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“We began as wanderers, and we are wanderers still. We have lingered long enough on

the shores of the cosmic ocean. We are ready at last to set sail for the stars.”

— Carl Sagan, Cosmos
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ABSTRACT

Güera, David Ph.D., Purdue University, December 2019. Media Forensics Using Machine
Learning Approaches. Major Professor: Edward J. Delp.

Consumer-grade imaging sensors have become ubiquitous in the past decade. Images

and videos, collected from such sensors are used by many entities for public and private

communications, including publicity, advocacy, disinformation, and deception. In this the-

sis, we present tools to be able to extract knowledge from and understand this imagery

and its provenance. Many images and videos are modified and/or manipulated prior to

their public release. We also propose a set of forensics and counter-forensic techniques

to determine the integrity of this multimedia content and modify it in specific ways to de-

ceive adversaries. The presented tools are evaluated using publicly available datasets and

independently organized challenges.
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1. INTRODUCTION

The popularization of the smartphone has radically changed how we interact with each

other. These devices have enabled unprecedented levels of generation of digital content

such as images and videos. This digital content is now seen as the gold standard to store

our memories or signal our attendance to social events. Due to the importance placed on

images and videos and their major role in social networks and journalistic media, numerous

pieces of software have been developed to edit and refine these digital assets. However,

this software innovation has come at a price. Doctoring images and videos has become

common practice, either done for aesthetic or malicious purposes. The prevalence of these

forged digital media is leading the public to stop blindly accepting any kind of image or

video as digital evidence. Zhu and Farid [1, 2] were among the first to hint at this trend.

This mistrust is also being exacerbated by the “fake news” [3] phenomenon and by the

recent popularization of methods based on machine learning techniques such as generative

adversarial networks [4] that can be exploited by malicious actors.

To mitigate the spread of misinformation and aid law enforcement agencies carry out

investigations in which digitals assets may be involved, the research community has been

developing tools to verify and authenticate such content. The field of digital image and

video forensics was born out of these efforts [5]. In its current form, digital image and

video forensics include two large research areas which are the focus of this work: source

image forensics and content-based forensics. To tackle the problem of source image foren-

sics, we particularize it as source camera identification task, which we propose to solve

using CNN-based methods [6–8]. Content-based forensics includes computer graphics

forensic, for which we focus on the recent Deepfakes video manipulation technique [9,10],

We also study adversarial content image generation and detection for CNN camera model

identification methods [11]. Finally, we also investigate the use of video metadata analysis

for manipulation detection [12].
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Initially, the problem of source image forensics was addressed through methods that

rely on the study of the statistics of the image and other pattern recognition techniques.

Due to the improvements in classification methods shown by Krizhevsky et al. [13] in

2012, coupled with the increasing availability of large computational resources, researchers

have shown a major interest in techniques based on CNNs. Deep learning based methods

have been successfully used in the field of source image forensics, and have proved their

effectiveness in various competitions [14, 15]. To better understand the results achieved

with deep learning methods, we give a comprehensive review of those approaches in the

following lines, and how they relate to each other, as shown in Figure 1.1 This will allow

any reader of this work to better understand the context in which we have developed our

solutions.

Deep learning

Example: 
CNNs

 

Example: 
Autoencoders

Machine learning

AI

 
 

Example: 
Knowledge bases

Example: 
Random trees

Representation learning

Fig. 1.1.: A Venn diagram showing how deep learning is a subset of representation learning,
which in turn is a subset of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology used in
this work. Adapted from Goodfellow et al. [16].
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A series of breakthroughs in 2006 [17–19] made the use of deep neural networks vi-

able and gave rise to the field known as deep learning [16, 20]. Following methods based

on deep learning have consistently achieved remarkable results on a series of tasks such

as handwritten text recognition, video scene understanding, and image classification. To

solve these tasks, specialized techniques have been developed in the field of computer vi-

sion, including convolutional neural networks, recurrent neural networks, and generative

adversarial networks. Among them, CNNs and RNNs have been shown to be effective

when dealing with image and video related tasks, and have been subsequently adopted as a

basis for numerous digital forensics methods.

In broad terms, the basic components of CNNs consist mainly of convolutional layers,

pooling layers, and activation functions. To construct the architecture of a convolutional

neural network, these layers are generally stacked together. The main recent advances on

the building and training of CNNs can be grouped in: structural reformulation, parameters

optimizations, regularization, and loss function. Among those, structural reformulation

plays the most important role in improving the performance. Typical CNN architectures

such as AlexNet [13], VGG [21], GoogleNet [22], ResNet [23], DenseNet [24], Xcep-

tion [25], SENet [26], Siamese Network [27], are well known. Figure 1.2 shows the overall

taxonomy of the aforementioned architectures. We refer the interested reader to the review

by Goodfellow et al. [16], Khan et al. [28], and Gu et al. [29] for further details about deep

learning.

Deep CNNs

Spatial 
exploitation

AlexNet VGG GoogleNet

Depth 
based

ResNet

Multi-path 
based

ResNet DenseNet Siamese 
Network

Width based 
multi-

connection

Xception

Feature map 
exploitation

SENet

Fig. 1.2.: Taxonomy of deep CNN architectures. Adapted from Khan et al. [28].
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1.1 Camera Model Identification

Camera model identification is paramount to verify image origin and authenticity in a

blind fashion. State-of-the-art techniques leverage the analysis of features describing char-

acteristic footprints left on images by different camera models from the image acquisition

pipeline (e.g., traces left by proprietary demosaicing strategies, etc.).

Motivated by the very accurate performance achieved by feature-based methods, as

well as by the progress brought by deep architectures in machine learning, we explore in

Chapter 2 the possibility of taking advantage of convolutional neural networks (CNNs)

for camera model identification. More specifically, we investigate: (i) the capability of

different network architectures to learn discriminant features directly from the observed

images; (ii) the dependency between the amount of training data and the achieved accuracy;

(iii) the importance of selecting a correct protocol for training, validation and testing. Our

study shows that promising results can be obtained on small image patches training a CNN

with an affordable setup (i.e., a personal computer with one dedicated GPU) in a reasonable

amount of time (i.e., approximately one hour), given that a sufficient amount of training

images is available.

However, some patches of an image may not contain enough information related to the

camera model (e.g., saturated patches). In Chapter 3, we propose a CNN-based solution

to estimate the camera model attribution reliability of a given image patch. We show that

we can estimate a reliability-map indicating which portions of the image contain reliable

camera traces. Testing using a well known dataset confirms that by using this information,

it is possible to increase small patch camera model attribution accuracy by more than 8%

on a single patch.

In Chapter 4 we revisit the problem of identifying the camera model or type that was

used to take an image and how it can be spoofed. Due to the linear nature of CNNs and the

high-dimensionality of images, neural networks are vulnerable to attacks with adversarial

examples. These examples are imperceptibly different from correctly classified images but

are misclassified with high confidence by CNNs. We describe a counter-forensic method
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capable of subtly altering images to change their estimated camera model when they are

analyzed by any CNN-based camera model detector. Our method can use both the Fast

Gradient Sign Method (FGSM) or the Jacobian-based Saliency Map Attack (JSMA) to

craft these adversarial images and does not require direct access to the CNN. Our results

show that even advanced deep learning architectures trained to analyze images and obtain

camera model information are still vulnerable to our proposed method.

1.2 Deepfake Video Detection

Computer graphics

Learning-based 
approaches 

Applications of face 
reconstruction 

Face replacement 

Deepfakes

Fig. 1.3.: A Venn diagram showing how Deepfakes is an instance of face replacement,
which in turn is a particular application of face reconstruction, which belong to the family
of learning-based computer graphics methods.

Re-constructing, tracking, and analyzing human faces based on visual input remains an

open problem. Several methods to tackle these specific problems have been proposed by

the field computer vision and graphics. While convincing manipulations of digital images

and videos have been demonstrated for several decades through the use of visual effects,

recent advances in deep learning have led to a dramatic increase in the realism of fake
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content and the accessibility in which it can be created [30–35]. More specifically, several

approaches for face replacement or swapping have been proposed in the literature, either

model-based [36, 37], pure image-based [38], or learning-based [39]. These techniques

swap the face of a target person in a video with the face of a source person, where the

videos may be recorded under different illumination conditions. Synthesizing a believable

video sequence that is realistic and consistent in the temporal sense remains unsolved.

In recent months a learning-based free computer graphics tool has made it easy to create

believable face swaps in videos that leaves few traces of manipulation, in what are known

as “deepfake” videos. We refer the readers to Figure 1.3 and the excellent overview of face

reconstruction, tracking, and applications by Zollhöfer et al. [40] to better understand how

deepfakes fit within the set of computer graphics techniques.

Scenarios where these realistic fake videos are used to create political distress, black-

mail someone or fake terrorism events are easily envisioned. Hence, the main advances of

the multimedia forensic community regarding videos have focused on detecting manipula-

tions that are computationally cheap to generate, such as dropped or duplicated frames [41],

chroma-key compositions [42], varying interpolation types [43], or copy-move manipu-

lations [44]. Further studies explicitly focus on detecting facial manipulations, such as

distinguishing computer generated faces from natural ones [45], morphed faces [46], face

splicing [47], face swapping [48], and DeepFakes [10]. For face manipulation detection,

some approaches exploit artifacts that originate during the synthesis phase, such as eye

blinking [49], or color, texture and shape cues [47]. More general solutions propose a

deep network trained to capture the subtle inconsistencies arising from low and high level

features [50]. For a more in-depth analysis of the space of face-based manipulations and

detectors, we suggest the readers the excellent review by Rössler et al. [51].

In Chapter 5 we propose a temporal-aware pipeline to automatically detect deepfake

videos. Our system uses a convolutional neural network to extract frame-level features.

These features are then used to train a recurrent neural network (RNN) that learns to classify

if a video has been subject to manipulation or not. We evaluate our method against a large
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set of deepfake videos collected from multiple video websites. We show how our system

can achieve competitive results in this task while using a simple architecture.

1.3 Video Manipulation Detection Using Stream Descriptors

Recent digital forensics literature has revealed that a video file structure contains a lot of

information about the history of its content. At the same time, this structure is much more

difficult to extract and modify for a user than metadata, since available editing software and

metadata editors do not have a functionality to modify such a low-level information, like

the internal order of the core file structures. In [52], Gloe et al. explore the low-level char-

acteristics represented by metadata and low-level file format information, with an emphasis

on the structure of the video file container. Indeed, video standards prescribe only a limited

number of characteristics for the data container formats, thus leaving a lot of discretion to

the manufacturer. This lead to differences that can be exploited for forensic purposes. How-

ever, while providing a pioneering exploration of video container formats from a forensic

viewpoint, the manual approach proposed in [52] reduces the forensic capabilities when

the containers may be huge, deeply nested and strongly variable among different models.

Finally, in Chapter 6, we show how simple machine learning classifiers can be highly

effective at detecting video manipulations when the appropriate data is used, completely

avoiding the pixel space. Up until now, most video manipulation detection techniques have

focused on analyzing the pixel data to spot forged content. Furthermore the typicality of

some container features analysis can be hardly quantified by manual inspection. Using

well-known datasets, our results show that this scalable approach can achieve a high ma-

nipulation detection score if the manipulators have not done a careful data sanitization of

the multimedia stream descriptors. More specifically, we use an ensemble of a random

forest and an SVM trained on multimedia stream descriptors from both forged and pris-

tine videos. With this approach, we have achieved an extremely high video manipulation

detection score while requiring very limited amounts of data.
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1.4 Contributions Of This Thesis

• We explore the possibility of leveraging convolutional neural networks for camera

model identification.

• We show that we can estimate a reliability-map indicating which portions of an image

contain reliable camera traces for its identification.

• We describe a counter-forensic method capable of subtly altering images to change

their estimated camera model.

• We propose a temporal-aware pipeline to automatically detect Deepfake videos.

• We demonstrate how by using the structure present in the stream descriptors of videos

we can quickly determine if they have been manipulated without having to examine

their pixel content.

1.5 Publications Resulting From This Work
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2. CAMERA MODEL IDENTIFICATION

2.1 Overview

The rapid proliferation of inexpensive image capturing devices has driven the widespread

diffusion of digital pictures on the web. Sharing any type of images through websites and

social media is now an option everywhere. Verifying the veracity and authenticity of these

widely distributed (and re-distributed) images is far from being an easy task [5, 53]. For

this reason, the multimedia forensic community has investigated methodologies to assess

the trustworthiness of digital images in the last few years [54, 55].

Among the many investigated forensic issues, great attention has been devoted to cam-

era model identification [56–58]. Indeed, detecting the camera model used to take a picture

can be crucial for criminal investigations and trials. This information can be exploited for

solving copyright infringement cases, as well as indicating the authors of illicit material

(e.g., child pornography). Even when deeper source identification granularity is needed

(i.e., detecting the unique camera instance rather than just the make and model), camera

model identification can be considered an important preliminary step to reduce the set of

camera instances [58]. Moreover, being able to detect the camera model by analyzing small

image patches is a possible way to expose splicing operations [59].

The rationale behind blind state-of-the-art camera model identification detectors is that

each camera model performs peculiar operations on each image at acquisition time (e.g.,

different JPEG compression schemes, proprietary algorithms for CFA demosaicing, etc.).

These operations leave on each picture characteristic “footprints” that can be exploited as

an asset to reverse-engineer the camera model identity.

Following this idea, some methods focus on capturing characteristic footprints left dur-

ing one specific step of the image acquisition pipeline. As an example, in [57] noise traces

left by sensors on acquired images are exploited. Conversely, in [60] an algorithm tailored
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to detect lens distortion is proposed. In [61–63], traces relative to the used demosaicing

strategy are investigated. Alternatively, the effect of dust traces on image sensors is studied

in [64].

Given the difficulty of properly modeling complex chains of operations typical of the

image acquisition pipeline, other camera model identification methods exploit features

mainly capturing statistical image properties paired with machine learning classifiers, rather

than focusing on specific processing operations. As an example, a technique based on local

binary patterns is proposed in [65]. More recently, the authors of [66–68] exploit pixel

co-occurrence statistics computed in different domains fed to a variety of supervised clas-

sification techniques. These methods guarantee very accurate results, especially on full

resolution images that provide sufficient pixel statistics.

A common aspect of all the aforementioned algorithms is that they rely on manually de-

fined procedures to expose traces characterizing different camera models. This means that

they rely on some model assumptions a priori made. However, recent advancements estab-

lished by deep learning techniques in computer vision [69] have shown that it is possible

to improve the accuracy in detection and classification tasks by taking advantage of great

amount of data in order to learn characteristic features directly from the data itself. These

methods are known as data-driven, as they learn directly from data rather than following an

analytic model.

Considering that the feature learning paradigm has recently proved fruitful for forensics

applications [70–73], we investigate the use of feature learning techniques in the camera

model identification context, further investigating our first exploratory solutions [6, 74].

Our objective is to show that it is possible to use convolutional neural networks to learn

discriminant features directly from the observed known images, rather than relying on

hand-crafted descriptors. In principle, this enables to possibly capture also characteristic

traces left by non-linear and difficult to model operations during the acquisition pipeline.

To conduct our study, we investigate the behavior of different CNN architectures to

select a proper network for discriminant feature learning on 64×64×3 (i.e., height×width

× colors) image patches, while keeping computational complexity at bay. In particular, we
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compare a series of CNN architectures differing in the number of convolutional, pooling,

inner product and rectified linear unit (ReLU) layers. For each type of architecture, several

hyper-parameters choices (e.g., kernel size, stride, number of feature maps) are examined.

We focus on the importance of a proper training protocol, which is essential to make

sure that the CNN learns important characteristics (e.g., properties discriminating camera

models) rather than biased information (e.g., the semantic of the captured scenes). To

this purpose, strongly inspired by [58], we consider different amounts of training images,

depicting either the same or different scenes, and show how different training choices affect

classification results.

We first report some background on CNNs. Then, we show the algorithmic pipeline

devised to perform camera model identification using CNNs. Afterwards, we report all the

details about the experimental setup, from the tested CNN architectures to the used dataset

splits. Then, we report the numeric results achieved through our study in order to evaluate

the different tested setups. Finally, we wrap up our final considerations.

2.2 Background On CNNs

In this section, we provide a brief overview of convolutional neural networks sufficient

to understand the rest of this thesis. For a more in depth description, please refer to one of

the many available tutorial in the literature [69, 75].

Deep learning and in particular CNNs have shown very good performance in several

computer vision applications such as image classification, face recognition, pedestrian de-

tection and handwriting recognition [75]. A CNN is a complex computational model par-

tially inspired by the human neural system that consists of a very high number of intercon-

nected nodes, or neurons. Connections between nodes have a numeric weight parameter

that can be tuned based on experience, so that the model is able to learn complex functions.

The nodes of the network are organized in multiple stacked layers, each performing a sim-

ple operation on the input. The set of operations in a CNN typically comprises convolution,

intensity normalization, non-linear activation and thresholding and local pooling. By min-
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imizing a cost function at the output of the last layer, the weights of the network (e.g., the

values of the filters in the convolutional layers) are tuned so that they are able to capture

patterns in the input data and automatically extract distinctive features.

This is different than traditional use of “handcrafted” features, in which the features

used are driven by human intuition. In a CNN the features used are driven by data. Such

complex models are trained using backpropagation coupled with an optimization method

such as gradient descent and the use of large annotated training datasets. The first layers

of the networks usually learn low-level visual concepts such as edges, simple shapes and

color contrast, whereas deeper layers combine such simple information to identify complex

visual patterns. Finally, the last layer consists of a set of data that are combined using a

given cost function that needs to be minimized. For example, in the context of image

classification, the last layer is composed of N nodes, where N is the number of classes,

that define a probability distribution over theN visual category. That is, the value of a given

node pi, i = 1, . . . , N belonging to the last layer represents the probability of the input

image to belong to the visual class ci. Depending on user choices, it is possible to select

the class maximizing pi as classification result, or to use all pi values as feature vector to

train an external classification tool (e.g., a support vector machine).

To train a CNN model for a specific image classification task we need:

1. To define the metaparameters of the CNN, i.e., the sequence of operations to be

performed, the number of layers, the number and shape of the filters in convolutional

layers, etc;

2. To define a proper cost function to be minimized during the training process;

3. To prepare a (possibly large) dataset of training and test images, annotated with labels

according to the specific tasks (i.e., camera models in our work).

Figure 2.1 shows a minimalistic example of a small CNN architecture depicting some of

the commonly used layers. To better understand the role of each layer, we describe the

most common building block:
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• Convolution: each convolution layer is a filterbank, whose filters impulse response

h are learned through training. Given an input signal x, the output of each filter is

y = x ∗ h, i.e., the valid part of the linear convolution. Convolution is typically done

on 3D representations consisting of the spatial coordinates (x, y) and the number of

feature maps p (e.g., p = 3 for an RGB input).

• Max pooling: returns the maximum value of the input x evaluated across small win-

dows (typically of 3x3 pixels).

• ReLU: Rectified Linear Unit (ReLU) uses the rectification function y = max(0, x)

to the input x, thus clipping negative values to zero [76].

• Inner Product: indicates that the input of each neuron of the next layer is a linear

combination of all the outputs of the previous layer. Combination weights are esti-

mated during training. The dropout rate indicates the percentage of nodes that are

randomly neglected during training in order to avoid data overfitting [77].

• SoftMax: “squashes” the input values in the range [0, 1] and guarantees that they sum

up to one. This is particularly useful at the end of the network in order to interpret its

outputs as probability values.

Fig. 2.1.: Simple CNN architecture consisting of commonly used layers. A small color
image patch is processed through convolutional, max pooling, inner product and ReLU
layers. Finally, SoftMax is used to obtain a probability vector.
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2.3 Camera Model Identification Using CNNs1

In this chapter, we consider camera model identification as a closed set classification

problem. In other words, given an image I under analysis, the goal is to detect which

camera model among a set of known N ones has been used to shoot the photograph.

In order to solve this problem, our proposed method follows the pipeline depicted in

Figure 2.2: (i) images are split into patches; (ii) a CNN is first trained, than used to extract

meaningful features from each patch; (iii) a set of support vector machines (SVMs) are

trained and used to classify each patch; (iv) a final voting procedure is used to take decision

at image level aggregating patches scores.

Fig. 2.2.: Proposed pipeline for camera model identification with training steps highlighted
in red. During training, patches are extracted from each training image I inheriting the
same label L of the image. These are used for CNN and SVM training. During evaluation,
for each patch Pi of the image I under analysis, a feature vector Vi is extracted through
the CNN. Feature vectors are input into a set of trained linear SVM classifiers in order to
associate a candidate label L̂i to each vector. The predicted label L̂ for image I is obtained
by majority voting.

In the following we report details about each step, leaving to the next section the de-

scription of the tested CNN architectures, which is object of investigation in this chapter.

2.3.1 Patch Selection

The first step of the proposed pipeline consists in splitting each image I into a set of K

non-overlapping patches Pk, k ∈ [1, K] of size 64× 64× 3 (i.e., height × width × color).

The rationale behind this choice is twofold: (i) splitting images into patches allows us to

obtain a greater amount of data for CNN training; (ii) feeding the CNN with smaller data

1This is joint work with Dr. Luca Bondi, Dr. Luca Baroffio, Prof. Paolo Bestagini, and Prof. Stefano Tubaro
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(i.e., a patches rather than full resolution images) enables working with smaller and lighter

CNN architectures.

However, not all patches contain enough statistical information about the used camera

model. For instance, it is clear that saturated patches should not be considered during

either training or testing. Therefore, we devised a patch selection procedure. Specifically,

for each patch Pk within an image, we compute a quality value defined as

Q(Pk) =
1

3

∑
c∈[R,G,B]

[
α · β

(
µc − µc

2
)

+ (1− α) (1− eγσc)
]
, (2.1)

where α, β and γ are empirically set constants (set to 0.7, 4 and ln(0.01) in our experi-

ments), whereas µc and σc, c ∈ [R,G,B] are the average and standard deviation of red,

green and blue components (in range [0, 1]) of patch Pk, respectively. This quality mea-

sure tends to be lower for overly saturated or flat patches, whereas it is higher for textured

patches showing some statistical variance (as shown in Figure 2.3). Therefore, we select

for each image K patches with the highest Q values.

Q = 0.91 Q = 0.78 Q = 0.54

Fig. 2.3.: Patch examples and relative quality measure.
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2.3.2 CNN Training

Given a set of training labeled images coming from N known camera models, we split

them into patches and associate to each patch the same label L of the source image to which

patches belong. Then, we input all available patch-label pairs for training into the CNN.

The choice of the CNN architecture is a delicate step. As an example, a too deep

network may be unnecessary long to train and may contain too many parameters that need

a huge training dataset to be properly tuned. However, smaller networks may not achieve

accurate enough performance, loosing the ability of well discriminating the used camera

models. Moreover, despite the number of used layers, also the choice of filters size and

stride plays a crucial role, not to mention the use of inner product layers. For these reasons

in this chapter we tested different CNN architectures, the detailed description of which is

left to the next section.

A common aspect among all tested architectures is that they accept as input patches of

size 64 × 64 × 3. The pixel-wise average over the training set is subtracted to each input

patch. At the end of the training step, we obtain the CNN modelM.

2.3.3 SVM Training

Even though we could perform classification by simply picking the class correspond-

ing to the maximum value from SoftMax layer, we decided to make use of an additional

classification tool. Therefore, for each patch, the selected CNN modelM is used to extract

a feature vector, stopping the forward propagation at the last-minus-one layer (before the

classification inner-product layer). Feature vectors associated to training patches are used

to train a battery of N · (N − 1)/2 linear binary SVM classifiers S in a One-versus-One

fashion.
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2.3.4 Majority Voting

When a new image I is under analysis, the camera model used to acquire it is estimated

as follows. A set of K patches is obtained from image I according to the quality measures

defined in (2.1). Each patch Pk is processed by the trained CNN model M in order to

extract a feature vector Vk. The set S of linear SVMs assigns a label L̂k to each patch by

attributing vectors Vk to one of the availableN classes (i.e., camera models). The predicted

model L̂ for image I is obtained through majority voting on L̂k, k ∈ [1, K]. In case of par,

random selection between equally likely models is operated.

2.4 Evaluation Setup

Considering the empirical nature of the proposed pipeline, it is essential to investigate

through testing the impact of different CNN architectures and training strategies. In this

section, we first report a detailed description of all tested CNNs. Then, we introduce the

problem of biased training and describe the strategies that we tested to ensure a fair training

process.

2.4.1 CNN Architectures

Designing a proper CNN architecture for our camera model identification pipeline is a

critical step. The overall accuracy of the system is significantly determined by the extracted

feature vectors from each image patch.

There are several key design choices that have to be considered as they determine the

final structure of the CNN. The depth of the network, the use of pooling layers and the

size of the kernels are examples and are referred to as hyper-parameters. Tuning hyper-

parameters is approached in a trial-and-error fashion as there are no hard-quantitative rules

that can be followed. This is due to the fact that we approach camera model identification

as a data-driven problem and the final architecture of the network depends on the type of
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data under consideration. In our particular case, we explore networks that accept input

patches of size 64× 64× 3.

In [74], we presented a CNN used to extract features for camera model identification. A

summary of the hyper-parameters used in that CNN is shown in Table 2.1. The encouraging

results demonstrated with that particular architecture motivated us to improve its design

in [6]. In particular, we used some of the CNN architecture design guidelines proposed

in [78] and proposed a new CNN architecture, hereinafter denoted asMConv4. In Table 2.2

we summarize its hyper-parameters. In this chapter, we study the behavior of MConv4

compared to other 3 new networks, which vary in depth as will be explained in this section.

In particular, we consider MConv4 as the base CNN on top of which we develop the 3

remaining deeper architectures.

The changes made in MConv4 with respect to our first proposed CNN aim to reduce

the computational complexity and improve the accuracy. As suggested in [78], in order to

keep the computational complexity at bay we use more convolutional layers with smaller

kernel sizes instead of using larger kernels and fewer convolutional layers (e.g. 2 stacks of

3× 3 convolutional layers vs. a single 7× 7 convolutional layer). A similar idea was also

proposed by Chatfield et al. in [79]. This change coupled with the reduction in the overall

number of convolutional filters aim to be parameter efficient. It also has the added benefit

that our convolutional neural network is able to represent more complex functions as we

add more layers.

We also changed the kernel size of the pooling layers to the most conventional value of

2 × 2 and changed the stride value to 2. We also added an additional pooling layer. The

main idea behind having more pooling layers stems from the fact that the exact location of a

feature in the original input patch (i.e. a high activation value occurs) is not as important as

its relative location to other features. These layers drastically reduce the spatial dimension

of the input volume they receive, which serves two purposes:

• The number of parameters is reduced by 75%, which translates into an efficient use

of computer resources.
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• Controlling overfitting, which happens when a model is excessively fine-tuned to

the training examples and it is not able to generalize well for the validation and

evaluation sets (e.g. if the number of parameters of the network is high enough, the

network could just memorize the training examples).

Finally, because we still want our CNN to be able to model non-linear functions we use

a single ReLU layer towards the end of the network. This will make the CNN applicable

to a wide range of camera models due to the fact that the non-linearity can be helpful to

capture non-trivial classes.

It was shown by the Oxford VGG team in [21] and Szegedy et al. in [22], the rep-

resentational capacity of a network is largely determined by its depth. This insight was

also verified with the recent development of deep residual networks [23], which can have

more than 150 layers and were used by the winners of the ILSVRC-2015 competition [80].

Keeping simplicity in mind, and following the strategy that Simonyan et al. devised in [21]

to prepare their submission for the ILSVRC-2014, we explored a single family of networks

of increasing depth. By doing so, we took advantage of the key design choices made in our

base CNN model,MConv4, such as the stacks of convolutional and pooling layers structure

and the kernel sizes of the convolutional layers. A stride value of 1 was chosen for the

convolutional layers. This results in no skipping (i.e. our filters are applied to all the values

of the input volumes they receive).

The CNN architectures, evaluated in this work, are outlined in Table 2.3, one per col-

umn. MConv4 was introduced earlier in [6] and we refer to the three remaining networks

asMConv6,MConv8 andMConv10. As mentioned earlier, the 4 networks vary only in the

depth: from 6 weight layers in the networkMConv4 (4 convolutional and 2 Inner Product

layers) to 12 weight layers in the networkMConv10 (10 convolutional and 2 Inner Product

layers). The number of filters of each convolutional layer is rather small, starting from 32

in the first layer and then adding 16 more filters after each pooling layer, except for the last

one, where we increase the number of filters by a factor of 2 reaching a total of 128 filters.
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Table 2.1.: Summary of the hyper-parameters of the first CNN architecture that we pre-
sented as a feature extractor for camera model identification in [74].

Layer Kernel size Num. filters
Conv-1 7×7 128
ReLU-1 - -
Pool-1 3×3 -
Conv-2 7×7 512
ReLU-2 - -
Pool-2 3×3 -
Conv-3 6×6 2048
ReLU-3 - -
InnerProduct-1 - 2048
ReLU-4 - -
InnerProduct-2 - 2048
SoftMax - -

Table 2.2.: Structure of the reference CNN architecture MConv4. N is the number of
training classes. Feature are extracted after the ReLU-1 layer.

Layer Input size Kernel size Stride Num. filters Output size
Conv-1 64×64×3 4×4 1 32 61×61×32
Pool-1 61×61×32 2×2 2 - 31×31×32
Conv-2 31×31×32 5×5 1 48 27×27×48
Pool-2 27×27×48 2×2 2 - 14×14×48
Conv-3 14×14×48 5×5 1 64 9×9×64
Pool-3 9×9×64 2×2 2 - 5×5×64
Conv-4 5×5×64 5×5 1 128 1×1×128
InnerProduct-1 1×1×128 - - 128 128
ReLU-1 128 - - - 128
InnerProduct-2 128 - - N N
SoftMax N - - - N

2.4.2 Training Strategies

As discussed in [58], the training procedure for machine learning-based camera model

identification algorithms must be devised with great attention. While it is important to
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Table 2.3.: The 4 proposed CNN architectures (shown in columns). Added layers are shown
in bold and the number of filters for each convolutional layer is shown in parenthesis.

CNN Architecture
MConv4 MConv6 MConv8 MConv10

6 weight layers 8 weight layers 10 weight layers 12 weight layers
Input (64×64×3 image patch)

Conv-1 (32)
Conv-1 (32)
Conv-1 (32)

Conv-1 (32)
Conv-1 (32)

Conv-1 (32)
Conv-1 (32)

Pool-1

Conv-2 (48)
Conv-2 (48)
Conv-2 (48)

Conv-2 (48)
Conv-2 (48)

Conv-2 (48)
Conv-2 (48)

Pool-2

Conv-3 (64) Conv-3 (64)
Conv-3 (64)
Conv-3 (64)

Conv-3 (64)
Conv-3 (64)
Conv-3 (64)

Pool-3

Conv-4 (128) Conv-4 (128)
Conv-4 (128)
Conv-4 (128)

Conv-4 (128)
Conv-4 (128)
Conv-4 (128)

InnerProduct-1
ReLU-1

InnerProduct-2
SoftMax
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ensure a sufficient amount of training data, training data cannot be randomly selected.

Training data must be carefully chosen in order to avoid over fitting and ensure a wide

variety of images covering different scenarios.

In order to further highlight the importance of the training strategy, let us consider the

following example. Let us consider camera model identification problem using only two

camera models whose labels are L1 and L2, respectively. If all images coming from camera

L1 are very dark, and all images from camera L2 are very bright, the CNN might learn to

discriminate luminance levels rather than camera models. It is clear that, in order to avoid

such a biased training inevitably leading to incorrect results and conclusions, images from

both cameras must depict both dark and bright scenes in this case. Despite the simplicity

of this example, the situation becomes less trivial when many different camera models and

images with different semantical contents are used.

In order to consider this important issue, in our study we consider the Dresden Image

Dataset [81] as reference, as suggested in [58]. This dataset is composed by 73 camera

devices from 25 camera models and 14 camera brands. For each device a variable number

of shots has been taken in several geographical positions. For each position a set of different

motives is shot. Details about the acquisition process are available at [81]. In the following

we will refer to scene when considering the combination of a geographical position with

a specific motive. This results in a total amount of 83 available scenes. We only consider

camera models represented by more than one device, in order to ensure that the CNN learns

model specific artifacts rather than instance specific ones. This leads to a dataset composed

of 18 camera models (as Nikon D70 and D70s basically differ only in their on-device

screen), for nearly 15, 000 shots.

We need to split images into three different datasets: (i) a training set DT used for

updating CNNs and SVMs parameters; (ii) a validation set DV used to decide the stopping

point of the training step and avoid over-fitting (i.e., typically the training process is stopped

when validation loss, given by SoftMax layer, reaches its minimum); (iii) an evaluation set

DE used to test the trained architectures. Following the ideas presented by Kirchner et

al. [58]
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• We selected shots belonging to the evaluation set (DE) from NE scenes and a sin-

gle instance per camera model. The selected images are never used in training or

validation.

• We selected shots for training set (DT ) and validation set (DV ) among images from

remaining scenes and instances.

Specifically, we define three splitting policies for DT and DV so to test for possible over-

fitting on scenes content rather than on camera model identification during CNN training.

Since the validation set is used to decide when to stop the training process, if its content

is too similar to the training set we could easily over-fit. Conversely, if validation set is

sufficiently different from training one, we should be able to obtain more generalizable

results on the evaluation set. Splitting policies are detailed below:

1. Fair-NT : training and validation shots are split according to the depicted scene. The

number of training scenes is set to NT and shots coming from a specific scene are

included only in DT or in DV . In this way, DT and DV are completely disjoint sets

(in terms of scenes), thus should lead to robust training.

2. Fair-balanced-NT : training and validation shots are split according to scenes as for

Fair-NT . The number of shots for each device model is the same, leading to a model-

balanced training dataset.

3. Unfair-PT : training and validation shots are split regardless of the scene they belong

to, fixing the percentage of training shots to PT . In doing so, the same scene can

appear in both training and validation sets, thus possibly leading to over-fitting and

less accurate evaluation results.

A small case example for the three splitting strategies is available at Table 2.4.

2.5 Experimental Results

In this section we report the performed tests using different CNNs and training strate-

gies to validate the proposed pipeline in a fair way.
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Table 2.4.: A small scale example for three different splitting strategies. Row colors cor-
respond to scenes. First, an instance id and a set of scenes are selected for the evaluation
set DE . Considering the remaining instances and scenes, DT and DV are built according to
what specified in the text. Labels E, V and T denote images associated to DE , DV and DT

according to each policy.

Brand Model Instance Fair Fair-balanced Unfair
Canon Ixus 70 0 E E E
Canon Ixus 70 0
Canon Ixus 70 0
Canon Ixus 70 1
Canon Ixus 70 1 V V T
Canon Ixus 70 1 T T T
Canon Ixus 70 1 T V
Kodak M1063 0 E E E
Kodak M1063 0
Kodak M1063 0
Kodak M1063 1
Kodak M1063 1 V V V
Kodak M1063 1 T T T

2.5.1 Impact Of The CNN Architecture

To evaluate the proposed CNN architectures, we selected a reference splitting policy

showing good performance in our initial analysis. We used the Fair-60 splitting policy and

worked with a 10-fold cross validation framework (i.e., the selected splitting policy is tested

10 times on different realizations of scenes). This results in a total number of 40 trained

CNN models. For evaluation, we do not to train additional SVMs, but use the CNN output

as class prediction. This allows us to study the effect of the different CNN architectures on

the accuracy results for a fixed splitting policy.

For each shot in the training, validation and evaluation sets in Fair-60, K = 32 patches

were extracted as described above. Training and validation patches were used to train the

proposed CNNs. Specifically, the CNN architectures were trained on DT patches until

classification loss on DV patches was minimized. Once the CNNs were trained, they were

used to extract an 18 elements vector Vk for each patch Pk at the end of InnerProduct-2 layer
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Table 2.5.: CNN classification accuracy for the different sets of Fair-60.

CNN Architectures DT accuracy (%) DV accuracy (%) DE accuracy (%)
MConv4 97.69 97.74 94.51
MConv6 97.82 97.53 94.67
MConv8 97.95 97.62 94.79
MConv10 98.01 97.81 94.93

of the CNN. Results aggregation at shot level was performed averaging element by element

feature vectors Vk associated to patches Pk belonging to the same shot P , so to obtain an

18 elements score vector V for the shot. Camera model associated to the maximum score

was used to predict the shot’s class. Shots classification accuracy was computed on DT ,

DV and DE as average over the 10 data realizations.

The results, presented in Table 2.5, indicate that the classification accuracy increases

as we increase the CNN architecture depth: from 6 weight layers in the networkMConv4

to 12 weight layers in the networkMConv10. The camera model classification accuracy of

our architecture saturates when the depth reaches 12 layers, but even deeper CNNs might

be beneficial for larger datasets with a higher number of classes and training images.

2.5.2 Impact Of Training Strategy

After testing different architectures, we focused on a reference CNN showing good per-

formances and performed an extensive set of experiments over the three splitting policies

described in the previous section. In particular, we selected theMConv4 CNN detailed in

Table 2.2. For evaluation, we decided not to train additional SVMs, but to use the CNN out-

put as class prediction. This allows us to study the effect of different training and validation

split on the CNN only.

For this analysis, we fixed the number of evaluation scenes NE to 10. For split-

ting policies Fair and Fair-balanced the number of training scenes NT was varied in

{10, 15, 20, 30, 40, 50, 60} over the 73 available scenes. The remaining 73 − NT scenes



29

Fig. 2.4.: Fair splitting policy results. Training (blue), validation (green) and evaluation
(red) set.

were used for validation. For splitting policy Unfair the percentage of training shots PT

was varied in {10, 20, 30, 40, 50, 60, 70, 80, 90}. The remaining shots were assigned to the

validation set. This resulted in 23 splitting policies.

Figure 2.4 shows results using the Fair splitting policy to select train and validation

datasets. Shots classification accuracy is reported as function of number of training scenes.

Train and validation curves, in blue and green respectively, are almost always aligned. The

red curve refers to the performance on the evaluation set. When using a small number of

scenes for training (i.e., Nt = 10), the small amount of data limits the CNN capabilities of

learning from data. Once the number of training scenes is sufficiently large (i.e., Nt > 15)

the results increase reaching an evaluation accuracy up to 94.5%.

Figure 2.5 shows results using the Fair-balanced splitting policy to select train and val-

idation datasets. In this case the small amount of data severely limits the CNN capabilities
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Fig. 2.5.: Fair balanced splitting policy results. Training (blue), validation (green) and
evaluation (red) set.

of learning from data. In fact, in the Dresden Dataset, some camera models are represented

by only a few number of shots. In the best situation (Fair-balanced-60), the evaluation

accuracy reaches 92.6%.

Figure 2.6 shows results using the Unfair splitting policy to select train and validation

datasets. Also in this case the small amount of training data impairs CNN learning capabil-

ities when PT = 0.1. However, as soon as the percentage of training data is increased, the

evaluation accuracy reaches 94.4%.

Both the Fair and the Unfair splitting policies show a gap around 3.3% between val-

idation and evaluation accuracies. This kind of behavior might be an indicator of some

instance specific features learned during the training process.

A comparison between the Fair (Figure 2.4) and the Unfair (Figure 2.6) shows that

there is not much gain in carefully splitting training and validation scenes. A possible
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Fig. 2.6.: Unfair splitting policy results. Training (blue), validation (green) and evaluation
(red) set.

motivation for this results stands in the small size of the patches used in this context. In

fact, a 64×64×3 patch extracted from a full resolution picture (as the ones in the Dresden

Image Dataset) contains only a few details from the image, and rarely some scene specific

content that might be found only in larger patches. This motivates even further the use of

small patches for this learning task.

2.5.3 Comparison With The State-Of-The-Art

After validating the performance of CNNs standalone (i.e., using the InnerProduct-2

output as score for each class), we focused on the evaluation of the entire pipeline (i.e.,

with SVMs and majority voting) in comparison with the recently proposed state-of-the-art

method by Chen et al. [66]. In particular we stopped the forward step ofMConv4 at the end
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of the ReLU-1 layer in order to extract from each patch Pk a feature vector Vk. As dataset,

we considered the Fair-balanced-60 splitting policy.

Figure 2.7 shows how the average classification accuracy on shots from DE varies while

increasing the number of voting patches for each image. The proposed CNN-based ap-

proach is depicted by the green line. Benchmark result using the approach proposed by

Chen et al. [66] on 64×64 color patches followed by majority voting is shown with the red

line. As the method proposed by Chen et al. is not specifically tailored to small patches,

we also tested it on full resolution images without voting procedures (i.e., blue line of Fig-

ure 2.7). It is worth noting that, despite the high accuracy obtained by Chen et al., our

method approaches within 1% their result by using considerably less input data (i.e., just a

few patches and not the full image).

As a final remark, notice that the number of features generated at the output by the CNN

for each patch is only 128, less than one tenth with respect to the 1, 372 generated by Chen

et al. This confirms that we are able to characterize camera models in a space with reduced

dimensionality. In principle, this enables the use of simple classifiers, which can be trained

more efficiently.
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Fig. 2.7.: Comparison between the overall pipeline considering the CNNMConv4 trained
with Fair-balanced-60 splitting policy and the state-of-the-art algorithm by Chen et al. [66].
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3. RELIABILITY MAP ESTIMATION FOR CAMERA
IDENTIFICATION

3.1 Overview

Due to the widespread availability of inexpensive image capturing devices (e.g., cam-

eras and smartphones) and user-friendly editing software (e.g., GIMP and Adobe Photo-

Shop), image manipulation is very easy. For this reason, the multimedia forensic com-

munity has developed techniques for image authenticity detection and integrity assess-

ment [5, 54, 55].

Among the problems considered in the forensic literature, one important problem is

camera model attribution, which consists in estimating the camera model used to acquire

an image [58]. This proves useful when a forensic analyst needs to link an image under

investigation to a user [57], or to detect possible image manipulations [59,82] (e.g., splicing

of pictures from different cameras).

Linking an image to a camera can in principle be trivially done exploiting image header

information (e.g., EXIF data). It is also true that image headers are not reliable (e.g., anyone

can tamper with them) or not always available (e.g., decoded images and screen captures).

Therefore, the need for a series of blind methodologies has led to the development of pixel-

based only information extraction methods.

These methods leverage the fact that image acquisition pipeline is slightly different for

each camera model and manufacturer (e.g., different sensors and color equalization tech-

niques). Therefore, each image contains characteristic “fingerprints” that enable one to

understand which pipeline has been used and hence the camera model. Among these tech-

niques, exploiting photo sensor non uniformity (PRNU) is particularly robust and enables

camera instance identification [83, 84]. Other methods exploit traces left by color filter

array (CFA) interpolation [61, 85, 86], camera lenses [60], histogram equalization [87]
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Fig. 3.1.: Reliability map representation for an example image taken with a given camera.
In this case, patches belonging to the sky (green box) are more likely to provide accurate
camera model attribution than patches containing textures (red box).

or noise [88]. Alternatively, a series of methods extracting statistical features from the

pixel-domain and exploiting supervised machine-learning classifier have also been pro-

posed [66–68].

Due to the advancements brought by deep learning techniques in the last few years,

the forensic community is also exploring convolutional neural networks for camera model

identification [89]. Interestingly, the approach in [6] has shown the possibility of accurately

estimating the camera model used to acquire an image by analyzing a small portion of the

image (i.e., a 64 × 64 color image patch). This has lead to the development of forgery

localization techniques [90].

In this chapter we propose a CNN-based method for estimating patch reliability for

camera model attribution. As explained in [7], not all image patches contain enough dis-

criminative information to estimate the camera model (e.g., saturated areas and too dark

regions). Leveraging the network proposed in [6], we show how it is possible to determine

whether an image patch contains reliable camera model traces for camera model attribution.

Using this technique, we build a reliability map, which indicates the likelihood of each im-

age region to be possibly used for camera model attribution, as shown in Figure 3.1. This
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map can be used to select only reliable patches for camera model attribution. Addition-

ally, it can also be used to drive tampering localization methods [90] by providing valuable

information on which patches should be considered to be unreliable.

The proposed method leverages CNN feature learning capabilities and transfer learning

training strategies. Specifically, we make use of a CNN composed by the architecture

proposed in [6] as feature extractor, followed by a series of fully connected layers for patch

reliability estimation. Transfer learning enables to preserve part of the CNN weights of [6],

and train the whole architecture end-to-end with a reduced number of image patches. Our

strategy is validated on the Dresden Image Database [81]. We first validate the proposed

architecture and training strategy. Then, we compare the proposed solution against a set of

baseline methodologies based on classic supervised machine-learning techniques. Finally,

we show how it is possible to increase camera model attribution accuracy by more than 8%

with respect to [6] using the proposed method.

3.2 Problem Statement And Related Work

In this section we introduce the problem formulation with the notation used throughout

the chapter. We then provide the reader a brief overview about CNNs and their use in

multimedia forensics.

3.2.1 Problem Formulation

Let us consider a color image I acquired with camera model l belonging to a set of

known camera models L. In this chapter, we consider the patch-based closed-set camera

model attribution problem as presented in [6]. Given an image I, this means:

• Select a subset of K color patches Pk, k ∈ [1, K].

• Obtain an estimate l̂k = C(Pk) of the camera model associated with each patch

through a camera attribution function C.
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• Optionally obtain final camera model estimate l̂ through majority voting over l̂k, k ∈
[1, K].

Our goal is to detect whether a patch Pk is a good candidate for camera model attribu-

tion estimation. To this purpose, we propose a CNN architecture that learns a function G
expressing the likelihood of a patch Pk to provide correct camera model identification, i.e.,

gk = G(Pk). High values of gk indicate high probability of patch Pk to provide correct

camera information. Conversely, low gk values are attributed to patches Pk that cannot

be correctly classified. Pixel-wise likelihood is then represented by means of a reliability

map M, showing which portion of an image is a good candidate to estimate image camera

model, as shown in Figure 3.1.

3.2.2 Convolutional Neural Networks In Multimedia Forensics

In this section, we present a brief overview of the foundations of convolutional neural

networks (CNNs) that are needed to follow the chapter. For a thorough review on CNNs,

we refer the readers of this thesis to Chapter 9 of [16].

Deep learning and in particular CNNs have shown very good performance in several

computer vision applications such as visual object recognition, object detection and many

other domains such as drug discovery and genomics [20]. Inspired by how the human vision

works, the layers of a convolutional network have neurons arranged in three dimensions,

so each layer has a width height, and depth. The neurons in a convolutional layer are only

connected to a small, local region of the preceding layer, so we avoid wasting resources as it

is common in fully-connected neurons. The nodes of the network are organized in multiple

stacked layers, each performing a simple operation on the input. The set of operations

in a CNN typically comprises convolution, intensity normalization, non-linear activation

and thresholding, and local pooling. By minimizing a cost function at the output of the

last layer, the weights of the network are tuned so that they are able to capture patterns in

the input data and extract distinctive features. CNNs enable learning data-driven, highly

representative, layered hierarchical image features from sufficient training data
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Fig. 3.2.: Block diagram of the proposed approach. Image I is split into patches. Each
patch Pk, k ∈ [0, K] is processed by the proposed CNN (composed byMcam andMip)
to obtain a reliability score gk and a camera model estimate l̂k. The reliability map is
determined from all gk, k ∈ [0, K] values, and the overall picture camera model estimate l̂
can be computed.

There has been a growing interest in using convolutional neural networks in the fields

of image forensics and steganalysis [73, 91]. These papers mainly focus on architectural

design of CNNs where a single CNN model is trained and then tested in experiments. Data-

driven models have recently proved valuable for other multimedia forensic applications as

well [71,72]. Moreover, initial exploratory solutions targeting camera model identification

[6, 90, 92] show that it is possible to use CNNs to learn discriminant features directly from

the observed known images, rather than having to use hand-crafted features. As a matter

of fact, the use of CNNs also makes it possible to capture characteristic traces left by non-

linear and hard to model operations present in the image acquisition pipeline of capturing

devices.

In this thesis, we employ CNNs as base learners and test several different training strate-

gies and network topologies. In our study, at first, a recently proposed CNN architecture

is adopted as a feature extractor, trained on a random subsample of the training dataset.

An intermediate feature representation is then extracted from the original data and pooled

together to form new features ready for the second level of classification. Results have in-

dicated that learning from intermediate representation in CNNs instead of output probabil-

ities, and then jointly retraining the final architecture, leads to performance improvement.
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Fig. 3.3.: Representation of the proposed CNN architectureM working on image patches.
The first part (Mcam) computes a |L|-element feature vector used for camera attribution.
The second part (Mip) is used to derive the camera model attribution reliability.

3.3 Patch Reliability Estimation Method1

In this section we provide details of our method for patch reliability estimation and

camera attribution. The proposed pipeline is composed by the following steps (see Fig-

ure 3.2):

1. The image under analysis is split into patches

2. A CNN is used to estimate patch reliability likelihood

3. From the same CNN we estimate a camera model for each patch

4. A reliability mask is constructed and camera attribution of the whole image is per-

formed

Below is a detailed explanation of each step.

3.3.1 Patch Extraction

The proposed method works by analyzing image patches. The first step is to split the

color image I into a set of K patches Pk, k ∈ [0, K]. Each patch has 64 × 64 pixel

resolution. The patch extraction stride can range from 1 to 64 per dimension, depending on

1This is joint work with Mr. Sri Kalyan Yarlagadda, Prof. Fengqing Maggie Zhu, Prof. Paolo Bestagini, and
Prof. Stefano Tubaro
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the amount of desired overlap. This can be chosen to balance the trade-off between mask

resolution reliability and computational burden.

3.3.2 Patch Camera Reliability

Each patch Pk is input into the CNNM shown in Figure 3.3, which can be logically

split into two parts (Mcam and Mip) connected through a ReLU activation layer. Our

proposed CNN learns a patch reliability function G and returns the patch reliability gk =

G(Pk).

The first part (i.e., Mcam) is the CNN presented in [6] without last layer’s activation.

The rationale behind this choice is that this network is already known to be able to extract

characteristic camera information. Therefore, we can mainly think of this portion of the

proposed CNN as the feature extractor, turning a patch Pk into a feature vector in R|L|,

where |L| is the number of considered camera models. Formally,Mcam is composed by:

• conv1: convolutional layer with 32 filters of size 4× 4× 3 and stride 1.

• conv2: convolutional layer with 48 filters of size 5× 5× 32 and stride 1.

• conv3: convolutional layer with 64 filters of size 5× 5× 48 and stride 1.

• conv4: convolutional layer with 128 filters of size 5 × 5 × 64 and stride 1, which

outputs a vector with 128 elements.

• ip1: inner product layer with 128 output neurons followed by a ReLU layer to pro-

duce a 128 dimensional feature vector.

• ip2: final 128× |L| inner product layer.

The first three convolutional layers are followed by max-pooling layers with 2× 2 kernels

and 2× 2 stride. This network contains 360 462 trainable parameters.

The second part of our architecture (i.e.,Mip) is composed by a series of inner product

layers followed by ReLU activations. This part of the proposed CNN can be considered as

a two-class classifier trying to distinguish between patches that can be correctly classified,
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and patches that cannot correctly be attributed to their camera model. As shall be clear in

Section 3.4, we tested different possible Mip architecture candidates, to decide upon the

following structure (denoted later on asM4
ip due to the 4 layers that characterize it):

• ip3: inner product layer with 64 output neurons followed by ReLU

• ip4: inner product layer with 32 output neurons followed by ReLU

• ip5: inner product layer with 128 output neurons followed by ReLU

• ip6 inner product layer with 2 output neurons followed by softmax normalization

The first element of the softmax output vector can be considered the likelihood of a patch

to be correctly classified. Therefore, we consider this value as gk, and the transfer function

learned by the wholeM network as G.

3.3.3 Patch Camera Attribution

In order to detect the camera model from each patch Pk, we exploit the architecture

Mcam. As explained in [6], this CNN output is a |L|-element vector, whose argmax indi-

cates the used camera model l̂k ∈ L. Note that the softmax normalization at the end of

Mcam (as proposed in [6]) is not needed in this situation, as it only impacts the training

strategy and not the argmax we are interested in.

3.3.4 Reliability-Map And Camera Attribution

In order to compute the reliability map M, we aggregate all gk values estimated from

patches Pk, k ∈ [1, K]. This is done by generating a bidimensional matrix M with the

same size of image I, and fill in the positions covered by the patch Pk with the correspond-

ing gk values. In case of overlapping patches, gk values are averaged. This map provides

pixel-wise information about image regions from which reliable patches can be extracted.

A few examples of estimated maps M are reported in Figure 3.4.
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Fig. 3.4.: Examples of images I (left) and the estimated reliability maps M (right). Patch
reliability is not always strictly linked to the image semantic content. Green areas represent
high gk values, thus reliable regions.

Finally, to attribute image I to a camera model, it is possible to select lk only for the

most reliable patch (i.e., highest gk), or perform majority voting on estimated lk values

belonging only to reliable regions, i.e., {lk|gk > γ}, where γ ∈ [0, 1] is the reliability

threshold (set experimentally to 0.5).

3.4 Experimental Results

In this section we report the details about our experiments. First, we describe the

dataset. Then, we provide an insight on the used training strategies.

3.4.1 Dataset

In this chapter we evaluate our solution adapting the dataset splitting strategy proposed

in [6, 7, 58] to our problem. This strategy is tailored to the Dresden Image Dataset [81],
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which consists of 73 devices belonging to 25 different camera models. A variable number

of shots are taken with each device. Different motives are shot from each position. We

refer to a scene as combination of geographical position with a specific motive. With this

definition in mind, the dataset consists of a total of 83 scenes. Since we are trying to

classify image patches at the level of camera model rather than instance level, we only

consider camera models with more than one instance available. This leads us to a total of

18 camera models (as Nikon D70 and D70s basically differ only in their on-device screen)

and nearly 15 000 shots.

In order to evaluate our method we divide the dataset consisting of 18 camera models

into 3 sets, namely trainingDT, validationDV and evaluationDE. DT is again split into two

equal sets Dcam
T and Dip

T . Dcam
T is used for training the parameters of Mcam, whereas Dip

T

is used for trainingMip. DV is used to decide how many epochs to use during training to

avoid overfitting. Finally, DE is used for evaluating the trained network on a disjoint set of

images in a fair way.

While training a CNN, it is very important to avoid overfitting the data. In our dataset

we have images of different scenes taken by different cameras, and our goal is to learn

information about camera model from an image. As DV is used to avoid overfitting, it is

important thatDT andDV are sufficiently different from each other. It is also important that

we test on data that has variation with respect to the training data. In order to achieve these

goals, we do the following:

• Images for DE are selected from a single instance per camera and a set of 11 scenes.

• Images for DT are selected from the additional camera instances and 63 different

scenes.

• Images in DV are selected from the same camera instances used for DT, but from

the remaining 10 scenes. This makes sets DV and DT disjoint with respect to scenes,

leading to robust training.

For training, validation and testing K = 300 non overlapping color patches of size

64 × 64 are extracted from each image. The resulting dataset Dcam
T contains more than



44

500 000 patches split into 18 classes. Dip
T is reduced to 90 000 patches to balance reliable

and non-reliable image patches according toMcam classification results. Finally, DV and

DE are composed by more than 700 000 and 800 000 patches, respectively.

3.4.2 Training Strategies

Given that the proposed approach builds upon a pre-trained network (i.e., Mcam), we

propose a two-tiered transfer learning-based approach denoted as Transfer. For the sake of

comparison, we also test two additional strategies, namely Scratch and Pre-Trained. In the

following we report details about each strategy.

Scratch. This training strategy is the most simple one. It consists in training the whole

two-class architecture M using only Dip
T for training and DV for validation. This can be

considered as a baseline training strategy. We use Adam optimizer with default parameters

as suggested in [93] and batch size 128. Loss is set to binary-crossentropy.

Pre-Trained. This strategy takes advantage of the possibility of using a pre-trained

Mcam. In this case, we trainMcam for camera model attribution using softmax normaliza-

tion on its output. Training is carried out on Dcam
T and validation on DV. OnceMcam has

been trained, we freeze its weights, and train the rest of the architectureMip as a two-class

classifier (i.e., reliable vs. non-reliable patches) using Dip
T and DV. Optimization during

both training steps is carried out using Adam optimizer with default values and batches of

128 patches. We select categorical-crossentropy as our loss function.

Transfer. This two-tiered training strategy is meant to fully exploit the transfer learning

capability of the proposed architecture. The first step consists in trainingMcam for camera

model attribution using softmax normalization on its output and Dcam
T and DV as datasets.

This training step is optimized using Adam with default parameters, 128 patches per batch,

and categorical-crossentropy as loss function.

The second step ofM training consists in freezing all the convolutional layers ofMcam,

and continue training all the inner product layers of bothMcam andMip using the datasets

Dip
T andDV. This enables to jointly learn the weights of the classifierMip, and tailor feature
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extraction procedure in the last layers ofMcam (i.e., ip1 and ip2) to the classification task.

For this step we use binary-crossentropy as loss, and stochastic gradient descent (SGD)

with oscillating learning rate between 5 · 10−5 and 15 · 10−5 as optimizer. This choice is

motivated by preliminary studies carried out in [94], and experimentally confirmed in our

analysis.

3.5 Discussion

In this section we discuss the experimental results. First we show the capability of the

proposed approach to distinguish between patches that contain camera model information

and patches that are not suitable for this task. Then, we show how it is possible to improve

camera model identification using the proposed approach.

3.5.1 Patch Reliability

In order to validate the patch reliability estimation we perform a set of tests.

CNN Architecture. The first set of experiments has been devoted to the choice of a

network architecture forMip. To this purpose, we trained a set of different architectures

for 15 epochs using the Pre-Trained strategy. As architectures we selected all possible

combinations of up to six inner product layers (with ReLU activation) composed by 32,

64 or 128 neurons each. The last layer is always set to two neurons followed by softmax.

From this experiment, we selected the modelMip with the highest validation accuracy for

each tested amount of layers, which are:

• M2
ip composed by two inner product layers with 128 and 2 neurons, respectively.

• M3
ip composed by three inner product layers with 64, 128 and 2 neurons, respectively.

• M4
ip composed by four inner product layers with 64, 32, 128 and 2 neurons, respec-

tively.
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• M5
ip composed by five inner product layers with 64, 32, 64, 128 and 2 neurons,

respectively.

• M6
ip composed by six inner product layers with 64, 32, 32, 64, 64 and 2 neurons,

respectively.

Training Strategy. In order to validate the proposed two-tiered Transfer training strat-

egy, we trained the five selected models with the Scratch, Pre-Trained and Transfer strate-

gies. Examples of training (on Dip
T ) and validation (on DV) loss curves for the Pre-Trained

and Transfer strategies onM4
ip are shown in Figure 3.5. It is possible to notice that the cho-

sen optimizers enable a smooth loss decrease over several epochs. Moreover, the Transfer

strategy provides a lower loss on both training and validation data, thus yielding better re-

sults compared to Pre-Trained. Similar conclusions can be drawn from the accuracy curves

presented in Figure 3.5. We do not display curves for the Scratch strategy, as it is always

worse than both the Pre-Trained and Transfer strategies. This was expected, as the amount

of used training data inDip
T is probably not enough to learn all parameters ofM. Therefore,

starting from a pre-trainedMcam becomes necessary.

Figure 3.6 shows the reliability patch estimation accuracy for all models fromM2
ip to

M6
ip, trained with all three training strategies and tested on the evaluation dataset DE. For

each architecture, we selected the model with highest validation accuracy achieved over

100 epochs. These results further confirm that the Scratch strategy is not a viable solution

for this problem. The Transfer strategy is the best choice for each network, achieving

around 86% accuracy in detecting reliable patches. In other words, 86% of the selected

patches will be correctly attributed to their camera, whereas only 14% of them will be

wrongly classified. In the ideal scenario of errors uniformly spread across all models and

images, this means we could use a majority voting strategy to further increase accuracy at

the image level.

From Figure 3.6, it is also possible to notice that increasingMip depth does not increase

accuracy. Therefore, from this point on, we only consider architectureM4
ip as a good trade-

off.



47

0 20 40 60 80 100
Epochs

0.25

0.30

0.35

0.40

L
os

s

Pre-Trained (Dip
T )

Pre-Trained (DV)

Transfer (Dip
T )

Transfer (DV)

0 20 40 60 80 100
Epochs

0.84

0.86

0.88

0.90

0.92

A
cc

ur
ac

y

Pre-Trained (Dip
T )

Pre-Trained (DV)

Transfer (Dip
T )

Transfer (DV)

Fig. 3.5.: Loss and accuracy curves on training (Dip
T ) and validation (DV) datasets using

Pre-Trained and Transfer strategies onM4
ip.

M2
ip M3

ip M4
ip M5

ip M6
ip

CNN Architecture

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

R
el

ia
bi

lit
y

A
cc

ur
ac

y

Scratch Pre-Trained Transfer

Fig. 3.6.: Patch reliability estimation accuracy. The Transfer strategy yields the most accu-
rate results for every architecture.



48

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
si

tiv
e

R
at

e

Scratch
Pre-Trained
Transfer
Logistic
Tree
Forest
Boosting
Quality-Function
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Baselines Comparison. In order to further validate the proposed approach, we also

considered two possible baseline solutions.

The first one consists in using other kinds of supervised classifiers exploiting the 18-

element vector returned byMcam as feature. To this purpose, we trained a logistic regressor

(Logistic), a decision tree (Tree), a random forest (Forest) and a gradient boosting classifier

(Boosting). For each method, we applied z-score feature normalization and we selected the

model achieving highest validation accuracy on DV after a parameter grid-search training

on Dip
T . Accuracy results on patch reliability on evaluation set DE were 70.7%, 73.9%,

78.6% and 81.8%, respectively. None of them approaches the 86% of the proposed solution.

The second baseline solution we tested is the quality-function presented in [7] (Quality-

Function). This function is computed for each patch and returns a value between zero and

one indicating whether the patch is suitable for trainingMcam. Although Quality-Function

was not intended to work as test reliability indicator, we decided that a comparison was nec-

essary for completeness. To this purpose, Figure 3.7 shows receiver operating characteristic

(ROC) curves obtained thresholding our reliability likelihood estimation gk, the soft output

of the other classifiers (i.e., logistic regressor, decision tree, etc.), and the quality-function
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Table 3.1.: Camera model attribution accuracy using selected reliable patches from test
dataset only. Using Transfer strategy (bold), the amount of selected patches inDE is always
greater than 77% of |DE|. Accuracy improvement over random patch selection is greater
than 8%.

Mip Strategy Patches Accuracy Acc. Delta
Scratch 553 475 0.9009 0.0342

M2
ip Pre-Trained 618 958 0.9478 0.0811

Transfer 637 135 0.9513 0.0845
Scratch 518 228 0.9041 0.0374

M3
ip Pre-Trained 626 767 0.9520 0.0853

Transfer 641 808 0.9556 0.0888
Scratch 562 897 0.8963 0.0296

M4
ip Pre-Trained 649 515 0.9499 0.0832

Transfer 647 998 0.9532 0.0865
Scratch 511 425 0.9045 0.0378

M5
ip Pre-Trained 648 665 0.9529 0.0862

Transfer 651 508 0.9530 0.0863
Scratch 517 386 0.9035 0.0367

M6
ip Pre-Trained 651 405 0.9501 0.0834

Transfer 652 308 0.9531 0.0864

returned value [7]. As expected, the use of the quality-function presented in [7] provides

less accurate results. Conversely, the proposed method achieves better performance than

all other classifiers when trained according to Transfer strategy.

3.5.2 Camera Model Attribution

After validating the possibility of selecting reliable patches with the proposed method,

we tested the effect of this solution on camera model attribution. To this purpose, we report

in Table 3.1 the evaluation set results for the five investigated Mip models and the three

training strategies when a single patch is used for camera model attribution. We do so in

terms of:

1. Patches, i.e., the number of estimated reliable patches.

2. Accuracy, i.e., the average achieved camera model attribution result.
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3. Accuracy Delta, i.e., the accuracy increment with respect to not using patch selection

but randomly picking them (i.e., [6]).

These results highlight that it is possible to improve camera model attribution by more than

8%.

Figure 3.8 shows confusion matrix results usingMcam (i.e., the output of the network

proposed in [6]) on evaluation data DE randomly selecting patches. The average accuracy

per patch is 87%. Figure 3.9 shows the same results, evaluating only patches considered

reliable usingM4
ip. In this scenario, accuracy increases to more than 95%. By comparing

the two figures, it is possible to notice that many spurious classifications outside of the

confusion matrix diagonal are corrected by the use of reliable patches only.
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4. COUNTER-FORENSICS FOR CAMERA MODEL
IDENTIFICATION

4.1 Overview

The recent increase in the number of digital images that are being uploaded and shared

online has given rise to unique privacy and forensic challenges [95]. Among those chal-

lenges, verifying the integrity and authenticity of these widely circulated pictures is one of

the most critical and complex tasks [5, 53].

In the last few years, the digital media forensic community has explored several tech-

niques to evaluate the truthfulness of digital images and media [54, 55]. Due to its mul-

tiple applicable scenarios, research efforts have focused on camera model identification

[56–58, 96, 97]. Determining the camera model used to take a picture can be very impor-

tant in criminal investigations such as copyright infringement cases or where it is required

to identify the authors of pedo-pornographic material.

Camera model identification can also be considered an important preliminary step to

reduce the set of camera instances when we try to detect a unique camera instance rather

than just the make and model [58]. In addition, being able to identify the camera model by

inspecting small image regions is a viable method to uncover manipulation operations that

could have been done to the image (e.g. splicing) [59].

Current camera model identification detectors make use of the fact that each camera

model completes a distinctive set of tasks on each image when the device acquires the

image. Examples of these tasks include the use of different JPEG compression schemes,

application of proprietary methods for CFA demosaicing, and “defects” in the optical image

path. Due to these characteristic operations, a singular “footprint” is embedded in each

picture. This information can be utilized to identify the camera model, and perhaps the

exact camera, that has been used to capture an image or record a video sequence.
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Due to the inherent and growing complexity of the image acquisition pipeline of modern

image capturing devices, it is a difficult challenge to adequately model the set of operations

that a camera has to execute to capture an image. Successful attempts that use hand-crafted

features to model the traces left by some of these operations can be found in [57,60–63,97,

98].

The use of deep learning techniques for image and video classification tasks [20, 99,

100] has shown that it is also possible to learn characteristic features that model a problem

space directly from the data itself. This offers a viable path to leverage the growing amount

of available image data. These modern approaches are data-driven in that they learn directly

from the data rather than imposing a predetermined analytical model.

The data-driven model has recently proved valuable for forensics applications [70–73].

Initial exploratory solutions targeting camera model identification [6, 7, 92] show that it

is possible to use CNNs to learn discriminant features directly from the observed known

images, rather than having to use hand-crafted features. The use of CNNs also makes it

possible to capture characteristic traces left by non-linear and hard to model operations

present in the acquisition pipeline.

With the introduction of CNNs as detectors for camera model identification, a new

vector for counter-forensic attacks is presented for a malevolent skilled individual. The

idea of counter-forensics was first introduced in [101], where the authors presented the

concept of fighting against image forensics with a practical application, namely a method

for resampling an image without introducing pixel correlations. An up-to-date survey of

the last counter-forensics advances can be found in [102].

Before exploring the vulnerabilities of CNN-based camera model detectors, it is im-

portant to note that detectors that rely on hand-crafted features are not immune to similar

counter-forensics attacks. As explained in [103], digital camera fingerprints are vulnerable

to forging. In particular, if an attacker obtains access to images from a given camera, they

can estimate its fingerprint and “paste” it into an arbitrary image to make it look as if the

image came from the camera with the stolen fingerprint. An early attempt to investigate

such counter-forensic methods appeared in [104].
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As presented in [105], several machine learning models, including state-of-the-art con-

volutional neural networks, are vulnerable to adversarial attacks. This means that these

machine learning models misclassify images that are only slightly different from correctly

classified images. In many cases, an ample collection of models with different architec-

tures trained on different subsets of the training data misclassify the same adversarial ex-

ample [106].

Although there are techniques such as adversarial training [105] or defensive distilla-

tion [107] that can slightly reduce the incidence of adversarial examples in CNN-based

detectors, defending against adversarial examples is still an on-going challenge in the deep

learning community. Adversarial attacks are hard to defend against because they require

machine learning models that produce correct outputs for every possible input. The im-

position of linear behavior when presented with inputs similar to the training data, though

desirable, is precisely the main weakness of CNNs [106]. Due to the massive amount of

possible inputs that a CNN can be presented with, it is remarkably simple to find adversar-

ial examples that look unmodified to us but are misclassified by the network. Designing a

truly adaptive defense against adversarial images remains an open problem.

In this chapter, we propose a counter-forensic method to subtly change an image to in-

duce an error in its estimated camera model when analyzed by a CNN-based camera model

detector. We leverage the recent developments to rapidly generate adversarial images. We

test our counter-forensic method, using two well established adversarial image crafting

techniques [106,108], against an advanced deep learning architecture [24] carefully trained

on a reference camera model dataset. Our results show that even modern and properly

trained CNNs are susceptible to simple adversarial attacks. Note that our method only re-

quires access to the predictions of the CNN-based camera model identification detector and

does not need access to the weights of the CNN.
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4.2 CNN-Based Camera Model Identification

In this section, we provide a brief overview of convolutional neural networks sufficient

to understand the rest of this chapter and show how they can be used as camera model

detectors. For a more detailed description, please refer to one of the several available

tutorials in the literature [16, 109].

Convolutional neural networks are a special type of neural networks, biologically in-

spired by the human visual cortex system, that consist of a very high number of intercon-

nected nodes, or neurons. The architecture of a CNN is designed to take advantage of the

2D structure of an input image. This is achieved with local connections and tied weights

followed by some forms of pooling which results in translation invariant features. The

nodes of the network are organized in multiple stacked layers, each performing a simple

operation on the input.

The set of operations in a CNN typically comprises convolution, intensity normaliza-

tion, non-linear activation and thresholding, and local pooling. By minimizing a cost func-

tion at the output of the last layer, the weights of the network are tuned so that they are able

to capture patterns in the input data and extract distinctive features.

In a CNN, the features are learned using backpropagation [69] coupled with an opti-

mization method such as gradient descent [110] and the use of large annotated training

datasets. The shallower layers of the networks usually learn low-level visual features such

as edges, simple shapes and color contrast, whereas deeper layers combine these features

to identify complex visual patterns. Finally, fully-connected layers coupled with a softmax

layer are commonly used to generate an output class label that minimizes the cost function.

For example, in the context of image classification, the last layer is composed of N

nodes, where N is the number of classes, that define a probability distribution over the N

visual category. The value of a given node pi, i = 1, . . . , N belonging to the last layer

represents the probability of the input image to belong to the visual class ci.

To train a CNN model for a specific image classification task we need to define the hy-

perparameters of the CNN, which range from the sequence of operations to be performed,
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to the number of layers or the number and shape of the filters in convolutional layers. We

must also define a proper cost function to be minimized during the training process. Fi-

nally, a dataset of training and test images, annotated with labels according to the specific

task (e.g. camera models in our work) needs to be prepared.

Figure 4.1 shows an example of a CNN-based pipeline for camera model identification

similar to the one presented in [6]. To train the CNN architecture, we use a given set of

training and validation labeled image patches coming from N known camera models. For

each color image I , associated to a specific camera model L, K non-overlapping patches

Pk, k ∈ [1, K], of size 32 × 32 pixels are randomly extracted. Each patch Pk inherits

the same label L of the source image. As trained CNN modelM, we select the one that

provides the smallest loss on validation patches.

Fig. 4.1.: Example of a pipeline for camera model identification. The patches extracted
from each training image I (bottom) inherit the same label L of the image. These patches
are used in the CNN training process. For each patch Pk from the image I under analysis
(top), a candidate label L̂k is produced by a trained CNN modelM. The predicted label L̂
for analyzed image I is obtained by majority voting.

When a new image I is under analysis, the camera model used to acquire it is estimated

as follows. A set of K patches is obtained from image I as described above. Each patch Pk

is processed by CNN modelM in order to assign a label L̂k to each patch. The predicted

model L̂ for image I is obtained through majority voting on L̂k, k ∈ [1, K].
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4.3 Proposed Method1

Fig. 4.2.: Block diagram of our proposed method.

Figure 4.2 shows the block diagram of our proposed counter-forensic method. Our

method consists of an adversarial image generator module that can be added to a CNN-

based camera model evaluation pipeline. In Figure 4.2, we assume a similar structure to

the previously presented pipeline in Section 4.2. Our adversarial image generator module

takes as input the set of K patches that have been extracted from the image I that is being

analyzed. When presented with new image patches, our module can work in two different

modes.

In the first operation mode, the adversarial image generator module does an untargeted

image manipulation, that is, it does not try to perturb the image patches to produce a specific

misclassification class. Instead, we use the derivative of the loss function of the CNN with

respect to the input image patches to add a perturbation to the images. The derivative is

computed using backpropagation with the labels L̂′k, k ∈ [1, K] that are given by the CNN

detector when it first processes the unmodified image patches. This procedure is known as

the fast gradient sign method (FGSM) [106].

In the second operation mode, the adversarial image generator module does a targeted

image manipulation. In this case, we try to perturb the image patches to produce a specific

misclassification class L′, different from the true real label L that is associated with the

analyzed image I and its associated Pk patches. In this mode of operation, we exploit the

1This is joint work with Dr. Yu Wang, Dr. Luca Bondi, Prof. Paolo Bestagini, and Prof. Stefano Tubaro
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forward derivative of a CNN to find an adversarial perturbation that will force the network

to misclassify the image patch into the target class by computing the adversarial saliency

map. Starting with an unmodified image patch, we perturb each feature by a constant offset

ε. This process is repeated iteratively until the target misclassification is achieved. This

procedure is known as the Jacobian-based saliency map attack (JSMA) [108].

We present a detailed overview of both FGSM and JSMA techniques as follows.

4.3.1 Fast Gradient Sign Method

In [106], the fast gradient sign method was introduced for generating adversarial exam-

ples using the derivative of the loss function of the CNN with respect to the input feature

vector. Given an input feature vector (e.g. an image), FGSM perturbs each feature in the

direction of the gradient by magnitude ε, where ε is a parameter that determines the pertur-

bation size. For a network with loss J(Θ, x, y), where Θ represents the CNN predictions

for an input x and y is the correct label of x, the adversarial example is generated as

x∗ = x+ εsign(∇xJ(Θ, x, y))

With small ε, it is possible to generate adversarial images that are consistently misclassified

by CNNs trained using the MNIST and CIFAR-10 image classification datasets with a high

success rate [106].

4.3.2 Jacobian-Based Saliency Map Attack

In [108], an iterative method for targeted misclassification was proposed. By exploit-

ing the forward derivative of a CNN, it is possible to find an adversarial perturbation that

will force the network to misclassify into a specific target class. For an input x and a

convolutional neural network C, the output for class j is denoted Cj(x). To achieve an

output of target class t, Ct(x) must be increased while the probabilities Cj(x) of all other
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classes j 6= t decrease, until t = arg maxj Cj(x). This is accomplished by exploiting the

adversarial saliency map, which is defined as

S(x, t)[i] =

0, if ∂Ct(x)
∂xi

< 0 or
∑

j 6=t
∂Cj(x)

∂xi
> 0

(∂Ct(x)
∂xi

)|∑j 6=t
∂Cj(x)

∂xi
|, otherwise

for an input feature i. Because we work with images in this chapter, in our case each input

feature i corresponds to a pixel i in the image input x. Starting with a normal sample x, we

locate the pair of pixels {i, j} that maximize S(x, t)[i] + S(x, t)[j], and perturb each pixel

by a constant offset ε. This process is repeated iteratively until the target misclassification is

achieved. This method can effectively produce MNIST dataset examples that are correctly

classified by human subjects but misclassified into a specific target class by a CNN with a

high confidence.

4.3.3 Implementation Details

To implement our counter-forensic method, we have used the software library clever-

hans [111]. The library provides standardized reference implementations of adversarial

image generation techniques and adversarial training. The library can be used to develop

more robust CNN architectures and to provide standardized benchmarks of CNNs perfor-

mance in an adversarial setting. As noted in [111], benchmarks constructed without a stan-

dardized implementation of adversarial image generation techniques are not comparable to

each other, because a good result may indicate a robust CNN or it may merely indicate a

weak implementation of the adversarial image generation procedure.

4.4 Experimental Results

In this section, we evaluate our proposed method and compare the results of the two

techniques for generating the adversarial images. First, we create a reference dataset spe-

cially designed to exploit the traces left by the operations of the acquisition pipeline of
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different image capturing devices. Then, we train an advanced deep learning architecture

to have a baseline to compare the accuracy results in the presence of adversarial images.

Finally, we generate several adversarial image examples to demonstrate the performance

of our proposed method.

4.4.1 Experimental Setup

As part of DARPA’s MediFor Program, PAR Government Systems collected an initial

dataset of 1611 images acquired by 10 different camera models, ranging from DSLRs to

phone cameras, with a mixture of indoor and outdoor flat-field scenes. We focus on a flat-

field image dataset because flat-field images are more difficult to modify without inserting

visual distortions due to the absence of texture content.

Throughout the rest of the chapter, we refer to this dataset as PRNU-PAR. Using the

PRNU-PAR dataset, we create a patch dataset, composed by image patches of 32 × 32

pixels randomly extracted from the original images. Specifically, 500 patches are uniformly

sampled from each original image in the PRNU-PAR dataset, which results in a patch

dataset that contains 805,500 patches in total. The training, validation and test sets are

created following a 70/20/10 split, while we ensure that the patches in each dataset split

only contain patches from different images.

Table 4.1 shows the statistics of the patch dataset. As can be seen, due to the difference

in the number of images per camera model class in the PRNU-PAR dataset, our dataset of

image patches has an unequal number of patches for each of the camera models.

Figure 4.3 shows a representative example of the images that are present in the PRNU-

PAR dataset next to one of their randomly extracted patches. In this case, both camera

models PAR-A075 and PAR-A106 have been used to capture images of a cloudy sky. Other

camera models such AS-One or ES-D5100 have taken images of a white screen. All the

image scenes that are captured in the PRNU-PAR dataset are mostly flat and bright.
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Table 4.1.: Number of image patches per camera class for each of the different dataset
splits.

Camera Model Training Validation Test
AS-One 90000 25500 12500
ES-D5100 37500 10500 5000
MK-Powershot 35000 10000 5000
MK-s860 35500 10000 5000
PAR-1233 71000 20000 10000
PAR-1476 107000 30500 15000
PAR-1477 70000 20000 9500
PAR-A015 40500 11500 5500
PAR-A075 26000 7000 3500
PAR-A106 54000 15500 7500

As it has been shown in the literature [57], these largely uniform images are ideal

candidates to be used for the extraction of the “fingerprint” (e.g. the characteristic PRNU

noise of the camera model) left in the image by the camera.

4.4.2 CNN Architecture

In order to do a fair evaluation of our counter-forensic method, we use a CNN-based

camera model detector that has been trained to achieve state-of-the-art accuracy results in

the patch dataset.

CNN architecture designs have tended to explore deeper models. Networks which can

be hundreds of layers deep are now commonplace in the literature. This design trend has

been motivated by the fact that for many applications such as image classification tasks, an

increase in the depth of the CNN architecture translates into higher accuracy performance

if sufficient amounts of training data are available.

A first approach to design a CNN architecture may be to simply stack convolutional

or fully-connected layers together. This naive strategy works initially, but gains in ac-

curacy performance quickly diminish the deeper this kind of architecture becomes. This
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Fig. 4.3.: Example of images from the training set of the patch dataset. (Top) Image from
camera model PAR-A075 and one of the randomly selected patches associated with it.
(Bottom) Image from camera model PAR-A106 and one of the randomly selected patches
associated with it.

phenomenon is due to the way in which conventional CNNs are trained through backpro-

pogation. During the training phase of a CNN, gradient information must be propagated

backwards through the network. This gradient information slightly diminishes as it passes

through each layer of the neural network. For a CNN with a reduced number of layers,

this is not a problem. For an architecture with a large number of layers, the gradient signal

essentially becomes noise by the time it reaches the first layer of the network again.

The problem is to design a CNN in which the gradient information can be easily dis-

tributed to all the layers without degradation. ResNets and DenseNets are modern CNN

architectures that try to address this problem.

A Residual Network [23], or ResNet is a deep CNN which tackles the problem of

the vanishing gradient using a straightforward approach. It adds a direct connection at
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each layer of the CNN. In previous CNN models, the gradient always has to go through

the activations of the layers, which modify the gradient information due to the nonlinear

activation functions that are commonly used. With this direct connection, the gradient could

theoretically skip over all the intermediate layers and be propagated through the network

without being disturbed.

A Dense Network [24], or DenseNet generalizes the idea of a direct connection between

layers. Instead of only adding a connection from the previous layer to the next, it connects

every layer to every other layer. For each layer, the feature maps of all preceding layers

are treated as separate inputs whereas its own feature maps are passed on as inputs to

all subsequent layers. The increased number of connections ensures that there is always a

direct route for the information backwards through the network. The connectivity pattern of

DenseNets yields state-of-the-art accuracies on the CIFAR10 image classification dataset,

which is composed by images of 32 × 32 pixels in size.

Motivated by the accuracy performance of DenseNet in the CIFAR10 dataset and the

fact that we also work with image patches of 32 × 32 pixels, we select a DenseNet model

with 40 layers as our CNN camera model detector. To prevent the network from growing

too wide and to improve the parameter efficiency, we limit the growth rate of the network,

this is, the maximum number of input feature-maps that each layer can produce, to k = 12.

To train the CNN, we use the Adam optimizer with a learning rate of 0.0001 and a batch

size of 512 images. After 5 training epochs, we reach a plateau in the accuracy in our

validation set. Table 4.2 shows the single patch accuracy results for our training, validation

and test splits of the patch dataset.

Table 4.2.: Single patch accuracy results for our training, validation and test splits of the
patch dataset.

Dataset Split Train Validation Test
Accuracy (%) 99.8 98.7 97.7
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4.4.3 Adversarial Image Generation

Fig. 4.4.: An example of untargeted fast adversarial image generation using FGSM applied
to our trained DenseNet model on the patch dataset. By adding an imperceptibly small
vector whose elements are equal to the sign of the elements of the gradient of the cost
function with respect to the input, we can change DenseNet’s classification of the image
patch.

In order to evaluate the performance of our counter-forensic method, we test the DenseNet

model trained on the patch dataset using untargeted attacks with FGSM and targeted attacks

with JSMA. To properly evaluate our method, we only perturb images from the test split

which were correctly classified by our CNN in their original states.

To be clear, what we refer as the average confidence score in this chapter is the average

value of the probability that is associated with the candidate camera model label for each of

the image patches in the test split. The probability for each candidate camera model label

corresponds with the highest probability value assigned by the softmax layer of our trained

DenseNet model.

For untargeted attacks with FGSM, we report in Table 4.3 the error rate and the average

confidence score on the test split of the patch dataset for different values of ε which have

been shown to generate high misclassified adversarial images while not producing appre-

ciable visual changes. We find that using ε = 0.005 offers the best compromise between

error rate and visual changes in the image, causing the trained DenseNet model detector to
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have a error rate of 93.1% with an average confidence of 95.3% on the patch test split. It

should be noted that as we increase the value of ε, the manipulations become more visually

apparent.

Figure 4.4 shows an example of the adversarial images that our proposed method can

generate when we use FGSM. The modifications done to the images by FGSM are per-

formed on 32-bit floating point values, which are used for the input of the DenseNet model.

The gradient computed for Figure 4.4 uses 8-bit signed integers. To publish the sign of the

gradient image in the chapter, we have done a custom conversion from 8-bit signed integers

to 8-bit unsigned integers. To increase the range of each color channel, we represent the

−1s values as 0 and the 1s as 255. For the possible 0’s, we have treated them as positive

values (they are represented by 255).

Table 4.3.: Error rate and confidence score values of our trained DenseNet model after an
untargeted attack with FGSM to the test split with different values of ε.

ε
value

Error
rate (%)

Confidence
Score (%)

0.001 91.4 97.7
0.002 91.7 97.2
0.003 92.2 96.7
0.004 92.7 95.8
0.005 93.1 95.3
0.006 94.1 95.1
0.007 94.5 94.2
0.008 95.3 93.6
0.009 95.9 93.0
0.01 96.2 92.3

For targeted attacks with JSMA, we report in Table 4.4 the error rate and the average

confidence score for each possible camera model target class. Figure 4.5 shows an exam-

ple of the images that JSMA allows us to generate when we perform a targeted attack. In

this case, an image patch captured by camera ES-D5100 that is correctly classified when

is analyzed by our trained DenseNet model is manipulated to be misclassified as an image

patch that had been generated by camera model PAR-1233. It is important to appreciate
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Table 4.4.: Error rates and confidence scores of our trained DenseNet model for each pos-
sible target camera model after applying a targeted attack with JSMA to the test split.

Target
Camera Model

Error
rate (%)

Confidence
Score (%)

AS-One 99.5 87.7
ES-D5100 99.3 88.6

MK-Powershot 99.3 88.4
MK-s860 99.7 88.5
PAR-1233 99.7 87.9
PAR-1476 99.4 88.1
PAR-1477 99.5 88.2
PAR-A015 99.6 88.4
PAR-A075 99.3 87.8
PAR-A106 99.2 87.9

that although JSMA allows us to generate image patches that get misclassified into a spe-

cific camera model with high error rates and confidence scores, the modifications that it

applies to the images can usually be spotted through visual inspection. This effect is due

to the fact that JSMA crafts the adversarial images by flipping pixels to their minimum or

maximum values. Because our patch dataset is composed of image patches with mostly flat

scene content, the effect can be clearly observed, for example, in the upper corners of the

manipulated image patch in Figure 4.5.
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Fig. 4.5.: An example of targeted adversarial image generation using JSMA applied to
our trained DenseNet model on the patch dataset. (Left) Original image patch correctly
classified as ES-D5100. (Right) Altered image patch with target camera model PAR-1233
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5. DEEPFAKE VIDEO DETECTION

5.1 Overview

The first known attempt at trying to swap someone’s face, circa 1865, can be found in

one of the iconic portraits of U.S. President Abraham Lincoln. The lithography, as seen in

Figure 5.1, mixes Lincoln’s head with the body of Southern politician John Calhoun. After

Lincoln’s assassination, demand for lithographies of him was so great that engravings of

his head on other bodies appeared almost overnight [112].

Fig. 5.1.: Face swapping is not new. Examples such as the swap of U.S. President Lin-
coln’s head with politician John Calhoun’s body were produced in mid-19th century (left).
Modern tools like FakeApp [113] have made it easy for anyone to produce “deepfakes”,
such as the one swapping the heads of late-night TV hosts Jimmy Fallon and John Oliver
(right).

Recent advances [114, 115] have radically changed the playing field of image and

video manipulation. The democratization of modern tools such as Tensorflow [116] or

Keras [117] coupled with the open accessibility of the recent technical literature and cheap
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access to compute infrastructure have propelled this paradigm shift. Convolutional autoen-

coders [39, 118] and generative adversarial network (GAN) [119, 120] models have made

tampering images and videos, which used to be reserved to highly-trained professionals, a

broadly accessible operation within reach of almost any individual with a computer. Smart-

phone and desktop applications like FaceApp [121] and FakeApp [113] are built upon this

progress.

FaceApp automatically generates highly realistic transformations of faces in photographs.

It allows one to change face hair style, gender, age and other attributes using a smartphone.

FakeApp is a desktop application that allows one to create what are now known as “deep-

fakes” videos. Deepfake videos are manipulated videoclips which were first created by a

Reddit user, deepfake, who used TensorFlow, image search engines, social media websites

and public video footage to insert someone else’s face onto pre-existing videos frame by

frame.

Although some benign deepfake videos exist, they remain a minority. So far, the re-

leased tools [113] that generate deepfake videos have been broadly used to create fake

celebrity pornographic videos or revenge porn [122]. This kind of pornography has al-

ready been banned by sites including Reddit, Twitter, and Pornhub. The realistic nature

of deepfake videos also makes them a target for generation of pedopornographic material,

fake news, fake surveillance videos, and malicious hoaxes. These fake videos have already

been used to create political tensions and they are being taken into account by governmental

entities [123].

As presented in the Malicious AI report [124], researchers in artificial intelligence

should always reflect on the dual-use nature of their work, allowing misuse considerations

to influence research priorities and norms. Given the severity of the malicious attack vec-

tors that deepfakes have caused, in this chapter we present a novel solution for the detection

of this kind of video.

The main contributions are summarized as follows. First, we propose a two-stage anal-

ysis composed of a CNN to extract features at the frame level followed by a temporally-

aware RNN network to capture temporal inconsistencies between frames introduced by the
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face-swapping process. Second, we have used a collection of 600 videos to evaluate the

proposed method, with half of the videos being deepfakes collected from multiple video

hosting websites. Third, we show experimentally the effectiveness of the described ap-

proach, which allows use to detect if a suspect video is a deepfake manipulation with 94%

more accuracy than a random detector baseline in a balanced setting.

5.2 Related Work

Digital Media Forensics. The field of digital media forensics aims to develop tech-

nologies for the automated assessment of the integrity of an image or video. Both feature-

based [125, 126] and CNN-based [8, 11] integrity analysis methods have been explored in

the literature. For video-based digital forensics, the majority of the proposed solutions try

to detect computationally cheap manipulations, such as dropped or duplicated frames [41]

or copy-move manipulations [44]. Techniques that detect face-based manipulations include

methods that distinguish computer generated faces from natural ones such as Conotter et

al. [45] or Rahmouni et al. [127]. In biometry, Raghavendra et al. [46] recently proposed

to detect morphed faces with two pre-trained deep CNNs and Zhou et al. [48] proposed

detection of two different face swapping manipulations using a two-stream network. Of

special interest to practitioners is a new dataset by Rössler et al. [128], which has about

half a million edited images that have been generated with feature-based face editing [39].

Face-based Video Manipulation Methods. Multiple approaches that target face ma-

nipulations in video sequences have been proposed since the 1990s [37, 129]. Thies et

al. demonstrated the first real-time expression transfer for faces. They later proposed

Face2Face [39], a real-time facial reenactment system, capable of altering facial move-

ments in different types of video streams. Alternatives to Face2Face have also been pro-

posed [130].

Several face image synthesis techniques using deep learning have also been explored

as surveyed by Lu et al. [131]. Generative adversarial networks (GANs) are used for aging

alterations to faces [120], or to alter face attributes such as skin color [132]. Deep feature
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interpolation [133] shows remarkable results in altering face attributes such as age, facial

hair or mouth expressions. Similar results of attribute interpolations are achieved by Lam-

ple et al. [134]. Most of these deep learning based image synthesis techniques suffer from

low image resolution. Karras et al. [135] show high-quality synthesis of faces, improving

the image quality using progressive GANs.

Recurrent Neural Networks. – Long Short Term Memory (LSTM) networks are a

particular type of Recurrent Neural Network (RNN), first introduced by Hochreiter and

Schmidhuber [136] to learn long-term dependencies in data sequences. When a deep learn-

ing architecture is equipped with a LSTM combined with a CNN, it is typically considered

as “deep in space” and “deep in time” respectively, which can be seen as two distinct sys-

tem modalities. CNNs have achieved massive success in visual recognition tasks, while

LSTMs are widely used for long sequence processing problems. Because of the inherent

properties (rich visual description, long-term temporal memory and end-to-end training)

of a convolutional LSTM architecture, it has been thoroughly studied for other computer

vision tasks involving sequences (e.g. activity recognition [137] or human re-identification

in videos [138]) and has lead to significant improvements.

5.3 Deepfake Videos Exposed

Due to the way that FakeApp [113] generates the manipulated deepfake video, intra-

frame inconsistencies and temporal inconsistencies between frames are created. These

video anomalies can be exploited to detect if a video under analysis is a deepfake manipu-

lation or not. Let us briefly explain how a deepfake video is generated to understand why

these anomalies are introduced in the videos and how we can exploit them.

5.3.1 Creating Deepfake Videos

It is well known that deep learning techniques have been successfully used to enhance

the performance of image compression. Especially, the autoencoder has been applied for

dimensionality reduction, compact representations of images, and generative models learn-
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ing [139]. Thus, autoencoders are able to extract more compressed representations of im-

ages with a minimized loss function and are expected to achieve better compression per-

formance than existing image compression standards. The compressed representations or

latent vectors that current convolutional autoencoders learn are the first cornerstone behind

the faceswapping capabilities of [113]. The second insight is the use of two sets of encoder-

decoders with shared weights for the encoder networks. Figure 5.2 shows how these ideas

are used in the training and generation phases that happen during the creation of a deepfake

video.

Fig. 5.2.: What makes deepfakes possible is finding a way to force both latent faces to be
encoded on the same features. This is solved by having two networks sharing the same
encoder, yet using two different decoders (top). When we want to do a new faceswapp, we
encode the input face and decode it using the target face decoder (bottom).

Training

Two sets of training images are required. The first set only has samples of the original

face that will be replaced, which can be extracted from the target video that will be ma-
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nipulated. This first set of images can be further extended with images from other sources

for more realistic results. The second set of images contains the desired face that will be

swapped in the target video. To ease the training process of the autoencoders, the easi-

est face swap would have both the original face and target face under similar viewing and

illumination conditions. However, this is usually not the case. Multiple camera views,

differences in lightning conditions or simply the use of different video codecs makes it

difficult for autencoders to produce realistic faces under all conditions. This usually leads

to swapped faces that are visually inconsistent with the rest of the scene. This frame-level

scene inconsistency will be the first feature that we will exploit with our approach.

It is also important to note that if we train two autoencoders separately, they will be

incompatible with each other. If two autoencoders are trained separately on different sets of

faces, their latent spaces and representations will be different. This means that each decoder

is only able to decode a single kind of latent representations which it has learnt during the

training phase. This can be overcome by forcing the two set of autoencoders to share

the weights for the encoder networks, yet using two different decoders. In this fashion,

during the training phase these two networks are treated separately and each decoder is

only trained with faces from one of the subjects. However, all latent faces are produced

by the same encoder which forces the encoder itself to identify common features in both

faces. This can be easily accomplished due to the natural set of shared traits of all human

faces (e.g. number and position of eyes, nose, . . . ).

Video Generation

When the training process is complete, we can pass a latent representation of a face

generated from the original subject present in the video to the decoder network trained on

faces of the subject we want to insert in the video. As shown in Figure 5.2, the decoder

will try to reconstruct a face from the new subject, from the information relative to the

original subject face present in the video. This process is repeated for every frame in the

video where we want to do a faceswapping operation. It is important to point out that for



74

doing this frame-level operation, first a face detector is used to extract only the face region

that will be passed to the trained autoencoder. This is usually a second source of scene

inconsistency between the swapped face and the reset of the scene. Because the encoder

is not aware of the skin or other scene information it is very common to have boundary

effects due to a seamed fusion between the new face and the rest of the frame.

The third major weakness that we exploit is inherent to the generation process of the fi-

nal video itself. Because the autoencoder is used frame-by-frame, it is completely unaware

of any previous generated face that it may have created. This lack of temporal awareness

is the source of multiple anomalies. The most prominent is an inconsistent choice of il-

luminants between scenes with frames, with leads to a flickering phenomenon in the face

region common to the majority of fake videos. Although this phenomenon can be hard to

appreciate to the naked eye in the best manually-tuned deepfake manipulations, it is eas-

ily captured by a pixel-level CNN feature extractor. The phenomenon of incorrect color

constancy in CNN-generated videos is a well known and still open research problem in the

computer vision field [140]. Hence, it is not surprising that an autoencoder trained with

very constrained data fails to render illuminants correctly.

5.4 Recurrent Network For Deepfake Detection

In this section, we present our end-to-end trainable recurrent deepfake video detection

system (Figure 5.3). The proposed system is composed by a convolutional LSTM structure

for processing frame sequences. There are two essential components in a convolutional

LSTM:

1. CNN for frame feature extraction.

2. LSTM for temporal sequence analysis.

Given an unseen test sequence, we obtain a set of features for each frame that are

generated by the CNN. Afterwards, we concatenate the features of multiple consecutive

frames and pass them to the LSTM for analysis. We finally produce an estimate of the

likelihood of the sequence being either a deepfake or a nonmaninpulated video.
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Fig. 5.3.: Overview of our detection system. The system learns and infers in an end-to-
end manner and, given a video sequence, outputs a probability of it being a deepfake or a
pristine video. It has a convolutional LSTM subnetwork, for processing the input temporal
sequence.

5.4.1 Convolutional LSTM

Given an image sequence (see Figure 5.3), a convolutional LSTM is employed to pro-

duce a temporal sequence descriptor for image manipulation of the shot frame. Aiming

at end-to-end learning, an integration of fully-connected layers is used to map the high-

dimensional LSTM descriptor to a final detection probability. Specifically, our shallow

network consists of two fully-connected layers and one dropout layer to minimize training

over-fitting. The convolutional LSTM can be divided into a CNN and a LSTM, which we

will describe separately in the following paragraphs.

CNN for Feature Extraction. Inspired by its success in the IEEE Signal Processing

Society Camera Model Identification Challenge, we adopt the InceptionV3 [78] with the

fully-connected layer at the top of the network removed to directly output a deep represen-

tation of each frame using the ImageNet pre-trained model. Following [141], we do not

fine-tune the network. The 2048-dimensional feature vectors after the last pooling layers

are then used as the sequential LSTM input.

LSTM for Sequence Processing. Let us assume a sequence of CNN feature vectors of

input frames as input and a 2-node neural network with the probabilities of the sequence

being part of a deepfake video or an untampered video. The key challenge that we need to

address is the design of a model to recursively process a sequence in a meaningful man-

ner. For this problem, we resort to the use of a 2048-wide LSTM unit with 0.5 chance of
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dropout, which is capable to do exactly what we need. More particularly, during training,

our LSTM model takes a sequence of 2048-dimensional ImageNet feature vectors. The

LSTM is followed by a 512 fully-connected layer with 0.5 chance of dropout. Finally, we

use a softmax layer to compute the probabilities of the frame sequence being either pristine

or deepfake. Note that the LSTM module is an intermediate unit in our pipeline, which is

trained entirely end-to-end without the need of auxiliary loss functions.

5.5 Experiments

In this section we report the details about our experiments. First, we describe our

dataset. Then, we provide details of the experimental settings to ensure reproducibility and

end up by analyzing the reported results.

5.5.1 Dataset

For this work, we have collected 300 deepfake videos from multiple video-hosting

websites. We further incorporate 300 more videos randomly selected from the HOHA

dataset [142], which leads to a final dataset with 600 videos. We selected the HOHA

dataset as our source of pristine videos since it contains a realistic set of sequence sam-

ples from famous movies with an emphasis on human actions. Given that a considerable

number of the deepfake videos are generated using clips from major films, using videos

from the HOHA dataset further ensures that the overall system learns to spot manipulation

features present in the deepfake videos, instead of memorizing semantic content from the

two classes of videos present in the final dataset.

5.5.2 Parameter Settings

First, we have used a random 70/15/15 split to generate three disjoints sets, used for

training, validation and test respectively. We do a balanced splitting, i.e., we do the splitting

first for the 300 deepfake videos and then we repeat the process for the 300 nonmanipulated
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videos. This guarantees that each final set has exactly 50% videos of each class, which

allows use to report our results in terms of accuracy without having to take into account

biases due to the appearance frequency of each class or the need of using regularizing terms

during the training phase. In terms of data preprocessing of the video sequences, we do:

• Subtracting channel mean from each channel.

• Resizing of every frame to 299×299.

• Sub-sequence sampling of length N controlling the length of input sequence – N =

20, 40, 80 frames. This allows use to see how many frames are necessary per video

to have an accurate detection.

• The optimizer is set to Adam [93] for end-to-end training of the complete model with

a learning rate of 1e−5 and decay of 1e−6.

5.5.3 Results

It is not unusual to find deepfake videos where the manipulation is only present in a

small portion of the video (i.e. the target face only appears briefly on the video, hence the

deepfake manipulation is short in time). To account for this, for every video in the training,

validation and test splits, we extract continuous subsequences of fixed frame length that

serve as the input of our system.

In Table 5.1 we present the performance of our system in terms of detection accuracy

using sub-sequences of lengthN = 20, 40, 80 frames. These frame sequences are extracted

sequentially (without frame skips) from each video. The entire pipeline is trained end-to-

end until we reach a 10-epoch loss plateau in the validation set.

As we can observe in our results, with less than 2 seconds of video (40 frames for

videos sampled at 24 frames per second) our system can accurately predict if the fragment

being analyzed comes from a deepfake video or not with an accuracy greater than 97%.
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Table 5.1.: Classification results of our dataset splits using video sub-sequences with dif-
ferent lengths.

Model Training
acc. (%)

Validation
acc. (%)

Test
acc. (%)

Conv-LSTM,
20 frames 99.5 96.9 96.7

Conv-LSTM,
40 frames 99.3 97.1 97.1

Conv-LSTM,
80 frames 99.7 97.2 97.1

FaceForensics++

To further verify the effectiveness of our approach, we have also tested it against the

recently presented FaceForensics++ dataset by Rössler et al. [51]. This dataset is over an

order of magnitude larger than comparable, publicly available, forgery datasets. Specif-

ically, and thanks to recent contributions by researchers at Google AI [143], this dataset

now has more than 4,000 DeepFake videos. Due to the larger size of this dataset, after

careful exploration of the architectural space of our approach, we lower the number of

units of the LSTM to 128, and the units of the fully connected layer to 32. Additionally,

we also reduce the number of analyzed frames per sequence by the convolutional LSTM

to 16. Furthermore, to ensure that no information leakage occurs due to difference in the

way the pristine and manipulated videos are encoded, we reencode all the videos present in

the FaceForensics++ dataset using the H.264 encoder, with a constant rate factor (CRF) of

23 and 30 frames per second (FPS). All these changes are primarily informed by hardware

and software constraints.
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Similar to the previously presented experiments, we have used a random 80/10/10 split

to generate three disjoints sets, used for training, validation, and test respectively, while

also ensuring they all have the same number of pristine and manipulated videos on them,

and that they all cover a different set of scenes. Due to the larger amount and diversity

of this dataset, our method now achieves a perfect (100%) accuracy detection rate in all

three sets (note that accuracy is a valid metric in this case given the balanced number

of positive and negative samples in the sets). We expect to further verify the validity of

our approach by presenting it in the recently announced Deepfake Detection Challenge by

Facebook [144, 145].
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6. VIDEO MANIPULATION DETECTION USING STREAM
DESCRIPTORS

6.1 Overview

Video manipulation is now within reach of any individual. Recent improvements in the

machine learning field have enabled the creation of powerful video manipulation tools.

Face2Face [39], Recycle-GAN [146], Deepfakes [147], and other face swapping tech-

niques [148] embody the latest generation of these open source video forging methods.

It is assumed as a certainty both by the research community [124] and governments across

the globe [149, 150] that more complex tools will appear in the near future. Classical and

current video editing methods have already demonstrated dangerous potential, having been

used to generate political propaganda [151], revenge-porn [152], and child-exploitation

material [153].

Due to the ever increasing sophistication of these techniques, uncovering manipulations

in videos remains an open problem. Existing video manipulation detection solutions focus

entirely on the observance of anomalies in the pixel domain of the video. Unfortunately, it

can be easily seen from a game theoretic perspective that, if both manipulators and detectors

are equally powerful, a Nash equilibrium will be reached [154]. Under that scenario, both

real and manipulated videos will be indistinguishable from each other, and the best detector

will only be capable of random guessing. Hence, methods that look beyond the pixel

domain are critically needed. So far, little attention has been paid to the necessary metadata

and auxiliary header information that is embedded in every video. As we shall present, this

information can be exploited to uncover unskilled video content manipulators.

In this chapter, we introduce a new approach to address the video manipulation de-

tection problem. To avoid the zero-sum, leader-follower game that characterizes current

detection solutions, our approach completely avoids the pixel domain. Instead, we use the
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Fig. 6.1.: Examples of some of the information extracted from the video stream descriptors.
These descriptors are necessary to decode and playback a video.

multimedia stream descriptors [155] that ensure the playback of any video (as shown in

Figure 6.1). First, we construct a feature vector with all the descriptor information for a

given video. Using a database of known manipulated videos, we train an ensemble of a

support vector machine and a random forest that acts as our detector. Finally, during test-

ing, we generate the feature vector from the stream descriptors of the video under analysis,

feed it to the ensemble, and report a manipulation probability.

The contributions of this chapter are summarized as follows. First, we introduce a new

technique that does not require access to the pixel content of the video, making it fast and

scalable, even on consumer grade computing equipment. Instead, we rely on the multime-

dia descriptors present on any video, which are considerably harder to manipulate due to

their role in the decoding phase. Second, we thoroughly test our approach using the NIST

MFC datasets [156] and show that even with a limited amount of labeled videos, simple

machine learning ensembles can be highly effective detectors. Finally, all of our code and

trained classifiers will be made available1 so the research community can reproduce our

work with their own datasets.
1https://github.com/dguera/fake-video-detection-without-pixels
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6.2 Related Work

The multimedia forensics research community has a long history of trying to address

the problem of detecting manipulations in video sequences. [157] provide an extensive and

thorough overview of the main research directions and solutions that have been explored

in the last decade. More recent work has focused on specific video manipulations, such as

local tampering detection in video sequences [44, 158], video re-encoding detection [159,

160], splicing detection in videos [42, 161, 162], and near-duplicate video detection [163,

164]. [165, 166] also present solutions that use 3D PatchMatch [167] for video forgery

detection and localization, whereas [168] suggest using data-driven machine learning based

approaches. Solutions tailored to detecting the latest video manipulation techniques have

also been recently presented. These include the works of [10, 49] on detecting Deepfakes

and [128, 169] on Face2Face [39] manipulation detection.

As covered by [157], image-based forensics techniques that leverage camera noise

residuals [170], image compression artifacts [171], or geometric and physics inconsisten-

cies in the scene [172] can also be used in videos when applied frame by frame. In [173]

and [174], Exif image metadata is used to detect either image brightness and contrast ad-

justments, and splicing manipulations in images, respectively. Finally, [175] use video file

container metadata for video integrity verification and source device identification. To the

best of our knowledge, video manipulation detection techniques that exploit the multimedia

stream descriptors have not been previously proposed.

6.3 Proposed Method2

Current video manipulation detection approaches rely on uncovering manipulations by

studying pixel domain anomalies. Instead, we propose to use the multimedia stream de-

scriptors of videos as our main source of information to spot manipulated content. To do

so, our method works in two stages, as presented in Figure ??. First, during the training

phase, we extract the multimedia stream descriptors from a labeled database of manipulated

2This is joint work with Mr. Sriram Baireddy, Prof. Paolo Bestagini, and Prof. Stefano Tubaro
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Fig. 6.2.: Block diagram of the training stage of our proposed method. We process a labeled
database of manipulated and pristine videos to generate a feature vector for each video from
its multimedia stream descriptors. These feature vectors are then used to train and select
the best detector.

H.264 / AVC / MPEG-4 
AVC / MPEG-4 part 10

High

0.0166833

yuv420p

31

471201

Stream
Descriptor Extraction

+
Feature Vector
Construction

Trained
Manipulation

Detector

Manipulation 
Probability

Suspect Video Suspect Feature Vector

Fig. 6.3.: Block diagram of the testing stage of our proposed method. Given a suspect
video, a feature vector is generated and processed by the previously selected detector. Fi-
nally, a manipulation probability for the suspect video is reported.

and pristine videos. In practice, such a database can be easily constructed using a limited

amount of manually labeled data coupled with a semi-supervised learning approach, as

done by [176]. Then, we encode these descriptors as a feature vector for each given video.

We apply median normalization to all numerical features. As for categorical features, each

is encoded as its own unique numerical value. Once we have processed all the videos in

the database, we use all the feature vectors to train different binary classifiers as our detec-

tors. More specifically, we use a random forest, a support vector machine (SVM) and an

ensemble of both detectors. The best hyperparameters for each detector are selected by per-

forming a random search cross-validation over a 10-split stratified shuffling of the data and

1,000 trials per split. Figure 6.2 summarizes this first stage. In our implementation, we use

ffprobe [177] for the multimedia stream descriptor extraction. For the encoding of the de-

scriptors as feature vectors, we use pandas [178] and scikit-learn [179]. As for the training

and testing of the SVM, the random forest, and the ensemble, we use the implementations

available in the scikit-learn library.
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Figure 6.3 shows how our method would work in practice. Given a suspect video, we

extract its stream descriptors and generate its corresponding feature vector, which is nor-

malized based on the values learnt during the training phase. Since some of the descriptor

fields are optional, we perform additional post-processing to ensure that the feature vector

can be processed by our trained detector. Concretely, if any field is missing in the video

stream descriptors, we perform data imputation by mapping missing fields to a fixed nu-

merical value. If previously unseen descriptor fields are present in the suspect video stream,

they are ignored and not included in the corresponding suspect feature vector. Finally, the

trained detector analyzes the suspect feature vector and computes a manipulation probabil-

ity.

It is important to note that although our approach may be vulnerable to video re-

encoding attacks, this is traded off for scalability, a limited need of labeled data, and a high

video manipulation detection score, as we present in Section 6.4. Also, the fact that our

solution is orthogonal to pixel-based methods and requires limited amounts of data, which

means that ideally, we could use both approaches simultaneously. Our approach could be

used to quickly identify manipulated videos, minimizing the need to rely on human annota-

tion. Later, these newly labeled videos could be used to improve the performance of pixel-

based video manipulation detectors. Finally, following the recommendations of [124], we

want to reflect on a potential misuse of the proposed approach. We believe that our ap-

proach could be misused by someone with access to large amounts of labeled video data.

Using that information, a malevolent adversary could identify specific individuals, such as

journalists or confidential informants, who may submit anonymous videos using the same

devices they use to upload videos to social media websites. To avoid this, different physical

devices or proper video data sanitization should be used.
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6.4 Experimental Results

6.4.1 Datasets

In order to evaluate the performance of our proposed approach, we use the Media Foren-

sics Challenge (MFC) datasets [156]. Collected by the National Institute of Standards and

Technology (NIST), this data comprises over 11,000 high provenance videos and 4,000

manipulated videos. In our experiments, we use the videos from the following datasets for

training, hyper-parameter selection, and validation: the Nimble Challenge 2017 develop-

ment dataset, the MFC18 development version 1 and version 2 datasets, and the MFC18

GAN dataset. This represents a total of 677 videos, of which 167 are manipulated. For

testing our model, we use the MFC18 evaluation dataset and the MFC19 validation dataset,

which have a total of 1,097 videos. Of those videos, 336 have been manipulated.

6.4.2 Experimental Setup

To show the merits of our method in terms of scalability and limited compute require-

ments, we design the following experiment. First, we select machine learning binary classi-

fiers that are well known for their modeling capabilities, even with limited access to training

samples. As previously mentioned, we use a random forest, a support vector machine, and

a soft voting classification ensemble with both. This final ensemble is weighted 4 to 1 in

favor of the decision of the random forest. Then, to show the performance of each detector

under different data availability scenarios, we train them using 10%, 25%, 50% and 75%

of the available training data. We use a stratified shuffle splitting policy to select these

training subsets, meaning that the global ratio of manipulated to non-manipulated videos

of the entire training set is preserved in the subsets. In all scenarios, a sequestered 25%

subset of the training data is used for hyper-parameter selection and validation. Finally,

the best validated model is selected for testing. Due to the imbalance of manipulated to

non-manipulated videos, we use the Precision-Recall (PR) curve as our evaluation metric,
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as recommended by [180]. We also report the F1 score, the area under the curve (AUC)

score, and the average precision (AP) score for each classifier.

6.4.3 Results and Discussion

As we can see in Figure 6.4, Figure 6.5, Figure 6.6, and Figure 6.7, under all scenarios

the voting ensemble of the random forest and the support vector machine generally achieves

the best overall results, followed by the random forest and the SVM. More specifically, our

best ensemble model achieves a F1 score of 0.917, an AUC score of 0.984 and an AP

score of 0.984. To contextualize these results, we have included the performance of a

binary classifier baseline which predicts a video manipulation with probability p = 0.306.

This corresponds to the true fraction of manipulated videos in the test set. Note that it is

higher than the fraction of manipulated videos in the training subsets, which is 0.247. This

baseline model would achieve an F1, AUC, and AP score of 0.306. We can see that our best

model is three times better than the baseline in all reported metrics. Notice that, as seen in

Figure 6.4, the ensemble trained with 68 videos has achieved equal or better results than the

ensembles trained with more videos. This shows that, even with a very limited number of

stream descriptors, a properly tuned machine learning model can be trained easily to spot

video manipulations.



87

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on Baseline (F1=0.306, AUC=0.306, AP=0.306)

SVM (F1=0.852, AUC=0.943, AP=0.943)
Random Forest (F1=0.917, AUC=0.981, AP=0.981)
Ensemble (F1=0.917, AUC=0.984, AP=0.984)
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7. SUMMARY AND FUTURE WORK

7.1 Overview

In Chapter 2 we showed the possibility of using CNNs for camera model identification.

Specifically, we focused on a processing pipeline making use of a CNN for feature extrac-

tion and a set of SVMs for classification. We first tested different CNN architectures, in

order to select a valid structure candidate balancing accuracy and computational complex-

ity. We then investigated the effect of training a CNN on different data splits in order to

highlight the dependency between accuracy, training set size, and training-testing splitting

policy.

Our study shows that it is possible to achieve high camera model attribution accuracy

(i.e., around 96% ) even with fairly small network architectures (i.e., four convolutional

layers), provided that a minimum amount of training images are available. Indeed, the use

of larger configurations determines a negligible accuracy increment, at least on the selected

dataset of 18 camera models.

In Chapter 3 we presented a method for reliability patch estimation for camera model

attribution. This means being able to estimate the likelihood that an image patch will be

correctly attributed to the camera model used to acquire the image from which the patch

comes from.

The proposed solution is based on concatenating a pre-trained CNN for patch-wise

camera model attribution with a dense network that acts as a binary classifier. Exploiting

transfer learning techniques and a two-tiered training strategy, it is possible to achieve 86%

of accuracy in patch reliability estimation. Moreover, by running camera model attribution

on single selected patches, camera attribution accuracy increases by more than 8%.
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In addition to the impact on camera model attribution, the proposed method returns

a reliability mask that highlights which image regions are considered reliable in terms of

camera attribution. This could be useful in the future to better understand which image

details are more important to camera model attribution CNNs. Moreover, it could be paired

with splicing localization algorithms based on camera model traces to possibly opt-out

unreliable regions from the analysis.

In Chapter 4 we described a counter-forensic method to subtly alter images to change

their estimated camera model when they are analyzed by a CNN-based camera model de-

tector. We tested our method on a reference dataset with images from multiple cameras that

show highly similar indoor and outdoor scenes. The results demonstrate that we can gen-

erate imperceptibly altered adversarial images that are misclassified with high confidence

by the CNN. In the future, we will extend our method to apply it to video sequences and

we will explore viable adversarial example detection methods and defense techniques to

increase the robustness of CNN-based camera model detectors.

In Chapter 5 we have presented a temporal-aware system to automatically detect deep-

fake videos. Our experimental results using a large collection of manipulated videos have

shown that using a simple convolutional LSTM structure we can accurately predict if a

video has been subject to manipulation or not with as few as 2 seconds of video data.

We believe that our work offers a powerful first line of defense to spot fake media

created using the tools described in the paper. We show how our system can achieve com-

petitive results in this task while using a simple pipeline architecture. In future work, we

plan to explore how to increase the robustness of our system against manipulated videos

using unseen techniques during training.

Finally, in Chapter 6, we have shown how simple machine learning classifiers can be

highly effective at detecting video manipulations when the appropriate data is used. Up

until now, most video manipulation detection techniques have focused on analyzing the

pixel data to spot forged content. More specifically, we use an ensemble of a random for-
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est and an SVM trained on multimedia stream descriptors from both forged and pristine

videos. With this approach, we have achieved an extremely high video manipulation detec-

tion score while requiring very limited amounts of data. Based on our findings, our future

work will focus on techniques that automatically perform data sanitization. This will al-

low us to remove metadata and auxiliary header information that may give away sensitive

information such as the source of the video.
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