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ABSTRACT 

Imaging-based analysis of developmental processes are crucial to understand the mechanisms 

controlling plant and animal development. In vertebrate embryos such as the zebrafish embryo, 

nuclei segmentation plays an important role to detect and quantify nuclei over space and time. 

However, limitations of the image quality and segmentation methods may affect the segmentation 

performance. In plant including studies on Arabidopsis epidermis growth, cellular shape change 

dictates organ size control and growth behavior, and quantitative image analysis of dynamics cell 

patterning is needed to link the cause and effect between cells and organs. Here we provide a series 

of new quantitative biological imaging methods a series of new quantitative biological imaging 

methods and tools including wavelet-based segmentation method in zebrafish embryo 

development studies and convex hull approach for quantitative shape analyses of lobed plant cells. 

 

Identification of individual cells in tissues, organs, and in various developing systems is a well-

studied problem because it is an essential part of objectively analyzing quantitative images in 

numerous biological contexts.  In this paper we present a size dependent wavelet-based 

segmentation method that provides robust segmentation without any preprocessing, filtering or 

fine-tuning steps, and is robust to the signal-to-noise ratio (SNR). The program separates 

overlapping nuclei, identifies cell cycle states and minimizes intensity attenuation in object 

identification. The wavelet-based methods presented herein achieves robust segmentation results 

with respect to True Positive rate, Precision, and segmentation accuracy compared with other 

commonly used methods. We applied the segmentation program to Zebrafish embryonic 

development IN TOTO quantification and developed an automatic interactive imaging analysis 

platform named WaveletSEG, that integrates nuclei segmentation, image registration, and nuclei 

shape analysis. A set of additional functions we developed include a 3D ground truth annotation 

tool, a synthetic image generator, a segmented training datasets export tool, and data visualization 

interfaces are also incorporated in WaveletSEG for additional data analysis and data validation.  

 

In addition to our work in Zebrafish, we developed image analysis tools for quantitative studies of 

cell-to-organ in plants. Given the importance of the epidermis and this particular cell type for leaf 

expansion, there is a strong need to understand how pavement cells morph from a simple 
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polyhedral shape into highly lobed and interdigitated cells. Currently, it is still unclear how and 

when patterns of lobing are initiated in pavement cells, and one major technological bottleneck to 

address the problem is the lack of a robust and objective methodology to identify and track lobing 

events during the transition from simple cell geometry to lobed cells. We develop a convex-hull-

based algorithm termed LobeFinder to identify lobes, quantify geometric properties, and create a 

useful graphical output for further analysis. The algorithm is validated against manually curated 

cell images of pavement cells of widely varying sizes and shapes. The ability to objectively count 

and detect new lobe initiation events provides an improved quantitative framework to analyze 

mutant phenotypes, detect symmetry-breaking events in time-lapse image data, and quantify the 

time-dependent correlation between cell shape change and intracellular factors that may play a role 

in the morphogenesis process. 
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 WAVELET-BASED SEGMENTATION METHOD 

1.1 Introduction 

In developmental biology, quantification of cell morphology, tissue patterning, and gene 

expression within a developing embryo at different stages provides detailed information that drives 

our understanding of differentiation and the function of signaling networks driving cell fate 

specification.  Several nuclei segmentation methods have been developed to track nuclei position 

in fluorescent images and extract the spatio-temporal expression of each nuclei [1-4]. Most of the 

nuclei segmentation algorithms need image pre-processing steps before segmentation, and the 

settings in pre-processing are highly dependent on the microscopy imaging environment [5]. 

Global and adaptive thresholding segmentation methods are the simplest and the most common 

nuclei segmentation methods that use single or multiple threshold values on image histogram to 

distinguish between an object and background [6-7]. 

 

However, most real images lack significant thresholding points or low contrast foreground and 

background8. The Watershed method is another common segmentation method also capable of 

dividing overlapping nuclei [9-10]. Nearby pixels with similar features are classified topologically 

and defined as a catchment basin that are separated by a watershed ridge line from the adjacent 

catchment basin. Using the watershed method can divide overlapping objects, but may cause an 

over-cutting problem. Other methods such as active contour models (ACMs) [11-12], level-set [13] 

and graph cuts [14] are also applied in the field of nuclei segmentation. 

 

Various level-set and model-based methods have been developed for accurate embryo nuclei 

segmentation [15-17], although they are computationally expensive or require pre-knowledge [18]. 

To segment and track chromosome dynamics in the early Drosophila embryo, a fast level-set 

method was proposed [19].  A 3D level-set method was also applied to detect nuclei and mitotic 

chromosomes in Drosophila embryos [20]. A region-based active contour method was developed 

in 3D cell counting and segmentation of vertebrae in early embryogenesis [21]. Nuclei 

segmentation in large scale imaging such as whole mount embryo imaging, encounters a variety 

of challenges. Intensity attenuation effects due to absorption and scattering of fluorescent light in 
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deep layer specimens can lead to intensity decay and underestimates in the segmentation results 

[22]. Moreover, densely packed nuclei are often present in an embryo which requires overlapping 

nuclei detection strategies [23]. Wavelet transforms are common in signal processing and are 

applied in many fields where the method is used to isolate the object from a noisy signal. The 2D 

WTMM (2D wavelet transform modulus maxima) method was first introduced for multiscale edge 

detection and segmentation of regions of interest in cell nuclei [24-25] and CT detection [26].  

 

Several microscopy image analysis software packages have been established, such as ImageJ [27], 

Fiji [28], and instrument-bundled packages: ZEN and cellSens. However, commercial bundled 

packages lack flexibility and may lack affordable options for on-the-fly segmentation, and open 

source tools are either limited in specific applications, not robust in segmentation results, or not 

convenient to use. For nuclei segmentation tools, widely used software CellProfiler [29-30], 

provides pre-processing, object identification, and cell counting modules, but it is limited to only 

2D images. Additional related software includes Matlab toolbox OML that is capable of automatic 

cell segmentation. Spatzcells [31], FISH-quant [32] and MINS [33] are Matlab executable codes 

that can generate segmentation cell masks and spot recognition for fluorescent 2D or 3D images. 

LSDCAS (The Large Scale Digital Cell Analysis System) [34-35] provides the ability for live cell 

image segmentation and tracking of cell trajectories. RACE [36] was designed for automated 3D 

cell segmentation and cell reconstruction for embryos, based on a watershed segmentation 

approach that, in our hands is more sensitive to non-uniform of variable quality images (Table. 

1.1). 

 

In this chapter we present a wavelet-based automatic 3D nuclei segmentation method that is object 

size-dependent, robust to noise and intensity attenuation, and can divide overlapping nuclei. It 

contains six steps, including a 2D continuous wavelet transform, multi-scale object identification, 

3D alignment, first and second division steps and outlier removal.  We tested the model against 

manually curated 3D embryonic data and found that it has robust and stable segmentation 

performance with respect to True Positive Rate (TP rate), Precision and segmentation accuracy 

compared to other methods. We integrate wavelet-based nuclei segmentation, image registration, 

topology and geometry for structural analysis of the embryonic development on an automatic 

interactive analysis platform named WaveletSEG for embryological developmental studies in 
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Zebrafish. Additionally, we developed a 3D ground truth annotation tool, synthetic image 

generator, and a segmented training dataset export tool and data visualization interface for 

additional data analysis and data validation in WaveletSEG. We quantified 3D nuclei and intensity 

spatial distributions, topology features and shape classification results at 4.7, 5.7, and 6.5 hours 

post fertilization (hpf) Zebrafish using WaveletSEG. 

Table 1.1. Lists of nuclei segmentation embryonic imaging analysis tools. In this table, we 

compare the embryonic-analysis-related functionality of common nuclei segmentation embryonic 

imaging software.  

 

1.2 Results 

1.2.1 Overview of wavelet-based nuclei segmentation methods   

Most existing nuclei segmentation methods are based on pixel intensity thresholding or region 

growing methods after multiple imaging preprocessing steps such as smoothing, denoising or 

morphology filtering (Figure 1.1a). Preprocessing steps are crucial for most segmentation methods; 

hence, preprocessing types, settings and parameters vary depending on different microscopy types 

and operation, and professional knowledge is needed to set the parameters to obtain good enough 

image quality for segmentation [37]. Unlike many segmentation methods, the wavelet-based 

method has a strong ability to segment objects in noisy images without any preprocessing steps. 
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The method herein combines a 2D continuous wavelet transform (Figure 1.1b), and the only 

parameter needed for object determination is the wavelet scale factor determined by target object 

size, and no other preprocessing steps are needed.  

 

 

Figure 1.1. Comparison between threshold-based segmentation and wavelet-based 

segmentation methods. Preprocessing steps are crucial for most threshold-based segmentation 

methods and determine the quality of segmentation performance. Increased parameter number in 

preprocessing steps and segmentation method means the increased result complexity and 

decreased robustness. Wavelet-based segmentation we developed need no preprocessing step and 

need only one intrinsic parameter – object size such that we need no parameter fine tuning. The 

wavelet-based segmentation started from applying 2D continuous wavelet transform with 

appropriate scale factors, and identify object by comparing multi-scale identification. Unlike 

threshold-based segmentation which use threshold value to distinguish between fore and 

background, wavelet-based segmentation extract typical size peak from image which can 

overcome the intensity attenuation and robust to SNR. Red triangle symbol indicate parameters 

required for each step and may need parameter fine tuning. 

The idea of the wavelet-based nuclei segmentation approach for embryo quantification arose from 

the comparison of the elevation-like plots that form as level-sets from different scale factor wavelet 

coefficient matrices (Figure 1.2). Figure 1.2b shows the wavelet coefficient maps with scale factors 

matching the object size we want to identify. By comparing these maps, we find a similar contour 

pattern between wavelet coefficient scales. Other regions that are not object containing show 

discordance and randomness between these wavelet coefficient maps. Through comparison 
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between several wavelet coefficient maps, wavelet-based segmentation can easily distinguish the 

object region from the background in images and it can do this without any preprocessing or 

thresholding steps. The coincidence of objects between multiple wave numbers reduces the impact 

of intensity attenuation (Figure 1.3), and by selecting different wave number ranges, it is capable 

of both nuclei and RNA spot segmentation (Figure 1.4). 

 

 

Figure 1.2. Illustration of wavelet-based segmentation method in an optical section of a 

whole-mount zebrafish embryo. (a, a1-3) Whole-mount embryo z-slice nuclear DAPI-staining 

raw images of germ ring-stage (5.7 hpf) zebrafish and three red-boxed regions. Image data were 

acquired with a Zeiss LSM 800 confocal microscope with 20X water lens. (b, b1-3) Wavelet 

coefficient matrixes after applying 2D CWT on raw images in (a). The blue color corresponds to 

the negative coefficient value region, and the yellow color corresponds to the positive coefficient 

value region. 2D Mexican hat function was selected as the mother wavelet function. (c, c1-3) 2D 

segmentation masks (yellow regions) were obtained after applying multi-scale object identification 

on wavelet coefficient matrixes in (b). 
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Figure 1.3. Limitations for nuclei segmentation on whole embryo confocal imaging. (a) 

Nucleus with clear boundaries and high contrast (left) and nucleus with inhomogeneous 

background intensity and low contrast (right). (b) Whole zebrafish embryo z-slice nuclear DAPI 

staining with intensity attenuation effect and nuclei segmentation results using wavelet-based 

segmentation method (right). Green boundaries show nuclear segmentation masks, and nuclei with 

inhomogeneous intensity can be detected. 
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Figure 1.4. Nuclei segmentation and RNA segmentation results using wavelet-based 

segmentation method. (a) C.elegans developing embryo nuclear DAPI staining by light-sheet 

microscope with segmentation masks marked by green boundaries (b) Pancreatic Stem Cells on a 

Polystyrene substrate, (c) GFP-GOWT1 mouse stem cells, and (d)(e) Whole mount zebrafish 

embryo z-slice bmp2b mRNA expression at 5.7hpf, and bmp RNA spot segmentation results using 

wavelet-based segmentation method in different z planes(left and right). Insets: enlarged views of 

two while box regions. 

1.2.2 Overview of wavelet-based nuclei segmentation methods   

The six main steps of the wavelet-based nuclei segmentation method (Figure 1.5) are: (1) 

application of a 2D continuous wavelet transform (2D CWT), (2) multi-scale object identification, 

(3) 3D object alignment, (4) first round of nuclei division based on xy plane wavelet coefficients, 

(5) second division of nuclei based on z direction, and (6) deletion of outliers and small objects. 

In step one, a two-dimensional continuous wavelet transform is applied to each Z-stack slice of 

3D sections common as output from confocal imaging (Figure 1.5b). While a number of wavelet 

functions were tested, we find that the 2D Mexican hat function as the mother wavelet function 

provides the ideal function to resolve point-wise or nuclear-sized structures. The wavelet scale 

factor range applied after the transform is then based on the object size we wanted to identify. In 
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line with this, we designed an efficient multi-scale search algorithm that compares different scales 

of the CWT coefficients and groups shape-similar regions such as the nuclei masks based on 

contour line similarities in the CWT coefficients diagram (Figure 1.5c, and Figure 1.6).  Through 

the comparison between wavelet coefficient matrices over different scales we determined that a 

similarity index of 0.9 for between contour line similarity routinely identified nuclei without 

additional prepossessing or thresholding steps.  Regions that meet the criteria are masked and 

labeled as nuclei in each stack for further processing to identify nuclei properties including 

progression through the cell cycle.  

 

Figure 1.5. Overview of wavelet-based nuclei segmentation method. (a) Import 3D raw image 

files. (b) After importing 3D images, 2D continuous wavelet transform with appropriate wavelet 

scale factors are applying to each 2D z-stack. (c) 2D segmentation mask are obtained by applying 

multi-scale object identification to wavelet coefficient maps from previous step. (d) In 3D object 

alignment step, connected identified 2D masks from neighboring slices formed 3D foreground 

object. (e) First division step if more than one center or center shift on neighboring z slice wavelet 

coefficient maps. (f) Second division step in z direction if multiple centers found on yz or xz 

wavelet coefficient maps. (g) Delete 3D nuclei voxels smaller then nuclei size × 0.2. 
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Figure 1.6. Workflow of multi-scale object identification step in wavelet-based segmentation 

method. (a) Zebrafish embryo nuclear DAPI staining raw images (5.7hpf). We apply 2D 

continuous wavelet transform (2D CWT) on this raw image with three wavelet scale factors s1, s2, 

s3. (b) Three wavelet coefficient maps with wavelet scale factors s1, s2, s3. Contour color 

represents intensity of the corresponding wavelet coefficient. The green intensive contoured ridges 

region in three wavelet coefficient map are almost identify and can be correlated with nuclei region 

in raw image. Besides that, the spatial pattern of lower right part of three wavelet coefficient maps 

have significant differences and can be correlated with background region. (c) Local minimums 

were determined on three wavelet coefficients map after the H-minima transform. If local 

minimums appeared in the same positions on all wavelet coefficient maps, they were identified as 

potential nuclei peak locations and the corresponding zero-value cross sections are calculated. (d) 

In this step we calculated the 2D masks intersection over Union (IOU) of all zero-value cross 

sections from all wavelet coefficient maps. If the difference in cross section areas is less than 10%, 

they averaged and were identified as nuclei 2D masks. (e) The final segmentation mask after multi-

scale object identification step. 

 

Following 2D identification, nuclei are reconstructed by 3D object alignment that aligns 2D nuclei 

cross-sections to recreate 3D nuclei shapes by comparing consecutive nuclei segmentation results 

from the preceding step (Figure 1.5d). The method computes the intersection of the mask coverage 

area of the neighboring z-plane. If the intersection area among adjacent z-planes is greater than 
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80% and if the max intensity is not lower than 20% nuclei center intensity, it is inferred that the 

adjacent mask coverage area should belong to the same 3D nuclei object.  

 

In threshold and other segmentation approaches, a major challenge is errors in nuclei identification 

due to imaging conditions that lead to irregular or poor contrast boundaries or intensity attenuation 

that systematically distort measured fluorescence intensity. These factors compound in 3D and 

additional steps are needed for identification. First, the wavelet coefficient local minimum on each 

z-plane is determined because the spatial center of the object will produce a local minimum on the 

wavelet coefficient z-plane. If there is a shift in the wavelet coefficient local minimum on two 

consecutive z-planes and the shift distance is larger than 1/3 nuclei radius, this is indicative of two 

different nuclei objects, and it will be marked as likely belonging to different nuclei (Figure 1.5e, 

and Figure 1.7). For identification of potential separate, yet overlapping nuclei in the YZ-plane 

and XZ-plane a similar center point detection is used (Figure 1.5f and Figure 1.8). If multiple 

wavelet coefficient local minimum points are found on both the YZ-plane and the XZ-plane it is 

likely they come from two nearby nuclei. Lastly, noise or false positive nuclei after the additional 

segmentation are removed based on object size filtering (Figure 1.5g). 
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Figure 1.7. First division step based on wavelet coefficient center positions on z-slice of nuclei 

3D blob. (a) Five z-slice wavelet coefficient maps of segmented nuclei 3D blob from top (z = 7) 

to button (z = -1). Color represents intensity of the corresponding wavelet coefficient from positive 

value (yellow) to negative value (deep blue). Red cross marks the center position (local minimum 

position) on each wavelet coefficient map z-slice in 3D blob. Here the z value came from z axis of 

whole embryo before 3D rotation. (b) If there are more than one center positions found or the shift 

of the center positions between neighboring Z slices is bigger than nuclei radius, we assigned a 

new nuclei object by cutting the median line between two centers, or assigned new nuclei in the 

case of center displacement. In (a) we found two center position shift between z=5 to z=3 and z=1 

to z=-1, and marked using red arrow. So we divided the original 3D nuclei blob (left) into three 

nuclei 3D blobs (right) with three new nuclei centers (red dot) and displayed using different color. 

(c) Three examples show the 3D nuclei blobs after the first division step. Red box on the third 3D 

nuclei blob (right) shows the nuclei overlapping in z direction cannot be divided in the first division 

step. 
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Figure 1.8. Second division step in z direction and the summary of blob size distribution 

before and after division steps. (a) The 3D nuclei blob (left) shows the nuclei overlapping in z 

direction which didn’t divide appropriately in the first division step because there is no center 

position shift between neighboring Z slices. In the second division step, wavelet coefficient yz and 

xz plane are exanimated and search for center positions for every 3D nuclei. If two center positions 

are found on both yz and xz planes (center left and center right), original 3D nuclei blob will be 

divided into two new blobs from the middle plane of two center positions (right). (b) Remove the 

3D nuclei blobs smaller then nuclei size × 0.2. (c) Blob size distributions in three axis directions 

(upper: x-direction, center: y-direction, lower: z-direction) before the first division step (left 

column), and after the first division step (center column), and after the second division step (right 

column) for all nuclei segmented using wavelet-based segmentation method in whole embryo. The 

final size distributions in three directions are all similar to normal distributions (right column). 
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1.2.3 Evaluation of segmentation protocol with synthetic and real images 

To benchmark the wavelet and other methods that are coded into the WaveletSeg program, we 

developed tunable test data as well as a ground-truth data graphical user interface to manually 

segment 3D images for validation.  In addition to the wavelet method, the following methods are 

included: point wise method [38], Otsu method [6], and Derivatives Sum (DS) method [39].  The 

validation datasets we used to evaluate segmentation performance included synthetic image 

datasets that were created by using a synthetic data generator (Figure 2.2), publicly open image 

datasets [40], and our ground truth image dataset determined by multiple rounds of manual 

segmentation. We also generated synthetic nuclei overlapping datasets to test the ability to divide 

overlapping nuclei.  

 

Three evaluation criteria were applied to compare the accuracy of four segmentation methods. If 

a representative point was nearest-neighbor of a point in ground truth dataset and visa-versa, the 

object was regarded as a true positive (TP). If only the former condition was met, the segmented 

result is considered a false negative (FN). If only the latter condition was met, the object was 

regarded as a false positive (FP). Then the true positive rate (TP rate) is equal to the true positive 

number divided by the ground truth number, and Precision is defined as the TP number divided by 

the sum of TP number with FP number. TP rate defined in equation (1) represents the ratio of 

successful nuclei segmentation within all ground truth nuclei data, and Precision defined in 

equation (2) is the correct segmentation ratio in the nuclei segmentation result using a specific 

method. False negative rate is the false negative number divided by ground truth number which 

shows the missing segmentation results against ground truth data. We also use segmentation 

accuracy to estimate pixel-wise segmentation performance, which was defined as the overlapping 

region between ground truth segmentation region and segmentation region in pixel level. 

 

𝑇𝑃 𝑟𝑎𝑡𝑒 =  𝑇𝑃/𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                          (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                (2) 
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We use the Jaccard similarity index J (equation (3)) to define segmentation accuracy [40] which 

means the amount of overlap between the segmentation results S and ground truth annotation 

results R.  

                                                    (3) 

 

 
Figure 1.9. Performance criteria and segmentation accuracy of four segmentation methods 

on high level noisy synthetic images and ground truth image datasets. (a-d) True positive (TP) 

rate and Precision on four kinds of noisy synthetic images using three segmentation methods and 

wavelet method. Error bars indicate standard deviation. (a) Samples of synthetic images (N=20) 

Gaussian white noise and TP rate and Precision when applying point-wise method, Otsu method, 

DS method and wavelet-based segmentation method. (b) Samples of salt and pepper noisy 

synthetic images (N=20) and TP rate and Precision for four segmentation methods. (c) Intensity 

attenuation noisy synthetic image samples (N=20) and TP rate and Precision for four segmentation 

methods. (d) Samples of overlapping synthetic image samples (N=20) and TP rate and Precision 

for four segmentation methods. (e) Segmentation accuracy when applying Otsu method and 

wavelet-based segmentation method on three Fluo-N2DH-GOWT1 sample images. (f) True 

positive rate and Precision on five ground truth images when using point-wise method, Otsu 

method, DS method and wavelet-based segmentation method. 
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In test data (with test data generator described below) we added multiple different types of image 

noise that would normally be encountered in an imaging environment. For Gaussian white noise 

(Figure 1.9a), the wavelet-based segmentation method has the best TP rate and Precision followed 

by DS method. Otsu method obtained the lowest Precision and the point-wise method performed 

the poorest in TP rate. In salt and pepper noise cases (Figure 1.9b), both TP rate and Precision 

were equal to one when segmented by the wavelet-based method, and all other method results are 

lower than 0.9 in both TP rate and Precision. In images with Intensity attenuation (Figure 1.9c), 

the point-wise method has very high false positive rates and Otsu method performed the poorest 

in TP rate.  In this test, the wavelet-based segmentation method had the highest TP rate and 

Precision. In the next step we examined the ability to divide nuclei in overlapping images for four 

segmentation methods (Figure 1.9d). Compared to three other segmentation methods, the wavelet-

based method has the best ability to divide overlapping nuclei in both TP rate and Precision.  

 

Next, we compared the pixel-level segmentation accuracy on publicly open image datasets using 

wavelet-based method and Otsu’s method. Figure 1.9e shows that segmentation accuracy is above 

0.85 for wavelet-based method, and smaller than 0.4 for Otsu’s method. To further test the 

segmentation ability in real image datasets, we chose five zebrafish embryo images and selected 

sub-regions that we manually curated for our ground truth dataset and labeled the nuclei positions 

using our ground truth annotation tool (Figure 2.1). Both the TP rate and Precision of the wavelet 

method got best results (Figure 1.9f). 

1.2.4 Outline of main structure and GUI of WaveletSEG research platform 

Here we introduce WaveletSEG, the first automatic user-friendly integrated zebrafish embryo 

image processing analysis platform that can perform single nuclei scale to whole embryo scale 

quantification, topology and shape feature analysis during embryo development (Figure 1.10). 

WaveletSEG is an open-source Matlab-based imaging research platform and runs on Windows, 

Mac and Linux systems with complete GUI (Figure 1.11). The users can directly import either raw 

image files or data files with calculated results which helps them to check results or rerun 

processing with a different setting.  3D segmentation and quantification or other results such as 

embryo topology features can be easily displayed or saved in the WaveletSEG data visualization 

system. Users can also create scatter plots by selecting menu options to explore the relationship 
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between them. For the examples used herein, we show the fluorescent distributions of the BMP 

signaling component phosphorylated SMAD (pSMAD) through embryo DV axis, or the nuclei 

size spatial distribution from outer embryo layer to inside.  

 

 

Figure 1.10. Graph show of WaveletSEG software main function structure and GUI. 

WaveletSEG is the fully automatically user-friendly image processing analysis platform which 

integrated all main and extension functions including IO system, extension GUI and data 

visualization system in one GUI. WaveletSEG main function block consists five main steps which 

can run independently including 1. Nuclei identification, 2. Embryo orientation, 3. Shape 

classification, 4. Profile extraction, and 5. Time lapse steps. In the nuclei identification step, user 

can do intensity calibration by using nuclei nearby intensity or do 3D after wavelet-based 

segmentation. In IO system block, User can directly import microscope image files or intermediate 

data files into WaveletSEG, and save or output data results or figures directly from the GUI. We 

also developed a set of segmentation validation tools in WavetSEG including synthetic data 

generator, 3D ground truth labeling system, 2D and 3D segmentation viewer sub-GUI, and 

segmentation method comparison extension GUI. In WaveletSEG data visualization block, 3D 

segmentation and quantification or other results such as embryo topology features can be easily 

displayed or saved in WaveletSEG data visualization system. User can also create scatter plots by 

selecting menu options to explore the relationship between them. 
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WaveletSEG consists of five main steps which can run independently: 1. Nuclei identification, 2. 

Embryo orientation, 3. Shape classification, 4. Profile extraction, and 5. Time lapse steps (Figure 

1.11-12). In the nuclei identification step, users can do intensity calibration by using nearby nuclei 

intensity or do 3D rotation to adjust the embryo DV and AP axis in the right direction after wavelet-

based segmentation. After the nuclei segmentation step, the embryo coordinate system is 

automatically created and each nuclei is given a coordinate list value, and the 3D topology feature 

for each nuclei was also calculated. CPD registration was instrumental in combining multiple 

image results into one representative result. In step 3, we can apply nuclei shape classification to 

analyze the 3D nuclei shape type and features which resulted from step 1 and 2. In the profile 

extraction step, we project the nuclei quantification and features into one averaged distributed 

sphere plane to enhance accuracy distribution. If an imported image is a 4D (3D + time) image, 

the user can run time-lapse analysis in step 5. In step 5, nuclei tracking is performed by segmenting 

all the nuclei in a time-lapse image sequence using wavelet-based segmentation. This is achieved 

one step at a time, and the spatiotemporal overlap between corresponding segmented regions in 

consecutive time steps is compared, providing information about coordinate values, topology 

features and shape classification.  
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Figure 1.11. The interface of software WaveletSEG and data visualization. On the left side of 

WaveletSEG is the control panel, which can execute the five main steps or control the data 

visualization and output data and figures. Once the main steps are completed, “[Finish]” will 

appear inside the main step button. Users can execute this main step individually without starting 

from the beginning. Result data files and well-organized figures can be generated by clicking the 

“save result button” or “save figure button” on the control panel. The data visualization window 

visualizes most the results and enables 3D rotation and in and out zooming. 
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Figure 1.12. WaveletSEG main functions. WaveletSEG main function block consists five main 

steps which can run independently including 1. Nuclei identification, 2. Embryo orientation, 3. 

Shape classification, 4. Profile extraction, and 5. Time lapse steps. In the nuclei identification step, 

whole embryo nuclei are segmented using wavelet-based segmentation method, and averaged 

nuclear fluorescent intensity is also calculated. User can do intensity calibration by using nuclei 

nearby intensity or do 3D after wavelet-based segmentation. In IO system block, User can directly 

import microscope image files or intermediate data files into WaveletSEG, and save or output data 

results or figures directly from the GUI. In the embryo orientation step, individual embryo is 

rotated in 3D automatically according to some specific chemical such as chd mRNA. Embryo 

coordination value and 3D topology features for each nuclei is also calculated after rotation to 

provide positional information. To integrate multiple embryos, CPD registration is applied here 

and created one representative embryo. In shape classification step, we defined shape-based rules 

to classify nuclei into spherical nuclei, irregular shape nuclei, elliptical nuclei, and division nuclei 

to estimate cell proliferation and cell cycle phases. Unsupervised learning clustering such as SOM 

network is also included to cluster nuclei based on nuclei size and shape. In profile extraction step, 

we project the nuclei quantification and features into one averaged distributed sphere plane to 

enhance accuracy distribution. We also developed a set of segmentation validation tools in 

WavetSEG including synthetic data generator, 3D ground truth labeling system, 2D and 3D 

segmentation viewer sub-GUI, and segmentation method comparison extension GUI. In 

WaveletSEG data visualization block, 3D segmentation and quantification or other results such as 

embryo topology features can be easily displayed or saved in WaveletSEG data visualization 

system. User can also create scatter plots by selecting menu options to explore the relationship 

between them. 
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We also developed a set of segmentation validation tools in WaveletSEG including a synthetic 

data generator, a 3D ground truth labeling system, 2D and 3D segmentation viewer sub-GUI, and 

segmentation method comparison sub-GUI. It is challenging and time-consuming to label the 3D 

nuclei center as ground truth image because the user may have to check repeatedly to find a nuclei 

center among several Z-planes, and distinguish it from other nuclei. To overcome this challenge, 

we developed a convenient interactive 3D ground truth labeling interface that will both mark nuclei 

center labeling and non-center labeling by mouse clicking in jump-out GUI amongst a range of Z 

planes.  In 2D and 3D segmentation viewer, users can easily validate the nuclei center position and 

mask with raw images, or display a single nuclei 3D shape. Using the segmentation comparison 

sub-GUI, users can also easily validate segmentation results by utilizing different methods and 

display TF, NP, or NF nuclei directly. In WaveletSEG, user can also export 2D or 3D segmentation 

masks as the machine learning training datasets for further object detection or semantic 

segmentation studies. 

1.2.5 Zebrafish embryo quantification and registration and coordination system, and 3D 

topology features through time 

Development of an animal embryo involves molecular signaling to coordinate cellular 

rearrangement and proliferation. To quantify these processes in zebrafish, we calculated zebrafish 

embryonic properties along the DV axis, AP axis, embryo dimensions including thickness, and 

cell level properties including cell division state.  These properties provide a complete embryo 

picture (Figure 1.13-14) including 3D embryo geometry and quantitative signaling information 

including the levels of pSMAD in each segmented nucleus [42-43]. After segmentation, 3D 

rotation and deletion of the EVL cell later, we generated 2D hemispherical surfaces and projected 

every nuclei onto the 2D surface to obtain intensity distributions of nuclear properties (Figure 1.15). 

Whole embryo, sub region quantification results, and DV axis pSMAD intensity distribution in 

this sub region, or coherent point drift (CPD) registration to multiple embryos are also computed 

in WaveletSEG (Figure 1.16-17).  
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Figure 1.13. Zebrafish embryo coordinate system in ZebEmbIM. We developed the zebrafish 

embryo coordination system including embryonic axes such as DV axis, AP axis, and DV center 

axis, Height axis, Height level axis, Depth level axis. If time-lapse images are available, there is 

additional axis: time stage. The first five coordinates are values between zero to one, Depth level 

is the layer number counting from the outer shell, and the Time stage started from 1. DV center 

axis is defined by connecting ventral point to dorsal point through the top of embryo, angle is 

calculated and DV center value is from 0 to 1. Unlike the Height level axis which described the 

vertical distance from top to button of Embryo, we defined Height axis through the line connecting 

ventral point to dorsal point through the top of embryo to describe the embryo developmental 

process relative to which nuclei will grow from the top of the embryo to the embryo button. 
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Figure 1.14. Whole embryo z-slice nuclear DAPI staining and radial depth level. (a) Z-slice 

DAPI nuclear stain on height level = 0.3 (left), 0.5 (center), 0.8 (right) in 5.7 hpf zebrafish embryo. 

Image data were acquired with Zeiss LSM 800 confocal microscope with 20X water lens. (b) Z-

slice radial depth level for each nucleus on height level = 0.3, 0.5, 0.8 in 5.7 hpf Zebrafish embryo. 
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Figure 1.15. Data workflow from 3D whole embryo raw image to projected average intensity 

distribution in WaveletSEG. Step1: Import 3D raw image with both DAPI stained channel and 

pSMAD channel. Step2: Segmented nuclei point cloud by using wavelet-based segmentation 

method. Step3: Automatically rotation of embryo by using chd or pSMAD channel embryonic 

spatial distribution. Step3a (optional): Apply intensity calibration by using nearby nuclei intensity 

or do 3D rotation to adjust the embryo DV and AP axis in the right direction after wavelet-based 

segmentation. Step3b (optional): To merge embryos in the same stage into a representative embryo 

one by one using CPD. Step4: After 3D rotation and embryo center point is moved to position zero, 

3D embryonic coordination system including DV-axis, AP-axis to provide embryo coordination 

axes for geometry features and quantification results. Step5: Automatically remove the outermost 

layer and the innermost layer from embryo using depth level information. Step5a (optional): data 

analysis and data visualization in specific sub-region of whole embryo. For example: zebrafish 

embryo marginal region. Step6: We generated a hemispherical surface with averaged distributed 

reference point using regular placement method, and projected each nucleus into this 2D 

hemispherical surface (projection surface). Step7: We projected the nuclei into reference points 

with the closest spherical coordination system angle (θ, φ) and create projected average intensity 

and 3D topology. 
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Figure 1.16. Quantification of nuclear P-Smad gradient in the zebrafish embryo. (a) Animal 

view of nuclear pSMAD intensity of all nuclei from the 6.3hpf embryo (left), and animal and 

lateral view of averaged pSMAD intensity by projecting to uniform distributed semisphere surface 

using WaveletSEG (b, c). (d) Embryo alignment using coherent point drift (CPD) method in 

WaveletSEG. (e) Data visualization of nuclear pSMAD intensity for 6.5 hpf Zebrafish embryo in 

marginal region using WaveletSEG. Light blue and dark blue transparent shells indicate inner and 

outlier boundary surfaces of all nuclei in embryo. (f) Distribution of nuclear pSMAD intensity vs 

DV axis in embryo marginal region in (c). Blue dot and red line indicate individual nuclei intensity 

and averaged intensity along DV axis. 
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Figure 1.17. Segmented nuclear P-Smad expression spatial distribution for individual 

zebrafish embryos. (a) Animal pole views of segmented nuclear P-Smad signal spatial 

distribution for a whole-mount zebrafish embryo using pointwise method (left), wavelet 

segmentation (center), and Otsu’s method (right). (b) Segmented nuclear P-Smad expression on 

the DV axis, mean value (red line), and regression line (pink line) based on the three segmentation 

methods. 
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Figure 1.18. Spatial analysis of embryo coordinate system in zebrafish embryo between 4.7, 

5.7, 6.5 hpf. (a, b, c) Depth level spatial distribution for nuclei on DV direction cross section at 

4.7 hpf (a), 5.7 hpf (b), and 6.5 hpf zebrafish embryo (c). (d) Nuclei number counts of embryo at 

different developmental times (4.7 hpf: N = 9, 5.7 hpf: N = 10, 6.5 hpf: N = 5). Gray dots are 

nuclear counts for individual embryos. The red lines, red-boxed regions, and blue regions show 

the mean nuclei numbers, one standard deviation, and 95% confidence intervals, respectively. 

 

In early embryo development of the zebrafish, cell rearrangements guide the establishment of 

embryonic axes and layers [44-45] and embryonic cells spread over the yolk mass while the 

blastoderm thins. The radial intercalation movement between deep cell layer (DCL) and 

enveloping layer (EVL) is regarded as the main driving force for epiboly, and the cell density 

increase near the EVL plays an important role in this process [46]. Figure 1.18 shows the Depth 

level spatial distribution for nuclei in the DV direction cross section of 4.7 hpf (N=9)(left), 5.7 hpf 

(N=10)(center) and 6.5hpf Zebrafish embryo (N=8)(right) (Figure 1.18d). They have significant 

differences not only in nuclei number, but also in the depth level spatial distribution, nuclei density 
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and thickness. In figure 1.18c, we observed the cell accumulation (Hypoblast) and involution 

movement near the blastoderm margin.  

 

 

Figure 1.19. Spatial analysis of 3D topology features between 4.7, 5.7, 6.5 hpf zebrafish 

embryo. (a) Difference between threads of average thickness of all nuclei along the embryo height 

axis in 4.7, 5.7, and 6.5 hpf embryo developmental time. (b) Difference between threads of 3D 

density of all nuclei along the embryo height axis in 4.7, 5.7, and 6.5 embryo developmental time. 

Green, red, and blue lines indicate mean, and light green, light red, and light blue regions indicate 

one standard deviation region. 

 

Emboly is another principle coordinated cell movement to form hypoblast which contains the 

involution and intercalation movements in the early gastrulation stage. Involuting cells move and 

accumulate in the blastoderm margin to narrow and elongate the embryonic axis, eventually form 

endoderm and mesoderm that characterizes the gastrulation stage in Zebrafish [47-48]. 

Convergence and extension of epiblast deep cells result from intercellular space decrease and cell 

density contributed in the internalization of hypoblast cells from margin. For further investigation 

of spatial and temporal analysis of embryonic structure distribution, we introduced eight 3D 

topology features including Size, Thickness, Density2D, Density3D, Neighbor2D, Neighbor3D, 

H sorting, EVL (Figure 1.20) which can be directly calculated in WaveletSEG. For example, figure 

1.19a can be used to describe the averaged thickness thread in epiboly process in 4.7, 5.7 and 6.5 

embryo developmental time. We also found that the thickness is increased near margin position in 

6.5hpf, which is the signal for emboly process. In figure 1.19b, averaged cell density are decreased 

after depth level 2 (one layer EVL cell). The gradual separation of the EVL lineage correlates with 

the flattening of the blastoderm on the yolk cell and is accompanied by both an increase in tension 
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and cell shape changes within the EVL [49]. It has been suggested that the separation of the EVL 

as a lineage might be the consequence of increased tension that causes EVL cell divisions to occur 

preferentially within the plane of the EVL. At the end of gastrula stage the cell density is decreased 

at the ventral side of embryo. 

 

Figure 1.20. 3D topology features used in WaveletSEG. Eight 3D topology features are defined 

in WaveletSEG software to quantitative describe topology changing through embryo developing 

process. Nuclei size is the total pixel numbers for every 3D segmented nuclei. We used four 

indexes to describe the spatial nuclei density distribution for the embryo, including density 3D, 

density 2D, neighbor 3D and neighbor 2D distance. Density is the total nuclei number with 

distance smaller than 30 pixel around one nuclei, and Neighbor distance is the average distance of 

the nuclei to the closest two nuclei. The difference between 3D and 2D is that we only calculate 

density in the same layer (depth level) for density 2D and neighbor 2D distance. Thickness is 

defined as the vertical distance from the innermost layer of embryo. The outer epithelial monolayer 

of a zebrafish embryo is called the enveloping layer (EVL). Here we defined the inner EVL and 

outlier EVL as the layer with depth level equal to one or the maximum values. H_sorting is the 

index to describe the dynamic process of nuclei movement by dividing every 500 nuclei from the 

top of the embryo to the embryo button. 
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1.2.6 Spatial and temporal analysis of cell cycle phase pattern results 

Cell proliferation and division spatiotemporal pattern plays a key role in embryo morphogenesis 

to regulate the embryo shape and growth. Additionally, morphogenesis also effects the cell 

division rate and orientation [50-51]. Experimental and theoretical evidence shows that cell 

proliferation is associated with tissue cell density, and both cell division and cell rearrangement is 

suppressed in densely packed embryonic tissue [51]. Nuclei segmentation and shape classification 

results have been used to estimate cell proliferation and cell cycle phases [52] because nuclei are 

spherical during early prophase, irregular shape with nuclear envelope break down, and become 

ellipsoidal shape in metaphase [53]. Here we created the cell-cycle phases pattern in zebrafish 

embryo based on nuclei shape features (Figure 1.21) and analysis the spatial distribution for whole 

embryo in different time stages. 

 

Figure 1.21b and figure 1.21c show the prophase and prometaphase nuclei count ratios at 4.7, 5.7, 

and 6.5hpf.  We found that in all time stages, the ratio of prophase nuclei decreases from the top 

of the embryo to the bottom, and the prometaphase nuclei ratio increases from between 0.2 and 

0.3 at 4.7 hpf to between 0.3 and 0.5 at 6.5 hpf. It showed that cell proliferation rates are low in 

the animal region of the embryo and higher in the zebrafish margin. These results are consistent 

with reference [50] that shows abundant mitotic cells at 50% epiboly and especially during the 

shield stage. 
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Figure 1.21. Cell cycle phase patterns based on nuclei shape classification results. (a) 

Examples of cell cycle phase in mitosis based on nuclei shape classification results, and the defined 

shape-based rules for cell cycle phase. (b) Nuclei count ratios for prophase, prometaphase, 

metaphase, and anaphase nuclei along the embryo height level in 4.7, 5.7, and 6.5 embryo 

developmental time. (c) Nuclei count ratios for prophase, prometaphase, metaphase, and anaphase 

nuclei along the embryo depth level in 4.7, 5.7, and 6.5 embryo developmental time. Green, red, 

and dark blue lines indicate mean value, and light green, light red, and light blue regions indicate 

one standard deviation region. 

1.3 Methods 

1.3.1 2D Wavelet transform 

1D discrete wavelet transforms (1D DWTs) and 1D continuous wavelet transforms (1D CWTs) 

are the most commonly applied wavelet tools in 1D signal processing and time series analysis, and 

are used in signal decomposition in both time domain and frequency domain [54-55]. 1D CWT 

lies in decomposition in discrete frequency domain and continuous time domain, which is different 

from 1D DWT (Figure 1.22). Assuming that f(t) is a continuous and integrable time-frequency 
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signal, the 1D continuous wavelet transform (1D CWT) for f(t) can be represented by the following 

integral formula (equation (4),(5)): 

 

Κ1𝐷(𝑠, 𝑎) =  
1
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Where ψ(t) is the wavelet mother function which must satisfy the continuous and differentiable 

condition in all points with zero mean and square norm. Commonly used wavelet mother functions 

include the Mexican hat function, Meyer function, and Morlet function. a and b are the wavelet 

translation factor and scale factors that represent the location shift of the mother wavelet function 

through time, and the dilation ratio of the mother wavelet. The output of the CWT is the wavelet 

coefficient matrix that is the wavelet coefficient value Κ_1D (s,a) in a specific translation factor a 

(horizontal axis) and scale factor b (vertical axis), that is also called a daughter wavelet subset.  
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Figure 1.22. One-dimensional signal and its corresponding wavelet coefficient matrix. (a) 

One-dimensional signal includes a mix of low-frequency and high-frequency regions. The green 

and red boxes and arrows show high- and low-frequency regions of the signal, respectively. (b) 

Contour plot of wavelet coefficient matrix obtained from applying CWT with a series of wavelet 

scale factors. The horizontal axis represents the same axis as the one-dimensional signal, and the 

vertical axis represents wavelet scale factors from small (top) to large (bottom). Color represents 

the magnitude of the corresponding wavelet coefficient (blue: low, red: high). The ridges in the 

wavelet coefficient matrix can be correlated with low-frequency or high-frequency regions. For 

example, the identified ridge from the high-frequency regions (green box) corresponds to a smaller 

wavelet scale, and the identified ridge from the low-frequency regions (red box) corresponds to a 

larger wavelet scale. This provides an efficient way to isolate and to detect specific frequency 

regions. 

 

We extend the 1D CWT to the two-dimensional continuous wavelet transform (2D CWT) and 

apply it to the spatial domain of the image56. Supposing that f(x,y) is continuous and differentiable 

2D image data, we choose the 2D Mexican hat function as the wavelet mother function and 

perform 2D CWT with the translation factors a and b and the wavelet scale factor s. ψ(x,y) is the 

2D Mexican hat function and Κ_2D (s,a,b)  is the wavelet coefficient matrix (equation (6),(7)): 
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Figure 1.23 shows the nuclei fluorescence microscopy raw image and wavelet coefficient matrix 

with different scale factors after the 2D continuous wavelet transform. Following application of 

the wavelet function, an efficient search algorithm that we developed compares different scales of 

CWT coefficients and marks shape-similar regions as nuclei masks in nuclei position(s) by looking 

for several contour lines in the CWT coefficients diagram. The similarities between maps are then 

calculated to determine the presence of a nuclei. 

 

Figure 1.23. Two-dimensional image, its corresponding wavelet coefficient matrix, and 

mother wavelet function. (a) Two-dimensional nuclear DAPI staining raw image. (b) Contour 

plot of wavelet coefficient matrix from 2D CWT with specific scale factor on raw image. Color 

represents intensity of corresponding wavelet coefficient. Contour boundaries in this matrix can 

be correlated to nuclear boundaries. (c) We chose the most common Mexican hat function as the 

mother wavelet function for the wavelet-based segmentation method.  
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1.3.2 First and second division on XY wavelet coefficient plane, XZ and YZ plane and delete 

small object 

For this purpose, we designed division steps in two stages to divide overlapping nuclei or 

overlapping 2D masks using wavelet coefficient maps. For each 3D nuclei object that we obtained 

from the previous step, we compared Z-slice wavelet coefficient planes and found the center of 

each plane which is local minimum. If there is more than one wavelet coefficient local minimum 

or the displacement of center is bigger than the nuclei radius on neighboring Z slices wavelet 

coefficients, we assigned a new nuclei object by cutting the median line between two centers, or 

assigned new nuclei in the case of center displacement. Using the center of Z-plane wavelet 

coefficients, most y or z direction overlapping can be divided.  

 

In the second-stage division step, we divided z-direction overlapping by checking both the xz plane 

and the yz plane wavelet coefficient. If there were more than local minimum points present in both 

xz and yz plane, a wavelet coefficient division plane was set in the center plane between the two 

centers, and new 3D nuclei object was created. In the last step of the wavelet-based segmentation 

protocol, we removed the 3D nuclei voxels where the size was smaller than nuclei size × 0.2. 

1.3.3 Image synthesis, noise adding process and nuclei overlap 

To provide a dataset of synthesized images in validating segmentation methods, we developed a 

convenient interface to generate a synthesized image. Users can define synthesized image’s 3D 

size and the number of image and synthetic nuclei signals based on the nuclei number, nuclei 

radius and intensity, and the randomness of the nuclei radius and intensity between 0 to 1. If the 

radius randomness is 0.2, this means the generated nuclei radius = defined nuclei radius r ± uniform 

(0, 1) random variable × 0.2 × r.  Nuclei are generated in the following order:  Synthetic nuclei 

with random 3D positions are generated inside the image. If the distance of this nuclei relative to 

the previously generated nuclei, or the distance to the image boundary is smaller than nuclei r × 

1.5 we regenerate the synthetic nuclei. A 3D Gaussian function with nuclei intensity and standard 

deviation equal to nuclei radius r × 0.4 is added to the synthetic image. We also created a synthetic 

overlapping nuclei dataset to evaluate the segmentation method’s ability to isolate overlapping 

nuclei. Subsequently, half of the nuclei were randomly created, and additional nuclei were 

iteratively generated and added to the dataset once its distance from the previous nuclei set was 
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smaller than a nuclei radius r × 1.5. After initial nuclei are distributed throughout the image, we 

add both white noise and user-defined noise types with user-defined noise level noise density (ND) 

onto the synthetic image that we generated in the previous step. White noise is white Gaussian 

noise with user-defined variance. User-defined noise types include Gaussian white noise and salt-

and-pepper noise with ND and intensity attenuations with image gradient ND, in which pixel 

intensity will increase continuously from right to left with intensity ND times on the left side of 

the image. 

1.3.4 Image synthesis, noise adding process and nuclei overlap 

To evaluate the segmentation performance of the wavelet-based segmentation method, we 

compared it with three commonly used segmentation methods, including the point-wise method, 

the Otsu method and the DS algorithm. The point-wise method is the simplest method to estimate 

the intensity of nuclei center points i. Raw images were firstly smoothed using 9 × 9 × 3 kernel, 

and followed by h-maxima and h-minima transform to suppress all background signals. After 

combining nearby local maxima closer than 6 pixels, the remaining local maxima were assumed 

to be nuclei center points and intensity was calculated after applying 6 x 6 x 3 spherical kernel.  

 

The Otsu method is the most popular threshold-based segmentation method to separate foreground 

and background pixels by finding the optimum threshold to satisfy minimum intra-class variance. 

We applied a symmetric Gaussian low-pass filter and sharpened the filter with specific radius and 

amount on the raw image. We then used Wiener filter or pixel-wise adaptive low-pass Wiener 

filter to deblur the image and remove noise. To this end, we used the multilevel thresholding Otsu 

method to decide threshold values. 

 

Derivatives Sum algorithm (DS algorithm) started with applying denoising filters such as a 

Gaussian filter or a non-linear isotropic diffusion filter on the image, and the 2D spatial derivatives 

were computed to get the image Gauss gradient, Laplacian determinant, and Hessian determinant. 

A mask function F was calculated by combining the first and second spatial derivatives with weight 

parameters, and the Otsu method was applied here to obtain binary image slices. 3D nuclei 

segmentation was obtained by connecting the neighboring 2D masks, and we used a genetic 

algorithm for the parameter screening in this method57. 
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1.3.5 Ground truth labeling GUI 

Creating embryonic 3D nuclei segmentation ground truth data is challenging and time-consuming. 

Here we introduced GRU3D, a 3D nuclei annotation tool that provides a convenient and efficient 

way to label 3D nuclei, and can also be used to evaluate nuclei segmentation results.  

 

In GRU3D the user can directly label embryo nuclei by simple mouse clicking. There are two main 

types of labeling: nuclei center labeling that shows the nuclei index, and non-center nuclei labeling 

that is marked as a cross symbol. Non-center nuclei labeling can help to prevent double-counting. 

After clicking on the screen, one sub-GUI will jump up with the specific region and a range of Z-

slack planes (Figure 2.1). The user can directly assign the labeling by clicking. GRU3D can also 

be used to check segmentation results by either comparing segmentation masks with raw images 

or checking single nuclei masks. 

1.3.6 CPD registration method 

The coherent point drift (CPD) algorithm is a probabilistic-based point set registration method 

widely used in the field of pattern recognition58. The main goal of point registration is to merge 

two or more point sets into one representative set. CPD treats the registration process as a 

probability density estimation problem and fits the Gaussian mixture model (GMM) of one point 

set to a reference point set using maximum likelihood method, and the expectation maximization 

algorithm is used to make the most effective use of the optimization function. We use CPD to 

merge embryos in the same stage into a representative embryo one by one. The final GMM 

centroids are the representative embryo nuclei sets. 

1.3.7 3D topology features 

We designed eight 3D topological features to describe the topology and geometric structural 

changes for embryological development studies in Zebrafish. Nuclei size is the total pixel numbers 

for every 3D segmented nuclei. We used four indexes to describe the spatial nuclei density 

distribution for the embryo, including density 3D, density 2D, neighbor 3D and neighbor 2D 

distance. Density 3D is the total nuclei number with distance smaller than 30 pixel around one 

nuclei. The problem of using density 3D is the underestimation near the outermost or innermost 

layer. In this instance, we define density 2D as the total nuclei number closer within 30 pixel 
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distance and also in the same layer (depth level). Neighbor distance is the average distance of the 

nuclei to the closest two nuclei which is suitable to find the outlier point in point set. The difference 

between neighbor 2D and neighbor only considers nuclei in the same layer.  

 

Another important topological feature of the embryo is the thickness. We define thickness here as 

the vertical distance from the innermost layer of embryo. The innermost shell was divided into 360 

sub-regions, and the vertical distance was calculated from nucleus to its corresponding plane. The 

outer epithelial monolayer of a zebrafish embryo is called the enveloping layer (EVL). Here we 

defined the inner EVL and outlier EVL as the layer with depth level equal to one or the maximum 

values. H_sorting is the index to describe the dynamic process of nuclei movement by dividing 

every 500 nuclei from the top of the embryo to the embryo button. 

1.3.8 Cell cycle phase pattern based on nuclei shape classification 

To study the spatial and temporal shape distribution of embryo nuclei, we defined some rules 

relative to dividing them into spherical nuclei, irregular shape nuclei, elliptical nuclei and dividing 

nuclei. We calculated the sphericity value using 4 × pi × area divided by squared perimeter in three 

planes (xy, yz and xz planes), and averaged them as the averaged sphericity value. The average 

aspect ratio is the mean of aspect ratio xy, yz, and xz. Aspect ratio xy is the proportional 

relationship between x axis range divided by y axis range. Here we defined spherical nuclei if the 

mean sphericity value is larger than 0.9 which means the shape of nuclei is similar to a circle with 

the same area. If the mean sphericity value is smaller than 0.9 and the mean aspect ratio is larger 

than 0.7, we identified it as an irregular shaped nuclei. A nucleus is determined as either elliptical 

or dividing if the mean sphericity value is smaller than 0.9 and the mean aspect ratio is also smaller 

than 0.7. In addition, if the radius of this nuclei is smaller than the embryo mean radius and they 

are paired, they are considered dividing nuclei. 

1.3.9 Embryo profile projection and data visualization 

To indicate a better concentration or feature distribution on a three- dimensional multi-layer 

embryo, and also allow for the integration of similar stage embryos, we projected features of each 

nuclei into one reference two-dimensional surface. We generated a hemispherical surface with 

averaged distributed reference point which we created in using regular placement method60. We 
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projected the nuclei into reference points with the closest spherical coordination system angle (θ, 

φ). Thereafter, we summarized the concentration of nuclei in this reference point, as well as 

average topological features such as nuclei size, nuclei density or thickness.  

 

 

Figure 1.24. Embryo profile projection onto 2D average distributed reference surface. (a)(b) 

We generated a 2D averaged distributed hemispherical surface using a regular placement method 

to place reference points such that their distance in two orthogonal directions was always the same. 

Reference point numbers were assigned, and polar angle θ and azimuthal angle φ for each reference 

were calculated and recorded. (c) Polar angle and azimuthal angle for each segmented nucleus for 

the whole embryo was calculated after 3D rotation and coordinate system base point resetting in 

WaveletSEG. (d) We projected the nuclei onto reference points with the closest spherical 

coordinate system angle (θ, φ). 

 

We designed the interactive graphical user interface to visualize segmentation and analyze the 

results of the embryo directly. Users can also choose a particular region such as the embryo margin 

region by choosing z region range, or DV axis concentration distribution. In addition, users can 

remove EVL nuclei directly by clicking the no EVL icon on the data visualization board. In a 
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scatter plot board, users can choose one coordinate system index in the first pop-up menu and one 

feature in second pop-up menu to analyze the spatial distribution on the embryo. Alternatively, 

users can also plot the relationship between two features using the scatterplot board. 

1.4 Discussion 

As illustrated above, we have developed a novel wavelet-based image segmentation algorithm for 

robust 3D nuclei segmentation that demonstrates good segmentation performance in many image 

datasets. Recent technological advances in biological imaging are focused on developing fully 

automated and large-scale imaging algorithms, and wavelet-based segmentation will be a good fit 

because of its reliability in the face of noise and intensity attenuation and the only necessary 

parameter is the wavelet scale factor which is chosen based on property object size and no 

preprocessing or fine-tuning steps are needed. We also presented a new way to divide overlapping 

nuclei according to the self-similarity between multiple wavelet coefficient maps. 

 

We developed WaveletSEG to determine embryonic patterning information for molecular 

signaling, genetic regulation, and 3D positional data for nuclei at various stages of the cell cycle. 

This integrated image analysis platform helps define embryo coordinate systems to provide 

embryo axes for geometry features and quantification. After 3D nuclei segmentation for whole 

embryos, the post processing in WaveletSEG provides convenient tools to rotate the embryo, 

remove EVL layer nuclei and select subregions for additional quantification.  Overall, this 

quantification and post-processing program is designed to support converting imaging data into 

information that can be used to infer biological mechanism, gain quantitative insight into 

development and develop quantitative data sets of pattern formation and signal regulation by 

morphogens. 
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 GROUND TRUTH ANNOTATOR AND 3D DATASET 

GENERATOR FOR VALIDATION OF NUCLEI SEGMENTATION 

PROGRAMS 

This material covered in this chapter has been published in the 2019 12th International Congress 

on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2019). 

 

Wu, T. C., Wang, X., & Umulis, D. M. Ground truth annotator and 3D dataset generator for 

validation of nuclei segmentation programs. 2019 12th International Congress on Image and 

Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2019. 

2.1 Introduction 

Several nuclei segmentation methods exist to track cells in fixed or living tissues [1-4]. Most nuclei 

segmentation algorithms need image preprocessing steps before the segmentation, and the settings 

in preprocessing are highly dependent on the microscopy imaging environment [5]. Many 

microscopy image analysis software packages have also been established, such as ImageJ [6], Fiji 

[7], and CellProfiler- a widely used software [8], that provides preprocessing,object identification, 

and cell counting modules. Additional related software includes Spatzcells [9], FISH-quant [10], 

and MINS [11] are MATLAB executable codes that can generate segmentation cell masks and 

spot recognition for fluorescent 2D or 3D images.  

 

Ground truth dataset can be used to evaluate results from segmentation methods and software, and 

modify and improve the segmentation algorithm. However, the lack of ground truth expert 

delineations of fluorescent microscopy imaging data is a serious challenge to evaluate and to 

improve the training and validation of microscopy image analysis techniques. Some manual nuclei 

labeling imaging datasets have been built [12], but few convenient ground truth annotation tools 

have been developed [13-15].  

 

We developed a benchmarking dataset generator, a segmentation validation tool, and a 3D ground 

truth annotation tool as a resource to the imaging and annotation community. It is challenging and 

time-consuming to label the 3D nuclei centers in a ground truth image. To overcome this challenge, 

we developed a convenient interactive 3D ground truth annotation interface (GRU3D) that 

provides 3D nuclei labeling by a mouse clicking interface. When the user clicks specific location 
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inside the software window, another interface will pop up and display every z planes for 3D nuclei 

blob, and the user can directly label the nuclei center position. In SYNIMAGE, users define the 

synthetic image’s 3D size and number of image and synthetic nuclei signals, and add both white 

noise and user-defined noise types with user-defined noise density (ND) onto the synthetic image. 

Using SEG3D, users can also easily validate segmentation results by utilizing different 

segmentation methods and determine the True Positive (TP), False Negative (FN) and False 

Positive (FP) nuclei directly. 

2.2 System overview 

2.2.1 GRU3D 

Annotating a nuclei segmentation ground truth dataset is challenging and time-consuming. Here, 

we introduce GRU3D, a 3D nuclei annotation tool that provides a convenient and efficient way to 

label 3D nuclei that can also be used to evaluate nuclei segmentation results (Figure 2.1). In 

GRU3D, the user can directly label nuclei through simple mouse clicking. There are two main 

types of labeling: nuclei center labeling, which shows the nuclei index, and noncenter nuclei 

labeling, which is marked as a cross symbol. Noncenter nuclei labeling can help to prevent double 

counting. After clicking on the screen, one sub graphical user interface (GUI) will pop up in a 

specific region with a range of z-stack planes. The user can directly assign the labeling by clicking. 

GRU3D can also be used to check segmentation results by either comparing segmentation masks 

with raw images or checking single nuclei masks. 

 

The left window of the GRU3D shows a raw image with a side bar for viewing different z-slices. 

The right window shows both raw image and segmentation labels and provides a very convenient 

way to label 3D nuclei. When the user clicks inside the right-side window, a GUI will pop up and 

display every z-slice in this position. Users can easily select the nuclei center and start labeling. 

Figure 2.1b are four 3D ground truth 400 × 400 × 24 voxel region nuclear dye 4'-6-diamidino-2-

phenylindole (DAPI) staining raw images from 4.7 hours post fertilisation (hpf) zebrafish embryo 

(the first three images), and raw images of 400 × 400 × 24 voxel region of 4.7 hpf zebrafish embryo 

in pSMAD protein datasets. 
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2.2.2 SYNIMAGE 

To provide a dataset of synthetic images in validating segmentation methods, we developed a 

convenient interface (SYNIMAGE) to generate synthetic image datasets (Figure 2.2). Users define 

the synthetic image’s 3D size and number of image and synthetic nuclei signals based on the nuclei 

number, nuclei radius, and intensity, and the randomness or variability of nuclei radii and intensity 

between 0 to 1.  

 

Figure 2.1. GRU3D: the 3D ground truth annotation GUI and segmentation result viewer. 

(a) Five 3D ground truth of 400 × 400 × 24 voxel region nuclear DAPI staining raw images from 

4.7hpf Zebrafish embryo (first three images), and raw images 400 × 400 × 24 voxel region of 

4.7hpf Zebrafish embryo in pSMAD datasets. (b) To build the ground truth dataset using our own 

images to validate the segmentation method, we introduced GRU3D, a 3D nuclei annotation tool 

which provides a convenient and efficient way to label 3D nuclei, and can also be used to evaluate 

nuclei segmentation results. The left window of the GRU3D shows the raw image with side bar to 

view different z-slice. (c) The right window shows both raw image and segmentation labels, and 

provides very convenient way to label 3D nuclei. When user clicking inside the right side window, 

pop-up GUI will show up and display every z-slice in this position. User can very easy to select 

the nuclei center and do labeling. 
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If the radius randomness is 0.2, this means the generated nuclei radius = defined nuclei radius r ± 

uniform (0, 1) random variable × 0.2 × r.  Nuclei are generated in the following order:  Synthetic 

nuclei with random 3D positions are generated inside the image. If the distance of this nuclei 

relative to the previously generated nuclei, or the distance to the image boundary is smaller than 

nuclei r × 1.5 we regenerate the synthetic nuclei. A 3D Gaussian function with nuclei intensity and 

standard deviation equal to nuclei radius r × 0.4 is added to the synthetic image. We also created 

a synthetic overlapping nuclei dataset to evaluate the segmentation method’s ability to isolate 

overlapping nuclei. Subsequently, half of the nuclei were randomly created, and additional nuclei 

were iteratively generated and added to the dataset once its distance from the previous nuclei set 

was smaller than a nuclei radius r × 1.5. 

 

After initial nuclei are distributed throughout the image, we add both white noise and user-defined 

noise types with user-defined noise level noise density (ND) onto the synthetic image that we 

generated in the previous step. White noise is white Gaussian noise with user-defined variance. 

User-defined noise types include Gaussian white noise and salt-and-pepper noise with ND and 

intensity attenuations with image gradient ND, in which pixel intensity will increase continuously 

from right to left with intensity ND times on the left side of the image. In this study, to validate 

different segmentation methods, we generated 20 synthetic images for each test with size 400 × 

400 × 40 with 50 nuclei. The nuclei radius was equal to 15 with randomness = 0.2, and the intensity 

of the nuclei center was 250 with randomness = 0.8. We applied four kinds of noise, Gaussian 

white, salt-and-pepper, intensity attenuation effect, and overlapping nuclei with three levels (low, 

middle, and high). 
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Figure 2.2. The workflow of the synthetic data generator and process to add noise in 

SYNIMAGE. The synthetic image generator in WaveletSEG can generate synthetic images or 

synthetic overlapping images by providing image number, image size, synthesis nuclei number, 

nuclei radius and intensity and their randomness. For overlapping images, we iteratively create 

pairing nuclei with distances between two nuclei are smaller than nuclei radius ×1.5. After initial 

synthetic image dataset are created, Gaussian noise, salt and pepper noise with different noise level 

can be added into images, or apply down-sampling or up-sampling to those images. When applying 

intensity attenuation effect to initial images, firstly we added background noise, and intensity 

attenuation with image gradient ND which pixel intensity will increase continuously from right to 

left with intensity ND times in the left side of the image. 

2.2.3 SEG3D 

We also provide a convenient segmentation method comparison GUI (SEG3D) to validate 

segmentation results or compare them with other segmentation methods (Figure 2.3). The right 

side of this GUI is the main data visualization window, where segmented nuclei positions are 

displayed as a 3D point cloud. The color of the 3D point cloud is fluorescent intensity of a specific 

microscopy channel. The horizontal plane is a raw image z-slice that enables the user to validate 
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and compare 3D segmented nuclei with original raw image z-slices. This data visualization region 

also enables 3D rotation zoom. The color of the 3D point cloud is fluorescent intensity of a specific 

microscopy channel. 

 

On the left side of SEG3D is the main control panel with two dropdown menus (Method 1 menu 

and Method 2 menu). You can select different segmentation methods from two dropdown menus 

to compare their segmentation results. Additionally, if users generate synthetic image datasets 

using SYNIMAGE (Figure 2.2) or create ground truth datasets using GRU3D (Figure 2.1), they 

can select “ground truth data” from the dropdown menu to validate the segmentation results. For 

example, when users select “ground truth data” in the Method 1 menu and select “Otsu’s method” 

in the Method 2 menu, TP, FP, and FN are calculated and displayed in the data visualization 

window. When comparing two methods or ground truth data, segmented nuclei will be marked as 

blue (TP), red (FN), or green (FP). TP rate and precision will automatically be saved in data files 

(Figure 2.4). 

 

Figure 2.3. SEG3D: 3D segmentation method comparison GUI. SEG3D is the 3D segmentation 

data visualization GUI to check and validate the segmentation results. Blue points inside the main 

data visualization window (Right) are segmented nuclei positions are displayed as 3D point cloud, 

and horizontal plane is the raw image z-slice enable user to validate and compare 3D segmented 

nuclei with original raw image z-slice. Left side of this sub-GUI is the control panel to display 

regional nuclei or change into different images or channels 
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Further information including the 3D surface rendering of each segmented nuclei can be conducted 

by selecting a nuclei spot number or the xyz axis range after 3D reconstruction in the control panel 

in SEG3D. The red solid point inside the 3D rendering nuclei is the nuclei center position inside 

the nuclei marked with number and xyz positions. Color is used only to distinguish between 

different objects (Figure 2.5). 

 

Figure 2.4. SEG3D: 3D segmentation method comparison GUI with 3D surface rendering. 

SEG3D is designed to validate the segmentation results or compare segmentation results using 

different segmentation methods. Right side of this sub-GUI is the main data visualization window 

and segmented nuclei positions are displayed as 3D point cloud. The horizontal plane is raw image 

z-slice enable user to validate and compare 3D segmented nuclei with original raw image z-slice. 

When comparing with two methods or with ground truth data, segmented nuclei will be marked 

as blue (TP), red (FN), or green color (FP). 3D surface rendering of segmented nuclei can display 

by choosing nuclei spot number or select the xyz axis range after 3D reconstruction. 
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Figure 2.5. 3D reconstruction of surface rendering in SEG3D. 3D surface rendering of each 

segmented nuclei can also be conducted by selecting a nuclei spot number or the xyz axis range 

after 3D reconstruction in the control panel in Raw_image3D. The red solid point inside the 3D 

rendering nuclei is the nuclei center position inside the nuclei marked with number and xyz 

positions. Color is used only to distinguish between different objects.  

 

GRU3D, SYNIMAGE and SEG3D were developed in MATLAB R2016 environment and are 

compatible across multiple MATLAB versions after R2012, and can support many different 

platforms, such as PCs, Linux and Mac OS X. Take GRU3D as an example-the FIG-file contains 

the layout of the GUI, and all executed functions and scripts are located in an M-file. To run this 

GUI code, both M-file and FIG-file must located in the same directory and the program begins by 

executing GRU3D at the MATLAB workspace prompt. All codes requires the image processing 

toolbox and statistics toolbox.  

2.3 Results 

In this section, we use SYNIMAGE and GRU3D to create synthetic image datasets and ground 

truth image datasets and demonstrate the nuclei segmentation performance comparison between a 

point-wise method and Otsu’s method in SEG3D. We added three kinds of noise, Gaussian white 

noise, salt-and-pepper noise, and intensity attenuation effect with three levels (low-, mid-, and 
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high-level) to datasets in SYNIMAGE to validate the segmentation ability for noisy images. We 

also generated synthetic nuclei overlapping datasets to test the performance in dividing 

overlapping nuclei.  

 

Three evaluation criteria were applied to compare the accuracy and robustness of the segmentation 

methods using ground truth dataset [16]. If a representative point was the nearest neighbor of a 

point in the ground truth dataset and visa-versa, the object was regarded as a TP. If only the former 

condition was met, the ground truth was regarded as a FN. If only the latter condition was met, the 

object was regarded as a FP. The TP rate is equal to TP number divided by ground truth number, 

and precision is TP number divided by the sum of TP number and FP number. TP rate represents 

the ratio of successful nuclei segmentation within all ground truth nuclei data, and precision is the 

correct segmentation ratio in the nuclei segmentation result obtained using a specific method. The 

FN rate is the FN number divided by ground truth number.  
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Figure 2.6. Performance criteria of noise in synthetic images. (a-c) Segmentation performance 

criteria of three levels of (low, mid, and high) noise in synthetic images created by SYNIMAGE 

and ground truth image dataset from GRU3D (d). 

 

The point-wise method [17] is the simplest method to estimate the intensity of nuclei center points 

i. Raw images are first smoothed using 9 × 9 × 3 kernel and followed by h-maxima and h-minima 

transform to suppress all background signals. After combining nearby local maxima that were 

closer than 6 pixels to each other, the remaining local maxima were assumed as nuclei center points, 

and intensity was calculated after applying 6 × 6 × 3 spherical kernel. Otsu’s method is the most 
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popular threshold-based segmentation method to separate foreground and background pixels by 

finding the optimum threshold to satisfy minimum intra-class variance. We applied a symmetric 

Gaussian low-pass filter and sharpened the filter with a specific radius and amount on the raw 

image. We then used Wiener filter or pixel-wise adaptive low-pass Wiener filter to deblur the 

image and remove noise. For this, we used multilevel thresholding Otsu’s method to decide 

threshold values [17].  

 

In datasets with Gaussian white noise (Figure 2.6a), Otsu’s method provides better TP rate (above 

0.8) than point-wise method but the precision rate decreased rapidly for Otsu’s method which 

shows the high ratio of negative to positive results. In images with intensity attenuation effect 

(Figure 2.6b), the TP rate decreased from 0.8 to 0.72 and precision decreased from 0.77 to 0.63 

when applying Otsu’s method. Conversely, the point-wise method results show higher TP rate and 

very low precision compared to Otsu’s method. This showed that the intensity attenuation effect 

will greatly affect the point-wise method. We also examined the ability of segmentation methods 

to divide nuclei in overlapping images (Figure 2.6c). Otsu’s method results in a TP rate higher 

than the point-wise method and Otsu’s method results in precision that is lower than point-wise 

method. This means that only part of the nuclei (TP rate: 0.85 ~ 0.7) are identified from 

overlapping nuclei. 

2.4 Conclusion 

The proposed 3D nuclei annotation tool provides a publicly available, convenient and efficient 

way to label 3D nuclei in ground truth datasets. This tool is expected to help researchers to improve 

their algorithms and also validate and compare between alternative nuclei segmentation methods 

as we show for a point-wise method and Otsu’s method. Synthetic datasets are also important to 

evaluate segmentation methods with known nuclei positions and properties. Using GRU3D and 

SYNIMAGE, we can provide high quality, reliable and sufficient ground truth datasets and 

synthetic datasets to improve segmentation accuracy and robustness. The SEG3D we developed 

can also help researches to check segmented nuclei positions in the software screen, and judge 

segmentation comparison results with ground truth dataset or between segmentation methods. 
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 PAVEMENT CELL SHAPE QUANTIFICATION WITH 

LOBEFINDER 

This material covered in this chapter has been published in the Plant Physiology Journal [45]. 

 

Wu, T. C., Belteton, S. A., Pack, J., Szymanski, D. B., & Umulis, D. M. LobeFinder: a convex 

hull-based method for quantitative boundary analyses of lobed plant cells. Plant physiology, 

171(4), 2331-2342 (2016). 

3.1 Introduction 

The size, shape, and angle of leaves are important adaptive traits in natural populations and key 

determinants of yield in agronomic settings [1]. Therefore it is important to understand the cellular 

events that collectively, at the levels of the tissues and organs, lead to the formation of durable, 

lightweight, and appropriately sized leaf blades for efficient light capture [2]. In Arabidopsis, the 

growth properties of the epidermis may have particular importance in terms of organ size control 

[3], and the growth behaviors of the sectors of the epidermis and individual cells can correlate with 

organ-level growth behaviors [4][5]. In dicots, the basic cellular unit of the epidermis is the jig-

saw-puzzle piece shaped pavement cell, the division and expansion of which drive leaf expansion 

[6]. 

 

The biomechanics of pavement cell shape change are complicated [7-10]. Turgor pressure is the 

driving force for cell expansion. However, the magnitude and directions of cell wall tension forces 

are difficult to predict because of the presence of adjacent neighboring cells both in the plane of 

the epidermis and in the underlying mesophyll tissue [10]. The shape of the cell itself may also 

influence the stress patterns in the wall, and regions of high cell curvature are predicted to have 

increased wall stress compared to other domains of the cell [11]. The growth trajectory or strain 

response of the cell is also strongly influenced by heterogeneity in the cell wall, and a current 

challenge is to understand how differences in cell wall thickness and local cellulose-dependent cell 

wall anisotropy might contribute to polarized growth in this cell type [7, 10]. 

 

The developmental control of lobe initiation in cotyledons and leaves is also poorly understood. 

In one early model, lobe initiation was proposed to direct organ shape, with cell elongation and 
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lobe initiation occurring independently in populations of cells to influence organ growth in length 

and width, respectively [12,13]. Other studies, which relied on cell shape measurements from 

populations of unsynchronized cells, detected correlations between cell size and lobe number, 

implying a continuous process of cell expansion and lobe initiation [14,15]. Neither of these 

models appears to be correct based on several recent papers that employ either long-term time 

lapse imaging of pavement cell morphogenesis [4,16] or cell population analyses that analyzed 

cells from developmentally staged leaves over time intervals spanning days [17] or weeks [18]. 

The clear outcome for these studies is that the frequency of lobe initiation clearly depends on the 

developmental stage and location on the leaf. However, in many instances lobe initiation is 

unpredictable. For example, a given cell’s anticlinal (perpendicular to the leaf surface) walls are 

in contact with several neighboring cells. New lobes can form along either one or several of these 

cell boundaries, and the factors that define the probability of forming a new lobe at a particular 

location are not known. Lobe initiation is therefore episodic, and morphogenesis appears to include 

both anisotropic growth during lobe initiation and lobe expansion, as well as extended phases of 

symmetrical cell expansion in which the cell size increases but the overall geometry of the cell 

remains essentially unchanged [4]. 

 

One major limitation in the field is the lack of a robust and objective method to identify new lobes. 

The discussion above on the cellular and developmental control of lobe formation is largely based 

on subjective evaluation of pavement cell segments as being either lobed or unlobed. This has 

generated confusion and variability in the literature with regard to detecting phenotypes and 

comparing the severity of phenotypes among different mutants. In some instances, the endpoints 

of a midline skeleton of individual pavement cells have been used to estimate lobe number [18,19]; 

however, this method is not very accurate and appears to underestimate lobe number. As an 

alternative, dimensionless shape descriptors like circularity (4πx cell area/perimeter2), a ratio that 

approaches 1 for more circular cells and gets smaller as cells become more lobed, are used to test 

for differences among cells in the complexity of their cell shape [19-23]. The major weakness of 

this approach is that it does not directly reflect lobe number, and there are many equally plausible 

explanations in which reductions in either lobe initiation or lobe expansion could lead to similar 

differences in cell shape complexity. In this technical advance, we describe a highly useful convex 

hull-based Matlab program termed LobeFinder that operates on cell perimeter coordinates 
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extracted from images of pavement cells and returns an array of useful cell shape data including a 

value of lobe number and a map of their positions. Based on median scores of manually identified 

features from a diverse population of pavement cells, LobeFinder predictions outperformed the 

alternative method of binary image skeletonization and subjective human scoring. The 

development, validation, limitations, and uses of LobeFinder are described below. 

3.2 Materials and Methods 

3.2.1 Annotation and use of the LobeFinder program 

To run LobeFinder, start an instance of Matlab ® on the workstation (PC, MAC, Linux) and 

change the working directory to the install location of LobeFinder. The script and all functions that 

make up LobeFinder are located in one Matlab ® m-file: ’LobeFinder_GUI.m’. To run LobeFinder, 

first create a directory to which all region-of-interest (ROI) of cell perimeter coordinates obtained 

by manual segmentation are saved. Start the LobeFinder Graphical User Interface (GUI) by typing 

‘LobeFinder_GUI’ at the MATLAB workspace prompt and <Enter>. This will open an instance 

of LobeFinder GUI in a separate window (Figure 3.7). To import files, click on the “Open Folder” 

button to select the folder that contains the ROI files. At this point one can select the checkboxes 

for the types of data output files to be generated (CSV, Figures, Matlab File) as well as the 

resolution of the images from which the ROIs were extracted. Once the folder and options have 

been selected, click on the “Run” button to start the ROI processing. The total number of ROI files 

being processed will be shown in the image number box on the GUI. To view the results from the 

LobeFinder processing, select the image number from the image number box. This will populate 

the GUI with the measured parameters as well as an image of the refined hull, the cell boundary, 

identified lobe points, and DTRH plot. Moving the cursor over the perimeter of the cell will allow 

its corresponding position on the DTRH plot to be seen. Depending on the output options selected, 

a new folder in the directory of LobeFinder will be created ([Output] NameOfInputFolder) with 

up to 3 folders (CSV, FIG_cell, FIG_dtrh). CSV folder contains one Matlab mat-file 

‘Lobe_result.mat’ which contains all results and geometric scalar properties for each ROI in the 

directory, a ‘CellDescriptors.csv’ file  containing all single value measurements such as area, 

perimeter, etc for all ROIs, and individual ‘DTRH_[nameOfROI] file containing xy-values for 

DTRH plots. FIG_cell and FIG_dtrh folders will contain images of cells and DTRH plots as 
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displayed in the LobeFinder GUI ROILobeFinder is available for download at the Dryad Digital 

Repository: http://doi.org/10.5061/dryad.cs78t.  

3.2.2 Plant material and growth conditions. 

Arabidopsis seeds were grown on 1/2X Murashige and Skoog medium with 1 percent sucrose and 

0.8 percent Bacto agar under constant illumination at 220C. Seeds were treated with a 6 hr light 

pulse, cold-treated for 3 days, then placed in the growth chamber. Germination was checked 36 

hrs after plating, and only seedlings with a barely visible radicle were used for further analysis.  

3.2.3 Time-lapse imaging of lobe initiation 

For time point imaging, cell outlines were detected using a tubulin:GFP marker for datasets 2 and 

3 as previously described [4]. For dataset 1, from 38 to 55 HAG, 10 cells were analyzed. For 

dataset 2, from 48 to 120 HAG 12 cells were analyzed. For dataset 3, from 72 to 120 HAG 12 cell 

were analyzed. For dataset 1, the PIN7:GFP [24] plasma membrane marker was used. The 

seedlings were mounted in water using a petroleum jelly gasket to form a chambered microscope 

slide. After initial imaging, the slides were returned to the growth chamber until the next imaging 

session. Samples were imaged using a Bio-Rad 2100 laser scanning confocal microscope mounted 

on a Nikon eclipse E800 stand. Images were obtained with a 60X 1.2 NA water objective. Samples 

were excited with a 488 nm laser and fluorescence signal was collected using a nm long pass 

dichroic, and a 500-550 nm band-pass emission filter. Selected planes from confocal image stacks 

were converted to maximum intensity projects and were traced with the polygon selection tool 

using in FIJI 4.0 [25]. The coordinates from the ROIs from the manually segmented cells were 

used as the input for LobeFinder. 

3.3 Results 

Currently, quantification methods of lobe formation are often focused on the localization of 

specific factors related to cellular shape change such as the distribution of actin filaments, the 

presence of anticlinal microtubule bundles, and qualitative descriptions of cell shape [13,15]. 

However, because there is no known marker protein for lobe initiation, and because lobe counting 

results vary greatly between labs and among individuals (see below), there is a strong need for a 

standardized computational approach to measure the number and location of pavement cell lobes. 
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A number of commercial and open-source software applications are available to quantify the 

geometry of cell shapes. These methods can be broadly separated into two categories: 

quantification of descriptive scalar properties such as circularity, roughness, perimeter, area, etc. 

that describe the shape by descriptive parameters [26, 27]; and image-segmentation approaches 

that we broadly define here as methods that reduce the pixel information in the raw image into 

segments or a reduced set of data points that have greater biological meaning [28], such as 

converting an image of a cell into segmented regions for nucleus, cytoplasm, golgi, ER, etc. 

automatically. These approaches offer a reduction in the size of the data and a transformation of 

pixel intensity data into classifications that directly informs the biology of the problem. The Medial 

Axis Transform (MAT) [18] has been used to quantify pavement cell geometry. The MAT uses 

the midline points of cells to quantify cell shape differences by tracking the percent change in 

angles between linear segments of the branches along the central axes or skeleton. A similar 

method for tracking the midline of a cell is available as the FIJI plugin AnalyzeSkeleton method 

[25, 29].  

 

In the analysis of pavement cell shape, the most widely used computational method to identify 

lobes is based on the AnalyzeSkeleton algorithm that detects the midline of irregularly shaped 

objects, categorizing the pixel properties of the surrounding area and choosing the best path to 

detect areas of image continuity. Based upon the number of neighboring pixels, some pixel points 

are ignored or favored over others and a skeletonized representation of the central axes of the cell’s 

shape and structure is formed. In this method, individual cells are manually extracted from a 

confocal image of a field of pavement cells (Figure 3.1). A midline skeleton is calculated from the 

binary image and the skeleton end-points are extended to the cell perimeter, depending on the 

magnitude of the protrusion, to map positions of predicted lobes. As shown in Figure 3.1A and 

Figure 3.1B, the skeletonize method is not very accurate, and only about half of the lobes that 

would be identified by a trained scientist are accurately identified with this method. Therefore, this 

method is useful in determining generalized lobing events, usually well after a new lobe has formed, 

but is unable to detect slight variations in wall geometry that signify recent lobing events. 
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Figure 3.1.  The AnalyzeSkeleton processing technique of lobe identification method does not 

accurately identify pavement cell lobes. (A) and (B), Left, representative confocal images of an 

early stage cotyledon pavement cells. Middle, calculated midline skeletons of the corresponding 

pavement cells. Right, summary of the accuracy of the AnalyzeSkeleton method. Green squares, 

correctly identified lobe points based on the extensions of the skeleton endpoints; red arrows, 

missed lobe points compared to voting results. Scale bar, 20μm. 

3.3.1 Outline of LobeFinderualization 

To overcome the limitations of the previous methods in identifying the position and number of 

lobes in pavement cells, we developed a new cell geometry analysis approach named LobeFinder. 

LobeFinder operates on user-supplied cell boundary coordinates that are extracted from high-

resolution confocal images of pavement cells of various sizes and shapes. The algorithm is based 

on a multi-step process starting with a convex hull of the cell boundary and a sequence of 

processing events to robustly identify lobes [30]. First, cell boundaries are segmented from the 

original image. For our analysis of cell boundary variation and lobe detection, existing 

segmentation methods utilizing gradient vector field SNAKEs or a related approach [31, 32] were 

not sufficiently accurate, frequently merging cells or creating additional cells from an irregularly-

shaped lobe. The recently published semi-automated method for pavement cell segmentation 

B
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termed CellECT improves the efficiency of 3D pavement cell segmentation and includes user input 

to reduce errors [33]. In the future, CellECT could be modified to output a single set of splined 

coordinates that accurately depict the boundary of the anticlinal cell wall. We anticipate that as 

cell segmentation methods improve, LobeFinder will be integrated into an image processing 

workflow to enable high-throughput cell phenotyping. However, at the present time manual 

segmentation is the only reliable method to extract cell coordinates, and this can be easily achieved 

using the polygon selection tool that is available in ImageJ. The ImageJ segmentation tool is 

advantageous because it allows the user to adjust the position of the cell boundary points and add 

or delete points as needed. 

 

For this study, confocal images were at a resolution of 3.95 or 2.55 pixels/μm. After testing a range 

of sampling densities along the cell perimeter, we found that sampling frequencies of 0.5 to 1.5 

points/μm were sufficient to yield accurate results for cell shape analyses using LobeFinder 

because lobe detection was consistent in this range. Sampling frequencies of 1 point every 2 μm 

or less led to obvious mismatches between the cell shapes in the raw image and the segmented 

cells. We recommend sampling cell perimeters at 1 point/μm and selecting the spline function 

within ImageJ to smooth the manual tracing and provide a high density of interpolated points. 

 

Following extraction of the cell perimeter by segmentation, the center of mass of each cell is 

calculated and moved to the origin. The overall cell size is normalized and scaled by a constant 

factor to calculate lobe numbers (Figure 3.2A). Following analysis the outputs are rescaled back 

to microns for the outputs reported in the graphical user interface (GUI). This allows the use of the 

same relative metrics and LobeFinder settings to determine if a lobe is present for cells of different 

ages and sizes. The normalization step also allows raw images at multiple different resolutions to 

be processed in LobeFinder. To remove artifacts introduced by the uneven sampling of perimeter 

points during manual cell segmentation and reorientation, the cell perimeter data is approximated 

by a cubic spline interpolation. 
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Figure 3.2.  Overview of the LobeFinder logic and workflow. (A) Cell perimeter positions are 

manually segmented from raw images, scaled, and resampled. (B) A convex hull, defined as the 

as the minimal polygon which encloses the entire given cell perimeter is computed (step 1), then 

the perimeter is scanned for missed lobe points (the extrema between segments 4 and 5) using the 

PeakFinder algorithm within MatLab (step 2). The optimized values for thresholds (δTH and λTH) 

(TH: Threshold) for rule based lobe geometry and spacing (step 3) are used to identify putative 

lobe points (step 3), and last, groups of lobe points are merged and the final set of predicted lobe 

positions are extracted (step 4). Scale bar, 20μm. 

 

The output of the preprocessing steps is a cell perimeter that is scaled, aligned with the center of 

mass, smoothed and resampled (cubic spline interpolation), and ready for further analysis. To 

acquire the minimal polygon that surrounds the entire set of coordinates that define the cell 

boundary (Figure 3.2B), we employ the MATLAB function ‘convhull’ that returns the coordinates 
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of the convex polygon (hull) that contains all the coordinate points of the cell set (MATLAB, 

2013). The convex hull provides two important features for further analysis: first it provides 

information for the minimum convex set that encompasses the entire cell, and second it provides 

a convenient coordinate system onto which the cell boundary properties are easily mapped (Figure 

3.2B, middle). Both of these outputs will serve to subsequently identify key points and structures. 

 

Pavement cells do not typically produce an outline where all of the extrema at the lobe tips are 

located precisely on the hull. For example, in Figure 3.2B, the convex hull produces a line that 

does not separate regions 4 and 5 by the lobe that is located between the regions since the lobe 

does not land on the hull itself. To adjust the hull, the distance between the cell and the hull is 

calculated and plotted on an axis of position vs. distance (Figure 3.2B). Using the orthogonal 

Distance To the Convex Hull (DTCH) to the cell perimeter, the local minima are retrieved, and 

the convex hull is then refined to capture the interior local minima points. To determine whether 

there are interior lobe points between adjacent points on the convex hull, we use the program 

PeakFinder [34] to determine both local and absolute extrema between hull(i) and hull(j) (points 

on the cell periphery coincident with hull). Peakfinder identifies the location of the missed lobes 

and the hull used to encapsulate the cell is modified to contact the lobe point (Figure 3.2B, step 2). 

These additional processing steps capture the majority of interior lobes that would otherwise be 

missed since they do not lie on the hull surrounding each cell. The resulting hull is termed the 

“refined hull” because it no longer conforms to the strict definition of a convex hull. The Distance 

to the Refined Hull (DTRH) plots contain highly useful information on the local patterns of growth. 

Therefore, the cell and its refined hull are re-scaled back to their real dimensions, and the DTRH 

coordinates are available to be exported within the LobeFinder program. In rare instances, there 

are relatively large pavement cells in which a cell lobe is bulbous. In these instances the path of 

the cell perimeter doubles back on itself on one axis creating multiple solutions for the DTRH plot. 

In this sub-region of the cell, the peakfinder routine uses only the smallest distance value, and this 

can lead to erroneous hull refinements and lobe calls. This morphology is rare in our dataset, but 

a bulbous morphology is the default state in the crenulated boundary of many monocot leaf 

epidermal cells. For these species, LobeFinder would likely perform well in analyzing early events 

associated with lobe initiation, but would likely fail to accurately count the lobes of fully expanded 

cells. 
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Following adjustment of the convex hull, the goal of the algorithm is to identify which of the points 

on the cell perimeter correspond to the positions of the protrusions. Additionally, not every point 

on the hull corresponds to a physical lobe on the pavement cell, and to some extent the 

identification of a lobe on the cell is subjective in nature with different individuals identifying 

different lobe positions and numbers. One design goal of the algorithm is to mimic the expert 

observer’s approach to identify the geometric features, albeit by an objective computer algorithm. 

This goal informed the design of the geometric parameters for lobe geometry and spacing that 

were developed to optimize lobe identification. For each data point in the set of convex hull points 

(Figure 3.2B, Step 3), the distance between neighboring points is calculated. This distance between 

hull points determines if the algorithm should consider adjacent lobe points as part of the same 

lobe. To cull points on the hull and leave only those that are identified as the center of a lobe, two 

parameters (δ and λ) for the initial identification of lobes are used: the scaled spacing distance 

between lobe points (δ), and a ratio of the height (distance between hull and cell boundary) to the 

width (distance of hull segment) between prospective lobe points (λ). The distance between a lobe 

point and the convex hull is zero, however there must be a region between lobes where the distance 

is non-zero and above some threshold value. This module of the program calibrates LobeFinder to 

reduce the number of misleading or incorrect lobe points on the convex hull. This calibration is 

effective in most cases. However, because the parameters are tuned to be sensitive for small 

deviations in boundary shape, cells with relatively simple shapes with extended domains of the 

cell boundary that are close to the the threshold values for δ and λ are most likely to have false 

positives. 

3.3.2 LobeFinder optimization and evaluation 

The principal method for identification of lobes and lobing segments in pavement cells relies on 

observer-based inspection and identification of lobing events. An important research goal is to 

standardize pavement cell phenotyping and to create an objective computational method that can 

accurately quantify cellular geometry and be applied to time-lapse data and large ensembles of 

images to efficiently calculate population statistics. It is therefore necessary to ensure the algorithm 

produces consistent and accurate observations. 
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As an initial test of the sensitivity of the output to variability in an individual’s choice of boundary 

points for cell segmentation, three pavement cells of varying sizes and shapes were manually 

segmented three times and analyzed using LobeFinder. For each of these cells the area, perimeter, 

and circularity values for the technical replicates were either identical or differed by a fraction of 

a percent. For the technical replicates the LobeFinder outputs for lobe number were more variable, 

with the coefficients of variation for lobe number varying between .06 and .10. This level of 

variabilty in the measurement of lobe number was much less than that observed when multiple 

individuals used subjective criteria to score an identical cell. For example, in our test population 

of pavement cells (Figure 3.3), the coefficient of variation for lobe number ranged from 0.03 to 

0.21, with 10 of the 15 cells having a coefficient of variation greater than 0.1. In the LobeFinder 

program, variability in lobe number most often occurred along relatively straight cell perimeter 

segments with one tracing including a very small feature that was absent in another. The cause for 

this is discussed further below, but this result makes clear the importance of accurate sampling 

along the cell perimeter. 
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Figure 3.3.  Examples of raw confocal images of pavement cells and skeletonization results. 

(A) Cell perimeter positions are manually segmented from raw images, scaled, and resampled. (B) 

A convex hull, defined as the as the minimal polygon which encloses the entire given cell perimeter 

is computed (step 1), then the perimeter is scanned for missed lobe points (the extrema between 

segments 4 and 5) using the PeakFinder algorithm within MatLab (step 2). The optimized values 

for thresholds (δTH and λTH) (TH: Threshold) for rule based lobe geometry and spacing (step 3) 

are used to identify putative lobe points (step 3), and last, groups of lobe points are merged and 

the final set of predicted lobe positions are extracted (step 4). Scale bar, 20μm. 
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Fifteen randomly selected pavement cells (Figure 3.3) from a time-lapsed dataset were used to 

more thoroughly compare the accuracy of LobeFinder compared to exisiting methods. The cells 

had sizes that ranged from to 1588 μm2, and circularity values that ranged from 0.32 to 0.81. We 

evaluated how well LobeFinder outputs of lobe number and lobe position would agree with the 

scores generated by researchers with experience in the analysis of pavement cell shape. For each 

of the images (examples shown in Figure 3.4), six experienced pavement cell scientists visually 

inspected 8.5” X 11” printouts of each cell and identified lobe locations for each raw image. These 

data were used to determine the accuracy of lobe point position detection and to calculate the 

number of lobes present for each cell (Figure 3.4C and Figure 3.4D). A few of the cells used in the 

calibration of LobeFinder are shown in Figure 3.4A. The complete set of images (Figure 3.3), and 

a summary of the cell and convex hull properties (Table 3.1) are provided in the supporting online 

materials. A summary of the LobeFinder and voter results are shown in Figure 3.4E and Figure 

3.4F. We next benchmarked LobeFinder and the existing skeletonize method against the images 

manually curated by members of the two labs. The subjective nature of the manual scoring of lobe 

number is evident in the plots of lobe number (Figure 3.4E and Figure 3.4F), with many cells 

having four or more features that were ambiguous. The median lobe number from the manually 

curated data was therefore used as a standard for comparison. 
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Table 3.1. Morphological properties of pavement cells measured using LobeFinder. 
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Figure 3.4.  Evaluation of the LobeFinder accuracy using a calibration dataset and 

parameter optimization. (A) Example of a raw image containing five cotyledon pavement cells 

in the calibration dataset. (B) Outlines of extracted cells showing the cell boundary and the 

unrefined convex hull. (C, D) Example output of LobeFinder for two cells in which the correctly 

identified (green squares) and missed (red arrow) lobes are marked. (E) Comparison of the 

skeletonize method with manually curated results. The light blue circles are the median values 

from manual lobe identification results for each cell with individual independent values in small 

dark blue dots, and red boxes are lobe numbers predicted by skeletonize method. The dark blue 

bars plot are the absolute value of the difference between the lobe number count from the 

skeletonize method and the median value from the manual results. (F) Comparison of the 

LobeFinder method with manually curated results. The symbols and bars are as described in (E), 

but here the red boxes are the lobe numbers predicted by LobeFinder. The dark blue bars are the 

absolute value differences between the lobe number count from LobeFinder and the median value 

from manual results. (G) Comparison of the percent errors of the LobeFinder, skeletonize, and 

manual scoring methods that were calculated using the median lobe number as the correct value 

for each cell. Scale bar, 20μm. 
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Overall, the skeletonize method greatly underestimated lobe numbers (Figure 3.4E). Following an 

initial calibration to optimize the threshold values of δ and λ, the LobeFinder outputs for lobe 

number closely matched the median lobe numbers from the manually curated images (Figure 3.4F). 

The LobeFinder lobe number error was 5.7 times lower than that of the skeletonize method (Figure 

3.4G). The accuracy of the manual lobe counts were similar to those of 308 LobeFinder when 

averaged across all individuals (Figure 3.4G); however for a given cell there was considerable 

spread in the lobe counts among the individuals (Figure 3.4F). For example, the error rate among 

the individuals differed by more than 20% for 8 of the 15 cells, even though each of the 6 

individuals were similarly-trained to score the presence of lobes. This observation reinforces the 

strong need for objective methods for quantitative analysis of cells with highly variable shapes and 

sizes. 

 

Two different types of features were typically identified as a lobe. First, there were instances of an 

undulation along a cell perimeter segment that were independent of a 3-way cell wall junction. 

This is the classic example of interdigitated growth among two adjacent cells, and we define these 

features as Type I lobes. A second class of cell protrusions, defined here as Type II lobes, were 

instances in which a protrusion was located at a 3-way cell wall junction. These tripartite junctions 

form during cytokinesis, and in some, but not all cases, the cell can grow asymmetrically at this 

location generating a protrusion with a shape that is often indistinguishable from Type I lobes. 

However, the growth mechanism that generates a Type II lobe may resemble “intrusive” growth 

[35] in which one cell expands asymmetrically at the interface of two adjacent cells. This form of 

asymmetric growth likely differs from that which generates lobes that are independent of tripartite 

junctions. There is certainly a need to distinguish between these different types when one analyzes 

phenotypes and gene function. Currently, this is a weakness of LobeFinder because the program 

operates on the coordinates of individual cells and information on the cell wall patterns of its 

neighboring cells is lost. At present, if a user wishes to distinguish Type I and Type II lobes, one 

can use the graphical output from LobeFinder to identify the subset of lobes that fall on 3-way cell 

wall junctions. In the future, we hope to use a semi-automated cell segmentation program like 

CellECT [33] to simultaneously extract cell coordinates from fields of cells and track the positions 

of 3-way cell wall boundaries. 
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To quantitatively evaluate the performance of the algorithm for lobe location, we compared the 

position of the predicted lobes against the manually determined lobes within a specified tolerance 

(0.025 radians). If LobeFinder identified the proper location within the tolerance, it is identified as 

a true positive (TP, Figure 3.5). If a predicted LobeFinder point was not within 0.025 radians of a 

manually identified point, it was considered a false positive (FP). Missed Lobe points were defined 

as false negatives (FN). We did not calculate true negatives since this would be an ambiguous 

number to determine and it would not inform the evaluation of the method. Related to these 

quantities, we also calculated the Sensitivity = TP/(TP+FN) and False Discovery Rate (FDR) = 

FP/(TP+FP). Both of these measures are used to determine the effectiveness of the algorithm. 

 

A high sensitivity and a low FDR are the primary objectives for the application of LobeFinder as 

a tool for reliable and automated measurement of cell shape properties. Nine different 

combinations of the parameters 𝛿 and 𝜆 were tested that covered a wide range of parameter values. 

The highest parameter values yielded decreased senstivity and increased false positives; however, 

there was a fairly broad range of parameter combinations that yielded a sensitvity of ~0.8 and an 

FDR of ~0.25 (Figure 3.5). This indicates a relatively low 349 dependence of the algorithm on the 

specific parameters. The optimized parameter combinations yielded an average sensitivity of 0.95 

or higher and an average FDR less than 0.2 (Figure 3.5). 
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Figure 3.5.  Sensitivity and accuracy analysis of LobeFinder performance. (A) Definitions of 

sensitivity and False Discovery Rate (FDR). (B) Sensitivity of LobeFinder outputs over a range of 

parameter values. (C) FDR of LobeFinder outputs over a range of parameter values. 
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3.3.3 Identification of new lobes in time-lapse images of pavement cells 

The lobe number, shape, and size properties of pavement cells were analyzed on populations of 

cells at different intervals of cotyledon development. We applied the LobeFinder program to 

identify lobes in three time-lapse datasets of pavement cell growth. The first dataset represents 

early growth from 38 hours after germination (HAG) to 56 HAG. This slightly overlaps with the 

second dataset from 48 HAG to 120 HAG. The third dataset covers 72 HAG to 120 HAG. 359 

Datasets 2 and 3 were part of a previous analysis of pavement cell growth [4], and the raw images 

were reanalyzed here using LobeFinder. Example cells from these three different datasets are 

shown in Figure 3.6A to Figure 3.6C. Each showed combinations of symmetrical lateral expansion, 

with datasets 1 and 2 including more cells that initiated new lobes during the time interval. For 

example, the cell that is representative of the 72-120 HAG dataset, we observed no change in lobe 

number over the course of time, but it increased in size (Figure 3.6C, left to right). In contrast, the 

image representing a cell in the 48-120 HAG dataset initiated five new lobes (Figure 3.6B, left to 

right) while the image in the 38-55 HAG added three new lobes in the timespan of 27 hours (Figure 

3.6A, left to right). There is a great deal of variability in pavement cell size and lobe number as a 

function of cotyledon and leaf development [16,18]. As a result, in the relatively small windows 

of time that are analyzed here, there are examples in which lobe number and cell area are not 

strictly correlated with developmental time (Table 3.2). However, differences in lobe initiation 

rates of individual cells within the time intervals were apparent. Overall, the average number of 

new lobes per cell was about 2.5 for the 38-55 HAG and 48-120 HAG populations, and 0.5 for 72-

120 HAG (Table 3.2). The percentage of cells in all datasets that grew new lobes, were 33 percent 

for 72-120 HAG, 93 percent for 48-120 HAG, and 80 percent for 38-55 HAG (Table 3.2). These 

LobeFinder outputs and the average number of lobes per cell at each time point (Table 3.2) indicate 

that lobing events are prevalent in early stages of growth, and that lobing events slow down at 

some point between 56 and 72 HAG. These results are consistent with the conclusions of a 

previous study (Zhang et al., 2011). 
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Table 3.2.  Lobe number quantification for cotyledon pavement cells using LobeFinder. 
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Figure 3.6.  LobeFinder can be used to detect new lobes and quantify growth patterns in 

time-lapse images. (A-C), Examples of raw images of pavement cells with manually segmented 

cell shapes at three different intervals of cotyledon development. (A) Pavement cell at 38 (left) 

and 55 (right) HAG. (B) Pavement cell at 48 (left) and 120 (right) HAG. (C) Pavement cell at 72 

(left) and 120 (right) HAG. The blue boxes indicate the detection of new lobes and their location 

in the images and on the DTRH plots. (D-F) The DTRH plots for pavement cells that were re-

scaled to their original size. The x-axes of these plots are the scaled distance along the convex hull 

perimeter at the two different time points to enable visual comparisons of similar relative positions 

along the cell boundary at the two time points. The blue line is the DTRH at the initial time-point 

and dotted green line is DTRH at the final time-point. The time points in D to F, correspond to 

those of A to C, respectively, and are shown in the legend for each of the plots. The blue dots and 

red boxes on the x-axis identify lobe locations in the initial and final time points, respectively. 

Scale bar, 20μm 

 

Additional scalar metric outputs from LobeFinder also correlate with different phases of pavement 

cell growth; however, they do not directly inform the generation of new lobes. Specifically, for 

example, the circularity of the individual cells decreases between the two time points (Table 3.3), 

likely due to the increased expansion of lobes that are initiated primarily in the first two and half 
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days after germination. This would also explain the observed decreases in the convexity (ratio of 

hull perimeter to cell perimeter) and solidity (ratio of hull area to cell area) of pavement cells. 

Overall, the identification of lobing events and the scalar metrics are consistent with the existence 

of a permissive developmental window for active lobe formation early in cotyledon development. 

 

Table 3.3.  Cell shape descriptors of cells analyzed with LobeFinder. 

 

Another outputs from LobeFinder that are useful for cell analyses are plots of the distance from 

the refined hull to the cell boundary, which provide a graphical representation of the magnitudes 

and directions of cell shape change near the cell periphery. This is due to the fact that as lobes 

expand, their height and width increase leading to corresponding changes in the DTRH plots. At 

the distal tips of cell protrusions, the DTRH is zero and corresponds to a lobe point of the cell of 

interest in the LobeFinder output. The shape of the cell boundary between lobes is captured by the 

contour of the DTRH, which is at a local maximum at the most concave position between lobes. 

Therefore, in a time lapse experiment, the DTRH plots reflect the local growth  behavoirs of the 

adjacent protruding cell, and the shape change at the interface between the two cells. In Figure 

3.6D to Figure 3.6F, the DTRH was plotted for each cell at the two different time points. The 

position along the hull is the x-axis, and this is scaled to the hull length of the initial time point to 

enable the DTRH values from different time points to be compared at similar relative positions 

along the hull perimeter. During the 72 to 120 HAG interval (Figure 3.6F), growth is highly 

symmetrical and lobe initiation is rare [4]. The corresponding DTRH plots were consistent with 

this result, because the contours of the plots at the two time points were highly symmetrical with 

well-aligned peaks. It is important to note that the peak widths for the later time points are 
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compressed because the x-axis is scaled. However, as previously shown [4], pavement cell growth 

during this phase is not perfectly symmetrical, and there were sub-regions of the DTRH plots that 

were not symmetrical (Figure 3.6F), indicating that some local warping of cell shape occurred 

during growth. The paired DTRH plots for cells that form new lobes (Figure 3.6E and Figure 3.6F), 

reflected a composite growth behavior. In some regions of the cell-cell interface growth appeared 

symmetrical with proportional increases in peak height and width at similar relative positions. The 

DTRH plots also revealed an obvious contribution of polarized growth to the shape change, 

because new peaks were detected. In addition, many of the peaks were shifted in position along 

the hull perimeter, reflecting symmetry breaking during lobe initiation and accumulation of local 

warping during the growth interval. 

3.4 Discussion 

LobeFinder is a novel convex hull-based tool to quantify the local boundary characteristics of a 

closed geometric shape and identify key features such as pavement cell lobes. The ability of 

LobeFinder to consistently and accurately identify and position lobes within a pavement cell is an 

important advance, because currently there is no reliable method to quantify the convoluted shape 

of pavement cells. Manual definition of lobe number [15, 36] or a feature such as the pavement 

cell neck-width (the shortest distance across the cell between two indentations) [37] is subjective 

and variable. Variation in human scoring is a major problem: we document here significant 

variability in lobe number scoring, even among well-trained individuals (Figure 3.4E and Figure 

3.4G). The lack of standardized phenotyping methods can contribute to differing conclusions as to 

whether or not a particular mutant has a pavement cell phenotype [36,38]. Manual cell scoring is 

also time-consuming. It requires careful inspection of the cell boundary and the manual annotation 

of each feature in the image file that is scored as a lobe. Skeletonization of segmented, binary 

images of cells can identify pavement cell protrusions [18], and in some instances can be used to 

detect significant differences between mutant and wild type plants [19]. However, the skeletonize 

technique is very inaccurate and tends to miss approximately 40% of all lobes (Figure 3.4G). 

LobeFinder has a much greater accuracy compared to the skeletonize method, and performs with 

an accuracy that is only achieved by averaging the votes of several individuals with extensive 

experience in pavement cell analysis (Figure 3.4G).  
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The availability of an accurate method to directly identify pavement cell lobes is important because 

scalar shape descriptors such as circularity are sensitive to multiple features of a cell geometry, 

and do not contain information on the local cell features that are most useful for understanding cell 

growth behavior. For example, differences between cells in their scalar descriptors could reflect 

either differences in lobe number, reduced lobe expansion, or altered diffuse growth in the mid-

region of the cells. This point is important because it is often assumed that any mutant with a 

reduced perimeter to area ratio has a lobe initiation defect. LobeFinder directly analyzes the local 

geometry of the cell and identifies lobes. In this regard, it is a powerful phenotyping tool that can 

be used to compare populations of cells and cell shape over time. However, the LobeFinder 

program is not perfect, and because of the local shape and spacing thresholds that are used for lobe 

detection, there are instances, most often along extended domains of low curvature, in which false 

positives are occasionally reported. Overall, LobeFinder has great potential for the community, 

and we anticipate that LobeFinder, provided as a user-friendly program in MatLab (Figure 3.7), 

will allow others to use this program to analyze mutants, and objectively test for direct effects on 

lobe initiation. 

 

A major advantage of LobeFinder is that it creates a coordinate system to quantify local growth 

behaviors at the interface of two cells. Alternative approaches to lobe detection, such as the 

quantification of the local curvature of the cell perimeter using variation in the tangent to the cell 

boundary as a function of cell perimeter, could operate on splined images to identify regions of 

local curvature that accurately identify lobes. However, this strategy would not generate a 

coordinate system to analyze growth. Here we use LobeFinder and plots of the DTRH in time 

series data to illustrate a method to quantify local growth behaviors of an irregularly shaped cell 

(Figure 3.6). For example, the DTRH plots could be analyzed further in time-lapse experiments to 

generate spatial maps of how the magnitude and direction of growth at the interface of two cells 

change. These plots clearly indicate the timing, location, and pattern of polarized growth along the 

interface of interdigitating pavement cells. Importantly, these plots do not reveal the subcellualr 

patterns of growth that explain the shape change. To solve this problem, convex-hull based growth 

analysis coupled with the use of fiducial marks on the cell wall to track growth patterns [4,16,18] 

could provide improved methods to analyze the subcellular heterogeneity in polarized growth. 

While this paper was being written, there was a recent report in which externally applied particles 
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were used to track the growth patterns of the outer wall in fields of developing pavement cells [39]. 

The utility of externally applied particles to analyze the growth of the anticlinal wall is uncertain. 

However, the combined use of DTRH plots, high-density cell wall marking, and time lapse 

imaging has the potential to reveal how the polarized growth of individual cells and cell clusters 

can operate at broader spatial scales to dictate the growth patterns of leaf sectors and even whole 

organs [4,5,40]. 

 

LobeFinder also has immediate applications in terms of more quantitatively dissecting the 

molecular control of lobe initiation. Hull based methods and the DTRH plots establish a perimeter 

coordinate system onto which the temporal and spatial patterns of lobe formation can be graphed 

(Figure 3.6). This is a boon for further analysis such as correlation of spatial geometric features 

with the localization of cell wall and intracellular signaling and structural factors that are believed 

to control symmetry breaking. Specifically, LobeFinder can provide the convex hull coordinate 

system to test for correlations between the local accumulation of proteins such as auxin efflux 

carriers [15,36] or microtubules [41,14,7,42,4] and lobe initiation. In this manner, an array of GFP-

tagged proteins can be tested to determine those whose localization and activity at the cell cortex 

specify symmetry-breaking events. 

 

Currently, the greatest limitation for LobeFinder is that it operates on cell coordinates from 

manually segmented cells. Manual segmentation is a reliable, but time consuming process, 

presenting a major bottleneck for high-throughput phenotyping. As discussed previously, the use 

of individual, segmented cells also makes it impossible to distinguish between Type I and Type II 

lobes, which complicates one’s ability to test for alterative genetic control mechanisms and 

differing contributions of the lobe types to cell expansion. The obvious solution is an automated 

cell segmentation program that accurately extracts cell boundary coordinates and marks 3-way cell 

wall junctions in the dataset. Currently, there is no existing segmentation method to accurately 

extract pavement cell coordinates from fields of cells and track 3-way junctions. However, the 

development of watershed-based cell segmentation coupled with user-guided validation in a 

program like CellECT [33] has the potential to be integrated with LobeFinder to create a more 

robust and efficient cell analysis pipeline. 
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We show here that LobeFinder is an effective new tool for pavement cell phenotyping and growth 

analysis. We believe this algorithm has a broader utility for the quantification and many lobed cell 

types [7] and the analysis of objects with closed and highly irregular geometric shape at any spatial 

scale. For example, there is great interest in the quantitative analysis of leaf shape, and the complex 

boundary shapes of many types of leaves could be analyzed with LobeFinder. In this context, 

LobeFinder, could complement other leaf shape analysis programs like LeafProcessor [44]. 

Similar hull-based methods could operate on projected images of shoots and roots to analyze whole 

plant architecture over time. We also believe LobeFinder could have broad applications in other 

fields such as human medicine and environmental science. For example, the progression of 

irregularly-shaped tumors could be quantified over time, and correlated with other features such 

as tumor location or drug treatment regimes. The local spatial dynamics of spreading plumes of 

contamination, floods, and the retraction of glaciers could be similarly analyzed, and tested for 

cross-correlations with any variable of interest. Our efforts will focus on the use and integration of 

LobeFinder within a completely automated image analysis platform, with the goal of accelerating 

discovery in the field of leaf morphogenesis. 
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Figure 3.7.  Snapshot of the graphical user interface of LobeFinder. Operation steps 638 and 

navigation of the results are outlined.  
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