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1.1 Probabilistic computing. Digital computing relies on stable determin-
istic units called “bits” which are either ‘0’ or ‘1’ at any given point in
time. On the other end of the spectrum lies q-bits; quantum entities
which are in a delicate super-position state of ‘0’ and ‘1’. In this thesis
we experimentally demonstrate probabilistic bits or “p-bits” that are ro-
bust, classical entities fluctuating between ‘0’ and ‘1’. These p-bits can
be used as natural hardware for many classical algorithms that introduce
stochasticity using aritifical means, while a subset of problem reserved for
quantum computing can also be mapped to networks of p-bits. . . . . . . 2

1.2 Thesis Overview. In this thesis we present an autonomous probabilistic
computer which uses clock-less p-bits interconnected using a synapse as
shown in the figure above. To achieve this, we first used a high-level em-
ulation of p-bits using micro-controllers which helped establish important
rules of operations for such systems. This was then followed by the “very
first” experimental demonstration of a thermally unstable stochastic Mag-
netic Tunnel Junction (s-MTJ) based autonomous probabilistic computer.
While we work towards scaling the s-MTJ based p-computer, we have built
a low-level emulation of p-computers which will assist in further studying
the role of device variations and new application spaces for probabilistic
computers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Emulating p-bits with microcontrollers. An Arduino pro-mini mi-
crocontroller is used to emulate Eq. (1.1), using the details given in Alg. 1.
The Arduino pro-mini shown in the inset of (b) has an internal 10-bit ADC
which can be used to read analog inputs. It also has dedicated pins that
can be used to provide PWM outputs which are used for the output. (a)
shows the output mi as voltage VOUT as it changes with the applied input
Ii as voltage VIN . At an applied input voltage of VIN = 2.5 V the p-bit
behaves as a uniform random number generator. Increasing(decreasing)
the inputs biases the output towards VDD = 5(0) V . The average output
voltage 〈VOUT (V )〉 as a function follows the sigmoidal function shown in
Eq. (2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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2.2 AND gate emulated using 3 p-bits. (a) and (b) show the block
diagram and the schematic of the emulated AND gate. Each terminal
of the AND gate is one p-bit. These p-bits are interconnected using a
weight logic block which comprises of an Arduino Mega microcontroller
and a digital-to-analog converter. The microcontroller reads the digital
output voltages

{
VOUT

}
of p-bits and provides the analog inputs

{
VIN

}
.

The weight logic is also used to observe the state of the AND gate by
constructing an artifical signal 4×A+2×B+C shown in (c). The AND
gate is initially left uncorrelated which results in 23 = 8 states uniformly
distributed as shown with the statistics in (d). When the correlations
are turned on (using an I0 = 0.8), the truth table of the AND gate is
highlighted as shown in (e). . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Computation using AND gates. Invertible AND gates can be used
for computation much like CMOS gates. (a) shows a time snapshot of
the three p-bits when the inputs A and B have been clamped to 1. The
statistics for this set of applied inputs is shown in (b) and this is called
the “directed” mode of operation. A more interesting case, the “inverted”
mode of operation is shown in (c) and (d). When the output p-bit C is
clamped to 0,the p-bits A and B to fluctuate between all the three states
allowed to an AND gate for an output of 0. . . . . . . . . . . . . . . . . . 23

2.4 Interconnect delay. An important design consideration in p-circuits
is the interplay between the interconnect delay τinter and the retention
time τN of p-bits. (a)-(d) shows the statistics collected as the p-circuits
are slowed down or as the interconnect delay increases which is done by
changing delay τD in Alg. 2. As the gate is slowed down, the system
operations starts to breakdown. . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Normalized interconnect delay
(
τinter

τN

)
. (b) shows that the system

operation of the AND gate continuously deteriorates as the interconnect
delay is increased. There seems to be a hard boundary for the interconnect
delay beyond which the system completely breaks down. This hardness
is most likely due to the use of constant retention times τN in the ex-
periments. A key requirement for p-circuits in simulation is the need for
serial updating which comes naturally in the demonstration as shown in
(a). Initially all 3 p-bits are well aligned with minor phase differences
in between them. These phase differences are broken with time allowing
each p-bit to update separately which leads to the system naturally having
serial updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.6 Variations in retention times τN of p-bits. Variations in the retention
time τN of the p-bits is expected in nano-device level implementations.
These are investigated here by varying the retention times of p-bits across
a wide distribution while keeping the interconnect delay significantly low,
i.e τinter τN � 1. As long as the interconnect delay is greater than the
smallest retention time, the system will operate correctly. . . . . . . . . . 26

2.7 Full Adder. 14 p-bits are used to implement a full adder shown in (a).
5 of these are the terminals of the full adder (truth table shown in (b))
while the remaining 9 are auxiliary p-bits. The full adder works both in
the direct ((c)-(d)) and inverted ((e)-(f)) mode of operation similar to
the AND gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 4-bit Ripple Carry Adder (RCA). A 4-bit adder is implemented using
4 autonomous p-circuits using a total of 48 p-bits ( 3 full adders and one
half adder) shown in the schematic in (a) and block diagram in (b). Each
of the 48 p-bits is given a slightly different retention time τN (inset of
(d)). (c-d) shows the 4-bit adder working in the standard direct mode of
operation where it adds two numbers. However, (e-f) shows the inverted
mode in which the output S is clamped to 23. The inputs A and B
fluctuate between all 8 combinations consistent with a sum of 23. . . . . . 28

2.9 4-bit multiplier/factorizer. A 4-bit multiplier is constructed out of
3 Full Adders and 4 AND gates. The schematic and a block diagram
are shown in (a) and (b). The multiplier works in the inverted mode
operates as a factorizer. When the multiplier is left in the uncorrelated
state the system fluctuates between the 24 states. When a product of 6 is
clamped the multiplier now fluctuates between the only two combinations
( 2× 3 = 3× 2) consistent with a product of 6. . . . . . . . . . . . . . . . 29
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3.1 Characteristics of stochastic magnetic tunnel junctions. (a) Mea-
surement setup of a stochastic MTJ, with a stack structure that is only
slightly modified from current MRAM technology. A current is passed
from the free layer to the reference layer, a time-averaged signal is read on
the voltmeter, and a time-domain signal is measured on the oscilloscope.
(b) The energy profile between the P and AP states of the magnetization
orientation of the MTJ for typical MRAM technology and for the MTJs
used in the p-bits for this work. (c) Experimental results showing the
retention time τ of MTJs with varying thickness of the CoFeB free layer
tCoFeB and diameter D. The retention time τ is determined at an applied
current of I50/50, which induces equal fluctuation time of the MTJ magne-
tization in the AP and P states. Square symbols represent the average of
the retention time for 10 MTJs at each D and tCoFeB. Transparent circles
represent the retention time for each device. The right-most panels show
the effect of varying the free-layer thickness on the stochasticity for devices
of the same size. Note that reducing the thickness below 1.8nm results in
a stable binary device suitable for nonvolatile memory applications [25].
The MTJs were prepared at Tohoku University by William A. Borders,
Professor Shunsuke Fukami and Professor Hideo Ohno. . . . . . . . . . . . 33

3.2 Experimental demonstration of a p-bit. (a) Electrical schematic of
a p-bit using a stochastic MTJ with an NMOS transistor, a comparator
and a resistor, extending the design presented in ref. [20] to handle device
specific variations. A stochastic MTJ (s-MTJ) has a free layer with a
relatively low energy barrier

(
∆E ≈ 15kBT

)
so that thermal noise makes it

fluctuate between its stable states, one being parallel (P) to the fixed layer
and the other being anti-parallel (AP). (b) Time-averaged VOUT , 〈VOUT 〉,
as a function of the applied input, fitted to the sigmoidal function. Each
point is averaged over 700 ms with 2, 000 or more sampling points for each
data point shown. (c) Time snapshots of VOUT for three different inputs
VIN , showing the preferred state of a p-bit (high or low) as a function of
its input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.3 Experimental demonstration of integer factorization. (a) A pho-
tograph of a printed circuit board for an eight-p-bit circuit, intercon-
nected through a microcontroller and a DAC. (b-d), The uncorrelated
(top) and correlated (bottom) state of the system when four, six and eight
p-bits are used to factorize 35 = 5 × 7 = 7 × 5(P = 2, Q = 2 with
four p-bits) (b) 161 = 23 × 7(P = 4, Q = 2 with six p-bits) (c) and
945 = 63 × 15(P = 5, Q = 3 with eight p-bits) (d). The x and y axes
show the factors X and Y (see Methods section Factorization algorithm).
All statistics are taken over a window of 15 s with over 2,000 sampling
points. Each separate factorization experiment was performed more than
twice to ensure reproducibility. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 p-bit construction. (a) A diagram of the ideal response of a stochastic
MTJ as used in this work and the parameters used to characterize the
MTJ. (b) The measured drain current IDS as a function of VIN of a 2N7000
NMOS transistor used in our p-bit demonstration. . . . . . . . . . . . . . . 42

3.5 Block diagram of an asynchronous p-circuit. (a) A microcontroller
reads the outputs voltages VOUT of all p-bits and computes the synaptic
weights, which are then converted to the analogue input voltages VIN for
each p-bit, using a DAC that communicates with the microcontroller. . . . 43

3.6 Experimentally observed time snapshots. (a-c), Experimentally
observed time snapshots of the four p-bits used to factorize 35 (a,b).
These snapshots are combined to create x and y (c), which fluctuate
between 7× 5 and 5× 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Calibrating the experimental system. (a) Calibrating a reference
state using synaptic weights. (a) The experimentally observed time-
averaged output of six p-bits versus applied inputs (which are misaligned).(b)
The output is corrected using synaptic biases leading to the reference state
shown. Each data point in a and b are taken as an average over a time
window of 15 s with 2,000 or more sampling points. . . . . . . . . . . . . . 46

3.8 Comparison between the MTJ- and CMOS-based energy per
random bit and cell area. (a) An MTJ-based p-bit simulated with
the stochastic LLG model (s-LLG, dotted box). (b) A 32-bit LFSR. The
look-up table (LUT) and the digital comparator of the CMOS p-bit are
not included in the comparison. INV, inverter; DFF, D-type flip flop. . . . 50
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3.9 Computing with p-bits versus AQC. (a) A representation of how an
array of six Ising spins in a qubit array can be replicated with an array of
p-bits. (b) A comparison of both approaches for factoring 161 = 23 × 7.
For a system of six Ising spins, there are 64 states. At higher magnetic
fields (ΓX = 0.5) both systems are ‘disordered’ and the correct peak is not
pronounced. At lower magnetic field (ΓX = 0.1) the correct peaks emerge
with a high probability. The states (yi, xi) have been converted to binary
variables si from the bipolar variables mi by defining si = (mi + 1)/2 and
the states

[
y2y1x4x3x2x1

]
are expressed in decimal on the x axis. . . . . . . 54

3.10 Simulation versus experiment. (a-d)We simulate the ideal experi-
ment when all p-bits are perfectly aligned (a) using an idealized p-bit
model which produces the results shown in (c). Each data point is taken
as an average over a time window of 15 s with 2,000 or more sampling
points. The presence of device variations leads to a non-ideal system of
misaligned p-bits (b), which is corrected using synaptic biases, allowing
the experiment to approach the correct results (d). The time averaged
statistics in (d) are collected over a time window of 15 s with 2,000 or
more sampling points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Simulation of variations of τN . The τ of six p-bits is varied from a
minimum value of τN to a maximum value of 4τN . Variations between
p-bits do not affect system operation providing that τinter = τN . . . . . . . 57

3.12 Simulations of variations of MTJ parameters. (ac) The variation
of MTJ parameters results in the misalignment of the average responses
of the p-bits (a), which results in a biased reference state (b). When such
a system is used for factorizing 161 the observed results are incorrect (c).
df, The shifts in the average responses are corrected using synaptic biases
(d), which correct the reference state (e) and factorization results (f). . . 58

3.13 Invertible AND gate operation. (a-b) Time snapshot for the direct
mode of operation when the inputs x2 and x1 have both been pinned to
1 (a); the statistics collected for 60 s (b). (c-d) Time snapshot for the
p-bits operating the AND gate in inverted mode when the output y1 is
pinned to 0 (c); the statistics collected for 60 s (d). (e-f) Time snapshot
for the p-bits operating the AND gate in floating mode (e); the statistics
collected for 60 s (f). All statistics shown are collected over a time window
of 60 s with 2,000 or more sampling points. . . . . . . . . . . . . . . . . . 60

4.1 Emulating MRAM p-bit. (b) shows a mapping from the MRAM based
design to its emulation. An analog multiplexer emulates a stochastic MTJ
fluctuating between RP and RAP , where the statistics of the fluctuation is
controlled by a noise signal which is generated using a microcontroller. . . 62
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4.2 Emulated p-bit. (a) Electrical schematic of a emulated p-bit which uses
a multiplexer, NMOS and a comparator. The multiplexer emulates a low
barrier magnet having a retention time τ = 50ms. (b) shows the average
output as a function of applied input with each point being a 15 second
average. (c) shows time snapshots for three sets of applied input voltages. 63

4.3 Architecture of p-computers. A system level schematic for a p-circuit
is shown. A microcontroller reads the output voltages of all p-bits, calcu-
lates the inputs corresponding to Eq. 4.1 and uses a DAC to set analog
input voltages to the p-bits. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Photograph of p-circuit. A photograph of a printed circuit board is
shown that houses 4 emulated p-bits. We use two boards each housing 4
p-bits to put together an 8-bit p-computer. . . . . . . . . . . . . . . . . . . 65

4.5 Reference state calibration. (a) shows the time average response of
four p-bits which are slightly misaligned. These misalignments are cor-
rected by adding a constant synaptic bias to each p-bit individually leading
to a reference state shown in (b) where all p-bits are left uncorrelated. . . 66

4.6 Time snapshot for factorizing 35. (a) shows individual time snap-
shots of 4 p-bits that are fluctuating when the synapse is programmed to
factorize 35. (b) shows the time snapshots of both factors X and Y while
the synapse is programmed to factorize 35. The system spends most of its
time in two states; 7× 5 and 5× 7. . . . . . . . . . . . . . . . . . . . . . 66

4.7 Statistics for factorizing 35 and 49. (a) shows the statistics of the
system when the synapse is programmed to factorize 35. In this case
the two peaks corresponding to the correct factors 7 × 5 and 5 × 7 are
highlighted by the system. (b) shows the statistics for the case when the
system is programmed to find factors of 49. In this case only the state
7× 7 is highlighted by the system. . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Factorizing 161 and 945 with 6 and 8 p-bits. (a) shows the average
response for 8 p-bits which are corrected by adding synaptic biases to
produce an 8-bit reference state as shown in (b). The synapse is then
programmed to factorize 161 = 23× 7 and 945 = 63× 15 as shown by the
statistics in (c-d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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5.1 Weighted p-bit. A weighted p-bit consists of two major subblocks, a
Weight Matrix and a Tunable RNG implementing Eq. 1.2 and Eq. 1.1 as
a composite unit. The weight matrix implements one column of Eq. 1.2
and adds overflow protection and clamping capabilities to the weighted
p-bit while the tunable RNG subblock implements Eq. 1.1 whose terminal
characteristics are further shown in Fig. 5.2. See text for a detailed
description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Sigmoid. The time-averaged output (mi) of a weighted p-bit is shown as
a function of the applied input Ii. When the Ii = 0 (inset), the output mi

shows equal amounts of 1’s and 0’s with a long-time average of 0.5. As
Ii is increased above (below) 0, the average increases and saturates to 1
(−1). Here, the binary output of the FPGA mi ∈ {0, 1} is converted to a
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ABSTRACT

Pervaiz, A. Z. Ph.D., Purdue University, December 2019. Hardware implementation
of autonomous probabilistic computers. Major Professor: Supriyo Datta.

Conventional digital computers are built using stable deterministic units known

as “bits”. These conventional computers have greatly evolved into sophisticated ma-

chines, however there are many classes of problems such as optimization, sampling

and machine learning that still cannot be addressed efficiently with conventional com-

puting. Quantum computing, which uses q-bits, that are in a delicate superposition

of 0 and 1, is expected to perform some of these tasks efficiently. However, deco-

herence, requirements for cryogenic operation and limited many-body interactions

pose significant challenges to scaled quantum computers. Probabilistic computing

is another unconventional computing paradigm which introduces the concept of a

probabilistic bit or “p-bit”; a robust classical entity fluctuating between 0 and 1 and

can be interconnected electrically. The primary contribution of this thesis is the first

experimental proof-of-concept demonstration of p-bits built by slight modifications

to the magnetoresistive random-access memory (MRAM) operating at room tem-

perature. These p-bits are connected to form a clock-less autonomous probabilistic

computer. We first set the stage, by demonstrating a high-level emulation of p-bits

which establishes important rules of operation for autonomous p-computers. The ex-

perimental demonstration is then followed by a low-level emulation of MRAM based

p-bits which will allow further study of device characteristics and parameter varia-

tions for proper operation of p-computers. We lastly demonstrate an FPGA based
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scalable synchronous probabilistic computer which uses almost 450 digital p-bits to

demonstrate large p-circuits.
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1. INTRODUCTION

1.1 Probabilistic computing

Conventional digital computers are largely built from stable deterministic units

know as “bits” using the standard MOS (metal-oxide-semiconductor) transistors.

These computers have greatly evolved over the course of last few decades, but there

are many classes of computational problems such as optimization, sampling and ma-

chine learning that cannot be addressed efficiently with conventional computers.

Richard Feynman in his seminal paper titled “Simulating physics with comput-

ers” [1] elaborated on computers which simulate the many quantum mechanical phe-

nomenon in nature. This work is greatly credited for pioneering the field of quantum

computing; a computing paradigm which uses quantum mechanical objects called

“q-bits” which are in a delicate superposition of 0 and 1. While advances have been

made in the field of quantum computing, decoherence, requirement for cryogenic op-

eration and limited many-body interactions still pose significant challenges. As a

prelude to quantum computers, Feynman hinted “ · · · but the other way to simulate

a probabilistic nature, which I’ll call R for the moment, might still be to simulate a

probabilistic nature by a computer C which itself is probabilistic, · · · ”

Probabilistic computing is an unconventional computing paradigm which intro-

duces probabilistic bits or “p-bits”. These p-bits are classical three-terminal units

whose telegraphic output mi is continuously fluctuating between two states 0 and

1. This output can be tuned using an analog input Ii at the input terminal. In

mathematical terms,
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Fig. 1.1. Probabilistic computing. Digital computing relies on stable deterministic
units called “bits” which are either ‘0’ or ‘1’ at any given point in time. On the other
end of the spectrum lies q-bits; quantum entities which are in a delicate super-position
state of ‘0’ and ‘1’. In this thesis we experimentally demonstrate probabilistic bits
or “p-bits” that are robust, classical entities fluctuating between ‘0’ and ‘1’. These
p-bits can be used as natural hardware for many classical algorithms that introduce
stochasticity using aritifical means, while a subset of problem reserved for quantum
computing can also be mapped to networks of p-bits.

mi(t) = ϑ
[
σ(Ii)− r

]
(1.1)

where ϑ is the unit step function, σ is the sigmoidal activation function acting on

the analog input signal Ii and r is a random number uniformly distributed between

0 and 1. In the absence of the input Ii, the p-bit is just a random number generator

with the statistics of the fluctuating resistance r. The input Ii functions as a bias

on top of the fluctuating resistance r; in the sense that a negative input Ii will bias
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the output mi negatively, resulting in more negative values at the output mi while

a positive input will bias the p-bit vice versa. Thus at the heart of a p-bit lies a

classical fluctuating resistance r moving back and forth between two states.

The ability to bias the p-bits allows p-bits to get correlated to one another is what

we call p-circuits. In these correlations lies the physics of the problem to be solved. So

for example, the ith p-bit can be driven by a synaptic input Ii derived from a problem

description which is a function of all other outputs
{
mi, · · · ,mN

}
. This derivation

of the interconnect strengths (synapse) could be either done using first principles or

also learned via machine learning principles.

An advantage of the classical nature of p-circuits lies in the various types of

synapses that could be used to interconnect them. For example, linear synapses

commonly used in neural networks

Ii =
[∑

j

Ji,jmj + hi

]
(1.2)

where Ji,j is the interconnect strength between the ith and jth p-bit and hi is the

on-site bias for the ith p-bit; could easily be used in p-circuits. Such synapses have

been used to implement invertible boolean logic gates as demonstrated in this thesis

through out.

Alternately the interconnect strengths Ii for each p-bit can also be obtained using

principles of calculus from an energy function E,

Ii = −∂E(m1, · · · ,mN)/∂mi (1.3)

These networks will visit different energy configurations with probabilities given by

the Boltzmann law P
(
m1, · · · ,mN

)
that are proportional to exp

[
−E(m1, · · · ,mN)

]
,

with the ground states of the energy landscape having the highest probability. This
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Fig. 1.2. Thesis Overview. In this thesis we present an autonomous probabilis-
tic computer which uses clock-less p-bits interconnected using a synapse as shown
in the figure above. To achieve this, we first used a high-level emulation of p-bits
using micro-controllers which helped establish important rules of operations for such
systems. This was then followed by the “very first” experimental demonstration of a
thermally unstable stochastic Magnetic Tunnel Junction (s-MTJ) based autonomous
probabilistic computer. While we work towards scaling the s-MTJ based p-computer,
we have built a low-level emulation of p-computers which will assist in further studying
the role of device variations and new application spaces for probabilistic computers.

property allows such networks to be used for solving optimization problems, similar
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to ising and adiabatic quantum computing, where the global minimum of the energy

landscape is the configuration which minimizes the cost function identified by E.

We would like to point out that the term probabilistic computing has been used

interchangeabley with stochastic computing historically. However, we would like to

distinguish our “probabilistic computers” from the well known field of “stochastic

computing”. The expression stochastic computing was coined in the 1960s follow-

ing the pioneering work of von Neumann [2], Gaines [3] and Poppelbaum et al. [4].

Stochastic computing focused on the reliable implementation of boolean algebra and

probabilistic arithmetic. This was done using stochastic components whose major at-

traction lied in the use of low complexity units and inherent error tolerance. Stochastic

computing used streams of bits to represent numbers which could be processed by

simple circuits boolean gates such as AND gate. The outputs of these gates were then

tabulated into probabilities. Our approach to probabilistic computing is very different

to the above mentioned paradigm of stochastic computing — in the sense that we use

a bit which is probabilistic in nature. For certain algorithms the probabilistic nature

of our bit is needed, which is otherwise introduced artificially using pseudo random

number generators at the significant expense of area and energy consumption.

1.2 Organization of Thesis

In Chapter. 2 we first demonstrate a high-level emulation of p-bits using off the

shelf microcontrollers. This emulation helped establish important rules of operation

for autonomous p-computers such as the method of bypassing serial operation of

p-bits; a mode of operation used in computer simulations.

We then present in Chapter. 3 the very first experimental proof-of-concept demon-

stration of probabilistic bits built using slight modifications of market ready magneto-

resistive random-access memory devices. Eight of these devices are interconnected to
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form a clock-less autonomous probabilistic computer to which we map two distinct

problems a) an Invertible boolean gate b) a hardware optimizer which maps integer

factorization as an optimization problem.

We then demonstrate in Chapter. 4 a much lower-level emulation of s-MTJ based

p-bits which will allow us to study the role of device parameter variations and device

characteristics on proper system operation.

Finally we present in Chapter. 5, a CMOS based implementation of p-computers

which demonstrates a 32-bit invertible Ripple Carry Adder (RCA) using 450 digital

p-bits operating in a clocked synchronous manner.

1.3 Publications associated with Thesis

1. A. Z. Pervaiz, L. A. Ghantasala, K. Y. Camsari, & S. Datta (2017). Hardware

emulation of stochastic p-bits for invertible logic. Scientific reports, 7(1), 10994.

2. A. Z. Pervaiz, B. M. Sutton, L. A. Ghantasala & K. Y. Camsari (2018).

Weighted p-bits for FPGA implementation of probabilistic circuits. IEEE trans-

actions on neural networks and learning systems. vol. 30, no. 6, pp. 1920-1926,

June 2019.

3. A. Z. Pervaiz, K. Y. Camsari & S. Datta (2019). Probabilistic computing

with Binary Stochastic Neurons. In press: BCICTS 2019

4. W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno & S. Datta

(2019). Integer Factorization using stochastic Magnetic Tunnel Junctions. Na-

ture 573, no. 7774 (2019): 390-393.
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https://www.nature.com/articles/s41586-019-1557-9
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https://ieeexplore.ieee.org/abstract/document/7571152


8

2. HARDWARE EMULATION OF STOCHASTIC P-BITS

FOR INVERTIBLE LOGIC

Materials in this chapter have been extracted verbatim from the paper: A. Z. Per-
vaiz, L. A. Ghantasala, K. Y. Camsari, & S. Datta (2017). Hardware emulation of
stochastic p-bits for invertible logic. Scientific reports, 7(1), 10994.

2.1 Introduction

This chapter presents the blue print of our autonomous p-computers. To begin our

development of nano-device based p-computers we first emulate the idealized behavior

of p-bit using off the shelf microcontrollers. The striking properties of p-circuits such

as invertible logic are quite intriguing, but these were previously demonstrated using

pure software implementations of Eqs. (1.1,1.2). In simulations of these p-circuits, it

was well known that each p-bit needs to be updated in a serial manner. This process is

enabled using control loop statements, however this represents a significant challenge

towards scaling p-circuits to incorporate for example several millions of p-bits. A

serial operation where each p-bit is updated one at a time seems rather difficult for

scaled systems, and still says nothing of the dedicated hardware needed to implement

such a large scale serial operation. Other questions addressing the effect of parameter

variations among p-bits also need to be addressed.

In this chapter we demonstrate an autonomous p-computer where the serial updat-

ing of p-bits comes naturally without any peripheral control circuity. This fortuitous

result comes due to the asynchronous operation of p-bits which result from natural

time delays between p-bits in this case, while in later systems due to the statistics of

https://www.nature.com/articles/s41598-017-11011-8
https://www.nature.com/articles/s41598-017-11011-8
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the p-bit retention times. This paper presents a first pass in discovering and answer-

ing important questions that would arise in the hardware development of p-circuits.

Our approach is similar to ref. [5] in the sense that we use microcontrollers to emulate

both Eq. (1.1) and the interconnections between p-bits described by Eq. (1.2.

The hardware emulation presented in this chapter shares many of the essential

feature of s-MTJ based p-computers; The output mi(t) and the input Ii(t) appearing

in Eqs. (1.1) and (1.2) are both actual voltages and both sub-systems are completely

independent of each other. This allows us to later simply drop-in the s-MTJ based

p-bits (chapter. 3) while using the same synapse. We also study the variability in

retention times τN of the p-bits and the role of interconnect delay τinter on system

operation. To summarize, the hardware emulation presented here helped establish

important rules of operation for the autonomous p-circuits that are to follow in this

thesis.

Next we describe our approach to emulate Eqs. (1.1) and (1.2). Fig. 2.1 shows a

microcontroller based emulation of a p-bit. We then present a 3 p-bit circuit which

implements an invertible AND gate (Figs. 2.2,2.3). We use this simple circuit to study

the effects of τN and τinter (Figs. 2.4,2.5,2.6). This is followed by demonstrations of

larger p-circuits; the 4-bit adder and the 4-bit multiplier, both working in the inverted

mode.

2.2 Methods

2.2.1 Arduino pro mini as a p-bit

A version of Eq. (1.1) suitable for emulation of a p-bit by a microcontroller is

given as
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VOUT (t) = sgn

{
S
(
VIN(t)

)
− rand

(
0, 1
)}

(2.1)

where VOUT is the digital output and VIN is the analog input voltage of the p-bit.

S(x) is a sigmoidal activation function which acts on an input x. Mathematically,

S(x) =
1

1 + e−2x
(2.2)

I/O characteristics: An Arduino pro-mini is a 24 pin microcontroller [6]. We

program it to emulate the behavior of a p-bit using Eq. (2.1). A pseudo-code is given

in Alg. 1. The microcontroller has 6 input pins which are connected to an internal 10-

bit analog-to-digital converter. The analog input pins have very high input resistances

(≈ 100MΩ). The arduino pro-mini also has dedicated pins for PWM (Pulse-width

modulation) outputs with low output resistances (≈ 100Ω) and the ability to source

40 mA of current.

p-bit operation: Fig. 2.1(a) shows a time snapshot of the output voltage of a

p-bit for a set of applied input voltages as captured on an oscilloscope (Tektronix

DPO7104). For each applied input voltage VIN the average output voltage is mea-

sured. At a VIN = 2.5V the p-bit is fluctuating randomly between low and high

states. When the input voltage is lowered or increased, the p-bit output gets biased

towards more 0’s or 1’s. DC average measurements of the output voltage taken over

100 seconds are shown in Fig. 2.1(b). The shape of the average response of a p-bit

follows the sigmoidal function given by Eq. 2.2.

Retention time τN : Each p-bit is characterized by a retention time τN ; a time

period for which the output voltage maintains its state. Stochastic magnetic tunnel

junctions (s-MTJs) have been proposed [7] as the building blocks for p-bits. These

s-MTJs are two magnets, one stable (called a fixed layer) and the other (called a
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free layer), seperated by a thin insulating oxide. In s-MTJs the retention time is

dependent on the energy barrier of the free layer whose energy barrier is lowered to

make it stochastic. For example, MTJs meant to be used for digital memory are

designed to have large energy barriers (� 40kBT ), such that a bit of information

stored remains intact for many years to come. For magnets the retention time is

given by [8] :

τN = τ0 exp

(
∆

kBT

)
(2.3)

where τ0 is a material dependent quantity ranging from a few ps to a ns [9], ∆ is

the energy barrier of the free layer and kBT is the Boltzmann energy. For stochastic

MTJs with energy barriers of 10 − 20 kBT , the retention time is in the ms regime

typically [10]. A user defined delay τN shown in Alg. 1 is used to emulate the retention

time of p-bits. This user defined delay is systematically changed to characterize its

effects on system operation.

Algorithm 1 Pseudocode for p-bit

Parameters:
Digital output VOUT;
Analog input VIN;

Repeat:
x←analogRead(VIN); . VIN ∈ (0, 5 V), x ∈ (0.5)
m← 2x− 5; . m ∈ (−5, 5)
Bias← S(m); . Bias ∈ (0, 1) from Eq.(2.2)
W← rand(0, 1); . W ∼ U(0, 1)
If(Bias > W)

VOUT ← 1;
Else . VOUT ∈ {0, 5 V}

VOUT ← 0;
EndIf
Wait τN;

EndRepeat
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2.2.2 Synapse using a microcontroller and DAC

Fig. 2.2(a,b) shows the schematic and the block diagram of a 3 p-bit circuit. The

p-bits are interconnected via a synapse which calculates the input voltage VIN of the

ith p-bit using

VIN(t) = I0

{
hi +

∑
j

JijVOUT (t)

}
(2.4)

A pseudo-code for implementing the synapse is described in Alg. 2 where another

user defined delay τinter is added. This delay is meant to simulate the interconnect

delay, which any real synapse would have in practice. Please note that Eq. (2.4)

describes a liner synapse as described by Eq. (1.2), but the synapse can also implement

non-linear interconnections as shown in later chapters.

Synapse using microcontroller: Our synapse is implemented using an Arduino

Mega2560 microcontroller along with a MAXIM 5825 8 channel 12 bit digital-to-

analog converter [11] (DAC). The Arduino Mega2560 reads the output voltage of each

p-bit and calculates the inputs voltage for each p-bit accordingly. This calculation

is turned into an analog voltage using DACs; a process which requires the Arduino

Mega2560 to use one of its peripheral interfaces. We use a serial interconnect protocol

known as I2C, which limits the interconnect delay τinter to ≈ ms. The synapse can set

a maximum voltage of 5 V , which requires the synapse to threshold the input voltages

VIN . The Arduino Mega2560 also provides a serial port which allows communication

over the USB port. This is particularly useful for observing the state of p-circuits

on a computer. Another possible method of observing the p-circuits is to create an

artificial node (an analog voltage). An example of this is shown in Fig. 2.2(c), where

an analog voltage 4×A+2×B+C is set via the DAC and observed on the oscilloscope.
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Algorithm 2 Pseudo code for weight logic

Parameters:
Analog outputs VIN; . The input voltages of p-bits
Digital inputs VOUT; . The output voltages of p-bits
Parameters [J],{h} and I0;
n← Number of p-bits;
k ← DAC terminal for word;

Repeat:
For i ∈ {1 · · · , n}

S← digitalRead(VOUT[i]); . VOUT ∈ {0, 5V}, S ∈ {0, 1}
m← 2S− 1 ; . m ∈ {−1, 1}

EndFor
For j ∈ {1 · · · , n}

Evaluate Ij
′ ← I0

(
hj +

∑
j Jijmj

)
. Ij

′ ∈ (−∞,+∞)

If(Ij
′
> 5)

Ij = 5 ;

ElseIf(Ij
′
< −5)

Ij = −5 ; . Ij ∈ (−5,+5)
EndIf
VIN[j]← 2Ij − 5 . VIN ∈ (0,+5V)
Set DAC[j] ← VIN[j]

EndFor
Set DAC[k] ← 4× VOUTA + 2× VOUTB + VOUTC . Output word
Set Serial() ← VOUT for all p-bits . Output through the USB port
Wait τD ;

EndRepeat

2.3 Results

2.3.1 AND Gate as a Boltzmann Machine

Correlated network of p-bits: Fig. 2.2(c) shows a time snapshot of an artificial

node 4×A+ 2×B +C. Using three p-bits an AND gate is realized with each p-bit

corresponding to one terminal of the AND gate. The interconnect matrices [J ] and

self-bias vector {h} are taken from ref. [12]. The strength of correlations between

p-bits is changed by varying I0 (Eq. (1.2)). I0 can be thought of as the inverse

(pseudo) temperature, in the sense that as I0 increases the temperature of the system
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decreases allowing the system to reach equilibrium. When the system is uncorrelated

by using an I0 = 0, the 3 p-bits are independent of each other which results in the

system fluctuating back and forth between 23 = 8 states with equal probability. This

behavior is shown in Fig. 2.2(d). When the correlations are turned on (using I0 = 0.8)

the system now locks in to the states that are highlighted by the truth table of the

AND gate as shown in Fig. 2.2(e). This mode of operation in which all p-bits are

left floating is quite interesting, and has no equivalent in CMOS gates. Fig. 2.2(d,e)

show the steady-state statistics for both the uncorrelated and correlated cases using

approximately 5× 104 samples.

Computing with p-bits: For Boolean computation, the p-bits need to be

clamped to a given input. This is done by simply connecting the input voltage of

a p-bit to either ground or 5 V. An intriguing feature of p-circuits is that all p-bits

are treated equally, which allows both the inputs and outputs to be clamped to a user

defined input.

Direct Operation: Fig. 2.3 shows two cases of using an AND gate for compu-

tation purposes. Fig. 2.3(a) shows a time snapshot when the inputs A and B have

been clamped to 1. The output C as expected is consistent with the inputs A and B.

This is highlighted using the statistics collected in Fig. 2.3(b).

Inverted Operation: A remarkable feature of p-circuits is the inverted opera-

tion. Fig. 2.3(c) shows the time evolution of the system, when C is clamped to 0.

Remarkably the inputs A and B now fluctuate between the states that are allowed for

C=0. This inverted mode of operation is highlighted using the steady state statistics

collected in Fig. 2.3(d). The inverted mode of operation holds up even in large p-

circuits and more importantly in interconnected p-circuits themselves, a feature used

in this chapter to demonstrate an invertible multiplier which works as a factorizer.
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2.3.2 Interconnect delay and retention time

For a p-circuit such as the one presented in Fig. 2.2, there are two major time

constants:

• Retention time τN : Time interval for which the output state of the p-bit is

held stable. This interval is programmed using a user defined delay given in

Alg. 1. In this chapter we start off with a constant delay for each p-bit, while

in chapter. 4, this delay is sampled from an exponential distribution at every

iteration.

• Interconnect time τinter: The total time delay for the synapse to read the

outputs of p-bits and apply back the inputs. The interconnect delay is the

sum of the user defined delay τD of Alg. 2, and the time it takes to perform

everything else in the Repeat block of Alg. 2.

Boltzmann Law: We now study the effect of both these time constants on the

operation of the system using the AND gate. For p-circuits, an energy functional E

for the state {m} = {mi, · · ·mN , } can be defined as [7]:

E({m}) = −I0
{∑

i,j

1

2
Jijmimj +

∑
i

himi

}
(2.5)

The Boltzmann Law accurately captures the steady state probabilities of the sys-

tem to be in different states {m} according to,

P ({m}) =
exp

(
− E({m})

)∑
i,j exp

(
− E({m})

) (2.6)

Interconnect delay: Fig. 2.4 shows the steady state statistics for the AND gate

with each of the three p-bits having τN = 200ms, with there interconnect delay τinter

varied from 1 ms to 400 ms. It can be seen from Fig. 2.4(a) that for extremely small
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τinter the behavior of the system is captured well by the Boltzmann law. However

as τinter is increased to 100 ms, two incorrect states [001] and [110] start getting

highlighted. As τinter is increased to 200 ms and beyond, the system breaks down

completely, with only the [001] and [110] states getting highlighted.

Fig.2.5(b) shows the euclidean distance between steady state distributions for

various interconnect delay (τinter varied from 1 ms to 400 ms with τN = 200 ms for

all p-bits). We observe that a boundary (τinter ≈ τN) exists for proper operation of

the system. Beyond this boundary, p-bits are in essence updating in parallel instead of

the required serial update. An important conclusion of this simple experiment is that

autonomous p-circuits can naturally perform serial updating as long as τinter � τN .

An essential requirement for Hopfield networks and unrestricted Boltzmann Ma-

chines is the need for sequential updating, where each p-bit is updated serially but

in any random order [13, 14], as opposed to parallel updating where each p-bit is

updated at once. To enforce serial updating in simulation requires control flow state-

ments which regulate the updating procedure of p-bits to one at a time or serial. Serial

updating arises naturally in our setup since each p-bit is completely independent of

each other and small phase differences that are present initially get greatly magnified

as the system is run for longer periods of time, in the absence of a central clock sig-

nal. This type of updating is also known as the “asynchronous dynamic” in Hopfield

networks [13]. This is shown for an AND gate with 3 p-bits in Fig.2.5(a), where

each of the 3 p-bits are almost perfectly aligned to each other initially, however this

alignment is broken as system continues to run with time. Asynchronous machines

are known to converge slowly, while their synchronous counterparts allow for paral-

lel updating, allowing much faster convergence. For hardware implementations, it is

the synchronous machines that would require some master control to ensure parallel

updating making the system grow in resources as the number of p-bits increase.
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Retention time distribution: We now investigate the behavior of the AND

gate when each of the three p-bits has a different retention time. This is expected to

happen in any real system due to process variations of nanodevices used. Fig. 2.6(a)

shows the histogram for three different retention time configurations for the AND gate.

In the most trivial case, all three p-bits have the same retention time τN = 200 ms

while having an interconnect delay τinter = 1 ms. The steady state statistics for this

case shows a good match with the Boltzmann law (Fig. 2.6(b)).

A more realistic scenario is that of the 3 p-bits having different retention times.

Fig. 2.6(a) shows two cases where p-bits are distributed in two sets of {137, 200, 263}

ms and {50, 200, 350} ms with a spread of ±33% and ±75% around the mean value

of 200 ms respectively, while maintaining very low interconnect delay of τinter = 1 ms.

Both cases show a good match with the Boltzmann Law (Fig. 2.6(b)). We conclude

that if the interconnect delay τinter is much smaller than the smallest τN present in

the system, the system operation is well described by the Boltzmann Law, which can

be attributed to the much reduced probability of parallel updating.

2.3.3 Full Adder as a Boltzmann Machine

Fig. 2.7(a) shows a schematic of a Full Adder which is implemented using 14

p-bits. 5 of these 14 p-bits are the actual terminals of the Full Adder while the

remaining 9 are auxiliary p-bits (see Ref. [7]). Both τN and τinter are 200 ms and 10

ms respectively. Since more than 8 p-bits are used, we now use two DACs for the 14

p-bit Full Adder.

The design of [J ] and {h} matrices follows the prescription of ref. [7]. Direct

computations can be performed by clamping p-bits as discussed earlier. Fig. 2.7(c,d)

shows an example of 1-bit binary addition. The inputs A, B and CIN have been
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clamped to 110 respectively, and the time evolution of S and COUT are shown in

Fig. 2.7(c). This is highlighted by the steady state statistics shown in Fig. 2.7(d).

Similar to the AND gate, the Full Adder is also be operated in the inverted mode.

A time snapshot of the inputs A, B and CIN is shown in Fig. 2.6(e) when the outputs

S and COUT are clamped to 0 and 1 respectively. The steady state statistics shown

in Fig. 2.7(f) shows that the system follows the states prescribed by the truth table

of the Full Adder.

2.3.4 Directed Networks of p-circuits

To build more complex systems, one possible approach is to design the entire

system as a single p-circuit. A more practical alternative is to interconnect simpler

p-circuits with directed connections to build up more complex systems such as a 4-bit

Ripple Carry Adder (RCA) (Fig.2.8(a)) or a 4-bit multiplier/factorizer (Fig.2.9(a)).

Directed Connections: Separate p-circuits can be connected in a directed fash-

ion such that the connections between the two are not reciprocal Jij 6= Jji. In hard-

ware, this corresponds to disconnecting the input voltage of p-bit “i” from its native

synapse and connecting to it the output voltage of p-bit “j” from a different p-circuit

so that Jij = 1 and Jji = 0. Consider the case of a 4-bit adder that is built using a

Half Adder and 3 Full Adders. In this case there are 3 directed connections as shown

in Fig. 2.8(a). Each connection takes the output voltage of COUT of the (n−1)th adder

and connects it to the input terminal of CIN of the nth adder. Due to this connection

scheme, no information can flow from the nth adder to the (n− 1)th adder. However,

as noted in ref. [7], bidirectional connections of adders hinders proper operation of a

n-bit adder. Also note that since the connection from one p-circuit to another is an

electrical connection, the strength of the correlation between the two machines is at

most 1 (Jji = 1).
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4-bit Adder: We next demonstrate the correct operation of a 4-bit RCA com-

prised of 48 p-bits each having different τN as shown in the inset of Fig. 2.8(d). The

values of τN are normally distributed around an average of 200 ms with a minimum

of 137 ms to a maximum of 263 ms, with a interconnect delay of 10ms for all Full

Adders. 4-bit binary addition is performed by clamping the input p-bits of each adder,

as demonstrated by the time snapshot of the sum shown in Fig. 2.8(c) with A=10 and

B=13 resulting in the sum being 23 when converted to decimal. We observed for AND

gates that there exists a boundary for proper operation of p-circuit with all p-bits

had the same retention time. Similarly with a distribution such as the one studied

here there also exists a boundary for proper operation which is τinter / min(τN).

Inverted mode: A more remarkable case is that of the sum being clamped to

S=23, with the inputs A and B left floating. In this case, A and B fluctuate among

8 possible integer combinations that satisfy A + B = S = 23. Note that since A

and B are 4-digit binary numbers, not all integer combinations can be probed by the

system, for example A=22 and B=1. This can be seen from the histogram presented

in Fig. 2.8(f). Although there are 8 peaks in the histogram, the height of each peak

is not the same since statistics presented in Fig. 2.8(f) are not exactly steady state.

With 48 p-bits in the system, the number of samples needed for steady state statistics

is prohibitively large.

4-bit multiplier/factorizer: In this final example, we show how a digital mul-

tiplier built out of AND gates and Full Adders can be operated in inverted mode to

function as a factorizer shown in Fig. 2.9. Implementation of practically useful fac-

torizers usually requires dedicated algorithms, here our purpose is simply to illustrate

the remarkable invertibility of directed networks of p-bits.

The block diagram of a digital multiplier is shown in Fig. 2.9(b). The individual

bits of A and B are first multiplied to produce A1B1, A2B1, A1B2 and A2B2 which



20

are then added together to produce the product S. To convert this multiplier to a

factorizer, we invert the directed connections from the AND gates to the adders,

while keeping the original directed connections of the Full Adders from the LSB to

the MSB.

The output voltages from the AX and BX (where X is the nth Full Adder) are now

sent as inputs to the output p-bits of the 4 AND gates. The 4 AND gates used here

are part of one p-circuit instead of 4 separate p-circuit. This is because some inputs

of the AND gates need to be the cloned to each other as they go to different gates.

For example, in Fig. 2.9(b), A1 is a common input for the two right most AND gates,

while A2 is a common input for the two left most AND gates. The retention time and

interconnect delay are chosen as τN = 200 ms for all the p-bits with a τinter = 100 ms.

Fig. 2.9(c) shows the time evolution of output voltages of A1, B1, A2 and B2 using

an oscilloscope when the sum of the adder is clamped to 6. This results in the input p-

bits of the AND gates producing the correct factors of 3×2 and 2×3. This can also be

seen by the statistics of the input p-bits of the AND gate as shown in Fig. 2.9(e). As

previously, the heights of both peaks are not the same due to the statistics not being

exactly steady state. For comparison, we also show the statistics for an uncorrelated

factorizer where 16 combinations are equally probable as shown in Fig. 2.9(d).
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Fig. 2.1. Emulating p-bits with microcontrollers. An Arduino pro-mini mi-
crocontroller is used to emulate Eq. (1.1), using the details given in Alg. 1. The
Arduino pro-mini shown in the inset of (b) has an internal 10-bit ADC which can
be used to read analog inputs. It also has dedicated pins that can be used to provide
PWM outputs which are used for the output. (a) shows the output mi as voltage
VOUT as it changes with the applied input Ii as voltage VIN . At an applied input
voltage of VIN = 2.5 V the p-bit behaves as a uniform random number generator.
Increasing(decreasing) the inputs biases the output towards VDD = 5(0) V . The av-
erage output voltage 〈VOUT (V )〉 as a function follows the sigmoidal function shown
in Eq. (2.2).
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Fig. 2.2. AND gate emulated using 3 p-bits. (a) and (b) show the block
diagram and the schematic of the emulated AND gate. Each terminal of the AND
gate is one p-bit. These p-bits are interconnected using a weight logic block which
comprises of an Arduino Mega microcontroller and a digital-to-analog converter. The
microcontroller reads the digital output voltages

{
VOUT

}
of p-bits and provides the

analog inputs
{
VIN

}
. The weight logic is also used to observe the state of the AND

gate by constructing an artifical signal 4×A+2×B+C shown in (c). The AND gate
is initially left uncorrelated which results in 23 = 8 states uniformly distributed as
shown with the statistics in (d). When the correlations are turned on (using an
I0 = 0.8), the truth table of the AND gate is highlighted as shown in (e).
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Fig. 2.3. Computation using AND gates. Invertible AND gates can be used for
computation much like CMOS gates. (a) shows a time snapshot of the three p-bits
when the inputs A and B have been clamped to 1. The statistics for this set of applied
inputs is shown in (b) and this is called the “directed” mode of operation. A more
interesting case, the “inverted” mode of operation is shown in (c) and (d). When
the output p-bit C is clamped to 0,the p-bits A and B to fluctuate between all the
three states allowed to an AND gate for an output of 0.
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a)

d)c)

b)

Fig. 2.4. Interconnect delay. An important design consideration in p-circuits is
the interplay between the interconnect delay τinter and the retention time τN of p-
bits. (a)-(d) shows the statistics collected as the p-circuits are slowed down or as
the interconnect delay increases which is done by changing delay τD in Alg. 2. As the
gate is slowed down, the system operations starts to breakdown.
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Fig. 2.5. Normalized interconnect delay
(
τinter

τN

)
. (b) shows that the system

operation of the AND gate continuously deteriorates as the interconnect delay is
increased. There seems to be a hard boundary for the interconnect delay beyond
which the system completely breaks down. This hardness is most likely due to the
use of constant retention times τN in the experiments. A key requirement for p-
circuits in simulation is the need for serial updating which comes naturally in the
demonstration as shown in (a). Initially all 3 p-bits are well aligned with minor
phase differences in between them. These phase differences are broken with time
allowing each p-bit to update separately which leads to the system naturally having
serial updates.
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Fig. 2.6. Variations in retention times τN of p-bits. Variations in the retention
time τN of the p-bits is expected in nano-device level implementations. These are
investigated here by varying the retention times of p-bits across a wide distribution
while keeping the interconnect delay significantly low, i.e τinter τN � 1. As long as
the interconnect delay is greater than the smallest retention time, the system will
operate correctly.
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Fig. 2.7. Full Adder. 14 p-bits are used to implement a full adder shown in (a).
5 of these are the terminals of the full adder (truth table shown in (b)) while the
remaining 9 are auxiliary p-bits. The full adder works both in the direct ((c)-(d))
and inverted ((e)-(f)) mode of operation similar to the AND gate.
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Fig. 2.8. 4-bit Ripple Carry Adder (RCA). A 4-bit adder is implemented using
4 autonomous p-circuits using a total of 48 p-bits ( 3 full adders and one half adder)
shown in the schematic in (a) and block diagram in (b). Each of the 48 p-bits is
given a slightly different retention time τN (inset of (d)). (c-d) shows the 4-bit
adder working in the standard direct mode of operation where it adds two numbers.
However, (e-f) shows the inverted mode in which the output S is clamped to 23. The
inputs A and B fluctuate between all 8 combinations consistent with a sum of 23.
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Fig. 2.9. 4-bit multiplier/factorizer. A 4-bit multiplier is constructed out of 3
Full Adders and 4 AND gates. The schematic and a block diagram are shown in (a)
and (b). The multiplier works in the inverted mode operates as a factorizer. When
the multiplier is left in the uncorrelated state the system fluctuates between the 24

states. When a product of 6 is clamped the multiplier now fluctuates between the
only two combinations ( 2× 3 = 3× 2) consistent with a product of 6.
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3. INTEGER FACTORIZATION USING STOCHASTIC

MAGNETIC TUNNEL JUNCTIONS

Materials in this chapter have been extracted verbatim from the paper: W. A. Bor-
ders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno & S. Datta (2019). Integer
Factorization using stochastic Magnetic Tunnel Junctions. Nature 573, no. 7774
(2019): 390-393.

3.1 Introduction

The field of adiabatic quantum computing [15] (AQC) solves complex optimization

problems by constructing networks of qubits in which the inter-qubit interactions are

engineered to make the overall energy E reflect the cost function for the problem. One

such algorithm [16] frames integer factorization of a given number F as an optimization

problem by writing each of its factors X and Y in binary form and defining the cost

function E = (XY − F )2

E(xp, · · · , x1 ; yQ, · · · , y1) =

[( P∑
p=0

2pxp

)( Q∑
q=0

2qyq

)
− F

]
(3.1)

with x0 = 1, y0 = 1 and P , Q denoting the number of bits needed to represent X

and Y , respectively, so that the lowest energy state corresponds to the configuration

of qubits
{
xp, · · · , x1, yq, · · · , y1

}
that makes XY equal to F .

In general, E involves terms of the form xpyqxrys, requiring up to four-body in-

teractions. This algorithm does not require coherence, but needs auxiliary bits to

represent many-body interactions when implemented using AQC [12, 17]. In prob-

https://www.nature.com/articles/s41586-019-1557-9
https://www.nature.com/articles/s41586-019-1557-9
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abilistic computing, many-body interactions are implemented electrically, removing

the need for extra components.

Individual p-bits are stochastic building blocks with a normalized output mi that

takes on the values 0 and 1 with probabilities P0 and P1, respectively. These prob-

abilities are controlled by their normalized inputs Ii; for Ii = 0 they are equal(
P0 = P1 = 0.5

)
, large +Ii pins the output mi to 1

(
P0 = 0, P1 = 1

)
and large

−Ii pins mi to 0
(
P0 = 1, P1 = 0

)
. This is similar to the behavior of a binary

stochastic neuron, a well known concept in the field of stochastic neural networks and

machine learning [18], which has an inputoutput relation mi = ϑ
[
σ(Ii)− r

]
, where ϑ

is the unit step function, σ is the sigmoidal function, r is a random number uniformly

distributed between 0 and 1, and the input Ii is obtained from the synaptic function

(described below). Thus, the p-bit requires a natural element that is substantially

unstable but controllable. A magnetic tunnel junction (MTJ), widely recognized

as a critical building block of nonvolatile magnetoresistive random-access memory

(MRAM) [16, 19], has potential to be used as the stochastic element in p-bits [20]

if its thermal stability can be sufficiently reduced. In this work, we build stochastic

MTJs and demonstrate an experimental proof of concept of probabilistic computing,

in which an eight-p-bit network performs integer factorization of values up to 945.

The building block of the p-bit, the MTJ, comprises ferromagnetic free and refer-

ence layers separated by an insulating tunnel barrier Fig. 3.1a. Previous studies have

used the switching probability [21] and fluctuation rate [22] of the free-layer magneti-

zation of separate MTJs to show random-number generation and population coding,

respectively. Here we show that complex optimization problems can be generally ad-

dressed using the correlation among multiple naturally stochastic MTJs. The stack

consists of a CoFeB/MgO structure with a perpendicular magnetic easy axis [23],

a de facto system of MRAM technology (see Methods section MTJ fabrication). In
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general, an MTJ is characterized by its tunneling magnetoresistance, which switches

between high and low values by varying the angle between the magnetization direction

of the two ferromagnetic layers [24]. The high (antiparallel, AP) and low (parallel, P)

resistance states (RAP , RP ) are separated by an energy barrier E such that stored in-

formation is retained for a time τ = τ0exp
[
E/(kBT )

]
following Arrhenius law, where

τ0 is the attempt time
(
τ0 ≈ 1ns

)
[8], kB is the Boltzmann constant and T is the

temperature (Fig. 3.1b). Nonvolatile memory applications require stable MTJs with

a retention time τ of the order of years [19], whereas our p-bit experiments require

stochastic MTJs with retention times on the millisecond scale. Fig. 3.1c shows the

measured τ as a function of the CoFeB free-layer thickness for different nominal di-

ameters of the MTJ pillar. For each junction diameter D (CoFeB thickness tCoFeB),

the timescale of stochasticity decreases with increasing tCoFeB (decreasing D).

The behaviour is understood by considering the energy barrier for magnetiza-

tion reversal. Because interfacial magnetic anisotropy is dominant in this system

[23], increasing the free-layer thickness will reduce the total perpendicular magnetic

anisotropy energy, mainly owing to an increase in the demagnetizing energy, which

favours in-plane magnetization. Furthermore, decreasing D also decreases the energy

barrier for magnetization reversal, as reported in previous studies [26]. Importantly,

by varying only the ferromagnetic free-layer thickness for arbitrary sizes of the MTJs

used in typical MRAM fabrication, we are able to manipulate the stochasticity of the

MTJ so that it is suitable for p-bit experiments (see Methods section MTJ charac-

terization).

To form the building block for stochastic neural networks, we connect the stochas-

tic MTJs with standard n-type metal-oxide-semiconductor (NMOS) transistors to ob-

tain a three-terminal p-bit (Fig. 3.2a). The output voltage for the ith p-bit, VOUT,i,
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Fig. 3.1. Characteristics of stochastic magnetic tunnel junctions. (a) Mea-
surement setup of a stochastic MTJ, with a stack structure that is only slightly
modified from current MRAM technology. A current is passed from the free layer
to the reference layer, a time-averaged signal is read on the voltmeter, and a time-
domain signal is measured on the oscilloscope. (b) The energy profile between the
P and AP states of the magnetization orientation of the MTJ for typical MRAM
technology and for the MTJs used in the p-bits for this work. (c) Experimental
results showing the retention time τ of MTJs with varying thickness of the CoFeB
free layer tCoFeB and diameter D. The retention time τ is determined at an applied
current of I50/50, which induces equal fluctuation time of the MTJ magnetization in
the AP and P states. Square symbols represent the average of the retention time for
10 MTJs at each D and tCoFeB. Transparent circles represent the retention time for
each device. The right-most panels show the effect of varying the free-layer thickness
on the stochasticity for devices of the same size. Note that reducing the thickness
below 1.8nm results in a stable binary device suitable for nonvolatile memory appli-
cations [25]. The MTJs were prepared at Tohoku University by William A. Borders,
Professor Shunsuke Fukami and Professor Hideo Ohno.

from this composite unit can be written in terms of the input voltage VIN,i in a form

similar to the ideal binary stochastic neuron described above:

mi︷ ︸︸ ︷
Vout,i
VDD

≈ ϑ

{
σ

( Ii︷ ︸︸ ︷
Vin,i − v0,i

V0,i

)
− r

}
(3.2)
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where VDD is the supply voltage, V0,i is the scaling voltage determined by the

transistor, v0,i is the offset voltage (1.95 V in this experiment). Fig. 3.2b shows

the time-averaged output voltage as the input voltage is swept from 1.5 V to 2.4

V, where each point is averaged over 700 ms with a fixed input voltage. Fig. 3.2c

shows the time-varying output voltage for specific input voltages, displaying stochastic

behaviour centered at 1.95 V, but becoming deterministic as the input changes by

about 75 mV, a consequence of spin-transfer torque [27–29] (see Methods section

“p-bit construction”).

These p-bits can be used to perform useful functions by interconnecting them

so that the ith p-bit is driven by a synaptic input Ii that is a function of all the

other outputs
{
m1, · · · ,mN

}
. Boltzmann machines represent a subset of such net-

works for which Ii can be obtained from an energy function E using the relation

Ii = −∂E(m1, · · · ,mN)/∂mi. Such networks will visit different configurations with

probabilities given by the Boltzmann law P
(
m1, · · · ,mN

)
, which are proportional to

exp
[
− E(m1, · · · ,mN)

]
, so configurations with the lowest energy E occur with the

highest probability. This property makes the networks naturally suited for solving

optimization problems, similar to the way that AQC solves them, where the correct

solution minimizes a cost function identified for E and is used to calculate the synaptic

inputs Ii. Unlike in machine-learning schemes, these synaptic inputs are analytically

deduced and not learned.

Experimentally we connect eight p-bits following a general architecture presented

previously [30] (Fig. 3.3a). A microcontroller reads the output voltage of each p-

bit and is programmed to calculate the inputs Ii for a given cost function E. The

result is converted into analogue voltages using a digital-to-analogue converter (DAC).

Together, the microcontroller and DAC function as the synaptic weight logic that

determines Ii, reading in digital outputs from the p-bits and feeding back analogue
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Fig. 3.2. Experimental demonstration of a p-bit. (a) Electrical schematic of a
p-bit using a stochastic MTJ with an NMOS transistor, a comparator and a resistor,
extending the design presented in ref. [20] to handle device specific variations. A
stochastic MTJ (s-MTJ) has a free layer with a relatively low energy barrier

(
∆E ≈

15kBT
)

so that thermal noise makes it fluctuate between its stable states, one being
parallel (P) to the fixed layer and the other being anti-parallel (AP). (b) Time-
averaged VOUT , 〈VOUT 〉, as a function of the applied input, fitted to the sigmoidal
function. Each point is averaged over 700 ms with 2, 000 or more sampling points for
each data point shown. (c) Time snapshots of VOUT for three different inputs VIN ,
showing the preferred state of a p-bit (high or low) as a function of its input voltage.

inputs (see Methods section “p-circuit construction”). Although the main experiment

that we describe here demonstrates integer factorization, this methodology can be

applied to other optimization problems, such as invertible Boolean logic, for which

the objective is to determine all the possible inputs when the logic output is known

(see Methods section “p-bit-based implementation of an invertible AND gate”).
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In the case of integer factorization, we use the cost function represented by equa-

tion (1) to evaluate the input functions. We first test the factorization of 35 using

four p-bits
(
P = 2, Q = 2

)
(see Methods section “Factorization algorithm”). In our

algorithm, the synaptic inputs include nonlinear terms that effectively enforce both

three p-bit and four p-bit interactions, in addition to the customary linear terms aris-

ing from two p-bit interactions. Accordingly, an integer up to 2n+2 can be encoded

according to Eq. 3.1 with n p-bits using the current algorithm, a relation that requires

fewer bits than current AQC schemes, mainly owing to the added flexibility provided

by nonlinear synapses [17] that could be useful in other optimization problems as well.

Figure 3b gives the three-dimensional histograms of the time fluctuations (see Meth-

ods section “Factorization algorithm”) for pairs of numbers
{
x2, x1, 1

}
and

{
y2, y1, 1

}
,

depicted below the uncorrelated state that is obtained when all input functions are

set to zero. Although the p-bits fluctuate independently in the uncorrelated state

(top panel), non-zero input to the network results in two peaks observed at
(
5, 7
)

and(
7, 5
)
, showing that 35 is factorized into 5 and 7 correctly (bottom panel). Figure 3c

shows the three-dimensional histogram obtained with the input functions appropriate

for factorizing 161 using six p-bits with P = 4 and Q = 2, where the correct factor

(23, 7) shows a prominent peak (bottom panel). Similarly, Fig. 3d shows an eight-p-

bit network factorizing 945
(
P = 5, Q = 3

)
. Using p-bit models, we also simulate the

factorization process and obtain agreement with experimental results using a single

fitting parameter (see Methods section “Experiment versus simulation”). We also

investigate the influence of varying MTJ parameters such as RP , RAP , I50/50, shift

and distortion of the response of MTJs, and retention time τ . Response variations

are corrected by adjusting the bias voltage v0,i (see Methods section “Factorization

experiment calibration”) an variations in the retention time of the MTJs have little

effect provided that the synapse is faster than the fastest p-bit (see Methods section
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“Effect of p-bit parameter variation on system performance”). Owing to the relative

ease of these methods, we expect robust and repeatable results for networks on even

larger scales.

Next, we compare the demonstrated probabilistic computing system with its quan-

tum counterpart. The present approach uses an algorithm that is similar to AQC but

does not perform annealing, which normally requires coherence. Compared to AQC,

the present scheme has a threefold advantage: it operates at room temperature, it

can be implemented using existing highly scalable MRAM technology and it is rela-

tively easy to incorporate complex many-body interactions into the scheme. Further,

we note that for a subclass of quantum systems, quantum annealing can be approxi-

mated with replicated p-bit networks [31]. This class of systems is commonly referred

to as stoquastic [15]. The approximation becomes systematically more accurate upon

increasing the number of replicas. The increased number of p-bits is offset by their

comparably lower implementation costs (see Methods section “Comparison between

p-bit and quantum computing”).

Probabilistic computing can also be executed using conventional complementary

metal-oxide-semiconductor (CMOS) circuits. Our p-bit implementation uses three

transistors and one MTJ, whereas CMOS based probabilistic computing with digital

random-number generators (RNGs) requires more than a thousand transistors to

perform the same function. A quantitative comparison shows an energy advantage

by a factor of 10 and an area advantage by a factor of 300 (see Methods section

“Comparison between MTJ-based p-bit and CMOS-based alternatives”).

We should note that there are deterministic algorithms implemented on a fully

digital CMOS system that specializes in performing factorization. However, this sys-

tem takes a substantially greater amount of time to reach the exact solution as the

problem size increases [32]. On the other hand, when algorithms that produce approx-
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imate solutions are acceptable, there is interest in hardware that enables probabilistic

computing methods. Because the purpose of this study was to establish a system that

is suitable for solving optimization problems in general, these factors mentioned above

are very attractive, particularly considering the energy and surface area advantages.

In summary, this work serves as a proof-of-concept demonstration of an asyn-

chronous probabilistic computer similar to the one envisioned by Feynman [1], which

is realized through a slight modification of embedded MRAM technology currently at

the level of 8 Mb and above [33] and which could find applications in the areas of opti-

mization, sampling, and machine learning. An important aspect of this demonstration

is the asynchronous operation of p-bits without any forced sequencing, unlike typical

software implementations of Boltzmann machines, which require individual neurons

or p-bits to be updated sequentially [34]. This asynchronous feature allows the par-

allel operation of a large number of p-bits, leading to an unconventional computing

paradigm.

3.2 Methods

3.2.1 MTJ fabrication

The MTJs are fabricated with a stack structure as follows, from the substrate

side: Ta(5)/Pt(5)/[Co(0.3)/Pt(0.4)]7/Co(0.3)/Ru(0.45)/[Co(0.3)/Pt(0.4)]2/Co(0.3)/

Ta(0.3)/Co18.75Fe56.25B25(1)/MgO(1.1)/Co18.75Fe56.25B25(tCoFeB)/Ta(5)/Ru(5)/

Ta(50) Fig. 3.1a. The numbers in parentheses are the nominal thicknesses in nanome-

tres. The thickness of the free layer of CoFeB, tCoFeB, is adjusted to view the change

in the fluctuation of the MTJ magnetization. All films are deposited on a thermally

oxidized silicon substrate by d.c. and radio frequency magnetron sputtering at room

temperature. The stacks are then processed into circular MTJs with nominal junction
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Fig. 3.3. Experimental demonstration of integer factorization. (a) A pho-
tograph of a printed circuit board for an eight-p-bit circuit, interconnected through
a microcontroller and a DAC. (b-d), The uncorrelated (top) and correlated (bot-
tom) state of the system when four, six and eight p-bits are used to factorize
35 = 5 × 7 = 7 × 5(P = 2, Q = 2 with four p-bits) (b) 161 = 23 × 7(P = 4, Q = 2
with six p-bits) (c) and 945 = 63 × 15(P = 5, Q = 3 with eight p-bits) (d). The x
and y axes show the factors X and Y (see Methods section Factorization algorithm).
All statistics are taken over a window of 15 s with over 2,000 sampling points. Each
separate factorization experiment was performed more than twice to ensure repro-
ducibility.

size varied from 40 to 80 nm in diameter by electron beam lithography and argon ion

milling. The samples are annealed at 300◦C in vacuum for an hour under a 1.2 T per-

pendicularly applied magnetic field. MTJs are then cut out from wafers and bonded

with wires to IC sockets to be placed in the p-bit circuit board. The MTJs were

prepared at Tohoku University by William A. Borders, Professor Shunsuke Fukami

and Professor Hideo Ohno.
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3.2.2 MTJ characterization

First, the MTJ resistance is measured by sweeping the current from negative to

positive values, and the time-averaged and high-frequency signals are read across a

voltmeter and oscilloscope, respectively (Fig. 1a). We measured an approximate

tunnel magnetoresistance ratio of 100% fluctuating between RP = 7 − 11kΩ and

RAP = 12−19kΩ. The current at which the resistance switches by half is determined

to be I50/50, which is the bias current at which the MTJs will spend equal time in

the AP and P states. To determine τ , we perform retention time measurements [35]

when the MTJ is in either the AP or the P state using voltage measurements from the

oscilloscope (Fig. 3.1b). To ensure reliable collection of data, each point is measured

with a constant current on the oscilloscope at a sampling rate set ten times faster than

the fastest fluctuation time of the MTJ. The retention time values are determined

from approximately 1,000 to 10,000 switching events per device. The retention times

used in this work range from 1 ms to 100 ms, which is suitable to match with the

sampling rate of the microcontroller and DAC used to determine the inputs for each

p-bit. For these purposes, we choose a free-layer thickness of 1.9 nm and different

MTJ diameters (Fig.3.1c). The MTJs were characterized at Tohoku University by

William A. Borders and Professor Shunsuke Fukami.

3.2.3 p-bit construction

The p-bit is constructed following the circuit proposed previously [20] with two

changes to the design: First, we use an additional resistance RSOURCE attached to

the source of the NMOS transistor to restrict the current through the MTJ branch to

values in the stochastic range around I50/50 (which is around 510µA). This produces
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voltage fluctuations V ≈ 3050mV . On the basis of measured values of I50/50, and RP ,

RAP for every MTJ, an RSOURCE value for each MTJ is calculated according to:

RSOURCE =
VDD
I50/50

−RNMOS −
RAP +RP

2
(3.3)

where VDD is the supply voltage and RNMOS represents the drain-to-source resis-

tance of the NMOS transistor.

Extended Data Fig. 1b shows the measured RNMOS versus VIN characteristics

for a 2N7000 (T0-92-3 package) NMOS with drain resistance RD = 9.8kΩ, source

resistance RS = 9.6kΩ and VDD = 200mV to mimic the p-bit circuit used in our

experiment. The value ofRNMOS is chosen so that the p-bit is centred at VIN = 1.95V ,

as shown in Fig. 3.2b. This value of VIN is optimized considering the transistor

characteristics. A smaller value of VIN makes the sigmoidal characteristics sharper

because the current through the MTJ changes rapidly for small changes in VIN ,

pinning the MTJ. If we choose values of VIN greater than 1.95 V, the p-bit does not

get saturated properly to VDD.

Second, to achieve better gain, we use comparators (AD8692, 8-SOIC package)

instead of the inverters used previously [20]. The drain of the NMOS is connected

to the negative terminal of the comparator and a voltage VREF is given as an input

to the positive terminal. The comparator has a biasing current of 1 pA, which is

3-4 orders of magnitude lower than the current passing through the MTJ, ensuring

that it does not load the MTJ branch. VREF is chosen so that when I50/50 is flowing

through the MTJ branch, VREF is centered at the drain voltage VDRAIN . Under these

conditions, VREF can be calculated according to:

RREF = VDD − I50/50
(RAP +RP

2

)
(3.4)
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Fig. 3.4. p-bit construction. (a) A diagram of the ideal response of a stochastic
MTJ as used in this work and the parameters used to characterize the MTJ. (b) The
measured drain current IDS as a function of VIN of a 2N7000 NMOS transistor used
in our p-bit demonstration.

3.2.4 p-circuit construction

We have constructed our p-circuits following the general architecture described

previously [30] which is shown in Fig. 3.5. An Arduino microcontroller (Mega 2560)

is used to read the output voltages of each p-bit as binary inputs and is programmed

to implement the synaptic weights. These are then converted into analogue voltages

using a DAC (PMOD DA4) that has eight channels, each with 12-bit resolution. The

DAC also has an internal 2.5V reference allowing a resolution of 2.5/4096 ≈ 6.1mV .

An important design consideration is to ensure that the interconnect delay—that is,

the time it takes to update the inputsis shorter than the retention time of the p-

bits [30] (see Methods section “Effect of p-bit parameter variation on system perfor-

mance”). The DAC uses a Serial Peripheral Interface (SPI) protocol to communicate

with the microcontroller and has a worst-case interconnect delay of 150µs for eight

p-bits, which is lower than the retention time of the MTJs used in this manuscript.

We use an oscilloscope (MSO-X-3014T, Keysight) to collect the output voltages for



43

Analog 

{V
IN

}

Digital 

{V
OUT

}

Synapse

DAC 
Micro

controller SPI 

interface

p-bit 1 p-bit 8

VREF

VIN

VOUT

VDD 

RSOURCE

-
+

VREF

VIN

VOUT

VDD 

RSOURCE

-
+

Fig. 3.5. Block diagram of an asynchronous p-circuit. (a) A microcontroller
reads the outputs voltages VOUT of all p-bits and computes the synaptic weights,
which are then converted to the analogue input voltages VIN for each p-bit, using a
DAC that communicates with the microcontroller.

all p-bits. The oscilloscope can read up to 16 digital voltages and is connected to a

computer using the Keysight BenchVue oscilloscope software.

3.2.5 Factorization algorithm

To minimize the cost function E, we construct a network of binary stochas-

tic neurons with the ith neuron driven by an input Ii obtained from evaluating

−∂E(m1, · · · ,mN)/∂mi, where mi is the output of the ith neuron. This approach

is similar in spirit to AQC [16] and a large amount of effort has gone into identifying
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appropriate cost functions for different problems of interest [36]; many of these formu-

lations can also be adapted to design p-bit networks. The optimization-problem-based

approach in this scheme is different from those in previous studies [30, 37], in which

integer factorization is cast as an inverse multiplication problem, which typically re-

quires more p-bits to factor numbers of the same size.

For each number that is factored, the corresponding function is programmed into

the synaptic function Ii, as explained below.

We start from a cost function of the form in equation (1) [17, 38–41], which is

simplified to:

E
(
xp, · · · , x1; yQ, · · · , y1

)
= F 2 +

∑
p,q

xpyq
(
22p+2q − 2p+q+1F

)
+

∑
p,q,s6=q

22p+q+sxpyqys +
∑
p,q,r 6=p

2p+2q+rxpxryq +
∑

p,q,r 6=p,s 6=q

2p+q+r+sxpyqxrys (3.5)

using the property of binary digits that b2 = b.

In this cost function, the numbers X and Y are assumed to be odd numbers,

because large semiprimes of interest are always odd; this is implemented by setting

x0 and y0 to 1. For a four-p-bit network, P = 2 and Q = 2 so that the cost function

for F = 35 from Eq. 3.5 is obtained as below, where I0, an arbitrary constant that

controls overall strength of coupling, is chosen to be 1.

E = −0.3x1 − 0.7x2 − 0.3y1 − 0.7y2 − x2y1 − 1.4x2y2 − 0.6x1y1

− x1y2 + 0.3x1y1y2 + x2y1y2 + x2y1y2 + 0.3x1x2y1 + x+ 1x2y2 + 0.7x1x2y1y2 (3.6)

where the coefficients are rounded off to have one significant digit. By evaluating

−∂E(m1, · · · ,mN)/∂mi, we obtain the input functions Ii:
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Ix2 = 0.7 + 1.0y1 + 1.4y2 − 1.0y1y2 − 0.3x1y1 − 1.0x1y2 − 0.7x1y1y2 (4.7a)

Ix1 = 0.3 + 0.6y1 + 1.0y2 − 0.3y1y2 − 0.3x2y1 − 1.0x2y2 − 0.7y1x2y2 (4.7b)

Iy1 = 0.3 + 0.6x1 + 1.0x2 − 0.3x1y2 − 1.0x2y2 − 0.3x1x2 − 0.7x1x2y2 (4.7c)

Iy2 = 0.7 + 1.0x1 + 1.4x2 − 0.3y1x1 − 1.0y1x2 − 1.0x1x2 − 0.7x1y1x2 (4.7d)

Similar cost functions—but with many more termscan be obtained for the eight

p-bit experiment in which P = 4 and Q = 4. These cost functions and the resulting

input functions are not listed here but are available upon request from the authors.

Fig. 3.6 shows the output of four p-bits x2, x1, y2, and y1 as a function of time, which

are then used to collect the statistics shown in Fig. 3.3b.
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3.2.6 Factorization experiment calibration

We begin by establishing an uncorrelated state for the p-circuit as a reference for

the experiment. To offset variations, we first measure the average sigmoidal response

of each p-bit used in our experiment. Fig. 3.4 shows six such responses (15 second

averages per point) for the six p-bits used in our experiment. Initially, we choose

a value for RSOURCE so that each sigmoid is centered at 1.95 V, and measure the

average output. Any shifts in the average outputs from 1.95 V (due to variations in

transistor characteristics and MTJ parameters) are adjusted as individual synaptic

biases to center the average response. Once these are set to obtain average responses

that are aligned, they are not varied and an uncorrelated state for the system is

established, as shown in Fig. 3.2 and in Fig. 3.7b. After establishing the reference

state, only the interconnect strengths between p-bits are changed for the remainder

of the experiment.
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3.2.7 Comparison between MTJ-based p-bit and CMOS-based alterna-

tives

As noted in equation (2), the MTJ-based p-bit used in this work evaluates the

function mi = ϑ
(
σ(Ii) − r

)
. Below we compare this evaluation to a digital-CMOS-

based evaluation of the same function. As mentioned in the main text, the problem

of factorization can be addressed with fully digital deterministic algorithms that do

not require this function. However, the aim of this work is to demonstrate a broad

approach to optimization and sampling problems using a network of p-bits interacting

asynchronously, in which high precision is not the primary figure of merit. With

this in mind, we do not consider the deterministic algorithm and present below a

functionality-based comparison between MTJ-based and CMOS-based probabilistic

computers. To evaluate the same function mi = ϑ
(
σ(Ii)− r

)
digitally using CMOS,

one could use [42,43] an RNG for r, a look-up table for σ(Ii) or a comparator for the

step function ϑ.

In this section, we compare the energy and area of a CMOS-based pseudo-random-

number generator (PRNG) to the MTJ-based p-bit (Extended Data Fig. 5). The

look-up table and comparator would further add to the area of the CMOSbased p-

bit. However, we note that the MTJ-based p-bit requires a DAC to interface with

digital synapses. In principle this would not be needed for synapses implemented

with analogue devices.

Fig. 3.8 shows that the CMOS-based PRNG requires an energy consumption an

order of magnitude higher and requires an area several orders larger compared to the

MTJ-based p-bit in this work. Details of the models used are described below.

CMOS-based RNG. True RNGs operate specialized circuits using thermal noise

from CMOS-based sources such as cross-coupled inverter pairs to produce true ran-

dom bits [44]. However, inducing true randomness in conventional hardware typically
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requires high levels of energy consumption and large cell area. On the other hand,

a PRNG-based approach that uses linear-feedback shift registers (LFSRs) offers a

low-cost solution at the expense of reduced random bit quality [42].

We implement a 32-bit LFSR to form the PRNG that is composed of 32 D-type

flip flops with three separate two-input XOR gates. Each XOR requires 14 transistors.

Each D-type flip flop is composed of 36 transistors, which includes eight NAND gates

(four transistors each) and two inverters (two transistors each). Therefore, the 32-

bit LFSR requires 1,194 transistors in total. Each transistor is implemented using

a minimum size (nfin = 1) 14 nm high performance fin field effect transistor HP-

FinFET model obtained from a predictive technology model [45]. The details of

the LFSR are shown in Fig. 3.8. This circuit is simulated in the HSPICE circuit-

simulator software with a clock frequency of 10 GHz (τCLK = 100ps). We note that

because we are computing the energy per random bit, we average the active power

over many clock cycles and so the exact clock frequency that is used in the circuit

becomes irrelevant. The energy per random bit is obtained by integrating the total

supply current (multiplied by the supply voltage) over one clock cycle. The energy

per random bit for the 32-bit LFSR is about 20 fJ, as shown in Fig. 3.8.

MTJ based p-bit For the MTJ-based p-bit simulation, we use the design pro-

posed previously [46] with an MTJ of negligible energy barrier and with an auto-

correlation time of about 100 ps for an arbitrarily chosen magnetization direction

denoted as m(t). The MTJ is modelled as a variable conductance with GMTJ(t) =

G0

[
1+m(t)TMR/(2+TMR)

]
, where TMR is the tunnelling magnetoresistance with

a value of around 110%, close to the experimental value of TMR in our experiments.

The average MTJ conductance G0 (where G−10 = 23.4kΩ) is chosen to match the

transistor conductance when VIN = 0. This makes the sigmoidal response of the

p-bit symmetric around zero. The instantaneous magnetization m(t) is calculated
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by a stochastic Landau-Lifshitz-Gilbert (LLG) equation solver as a separate circuit

in HSPICE. The stochastic LLG solver takes spin current as an input and produces

m(t) at each time step. The spin current is assumed to be proportional to the instan-

taneous charge current flowing through the MTJ, multiplied by a spin polarization P

that in turn is assumed to be related to TMR by TMR = 2P 2/(1− P 2) ref. [47].

The energy per random bit for the MTJ-based p-bit is calculated by computing

the average power drawn from the supplies, VDD × (ISUPPLY 1 + ISUPPLY 2), for a

given period (t = 100 ns) and multiplying this average by the autocorrelation time

of the low-barrier magnet to estimate the energy per random bit to be about 2 fJ

per random bit. Fig. 3.8c shows the difference in energy per random bit and the

transistor count for the p-bit-based and hardware CMOS-based schemes.

3.2.8 Comparison between p-bit and quantum computing

The optimization algorithm used in this work is similar to an AQC algorithm

that can run on quantum computing hardware. It has been shown [31] that a system

of x qubits, if they belong to a class of stoquastic [15] systems, can be efficiently

emulated with x × r p-bits when using the Suzuki-Trotter decomposition, where r

(about 10-100) is the number of replicas, each comprising x p-bits. Increasing the

number of replicas systematically reduces the error compared to the exact solution;

the increased number of p-bits is offset by their relative cheapness. Although many

groups are working towards implementing 1,000 qubits, p-computers with density

around 1 Gb could be a relatively near-term goal using embedded MRAM technology

operating at room temperature. However, we note that the replicated p-bit approach

to quantum computing is established only for a subset of quantum Hamiltonians that

do not suffer from the ‘sign-problem’ associated with negative probabilities, and are

commonly referred to as ‘stoquastic’ [31].
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A recent experiment [17] performed on a D-Wave machine (D2000Q) used the

same factorization algorithm—but with additional qubits to reduce the problem to

two-body interactions—and factored 15 and 21 using four logical qubits, and factored
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143 using 12 logical qubits. In general, O(log2(F )) logical qubits are required to factor

an integer F. The increased number of qubits is a result of additional logical qubits in

the Hamiltonian used to reduce the problem. By contrast, our demonstration factors

numbers up to 945 with eight p-bits at room temperature and is estimated to be able

to factorize 2n+2 sized integers, with n p-bits.

Comparison of AQC and p-bits We first describe the typical system—the

transverse Ising Hamiltonian—that demonstrates an AQC algorithm for factorization

and then present an emulation of this system with p-bits.

We show in Fig. 3.9 that the results of an exact solution of the quantum many-

body Hamiltonian can be accurately obtained by a replicated network of p-bits. The

transverse Ising Hamiltonian for the factorization problem HQ is given as:

HQ =

(∑
i<j

Jijσ
z
i σ

z
j +

∑
i<j<k

Kijkσ
z
i σ

z
jσ

z
k +

∑
i<j<k<l

Lijklσ
z
i σ

z
jσ

z
kσ

z
l

+ ΓX
∑
i

σxi (4.8)

where Jij, Kijk and Lijkl represent the interactions obtained from the cost function

E =
(
XY − F

)2
in equation (1), and ΓX is the (dimensionless) transverse magnetic

field that is used as an annealing parameter. The quantum system described in

Eq. 4.8 can be mapped to a classical system with networks of p-bits. The classical

Hamiltonian HC for a classical system with r replicas is expressed as:

HC = −

(
n=r∑
n=1

∑
i<j

Jij
r
mi,nmj,n +

n=r∑
n=1

∑
i<j<k

Kijk

r
mi,nmj,nmk,n

+
n=r∑
n=1

∑
i<j<k<l

Lijk
r
mi,nmj,nmk,nml,n +

n=r∑
n=1

∑
i

J⊥mi,nmi,n+1

)
(4.9)
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where J⊥ is the local transverse coupling between replicas with periodic bound-

ary conditions; J⊥ = −1/(2β)ln
[
tanh(ΓXβ/r)

]
where β is the dimensionless inverse

temperature.

In AQC, the system is prepared at a low temperature and the transverse magnetic

field starts from a high value to initialize the system in its ground state. The magnetic

field is then slowly reduced to keep the system in its ground state so that the ground

state of the classical Ising Hamiltonian is reached.

Here, instead of performing annealing that requires a continuous change of the

transverse magnetic field, we perform two static simulations, for factoring 161 = 23×7

using a small ΓX (corresponding to a ‘cold’ system close to the ideal solution) and

using a large ΓX (corresponding to a ‘hot’ system close to thermal equilibrium).

We compare the results obtained by exactly solving the quantum system with

those obtained by a classical simulation of p-bits. We note that quasi-static quantum

annealing can also be performed using p-bits, but our purpose here is to show the

correspondence between the exact quantum and the replicated classical system. Exact

quantum solution. For a small number of qubits, the many-body quantum Hamilto-

nian described in Eq. 4.8 can be solved exactly by methods of equilibrium statistical

quantum mechanics:

〈S〉 =
tr
[
Sopexp(−βHQ)

]
tr
[
exp(−βHQ)

] (4.10)

where 〈S〉 is the expectation value of an observable corresponding to the operator

Sop ‘tr’ represents trace. In this case, we choose Sop to correspond to all possible spin

configurations corresponding to the different factors of the problem. We choose an

inverse temperature of β = 25 and two magnetic fields ΓX = 0.1 and ΓX = 0.5. For

each spin configuration
[
y2 y1 x4 x3 x2 x1

]
, where

(
yi, xi

)
∈
{
− 1,+1

}
, we compute

the corresponding operator Sop to calculate the equilibrium probability.



53

Replicated p-bit simulation The mapped classical system is simulated by first

obtaining the current vector Ii for the ith p-bit in the system from the classical

Hamiltonian in Eq. 4.9 by Ii = −∂HC/∂mi. The same inverse temperature, β = 25

is chosen with r = 45 replicas and all p-bits are sequentially updated according to

mi = sgn
[
tanh(βIi) − rand(−1, 1)

]
, where rand is a number that that is uniformly

distributed between −1 and +1. For each magnetic field ΓX = 0.1 and ΓX = 0.5

that enters Jperp, N = 2 × 106 time steps are chosen and a probability of each state

is obtained using time averaging of the state of the system for the entire duration N

of the simulation over all replicas r. Although the exact solution and the replicated

p-bit simulation do not seem to show complete agreement at each state, the error can

be systematically reduced by choosing a larger number of replicas; the error of the

system scales as O
(
1/r2

)
.

3.2.9 Experiment versus simulation

In this section, we compare our experimental work with ideal simulations per-

formed using software. The simulation updates all p-bits every ∆t, flipping the ith

p-bit with probability Pi = 1− exp
(
−∆t/τi

)
, where the dwell time τi of the ith p-bit

depends on the inputs Ii obtained from the synaptic function: τi = τ0,iexp
(
± Ii

)
.

Here τ0,i is the zero-bias dwell time, and Ii is positive if it is parallel to the state of

the p-bit and negative if it is anti-parallel. Fig. 3.10a shows six simulated p-bits of

an ideal system in which the average outputs versus inputs for all p-bits are identical.

The retention times of the p-bits are much greater than the interconnect delay (about

1,000 times greater) such that τinter � τN , where τN is the smallest zero-bias dwell

time among all p-bits.

By contrast, Fig. 3.10b shows experimentally observed average behaviour of six

p-bits where the device variations of the MTJs affect the alignment and shape of the
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Fig. 3.9. Computing with p-bits versus AQC. (a) A representation of how an
array of six Ising spins in a qubit array can be replicated with an array of p-bits.
(b) A comparison of both approaches for factoring 161 = 23 × 7. For a system
of six Ising spins, there are 64 states. At higher magnetic fields (ΓX = 0.5) both
systems are ‘disordered’ and the correct peak is not pronounced. At lower magnetic
field (ΓX = 0.1) the correct peaks emerge with a high probability. The states (yi, xi)
have been converted to binary variables si from the bipolar variables mi by defining
si = (mi + 1)/2 and the states

[
y2y1x4x3x2x1

]
are expressed in decimal on the x axis.

average response. Using a simple correction in the synaptic weights (see Methods

section “Factorization experiment calibration”), experimental results of factorizing

161 (shown in Fig. 3.10d) are fitted to computer simulations (Fig. 3.10c) using a

single fitting parameter I0 = 5.

3.2.10 Effect of p-bit parameter variation on system performance

We investigate simulations using device parameter variations obtained from our

experiments and elaborate on how to effectively mitigate them within certain limits.
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Fig. 3.11 shows the effect of variations in retention times of the free layer on the

overall performance of the system. In these simulations, the retention times for p-

bits is varied from τN to 4τN in all of the three cases shown. We conclude from our
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simulations that in general, for all p-bits that have retention times much slower than

the interconnect delay (τinter � τN), the system will operate properly.

Fig. 3.11c suggests that when τN = 101×τinter the system fails to operate correctly.

The exact boundary where the system stops working is a function of the type (linear

versus nonlinear) and size (fan-in) of the synapse and the overall size (number of

p-bits) of the system and in general requires a systematic study using a large number

of p-bits.

Fig. 3.12 shows the effect of variations of other MTJ parameters
(
RP , RAP , TMR,

I50/50
)

that are important for p-bit operation. Variations manifest themselves as

either a misaligned average response of the p-bits or a distorted shape of the average

behaviour of a p-bit. We correct the former in our experiments by measuring this

shift and by adding an appropriate constant d.c. bias to the synaptic weights for

each p-bit. The results of this procedure are simulated in Fig. 3.12d-f. For all our

experiments this procedure was performed to achieve an “unbiased reference state”,

which is the first step of the factorization process. This process can be automated,

for example using a control loop feedback mechanism such as a proportional-integral-

derivative (PID) controller. The latter variation—the distortions in the shape of

the average behaviour—are harder to correct, but in general their adverse effects on

system operation seem minimal.

Owing to the ease of implementing compensation for device variations, as well

as the recently reported market-ready MRAM showing lower levels of variation [48]

compared to the experimental values obtained in this work, variation effects are not

expected to become an issue as the size of the p-bit network scales.
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3.2.11 p-bit-based implementation of invertible AND gate

A three-p-bit circuit of the type shown in the main text can implement an AND

gate using x2, x1 as input p-bits and y1 as an output p-bit with a cost function of the

form [12,49]

E(x1, x2, y1) = I0
(
3y1 + x1x2 − 2x12y1 − 2x2y1

)
(4.11)

which minimizes the energy for configurations x2, x1, y1 that satisfy the truth table.

We use the same method as the main text to obtain the inputs Ix2, Ix1, Iy1:

Ix2 = I0(−x1 + 2y1)

Ix1 = I0(−x2 + 2y1)

Iy1 = I0(−3 + 2x1 + 2x2)
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Fig. 3.13a, b shows the direct mode of operation for the AND gate, with applied

inputs leading to an output consistent with the inputs of any CMOS-based Boolean

gate. Fig. 3.13a, b shows a time snapshot and statistics for the three p-bits when

both inputs are pinned to 1 by adding a large input voltage. The statistics for the

direct mode of operation match well with the Boltzmann law (see main text) with

the constant I0 adjusted to 0.25.

A more interesting case is the inverted mode, in which an output is pinned and

the inputs resolve themselves to be consistent with the applied output. Fig. 3.13c

shows a time snapshot of the p-bits when the output p-bit is pinned to 0. In this
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case, all three possible combinations of inputs appear, as shown by the statistics in

Fig. 3.13d.

The final case is when all p-bits are left floating. Fig. 3.13e shows a time snapshot

acquired for such a case, and Fig. 3.13f shows the statistics. In this case the system

goes through the four states consistent with the truth table of an AND gate.
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4. HARDWARE EMULATION OF STOCHASTIC P-BITS

FOR INVERTIBLE LOGIC

Materials in this chapter have been extracted verbatim from the paper: A. Z. Per-
vaiz, K. Y. Camsari & S. Datta (2019). Probabilistic computing with Binary Stochas-
tic Neurons. In press: BCICTS 2019

4.1 Introduction

In the previous chapter, an autonomous probabilistic computer was demonstrated.

This proof-of-concept demonstration was realized by making slight modifications to

market ready MRAM technology to realize a classical fluctuating resistance. In this

chapter we present a low-level emulation of MRAM based p-bits and build an 8-bit

p-computer which resembles the autonomous p-computer shown before. Many results

from the s-MTJ based p-computer are reproduced using this low-level emulation. The

s-MTJs require some special handling to prevent loss of devices due to environmental

factors such as damage due to electrostatics. The purpose of this chapter is primar-

ily to develop an all weather p-computer which could be used for prototyping new

algorithms and studying more complex phenomenons such as the role of pinning and

time variations in s-MTJs.

In Section 4.2, we show a mapping from an ideal p-bit to the low-level emulation

of MRAM based p-bit. In Section 4.3 we describe the system architecture while in

Section 4.4 we illustrate key results obtained using the emulated p-bits.
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design to its emulation. An analog multiplexer emulates a stochastic MTJ fluctuating
between RP and RAP , where the statistics of the fluctuation is controlled by a noise
signal which is generated using a microcontroller.

4.2 Stochastic MRAM based p-bit and its emulation

Fig. 4.1b shows the schematic of the emulated p-bit, which closely resembles the

MRAM based p-bit. The s-MTJ has been replaced by an analog multiplexer which

fluctuates between two fixed resistances RP and RAP based on an applied noise signal.

This applied signal has the same statistics of a stochastic magnet for a given energy

barrier whose attempt time is given by a Neel-Arrhenius theory [9].

Our source of noise also introduces pinning which is a function of the voltage

across (or current through) the multiplexer branch. For example if the multiplexer

is meant to be completely stochastic for a voltage of V0, then for a measured voltage

of V across the multiplexer, the average retention time in the parallel state is given

by τP = τ/(1 + exp
(
(V − V0)/∆)

)
, where ∆ is the width of the intended stochastic

region and τN is the average retention time of the emulated s-MTJ. In Fig. 4.1b we

add a source resistance Rsource similar to what was shown previously. This resistance
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having a retention time τ = 50ms. (b) shows the average output as a function of
applied input with each point being a 15 second average. (c) shows time snapshots
for three sets of applied input voltages.

is added for the purposes of unpinning a drop-in PMA s-MTJ. We do this since we

are using off-the-shelf small signal transistors and from working previously with s-

MTJ’s, we recognize that the resistance of the transistors in the ON region will not

be sufficient to unpin a s-MTJ (should one be used here), which we assume requires

current in the ≈ 10µA region as observed previously as well. Also similar is the

use of a comparator instead of an inverter since the voltage swing at the drain of

the transistor is insufficient for driving off-the-shelf CMOS inverters. This requires
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an additional applied voltage VREF which is the average drain voltage when the

multiplexer is fluctuating roughly equally between RP and RAP .

Fig. 4.2b shows the average behavior of the emulated p-bit as a function of applied

input, while Fig. 4.2c shows time snapshots for a set of three applied inputs voltages.

In these experiments we have used τN = 50 ms, RP = 8 kΩ, RAP = 16 kΩ and

Rsource = 5 kΩ. We use 2N7000 NMOS transistors, AD8694 quad OP-AMPs as

comparators and MAX 394 quad Analog multiplexers.
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4.3 Optimization using Probabilistic computers

Interconnected networks of p-bits are connected in such a way that the ith p-bit is

driven by an input Ii that is a function of all other outputs {m1, ··,mN}. Symmetric

networks represent a subset of such networks for which the inputs Ii can be obtained

from an energy function E:

Ii = −∂E(m1, ··,mN)

∂mi

(4.1)
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Fig. 4.4. Photograph of p-circuit. A photograph of a printed circuit board is
shown that houses 4 emulated p-bits. We use two boards each housing 4 p-bits to
put together an 8-bit p-computer.
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shows the time snapshots of both factors X and Y while the synapse is programmed
to factorize 35. The system spends most of its time in two states; 7× 5 and 5× 7.

Such networks will occupy different configurations with probabilities given by the

Boltzmann distribution at equilibrium:

P (m1, ··,mN) ∝ exp [−E(m1, ··,mN)] (4.2)
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so that configurations with the lowest energy E will have the highest probability.

This property makes the networks naturally suited for solving optimization prob-

lems where the correct solution minimizes a cost function which can be identified with

E and used to calculate the synaptic functions from Eq. 4.1. This is similar in the

spirit to adiabatic quantum computing (see for example, Ref. [50]) which is based on

engineering a network of quantum spins (~σ’s: Pauli spin matrices) having an energy

E =
∑

Jij ~σi · ~σj. A large amount of work has gone into identifying appropriate

cost functions for different problems of interest [36] and many of these formulations

can also be adapted to design p-bit networks (see for example, Ref. [51–53]). In the

previous chapter we demonstrated how the integer factorization problem can be cast

as an optimization problem. We now use the very same approach, with our low-level

p-bit emulations and reproduce all the results from before.
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4.4 Integer Factorization

Fig. 4.3 shows a schematic of an architecture of our system while Fig. 4.4 shows

a photograph of a table top 8-bit asynchronous p-computer built using emulated p-

bits. The synapse is constructed using an Arduino MEGA microcontroller which

reads the output voltage of each p-bit, calculates the inputs to each p-bit and uses

an 8 channel PMOD DA4 Digital-to-Analog converter to set analog voltages. The

details for programming the synapse and the DAC interface are provided in detail in

chapter. 2.

For proper operation the first step is to establish an unbiased reference state. This

is the state of the system when all p-bits have been left uncorrelated and behave as

independent random number generators. Due to mismatches in device characteristics,

the average response of the each p-bit is slightly different from those of others. These

device variations can manifest in three different ways.

• Variations in average retention time τN : This leads to p-bits fluctuating

at different speeds with respect to one another. In p-bits the the primary cause

of this would be variations in energy barrier of the free layer of the s-MTJ.

• Linear shift in average response of the p-bits: Any variations in transistor

characteristics or s-MTJ resistances can shift the average response of p-bits.

• Shape distortion of the average response: It is also possible that the shape

of average p-bit responses be different across p-bits. This non-linear effect is a

function of both s-MTJ and transistor characteristics.

If the system is used without correcting these variations, it will lead to improper

operation. Variations in retention times can be dealt by ensuring that the synapse is

faster than the fastest p-bit. Variations which lead to a shift in the average response
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of p-bits can be addressed by adjusting the on-site bias hi for the ith p-bit. This

process can be automated at a system level using control loop mechanisms such as a

proportional-integral-derivative controller. Shape distortion of the average responses

is harder to correct, but it is does not seem to effect system performance as much

as the other two. Our emulator based p-circuits allow us to study many of these

phenomena in a systematic manner.

Fig. 4.5a shows the average response of four p-bits which have small linear shifts

with respect to one another. We use a Keysight MSO-X-3014T Oscilloscopes for

measuring and recording the states of p-bits. Fig. 4.5b shows the starting point of

the experiment, the reference state, which is obtained by correcting the linear shifts

shown in Fig. 4.5a. This leads to a state where all p-bits are uncorrelated, resulting

in roughly 2N equal states, where N = 4, 6 & 8 is the total number of p-bits used. For

integer factorization we use the cost function given by Eq. 4.7a using 4 (P = 2, Q = 2),

6 (P = 4, Q = 2) and 8 (P = 5, Q = 3) p-bits. For more detailed derivations please

see section. 3.2.5.

Fig 4.6a shows a time snapshot of all four p-bits (x2, x1, y2, y1) when the synapse

is programmed for factorizing 35 while Fig. 4.6b shows a time snap shot of the factors

X = (x2, x1, 1) and Y = (y2, y1, 1) constructed from the p-bits. The factors X and Y

are locked into the two possible states that factorize 35, which are 7 × 5 and 5 × 7.

This can be seen more clearly by statistics shown in Fig. 4.7a, where the two peaks

corresponding to the right factors are highlighted. These statistics and all others

presented in this work are taken across 15 seconds for an average retention time of

50 ms for all p-bits. Fig. 4.7b shows the statistics gathered for when the system is

programmed to factorize 49. In this case only one peak corresponding to 7 × 7 is

highlighted by the system.
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Fig. 4.8a shows the average response of 8 p-bits which are first corrected to get a

proper reference state as shown in Fig. 4.8b. This process is similar to that described

above. Once a good reference state is achieved the synapse is programmed to factorize

161 using 6 (P = 4, Q = 2) p-bits. p-bits which are not used for an experiment are

simply clamped to 0 by applying a high negative on-site bias hi. Fig. 4.8c shows

the statistics gathered for factorizing 161 = 23 × 7. Fig. 4.8c shows the results of

factorizing 945 = 63× 15 using all 8 p-bits.
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5. WEIGHTED P-BITS FOR FPGA IMPLEMENTATION

OF PROBABILISTIC CIRCUITS

Materials in this chapter have been extracted verbatim from the paper: textbfA.
Z. Pervaiz, B. M. Sutton, L. A. Ghantasala & K. Y. Camsari (2018). Weighted p-
bits for FPGA implementation of probabilistic circuits. IEEE transactions on neural
networks and learning systems. vol. 30, no. 6, pp. 1920-1926, June 2019.

5.1 Introduction

In the previous chapters s-MTJ based implementations of p-bits have been demon-

strated, and interconnected into what may be considered a cyber-physical architec-

ture. These nanodevice based implementations offer advantages in area (300× or

more) and energy (10× or more), however, realizing scaled p-computers using these

nanodevices is difficult at present.

In this chapter we present a digital, tiled FPGA based implementation of large

p-circuits using a weighted p-bit structure which combines the functionality of Eq. 1.1

and Eq. 1.2 into a single composite unit where each weighted p-bit is a CMOS based

tunable random number generator with its own local CMOS based synapse that

weights the outputs of other such weighted p-bits in the p-circuit. The specific 4× 4

p-bit tile can map any n2 × n2 [J ] matrix. This 4×4 array can support a fully

connected reciprocal network.

One significant difference between the approach present in this chapter is the

clocked or sequential operation of our weighted p-bits. This is different from the

autonomous p-circuits demonstrated in previous chapters, in which the serial updating

of p-bits came naturally due to the asynchronous operation of p-bits. To do so, we use

https://ieeexplore.ieee.org/abstract/document/8515266
https://ieeexplore.ieee.org/abstract/document/8515266
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within a tile, a sequencer that produces a set of enable signals for each weighted p-bit

in the 4×4 tile. As noted in the introduction, it is envisioned that large scale p-circuits

would greatly benefit from autonomous operation, as opposed to the clocked mode

of operation presented here. In this chapter we compose our larger p-circuits using

these smaller 4× 4 tiles of weighted p-bits and interconnect the tiles using “directed”

connections. This approach has been further improved by others [54] who introduced

into these weighted p-bits the autonomous operation by adding an “attempt” logic

module to the tunable random number generator sub-module of the weighted p-bit.

The organization of this chapter is as follows: In Section 5.2 we describe the

FPGA implementation of the weighted p-bit. In Section 5.3 we demonstrate examples

of p-circuits realizing invertible Boolean logic starting from simple Boolean gates

that are then interconnected to construct an N-bit invertible Ripple Carry Adder in

Section 5.3.3 and a small instance solver for the NP-complete Subset Sum Problem

in Section 5.3.4.

5.2 Weighted p-bit

Fig. 5.1 shows the block diagram of an FPGA implementation of a weighted p-bit.

There are two major sub-blocks of the weighted p-bit: (a) The weight matrix which

implements Eq. 1.2 and (b) the tunable RNG which implements Eq. 1.1. We describe

both components below.

5.2.1 Weight Matrix

Each weighted p-bit can take the outputs of others and weight them according to

the interconnect matrix [J ]. This is done by every weighted p-bit locally using a weight

matrix block that takes the ith row of the [J ] matrix and stores it in registers local
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to the weighted p-bit along with the ith entry of the self-bias vector, {h}. The local

presence of these registers allows a compact implementation of Eq. 1.1-1.2 in a single

unit. These registers can also be made user accessible, however in our demonstration

this functionality is not needed since all our [J ] and {h} entries are calculated offline

without any online learning [55]. Moreover, the examples discussed in this paper do

not make use of “annealing” [52,54], which would also require user accessibility.

Fixed point arithmetic: To perform all arithmetic operations in a weighted

p-bit, we use a fixed point notation of s[x ][2], where integer x is chosen based on the

requirements of the p-circuit. This allows a range of −|2x| to (2x − 1) for the integer

part. For example, the [J ] and {h} matrices used for the Full Adder shown in Fig. 5.8

use weights that require s[4][2] while for the AND gate shown in Fig. 5.6, the use of

s[3][2] is sufficient. In general, [J ] and {h} registers allow different problems to be

mapped onto the system.

Thresholding: Given that each weighted p-bit has multiple inputs, the worst case

for the weighted sum I0(Jm+h) can exceed the allowed input range of s[x][2] notation

or the allowed input range of the Activation Function, which uses the output of the

weighted sum block to calculate tanh() as explained in the subsequent subsection.

To prevent this, an overflow detection and numerical clamping system is used that

compare the bit extended result from the Sum block to the maximum and minimum

allowed numbers for the Activation Function. The result of the sum is clamped to the

the maximum or the minimum number that can be read by the Activation Function.

For example, the s[4][2] notation has a maximum and minimum limit of 15.75 and

-16, however the input of the lookup table for the Activation Function need not be

any less than -8 and any greater than 7.75 as shown in (Fig. 5.1).

MUX: A multiplexer is used to perform both the thresholding and clamping

of weighted p-bits (Fig. 5.1). Table 5.1 shows the truth table of the multiplexer.
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Fig. 5.1. Weighted p-bit. A weighted p-bit consists of two major subblocks, a
Weight Matrix and a Tunable RNG implementing Eq. 1.2 and Eq. 1.1 as a composite
unit. The weight matrix implements one column of Eq. 1.2 and adds overflow protec-
tion and clamping capabilities to the weighted p-bit while the tunable RNG subblock
implements Eq. 1.1 whose terminal characteristics are further shown in Fig. 5.2. See
text for a detailed description.

Four signals are used as inputs, “S(Select)”, which is high if the weighted p-bit is

to be clamped to the “C(Clamp)” signal. The other two are the outputs of signed

comparison between the Sum and the maximum/minimum numbers to be passed on

to the Activation Function.

5.2.2 Tunable random number generator

The output of the weight matrix is applied as input to the tunable RNG. Fig. 5.2

shows the average time characteristics of the tunable RNG block. As shown in the
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inset of Fig. 5.2, when the input Ii is 0, the mi randomly fluctuates between 0 and 1

as a function of time, leading to a long time average of 0.5. As the applied input is

increased above (below) 0, the average increases (decreases) and saturates to 1 (-1).

The tunable randomness allows weighted p-bits to become correlated with each other.

We describe the sub-modules of the tunable RNG block below.

Activation Function: We use lookup tables (LUT) to implement the tanh()

function. The domain of the tanh() is (−∞,+∞) and its range is (−1, 1). To allow

a comparison between the output of the pseudo random number generator and that

of the LUT, we first transform tanh() to z = (tanh + 1)/2 and then use a s[0][31] bit

fixed-point representation, where 0 represents the integer part and 31 represents the

fractional part. We choose an s[3][2] representation for the input of the LUT, which

translates to the interval (−8, 7.75) with a resolution of 0.25 between successive data

points. Several methods of implementing sigmoid like functions have been studied [56]

and lookup tables are naturally suited for implementation in FPGAs. The use of

lookup tables will result in an approximation error. Ref. [56] looks at the average

and the maximum errors for various approximation methods. For the lookup table

an error arises due to the difference in absolute real number value of tanh and its

Table 5.1. Truth Table for the weight matrix multiplexer

S (Select) (C) Clamp IIN > maxtanh IIN < mintanh Output

(4) (3) (2) (1)

0 x 0 0 IIN

0 x 0 1 mintanh

0 x 1 0 maxtanh

1 0 x x mintanh

1 1 x x maxtanh
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truncated representation which is shown in Ref. [56] (Eq. 9) as Etrunmax = 2−(b+1) for

a fixed point representation of s[a][b].

Pseudo-random number generation: We use a 32-bit Linear feedback shift

register (LFSR) with an XNOR feedback to the first register using taps from 32, 22, 2

and 1 position in the LFSR [57]. Given a seed value, this produces a maximal length

pseudo-random stream of size 232− 1 with the all 1’s being the only state that is not

part of the stream. It is important to note that each weighted p-bit in a p-circuit must

have a unique seed value, otherwise the p-bits may have unintentional strong correla-

tions resulting in incorrect system operation. In this paper, the use of more complex

pseudo-RNGs were avoided due to the complexity of implementation and size. In

practice, LFSR based pseudo-RNG worked well and are naturally suited for digital

implementation. The LFSR provides the same functionality as the s-MTJ in the p-

bit presented in chapter. 3, with two important distinctions. First, the randomness

here is pseudo-randomness and of significantly lower quality. Secondly, thousands of

transistors are now needed to replace the s-MTJ, but do give the advantage of digital

accuracy as opposed to the analog output of s-MTJs.

Comparator: A 32-bit comparator compares the outputs of the activation Func-

tion and the pseudo random number generator and produces 0 or 1 state at the output,

as shown in the inset of Fig. 5.2.

5.2.3 System Tile

Serial updating: Our p-circuits within a tile are similar to reciprocal networks

and in general reciprocal networks require all p-bits to be updated sequentially [58].

To ensure this requirement is met, a “sequencer” is present in each tile which generates

an Enable signal for every p-bit in the p-circuit, ensuring no two p-bits are active

simultaneously. At any given point in time, only one of these enable signals is high
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while all others are kept low, allowing only one p-bit to update. An AND gate (as

implemented here) has 3 p-bits with each p-bit requiring 2 clock cycles for a complete

update. To help manage timing constraints within the FPGA, a gap of 1 clock cycle is

added between adjacent Enable signals. In this case the update order is (A→ B → C)

but this sequence itself could have been randomized at each iteration as a method

to avoid unwanted correlations due to the update order. In general, the updating

sequence could also influence the average time it takes for the p-circuit to settle to its

steady-state, but this is not discussed further. A specific example which illustrates

the connectivity within a tile ( such as the 4× 4 shown in Fig. 5.3) is shown in Fig.

5.5, with all the connections presented.

Mapping problems Another important aspect of the system tile is to allow

mapping of different problems [59] [60]. In this chapter we demonstrate simple boolean

gates such as an AND gate and a Full Adder which require 3 and 5 (or 14) p-bits for
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functioning. For every problem there is a necessary requirement of serial updating

which is fulfilled using the sequencer present within a tile, but larger problems such

as the 32-bit Ripple Carry Adder can be implemented by cascading system tiles that

implement smaller p-circuits. This cascading in a parallel manner results in a serial-

parallel architecture. The presence of this serial-parallel architecture preserves the

invertibility of the boolean gates all the while allowing a speed up as the problems

are scaled. The ideal size of a system tile is dictated by the maximum network size of

coupled p-bits which require serial updating. Note that if the network size is larger

than the tile size, multiple tiles can be joined using minor graph embedding [59] [60],

though with some trade-offs. For example a p-circuit that requires 5 p-bits with p-

bits being updated serially, needs only a system tile of size 5, not any larger. Many

such 5 p-bit systems tiles can be put together to build a larger instance of the same

problem. However, note that it is also possible that some problems would require all

p-bits to be updated serially, in which case the entire problem can only be mapped

onto a single system tile. Note that in such a case the solution will inherently be

slower in a synchronous implementation, since the time for a complete update of a

system tile increases linearly with the number of p-bits. For example, the AND gate

presented in the section III-A needs 3 × (2 + 1) clock cycles for a complete update,

while the Full Adder requires 5/14 × (2 + 1) clock cycles (since we present a 5 and

a 14 p-bit Full Adder design) for a complete update. On the other hand, the 32-bit

Ripple Carry Adder presented in the section III-C requires the same (5, 14)× (2 + 1)

clock cycles (depending on which Full Adder design is used) for an update since it

is using 32 individual Full Adders connected in parallel. In general, the size of the

system tile and the speed of one complete update depend on the details of how the

problem is mapped.
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allows each of the 16 p-bits to be updated sequentially for proper system operation.
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to construct larger p-circuits.

Interconnecting System tiles For certain problems, scaling to larger instances

will be possible by interconnecting system tiles. The Ripple Carry Adder and the

Subset Sum solver implemented in this chapter are two such examples where Full

Adders realized within a system tile are interconnected to form larger more complex

systems. In such problems, the system tiles need to be connected in a “directed”

manner where the strength of the connection can be manipulated. For example in

the 32-bit RCA, the Carry out of a Full Adder is connected to the Carry In of the

proceeding Full Adder. This connection can be done via the following
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1. The Select and Clamp signals shown in Fig. 5.1. For example, for the 32-bit

Adder one could Clamp the Select line of all Carry-in p-bits and clamp them

to the Carry-out line from the preceding Adder with the exception of the First

Full Adder which has its Carry-in clamped to 0.

2. By the mC terminal. This terminal allows the output of a p-bit to be weighted

by an interconnect strength hC such that when hC →∞ the p-bit is effectively

cloned to the signal coming into mC , while for hC → 0, the signal mC has no

effect on the p-bit operation. Note that hC →∞ is the same as using the Select

and Clamp signal as presented previously.

5.2.4 FPGA

I/O Architecture for FPGA: We use the Xilinx Kintex ultrascale XCKU040-

1FBVA676 FPGA. The Xilinx Vivado Design Suite was used to synthesize and imple-

ment the Verilog RTL for the FPGA. As shown in Fig. 5.4, I/O operations with the

p-circuits was accomplished by memory-mapping the p-circuits using AXI peripheral

logic. Once wrapped, a number of standard interfaces can be used to control and

extract data from the FPGA. Herein, we used a standard UART connection coupled

to a Xilinx MicroBlaze softcore processor. For simplicity, we targeted a base oper-

ating frequency of 100 MHz for the design, as the principle objective was to explore

invertible logic using p-circuits. For high-performance boolean gates, we believe an

optimized CMOS design would be more appropriate, however, since there is no equiv-

alent of invertible Boolean logic in CMOS, we believe that the real application space

for p-circuits lies in this domain. Table 5.2 presents a summary of resource utilization

of the various designs that have been implemented in this paper.
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Fig. 5.4. I/O Architecture for FPGA. We communicate with the input and
output terminals of weighted p-bits using an I/O architecture whose block diagram
is shown above. Any p-circuit (tile or collection of tiles) can be converted into an
AXI (universal serial bus architecture) peripheral, which can then communicate with
a computer via a MicroBlaze processor that allows the collection of data from p-
circuits.

Table 5.2. FPGA resource utilization of the p-circuits that have been implemented
in this paper.

Total Slice Slice

Weighted p-bits LUTs Registers

Kintex Ultrascale 242400 484800

XCKU040-1FBVA676

Tunable RNG 1 42 33

AND Gate 3 156 123

Full Adder 14 1345 586

15-bit SSP problem 155 14931 7083

32-bit Ripple Carry Adder 434 38814 18071
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whose [J] matrix is obtained from Ref. [12]. A sequencer circuit is used to force an
updating sequence of (A→ B→ C).

5.3 Results

5.3.1 AND Gate

Fig.5.5 shows the block diagram of an AND gate that is implemented using 3

p-bits with each p-bit having two inputs. The weighting matrices [J] and {h} are

from Ref. [12] and shown below:

JAND =



A B C

0 −1 2

−1 0 2

2 2 0

, hT =

(
1 1 −2

)
(5.1)
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The p-circuit architecture of Ref. [7] forces mi to be bipolar, i.e. mi ∈ {1,−1}. It

is more convenient to work with a binary representation of 1 and 0, i. e mi ∈ {0, 1}, in

the FPGA which requires that the [J ] and {h} matrices be mapped to binary bases.

This can be accomplished by the following transformation: Jbinary = 2× Jbipolar and

hbinary = hbipolar − Jbipolar1, where 1 is an all ones vector of size N × 1.

Floating mode (AND): Fig. 5.6 shows the operation of an AND gate with all

weighted p-bits left floating, where the states [ABC] corresponding to the truth table

(A ∩ B = C) of an AND gate are visited with high probability. Note that this is a

unique property of p-circuits with no counterpart in a digital CMOS implementation

of an AND gate. In reciprocal networks with symmetric [J ] matrices, an energy

functional E for the state {m} = [mi, · · · ,mN ] can be defined as [7, 58]:

E({m}) = −I0
{∑

i,j

1

2
Jijmimj +

∑
i

himi

}
(5.2)

Then, Boltzmann Law describes the steady state probabilities for each configura-

tion {m} according to,

P ({m}) =
exp

(
− E({m})

)∑
i,j exp

(
− E({m})

) (5.3)

Fig. 5.6 shows the steady state statistics of the AND gate in excellent agreement

with the Boltzmann law for a total of 106 samples.

Forward / Invertible mode (AND): Fig. 5.7(a) shows the statistics for the

system when both inputs A and B have been clamped to 1 through the Select and

Clamp signals that control the self-bias vector {h}. In this case, for the chosen I0, the

output C mostly stays high (1) which means the circuit is operating like a standard

digital AND gate. The output bits (C) can also be clamped and in this case the inputs

(A,B) fluctuate among combinations consistent with the clamped output. Fig. 5.7(b)
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Fig. 5.6. Floating mode (AND). (a) Time dependent outputs of [ABC] for the
AND gate are shown as a function of samples collected from the serial port of the
FPGA. (b) The weighted p-bits are correlated and when left floating they reproduce
the truth table of the AND Gate as shown by the time-averaged statistics which are
collected using 106 samples. The FPGA results are in excellent agreement with the
Boltzmann Law of Eq. 5.3.

shows the long time statistics of the system when the output C has been clamped

to 0. It can be seen that the system spends an equal amount of time visiting three

possible combinations of (A,B), namely (0,0), (0,1) and (1,0). This basic example
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Fig. 5.7. Forward / Invertible mode (AND). Any weighted p-bit of the AND
gate, input (A, B) or output (C) can be clamped using the bias vector {h} through
the Select and Clamp signals. (a) shows the long time statistics when the inputs A
and B have been clamped to 1, while (b) shows the long time statistics when the
output C has been clamped to 0. In both cases 106 samples have been used.

can be imagined to be 1-bit factorization of an AND gate where the factors of the

product 0 are identified.

5.3.2 Full Adder

A Full Adder was implemented as a p-circuit following the architecture of Ref. [7].

In Ref. [7] 14 p-bits are used to build a Full Adder, of which only 5 constitute in-

put/output terminals, namely CIN,A,B, Sum and COUT. The remaining 9 are known
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as “auxiliary” p-bits. In this paper, we improve the 14 p-bit implementation of the

invertible Full Adder (FA) in Ref. [7] and implement the same functionality using 5

p-bits. This is achieved by first noting that the first half of the truth table is com-

plementary to the second half for the FA (Fig 8). The first 4 lines in the truth table

are then turned into an orthonormal set by a Gram-Schmidt process and a [J] matrix

is obtained using Eq. 12 in Ref. [7] which is finally rounded to integer values, with

diagonal entries replaced by zeroes

JFA =



Cin B A S Cout

0 −1 −1 1 2

−1 0 −1 1 2

−1 −1 0 1 2

1 1 1 0 −2

2 2 2 −2 0


(5.4)

These designs for the Full Adder fit within the 4× 4 tiles that were defined previ-

ously with less packing efficiency, but since the design is re-configurable, appropriate

changes can be made at a relatively low cost by scaling the tile size up or down.

Similar to the AND gate we convert the weight matrix into their binary equivalents

using the transformation shown earlier. A summary of resource utilization for the 14

p-bit Full adder is given in Table 5.2.

Fig. 5.8 shows the state of a 14 p-bit Full Adder when all the p-bits have been

left floating. The truth table of the Full Adder is highlighted in floating mode and

can be seen by the statistics shown in Fig. 5.8 that are collected using 106 samples,

once again in excellent agreement with the Boltzmann Law. Due to its sequential

updating, this Full Adder design requires 14× [2 + 1(gap)] = 42 clock cycles for one

complete update. The Full Adder is the largest p-circuit that we have built within
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Fig. 5.8. Floating mode Full Adder. Long time statistics of the 14 weighted
p-bit Full Adder using 106 samples when all the terminals have been left floating are
shown in the figure above. Similar to the AND gate, the Full Adder reproduces its
truth table when all p-bits are left floating. Results show excellent agreement with
Boltzmann Law (Eq. 5.3).

a 4 × 4 tile, since each weighted p-bit within the Full Adder needs to be updated

sequentially. In the next section we use this 14 p-bit Full Adder to construct a N-bit

Ripple Carry Adder, while in section III-D we use a 5-bit Full Adder to solve a small

instance of the SSP.

5.3.3 N-bit Ripple Carry Adders

Unlike the reciprocal networks (Jij = Jji) we have shown so far, we now construct

a directed p-circuit by cascading the symmetric Full Adders in a parallel architecture

without any global sequencer circuit. This is very different from the AND gate and

Full Adder presented in sections III-A and III-B which are designed within a 4 × 4

tile, where each p-bit is updated sequentially. This serial-parallel update scheme

significantly speeds up convergence time.
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Fig. 5.9a shows the block diagram of multiple tiles, each designed as a Full Adder,

that are interconnected in a directed way to form an N-bit Ripple Carry Adder (RCA).

What makes the RCA directed is the fact that the carry out bit of the Full Adders

is connected only from the least significant bit to the most significant bit but not

vice versa. Note that this constitutes a significant difference from the AND and Full

Adder because the Boltzmann Law is not applicable to this system anymore.

In this design we chose a fully directed connection between Full Adders. However,

in general, tiles can be interconnected via an adjustable connection that can be par-

tially (or fully) bidirectional using the terminal mc shown in Fig. 5.1. This concept

of directionality is key to building larger p-circuits as shown in Ref. [7] where a strong

degree of bi-directional interconnections can lead to erroneous results unless a very

large number of time samples are obtained.

The system shown Fig. 5.9a in general produces a sum (S) consistent when the

inputs A, B are clamped to an N-bit number functioning as an adder. However,

the system can also function as a subtractor when an N-bit input (A or B) and the

sum are clamped to a given number, even though the system is no longer completely

bidirectional. Fig. 5.9b shows the long time statistics for the N-bit Ripple Carry Adder

when all N-bit terminals (S=sum, A and B) have been left floating and, remarkably,

the system correlates in such a manner to select a single state (S−A−B=0) with

≈ 20% probability out of 105 samples. This feature can be used to solve hard problems

such as the 3-sum problem that is concerned with finding a set of inputs (A, B, C)

that add up to a given sum S [61]. With minor modifications, the invertible Full

Adders could also be used to solve the Subset Sum Problem, using similar adder

architectures shown in [62]. A digital implementation such as our invertible N-bit

adder could be used to solve such problems in hardware very efficiently.



90

The N-bit Ripple Carry Adder presented in Fig. 5.9 is not a true sequentially

updated machine because while each adder takes 42 clock cycles to produce one com-

plete update, the adders themselves do not wait 42×N for one complete update. In

this way the N-bit Adder presented in Fig. 5.9 is a serial-parallel architecture differ-

ent from the serially updated N-bit adders presented in Ref. [7]. This serial-parallel

update for the N-bit RCA seems to operate accurately for the deterministic update

sequence we chose, but it is not clear if this approach would be generally applicable

for any problem, which is beyond the scope of this paper. While we do not give a

quantitative analysis of the speed up from this serial-parallel architecture, we note

that in the case of the invertible N-bit RCA, this serial-parallel architecture combined

with fast clock speeds of the FPGA should allow considerably faster operation of this

large scale p-circuit as compared to computer simulations.

5.3.4 Subset Sum Problem

In this subsection we show how the Full Adder block and the serial-parallel archi-

tecture of the N-bit Ripple Carry Adder can be used to solve a small instance of the

NP-complete Subset Sum Problem (SSP) [61]. In this problem, a set G with a finite

number of positive numbers is defined, and from this set the problem is to determine

whether there exists a subset S ′ such that S ′ ⊆ G has elements which sum to a specific

target S. Figure. 5.10 shows a circuit that can be programmed to select a 17-bit sum

S, while the 15-bit inputs are constrained to particular sets. In the example shown

in Fig.5.10, the sum S is set to 3584 while the inputs A, B and C are constrained

to the sets {0, 512}, {0, 512} and {0, 512} respectively. Note that in Fig. 5.10(b) we

show terminals hXX for ease of visualization where h = −V means that the select

and clamp lines are connected to 1 and 0 respectively, while h = +V means that the

select and clamp lines are connected to 1 and 1 respectively, and h = 0 means that
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Fig. 5.9. N-bit Ripple Carry Adder. (a) Reciprocal networks of individual tiles
programmed as Full Adders are interconnected in a directed manner to construct an
N-bit Ripple Carry Adder (RCA). (b) The RCA is left floating and the long time
statistics of the N-bit sum (S) and the inputs (A, B) get correlated in such a way to
make a single state (inset) S−A−B = 0 appear with ≈ 20% probability out of 105

samples among billions of states (±232), as can be seen in the x-axis. Only ≈ 1500
samples are shown for clarity.

the select line is connected to 0. One striking feature of this circuit is that the flow of

information in the structure shown in Fig. 5.10(a) is upwards, i.e. information flows

from the Sum to inputs A and B.
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Fig. 5.10. Subset Sum Problem. (a) An adder that adds three 15-bit numbers
A,B and C to give a 17-bit Sum S. The Sum S is first clamped to a particular number
which in this case is 3584. The inputs A, B and C are constrained to particular sets
using a scheme shown in (b) for each bit of the inputs. Note how the connections
from the bottom layer of adders are directed where the sum is clamped to the top layer
where the inputs A and B are added. In this example A is {0, 512}, B is {0, 1024},
and C is {0, 2048}. (c) shows 300 time samples taken from a data sequence of 105

from which two values of 3584 and 1536 appear more then the other 6 possible states.
(d) shows the histogram corresponding to 105 samples.

The inputs can be constrained to sets by clamping certain bits to 0 or 1 depending

on the choice of the set. For the input A used in Fig. 5.10, all the bits except
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the 9th from the LSB side are clamped to 0. Clamping the bits hence allows the

inputs to be constrained to particular sets, forcing the circuit to look within a certain

configuration consistent with the members of the set. Fig. 5.10(c) shows 300 time

samples of A+B+C taken from a data sequence of 105 when the Sum is clamped to

3584. In this case where the correct inputs are A=512, B=1024, and C=2048, it can

be seen that two states one correct 3584 and another incorrect 1536 appear closer to

each other and far removed from the other 6 possible combinations that the system

could be in. The relative probabilities of different peaks in the solution (such as 1536

and 3584) is a function of the inverse pseudo-temperature (I0 in Eq. 4) and could

be made larger by increasing this value. However, in practice this could cause the

system to get stuck in a meta-stable state for a long time. Therefore, for this example

we have chosen a relatively small I0 = 1 that does not create a large difference in

probabilities. Fig. 5.10(d) shows the statistics for the entire 105 samples from which

the state 3584 has a higher peak than 1536. We note that this particular example of

the SSP is easily solvable and does not constitute a hard instance. Our main purpose

is to illustrate how invertible Full Adders can be interconnected to design a hardware

solver for this problem, similar in spirit to the approach described in Ref. [62].



94

6. CONCLUSION

6.1 Summary

Fig. 6.1 shows a microcontroller based emulation of p-bits where the inputs and

outputs are actual voltages and the time constants τN (Retention time) and τinter

(Interconnect delay) are user programmable. This allowed us to study the interplay

between the time constants and develop a hardware platform for future nano-devices.

We constructed large circuits with upto 48 p-bits working in invertible mode even

in the presence of retention time variations. One striking finding of this work was

how asynchronous operation of p-bits naturally allowed for serial updating of p-bits;

a well-established requirement in purely software implementations.
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Fig. 6.1. Microcontroller based p-bits. (a) 4-bit Invertible Adder built using 3
full adders and a half adder using 48 total p-bits, with the retention time of p-bits
distributed from 120-28 ms. (b) shows the long time average statistics when the sum
is clamped to 23.
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Fig. 6.2(a) shows a proof-of-concept probabilistic computer built using a slight

modification to market ready STT-MRAM. The energy barries ∆E in STT-MRAM

based memory devices is lowered by reducing the magnetic anisotropy of the free layer

which leads to a stochastic MTJ fluctuating between RP and RAP . This proof-of-

concept demonstration addresses many important questions such as how the system

copes with parameter variations among MTJs and the area/energy improvements

over CMOS based implementations. Fig. 6.2(b) shows a table top spintronics based

probabilistic computer which is used to solve an integer factorization problem shown

in c).
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Fig. 6.2. Probabilistic computing using STT-MRAM devices. (a) shows an
electrical schematic of a experimental p-bit which uses 40-60 nm stochastic MTJs.
(b) shows a photograph of a printed circuit board which uses 8 p-bits to realize to a
probabilistic computer. (c) shows integer factorization of 161 = 23× 7

Fig. 6.3 shows a lower level implementation of a p-bit, where a multiplexer is

used as a drop in replacement for a stochastic MTJ. This implementation could

be used to study various interesting phenomenons such as the effect of pinning in

stochastic MTJs and variations in resistances among MTJs. Fig. 6.3(b) shows an

integer factorization problem cast as an optimization problem, where a cost function

corresponding to the number 35 was minimized to obtain two factors X and Y.
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Fig. 6.3. Analog multiplexer based p-bits. (a) shows an analog multiplexer
that functions as a drop in replacement for an MTJ. (b) shows a 4 bit probabilistic
computer which is used to factorize 35 using 4 p-bits.

While nano-device based implementations offer significant improvements in area

and energy, scaled implementations are not possible currently. To realize large scale

probabilistic computers one could utilize off the shelf FPGA technology. Fig. 6.4(a)

shows a p-bit realized on an FPGA and Fig. 6.4(b) shows a 32-bit invertible adder

which uses approximately 500 of such p-bits. This FPGA based implementation can

be used to study large scale problems in present while we work towards nano-device

based implementations of stochastic computers.
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FPGA based p-bit. A 32-bit invertible adder was built using 500 p-bits as shown in
(b).

6.2 Future Work

In this thesis we have presented an autonomous probabilistic computer. At the

heart of this demonstration is the probabilistic bit. A classical resistance fluctuating

back and forth between two states. These fluctuations have been introduced naturally

by using an unstable stochastic MTJ; a functionality which would otherwise require

thousands of transistors. MRAM based memory technology is currently available at

the Gb density levels. Now assuming a power budget of 10 W for p-bits, only a

million p-bits can be realized on a chip, which is 3 orders of magnitude smaller in

density than memory chips. Firstly, improvements in the p-bit design are needed to

ensure scaling of p-computers. Secondly, decreasing the retention time of p-bits would

increase the number of effective flips per second of the p-computer, greatly improving

speed.
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A. EXPERIMENTAL DATA

A.1 Experimental data for s-MTJ based p-computer and its emulation

In this section we list down all of the experimental data for the s-MTJ based

p-computer and its low-level emulation using analog multiplexors. The data was

recorded in MATLAB readable format via the Benchvue software suite which connects

directly to the Keysight Oscilloscope. All experimental data has been packed with

MATLAB wrapper files for easy viewing and comments have been added to facilitate

the process.

Nature experimental data
Sub-Folder Experiment MATLAB File

Figures 4pbits Factorizing 35 and 49 (Fig. 3.3) Tomography.m
Figures 6pbits Factorizing 161 and 213 (Fig. 3.3) Tomography.m
Figures 8pbits Factorizing 705 and 945 (Fig. 3.3) Tomography.m

Figures Sigmoid Sigmoid (Fig. 3.2) Sigmoid.m
Figures ANDgate AND Gate (Fig. 3.13) BenchVueReading.m

Analog multiplexer experimental data
Sub-Folder Experiment MATLAB File

Figures 4pbits Factorizing 35 and 49 (Fig. 4.6) Tomography.m
Figures 6pbits Factorizing 161 (Fig. 4.8) Tomography 4plus2.m
Figures 8pbits Factorizing 945 (Fig. 4.8) Tomography 5plus3.m

Figures Sigmoid Sigmoid (Fig. 4.2) Sigmoid.m

A.2 Arduino Sketches for synapse

A folder titled “Arduino files” has been provided along with the experimental data.

To use the sketches for the synapse, appropriate libraries for the micro-controller needs

to added which have been provided within the folder “Arduino files”
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Working with digital-to-analog converters: The DACs used in this thesis

either used the I2C or the SPI protocol. Libraries for each of the two types is provided

for use with the Arduino Mega2560 microcontroller. Consider for example using the

MAXIM 5825 DAC which communicates over the I2C protocol.

• System initialization: Each DAC needs to be addressed by a physical address

which is set physically using jumpers on the IC itself.

• Setting a reference voltage: Each DAC needs to have a reference voltage

which is used for setting analog voltages. In our experiments we always use the

internal references available on the DAC since they are low noise signals.

• Setting the analog voltages: This is done by following the byte sequence

listed in the programming specifications of the particular DAC being used. For

example, to write a voltage of 2.5 V to channel 4 of the DAC whose address is

set at “0x20”, we could send the following 4 bytes over the I2C interface: byte1

[0010000], byte2 [10110011], byte3 [10000000], byte4 [00000000].

Libraries were written to internalize these operations, allowing the user to simply

set voltages using a single write command that only uses the channel number and

voltage for operation. These have been provided as part of the data files.
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