field were fixed, the effects on inactivation of the different 

microorganisms were significantly different at 1000pps and 30kV/cm. By looking at each 

microorganism by separate at 1000pps, the results indicated that all the electric fields were 

significantly different for E. coli O157:H7. However, at the same conditions, the results suggested 

that for S. Typhimurium electric fields of 25 and 30kV/cm were not significantly different. This 

difference in PEF lethality possibly suggests that blocking the microorganisms in separate 

treatments instead of using a mixed culture cocktail was helpful in improving the precision in 

comparing treatment means. More discussion of the randomized block factorial design used in this 

work can be found in Montgomery (2013). The 5-log pathogen reduction standard was 

accomplished in apple cider for E. coli O157:H7 and S. Typhimurium at repetition rates of 1000 

pps at 35kV/cm, 1250pps at 30kV/cm, and 1500 at 30kV/cm were applied. Thus, these selected 

PEF processing parameters were able to meet the 5 log10 reduction criteria requested by the U.S. 

FDA guidelines to the juice industry (USFDA, 2001). 

5.4.2 Energy density as a control PEF parameter 

Table 11 summarizes some of the results for the inactivation of E. coli O157:H7 and 

Salmonella Typhimurium achieved in the present research. The complete inactivation data are 

illustrated in Figs. 13 and 14. The increase of microbial reduction was associated with the increase 

in the pulse repetition rate and the electric field strength employed. In other words, the higher the 

energy density applied, the higher is the microbial inactivation, as the energy density is positively 

related to the pulse repetition rate and the electric field strength. Huang, Yu, Wang, Gai, and Wang 

(2014) also reported that PEF microbial inactivation of Staphylococcus aureus, Escherichia coli 

DH5α, and Saccharomyces cerevisiae in grape juice, increased with the energy density and with 
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the electric field strength for the three microorganisms. Álvarez, Pagan, Condón, and Raso (2003a) 

studied the influence of electric field strength, treatment time and energy density on the 

inactivation of Listeria monocytogenes in different treatment mediums. The authors reported an 

increase in microbial inactivation with the increase of these parameters but concluded that both 

energy density and electric field strength must be used to control PEF processes. The importance 

of the electric field strength on microbial inactivation also agrees with the results of this study. For 

instance, treatments at 20kV/cm resulted in similar microbial inactivation of E. coli and S. 

Typhimurium, but the inactivation increased at higher electric field strengths such as at 30kV/cm, 

which is accordance with the levels of energy density used. Similarly, Álvarez, Raso, Sala, and 

Condón (2003b) reported an increased inactivation of Yersinia enterocolitica with electric field 

intensity, treatment time and energy density. By investigating the influence of the energy density 

on the inactivation of Y. enterocolitica by PEF, a pathogen isolated from dairy products, the authors 

reported maximum electric field strength thresholds that depended on the applied energy density. 

In their study, the same lethality was observed beyond those thresholds. This phenomenon was 

also observed in the present study when 1000pps at 35kV/cm (370 J/mL), and 1500pps at 30kV/cm 

(408 J/mL), i.e. similar energy density levels were applied and resulted in 6.27 and 6.32 log 

reductions of E. coli and S. Typhimurium, and 6.38 - 6.34 log reductions of E. coli and S. 

Typhimurium, respectively. Possibly confirming the existence of a maximum field strength under 

a certain energy density level necessary to accomplish microbial reductions greater than 6-log, and 

also confirming that microbial inactivation is largely influenced by the energy density applied.  

In the present investigation, energy densities of 60 to 120J/ml were necessary to reduce 1-

log reduction of the target pathogens, which agrees with the typical range of 1 to 100J/ml discussed 

by Schoenbach et al. (2000). The energy densities necessary for microbial inactivation greater than 

5-log are approximately in the range 340 J/ml to 408 J/ml, i.e. within the range of 100 to 400J/ml 

discussed by Schoenbach et al. (2000). From a processing standpoint, the energy density would 

extend out as an integral parameter that accounts for the electric field intensity, the treatment time, 

and the conductivity of the medium. Thus, the energy density seems to be a suitable processing 

parameter to use as a treatment intensity parameter in a continuous flow PEF process (Toepfl et 

al., 2014). 
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Table 11. The impact of energy density in the log reduction of pathogens exposed to PEF: 

𝑓  𝐸 ∆𝐸 Log reduction 

(pps) (kV/cm) (J/mL) E. coli O157:H7 S. Typhimurium 

500 20 60.4 1.24a,A 1.19a,A 

 30 135.9 2.66b,B  2.21a,b,B 

     

1000 20 120.8 1.59a,A  1.14a,c,A 

 30 271.7 4.19c,C 3.25d,D 

     

1500 20 181.1 2.06a,b,A 1.41a,c,A 

 30 407.6 6.38d,E 6.34e,E 

aDifferent lowercase letters within a column are significantly different (p<0.05) 
ASame uppercase letters within a row are not significantly different (p>0.05) 

  

5.4.3 Modeling inactivation curves 

In the present study, survival curves are plotted as the log10 of the survival fraction against 

the energy density, which accounts for both the number of pulses and the electric field strengths. 

As shown in Figs. 13 and 14, E. coli O157:H7 and S. Typhimurium survival curves did not follow 

log-linear inactivation curves in any of the applied treatments. An upward concave shape was 

observed for 500 and 750 pps repetition rates suggesting that the less resistant microbial population 

was inactivated sooner at the lower energy densities, and that it became more difficult to inactivate 

more resistant survivors when these repetition rates were applied. The downward concave shape 

detected in the range of 1000 1500 pps repetition rates suggested that regardless the populations 

are not able to resist higher pulse repetitions at the different electrical strength used. For instance, 

by increasing the energy density at those repetition rates though increases in the electrical field 

strength, accumulated damage decreased the microorganisms’ resistance to the treatment due to 

the additional specific energy applied, and, therefore, the rate of the bacterial inactivation 

progressively increased. Thus, first-order kinetics was not suitable and therefore, not used in the 

work. The model chosen to account for these features was the Peleg non-linear model (Eq. 3). 

Literature has shown the suitability of this model to capture the inactivation data curvature in a 

variety of thermal (Campanella & Peleg, 2001; Chen, Campanella, & Corvalan, 2007; Peleg, 

Normand, & Corradini, 2005; Valero, Cejudo, & García-Gimeno, 2014) and non-thermal (Chen, 
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Campanella, & Barbosa-Cánovas, 2012; Mendes-Oliveira, Jensen, Keener, & Campanella, 2019) 

treatments.  

As illustrated in Figs. 13 and 14 the model chosen to describe the inactivation curves was 

able to accurately describe the distinct experimental survival shapes obtained from treatments 

using combined processing conditions. 

The MATLAB® functions (ode45) and lsqcurvefit were respectively used to solve the 

differential equation Eq. (3), and to find the parameters 𝑘, ∆𝐸௖ , and 𝑛 that best  describe the 

experimental data. The parameters obtained for both pathogenic microorganisms are illustrated in 

Table 12, which includes MSE and R2-adj values. The goal was to demonstrate a modeling 

approach that would consider the energy density parameter and used it to describe the inactivation 

kinetics of PEF treatments. The value of the critical energy density necessary to enhance 

inactivation can be used to calculate the critical electric field that would promote bacterial 

inactivation from Eq. (1). 

The uniqueness of the modeling approach developed in this study is its ability to group the 

effect of the repetition rate 𝑓, and the electric field strength 𝐸, into the inactivation rate. This would 

simplify the analysis since that both PEF process variables (𝐸 and 𝑓) may provide inactivation of 

the microbial cells. Thus, the critical energy density parameter obtained by the optimization 

procedure   enabled the calculation of the critical or threshold electric field strength beyond which 

microbial inactivation is enhanced (Table 12). When applying lower repetition rates, greater 

critical electric field strength needs to be applied to inactivate targeted pathogens. Conversely, 

when applying greater repetition rates, a lower critical electric field strength can start the 

inactivation process. As shown on Table 12, the critical electric field for E. coli O157:H7 and S. 

Typhimurium were in range of 24-25kV/cm for the 500pps, 21-22kV/cm for the 750pps, 17-21 

kV/cm for the 1000pps, 17-18kV/cm for the 1250pps and 16-17kV/cm for the 1500pps. Like 

results obtained in this study, García et al. (2009) also observed that the number of pulses to 

inactivate 1 log10 cycle of E. coli O157:H7 in apple juice decreased with the increase of the electric 

field intensity. This observation can be translated to the critical electric field concept, where is 

shown that by decreasing the number of applied pulses requires a higher critical electric field 

intensity for effective microbial inactivation. 

As discussed above, Eq. (4) assumes that the inactivation rate is approximately zero when 

the applied energy density is less than a critical value, and beyond that, the inactivation rate would 
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follow a linear increase relationship. This assumption is consistent with results from Castro, 

Barbosa-Cánovas and Swanson (1993) who reported that above a critical electric field strength the 

microbial inactivation rate increases linearly with the applied electric field. The use of the 

inactivation rate as a function of the energy density described by the log-logistic relationship (Eq. 

4) is consistent with the electromechanical theory. The electromechanical theory states that when 

the external electric field is increased, the transmembrane potential also increases because free 

charges of opposite polarity accumulates at the two membrane side surfaces (Pagán & Mañas, 

2006). The attraction between these charges gives rise to compression which decreases the 

membrane thickness leading ultimately to pore formation (Castro et al., 1993). Jayaram, Castle, 

and Margaritis (1992) explains that if the applied electric field is present for longer time or exceeds 

the critical field intensity (𝐸 > 𝐸௖), the number of pores becomes larger and also pores with larger 

size are formed. Beyond that critical stage, membrane breakdown occurs and is associated with 

the mechanical destruction of the cell (Castro et al., 1993; Jayaram et al., 1992). 
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Table 12. Survival parameters to describe inactivation data for E.coli O157:H7 and S. Typhimurium inoculated in apple cider by PEF: 

 Peleg−log-logistic approach  (Eq.3 and Eq.4) 

Pulse frequency Survival parameters E.coli O157:H7 Statistical 
performance 

 Survival parameters S. Typhimurium Statistical 
performance 

(pps) 𝑘(J/mL) -1 ∆𝐸௖ 

(J/mL) 

𝐸௖ 

(kV/cm) 

𝑛 R2-adj MSE  𝑘(J/mL) -1 ∆𝐸௖ 

(J/mL) 

𝐸௖ 

(kV/cm) 

𝑛 R2-adj MSE 

500 0.01 90.53 24.49 0.44 0.82 0.0324  0.01 92.40 24.74 0.42 0.99 0.0010 

              

750 0.01 106.43 21.68 0.43 0.93 0.0204  0.01 100.54 21.07 0.39 0.99 0.0003 

              

1000 0.01 89.75 17.24 0.41 0.99 0.0037  0.01 130.41 20.78 0.43 0.98 0.0276 

              

1250 0.01 107.91 16.91 0.44 0.99 0.0064  0.01 151.25 20.02 0.44 0.97 0.0361 

              

1500 0.01 126.45 16.71 0.46 0.99 0.0033  0.02 124.35 16.57 0.08 0.99 0.0004 
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5.4.4 Model validation 

To test the prediction capability of the developed model, same pathogen and same PEF 

system but different PEF process conditions and different juice were used. Commercial apple cider 

inoculated with E. coli O157:H7 was tested at conditions of 1000pps at 35kV/cm and 1500pps at 

30kV/cm. The model parameters reported in Table 12 were used in Eq. (3) to calculate the 

inactivation rate. The electrical conductivity of the commercial apple cider used was of 1558 

μS/cm, pH 3.83, and solid content 12.0°Brix. The error between the experimental and predicted 

values is reported in Table 13. 

 

Table 13. Validation results of E. coli O157:H7 inoculated in a commercial apple cider with 
electrical conductivity of 1558.4 μS/cm 

PEF treatment 
conditions 

Experimental values Modeling approach  
inactivation prediction 

|Error| 

1000pps / 35kV/cm 4.03 4.48 0.45 

1500pps / 30kV/cm 4.84 4.29 0.55 

 

Validation results are shown in Table 13. The error between the experimental and predicted 

values suggest that the developed model provides reasonable predictions of the inactivation of 

E.coli O157:H7 in the commercial apple cider having a different conductivity than the one used to 

build the model. The error between experimental values and model predicted values was 0.45 when 

1000pps at 35kV/cm was employed, and 0.55 when the 1500pps at 30kV/cm condition was tested. 

The low errors indicate that the model results in reasonable predictions.  

The developed model was further validated using the data published in the literature 

(Gurtler et al., 2010, 2011).  Those PEF experiments were conducted in a different laboratory with 

the same laboratory-scale pulsed electric system (OSU-4H). As shown in the literature, the electric 

field intensities were 11.75, 19.31, 23.86, 28, and 31.72 kV/cm for orange juice, and 18.6 kV/cm 

for strawberry juice; pulse repetition rates for both juices were 800 pps. Therefore, the parameters 

obtained from the 750pps and 1000pps (Table 14), which is close to 800 pps, were used to predict 

the inactivation of E.coli O157:H7 in orange and strawberry juices. The comparison of predictive 

values and published data from Gurtler et al. (2010, 2011) are listed in Table 14. The low values 

of the error confirm the suitability of the model to predict microbial reduction in juices subjected 
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to PEF. The model was able to account for the different processing parameters applied such as 

electric field strength, repetition rate, pulse width of 2.6μs, juices’ conductivity, as well as the 

residence times explored by Gurtler et al. (2010, 2011). 

It is important to point out that conductivity is a factor that plays a significant role in the 

PEF treatment effectiveness. Generally, PEF treatments are more effective in foods with low 

electrical conductivity (Jin et al., 2015). The difference between the electrical conductivity of the 

medium or juice, and that of the microbial cytoplasm increases the flow of ionic substances across 

the membrane, which as a result is weakened, thus becoming more susceptible to PEF treatments 

(Barbosa-Cánovas et al., 1999). Other juices with different conductivities such as apple, 

watermelon, and melon were also explored to validate the modeling approach developed in the 

present study. These juices were processed also with the OSU-4H system but composed of 8 

treatment chambers, different flow rates, pulse frequency and pulse width, than those used in this 

study. The optimized survival parameters, juices conductivities, along with the PEF treatment 

conditions from the literature (Mosqueda-Melgar et al., 2008a, 2008c) to achieve a target 

inactivation of E. coli O157:H7 are reported in Table 15. The small error between experimental 

and predicted log inactivation confirms the good prediction capability of the model developed in 

this study. It also confirms that is necessary a critical energy density to enhance microbial 

inactivation. From that, a critical electric field can be determined from the model. The critical 𝐸௖ 

for melon was higher than that of apple and watermelon juices. This is explained because of the 

high conductivity of melon juice, which would decrease the PEF efficacy to inactivate E. coli 

O157:H7 in melon juice. As explained previously, juices with greater electrical conductivity tend 

to impact negatively the inactivation of microorganisms (Jin et al., 2015). As shown in Table 15, 

the 𝑛 parameter was treated as a constant coefficient not necessarily a function of energy density; 

whereas the 𝑘 rate was greater for apple juice, which is an indication of the highest inactivation 

achieved for that juice as compared to melon and watermelon. 

The main advantage of the proposed modeling approach, which is based on the selection 

of the energy density parameter, is that accounts for others PEF processing parameters such as the 

electric field strength, the pulse repetition rate, the pulse width, the residence time as well as the 

samples electrical conductivities. Furthermore, a critical electric field can be calculated (from the 

critical energy density). Although the present model was developed and validated from data using 

square wave pulses and co-field continuous treatment chamber configurations, this do not 
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undermine the value of this study or its general application. The electric field intensity for coaxial 

chamber design, for instance, can be calculated if the outer and inner radii of the electrodes are 

known (Altunakar & Barbosa-Cánovas, 2011).  If exponential decay pulses are used, the average 

or effective voltage (approximately 37% of peak voltage) can be used for calculating electric field 

intensity; and the effective pulse width (the time until the electric field decreases to 37% of peak 

voltage) can be used for the model.  Jin, 2017; Toepfl, et al., 2014). Thus, the energy density can 

be calculated for other situations as well (Altunakar & Barbosa-Cánovas, 2011; Jin, 2017; Martín-

Belloso & Soliva-Fortuny, 2011; Zhang et al., 1995) and used as a control PEF parameter to study 

PEF processes. 

A 5-log inactivation of target microorganisms is a fundamental requirement for FDA 

approval. The experimental results and the model developed here was able to accurately estimate 

the conditions that meet this requirement. The approach is suitable for industrial applications 

because incorporates juice properties, the required energy demand, the ideal pulse repetition rate, 

and the field strength in the design of the PEF process. Furthermore, the approach should assist 

the food industry in determining appropriate PEF conditions for the inactivation of pathogenic 

cells in order to prevent the incidence of costly food-associated outbreaks. 

As discussed in the previous studies (Jin, 2016; Jin et al., 2015), PEF processing technology 

is different from other non-thermal processing, as so many parameters are involved in a PEF 

system design and operation. The complexities of PEF treatment are a challenge for potential users 

of PEF pasteurization, especially for those in industry, who have less research experience with this 

technology, which is one of the obstacles for the commercialization of this technology in food 

pasteurization. By grouping the parameters, the mathematical simulation or modeling provides the 

base for the development of user-friendly software applications or interfaces, with which it could 

achieve “one button” operation for industry operators wherever PEF processing is needed. 
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Table 14. Validation results reported in the literature of E. coli O157:H7 inoculated in other juices treated with the OSU-4H PEF system at 
other pulse repetition rate, pulse width, residence time and electric field strengths: 

 
Juice 

  
PEF treatment conditions 

 
Data 

 

 
Modeling approach  

log reduction 
|Error| 

 
Data 

source 
 Conductivity 

(μS/cm) 
Pulse 

frequency 
(pps) 

Pulse 
width 
(μs) 

Number 
of 

chambers 

Residence 
time 
(μs) 

Electric 
Field 

(kV/cm) 

Energy 
density 
(J/mL) 

log 
reduction 

Parameters 
from the 
750 pps 

Parameters 
from the 
1000 pps 

Parameters 
from the  
750 pps 

Parameters 
from the 
1000 pps 

 

Orange 4290 800 2.6 6 6024.397 
 

11.72 44.30 0.49 0 0 0.49 0.49 Gurtler et 
al., 2010 

      19.31 120.27 1.90 1.42 1.51 0.48 0.393  
      23.86 183.62 2.97 2.18 2.43 0.789 0.514  
      28 252.87 3.76 3.14 3.65 0.617 0.106  
      31.72 324.53 4.10 4.31 5.16 0.214 1.057  
             

Strawberry 4200 800 2.6 6 12048.79 18.6 218.49 3.09 2.81 3.23 0.282 0.142 Gurtler et 
al., 2011 
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Table 15. Model parameters from published data in the literature and the validation results of E. coli O157:H7 inoculated in other juices 
treated with the OSU-4H PEF system having 8 chambers, system set at other pulse repetition rates, pulse width of 4 μs, residence times, 

and electric field strength of 35kV/cm: 

 
Juice 

  
PEF treatment conditions 

 
Optimized model parameters 

 
Data 

 

Modeling 
approach 

 
 

|Error| 

 
Data 

source 

 Conductivity 
(μS/cm) 

Pulse 
frequency 

(pps) 

Pulse 
width 
(μs) 

Number 
of 

chambers 

Residence 
time 
(μs) 

Electric 
Field 

(kV/cm) 

Energy 
density 
(J/mL) 

∆𝐸௖ 
(J/mL) 

𝑘 
(J/mL)-

1 

𝑛 𝐸௖ 
(kV/cm) 

log 
reduction 

log 
reduction 

  

Apple 2180 180 4 8 8087.926 35 4205.028* 1980 0.0012 0.36   24.017 4.17 4.174 0.0043 Mosqueda-
Melgar et 
al., 2008c 

                
Melon 6020 193 4 8 276716.056 35 12603.008 8000 0.0008 0.20 27.885 ~3.8 3.820 0.0199 Mosqueda-

Melgar et 
al., 2008a 

                
Water 
melon 

3540 200 4 8 262812.5 35 7293.993 3800 0.0008 0.28 25.263 ~3.5 3.577 0.0771 Mosqueda-
Melgar et 
al., 2008a 

                

*this value was obtained after multiplying by 33.8 which was retrieved from Mosqueda-Melgar et al. (2008c) in which the authors reported the treatment time multiplied by this value.
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5.5 Conclusions 

Non-thermal technologies are of growing interests in food engineering. The primary intent 

of this study was to develop a modeling approach to describe PEF treatment by establishing a 

correlation between the PEF processing parameters and the inactivation characteristics of 

pathogens that have been associated with juice-related outbreaks. The developed model enables 

the calculation of microbial inactivation rate as a function of the energy density that groups key 

PEF processing parameters, such as electric field strength, treatment time, and sample’s 

conductivity.  

The model was constructed with the assumption that the death rate is not constant and 

depends on the instantaneous PEF processing conditions. Thus, the approach estimates inactivation 

parameters under more realistic processing conditions. Among the survival parameters obtained 

with the model, a critical energy density can be calculated, and the PEF processing conditions to 

meet the 5 log10 reduction criteria can be obtained.  

The model was validated by predicting inactivation rate on other apple cider samples 

having different conductivities but treated under conditions in the same range than those tested in 

the present study. Furthermore, the approach was validated with data from the literature of juice 

samples treated with other PEF systems, having different number of treatment chambers and set 

at other electric field intensities, pulse repletion rates, pulse width, and residence times. Both 

validations demonstrate that the developed model well predicts the data from different sources.  

The modeling approach represents a major improvement in non-thermal processing 

calculations not only because replaces the widely used first-order kinetic model for applications 

where more realistic non-lineal experimental survival curves are obtained, making markedly 

contributions to the current knowledge of predictive models for survival curves of microorganisms 

exposed to PEF, but also groups the PEF processing parameters in an integral energy density 

parameter, which significantly simplify the PEF processing parameters and treatment conditions, 

hence, promote the commercial application of the technology. 

 

Author’s contribution 

Gabriella Mendes C. de Oliveira conceived the idea of this study, the experimental design, 

conducted the experiments, interpreted the data, wrote the code, ran the model, analyzed the output 

data and wrote the manuscript. Osvaldo H. Campanella supervised the modeling analysis, Tony Z. 



158 
 

Jin supervised the PEF pasteurization tests and the microbiological experiments. The authors 

declare that there is no conflict of interest. 

 

Acknowledgements 

The first author gratefully acknowledges the Coordination for the Improvement of Higher Level 

Personnel (CAPES Foundation, Brazil) for the financial support through the Doctoral Grant Award 

(N0: 013729/2013-06) and the financial support from USDA cooperative research fund (58-8072-

8-003). The authors thank Anita Parameswaran for excellent technical laboratory assistance. 

USDA is an equal opportunity employer.



159 
 

5.6 Figures 

 

 

 

 

Fig. 13. Survival curves of E. coli O157:H7 in apple cider during PEF processing at: A) 500pps x 
20, 25, 30, 35kV/cm; B) 750pps x 20, 25, 30, 35kV/cm; C) 1000pps x 20, 25, 30, 35kV/cm; D) 

1250pps x 20, 25, 30kV/cm; E) 1500pps x 20, 25, 30kV/cm. Dashed line represent the 
Peleg−log-logistic approach and dots represent the data. 



160 
 

 

 

Fig. 143. Continued 
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Fig.  13. Continued 
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Fig. 14. Survival curves of S. Typhimurium in apple cider during PEF processing at: A) 500pps x 
20, 25, 30, 35kV/cm; B) 750pps x 20, 25, 30, 35kV/cm; C) 1000pps x 20, 25, 30, 35kV/cm; D) 

1250pps x 20, 25, 30kV/cm; E) 1500pps x 20, 25, 30kV/cm. Dashed line represent the 
Peleg−log-logistic approach and dots represent the data. 
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Fig. 14. Continued 
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Fig. 14. Continued 
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 SUMMARY AND RECOMMENDATIONS 

6.1 Summary of the Dissertation 

Mathematical models compromise and are associated to a wide range of applications 

that can assist the food industry to predict, control and improve system performance, which 

will ultimately aid in the management of food safety programs. The literature review chapter 

highlighted current models employed to describe the inactivation of microorganisms under 

thermal and non-thermal food processes investigated in this dissertation. The chapter also 

discusses in detail gaps and opportunities that are lacking in this area of research as reported 

in the literature. The main conclusion that can be extracted from the review is that 

mathematical models describing the inactivation of microorganisms found in the literature are 

far to be complete. 

The food industry is constantly trying to adapt to consumer demands that come with 

the inherent expectation that foods are free from potentially harmful microbes, but that are 

considered fresher and more natural. Thus, growing interests in alternative methods for food 

processing opens up the opportunity to explore technologies such as microwave heating, pulsed 

electric fields, and cold plasma, to meet these tight demands. In regards to food safety, 

mathematical modeling is a valuable tool for quantitative characterization of survival curves 

and for supporting food safety decisions considering these novel technologies. 

Non-thermal plasma or cold plasma has emerged as an innovative technology for 

microbial inactivation in the last two decades. The abundant reactive species generated during 

cold plasma treatments have been considered the main process parameter affecting the 

inactivation of vegetative and spore-forming organisms. The extreme resistance of spore cells 

often requires harsh (e.g. heat) treatments which in turn are likely to cause adverse effects on 

the freshness, nutrition and quality of foods. Because of the relatively mild conditions of cold 

plasma processes and the generation of highly oxidative gas species, the technology offers the 

opportunity to inactivate spore-forming organisms that present risks in foodborne diseases or 

food spoilage. Quantitative approaches are essential elements of microbial food safety and are 

required for regulatory approval. Concerning quantitative approaches used in the modeling of 

cold plasma treatments, one of the major gap is the assumption that the concentration of 
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reactive species is constant, which is far from real conditions occurring during plasma 

processing.  The other aspect that is not taken into account is the fact that, despite survival 

curves are visibly non-linear, first-order kinetics is used and, unfortunately, this shortcoming 

does not aid in the design of plasma processes in practice. Chapter 3 of this dissertation 

proposes a modeling approach that jointly modeled the time-varying concentration of a major 

reactive specie and the kinetics of microbial inactivation. The approach enabled the 

determination of a critical gas concentration of that specie, which would provide a threshold 

value to be employed in order to achieve significant microbial inactivation. Thus, from a 

practical standpoint, the modeling approach provides a useful and practical relationship 

between of the inactivation characteristic of resistant spores with realistic plasma processing 

factors. Although the cold plasma technology has not gained status for its use in the food 

industry, the modeling approach developed in this dissertation should empower the HACCP 

system used with this technology to determine the critical processing variables that play a key 

role in plasma processing. 

Recent advances in the use of emerging technologies for the inactivation of foodborne 

pathogens with minimal changes in nutritional attributes paved the way for the exploration of 

microwave heating for food pasteurization, as opposed to the exclusive use of convective 

heating. Microwave pasteurization may mimic similar processing variables as those used in 

traditional pasteurization protocols, but heating times are shorter and heat penetration is 

significantly higher. Furthermore, temperature profile in microwave processing is far from 

constant. Therefore, typical nonisothermal conditions of microwave heating should be 

included in the modeling analysis. The major gap in the literature, in terms of microbial 

inactivation modeling under microwave heating, was to assume first-order models to describe 

inactivation curves, which are far from linearity. More importantly, a common flaw reported 

in the literature was to ignore the temperature history of microwave processes and assume 

some arbitrary reference temperature to calculate 𝐷, 𝑧 and F values so that the microwave 

process could be related to isothermal conditions. Chapter 4 of this dissertation addresses this 

flaw by proposing a modeling approach that is able to relate the more realistic time varying 

temperature profile to the microbial inactivation kinetic by using a nonisothermal rate model. 

Two models, the Arrhenius and the logistic models, were used to describe the rate of 

inactivation and the dependence of the model parameters with the temperature and their 
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prediction capacity was compared and validated for other treatment conditions and samples. It 

was clear that the Arrhenius model failed to predict inactivation at different conditions. Other 

major contribution of the modeling approach used is the finding of a critical temperature above 

which significant microbial effects are significant. Once the food industry tests this approach 

in its liquid products, a target temperature can be determined. This temperature should assist 

the food industry in the design of microwave process as well as in the decision-making process 

to define which variables should be evaluated to ensure that pasteurization is effective. Finally, 

the modeling approach will further assist in process validation to ensure that the 5-log 

reduction criteria requested by the FDA HACCP guidelines are met. 

The growing interests of Pulsed Electric Fields (PEF) in food engineering is due to the 

large body of evidence that PEF is able to inactivate microorganisms. While mathematical models 

have been explored to describe the inactivation curves under PEF, none of the studies discussed in 

the literature review chapter were able to incorporate all the PEF variables into the modeling 

analysis. In some cases, the log reduction was plotted either against treatment time, or electric field 

strength, or specific energy, and the Weibull model was used to fit the experimental data. A good 

fit of the inactivation curve is important to estimate model parameters, and the shape of the curves 

were well described by the Weibullian shape parameter. In some cases, polynomial equations were 

also proposed to infer the contribution of variables such as E2 and Et2 in the modeling analysis, 

but their practical significance in the design of PEF was not discussed. The deficiency of these 

currently methods opens up the floor for development of more realistic modeling approaches that 

should better assist the design of PEF pasteurization protocols. Chapter 5 of this dissertation 

proposed a modeling approach based on the energy density parameter to describe the PEF 

pasteurization of fruit juices. It was hypothesized that microbial death is non-constant and depends 

on the energy density applied. From a calculated critical energy density, a critical electric field was 

calculated for processing conditions such as pulse repetition rates, which range from 500 until up 

to 1500pps. This hypothesis agrees with a theoretical critical electric field parameter, whose 

existence has been discussed for many years in the PEF literature. Working with the energy density 

applied, the modeling approach proposed in this dissertation incorporated all the PEF process 

variables into the description of the inactivation curves at the same time. In other words, the electric 

field strength, the pulse repetition rate, the pulse width, the residence time, and the sample’s 

conductivity were jointly incorporated in the microbial inactivation kinetics for accurate 
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predictions. The proposed approach was validated in other samples and also in data published in 

the literature for other juices. For the first time, such a model has been developed and validated, 

which proves its usefulness and its rigorous framework for the design of PEF processes. Finally, 

in addition to its striking contribution to predictive models for PEF, the proposed approach will 

also assist the food industry by using the approach to support food safety decisions. For instance, 

in determining which parameters must be considered to ensure the safe production of foods, or in 

determining which factors need to be considered in the control of PEF pasteurization processes. 

The use of mathematical models to describe inactivation curves becomes powerful 

when process variables are linked to microbial kinetics. Although the assignment is not simple, 

when microbial kinetic parameters are estimated using realistic process factors that actually 

correlate with the behavior of microorganisms in food, the result is a safe inference for process 

design. This dissertation successfully completed this assignment and contributed significantly 

to the current knowledge of predictive models for microbial inactivation. The examples 

explored in this dissertation that correlated important process parameters with microbial 

inactivation – e.g. the concentration reactive species of cold plasma, temperature history of 

microwave heating, and the energy density of PEF treatments – showed that mathematical 

modeling will realistically assist the food industry in the design, control and optimization of 

nonisothermal and non-thermal food processes. 

6.2 Recommendations for future work 

The dissertation was able to fulfill its objective of developing a flexible modeling 

approach capable of incorporating the process variables in the description of microbial inactivation, 

whether that is subjected to nonisothermal or non-thermal food processes. All of the phases of the 

modeling cycle were satisfied, from the planning of the experimental design, the collection of the 

experimental data, the description of model incorporating relevant factors and its prediction 

capacity confirmed in untested combination of factors, even its complete validation in more 

complex systems. But still, some questions can be further investigated in future research.  

For cold plasma, the empirical modeling approach developed to describe the generation of 

ozone is not yet related to plasma physics. Once the random production of reactive species is 

modeled, the equation, or its algorithm, can be linked to the approach proposed by this dissertation 

to build a more mechanistic method.  
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For microwave heating, the modeling approach was built on juice samples since microwave 

heating is already being used successfully for fluid products in continuous systems. For instance, 

in recent continuous systems that focus the microwave energy inside cylinder tubes which 

minimizes any non-uniformity in the heating of fluid products. (This is an interesting advantage 

for quality attributes, see for example the company SinnovaTek which sells microwave systems 

for continuous fluid with flows ranging from 2-100 gallons per minute. In one of its open access 

report, the company also shows the retention of color, nutrient and aroma in a variety of smooths 

and purees treated by continuous flow microwave processing). But even with the method of 

modeling developed in this dissertation, the door for validation of the proposed model for solid 

foods or multi-food components, that may include particulates, solid, or viscous materials, is still 

open. For such complex systems, uneven temperature distribution, resulting in hot or cold spots in 

microwave-heated products may compromise the efficacy of pasteurization or sterilization 

protocols. Given the wide range of food products along with their associated chemical/physical 

singularity, or their associated pathogens of concern, no single universal model will likely meet all 

the requirements. Therefore, future research should tackle each case and its uniqueness separately 

in order to build a modeling approach that can assist decision-making for food safety management. 

Nevertheless, it is important to provide the industry with realistic modeling approaches that 

incorporate the history and evolution of the lethal variables into microbial prediction. It is believed 

that the modeling approach proposed by this dissertation did just that. 

For PEF processes, the mild temperatures that may be associated to PEF are below those 

used in the traditional thermal pasteurization still make the technology of practical interest, 

especially with the reduction of the negative impact that high temperatures have on food quality. 

The modeling approach proposed in this dissertation assumed that if any thermal effects existed 

they were accounted for in the calculation of the energy density. Future modeling research could 

separate any thermal from the electric field effects, for example in terms of potential effects on the 

microbial membrane. Other future modeling research could relate the critical electric field with 

the size of the bacterial cells. Models like those would be based on theory rather than practical 

processes, but still they could be useful to develop. 

In addition, future research may evaluate other intervention technologies and use the ideas 

constructed in this dissertation as a reference or as a starting point to build more realistic modeling 

approaches for those technologies as well. 
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Last, but not least, future research should assess the conditions that are able to meet the 5 

log reduction criteria in terms of their impact on the quality and nutritional attributes. In other 

words, the optimized food safety conditions should also be assessed in a food quality perspective.    
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