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ABSTRACT 

Voids in the mineral aggregate (VMA), as a main volumetric design parameter in the Superpave 

mixture design method, is an important factor to ensure asphalt mixture durability and rutting 

performance. Moreover, an asphalt mixture’s aggregate skeleton, related to VMA, is another 

important factor that affects critical asphalt mixture properties such as durability, workability, 

permeability, rutting, and cracking resistance. The objective of this study is to evaluate the effects 

of aggregate size distribution and shape parameters on aggregate packing characteristics 

(volumetric and compaction properties) of asphalt mixtures. Three tasks were undertaken to reach 

this goal.  

The first task was to propose an analytical approach for estimating changes in voids in the 

mineral aggregate (VMA) due to gradation variation and determining the relevant aggregate 

skeleton characteristics of asphalt mixtures using the linear-mixture packing model, an analytical 

packing model that considers the mechanisms of particle packing, filling and occupation. 

Application of the linear-mixture packing model to estimate the VMA of asphalt mixtures showed 

there is a high correlation between laboratory measured and model estimated values. Additionally, 

the model defined a new variable, the central particle size of asphalt mixtures that characterized 

an asphalt mixture’s aggregate skeleton. Finally, the proposed analytical model showed a 

significant potential to be used in the early stages of asphalt mixture design to determine the effect 

of aggregate gradation changes on VMA and to predict mixture rutting performance. 

As the second task, a framework to define and understand the aggregate structure of asphalt 

mixtures was proposed. To develop this framework, an analytical model for binary mixtures was 

proposed. The model considers the effect of size ratio and air volume between the particles on the 

aggregate structure and packing density of binary mixtures. Based on this model, four aggregate 

structures, namely coarse pack (CP), coarse-dense pack (CDP), fine-dense pack (FDP) and fine 

pack (FP), were defined. The model was validated using a series of 3D discrete element simulation. 

Furthermore, the simulation of multi-sized aggregate blends using two representative sizes for fine 

and coarse stockpiles was carried out to apply the proposed analytical model to actual aggregate 

blends. The numerical simulations verified the proposed analytical model could satisfactorily 

determine the particle structure of binary and multi-sized asphalt mixture gradations and could, 

therefore, be used to better design asphalt mixtures for improved performance.  
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The third task virtually investigated the effect of shape characteristics of coarse aggregates 

on the compactability of asphalt mixtures using a discreet element method (DEM). The 3D 

particles were constructed using a method based on discrete random fields’ theory and spherical 

harmonic and their size distribution in the container was controlled by applying a constrained 

Voronoi tessellation (CVT) method. The effect of fine aggregates and asphalt binder was 

considered by constitutive Burger’s interaction model between coarse particles.  Five aggregate 

shape descriptors including flatness, elongation, roundness, sphericity and regularity and, two 

Superpave gyratory compactor (SGC) parameters (initial density at Nini and compaction slope) 

were selected for investigation and statistical analyses. Results revealed that there is a statistically 

significant correlation between flatness, elongation, roundness, and sphericity as shape descriptors 

and initial density as compaction parameter. Also, the results showed that the maximum percentage 

of change in initial density is 5% and 18% for crushed and natural sands, respectively. The results 

of analysis discovered that among all particle shape descriptors, only roundness and regularity had 

a statistically significant relation with compaction slope, and as the amount of roundness and 

regularity increase (low angularity), the compaction slope decreases. Additionally, the effect of 

flat and elongated (F&E) particles percentage in a mixture using a set of simulations with five 

types of F&E particles (dimensional ratios 1:2, 1:3, 1:4 and 1:5) and ten different percentage (0, 

5, 10, 15, 20, 30, 40, 50, 80 and 100) with respect to a reference mixture containing particles with 

flatness and elongation equal to 0.88 was conducted. Results indicated that increase of F&E 

particles in a mixture (more than 15%) results in a significant reduction in the initial density of the 

mixture especially for lower dimensional ratio (1:4 and 1:5).  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

The necessity of building additional roadway infrastructure has greatly increased over the past 

decades in most parts of the world due to increased economic growth and the resulting growth in 

the number of heavily loaded vehicles traveling the roads. To build a high-performance roadway 

infrastructure for a given set of traffic and environmental conditions, it is necessary to have a 

comprehensive and practical design methodology, including a methodology for designing asphalt 

mixtures. Over the years, numerous research projects have been conducted to find an efficient and 

cost-effective asphalt mixture design method that will produce asphalt mixtures able to meet 

desired field performance (Benson, 1970; Prowell et al., 2005; Muras, 2010; Pouranian and 

Shishehbor, 2019). Although current asphalt mixture design methods are mostly empirically based, 

research on more mechanistic based design methods has been increasing. Developing a 

mechanistic asphalt mixture design and characterization method to help mixture designers better 

understand the expected engineering performance of mixtures, over all stages of an asphalt 

mixture’s life, would greatly assist the industry in producing better-performing asphalt mixtures. 

On a mass basis, asphalt mixture is a combination of approximately 95% aggregates 

(coarse and fine) bound together by asphalt binder. The goal of asphalt mixture design is to 

determine the optimum combination of mixture constituents (coarse aggregate, fine aggregate and 

asphalt binder) that can provide appropriate field performance for anticipated traffic loads and 

environmental conditions. This is most often accomplished by evaluating the volumetric properties 

of the mixture. However, the mechanical behavior of various asphalt mixtures, even those with 

similar volumetric properties, can differ significantly due to a wide range in the properties of the 

material constituents and the many possible variations in combining the materials.  

 Under typical environmental conditions, the aggregate matrix within an asphalt mixture is 

responsible for carrying the loads imposed by traffic. The aggregate size distribution, or aggregate 

gradation of an asphalt mixture is a key factor that affects important properties of the asphalt 

mixture, such as durability, workability, permeability, and rutting and cracking resistance. Much 

research has been focused on the relationship between aggregate gradation and asphalt mixture 

performance, but this relationship remains poorly understood (Benson, 1970; Gaudette and Welke, 
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1977; Dukatz, 1989; Button et.al, 1990; Haddock et al., 1999; Bahuguna et al., 2006; Pouranian et 

al., 2018). 

Many researchers have shown that aggregate inter-particle contact and interlocking are 

critical to the mechanical strength and stability of asphalt mixtures (Brown et al., 1997; Brown et 

al., 2009; Huang, 2012). Inter-particle contacts and interlocking allow applied loads to be 

transferred through, and thus carried by the aggregate matrix of an asphalt mixture. Appropriately 

packing aggregates in an asphalt mixture gradation can greatly enhance the degree of aggregate 

inter-particle contact and interlocking, and consequently, improve important asphalt mixture 

engineering properties such as strength, thereby increasing asphalt mixture field performance. 

Only a few researchers have evaluated aggregate packing and the correlation between the 

aggregate structure of asphalt mixtures and their volumetric properties and performance (Benson, 

1970; Birgisson and Ruth, 2001; Vavrik et al., 2002). Development of an analytical, systematic 

method to establish asphalt mixture gradations that create strong aggregate skeletons resulting in 

mixtures with desired performance would be a great leap forward. This can be done by quantifying 

the packing characteristics of aggregate particles and the role of aggregate packing plays in 

achieving asphalt mixtures in-service performance. Determination of how aggregate gradation 

affects aggregate packing, compatibility and volumetric properties of asphalt mixtures can then be 

used to predict the performance of the asphalt mixtures. 

Today there are various aggregate gradation design approaches, such as the Superpave 

design method and the Bailey method that are widely used in asphalt mixture design. Introduced 

in 1993 as one of the principal outcomes of the Strategic Highway Research Program (SHRP), the 

current version of the Superpave mixture design method lacks sufficient guidance on the selection 

of a proper aggregate gradation in that it does not provide a correlation between the selected 

aggregate gradation and the expected volumetric and compatibility properties (Christensen, 2009). 

The Bailey method of aggregate gradation design was originally developed by Robert Bailey as a 

proposed strategy to develop within the asphalt mixture an aggregate skeleton capable of resisting 

rutting, having an acceptable level of durability, and containing adequate voids in the mineral 

aggregate (VMA) (Vavrik et al., 2002). In the Bailey method, a certain degree of aggregate 

interlock is defined by selecting an appropriate aggregate unit weight, suggested to be between 95 

and 105% of the loose unit weight (Vavrik et al., 2002).  Although both these methods try to 
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systematically describe the aggregate skeleton and inter-particle interlock, neither provides a direct 

and quantitative identification of aggregate interlock. 

In general, four factors have the greatest effect on the development of the aggregate 

structure in asphalt mixtures (Vavrik et al., 2002; Olard and Perraton, 2010): 

• Aggregate morphological properties (shape and surface macro-texture); 

• Particle size distribution; 

• Method and amount of compaction; and 

• Asphalt mixture lift thickness. 

The impact of aggregate morphological features such as shape and macro-texture on 

packing characteristics and compactability of aggregate is important but has not been widely 

evaluated. Most work in this area is based on laboratory experiments using local materials, costly 

equipment, and time consuming methods (Garboczi, 2002; Pan et al.,  2006; Pan and Tutumluer, 

2006 ; Masad et.al, 2007). Alternatively, numerical analysis can be an excellent substitutional 

approach, although the challenge of precisely characterizing aggregate shape properties and 

determining their effects on aggregate packing characteristics in a quantifiable and controllable 

manner remains. To this end, development of a comprehensive numerical framework able to 

generate three-dimensional (3D) aggregate particles with realistic, controllable shape parameters 

is desirable. Such a framework can be used to determine the effect of different shape properties on 

packing and compaction characteristics of aggregate particles, thus assisting asphalt mixture 

designers in selecting the best aggregate type and gradation in terms of design requirements and 

costs. 

1.2  Objectives 

Given the importance of aggregate morphological properties and particle size distribution to the 

performance of asphalt mixtures, as well as the lack of quantitative research of the two factors, the 

objective of this research is to use particle packing theories and discrete element methods (DEM) 

to better define the impact of aggregate morphological properties and particle size distribution on 

asphalt mixture aggregate structure and thereby asphalt mixture volumetric and compaction 

properties. The work thus has three main tasks: 

 

 



 

19 
 

1) Propose a theoretical approach for evaluating the impact of aggregate gradation on asphalt 

mixture volumetric properties, compactability and deformation resistance; 

2) Develop an analytical model, based on the basic concepts of particle packing, to blend 

coarse and fine aggregate particles in a manner that will enhance the understanding of 

aggregate structure in asphalt mixtures; and 

3) Numerically evaluate the effect of aggregate morphological properties on the volumetric 

characteristics and compactability of aggregate particles. 

1.3  Methodology 

The first research task is to propose and develop an analytical framework for estimating VMA and 

determining the aggregate skeleton characteristics of asphalt mixtures using a linear-mixture 

packing model. The proposed model uses aggregate gradation as input and relates the aggregate 

skeleton characteristics to asphalt mixture rutting performance. While many factors can affect 

asphalt mixture VMA and rutting characteristics (aggregate physical and chemical properties, 

binder content, compaction effort, etc.), the model attempts to remove these variables from the 

experiment in order to determine the sole effects due to changes in aggregate gradation. 

The second study task develops a theoretical framework to better define asphalt mixture 

aggregate structures based on particle size distribution. Such a model could better optimize asphalt 

mixture aggregate gradations. The model is first developed based on binary mixtures and then 

modified to be applicable for mixtures containing multi-sized aggregates. Finally, the framework 

proposed by the model is evaluated using the discrete element method (DEM) to simulate asphalt 

mixtures packing and compaction parameters when compacted by the Superpave gyratory 

compactor (SGC). 

Due to importance of aggregate shape features on asphalt mixture performance, the third 

study task evaluates the effect of changes in aggregate shape parameters on the compaction 

parameters of asphalt mixtures using DEM simulation. For this purpose, the spherical harmonics 

(SH) approach with discrete random fields theory is used to generate 3D particle shapes with 

prescribed shape features. The Voronoi tessellation (VT) method is applied to create mixtures of 

generated particles having the same size distribution. Asphalt mixture laboratory compaction is 

simulated with DEM and the correlation between five particle shape parameters (flatness, 
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elongation, roundness, sphericity, and regularity) and two laboratory compaction parameters, 

compaction slope and initial density investigated. 

1.4  Organization of Dissertation 

This dissertation contains 6 chapters: 

 

• Chapter 1: Introduction 

• Chapter 2: Linear-Mixture Packing Model 

• Chapter 3: A Framework for Understanding Aggregate Structure in Asphalt Mixture 

• Chapter 4: Effect of Aggregate Structure on Asphalt Mixture Compaction 

Parameters 

• Chapter 5: Impact of the Coarse Aggregate Shape Parameters on Compaction 

Characteristics of Asphalt Mixtures 

• Chapter 6: Summary and Conclusions 
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CHAPTER 2. LINEAER-MIXTURE PACKING MODEL 

This chapter was published in Construction and Building Materials Journal 
Pouranian, M. R., & Haddock, J. E. (2018). Determination of voids in the mineral aggregate and 

aggregate skeleton characteristics of asphalt mixtures using a linear-mixture packing 
model. Construction and Building Materials, 188, 292-
304.https://doi.org/10.1016/j.conbuildmat.2018.08.101 

2.1  Introduction 

Asphalt mixtures are typically thought to be heterogeneous materials consisting of aggregates, 

asphalt binder, and air voids. Most of a dense-graded asphalt mixture is the aggregates 

(approximately 85% by volume) and as such, the load bearing capacity of an asphalt mixture is 

strongly related to its aggregate skeleton. Besides the physical and mechanical properties of the 

asphalt binder, the aggregate related parameters such as shape, texture, chemical properties, and 

gradation affect the volumetric properties and subsequently, the performance of asphalt mixtures. 

At high pavement temperatures, the role of the aggregate skeleton on rutting performance can be 

even more prominent, since at such temperatures the asphalt binder becomes less viscous. 

Therefore, designing asphalt mixtures with effective aggregate skeletons is especially crucial to 

rutting performance at high mixture temperatures. 

Over the years, much research has been conducted on the effect of aggregate skeleton on 

asphalt mixture performance (Benson, 1970; Gaudette and Welke, 1977; Button et al, 1990; 

Bahuguna et al., 2006). In 1956, Lottman and Goetz showed the significant role of aggregate in an 

asphalt mixture, pointing out that aggregate structure and aggregate characteristics, such as 

gradation, shape, and coarse aggregate surface texture are main factors influencing the 

development of the aggregate skeleton. Dukatz (1989) concluded that asphalt mixture rutting 

resistance is highly dependent on aggregate gradation and that mixtures produced with the best 

possible materials can show poor rutting resistance without an appropriate aggregate gradation. 

The effect of aggregate gradation on the asphalt mixture properties was also evaluated by Elliott 

et al. (1991) who concluded that changing the gradation curve shape has a substantial effect on the 

mechanical and volumetric properties of asphalt mixtures.  
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Haddock et al. (1999) also evaluated the impact of aggregate gradation on asphalt mixture 

performance. They used two mixture types having nominal maximum aggregate sizes (NMAS) of 

9.5 and 19.0 mm to evaluate the sensitivity of asphalt mixture performance to gradation changes. 

For each mixture type, three aggregate gradations (above, through, and below the Superpave 

restricted zone) were designed. Triaxial tests, accelerated pavement tests, and laboratory wheel 

tracking tests were used to gauge mixture response. Results of the study indicated that mixtures 

with gradations above the restricted zone (fine-graded) had the best rutting resistance in both the 

accelerated pavement tests and the laboratory wheel tests. Additionally, the fine-graded mixtures 

displayed higher strength, based on the triaxial compression testing results. 

In addition to experimental approaches, the effect of particle size distribution on the 

packing behavior of mixtures has been studied by two other approaches, numerical and analytical 

analyses (Brouwers, 2006; He, 2010).  Discrete element modeling (DEM) is perhaps the best-

known numerical approach (He, 2010; Shen and Yu, 2011; Mostofinejad and Reisi, 2012; Minh 

and Cheng, 2013). However, this method has some limitations. First, the full range of particles 

cannot be considered, especially when there is a large difference between the maximum and 

minimum particle sizes (Chen, 2011). Secondly, DEM requires large amounts of computational 

time, and the time requirement increases with increasing number of particle sizes. Alternatively, 

the analytical approaches are able to cover the full range of particle sizes with negligible 

computational time, though they are usually based on basic packing concepts and need to be 

calibrated by experimental works. Due to the ability to cover the full particle size distribution and 

the need for less computer time, the analytical approach was chosen for this study. 

A conceptual and analytical approach to the effects of asphalt mixture gradation on asphalt 

mixture performance has also been studied by Roque et al. (2006) who proposed an analytical 

model to evaluate the coarse aggregate structure of asphalt mixtures based on the basic principles 

of particle packing. Their work determined the main aggregate size range of the aggregate structure 

in an asphalt mixture and related the quality of this structure to asphalt mixture performance. The 

researchers named the main aggregate size range the dominant aggregate size range (DASR) and 

suggested that to keep the DASR particles in contact with each other, the DASR porosity should 

not exceed 48 percent. Evaluation of their proposed model using an extensive range of asphalt 
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mixtures indicated the model could identify asphalt mixture gradations that resulted in asphalt 

mixtures with poor rutting performance. 

Guarin et al. (2013) used the concept of DASR to evaluate the effects of binder content 

changes, aggregate smaller than the DASR, and air voids content on asphalt mixture performance, 

both (rutting and cracking). In the study, aggregates smaller than the DASR were referred to as the 

interstitial component (IC) and a new parameter, the disruption factor, was introduced to measure 

the disruptive effect of the IC particles on the DASR particle structure. Additionally, Lira et al. 

(2013) presented a framework to recognize the range of aggregate sizes which form the load 

carrying structure in asphalt mixtures and determine its quality. The porosity and coordination 

number were considered as two parameters to evaluate the quality of the load carrying structure 

and relate it to mixture rutting resistance.  In this framework, the gradations were considered as 

discrete particle sizes having a size ratio of 2 to 1 between contiguous sieve sizes. Results of this 

study were fairly consistent with experimental rutting performance data.  

Voids in mineral aggregate (VMA) is an important volumetric parameter in asphalt mixture 

design that, when used properly, can reduce the risk of designing poorly-performing mixtures. A 

great deal of research has shown that asphalt mixture gradation and properties such as the NMAS, 

aggregate surface texture, and aggregate shape are factors that significantly influence asphalt 

mixture VMA (McLeod, 1959; Coree and Hislop, 2000; Asphalt Institute, 2001; Prowell et al., 

2005; Christensen, 2009). Like many asphalt mixture design methods, the Superpave mixture 

design methods recommends a minimum VMA requirement dependent on the size of the aggregate 

particles used in the mixture. The importance of VMA to asphalt mixture performance means that 

asphalt mixture designers expend a great deal of time and effort to select the best aggregate 

gradation that meets the target mixture VMA. Currently, the common approach to do so is a trial 

and error procedure, sometimes based on empirical predictive equations, but almost always 

requiring a good deal of experimental testing. Although some experimental methods, such as the 

Bailey method, can reduce the experimental testing necessary to determine the proper aggregate 

gradation for an asphalt mixture, development of an analytical procedure to predict asphalt mixture 

VMA based on the mixture gradation would allow asphalt mixture designers to more quickly and 

accurately design mixtures that meet their respective VMA requirements. 
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2.2  Model Framework 

2.2.1 Background 

The packing of solid particles has been of interest to most applied sciences for centuries (Yu and 

Standish, 1991). Generally, most particle packing studies can be classified into two groups, those 

that consider an assessment of how the variables, such as particle characteristics, container, 

packing methods, etc. govern the packing of a particle bed, and those that observe the particle bed 

structure to explain the particle packing behavior, with specific attention to particle arrangement, 

or pore spaces in the structure. In both groups, the behavior of particle packing is usually 

characterized by porosity, or its related concepts, packing fraction and specific volume. Much 

research has shown a high correlation between porosity and particle packing structure and packed 

particle properties such as particle mass, density, and size distribution (Furnas, 1931; Westman, 

1936; Lee, 1970, Standish and Borger, 1979; Standish and Yu, 1987).  Among these properties, 

the particle size distribution strongly affects the packed bed porosity (Fuller and Thompson, 1907). 

Therefore, it has been of historical importance to theoretically determine the relationship between 

the porosity and particle size distribution of materials. 

In 1936, Westman proposed a mathematical approach to predict the porosity of multi-

component mixtures of spherical particles using the results of binary mixtures.  This approach has 

been studied by other researchers and has led to useful results (Lee, 1970; Standish and Borger, 

1979; Standish and Yu, 1987). These studies have shown there are two main packing mechanisms, 

namely a filling mechanism and an occupation mechanism that describe the behavior of packing 

systems. For the filling mechanism, the introduction of a new particle component to an existing 

packing system does not change the skeleton or connection of the existing components, but instead 

simply fills the voids between existing components. This mechanism is valid if the size ratio 

between the new component and existing components is infinitely small. The linear packing model 

is the most popular model developed based on this mechanism. The occupation mechanism is 

different in that the introduction of a new component does change the skeleton of an existing 

packing system; the size of the new component is too large to fill the voids in the existing packing 

structure. The mixture packing model is an example of a packing model using this mechanism (see 

Figure 2.1). 
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The linear packing model is a theoretical model that has been used by many researchers to 

describe the random packing of particles (Westman, 1936; Furnas, 1931; Stovall et al., 1986; De 

Larrard, 1999). The theory of this model is based on the filling mechanism and was first proposed 

by Westman (1936) for binary mixtures of spherical particles. 

 

 
Figure 2.1 Schematic Illustration of Filling and Occupation Mechanisms. 

It was subsequently extended to multicomponent mixtures by other researchers (Stovall et 

al., 1986; De Larrard, 1999). In the model, the overall specific volume of a multi-component 

mixture is controlled by one specific component and considered to vary linearly with the fractional 

solid volumes of the other components. Therefore, the co-interactions between components of the 

mixture are not considered. However, Standish and Yu (1987) demonstrated that this model is only 

able to describe a packing system structure composed of small particle size ratios.  

The mixture packing model is an analytical-experimental packing model that describes packing 

system structure based on theoretical experiments with mixtures such as Scheffe’s simplex-

centroid design and D-optimal design (Yu and Standish, 1991). It provides an alternate, explicit 

scheme to the linear packing model in order to estimate the porosity of multi-component mixtures. 

The mixture packing model uses the occupation mechanism and assumes the overall packing 

structure of a mixture is controlled by two or more components. Some studies have compared 

experimental results with the predicted results of the mixture packing model to show that it could 
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satisfactorily estimate the porosity of multi-component mixtures (Standish and Borger, 1979; 

Leitzelement et al., 1985; Standish and Yu, 1987). Comparisons between the filling and 

occupational mechanisms and their corresponding packing models reveal that the size ratio 

between mixture components is the critical parameter for selecting the appropriate packing model 

to use in modeling any given packing system. For spherical particles, Yu and Standish (1991) 

proposed the critical size ratio between small and large components is 0.154. Thus, the linear 

packing model is applicable if the particle size ratio is less than 0.154; otherwise, the mixture 

packing model should be used to describe the packing structure of a multi-component mixture. 

2.2.2 Linear-Mixture Model 

The linear-mixture model is a combination of the linear and mixture packing models and was first 

introduced by Yu and Standish (1991). In this model, the mixture is assumed to be a system 

composed of a specific number, n, of equal-density, spherical and non-deformable particles. Each 

particle size has an effective diameter, d, and initial porosity, ε. Packing density (r) is defined as 

one minus porosity, while specific volume (V) is defined as the apparent volume occupied by a 

unit solid volume of particles (reciprocal of packing density). The order of particle diameter is 

considered to be decreasing ( 1 2 3 nd d d ... d≥ ≥ ≥ ≥ ) and the fraction volume of particles, X, should 

satisfy the constraint in Equation 2.1. 

1 2 3 4 nX +X +X +X +....+X =1                                              (2.1) 

As previously mentioned, the linear packing model assumes that overall specific volume 

varies linearly with the fractional volumes of each component. Thus, if component i is considered 

as the main component (1 ≤ i ≤ n), the overall specific volume, VT, can be determined as shown 

in Equation 2.2. 

i-1 n
T

i i j i i i j
j=1 j=i+1

V ³ [V -(V -1)A(i,j)]X +V X + V [1-B(i,j)]X∑ ∑                                       (2.2) 

In this equation, A (i, j) and B (i, j) are the interaction functions to describe the interface 

between components i and j and are defined as (Yu and Standish, 1993): 
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2.0 3.7i i i

j j j

d d dA(i,j) =(1-( )) +0.4( )(1-( ))d d d                                  (2.3a) 

3.3 2.7i i i

j j j

d d dB(i,j)=(1-( )) +2.8( )(1-( ))d d d                                     (2.3b) 

Finally, the overall specific volume of a mixture, V, based on the linear packing model, 

can be represented by: 

{ }T T T T T
1 2 3 4 nV=max V ,V ,V ,V ,...,V                                            (2.4) 

Conversely, a mixture model can also estimate the overall specific volume of a mixture 

using the equation: 

                
n n-1 n n-1 n

ij i ij i j ij i j i j
i=1 i=1 j=i+1 i=1 j=i+1

V= C X + C X X + D X X (X -X )∑ ∑∑ ∑∑                          (2.5) 

where Cij and Dij are interaction coefficients for components i and j and can be determined 

from the results of binary mixture experiments. Yu and Standish (1991) proposed two functions to 

determine these coefficients based on the size ratio, rij, of each particle pair and corresponding to 

the average initial packing density, 0ρ , as shown in Equations 2.6a and 2.6b. 

0

ij

-1.4566ρ
ij ij ij

2 3 4
ij ij ij

0 r 0.741

C = 10.288 10 (-1.0002+0.1126r + r <0.741

5.8455r -7.9488r +3.1222r )

 ≥
 ×



                     (2.6a) 

ij

2 3 4
ij 0 0 0 0 ij

2 3 4
ij ij ij ij

0 r 0.741

D = (-1.309+15.04ρ -37.453ρ +40.869ρ -17.11ρ )× r <0.741

(-1.003+0.359r +1097r -22.197r +12.434r )

 ≥





                   (2.6b) 

To estimate the overall porosity of a mixture, the upper and lower mixture zone limit for 

each component must first be determined using Equation 2.7. 

min max i
i i i

dd =0.154d and d = 0.154                                            (2.7) 
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Next, the mixture model (Equation 2.5) is used to calculate the partial specific volume 

(V1T
i) for particles within the range of di

min and di
max . The linear model (Equation 2.2) is then used 

to calculate the overall specific volume (V2T
i) for particles out of the range of di

min to di
max. Finally, 

the overall specific volume of the corresponding mixture component i is calculated using Equation 

2.8. 

T T T
i i iV =V1 +V2                                                                     (2.8) 

All the above steps are repeated for all mixture components and the overall specific 

volume of the mixture can be determined as: 

{ }T T T T T
1 2 3 4 nV=max V ,V ,V ,V ,...,V                                             (2.9) 

In the case of asphalt mixtures, the overall porosity of a mixture is VMA and can be 

estimated by Equation 2.10. 

T

T
(V -1)ε=

V
                                                                   (2.10) 

2.2.3 Model Implementation for Asphalt Mixtures 

To estimate the VMA and determine the characteristic of the main aggregate skeleton of an asphalt 

mixture, it is necessary to first define the initial packing density using the different aggregate sizes 

as input data. This initial packing density is determined using the unit weight of aggregates 

(American Association of State Highway and Transportation Officials (AASHTO) T19, “Standard 

Method of Test for Bulk Density (Unit Weight) and Voids in Aggregate”). For dense-graded 

asphalt mixtures, the initial packing density of aggregates can be determined for coarse and fine 

aggregates based on corresponding loose unit weight (LUW) and rodded unit weight (RUW) 

respectively (Equations 2.11a and 2.11b).  

sb coarse w

Loose Unit Weight of CoarseStockpile
Coarse Packing Density (CPD)=

G ×γ
                 (2.11a) 

sb fine w

Rodded Unit Weight of FineStockpile
Fine Packing Density (FPD)=

G ×γ
              (2.11b) 
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where, Gsb is aggregate bulk specific gravity and  𝛾𝛾𝑤𝑤 is unit weight of water. 

The definition of coarse and fine aggregate is based on the coarse and fine aggregate 

definitions used by the Baily method. In the Bailey method, coarse and fine aggregates are defined 

by a sieve size known as the primary control sieve (PCS) (Vavrik et al., 2001). The PCS is a 

function of the NMAS of the aggregate blend and is calculated as: 

PCS = NMPS×0.22     (2.12) 

If component i is considered the controlling particle size (CPS) (1 ≤ i ≤ n  ), the main 

particle size range (MPSR) where the interaction between particles is defined by the mixture 

packing model, can be defined by two parameters, M and N as: 

M (upper limit) = CPS/0.22   and N (lower limit) = CPS×0.22                     (2.13) 

The coefficient of 0.22 is selected because two-dimensional (2-D) packing analyses of 

different shaped particles show that particle diameter ratios range from 0.155 (all round particles) 

to 0.289 (all flat particles) with an average value of 0.22 (Vavrik, 2000) (see Figure 2.2).  
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Figure 2.2 Two-dimensional Analysis of Particle Combinations with Different Faces. 
 

The MPSR defines the size range of particles that creates the main skeleton of the mixture 

(Particles #1, #2 and #3 in Figure 2.3). The group of particle sizes smaller than N is defined as the 

small un-mixing range (SUMR) and fill the voids between the MPSR and contribute to the stability 

of the main particle skeleton of the mixture (Particles # 4 in Figure 2.3). The particle sizes larger 

than M are defined as being the large un-mixing range (LUMR) particles.  These particles 

essentially float in the MPSR particle matrix and do not contribute to the stability of the mixture 

(Particle #5 in Figure 2.3). 

 

(a) All round-faced particles 

 

          (b) One round and two flat-faced 
particles 

 

(c)  All flat faced particles 

 

(d) Two round and one flat-faced particles 



 

31 
 

 

Figure 2.3 Graphical Definition of Three-particle Size Ranges. 

The CPS is defined as the main particle size that creates the closest overall porosity to the 

actual VMA of an asphalt mixture. The change in VMA as a function of controlling particle sizes 

for an asphalt mixture sample is shown in Figure 2.4. The figure shows two CPS that result in 

porosity closest to the actual VMA of the asphalt mixture. The larger CPS is called coarse 

controlling particle size (CCPS) and the smaller, fine controlling particle size (FCPS).  Selection 

of which CPS is the main CPS of a given asphalt mixture is based on the type of mixture gradation. 

If the asphalt mixture gradation is coarse-graded, stone matrix asphalt (SMA) or open-graded 

friction course, the CCPS will be the main CPS of the mixture; otherwise, FCPS will be the main 

CPS. 

Since this study defined asphalt mixture gradation type (coarse- or fine-graded) based on 

the Bailey method designation, a coarse-graded mixture is one having a coarse aggregate skeleton 

and fine-graded mixtures as those which do not have enough coarse aggregate particles to form a 

skeleton. The dividing line between fine- and coarse-graded mixtures is the chosen unit weight 

(CUW), defined as some percentage of LUW. If the CUW is selected to be less than 90% of the 

LUW, the mixture is categorized as fine-graded; otherwise it is a coarse-graded mixture.  
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Figure 2.4 Voids in the Mineral Aggregate Variation as a Function of Controlling Particle Size. 

For mixtures with a continuous size distribution function, f(d), the overall specific volume 

of the mixture, V, can be determined by Equations 2.14a and 2.14b, 

i

T
d min i maxV=Max(V (d) d d d )≤≤                                             (2.14a)

i i i i

M
T MPSR SUMR LUMR

d d d d
N

V (d)=V (d) f(x)dx+V (d)+V (d)∫                              (2.14b) 

where,
i

MPSR
dV ,

i

SUMR
dV (d)  and 

i

LUMR
dV (d) are the overall specific volumes of the MPSR, SUMR 

and LUMR ranges of particles respectively. These are defined by: 
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i

0

M M

0
MPSR N N

d 0 M
2

N

M

0 x
N

-1.456ρ 2
0

3 4

SUMR
d d d

y
C( ,ρ )f(x)f(y)dxdy

x
 V (d)=V +

( f(x)dx)

V = f(x)V dx

y
0 0.741

x
y y y y

C( ,ρ )= 10.288×10 (-1.0002+0.112 +5.845( ) <0.741
x x x x

y y
-7.948( ) +3.12( )

x x

V (d)= [(V -(V -1)A(x,d)]f(x)d

 ≥







∫ ∫

∫

∫

min

max

N

d

d
LUMR

d d
M

x

V (d)= [(V (1-B(x,d))]f(x)dx

∫

∫                                 (2.15) 

where dmin and dmax are the minimum and maximum sizes in the volume frequency 

distribution respectively (mm), V0 is the overall initial specific volume of MPSR (dimensionless), 

𝜌𝜌0 is the overall initial packing density of MPSR, equal to 1/𝑉𝑉0 (dimensionless), C(y/x, 𝜌𝜌0 ) is the 

interaction function based on the mixture packing model, and A and B are interaction functions of 

a of pair particle sizes based on the linear packing model (Equations 2.3a and 2.3b). 

Goltermann et.al (1997) showed that many crushed aggregates have size distribution 

curves represented by the Rosin-Raimmer-Sperling-Bennett (RRSB) distribution. Therefore, in 

this study, the RRSB function is used as the aggregate size distribution function to determine the 

CPS, as shown in Equation 2.16. 

n

m
d-( )dn

m

dnf(d)=( )( ) ed d                                                    (2.16) 

where f(d) is the percentage retained of size d (mm), dm is the mean particle size (mm), 

and n is a measure of the spread in particle sizes. 
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Additionally, two parameters, the disruptive factor (DF) and the coordination number (CN) 

are introduced to evaluate the quality of the described model in defining the asphalt mixture 

aggregate structures. These parameters are used to show the relationship between the MPSR 

structure and rutting performance of asphalt mixtures, which is related to the mixture’s capacity to 

resist shear. The DF is defined as the effect of SUMR and LUMR on the stability of MPSR and is 

related to asphalt mixture rutting performance.  

dp
MPSR
V

VVolumeof potentiallydisruptive particlesDF= =
Volumeof MPSR void V

       (2.17) 

The volume of disruptive aggregate particles ( dpV ) is the sum of the LUMR volume and the 

partial volume of the SUMR (0.22×N), the particles that are too large to fill the average voids 

between MPSR aggregate particles.  The volume of MPSR voids ( MPSR
VV ) can be estimated by the 

mixture packing model, as shown in Equation 2.18. 

n n-1 n n-1 n
MPSR

V ij i ij i j ij i j i j
i=1 i=1 j=i+1 i=1 j=i+1

V = C X + C X X + D X X (X -X )∑ ∑∑ ∑∑                    (2.18a) 

                                       MPSR
V MPSR

1
V =

1-V
                                                      (2.18b) 

CN is another parameter that can be used to evaluate the structural capacity of asphalt 

mixtures. CN is defined as the total number of contact points between a central particle and its 

neighboring particles. Based on theoretical analysis and experimental results, Zhao et al. (2012) 

concluded that increasing the number of contact points between aggregate particles results in a 

decrease of stress between the contact points and consequently increases the strength of the 

aggregate skeleton. So, the CN parameter can be used to describe the stability of the MPSR 

structure in asphalt mixtures. The model derived by Suzuki and Oshima (1983) is proposed for use 

in determining the CN of a given MPSR structure. This model estimates the CN of spherical 

particles in multi-component mixtures. For a mixture, with particle ‘i’ as the central particle, 𝐶𝐶𝐶𝐶𝑖𝑖 

can be defined by: 
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m

i a(k) i,k
k=1

CN = S .N∑                                                           (2.19) 

where, a(k)S is the fractional area of particle k that is calculated from the fractional volume. 

In this study, the CPS of a mixture is considered at the central particle to determine the overall 

mixture CN.  a(k)S is calculated using ( )v kS , volume fraction of particle k, and ( )kD , the diameter of 

particle k, as shown in Equation 2.20. 

a(k)

v(k)

(k)
m

v(j)

j=1 (j)

S =

S
D

S
D∑

                                                              (2.20) 

Also, ,i kN is the CN of particle i, which is in direct contact with particle k and is 

determined by: 

(i)
i

(k)
i,k 0.5

(i) (i) (i)

(k) (k) (k)

D
2α ( +1)D

N =
D D D

1+ - ( +2)D D D
 
  

                                             (2.21) 

where the constant 𝛼𝛼𝑖𝑖 can be defined using the CN of a mixture consisting of only i 

particles, ciN , as follows: 




ic

i ic

(2- 3)N
α = 0.067N

4
≈                                                    (2.22) 

The equation to calculate ciN  is shown in Equation 2.23. 

     
1- 3

i
ci

2 2

(i) (i)

2.812(1-ε )N =
G G( ) 1+( )D D

 
  

                                                    (2.23) 

where iε  is the porosity of a mixture consisting of only i particles and the constant G can 

be estimated using Equation 2.24. 
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-2 2 3
i i i

(i)

G =7.318×10 +2.193ε -3.357ε +3.194ε
D

                                   (2.24) 

2.3  Model Evaluation 

2.3.1 Experimental Data 

The experimental data used to evaluate the proposed analytical model were extracted from work 

done by Vavrik (2000). These data were selected because they include the initial aggregate unit 

weights needed as input for the model.  In his experiment, Vavrik divided the coarse and fine 

stockpiles into 3 levels, coarse, medium and fine. Table 2.1 shows the gradations for each of the 

three levels for both the coarse and fine stockpiles, along with the corresponding properties such 

as unit weights (loose and rodded) and bulk specific gravities. Based on the different stockpile 

combinations and five coarse aggregate CUW levels, 90, 95, 100, 105 and 110 percent, twenty-

five, 12.5-mm asphalt mixtures were designed and specimens produced. All mixtures contained 

5.5% asphalt binder (PG 64-22) by total mixture mass. Specimens were compacted using 100 

gyrations of the Superpave gyratory compactor (SGC). Therefore, this experimental work is an 

appropriate for evaluating the proposed analytical model since binder type, binder content, 

aggregate physical (shape and texture) and chemical properties, as well as compaction effort and 

type, have been removed from the experiment. While these variables do affect asphalt mixture 

VMA and rutting performance, their effects have been eliminated or minimized in this experiment 

in order to more clearly determine the effects of changes in aggregate gradation. The repeated 

shear constant height (RSCH) test was used to evaluate the rutting performance of each of the 25 

mixtures (Vavrik, 2000). In the test, a constant shear stress was applied to mixture specimens for 

5,000 cycles and the accumulated deformation recorded and used to rank the mixtures for rutting 

potential. The results are shown in Table 2.2, along with the mixture VMAs and compaction slope 

data obtained during compaction in the SGC. 
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Table 2.1 Aggregate Gradations and Properties (after Vavrik, 2000). 
Coarse Stockpile Fine Stockpile 

Sieve (mm) Coarse Medium Fine Coarse Medium Fine 
12.50 100.0 100.0 100.0 100.0 100.0 100.0 
9.50 94.0 97.0 100.0 100.0 100.0 100.0 
4.75 15.0 30.0 45.0 94.0 97.0 100.0 
2.38 7.0 16.0 25.0 81.0 82.5 84.0 
1.18 − 2.0 4.0 62.0 65.0 68.0 
0.60 − 1.0 1.0 30.0 45.0 60.0 
0.30 − − − 3.0 16.0 29.0 
0.15 − − − 1.9 1.9 1.9 
0.08 − − − 0.20 0.20 0.20 

LUW (kg/m3) 1401.6 1420.8 1416 − − − 
RUW (kg/m3) 1611.4 1611.4 1616.3 1616.3 1806.9 1819.7 

Gsb 2.692 2.692 2.692 2.572 2.572 2.572 
 
 
 

Table 2.2 Asphalt Mixture Data (after Vavrik, 2000). 
Mixture Name Coarse  

Stockpile 
Fine 

Stockpile 
VMA 
(%) 

Accumulated 
Strain 

Compaction 
Slope 

Block 1-10 Med Med 15.33 ---- 7.7 
Block 1-5 Med Med 16.60 2.8 7.4 

Block 1-LUW Med Med 16.58 2.7 7.9 
Block 1+5 Med Med 17.17 2.3 8.3 
Block 1+10 Med Med 17.64 1.4 8.7 
Block 2-10 Coarse Med 14.82 1.4 6.6 
Block 2-5 Coarse Med 14.67 2.6 7.0 

Block 2-LUW Coarse Med 14.30 2.4 7.8 
Block 2+5 Coarse Med 14.07 2.2 8.2 
Block 2+10 Coarse Med 14.78 2.9 9.0 
Block 3-10 Fine Med 17.73 1.4 8.0 
Block 3-5 Fine Med 17.53 2.6 8.1 

Block 3-LUW Fine Med 16.84 2.4 8.8 
Block 3+5 Fine Med 18.20 2.2 8.7 
Block 3+10 Fine Med 18.82 2.9 8.9 
Block 4-10 Med Coarse 15.66 1.8 7.8 
Block 4-5 Med Coarse 16.14 2.2 8.1 

Block 4-LUW Med Coarse 16.44 2.1 8.3 
Block 4+5 Med Coarse 17.21 1.7 8.5 
Block 4+10 Med Coarse 18.36 3.7 8.7 
Block 5-10 Med Fine 12.48 1.7 7.4 
Block 5-5 Med Fine 12.72 1.7 8.3 

Block 5-LUW Med Fine 13.07 1.6 8.9 
Block 5+5 Med Fine 13.48 2.0 9.5 
Block 5+10 Med Fine 14.67 2.1 9.6 
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The compaction slope is a parameter thought to yield information about the development 

of aggregate structure in asphalt mixtures. It is defined as the slope of the percent of maximum 

density (%Gmm) versus the log number of gyrations from gyration 10 to the end of compaction 

(Vavrik, 2000). When asphalt mixture specimens are compacted in the SGC, the larger the 

compaction slope, the stronger the aggregate structure. Conversely, a smaller compaction slope is 

thought to be indicative of an asphalt mixture that can be more easily densified and is more likely 

to have a weak aggregate structure, making it less resistant to deformation under traffic loading.  

The data in Table 2.3 show the input values required to determine the MPSR, SUMR, and 

LUMR aggregate size ranges of the asphalt mixtures. Additionally, the initial packing densities 

for coarse and fine aggregates is shown in Table 2.3. The exponent parameter for the aggregate 

size distribution function, n, (see Equation 2.16) was determined using the MATLAB fitting curve 

toolbox. Comparisons between real and estimated gradations using the RRSB size distribution 

function of the mixtures shows the modified power law method can be satisfactorily used as an 

aggregate size distribution function (see Figure 2.5). Because the mixtures are 12.5-mm mixtures, 

the 2.36-mm sieve is the PCS, as dictated by the Bailey method. 

 

Figure 2.5 Real and Estimated Gradations for Block 1 mixtures. 
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Table 2.3 Input Parameters for Aggregate Size Distribution Function. 

Mixture Name Dm 
(mm) n 

Coarse 

Packing 

Density 

Fine 

Packing 

Density 

Block 1-10 3.9900 0.9031 0.475 0.703 
Block 1-5 4.2285 0.9306 0.517 0.703 

Block1-LUW 4.4641 0.9926 0.528 0.703 
Block 1+5 4.6625 1.0392 0.554 0.703 
Block 1+10 4.9124 1.1258 0.581 0.703 
Block 2-10 4.1262 0.8577 0.469 0.703 
Block 2-5 4.3629 0.8848 0.495 0.703 

Block2-LUW 4.6566 0.9279 0.520 0.703 
Block 2+5 4.8984 0.9812 0.547 0.703 
Block 2+10 5.1158 1.0460 0.573 0.703 
Block 3-10 3.1793 0.9593 0.470 0.703 
Block 3-5 3.9114 0.9955 0.500 0.703 

Block3-LUW 4.1520 1.0530 0.526 0.703 
Block 3+5 4.3138 1.0980 0.550 0.703 
Block 3+10 4.4639 1.1579 0.580 0.703 
Block 4-10 4.1793 0.9701 0.480 0.680 
Block 4-5 4.4242 1.0227 0.500 0.680 

Block4-LUW 4.6240 1.0743 0.528 0.680 
Block 4+5 4.8200 1.1287 0.554 0.680 
Block 4+10 4.9991 1.1795 0.580 0.680 
Block 5-10 3.8723 0.8296 0.480 0.708 
Block 5-5 4.1092 0.8751 0.500 0.708 

Block5-LUW 4.3267 0.9220 0.528 0.708 
Block 5+5 4.5856 0.9779 0.550 0.708 
Block 5+10 4.8412 1.0581 0.580 0.708 

 

2.3.2  VMA Estimation 

After determination of model input parameters, the porosity, or VMA of each asphalt mixture was 

estimated using the previously described linear-mixture model; the data are shown in Table 2.4. 

Figure 2.6 is a plot of the model-estimated and laboratory-measured VMA values. The values are 

clustered about the line-of-equality, confirming the proposed model reasonably predicts asphalt 

mixture VMA and could, therefore, be used as an analytical tool to predict the VMA of asphalt 

mixtures prior to compaction. These two VMA groups were statistically analyzed to determine if 

they are significantly different; the results are shown in Table 2.5.  Although the average model-
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estimated VMA is slightly higher than the average laboratory-measured VMA, there is a high 

correlation (90%) between the two and the relationship is statistically significant (95% confidence 

level). 

 
Table 2.4 Estimated and Laboratory-measured Voids in the Mineral Aggregate. 

Mixture Name Lab VMA (%) Estimated VMA (%) 
Block 1-10 15.33 15.83 
Block 1-5 16.60 15.26 

Block 1-LUW 16.58 16.14 
Block 1+5 17.17 16.06 
Block 1+10 17.65 17.06 
Block 2-10 14.82 13.67 
Block 2-5 14.67 13.14 

Block 2-LUW 14.30 13.23 
 Block 2+5 14.07 13.62 

Block 2+10 14.78 14.22 
Block 3-10 17.73 18.17 
Block 3-5 17.53 18.58 

Block 3-LUW 16.84 19.07 
Block 3+5 18.20 18.87 
Block 3+10 18.82 18.94 
Block 4-10 15.66 15.46 
Block 4-5 16.14 16.03 

Block 4-LUW 16.44 17.18 
Block 4+5 17.21 17.78 
Block 4+10 18.36 17.99 
Block 5-10 12.48 13.59 
Block 5-5 12.72 12.40 

Block 5-LUW 13.07 13.76 
Block 5+5 13.48 14.08 
Block 5+10 14.67 14.98 
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Figure 2.6 Laboratory-measured and Model-estimated Voids in the Mineral Aggregate. 

 

Table 2.5 Statistical Analysis of Model-estimated and Laboratory-measured Voids in the Mineral 
Aggregate. 

Variable Mean Std. Dev Sum Minimum Maximum 
Lab VMA (%) 15.8 1.84 395.32 12.48 18.82 

Estimated VMA (%) 17.3 1.81 432.65 13.31 20.22 
 R-Square 0.91 

Variable DF Parameter  Standard Error Pr > |t| Significant 
Intercept 1 -0.87 1.13 0.44 No 

Estimated VMA (%) 1 0.96 0.06 <.0001 Yes 
 

2.3.3   Aggregate Skeleton Determination  

Table 2.6 and Figure 2.7 show the main controlling particle sizes for the 25 mixtures. Because all 

mixtures are categorized as coarse-graded (CUW of all samples are greater than 90% of LUW), 

the CCPS values were selected as the main CPS for all mixtures. Figure 2.7 also shows that for 

each block, increasing the CUW results in higher CPS and consequently a more coarsely graded 

main aggregate structure. This result is in good agreement with the Bailey method assumption 

which states that increasing the CUW of an asphalt mixture gradation results in a coarser gradation, 

and consequently increased coarse aggregate particle interlock. Statistical analysis between values 

of CPS and corresponding CUW of the mixtures indicates there is a statistically significant 

relationship between CPS and CUW (Table 2.7). 
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After determination of mixture CPS values, the DF and CN for each mixture can be 

determined using Equations 17 and 23 respectively (Table 2.8). These two parameters are used to 

assess the quality of the MPSR and relate it to mixture rutting performance.  Statistical analysis 

between these two parameters (DF and CN) and the RSCH accumulated strain of the mixtures 

indicates a significant relationship between them (Table 2.9).  

 
Table 2.6 Three Aggregate Size Ranges of Mixtures. 

Mixture Name  
Control Particle Size 

(mm) 

Main Particle 
Size Range 

(mm) 

Small Un-
mixing Range 

(mm) 

Large Un-
mixing Range 

(mm) 
BLOCK 1-10 2.5 12.5-0.38 0-0.38 N/A 
BLOCK 1-5 2.5 12.5-0.38 0-0.38 N/A 

BLOCK 1-LW 4.1 12.5-0.63 0-0.63 N/A 
BLOCK 1+5 5.1 12.5-0.78 0-0.78 N/A 
BLOCK 1+10 8.3 12.5-1.28 0-1.28 N/A 
BLOCK 2-10 2.0 12.5-0.3 0-0.30 N/A 
BLOCK 2-5 2.6 12.5-0.4 0-0.40 N/A 

BLOCK 2-LW 3.8 12.5-0.58 0-0.58 N/A 
BLOCK 2+5 5.7 12.5-0.88 0-0.88 N/A 
BLOCK 2+10 7.5 12.5-1.15 0-1.15 N/A 
BLOCK3-10 2.6 12.5-0.4 0-0.40 N/A 
BLOCK 3-5 3.8 12.5-0.58 0-0.58 N/A 

BLOCK3-LW 5.8 12.5-0.9 0-0.90 N/A 
BLOCK 3+5 6.3 12.5-0.97 0-0.97 N/A 
BLOCK 3+10 7.6 12.5-1.17 0-1.17 N/A 
BLOCK4-10 4.9 12.5-0.75 0-0.75 N/A 
BLOCK 4-5 5.5 12.5-0.84 0-0.84 N/A 

BLOCK4-LW 6.9 12.5-1.10 0-1.10 N/A 
BLOCK 4+5 8.2 12.5-1.26 0-1.26 N/A 
BLOCK 4+10 9.0 12.5-1.38 0-1.38 N/A 
BLOCK5-10 2.1 12.5-0.32 0-0.32 N/A 
BLOCK 5-5 3.0 12.5-0.46 0-0.46 N/A 

BLOCK5-LW 4.0 12.5-0.61 0-0.61 N/A 
BLOCK 5+5 5.4 12.5-0.83 0-0.83 N/A 
BLOCK 5+10 7.4 12.5-1.40 0-1.40 N/A 
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Figure 2.7 Controlling Particle Size and Main Particle Size Range of Mixtures. 
 

 
Table 2.7 Statistical Analysis Results of Controlling Particle Size and Chosen Unit Weight. 
 

 

The relationship suggests that increasing the disruptive factor in asphalt mixtures results in 

higher accumulated strain under loading; a higher mixture rutting potential (Figure 2.8). Thus, the 

volume of disruptive aggregate and the volume of MPSR voids can be considered as two structural 

attributes in asphalt mixture aggregate gradations that have a significant relationship to asphalt 

mixture rutting resistance. The results in Table 2.9 also indicate a statistically significant 

relationship between CN and the RSCH accumulated strain. Such a relationship suggests that 

increasing the number of contact points between aggregates (CN) will result in decreased stress 

between the contact points, and a subsequent increase in aggregate skeleton strength, improving 

resistance to deformation (Figure 2.9). 

The statistical analysis of the CPS and compaction slope relationship shows there is a 

significant relation between the two (Table 2.10). This relationship indicates that mixtures with 

higher CPS have stronger aggregate structures, and as a result should be more difficult to densify, 

yet another validation of the Bailey method suggestion for improving aggregate interlock in asphalt 

mixtures.

Relation R-Square F Value Pr > |t| Significant 
CPS = -21.32+50.108×CUW 0.84 67.27 < 0.0001 Yes 
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Table 2.8 Disruptive Factors and Coordination Numbers of the Asphalt Mixtures. 
Mixture Name VvMPSR Vdp Disruptive Factor Coordination Number 

Block 1-10 0.09 0.19 2.01 7.81 
Block 1-5 0.09 0.16 1.81 6.79 

Block1-LUW 0.06 0.12 1.91 7.28 
Block 1+5 0.06 0.09 1.53 6.29 
Block 1+10 0.09 0.07 0.75 7.12 
Block 2-10 0.26 0.17 0.65 7.78 
Block 2-5 0.11 0.18 1.69 7.25 

Block2-LUW 0.09 0.16 1.74 6.73 
Block 2+5 0.18 0.11 0.61 6.80 
Block 2+10 0.13 0.19 1.46 6.94 
Block 3-10 0.19 0.14 0.74 7.58 
Block 3-5 0.10 0.19 1.83 6.63 

Block3-LUW 0.07 0.11 1.58 8.08 
Block 3+5 0.07 0.11 1.47 6.70 
Block 3+10 0.09 0.18 1.95 7.94 
Block 4-10 0.16 0.15 0.96 7.86 
Block 4-5 0.09 0.14 1.51 7.35 

Block4-LUW 0.07 0.09 1.28 6.85 
Block 4+5 0.13 0.08 0.62 6.40 
Block 4+10 0.06 0.17 2.62 5.91 
Block 5-10 0.20 0.24 1.21 6.81 
Block 5-5 0.17 0.20 1.15 7.32 

Block5-LUW 0.19 0.17 0.91 7.04 
Block 5+5 0.08 0.11 1.40 6.95 
Block 5+10 0.13 0.19 1.47 6.81 

 

 
Table 2.9 Results of Statistical Analysis between Accumulated Strain at 5000 Cycles and 

Disruptive Factors and Coordination Numbers. 

  

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 2 6.56394 3.28197 51.34 <.0001 

 R-Square 0.62 
Variable DF Parameter Standard Error Pr > |t| Significant 
Intercept 1 2.74968 1.23596 0.0367 Yes 
DF 1 0.81162 0.16266 <.0001 Yes 
CN 1 -0.23325 0.14802 0.01293 Yes 
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Figure 2.8 Accumulated Strain at 5000 Cycles as a Function of the Disruptive Factor. 

 

 
Figure 2.9 Accumulated Strain at 5000 Cycles as a Function of the Main Particle Size Range 

Coordination Number. 
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Table 2.10 Results of Statistical Analysis between Compaction Slope Values and Controlling 
Particle Size. 

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 1 44.65995 44.65995 35.06 <.0001 

 R-Square 0.7938 
Variable  Parameter  Standard Error Pr > |t| Significant 
Intercept 1 -12.17028 2.64888 0.0001 No 

Compaction Slope 1 1.89455 0.31999 <.0001 Yes 
 

2.4  Summary  

In this chapter, the linear-mixture packing model, a combination of linear and mixture packing 

models, is described in detail. The model simultaneously considers mechanisms of random particle 

packing, filling, and occupation to predict the porosity of multi-component mixtures. Application 

of the linear-mixture packing model to estimate voids in the mineral aggregate of asphalt mixtures 

indicates there is a high correlation between laboratory-measured and model-estimated values. 

Therefore, the model has a significant potential to be used as an analytical tool to predict and 

evaluate the effect of aggregate gradation changes on the VMA of asphalt mixtures. 

In addition, based on the linear-mixture model, a systematic approach was used to 

determine the main particle size of asphalt mixtures and proposed as a variable that defines the 

aggregate skeleton of an asphalt mixture. In the proposed approach, the aggregate structure of an 

asphalt mixtures is divided into three ranges:  (1) the main particle size range (MPSR), which is 

the main skeleton of the mixture and is responsible for carrying the traffic load, (2) the small un-

mixing range (SUMR), consisting of the aggregates that fill the voids between MPSR and thereby 

contribute to main aggregate skeleton stability in a mixture, and (3) the large un-mixing range 

(LUMR), the aggregate particles that essentially float in the matrix of MPSR aggregates and do 

not contribute to asphalt mixture stability. 

Rutting in asphalt mixtures is highly correlated to a mixture’s aggregate structure. Two 

parameters, the disruptive factor, and coordination number were defined based on the proposed 

three aggregate ranges and used to relate them to rutting performance. Based on the experimental 

data used in this study, there is a statistically significant relation between the main aggregate 

skeleton of asphalt mixtures and rutting performance. Thus, the proposed approach can model 

aggregate packing within an asphalt mixture and predict a mixture’s capacity to resist rutting.  
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CHAPTER 3. A FRAMEWORK FOR UNDERSTANDING AGGREGATE 
STRUCTURE IN ASPHALT MIXTURES 

This chapter was published in the International Journal of Pavement Engineering 
Pouranian, M. R., & Haddock, J. E. (2019). A new framework for understanding aggregate 

structure in asphalt mixtures. International Journal of Pavement Engineering, 1-17. 
https://doi.org/10.1080/10298436.2019.1660340 

3.1  Introduction 

The development of a strong aggregate skeleton with adequate mechanical properties is often 

believed to be an accomplishment of the mixture design procedure used to design the asphalt 

mixture. However, three widely known asphalt mixture design methods, Hveem, Marshall, and 

Superpave, focus on determining optimum asphalt binder content based on an aggregate gradation 

that falls within predefined upper and lower gradation limits (Vavrik, 2000; Roberts et al., 2002; 

Brown et al., 2009), but otherwise may not give adequate thought to the aggregate structure. While 

various approaches to improving the mechanical properties of asphalt mixtures have been used in 

the past, modification of the asphalt mixture design methods has perhaps attracted less attention 

as compared to asphalt binder modification.  However, an efficient and cost-effective asphalt 

mixture design method can help ensure asphalt mixtures with optimal field performance.  

Previous studies have shown that aggregate structure in asphalt mixtures is influenced by 

factors such as aggregate size distribution, aggregate morphological properties (shape and surface 

macro-texture), method of compaction, compaction effort, and asphalt mixture lift thickness 

(Vavrik, 2000; Olard and Perraton, 2010; Pine, 2016). Asphalt mixture durability, workability, 

permeability, rutting characteristics, and cracking resistance are all significantly affected by 

aggregate size distribution (aggregate gradation) (Huang, 2012). Thus, careful attention to the 

aggregate gradation of an asphalt mixture can help to ensure the mixture’s successful in-service 

performance. 

The earliest work on designing aggregate gradations for concrete and asphalt mixtures 

aimed to achieve mixture gradations corresponding to the densest possible packing. To this end, 

the maximum density line (MDL) was widely used for concrete mixture design prior to the 1940s 

(Fuller and Thompson, 1907; Andreasen and Anderson, 1929). Nijboer (1948) first studied the 
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effect of aggregate size distribution and shape on asphalt mixtures. He observed the densest 

packing was represented by a 45-degree straight line on a semi-log plot of the percent passing as 

a function of the sieve size, these being plotted on a logarithmic scale. In 1965 Goode and Lufsey 

reported the maximum packing of aggregate solids occurred when the gradation was represented 

by a 45-degree straight line on a plot of the percent passing as a function of the sieve size, when 

the sieve sizes in millimeters are raised to the 0.45 power. When aggregate gradations are plotted 

on such a graph, it is visually easy to determine when the gradation is becoming less dense; as the 

gradation moves away from the MDL, either above or below, the packing becomes less dense. 

Changing the aggregate gradation changes the voids content of the asphalt mixture 

aggregate structure, and consequently results in a different load distribution within the aggregates 

structure. Additionally, the densest aggregate packing in an asphalt mixture is the aggregate 

gradation having the least void space for asphalt binder and air, both of which are important to 

asphalt mixture performance. While minimizing asphalt binder content is financially desirable, a 

sufficient amount of binder is necessary to ensure mixture durability. An adequate air voids content 

is necessary to ensure mixture stability, as low air voids content can increase the chances of 

bleeding, rutting, or both. 

The Superpave mixture design method proposed aggregate gradation control bands based 

upon the nominal maximum aggregate size (NMAS) of the mixture. The minimum voids-in-the-

mineral-aggregate (VMA) was also defined according to NMAS (Kennedy et al., 1994; McGennis 

et al., 1995). However, as there is no specific guidance in how to select the best-performing 

aggregate gradation, any aggregate blend that falls within the control bands and can satisfy the 

mixture volumetric properties can be chosen as the optimal gradation. When attempting to find a 

workable aggregate gradation it is often necessary to trial several different aggregate gradations, a 

process that can be time-consuming, costly, and may still not result in the best gradation to carry 

the anticipated traffic loads. 

In an effort to determine which gradations would likely perform best in asphalt mixtures 

the Bailey method was introduced (Vavrik et al., 2002; Pine, 2016). Based on packing theory, the 

Bailey method was originally developed in the early 1980s as a method to control the volumetric 

properties, workability, segregation, and compactability of asphalt mixtures. This method employs 

aggregate packing theory and defines coarse and fine aggregate fractions to establish a relationship 
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between aggregate gradation and volumetric properties of asphalt mixtures. Although the Bailey 

method suggests a systematic approach for gradation determination of dense-graded asphalt 

mixtures, it does not directly link the resulting aggregate structure to asphalt mixture performance. 

Additionally, the effects of the differences in the various aggregate sizes are not considered during 

the blending of coarse and fine stockpiles to determine the final gradation.  

Olard and Perraton (2010) presented a new method to designing of high-performance 

asphalt mixtures using the basic concepts of granular blending and aggregate packing. They 

utilized the aggregate packing model first proposed by Baron and Sauterey (1995) to design high-

performance Portland cement concrete. The model considers two types of inter-particle interaction, 

the wall effect and the interference effect, that can influence the voids content of a binary mixture, 

such a mixture being defined as one with only two particle sizes, one coarse aggregate and one 

fine aggregate. In this model, when a small number of coarse particles is added to a mixture 

containing only fine particles, the air voids content decreases, but at the interface of coarse and 

fine particles, the coarse particles disrupt the arrangement of fine particles and results in increasing 

local voids. This local void increase is defined as the wall effect. On the other hand, when fine 

particles are added gradually into a mixture containing only coarse particles, the fine particles 

begin to push apart the coarse particles thereby destroying the stone-on-stone contact of the larger 

particles. This behavior is defined as the interference effect. The proposed method involves a 

graphical approach to determine the optimum amount of fine aggregate by compacting aggregates 

in a gyratory compactor (20 gyrations) to measure air voids content of coarse and fine aggregates 

separately. 

Given the lack of an objective method to optimize the aggregate gradation of asphalt 

mixtures, the main objective of this chapter is to develop a theoretical model to better define 

asphalt mixture aggregate structures based on particle size distribution. Such a model could better 

optimize asphalt mixture aggregate gradations. As reported herein, the model is first developed 

based on binary mixtures and then modified to be applicable for mixtures containing multi-sized 

aggregates. Finally, the framework proposed by the model is evaluated using the discrete element 

method (DEM) packing simulation. 
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3.2 Analytical Model 

The particle structure of binary aggregate mixtures can be divided into three conditions, coarse-

pack (CP), dense-pack (DP), and fine-pack (FP). In the CP condition, the coarse particles are in 

contact with each other (stone-on-stone contact) creating the main skeleton of the mixture with the 

fine particles filling the voids between them. For the DP, the mixture structure is controlled by 

both the coarse and fine particles. Finally, FP indicates a condition in which the fine particles 

constitute the main aggregate skeleton in the mixture and the coarse particles float in the fine 

particles. The three conditions are represented schematically in Figure 3.1. 

As shown in Figure 3.1, these three conditions can be distinguished using two boundary 

thresholds, the coarse-dense threshold (CDT) and the dense-fine threshold (DFT). The former is 

the boundary between CP and DP and can be defined as the maximum mass of fine particles that 

can be added into a mixture of coarse particles without disrupting the coarse particle structure. The 

latter is the boundary between DP and FP conditions and is defined as the minimum mass of fine 

particles that can dominate the main aggregate structure of a mixture in the presence of coarse 

particles. Determination of these two thresholds results in the clear definition of three aggregate 

structure conditions for binary mixtures. Thus, the objective is the development of a mathematical 

model to define the CDT and DFT boundaries, while considering the effect of size ratio and shape 

of both coarse and fine particles.  

 

 

 

 

 

 

Figure 3.1 Three binary mixture conditions. 
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Volume Fraction of Fine Particles 
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If it is assumed that an aggregate mixture consists of only coarse particles, the packing 

void ratio (ratio of the volume of voids to the volume of solid particles) can be defined as: 

c
void

c c
solid

Ve =
V                                                                              (3.1) 

where c
voidV  and c

solidV  are the volumes of the voids and the coarse particle solids. By adding 

fine particles into the coarse particles, the c
voidV  can be computed by: 

c f f
void void solid airV =V +V +V                                                          (3.2) 

where, f
voidV   and f

solidV  are the volumes of voids and solids in the fine particles, respectively. 

airV  is the volume between the coarse particles that cannot be filled by fine particles (see Figure 

3.2). If the void ratios of coarse and fine particles are defined by
c
void

c c
solid

Ve = 
V

 and
f
void

f f
solid

Ve = 
V

, 

respectively, Equation 3.2 can be rewritten as:  

  c f
c solid solid f aire ×V =V ×(1+e )+V                                                           (3.3) 

Additionally, airV  can be considered as a function of c
solidV  as shown in Equation 3.4.  

      c
air solidV =V ×SRF(sr)                                                                  (3.4) 

where SRF (sr) is a function of particle size ratio (ratio of fine particle size to coarse particle 

size, f

c

Dsr=
D

) and is mathematically defined as the ratio of air volume to the volume of the coarse 

particles ( air
c
solid

V
V

). Therefore, the volume fraction of fine particles (VFF) at the CDT boundary can 

be obtained from Equation 3.5.  

   
f
solid c

f c
solid solid c f

V (e -SRF(sr))VFF@ CMT= =100×
(V +V ) (1+e +e -SRF(sr))

 
 
 

                                  (3.5) 
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Figure 3.2 Air Volume between Coarse Particles. 

In Equation 3.5, the only unknown variable is SRF(sr). Figure 3.3 gives the mathematical 

and geometrical formulation to determine this value for four different configurations of particle 

faces including all-round faces, two flat faces and one round face, two round faces and one flat 

face, and all flat faces. 

In Figure 3.3, CNc is defined as the coordination number of coarse particles. In granular 

material science, the coordination number is the number of contacts a particle has with its adjacent 

particles. It is a popular geometric parameter to define the structure of particle packing and can be 

determined using Equation 6, as proposed by Ueda et al. (2011).   

                      c cCN =15.75-10.74e                                                             (3.6) 

For the four possible particle face combinations illustrated in Figure 3.3, the ratio of SRF 

to CNc was found to have a linear relationship with size ratio (Figure 3.4). Thus, instead of using 

the lengthy and complex equations of Figure 3.3 to determine SRF, the simple linear equations of 

Figure 3.4 can be used. Notice in Figure 3.4 there is an “average” equation representing the average 

SRF of the four faces combinations, since an actual aggregate mixture will potentially contain all 

the four combinations of the two faces. 
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Figure 3.3 SRF Function Equations for Various Particle Face Configurations: (a) All Round 
Faces; (b) Two Flat Faces, One Round Face; (c) Two Round Faces, One Flat Face; (d) All Flat 

Faces. 
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Figure 3.4 Linear Regression Equations of SRF Functions. 

The volume fraction of fine particles at DFT can also be determined using a hypothetical 

particle whose radius is a summation of coarse and fine radii. In this study, two hypothetical 

particles are considered: 1) a hypothetical particle with a radius equal to the summation of the 

coarse and fine radii (Figure 3.5a), and 2) a hypothetical particle with a radius equal to the 

summation of the coarse and two fine radii (Figure 3.5b). It is assumed that these hypothetical 

particles are in contact with each other. Therefore, the void ratio of a mixture with the hypothetical 

particles can be defined as:                              

   
hypo c 3
void solid c

hypo chypo c 3
solid solid

V (V (1+sr) )ee = = =e
V (V (1+sr) ))

                                              (3.7) 
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(a) 

 
(b) 

Figure 3.5 Hypothetical Particles (a) k=1 and (b) k=2. 

The difference between the volume of hypothetical particle voids and volume of coarse 

particles is dV  and can be obtained from Equation 3.8: 

     3 3
d hypo c hypo c f

4V = π(r -r ) , r =r +kr k=1,2
3

                                               (3.8) 

Void between 

hypothetical particles
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where k is the number of fine particles placed between two coarse particles. The volume 

of coarse particle voids can then be calculated using Equations 3.9a and 3.9b. 

    c hypo c 3d
void void solid c c

c

V 4V =V +V ( ) , V = πr
V 3

                                                    (3.9a) 

c c 3 c 3
void solid solidV =V (1+sr )+V ((1+sr) -1)                                                    (3.9b) 

As a result, VFF at the DFT boundary can be determined by Equation 3.10.  

  
f 3
solid c

f c 3
solid solid c f

V ((1+e )×(1+k×sr) -1)VFF@DFT= =100× ,k=1,2
(V +V ) ((1+e )×(1+k×sr) +e )

 
 
 

                        (3.10)           

The volume of fine particles at the CDT and DFT boundaries can be determined using 

Equations 3.5 and 3.10, respectively. The inputs for both equations are the void ratio of coarse and 

fine particles as well as size ratio. For asphalt mixtures, the aggregates are blended proportionally 

based on mass. The mass of the fine particle fraction (MFF) is derived using Equations 3.11a and 

3.11b, in accordance with what was obtained from Equations 3.5 and 3.10. 

     sbf c

sbc f sbf c

G (e -SRF(sr))MFF@ CDT=100×
G (1+e )+G (e -SRF(sr))

 
 
 

                                 (3.11a) 

            
3

sbf c
3

sbc f sbf c

G [(1+e )(1+k×sr) -1]MFF@DFT=100× k=1,2
(1+e )+G [(1+e )(1+k×sr) -1]G

 
 
 

                      (3.11b) 

where, Gsbc and Gsbf are bulk specific gravities of the coarse and fine particles, respectively. 

3.3 Numerical Verification 

An asphalt mixture is a complex heterogeneous material with irregular geometry and nonlinear 

boundary conditions (Meegoda and Chang, 1995). It is usually considered as a discontinuous field 

because of discontinuities in material properties at the interfaces between aggregates and asphalt 

matrix, and asphalt matrix and air voids. The mechanical properties of an asphalt mixture depend 

on the structure formed during compaction due to aggregate particle movement. Such 

characteristics lend themselves to behavioral descriptions using numerical solutions as an 

alternative to costly, time-consuming laboratory experiments. 
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Five common numerical methods used in materials engineering are the finite element 

method (FEM), discrete element method (DEM), finite difference method (FDM), boundary 

element method (BEM), and element-free method (EFM) (Jiang et al., 2005; Zhu et al., 2007; 

Alavi et al., 2014; Shishehbor et al., 2018; Shishehbor and Zavattieri, 2019). Although continuum 

models, like FEM, are able to model discontinuities in asphalt mixtures using additional 

assumptions, they are not able to model and track the change in microstructure (Meegoda and 

Chang, 1995). Conversely, DEM is able to simultaneously model the discontinuities of 

microstructure and aggregate particle movement in asphalt mixtures. Therefore, DEM is the best 

numerical method for analysis of asphalt mixture microstructure.  

DEM is widely used as an effective numerical method to solve many engineering problems 

in granular materials as well as in solids with discontinuities (Thornton et al., 1996; Herrmann and 

Luding, 1998; Kruyt and Rothenburg, 2006; Alonso-Marroquín et al., 2008; Ketterhagen et al., 

2009). In DEM, a solid material is represented by a collection of discrete particles. This method is 

capable of modeling the macro-mechanical response of a material through its motions and 

interactions (Cundall and Strack, 1979). This method utilizes constitutive models to describe the 

material behavior at the local scale, which subsequently determines macro behavior. 

In this study, an open source 3D DEM code (Kozicki and Donzé, 2009) was employed to 

assess the validity of the proposed analytical model using the packing characteristics of binary and 

multi-size mixtures. The final position of aggregate particles in a compacted asphalt mixture can 

be determined after the compaction process, a process usually done in the laboratory using the 

Superpave Gyratory Compactor (SGC). The SGC compaction process is controlled by three 

parameters: vertical pressure, the angle of gyration, and the number of gyrations. The typical 

values for the angle and applied vertical compressive pressure are 1.16 degrees (internal) and 600 

kPa, respectively (Asphalt Institute, 2015). In order to simulate the SGC compaction process a 

C++ subroutine was developed and used to numerically create the SGC constant pressure ram plate 

and harmonic rotational movement. The SGC schematic is shown in Figure 3.6. 

A series of simulations with 7 different aggregate particle size ratios and 11 different fine 

particle mass fractions (0 to 100% of the total aggregate mass in 10% increments) were conducted 

to evaluate the particle structure of binary mixtures. The number of particles varied from 12,000 

to 50,000, depending on the size ratio and fine particle mass fraction. 
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Figure 3.6 Superpave Gyratory Compactor Schematic. 

The numerical simulation was conducted using a soft-particle approach. In this approach, 

all particles were allowed to deform and overlap. Also, the dynamic behavior of all particles was 

considered using a Lagrangian force-displacement approach to determine the position, velocity, 

and acceleration of each particle. The values of forces between particles (normal and tangential) 

were computed using a linear-friction model. The Young modulus, particle density, Poisson ratio, 

and friction angle are the main parameters influencing particle interaction. Friction angle considers 

the effect of particle roughness. More details about the interaction model can be found in 

Widulinski et al. (2009). Material properties and simulation parameters of the present study are 

listed in Table 3.1. 

Table 3.1 Material Simulation Parameters. 
Parameter Value 
Size ratio 0.10, 0.166, 0.20, 0.25, 0.33, 0.50, 0.66 

Mass fraction of fine particles (%) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 
Container size (mm3) Cylinder with r= 75 mm and Height = 500 mm 

Particle density (kg/m3) 2600 
Young modulus (N/m2) 5×107 

Poisson ratio 0.30 
Friction angle (°) 35 
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The approach to numerically simulate the SGC compaction mechanism for each binary 
mixture is summarized as follows: 

1. In a confined volume (bin), create a cloud of random particles with no contact between 
the particles (Figure 3.7a); 

2. Apply a gravity force to the particles, completely settling them in the mold beneath the 
bin (Figure 3.8b and 3.7c); 

3. Apply a 600 kPa vertical pressure on the particles in the mold, then a 1.16-degree 
internal mold angle, and while holding the constant pressure simultaneously rotate the 
mold up to 25 gyrations (Figures 3.7d to 3.7f). For better visualization, a rectangular 
box was used, however, the results of the cylindrical and rectangular box are 
approximately the same. 

4.  

 
        (a)       (b)             (c)                           (d)                           (e)   

Figure 3.7 Simulation Process: (a) Cloud Condition; (b) Applying Gravity Force; (c) Settlement 
in the Container; (d) Applying Vertical Load; and (e) Final binary mixture after compaction. 

Compaction at three gyration levels, 20, 25 and 30, was performed in the laboratory using 

actual aggregates containing no binder to determine the maximum number of gyrations at which 

there is no variation in the final gradation (after compaction) from the initial gradation due to 

aggregate breakdown. Results of the experiment indicate that 25 gyrations are the maximum 

number of gyrations at which the mixture of aggregates can be compacted without significantly 

changing the initial gradation (Figure 3.8). Therefore, all numerical simulations were performed 

using 25 gyrations or less. 
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In order to assess the structure of the particles at the CDT and DFT boundaries for k=1and 

2, three structural parameters are used, packing density, average coordination number, and radial 

distribution function of coarse and fine particles. 

 
Figure 3.8 Variation of Original Gradation after Three Gyrations Levels. 

3.3.1 Packing Density 

Particle packing is a process whereby a system of interconnected particles is put into contact. One 

of the most important indices to describe the state of particle packing is packing density, defined 

as the fraction of the total volume the packed aggregates fill. The mass fraction of fine particles at 

three main thresholds was calculated using the proposed analytical model; the results of the 

simulation are given in Table 3.2. 
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Table 3.2 Calculated Values of the Mass of the Fine Fraction. 
SR Mass of fine particle fraction (%) 

CDT   DFT (k=1) DFT (k=2) 
0.666 18.8 80.1 89.5 
0.500 23.0 73.8 81.2 
0.333 26.8 64.7 73.7 
0.250 29.6 59.4 70.3 
0.200 31.3 55.7 67.3 
0.166 32.4 53.0 64.6 
0.100 35.1 47.9 55.9 

The packing density curves for different size ratios and their corresponding values of 

packing density at the three thresholds of CDT, DFT (k=1), and DFT (k=2) are depicted in Figure 

3.9. The results show that increasing the size ratio leads to decreases in the packing density 

variation with changes in MFF percentage. This means that for higher size ratios (especially greater 

than 0.333), the packing density curve tends to be flatter with less packing density variation. Also, 

the figure shows that mixture packing density at the DFT (k=1) threshold is very close to the 

maximum packing density values, especially for size ratios less than 0.25. The values of packing 

density at CDT and DFT (k=2) are not close to the maximum packing density values for all size 

ratios. They can therefore be used as a separator to define the coarse, fine, and dense pack areas. 

3.3.2 Coordination Number 

In this study, the coordination numbers of only coarse particles were used to evaluate the particle 

structure of all mixtures. This parameter can be calculated by the equation: 

c
c

c

2CCN =
N

                                                                          (3.12) 

where, Cc and Nc are the numbers of contact points and coarse particles, respectively. In 

order to eliminate the boundary effects (wall effects) on the calculation of coordination number, 

the particles within a zone (0 < r < 3/4R) and height (1/4Hmax- 3/4Hmax) were selected, where R 

and Hmax are the container radius (75 mm) and maximum packing height, respectively.  

Blumenfeld et al. (2005) suggested that particles with fewer than two contact points in 2D 

and three contact points in 3D are mechanically unstable. Therefore, a CNc of three was considered 

as the stability threshold of the coarse particles. Figure 3.10 shows the values of CNc as a function 

of MFF after compaction. These results indicate the average coordination number of coarse 
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particles at CDT for size ratios of 0.100, 0.166, 0.200, 0.250, 0.330, 0.500 and 0.660 are 

respectively 3.15, 3.05, 3.00, 2.75, 2.50, 2.50 and 2.35. These values are greater than or equal to 3 

for size ratios less than 0.25 and between 2.35 and 2.75 for the remaining size ratios. Therefore, 

for size ratios less than 0.25, it was concluded the analytical model accurately estimates the 

maximum mass of fine particles that can be added into coarse particles without disruption of coarse 

particle structure (e.g. CDT). 

 

Additionally, the analysis of the CNc values at DFT (k=1) indicates these values are close 

to 1, especially for size ratios of less than 0.25. This means at the DFT (k=1) threshold, there is 

still contact between coarse particles, and consequently, DFT (k=1) threshold cannot appropriately 

determine the condition in which the contact between coarse particles begins to disappear. Thus, 

it cannot be a good estimate of the border between the fine and dense pack areas. Furthermore, in 

DFT (k=1) threshold, the coarse particles are unable to establish a stable main structure (average 

CNc ~ 1), but they have a significant contribution to the main structure of mixtures. At DFT (k=2), 

the CNc values are less than 0.50 and, for size ratio less than 0.250, they are very close to zero. 

This shows the effect of coarse particles in the development of the main aggregate structure is not 

significant; the main aggregate structure of mixture is formed by fine particles. Therefore, the DFT 

(k=2) threshold can be used as a separator between fine and dense pack areas. 
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Figure 3.9 Packing Density Values for Different Size Ratios and Corresponding Mass of the Fine 

Fraction at (a) CDT, (b) DFT (k=1), and (c) DFT (k=2). 
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Figure 3.10 Analytical Model CNc Values for all Size Ratios and Corresponding Mass of Fines 

Fraction at (a) CDT and (b) DFT. 
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3.3.3 Radial Distribution Function 

The radial distribution function (RDF) is another criterion that can be used to examine the 

contribution of coarse and fine particles to the structure of particle mixtures. The RDF is a popular 

measurement for geometrical characterization of packing structures in the field of statistical 

mechanics. It is defined as the probability of finding the center of a particle exactly at distance (r) 

from the center of a reference particle (Aste et al., 2005; Isola, 2008). Considering each particle of 

an aggregate blend as a reference particle, and finding if there is at least one particle at the distance 

r, the probability for every distance of r can be computed for the whole mixture as shown in Figure 

3.11. Notably, for coarse particles, r is twice the coarse particle radius, while for fine particles r is 

twice the fine particle radius. These are important to ensure the contact of spherical particles. The 

higher the probability of contact between coarse particles, the stronger the structure. Figure 3.11 

shows the result of RDF for coarse and fine particles for a size ratio of 0.500 (Dc = 2 mm and Df = 

1 mm). In this case, the normalized probabilities of existing contact between coarse particles at 

CDT, DFT (k=1) and DFT (k=2) are 64, 11, and 7%, respectively. Additionally, the probabilities 

for fine particles at CDT, DFT (k=1) and DFT (k=2) are 35, 83, and 91%, respectively. 

  

(a)                                                                                         (b) 

Figure 3.11 Radial Distribution Function for (a) Coarse Particles (size = 2 mm) and (b) Fine 
Particles (size = 1 mm). 
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The RDF results for fine and coarse particles in different size ratios are shown in Table 3.3. 

The RDF results imply the probabilities of contact between coarse particles at CDT for all size 

ratios are greater than 50%, and for size ratios less than 0.250 are greater than 70 percent. The 

probabilities of contact between coarse particles are less than 40% (varying from 7% to 38%) at 

the DFT (k=1) boundary. For DFT (k=2), the probability of contact between coarse particles 

reduces to 14 percent. Furthermore, the probabilities of contact between fine particles at DFT (k=1) 

and DFT (k=2) are higher than 80%, but at CDT they are 27 to 37 percent. 

Table 3.3 Radial Distribution Function Probabilities. 
Size 
Ratio 

Probability of Contact between Coarse 
Particles (%) 

Probability of Contact between Fine 
Particles (%) 

CDT DFT (k=1) DFT (k=12) CDT DFT (k=1) DFT (k=2) 
0.100 94 38 14 31 89 95 
0.166 88 32 12 33 88 94 
0.200 77 26 10 24 88 92 
0.250 70 22 10 37 86 92 
0.330 66 15 8 27 84 91 
0.500 64 11 7 35 83 91 
0.660 52 7 5 29 82 89 

 

3.4  Proposed Aggregate Structure Definition 

Results of packing density, coordination number, and RDF analyses reveal the CDT 

suggested by the proposed analytical model can appropriately determine the boundary between 

coarse- and dense-pack areas, especially for size ratios less than 0.250. Additionally, the boundary 

between dense- and fine-pack areas can be determined by DFT (k=2). The packing density at the 

DFT (k=1) is higher than the CDT and DFT (k=2) thresholds and can therefore be used as a 

criterion to divide the dense-pack area into two sub-areas, coarse-dense-pack (CDP) and fine-

dense-pack (FDP). The former addresses the area between coarse and dense pack. In this area, 

although the main mixture structure is developed using both coarse and fine particles, the 

contribution of coarse particles to the main mixture structure is more significant than the 

contribution of the fine particles (CNc between 1 and 3 and 0 < k < 1). The fine-dense-pack area 

can be defined as the area between DFT (k=1) and DFT (k=2) and describes the transition area 

between dense-pack and fine-pack areas (1 < k < 2). In this area, the fine particles are more 

influential than the coarse particles in constructing the main particle structure of the mixture; the 
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effect of coarse particles is negligible (CNc < 0.5). Therefore, based on the amount of MFF 

percentage, the following aggregate structure definitions are proposed (Figure 3.12): 

• Coarse-pack (CP) area: The main mixture structure is created by coarse particles and bears 

any applied loads. This area falls between MFF=0 and MFF at CDT. Within this area the 

variation of packing density is linear. 

• Dense-pack (DP) area: This area falls between MFF at CDT and DFT (k=2). The main 

mixture structure is built from both coarse and fine particle sizes and the variation of 

packing density is non-linear. Based on packing density and coordination number analysis 

results, this area can be divided into two sub-areas using MFF at DFT (k=1), CDP (0 < k 

< 1) and FDP (1 < k < 2). 

• Fine-pack (FP) area: In this area, the fine particles construct the main mixture structure and 

the mixture falls within MFF at DFT (k=2) and MFF of 100 percent. In this area, the change 

in packing density decreases linearly with the increase of MFF. 

 
Figure 3.12 Proposed Aggregate Structure Definition Illustration. 
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3.5 Application of Analytical Model to Multi-Sized Aggregate Stockpiles 

As shown earlier, the analytical model was developed for binary mixtures. However, in practice, 

aggregate stockpiles used to produce asphalt mixtures have multi-sized particles. It is therefore 

necessary to modify the binary approach to be applicable to multi-sized aggregate stockpiles. This 

can be done by employing the idea of representative size in a multi-sized aggregate stockpile. As 

stated in chapter 2, the size distribution of most crushed aggregate stockpiles can be represented 

by the Rosin-Raimmler-Sperling-Bennett (RRSB) distribution, as shown in Equation 3.13: 

          
n

rp

s-( )
sP(s)=100-e                                                                       (3.13) 

where, P(r) is the cumulative probability that the size is less than S (%), S is the particle 

size, n is a shape parameter, and Srp is the position parameter of the distribution and has a 

cumulative probability of 0.368. Srp, the mid-size in the RRSB distribution, can be selected as a 

representative size for aggregate stockpiles. Thus, the RRSB model is utilized to determine a 

representative size for aggregate stockpiles. 

To evaluate the applicability of the proposed representative size approach, a number of 

DEM simulations were conducted using a series of multi-sized particle mixtures, similar to what 

was done for binary mixtures. The particle size distributions of the coarse and fine stockpiles are 

shown in Table 4. Based on the different combinations of the two stockpiles, eleven mixtures were 

considered. These were determined by changing the percentage of the fine stockpile from 0 to 

100%, in 10% increments. In each mixture, the number of particles for both the coarse and fine 

sizes was estimated based on the final gradation curve and the following equation (Cai et al., 2014): 

m+1 m
3

m+1 m

3×V(p -p )N=
4π((D +D )/2)

                                                           (3.14) 

where N is the number of particles with a size of (Dm+1+Dm)/2, P is the volume percentage 

of the particles in the mixture, and pm+1 and pm are the aggregate volume percentages passing 

through the Dm+1 and Dm sieve sizes, respectively. The material properties and simulation 

specifications were those presented in Table 3.1. 
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Table 3.4 Coarse and Fine Stockpile Size Distributions. 
Size (mm) Coarse Stockpile (% Passing) Fine Stockpile (% Passing) 

12.5 100 100 
9.5 97 100 
4.75 30 97 
2.36 16 82.5 
1.18 2 65 
0.600 1 45 
0.300 0 16 
0.150 0 1.9 
0.075 0 0.2 

Based on the RRSB model, the representative sizes for the coarse and fine stockpiles are 

respectively 6.54 and 1.11 mm. The values of MFF at CDT, DFT (k=1), and DFT (k=2) obtained 

from the analytical model are 18, 46, and 74%, respectively. The definition of the coarse and fine 

aggregates is based on the Baily method, in which coarse and fine aggregates are defined by a 

sieve size known as the Primary Control Sieve (PCS) (Vavrik, 2000; Pine, 2016). The PCS is a 

function of the nominal maximum aggregate size (NMAS) and is calculated as: 

PCS = NMAS×0.22                                                                   (3.15) 

Particles sizes greater than PCS are considered coarse particles, while those smaller than 

PCS are fine particles. The CNc and the change of packing density at different MFF percentages 

are illustrated in Figure 3.13. 

Results of the analysis indicate that CNc at CDT is equal to 2.85, which is close to three. 

Additionally, the mixture at DFT (k=1) shows a packing density close to the maximum value. At 

DFT (k=2), the CNc value is less than 0.1. Therefore, the proposed analytical model does appear 

to reasonably determine the aggregate structure of multi-sized mixtures using the proposed 

representative size approach. 
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Figure 3.13 Variation of CNc and Packing Density for Coarse and Fine Stockpile Mixtures. 

 

3.6 Summary  

The work presented in this chapter draw attention to the aggregate structure as a major load-bearing 

constituent of asphalt mixtures. Depending on the mass fraction of fine particles (MFF) in a binary 

mixture, the particle structure of a mixture can be divided into three areas: coarse pack (CP), dense 

pack (DP) and fine pack (FP). Boundaries between these areas (CDT and DFT) were determined 

using a proposed analytical model. A series of numerical simulations to determine the packing 

behavior of binary mixtures was conducted on various aggregate blends using the discrete element 

method (DEM). Based on the simulation results, the proposed analytical model could appropriately 

define the particle structure of binary mixtures especially when the size ratio between fine and 

coarse particles is less than 0.25.  

In order to apply the developed approach for the multi-sized aggregate blends, the Rosin-

Raimmler-Sperling-Bennett (RRSB) distribution was employed to find aggregate sizes 

representing fine and coarse aggregate stockpiles. Based on the DEM simulation for multi-sized 

aggregate blends, it can be concluded that the proposed aggregate structure can be satisfactorily 

applied to the blending of multi-sized aggregate stockpiles.   
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CHAPTER 4. EFFECT OF AGGREGATE STRUCTURE ON ASPHALT 
MIXTURE COMPACTION PARAMETERS 

This chapter is under review in Journal of Materials in Civil Engineering 

4.1 Introduction 

Compactability, defined as the effort needed to compact an asphalt mixture in the field, is a 

defining characteristic of asphalt mixtures during construction. Achieving an acceptable level of 

density during field compaction has a direct bearing on an asphalt mixture’s in-service 

performance. Insufficient density has a detrimental effect on fatigue and rutting performance, and 

on moisture damage resistance (NCAT, 2011). It is therefore vital to understand factors that may 

affect compactability, factors such as binder content and type, compaction temperature and effort, 

and aggregate gradation, shape and texture. Additionally, research has shown that asphalt mixture 

compactability can provide information about an asphalt mixture’s rutting performance, rutting 

being an all too often asphalt pavement distress type (Zaniewski and Srinivasan, 2004). 

Several compactability studies have been conducted and various parameters introduced to 

better clarify it. Terms such as compaction energy index (CEI) and traffic densification index 

(TDI) (Bahia et al., 1998), compaction force index (CFI) and traffic force index (TFI) (Delage, 

2000), locking point and compaction slope (CS) (Vavrik and Carpenter, 1998; Anderson et al., 

2002; Leiva and West, 2008), and initial density (%Gmm at Nini) (Leiva and West, 2008; Awed et 

al., 2015) have been proposed. CEI and TDI are energy-based parameters, while CFI and TFI are 

force-based parameters for addressing the compaction energy required during construction and 

densification under traffic, respectively. The locking point evaluates aggregate structural 

resistance against compaction, while CS and initial density are helpful parameters that can be used 

to predict volumetric properties at different compaction levels. Kassem et.al (2012) reported a 

good correlation between these two parameters (CS and initial density) and field compactability. 

Furthermore, CS was found to have a good correlation with the permanent deformation and shear 

stiffness of asphalt mixtures (Zaniewski and Srinivasan, 2004).    

Apart from temperature, binder type and content and aggregate shape and texture are the 

most common parameters affecting asphalt mixture compaction. Additionally, the aggregate 

gradation plays a key role in compactability, but there is no consensus on which parameters best 
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explain how gradation affects compactability. The Bailey method proposed three parameters, 

coarse aggregate (CA), fine aggregate-coarse fraction (FAc), and fine aggregate-fine fraction (FAf) 

to define the packing of the coarse portion of the aggregate gradation, the coarse portion of the 

fine aggregate, and the fine portion of the fine aggregate, respectively (Pine, 2016). Mohammad 

and Al-Shamsi (2007) reported that using the Bailey method parameters of CA and FAc did not 

result in a good correlation with the asphalt mixture volumetric properties, while Leiva and West 

(2008) noted that the Bailey parameters did not correlate well with the compactability parameters 

such as CEI, locking point, CS, initial density, and air voids content. Awad et al., (2015) have 

reported that applying the Weibull distribution function to define scale and shape parameters of 

the aggregate gradation curve is useful for predicting CS and the initial air voids content at the 

gyration (Nini).  

Most previous studies performed on asphalt mixture compactability incorporated several 

factors into compactability modeling, including gradation parameters. The influence of aggregate 

gradation on asphalt mixture compactability is heavily dependent on other factors such as 

aggregate morphological properties and binder content and type. However, while aggregate 

morphological properties cannot be engineered during the mixture design procedure (other than 

by changing aggregate types), gradation can be engineered, within limits. It is therefore important 

to assess the effect of aggregate gradation on asphalt mixture compactability independently of 

aggregate morphological properties, binder content, and binder type.  

Given the importance of asphalt mixture compactability to ensuring adequate asphalt 

mixture density and thereby performance, an investigation of how asphalt mixture aggregate 

gradation affects compactability seems prudent. Therefore, the main objective of the work 

presented in this chapter is to evaluate the effect of aggregate gradation on asphalt mixture 

compactability. This effect was studied using two different approaches. One approach used asphalt 

mixtures of coarse and fine aggregates, without the addition of aggregate filler, and all mixtures 

having the same effective binder type and content. The second approach used asphalt mixtures of 

coarse and fine aggregates, included aggregate filler, and a constant effective binder type and 

content for all mixtures. All mixtures were designed with the design binder content being chosen 

at 4% air voids. 

To design mixtures with a constant effective binder and air voids contents a standard 

mixture design procedure was developed and implemented. To find the relationships between 
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asphalt mixture aggregate gradation and compaction parameters, the most meaningful and 

practical compaction parameters were selected for use in the study. Correlations between the 

selected compaction parameters and the proposed gradation indices addressing gradation curve 

shape and proximity to the maximum line density were then established for the two mixture 

approaches. Finally, the models developed were evaluated using laboratory and field data to ensure 

their effectiveness. 

 

4.2 Materials 

The aggregates used in the study were limestone and blast furnace slag (BFS) coarse aggregates 

with natural sand and filler being the fine aggregates. The filler material was obtained from the 

asphalt plant baghouse. The coarse aggregates both had a nominal maximum aggregate size 

(NMAS) of 9.5 mm. The coarse aggregate fractions of the mixtures were divided such that 50% 

by mass was limestone and 50% was BFS, a common practice for surface mixtures. The aggregate 

properties are shown in Table 4.1. The binder used in all the mixtures was a PG 70-22 obtained 

from a local supplier. 

 

Table 4.1 Aggregate Stockpile Properties. 
 
 

Sieve Size (mm) 

Coarse Stockpiles Fine Stockpile  
Mineral Filler Limestone  

Blast Furnace 
Slag Natural Sand 

12.5 100 100   
9.5 90.1 89.3 100  
4.75 19.4 22.8 99.9  
2.36 3.5 8.7 89.1  
1.18 1.7 6.7 70.1  
0.600   47.7 100 
0.300   17 99.4 
0.150   2.2 97.8 
0.075   0.8 94.6 
Gsb 2.681 2.442 2.612 2.800a 

Representative Size (mm) 7.427 7.295 1.056 ---- 
aMineral filler apparent specific gravity. 
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4.2.1 Aggregate Gradations 

The aggregate stockpiles shown in Table 4.1 were blended to yield the 15 gradations plotted in 

Figure 4.1. These gradations were determined based on the approach developed in chapter 3 cover 

three main aggregate structures, coarse-pack (CP), dense-pack (DP) and fine-pack (FP). CP is 

defined as the condition in which all coarse particles are in direct contact with each other (stone-

on-stone contact) creating the asphalt mixture’s main aggregate skeleton with the fine particles 

simply filling voids in the skeleton. In DP mixtures, the asphalt mixture aggregate structure is 

controlled by both fine and coarse particle sizes. FP indicates the condition in which the fine 

particles dominate the main aggregate skeleton of the mixture and the coarse particles float in the 

fine particles. Equation 4.1 was used to design CP mixtures, while Equation 4.2 was used to 

develop DP and FP mixtures. 

                   sbf c

sbc f sbf c

G (e -SRF(sr))MFF@ CDT=100×
G (1+e )+G (e -SRF(sr))

 
 
 

                                        (4.1) 

            
3

sbf c
3

sbc f sbf c

G [(1+e )(1+k×sr) -1]MFF@DFT=100× k=1,2
(1+e )+G [(1+e )(1+k×sr) -1]G

 
 
 

                               (4.2) 

In these two equations, MFF is the percent by mass of fine aggregate that should be added 

to coarse aggregate by the total aggregate mass, ec and ef are the void ratio of coarse and fine 

aggregates, respectively, f

c

Dsr=
D

, where Dc and Df are the representative sizes of coarse and fine 

stockpiles, respectively, SRF (sr) is the size ratio function (0.3087sr-0.0207) × (15.75-10.74ec), k 

is the fine aggregate coefficient that defines the number of fine particles between two coarse 

particles (k=1 for DP and k=2 for FP mixtures), and γc and γf are the specific gravities of the coarse 

and fine aggregates, respectively. 

The void ratio of only coarse and only fine aggregates (i.e. ec and ef, respectively) for 

Equations 4.1 and 4.2 were calculated at different packing densities achieved by using 0, 8, 15 and 

25 gyrations of the Superpave Gyratory Compactor (SGC). After determining ec and ef at different 

gyration numbers, four gradations for each CP and FP (k=2) mixtures were found based on 0, 8, 

15 and 25 gyrations. Initial assessment revealed that the DP can be divided into two categories, 

namely fine dense pack (FDP), with 1<k<2, and coarse dense pack (CDP), with 0<k<1. There are 
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four gradations for FDP mixtures, according to the gyration number at which ec and ef were 

determined. 

 
Figure 4.1 Selected Aggregate Blend Gradations (without filler). 

 
 

 
Figure 4.2 Schematic of Coarse Pack, Coarse Dense Pack, Fine Dense Pack, and Fine Pack. 
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With regard to CDP, three k values of 0.150, 0.300 and 0.600 were used for the gradation 

within CDP. These three k values represent the situation in which aggregates of sizes 0.150, 0.300 

and 0.600 mm were placed between the coarse aggregates. Figure 4.2 indicates the arrangement 

of CP, DP, FDP, and FP schematically. Also, Table 4.2 shows the tabulated gradation information. 

Table 4.2 Gradation information. 

Mixture ID Gyration 
Number 

Void Ratio 
% Fine % Coarse Threshold 

Fine Coarse 
CP-0 0 0.55 0.88 32.2 67.8 CDT 

FDP-0 0 0.55 0.88 54 46 DFT (k=1) 
FP-0 0 0.55 0.88 66.1 33.9 DFT (k=2) 
CP-8 8 0.69 0.42 24.6 75.4 CDT 

FDP-8 8 0.69 0.42 51.2 48.8 DFT (k=1) 
FP-8 8 0.69 0.42 64.3 35.7 DFT (k=2) 

CDP-8 (k=0.600) 8 0.69 0.42 35.1 64.9 DFT (k=0.600) 
CDP-8 (k=0.300) 8 0.69 0.42 40.1 59.9 DFT (k=0.300) 
CDP-8 (k=0.150) 8 0.69 0.42 45.2 54.8 DFT (k=0.150) 

CP-15 15 0.6 0.4 21.7 78.3 CDT 
FDP-15 15 0.6 0.4 50.1 49.9 DFT (k=1) 
FP-15 15 0.6 0.4 63.5 36.5 DFT (k=2) 
CP-25 25 0.55 0.38 19.2 80.8 CDT 

FDP-25 25 0.55 0.38 49.2 50.8 DFT (k=1) 
FP-25 25 0.55 0.38 62.8 37.2 DFT (k=2) 

             

4.3 Specimen Preparation 

Determining the optimum binder content (OBC) for a target air voids is the aim of all asphalt 

mixture design methods, including Hveem, Marshall and Superpave (Asphalt Institute, 1997; 

Asphalt Institute, 2001; Robert et al., 2002). Apart from the aggregate source properties that help 

ensure sufficient durability, toughness, cleanliness, shape, and texture, the selected gradation needs 

to fall within the upper and lower limits of the mixture design specification. Among the volumetric 

properties, air voids content of asphalt mixtures is of great importance, since the OBC is 

determined at 4% air voids content. Air void value is an indicator of compactability of asphalt 

mixtures that is affected by binder content and particle size distribution (Muras, 2010). Unlike the 

standard Superpave mixture design, for the work reported herein, the design air voids content (4%) 

and effective binder content are considered fixed. This is accomplished by varying the aggregate 
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gradation, especially filler content, and total binder content simultaneously. Applying this concept, 

it is possible to design various mixtures with different aggregate structures (CP, CDP, FDP and 

FP) while maintaining approximately equivalent air voids and binder contents. 

4.3.1 Mixture Design Approach 

Figure 4.3 shows the summary of the approach that was developed and used to design mixtures 

based on the desirable air voids design (Va), voids-in-the-mineral-aggregate (VMA) the volume of 

air voids and effective binder content, design gyration (Ndes) and mixture type (CP, CDP, FDP or 

FP). To complete the mixture designs, for each gradation, two compacted and two loose (un-

compacted) specimens were fabricated using 4-5% binder and the appropriate mixture of coarse 

and fine aggregates without filler. The 4-5% binder content of was chosen because visual 

inspection revealed this amount sufficient to coat the aggregate particles. The loose specimens 

were used for measuring maximum theoretical specific gravity (Gmm) and the compacted 

specimens’ bulk specific gravity (Gmb) in accordance with AASHTO T209, “Standard Method of 

Test for Maximum Theoretical Specific Gravity (Gmm) and Density of Hot Mix Asphalt (HMA)” 

and AASHTO T-166, “Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted 

Hot Mix Asphalt (HMA) Using Saturated Surface-Dry Specimens,” respectively. All mixtures 

were designed using 100 SGC gyrations. 

Using the Gmm, Gmb, aggregate bulk specific gravity (Gsb), and binder specific gravity (Gb), 

the latter two being supplied by the contractor who furnished the materials, the following steps 

were taken to estimate required binder and filler contents: 

Calculate the total volume of compacted samples using the following Equation 4.3, 

                          T
T

mb w

WV =
G γ

                                                                   (4.3) 

where, VT and WT are the total volume and weight of compacted sample, respectively and 

γw is the specific weight of water, 9.807 kN/m3. 

Determine VMA of compacted samples (VMA) according to (AASHTO M323, 2015): 

mb s

sb

(G P )VMA=100-[ ]
G

                                                          (4.4) 

where, Ps is the percentage of aggregate (coarse and fine). 
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Figure 4.3 Flowchart of Mixture Design Approach. 

Yes 

Determine the mixture type: CP, CDP, FDP or FP using Eqs. 4.1 or 4.2 

Fabricate two compacted and two loose 
samples without filler containing 4-5% binder 

for each gradation 

Determine: Gmm, Gmb, and volumetric properties (VMA, Va, VT) 

  

Determine filler percent using Equation 4.5 

Determine binder percent (effective and absorbed) using Equations 4.6 through 

4.9 

Determine: Gmm, Gmb, and volumetric properties (VMA, Va, VFA, VT) 

  

Does mixture meet 
the Superpave 

volumetric 
criteria? 

  

Finish 

No 

Select: NMAS, target VMA, design air voids (Va), and design Gyration (Ndes) 
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Determine initial filler percentage: By knowing a target VMA (15% for 9.5-mm mixtures) 

and design air voids content (4%) for the final mixture design, the amount of filler (% filler) 

required for the mixture can be estimated based on the target VMA (VMAt), volume of required 

filler (Vf ), weight of required filler (Wf), weight of fine and coarse aggregates (Ws) and specific 

gravity of filler (Gsbf)  as follows: 

m t T
f f f sb f w

f
s s T

f s

(VMA -VMA )(V )V = ; W =V ×(G ) ×γ
100

W%filler= ; W =P ×W
(W +W )

                                  (4.5) 

1. Estimate the mass of optimum binder content. First, the mass of absorbed binder and 

volume of effective binder of previously compacted samples is calculated. Given this data, 

the total required mass of the OBC can be estimated using the target VMA and design air 

voids content as follows: 

a. Calculate effective specific gravity (Gse) and determine percent absorbed asphalt 

(Pba) using the following equations (AASHTO, 2015): 

b b se sb
se ba

se sbb

mm b

100-P (100G )(G -G )G = ; P =
(G G )P100 -

G G
  
  

   

                                   (4.6) 

b. Estimate the volume and mass of optimum effective binder content (Vbe, Mbe). 

t a T
be be be b w

(VMA - V )×VV = ; M  = V ×G ×γ%filler(1- )
100

                                              (4.7) 

c. Find the total mass of optimum absorbed binder (Mba). 

 ba ba s f
%fillerM = P ×(W +W )×(1- )

100
                                                            (4.8) 

d. Estimate the total mass of optimum binder as a summation of optimum absorbed 

and effective binder. 

e. Determine the total binder percentage. 

obc
obc

s f obc

(100× M )P  =
(W +W +M )

                                                                        (4.9) 
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After determining the required amounts of filler and asphalt binder to meet the target VMA 

and design air voids content, two compacted and one loose specimen are prepared. The volumetric 

properties of these specimens are then measured and compared to the desired values. If additional 

modifications are necessary, steps 1 through 4 can be repeated as needed based on the volumetrics. 

4.3.2 Mixture Design Results 

The mastic (combination of binder and filler) partially fills the voids between aggregate particles 

allowing the target air voids content of 4% to be achieved. It is assumed the total volume of mastic 

is equal to the binder and filler volumes. Therefore, the initial VMA without filler (Table 4.3) must 

be deducted from the minimum allowable VMA (15% for 9.5-mm mixture) to find the volume of 

required filler. The minimum allowable VMA was selected so as to provide the smallest allowable 

VFA and thus require the least binder to obtain 4% air voids. As expected, and as indicated in 

Table 4.3, coarser aggregate gradations have higher VMA and therefore require larger amounts of 

filler. Also, the VMA increases with increasing number of gyrations at which ec and ef are 

determined. The lowest VMA and air voids content occur between CDP (k=300) and CDP 

(k=150), as it results in the densest aggregate packing. It is noteworthy that finer aggregate 

gradations do not lead to less VMA and air voids, but rather they tend to reduce the amount of 

absorbed binder, likely due to fewer pores and cavities of the smaller aggregate particles.  

After using Equation 4.5 to determine the filler mass, 11% binder by volume of total 

mixture plus absorbed binder is required to fulfill the VMA and absorption requirements. Using 

Equations 4.6 through 4.9, the amount of binder was calculated and is shown in Table 4.4. Because 

of higher absorbed binder, the first estimated total binder percentages for coarser aggregate 

gradations are higher than those for finer gradations.   

The results of the first trial (Table 4.5) indicate the air voids contents are not satisfactorily 

close to 4% for the CP and FP mixtures. For CP mixtures, the difference between the target VMA 

and the results of first trial can be explained by the lubricating effect of filler. This effect acts to 

“extend” the binder and facilitates the compaction.  Also, comparing the volume of effective binder 

and its target value (11%), it can be seen that the selected binder contents for CP mixtures were 

overestimated. Thus, the air voids content is lower than anticipated (Table 4.5).   
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Table 4.3 Initial Volumetric Data (without filler). 

Mixture  

Gmm Gmb Total Volume (cm3) VMA (%) Va (%) Pba (%) 

Ave. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. 

CP-25 2.550 2.048 0.014 2277.58 13.37 24.3 0.50 19.65 0.55 1.74 0.090 
CP-15 2.543 2.091 0.011 2204.54 10.20 22.8 0.11 17.77 0.12 1.68 0.010 
CP-8 2.536 2.131 0.001 2190.30 2.62 21.3 0.10 16.00 0.10 1.49 0.005 
CP-0 2.541 2.179 0.002 2125.95 1.24 19.6 0.05 14.25 0.05 1.55 0.001 

CDP-8 (k=0.600) 2.526 2.195 0.001 2101.45 1.45 18.9 0.01 13.12 0.10 1.37 0.002 
CDP-8 (k=0.300) 2.527 2.227 0.001 2096.75 2.50 17.7 0.10 11.65 0.15 1.28 0.005 
CDP-8 (k=0.150) 2.526 2.221 0.001 2100.32 4.45 17.9 0.02 12.01 0.11 1.22 0.004 

FDP-25 2.527 2.219 0.001 2107.58 5.00 18.1 0.05 12.18 0.01 1.19 0.001 
FDP-15 2.526 2.217 0.002 2105.37 2.45 18.1 0.04 12.23 0.01 1.20 0.004 
FDP-8 2.524 2.215 0.007 2104.80 5.74 18.3 0.31 12.20 0.30 1.21 0.010 
FDP-0 2.521 2.204 0.003 2114.68 1.59 18.7 0.15 12.55 0.15 1.16 0.003 
FP-25 2.521 2.198 0.005 2131.52 2.41 18.8 0.14 12.81 0.14 0.94 0.001 
FP-15 2.52 2.178 0.003 2142.78 5.92 19.6 0.11 13.57 0.18 0.23 0.002 
FP-8 2.490 2.151 0.004 21.68.45 7.15 20.6 0.17 13.61 0.20 0.62 0.004 
FP-0 2.481 2.143 0.007 2173.70 6.54 21.1 0.25 13.75 0.25 0.51 0.005 

 
 



 

82 
 

On the other hand, for FP mixtures, the higher air void and VMA contents are results of 

underestimated binder and filler contents. After two to four trials the final filler and binder contents 

were determined, as shown in Table 4.6. As seen in the table, the resulting air voids content 

(4±0.2%), VMA (15±0.2%), VFA (65≤ VFA ≤75), and dust ratio (0.6≤DP≤2) meet the Superpave 

mixture design volumetric specifications. 

 
 

Table 4.4 Initial Results of Required Filler and Binder Contents. 
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CP-25 24.3 2277.58 200.41 561.0 12.5 219.2 225.81 74.6 300.4 6.3 
CP-15 22.8 2204.54 172.10 481.6 10.7 216.6 223.13 72.7 295.8 6.2 
CP-8 21.3 2190.30 138.04 386.4 8.6 220.2 226.81 65.1 291.9 6.1 
CP-0 19.5 2125.95 96.70 270.8 6.0 219.8 226.42 68.3 294.7 6.1 
CDP-8 (k=0.600) 18.9 2101.45 83.00 232.4 5.2 219.1 225.71 60.5 286.2 6.0 
CDP-8 (k=0.300) 17.7 2096.75 56.62 158.5 3.5 222.6 229.3 57.1 286.4 6.0 
CDP-8 (k=0.150) 18.0 2100.32 62.63 175.3 3.9 222 228.7 54.1 282.8 5.9 
FDP-25 18. 2107.58 64.51 180.6 4.0 222.6 229.3 52.8 282.1 5.9 
FDP-15 18.1 2105.37 66.14 185.1 4.1 222.1 229.81 53.2 283 5.9 
FDP-8 18.3 2104.80 69.51 194.6 4.3 221.6 230.22 53.6 283.8 5.9 
FDP-0 18.8 2114.68 79.32 222.0 4.9 221.2 230.81 51.3 282.1 5.9 
FP-25 18.8 2131.52 81.90 229.3 5.1 222.5 231.25 41.5 272.8 5.7 
FP-15 19.6 2142.78 98.09 274.7 6.1 221.3 231.94 36.1 268.0 5.6 
FP-8 20.6 2168.45 120.79 338.2 7.5 220.6 232.22 27.2 259.4 5.5 
FP-0 21.1 2173.7 131.53 368.2 8.2 219.5 233.14 22.3 255.4 5.4 
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Table 4.5 Volumetric Results of First Trial. 

Mixture Type VMA (%) Va (%) Effective Binder Volume (%) Pba (%) 
Ave. Std. Ave. Std. Ave. Std. Ave. Std. 

CP-25 13.7 0.51 1.5 0.24 12.20 0.21 1.12 0.04 
CP-15 14.1 0.14 2.5 0.12 12.11 0.24 1.04 0.05 
CP-8 14.3 0.20 2.9 0.14 11.82 0.15 1.01 0.03 
CP-0 14.6 0.10 3.1 0.15 11.53 0.11 0.97 0.03 
CDP -8(k=0.600) 14.7 0.07 3.4 0.08 11.25 0.06 0.98 0.04 
CDP-8 (k=0.300) 14.9 0.08 3.7 0.10 11.24 0.05 0.99 0.05 
CDP-8 (k=0.150) 14.9 0.10 3.6 0.12 11.33 0.14 1.01 0.02 
FDP-25 15.8 0.11 4.4 0.12 11.42 0.12 0.85 0.06 
FDP-15 15.9 0.21 4.4 0.14 11.50 0.14 0.81 0.07 
FDP-8 15.7 0.14 4.6 0.15 11.11 0.20 0.81 0.02 
FDP-0 15.5 0.15 4.5 0.17 11.24 0.22 0.75 0.08 
FP-25 15.5 0.12 4.6 0.14 11.15 0.15 0.74 0.04 
FP-15 15.4 0.14 5.0 0.11 10.51 0.26 0.71 0.03 
FP-8 15.4 0.16 4.7 0.17 10.60 0.25 0.67 0.06 
FP-0 15.3 0.23 4.9 0.20 10.47 0.25 0.64 0.07 

  

Table 4.6 Final Mixture Design Results. 
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CP-25 9.3 5.8 4.73 15.1 4.3 71.9 2.0 4 
CP-15 8.2 5.8 4.79 15.1 4.0 73.5 1.7 4 
CP-8 7.9 5.8 4.84 14.9 3.9 74.2 1.6 3 
CP-0 4.6 5.6 4.88 14.9 3.9 73.9 0.9 2 
CDP (k=0.600) 4.1 5.6 4.85 14.9 3.9 73.8 0.8 2 
CDP (k=0.300) 3.7 5.6 4.81 15.0 3.9 73.9 0.8 2 
CDP (k=0.150) 4.3 5.6 4.85 15.1 4.0 73.5 0.9 2 
DP-25 4.9 5.6 4.78 15.1 4.0 73.8 1.0 2 
DP-15 4.9 5.5 4.76 15.2 4.1 73.1 1.0 2 
DP-8 4.9 5.7 4.77 15.1 4.1 72.8 1.0 2 
DP-0 5.3 5.6 4.66 15.2 4.1 73.4 1.1 2 
FP-25 6.4 5.7 4.75 15.0 3.9 74.2 1.3 3 
FP-15 7.6 5.8 4.78 15.1 4.1 72.8 1.6 3 
FP-8 8.0 5.8 4.70 14.9 4.0 73.2 1.7 3 
FP-0 8.5 5.9 4.76 15.1 4.2 72.0 1.8 3 
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4.4 Gradation and Compactability 

4.4.1 Compaction Parameters  

Indices such as the locking point, initial density, compaction slope (CS) and compaction energy 

index (CEI) have been suggested to measure laboratory compactability. The locking point 

identifies the gyration number at which the aggregate structure begins resisting compaction and 

has been defined in different was by various researchers:  

Original: The locking point is the gyration number of the first three gyrations with the same sample 

height preceded by two gyrations of the same sample height (Vavrik and Carpenter, 1998; 

Anderson et al., 2002). 

Locking Point 2-1: The locking point is the gyration number at which the first two 

consecutive gyrations with the same sample height occur (Leiva and West, 2008). 

Locking Point 2-2: The locking point is the gyration number at which the second two 

consecutive gyrations with the same sample height occur (Leiva and West, 2008). 

Locking Point 2-3: The locking point is the gyration number at which the third two 

consecutive gyrations with the same sample height occur (Leiva and West, 2008). 

The second approach (Locking Point 2-1) has been widely used by highway agencies 

(Leiva and West, 2008) and was therefore selected to determine the locking point in this work. 

Initial density is defined as the %Gmm at Nini (at the 8th gyration for this study), while CS is the 

slope of semi-log %Gmm as a function of the number of gyration curve from 8 to 100 gyrations 

(Leiva and West, 2008) (Figure 4.4a). CEI, as shown in Figure 4.4b, is the area under the 

compaction curve from the Nini (8th gyration) to the gyration corresponding to 92% of Gmm (Bahia 

et al., 1998).  

 
Figure 4.4 Definition of (a): Compaction Slope and; (b): Compaction Energy Index.  



 

85 
 

4.4.2 Gradation Parameters 

To establish a relationship between the mixture gradation and the laboratory compaction 

parameters, it is necessary to define independent qualitative variables that represent the gradation 

characteristics. Therefore, two groups of parameters are used to address the general shape of the 

gradation curve and the closeness of the gradation to the maximum density line (MDL). The overall 

gradation shape can be characterized using a power distribution function: 
n

r

d-( )
dP(d)=100 e×                                                                (4.10) 

where, d is the aggregate size of each sieve used in the gradation (mm), P(d) is the 

cumulative retained percentage for each sieve size, dr is the size considered to be the representative 

gradation size (mm), and n is a scale to describe the gradation uniformity. The dr and n parameters 

are determined using curve fitting techniques. The parameter dr is also used to determine the 

representative size of each stockpile shown in Table 4.1. 

The Bailey method suggests four control sieves to describe the packing condition of the 

coarse and fine portions of any gradation (Vavrik et al., 2002), half control sieve (HCS), primary 

control sieve (PCS), secondary control sieve (SCS) and tertiary control sieve (TCS). The HCS is 

defined as the closest sieve to one-half the NMAS (0.5×NMAS), while the PCS is the closest sieve 

to 0.22×NMAS. The SCS is the closest sieve to 0.22×PCS and the TCS is the closest sieve to 

0.22×SCS. The PCS, SCS, and TCS are used to determine the break points between the coarse and 

fine portions of the gradation, the coarse and fine parts of the fine aggregate and, the coarse and 

fine parts of fine portion of fine aggregate, respectively. Also, the HCS is defined so as to describe 

the aggregate size distribution of coarse aggregates. Based on the newest version of the Bailey 

method, the NMAS is defined as the first sieve larger than the first sieve to retain more than 15% 

(Pine, 2016). Table 4.7 presents the recommended HCS, PCS, SCS and TCS for different NMAS. 

 
Table 4.7 Half Sieve and Control Sieve Sizes based on the Bailey Method (Pine, 2016). 

Control Sieve 
Nominal Maximum Aggregate Size (mm) 

37.5 25.0 19.0 12.5 9.5 4.75 
Sieve Size (mm) 

Half (HCS) 19.0 12.5 9.5 6.25 4.75 2.36 
Primary (PCS) 9.5 4.75 4.75 2.36 2.36 1.18 

Secondary (SCS) 2.36 1.18 1.18 0.600 0.600 0.300 
Tertiary (TCS) 0.600 0.300 0.300 0.150 0.150 0.075 
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The preliminary statistical analysis to find a relationship between the Bailey method 

control sieves and compactability parameters revealed the control sieves could not satisfactory 

describe the compactability parameters of CS and initial density. Therefore, a new parameter, the 

relative difference packing index (RDPI), is proposed to characterize the relative difference 

between the packing condition of the coarse and fine portions of an aggregate gradation (Figure 

4.5). The RDPI can be calculated using Equations 4.11 and 4.12.  

 ( ) ( ) DensDiff d  =P d  - P                                                              (4.11) 

                        (4.12) 

where, Diff (d) is the deviation of the aggregate percentage of size d from the MDL (0.45 

power line), P(d) is the percentage of aggregates passing sieve size d (%), and PDens is the 

corresponding passing percent on the MDL which it can be estimated using Equation 4.13. 

0.45
Dens

dP =100( )
NMAS

                                                              (4.13) 

 In this study, because the NMAS of all the mixtures is 9.5 mm, the sieve sizes of 4.75, 

2.36, 0.600 and 0.150 mm are selected as the HCS, PCS, SCS and TCS, respectively. The gradation 

parameter values for the various asphalt mixtures have been calculated and are shown in Table 

4.8. As seen in the table, increasing the fine aggregate percentage in an asphalt mixture results in 

decreasing dr and n values. In the case of RDPI, the CP, CDP, and two of the FDP mixtures have 

negative RDPI values, while it is positive for FP and two FDP mixtures.   
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Figure 4.5 Illustration of RDPI and Bailey Control Sieves. 

 

 

 
Table 4.8 Gradation Parameters. 

Mixture Type RDPI dr n 
CP-25 -6.1 5.91 0.86 
CP-15 -8.6 5.81 0.90 
CP-8 -7.7 5.61 0.86 
CP-0 -10.2 5.17 0.87 
CDP-8 (k=0.150) -9.9 4.95 0.85 
CDP-8 (k=0.300) -8.4 4.55 0.82 
CDP-8 (k=0.600) -3.9 4.03 0.77 
FDP-25 -0.3 3.62 0.74 
FDP-15 -0.6 3.57 0.74 
FDP-8 0.0 3.48 0.74 
FDP-0 1.5 3.26 0.73 
FP-25 6.9 2.58 0.73 
FP-15 8.9 2.49 0.72 
FP-8 10.7 2.4 0.71 
FP-0 13.8 2.24 0.72 
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4.4.3 Mixtures without Filler 

The compaction parameter results for mixtures not containing filler are shown in Table 4.9. In 

addition to the aforementioned gradations, only coarse and fine mixtures were included in order to 

more widely observe the compactability trend.  

 
Table 4.9 Compaction Parameters for Mixtures without Filler. 

Mixture Type 

Initial Density Compaction Slope Locking Point CEI 
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Only Coarse 62.15 0.43 3.76 0.98 72 1.39 613.5 0.39 
CP-25  70.50 0.61 3.75 0.52 66 2.27 605.9 1.65 
CP-15 72.78 0.57 3.68 0.04 64 1.56 596.9 3.22 
CP-8 75.05 0.11 3.62 0.14 59 4.24 588.5 1.16 
CP-0 77.30 0.51 3.43 0.43 52 2.88 562.4 2.08 
CDP-8 (k=0.150) 79.45 0.84 3.06 0.99 46 1.09 500.4 0.89 
CDP-8 (k=0.300) 81.6 0.52 2.69 0.88 41 1.22 437.9 3.43 
CDP-8 (k=0.600) 81.95 0.43 2.46 0.07 37 1.35 402.1 1.27 
FDP-25  82.55 0.22 2.35 0.43 33 0.01 332.9 3.04 
FDP-15 82.55 0.33 2.21 0.95 31 1.61 354.8 3.94 
FDP-8 82.43 0.48 2.17 0.54 33 3.03 360.1 4.95 
FDP-0 82.3 0.55 2.16 0.82 36 1.39 366.2 5.24 
FP-25  82.12 0.63 2.13 0.86 34 1.47 352.8 3.1 
FP-15  82.02 0.42 2.11 0.19 32 3.13 344.9 0.8 
FP-8  81.95 0.17 2.08 0.18 33 1.52 339.4 0.88 
FP-0  81.65 0.94 1.95 0.84 32 0.05 316.3 1.63 
Only Fine 75.11 0.14 1.91 0.19 29 3.45 307.7 5.46 

 

Increasing the amount of fine aggregates in the mixtures results in increasing initial density 

up to the FDP-25 mixture, after which it remains fairly constant for all the fine mixtures. For CP 

and CDP mixtures, the rate of change in initial density is much higher than for FP and FDP 

mixtures (Figure 4.6). With regard to CP, CDP and FP mixtures, the decreasing trend of CS, 

locking point, and CEI are similar when the amount of fine aggregates increases. However, a 

different behavior can be observed for FDP mixtures.  
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Figure 4.6 Normalized Compaction Parameters for Various Gradation Types (without filler). 

 

To establish a relationship between mixture gradation and compactability parameters, an 

analysis of variance (ANOVA) was performed to determine if the gradation parameters could 

predict the normalized values of initial density and CS. The ANOVA F-test provides a p-value 

based on a chosen significance level, α. If the p-value is less than the chosen α, 5% in this case, 

the null hypothesis that there is not relationship is rejected and consequently, it can be concluded 

that the explanatory variables are statistically significant. In this study, laboratory CS and initial 

density were selected as the dependent variables, since they were found to have good correlation 

with field densities (Kassem et al., 2012; Awed et al., 2015). 

Table 4.10 shows the ANOVA results for both compaction parameters (initial density and 

CS) and Student’s t-tests for each model’s explanatory parameters.  The results indicate that all 

gradation parameters (RDPI, dr, and n) have a significant effect on the predicted values of initial 
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density at a significance level of 5% (P-values ≤ 0.05). For CS values, the gradation parameters of 

RDPI and dr are significant. 

 
Table 4.10 ANOVA Results for Normalized Initial Density and Compaction Slope Models 

(without filler). 

N
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Root MSE 0.06535 R2 0.9557 Adjusted R2 0.9454 

Variable DF Parameter Estimate t Value Pr > |t| 

Intercept 1 2.14262 11.33 <0.0001 
RDDI 1 - 0.03943 -4.27 0.0009 

dr 1 - 0.31517 -4.52 0.0006 
n 1 -0.41555 -11.44 <0.0001 
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Root MSE 0.09067 R2 0.9539 Adjusted R2 0.9432 

Variable DF Parameter Estimate t Value Pr > |t| 

Intercept 1 -1.60681 -6.13 <0.0001 

RCI 1 0.05505 4.30 0.0009 

dr 1 0.61004 6.31 <0.0001 

n 1 0.05268 1.05 0.3148 
 

Additionally, the compaction parameters results were used to classify the mixtures using a 

self-organizing map (SOM) method. The various SOM methods are popular artificial neural 

network (ANN) approaches for clustering multi-dimensional data (Map and Kohonen, 1990; Van 

Hulle, 2012). The SOM method chosen for use is a powerful tool for data clustering based on 

multi-input parameters. It considers the input parameters as the topological information to 

determine which mixtures (classes) are most like others using an unsupervised, competitive 

learning algorithm.  

The classification results are shown in Table 4.11. The method indicates the CP mixtures 

are all in Class A, while all the FP and FDP mixture fall into Class D. The CDP mixtures fall into 

two classes, Classes B and C, indicating a variation in compaction behavior of these mixtures. 

They compact differently than do the CP, FP, and FDP mixtures. Compared to the other classes, 

class A mixtures have the highest compaction slope (stronger aggregate structure), however, they 
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have the lowest initial density values. Therefore, they show the worst compactability (the highest 

compaction energy index and locking point) compared to other classes. Additionally, although the 

initial density of CPD mixtures is approximately same, the high variation between the compaction 

slope of CDP (k=0.600) mixture and two other CPD mixtures (k=0.300 and k=0.150) leads to two 

different classes (B and C). The Class B mixture has a stronger aggregate skeleton than the Class 

C mixtures, while the Class C mixtures have better compactibility than the Class B mixture. Class 

D mixtures show better compactability in term of CEI, locking point and initial density than other 

classes, but they have the weakest aggregate structure due to the lowest compaction slope. By 

considering a balance between compaction slope and initial density, it seems that CDP mixtures 

offer the strongest aggregate structure and along with adequate compactability.     

 
Table 4.11  Classification Analysis using the Self Organizing Map Method. 

Mixture Type % 
Fine Class 

Compaction Parameter 
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Only Coarse 0 A 

71.55±5.22 3.65±0.12 63±6.7 593.4±17.7 
CP-25 19.2 A 
CP-15 21.7 A 
CP-8 24.6 A 
CP-0 32.2 A 

CDP (k=0.600) 35 B 79.45±0.66 3.06±0.03 46±0.5 500.4±4.5 

CDP (k=0.300) 40 C 81.80±0.18 2.58±0.11 39±2 420±17.9 
CDP (k=0.150) 45 C 

FDP-25 49.2 D 

81±2.24 2.11±0.12 33±1.8 341±18.6 

FDP-15 50.1 D 
FDP-8 51.2 D 
FDP-0 54 D 
FP-25 62.8 D 
FP-15 63.5 D 
FP-8 64.3 D 
FP-0 66.1 D 

Only Fine 100 D 
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4.4.4 Mixtures with Fillers  

Table 4.12 presents the compaction parameter results for “final” mixtures containing filler. The 

data clearly indicate that filler facilitates compaction. This is shown graphically in Figure 4.7 

where compaction parameters for mixtures with and without filler are compared. The lubricating 

effect of filler on all compaction parameters is more significant for CP mixtures than for the others. 

Also, the rate of change in initial density and CS is higher in CP and CDP mixtures as compared 

to FP and FDP mixtures. In the case of CS, there is a slight difference between the mixtures with 

and without filler for FP and FDP mixtures. With respect to the locking point, there is a range from 

CDP (k=0.300) and FDP-15 where mixtures without filler have lower locking points than those 

with filler. Also, the addition of filler notably reduces compaction energy within all the gradation 

areas. 

 
Table 4.12 Compaction Parameters for Mixtures Containing Filler. 

Mixture Type 

Initial Density Compaction Slope Locking Point CEI 
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CP-25 85.9 1.11 4.97 1.25 48 3.13 270.9 1.99 
CP-15 86.1 1.32 4.87 1.53 48 2.08 258.3 3.84 
CP-8 86.3 0.39 4.75 0.42 45 3.33 244.6 1.36 
CP-0 87.4 0.64 4.24 0.78 46 2.17 183.6 2.34 
CDP-8 (k=0.600) 88.3 1.04 3.81 1.23 41 1.22 168.4 1.92 
CDP-8 (k=0.300) 89.3 0.89 3.37 0.94 41 2.44 105.1 3.01 
CDP-8 (k=0.150) 90.2 0.34 2.93 0.35 41 1.22 59.8 1.02 
FDP-25 91.1 0.81 2.49 0.84 36 1.39 32.2 2.02 
FDP-15 91.2 0.58 2.43 0.57 32 3.13 35.7 2.81 
FDP-8 91.3 0.40 2.37 0.41 31 1.61 37.0 3.56 
FDP-0 91.5 0.69 2.29 0.72 33 1.52 37.7 3.84 
FP-25 91.7 0.25 2.27 0.23 27 5.56 31.0 2.19 
FP-15 91.9 0.62 2.26 0.61 25 2.04 30.0 1.55 
FP-8 92.0 0.24 2.27 0.21 24 4.17 30.1 1.64 
FP-0 92.2 0.34 2.24 0.35 24 2.08 21.5 1.03 
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Figure 4.7 Comparison of Compaction Parameters for Mixtures with and without Filler: (a) 

Initial Density; (b) Compaction Slope; (c) Locking Point and; (d) Compaction Energy Index. 
 

Similar to the mixtures without filler, statistical models were developed for the mixtures 

containing filler (Table 4.13). All the gradation parameters were found to be significant with 

regards to CS and initial density. The results illustrate that decreasing dr and n values results in 

increasing initial density and decreasing CS values. For CP and CDP mixtures, a decrease of RDPI 

increases initial density and decreases CS, while for FP and FDP mixtures the reverse is true. 

Additionally, the plot of predicted versus actual values of initial density and CS confirms both 

regression equations are well-fit to the data (Figure 4.8). With such a high R2, it can be concluded 

that using three gradations is enough to develop the models for prediction of change in CS and 

initial density. This can lead to far fewer samples required for evaluating the compactability of a 

wide range of gradation types. 
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Table 4.13 ANOVA Results for the Normalized Initial Density and Compaction Slope Models 
(with filler). 
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Root MSE 0.03051 R2 0.9947 Adjusted R2 0.9933 

Variable DF Parameter Estimate t Value Pr > |t| 

Intercept 1 3.75499 14.11 <0.0001 
RDPI 1 - 0.02186 -8.33 <0.0001 
dr 1 - 0.26609 -9.34 <0.0001 
n 1 -2.68853 -5.98 <0.0001 
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Root MSE 0.03381 R2 0.9941 Adjusted R2 0.9925 

Variable DF Parameter Estimate t Value Pr > |t| 

Intercept 1 -3.49674 -11.86 <0.0001 

RDPI 1 0.02974 10.22 <0.0001 

dr 1 0.27663 8.76 <0.0001 

n 1 3.53239 7.09 <0.0001 

 

 
Figure 4.8 Predicted and Laboratory Normalized Initial Density and Compaction Slope Values 

for Mixtures Containing Filler. 
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From the models developed for the initial density and CS (equations in Table 4.13), it can 

be observed that the signs of the coefficients are opposite. Thus, in order to achieve a gradation 

with high packing capability (i.e. high initial density), as well as strong aggregate structure (i.e. 

high CS) (Vavrik, 2000; Leiva and West, 2008), the intersection of the two equations must be 

determined. Equating the two and simplifying results in Equation 4.14. 

           r0.062(RDPI)+0.54(d )+6.22n-7.25=0                                           (4.14) 

As shown by the Equation 4.14, the result is a plane with three unknowns (i.e. RDPI, dr 

and n). It is clear that each mixture satisfying this equation has high initial density and an 

appropriate compaction slope. Applying Equation 4.14 to the mixture gradations reveals the 

gradation parameters meeting Equation 4.14 fall between a CDP of 0.150 and 0.300. Therefore, 

any gradation having a k value between 0.150 and 0.300 should have both a high packing capacity 

and a strong structure that can resist deformation under loading. In Figure 4.9, the difference line 

shows the values obtained from applying the gradation parameters of each mixture to Equation 

4.13. 

  
Figure 4.9 Recommended Gradation based on Initial Density and Compaction Slope. 
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4.5 Evaluation of Compactability Models 

To assess the proposed relationship between compaction parameters (initial density and 

compaction slope (CS)) and the gradation parameters, two independent sets of data, one set of 

laboratory data and one set of field data, were used. 

4.5.1 Laboratory Data 

In 2000, a comprehensive experiment to establish a relationship between the Bailey method 

parameters and the volumetric properties of asphalt mixtures was completed (Vavrik, 2000).  

These experimental data are used here because they include compaction parameters and, more 

importantly, all mixtures were fabricated from the same stockpiles with constant binder and filler 

contents.  In the experiment, the original coarse and fine stockpiles were divided into three parts, 

coarse, medium, and fine. Based on the different stockpile combinations and five coarse aggregate 

chosen unit weight (CUW) levels, 90, 95, 100, 105 and 110 percent, twenty-five mixture designs 

were completed, and specimens fabricated. All mixtures contained 5% filler by total aggregate 

mass and 5.5% asphalt binder (PG 64-22) by total mixture mass. Mixture specimens were 

compacted using 100 SGC gyrations. Tables 4.14 and 4.15 show the coarse and fine stockpile 

gradations of each mixture type (Block 1 through 5) and the corresponding compaction and 

gradation parameters of each mixture.  

 
Table 4.14 Aggregate Gradations and Properties (after Vavrik, 2000). 

Coarse Stockpile Fine Stockpile Filler 
Sieve (mm) Coarse Medium Fine Coarse Medium Fine 
12.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
9.50 94.0 97.0 100.0 100.0 100.0 100.0 100.0 
4.75 15.0 30.0 45.0 94.0 97.0 100.0 100.0 
2.38 7.0 16.0 25.0 81.0 82.5 84.0 100.0 
1.18 − 2.0 4.0 62.0 65.0 68.0 100.0 
0.60 − 1.0 1.0 30.0 45.0 60.0 100.0 
0.30 − − − 3.0 16.0 29.0 100.0 
0.15 − − − 1.9 1.9 1.9 99.0 
0.08 − − − 0.2 0.2 0.2 88.0 
Gsb 2.692 2.692 2.692 2.572 2.572 2.572 2.755 
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Table 4.15 Gradation and Compaction Parameters (after Vavrik, 2000). 

Mixture Name 
Stockpiles Gradation Parameters Compaction Parameters 

Coarse Fine RDPI dr n Initial Density CS 
B

lo
ck

 1
 

LUW1 -10 Med Med -7.7 4.15 0.86 82.8 7.4 
LUW -5 Med Med -7.7 4.4 0.88 81.7 7.6 
LUW1 Med Med -9.7 4.63 0.93 80.8 7.9 

LUW +5 Med Med -10.7 4.83 0.97 79.6 8.3 
LUW +10 Med Med -13.7 5.06 1.05 78.4 8.7 

B
lo

ck
 2

 

LUW -10 Coarse Med -2.7 4.36 0.8 84.6 6.6 
LUW -5 Coarse Med -2.7 4.63 0.82 84.2 7.0 

LUW Coarse Med -3.7 4.96 0.85 83.4 7.8 
LUW +5 Coarse Med -5.7 5.21 0.89 82.9 8.2 
LUW +10 Coarse Med -6.7 5.41 0.95 81.0 9.0 

B
lo

ck
 3

 

LUW -10 Fine Med -12.7 4.5 0.78 79.4 8.0 
LUW -5 Fine Med -14.7 4.85 0.79 79.5 8.1 

LUW Fine Med -16.7 5.29 0.81 79.2 8.7 
LUW +5 Fine Med -17.7 5.6 0.82 77.9 8.8 
LUW +10 Fine Med -19.7 5.81 0.85 76.7 8.9 

B
lo

ck
 4

 

LUW -10 Med Coarse -10.7 4.31 0.93 82.4 7.8 
LUW -5 Med Coarse -12.7 4.56 0.97 81.3 8.1 

LUW Med Coarse -13.7 4.76 1.02 80.7 8.3 
LUW +5 Med Coarse -14.7 4.95 1.07 79.6 8.5 
LUW +10 Med Coarse -15.7 5.13 1.11 77.8 8.7 

B
lo

ck
 5

 

LUW -10 Med Fine -2.7 4.07 0.78 86.1 7.4 
LUW -5 Med Fine -4.7 4.31 0.82 84.4 8.3 

LUW Med Fine -6.7 4.53 0.86 83.2 8.9 
LUW +5 Med Fine -7.7 4.79 0.91 81.9 9.5 
LUW +10 Med Fine -10.7 5.03 0.98 80.5 9.6 

         1: LUW stands for the loose unit weight of coarse aggregates 

 

As shown in Figures 4.10 and 4.11, the trends of change in estimated CS and initial density 

(normalized values) using the equations from Table 4.13 are similar to the trends of the laboratory 

data. However, the laboratory values of CS and initial compaction are somewhat different from 

those predicted by the proposed models, most likely because the laboratory mixtures were not 

designed at constant air voids content.
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Figure 4.10 Comparison of Laboratory Initial Density and Corresponding Predicted Normalized 
Values for: (a) Block 1; (b) Block 2; (c) Block 3; (d) Block 4; (e) Block 5. 
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Figure 4.11 Comparison of Laboratory Compaction Slope and Corresponding Predicted 
Normalized Values for: (a) Block 1; (b) Block 2; (c) Block 3; (d) Block 4; (e) Block 5. 

 

4.5.2 Field Data 

In early 2016, a trial project demonstrating how in-place asphalt pavement density could be 

achieved using a modified Superpave mixture design procedure was completed on a section of US 

40 in Richmond, Indiana and involved milling approximately 38 mm (1.5 in.) of existing asphalt 

surface and applying 38 mm (1.5 in.) of new asphalt mixture. Two different sections were 

constructed, one using the modified mixture design and second using a standard Superpave-

designed mixture. The modified mixture was designed by choosing OBC at 5% air voids and 
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reducing the number of design gyrations to 50 (Ndes=50). The control mixture was designed with 

OBC chosen at 4% air voids and a Ndes of 100.  

Field compaction was achieved using three vibratory, steel-wheeled rollers having an 

approximate 9 tonne mass (10 tons) (Figure 4.12). Six vibratory passes were applied followed by 

one static pass. The compaction temperature was approximately 127 ± 28°C (260 ± 25°F) 

(Montoya et al., 2018).  

 
Figure 4.12 Compaction on US 40 Field Project. 

As shown in Figure 4.13, changes in the SGC gyrations and design air voids content 

resulted in a slight gradation difference between the two mixtures. The laboratory and field 

compaction parameters for the mixtures are shown in Table 4.16. Although there are small 

differences in the mixture gradations and they have nearly identical binder contents, the gradation 

parameters and laboratory compaction parameters indicate the modified mixture has better 

compactability than does the standard mixture, a fact that is observed from the field densities of 

the two mixtures. The modified mixture yielded over 2% higher density than the standard mixture, 

both mixtures having been densified with the same compaction effort. 

 Using the equations from Table 4.13 with the gradation parameters of the standard and 

modified mixture shows both the initial laboratory density and CS due to gradations can be closely 

approximated using the proposed relationships (Figure 4.14). 
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Figure 4.13 Gradation of US 40 Mixtures. 

 
Table 4.16 Laboratory and Field Compaction Parameters. 

Mixture 

Gradation Parameters Lab Compaction Parameters 
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Standard -27.195 4.743 1.066 81.69 5.12 6.5 93.27 

Modified -25.995 4.339 1.011 85.89 4.34 6.7 95.35 
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Figure 4.14 Comparison of Laboratory Compaction and Corresponding Normalized Estimated 

Parameters for: (a) Initial Density; and (b) Compaction Slope. 

4.6 Summary  

The objective of the work presented in this chapter was to evaluate the effect of asphalt mixture 

aggregate gradation on laboratory compaction parameters using a comprehensive experiment. This 

evaluation was performed in two stages in order to observe the effect of filler on the compaction 

parameters. To fabricate various mixtures with approximately equal effective binder and design 

air voids content (4%), a different mixture design approach was used. Rather than choosing a 

gradation and varying binder content to achieve required air voids content, the amount of filler and 

the aggregate gradation were adjusted to reach the desired volumetric properties.  

Furthermore, three gradation parameters, RDPI, dr, and n and were proposed to predict initial 

mixture density and compaction slope (CS), these being considered two indicators of 

compactability. Based on, the findings, the following conclusions are drawn: 

• Filler affects asphalt mixture compactability and its effects are more significant for coarser 

gradations. This explains why more trials were required to reach desirable volumetric 

properties for coarse-graded mixtures than for fine-graded. 

• The proposed parameters of RDPI, dr, and n cannot only be used to accurately predict 

compactability parameters such as initial density and compaction slope, but they thereby 

can predict the compactability of asphalt mixtures. 

• The prediction models developed in the study accurately predict the effects of gradation 

changes on mixture compactability. 
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• Based on the defined gradation zones, CDP mixtures are the most efficient mixtures with 

respect to compactability. 

• Using the parameters proposed in this experiment, the compactability of an asphalt mixture 

can be predicted during the mixture design process, allowing the designer to develop 

mixtures that can be more easily compacted during construction. 

  



 

104 
 

CHAPTER 6. IMPACT OF THE COARSE AGGREGATE SHAPE 
PARAMETERS ON COMPACTION CHARACTERISTICS 

This chapter is under revision in Powder Technology Journal 

6.1 Introduction 

Under normal environmental conditions, the aggregate matrix within an asphalt mixture is 

responsible to carry the loads imposed by traffic. Thus, aggregate characteristics such as shape, 

size distribution, texture, and strength directly affect asphalt mixture performance and are key 

factors in asphalt mixture durability, workability, permeability, and rutting and cracking resistance.  

Compactability, defined as how easily asphalt mixtures reach the desired level of density during 

and after field compaction, is an important measure of asphalt mixture adequacy. Some researchers 

have reported that after aggregate gradation, aggregate shape characteristics, especially of the 

coarse aggregates, is the most important parameter influencing the aggregate skeleton and 

consequently the compactability and performance of asphalt mixtures (Moavenzadeh and Goetz, 

1963; Brown et al., 1997; Aho et al., 2001; Zhou et al., 2017). Some research indicates that the 

aggregate shape, the number of fractured aggregate faces, and coarse aggregate surface texture 

have significant effects on asphalt mixture laboratory compaction characteristics and field density 

(Brown et al., 1997; Leiva and West 2008; Muras, 2010). Results of these studies also revealed an 

increase in aggregate surface roughness and angularity can result in the need for increased 

compaction energy to achieve a specific mixture density.  

The Superpave asphalt mixture design method considers aggregate angularity, flatness and 

elongation, and clay content as important properties to help achieve well performing asphalt 

mixtures. These morphological tests are usually applied to the aggregate blend of the asphalt 

mixture rather than to the individual components. Therefore, many studies have concluded the 

morphological tests are not accurate enough and do not necessarily apply to the broad range of 

aggregate materials (Garboczi, 2002; Pan and Tutumluer, 2006; Masad et.al 2007). Therefore, 

various alternative methods have been proposed to better measure both coarse and fine aggregate 

shape, angularity, and texture (Garboczi, 2002; Garboczi et al., 2006; Pan and Tutumluer, 2006; 

Masad et al., 2007; Wang et al., 2007a and 2007b; Wang et al., 2012). Although some researchers 

have found relationships between aggregate morphological properties and asphalt mixture 
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performance using laboratory tests, the tests were often time-consuming and expensive (Chen et 

al. 2001; Masad et al.  2007; Tutumluer et al., 2005). 

Numerical solutions can be considered as an alternative to laboratory experiments, costing 

less and requiring less time.  Among the common numerical methods used in materials 

engineering, discrete element modeling (DEM) can be considered the most effective to analyze 

asphalt mixture mechanical behavior, due to discontinuities in the asphalt mixture microstructures 

(Abbas et al., 2005; Arasan et al., 2011; Bessa et al., 2014). Additionally, asphalt mixture 

microstructure properties are highly dependent on the degree of aggregate packing during the 

compaction process. In DEM, a solid material is represented by a collection of discrete particles 

that can model the macro-mechanical response of a material through their motions and interactions 

(Cook and Jensen, 2002). Therefore, DEM is able to consider the discontinuities of microstructure 

and the changes in particle packing density due to aggregate particles movement, simultaneously. 

However, one major challenge for numerical analysis of real aggregates is to accurately define the 

complex shapes of real aggregate particles in the DEM modeling. 

DEM modeling is based on two-dimensional discs or three-dimensional spheres due to 

their computational efficiency. In reality, the aggregate shapes are highly irregular and such 

simplified modeling could be unrealistic (McDowel et al., 2011). To overcome this limitation, 

various approaches have been conducted to add the effect of particle shape using non-circular or 

spherical particles. Among these are, ellipsoids (Ouadfel and Routhenburg, 2001; Ng, 2009), 

cylinders (Pournin et al., 2005), polyhedrons (Azema et al., 2009; Galindo and Pedroso, 2010), 

pentagons (Azema et al., 2007), glue-sphered (Taghavi, 2011; Zhou et al., 2017), and clusters of 

discs or spheres (Salot et al., 2009; Matsushima et al., 2009; Katagiri et al., 2010). While an 

improvement over discs or spheres, these were unable to accurately model the effect of particle 

shape properties on the mechanical and packing behavior of granular systems due to 

oversimplification. 

In 2007, Das proposed the overlapping discrete element cluster (ODEC) method as a more 

accurate clumping technique in two and three dimensions to model angularity in particle shapes. 

In this method, the particle shape is modeled by clumping a number of overlapping disc (2D) or 

sphere (3D) elements within the particle boundary to approximate the outline of the real sand 

particles. This technique has successfully been used to model the mechanical behavior of irregular 

sand particles observed in experiments. Mollon and Zhao (2012 and 2014) modified the Das 
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method and proposed a systematic and broader method to describe particle shape for discrete 

element modeling. They applied the discrete random fields theory based on spherical harmonics 

(SH) to generate star-like granular particles.  

6.2  Shape Parameters 

In granular material science “morphology” is defined as the overall geometrical characteristics of 

particles. Particle morphology can be expressed by two main parameters, shape and surface texture 

(Blott and Pye, 2008). Shape parameters describe the large- to intermediate-scale external features 

of a particle, while surface texture represents the surface features of a particle at small-scale. In 

this study, only shape parameters were considered. 

A search of the literature revealed four important shape parameters proposed to describe 

the shape features of a particle: form, roundness, regularity, and sphericity (Sneed and Folk, 1958; 

Barrett, 1980; Orford, 1983; Blott and Pye, 2008; Mollon and Zhao, 2012). Form parameters 

describe the dimensional characteristic of a particle using ratios of its three linear dimensions, 

length, width, and thickness. Two well-known form parameters are flatness and elongation, and 

can be calculated using Equations 1a and 1b.  

SFlatness=
I

                                                                 (5.1a) 

IElongation=
L

                                                                    (5.1b) 

where, S, I and L are the small, intermediate and large dimension of the particles, 

respectively (Figure 5.1a). 

Roundness determines how rounded or angular a particle is (sharpness of corners and 

edges) and can be determined using Equation 2 (Wadell, 1932; Mollon and Zhao, 2012). 
cn

ci
i=1

c insc

R
Roundness=

n ×R

∑
                                                              (5.2) 

where, nc is the number of overlapping spheres used to accurately fill the volume of the 

particle, Rc are the radii of the overlapping spheres, and Rinsc is the radius of the largest sphere size 

that can be inscribed in the considered particle (Figure 5.1b). 
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Regularity indicates the deviation of particle shape from that of a regular shape, either 

curved or straight-sided, and is defined as (Mollon and Zhao, 2012): 

convex

PRegularity=log( )  
P-P

                                                        (5.3) 

where, P and Pconvex are the perimeter and convex perimeter of a particle as shown in Figure 

5.1c. 

Lastly, sphericity expresses how closely a particle shape mirrors an ideal sphere and can 

be determined using the following equation (Riley, 1941): 

insc

circ

RSpherecity=
R

                                                            (5.4) 

where, Rcirc is the radius of the smallest circumscribed sphere to the considered particle 

(Figure 5.1d). 

 
Figure 5.1 Form Parameter Definitions. 

 
Flatness and elongation ratios have been used by researchers to develop particle 

classification systems (Zingg, 1935; Benn and Ballantyne, 1992; Blott and Pye, 2008). The system 

proposed by Blott and Pye (2008) is shown in Table 5.1. In this system, five categories, or classes 

describe the form of a particle based on elongation and flatness.  Figure 5.2 graphically illustrates 

25 possible classifications for spherical particles. In this figure, the “ExFy” designation represents 

the particles with elongation and flatness classes of x and y, respectively. 
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Table 5.1 Particle Classification Based on Form Parameters (after Blott and Pye, 2008). 
Elongation Flatness 

Range Class Term Range Class Term 
0.0-0.2 5 Extremely elongate 0.0-0.2 5 Extremely flat 
0.2-04 4 Very elongate 0.2-04 4 Very flat 
0.4-0.6 3 Moderately elongate 0.4-0.6 3 Moderately flat 
0.6-0.8 2 Slightly elongate 0.6-0.8 2 Slightly flat 
0.8-1.0 1 Not elongate 0.8-1.0 1 Not flat 

 
 

 
Figure 5.2 Spherical Particle Classification based on Flatness and Elongation. 

 
Similar classifications for roundness have been proposed (Russell and Taylor, 1937; 

Pettijohn, 1949; Powers, 1953; Blott and Pye, 2008), as shown in Table 5.2. Figure 5.3 illustrates 

a classification system proposed by Blott and Pye (2008) for two particle types, square and an 

eight-point star. 

Riley (1941) proposed ranges to classify particle sphericity (Table 5.3). The proposed 

system has five classes of sphericity: very high, high, moderate, low, and very low sphericity, 

depending on the sphericity value determined from Equation 5.4. Figure 5.4 illustrates the 

graphical definition of sphericity classification for round particles. 
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Table 5.2 Particle Roundness Classification. 

 
Source 

Class 

R6 R5 R4 R3 R2 R1 

V
er
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R
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ed

 

W
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l R
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ed

 

Russell and Taylor 
(1937) -- 0.0-0.15 0.15-0.30 0.30-0.50 0.50-0.70 0.70-1.0 

Pettijohn (1949) -- 0.0-0.15 0.15-0.25 0.25-0.40 0.40-0.60 0.60-1.0 
Powers (1953) 0.12-0.17 0.17-0.25 0.25-0.35 0.35-0.49 0.49-0.70 0.70-1.0 

Blott and Pye (2008) -- 0.0-0.13 0.13-0.25 0.25-0.50 0.50-1.0 -- 
 

 

 

 

 
Figure 5.3 Roundness Classes (Blott and Pye 2008). 
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Table 5.3 Sphericity Classification (Riley, 1941). 
Class Sphericity Range  

Code Description 
S1 Very High 0.894-1.000 

S2 High 0.775-0.894 

S3 Moderate 0.632-0.775 

S4 Low 0.447-0.632 

S5 Very Low 0.000-0.447 

 

 

 
Figure 5.4 Sphericity Classification for Round Particles. 

 

 
Although there is no classification for regularity, Mollon and Zhao (2012) explained that 

regularity greater than 3 or 4, meaning P-Pconvex is less than 10-3 or 10-4, can be effectively 

considered as perfect regularity.  

In this study, the flatness, elongation, roundness, sphericity, and regularity shape 

parameters are considered as particle shape descriptors and the corresponding classifications 

(Tables 5.1 through 5.3) used to classify the effect of particle shape features on mixture packing 

density and compactability. 
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6.3 Generation of 3D Particles 

6.3.1 Computational Modeling 

The algorithm utilized to generate 3D particles with controllable shape descriptors is based on 

discrete random fields theory and spherical harmonics as proposed by Mollon and Zhao (2014). 

The star-like class of shapes satisfactorily covers most mineral aggregate particles (crushed and 

rounded) used in asphalt mixture production. For this shape class, the external surface of a particle 

can be determined using the center of the particle, O, and distance, R (θ, φ), from this center (Figure 

5.5). θ and φ are the angular coordinates used to determine the position of a point on the surface 

of the particle. For the simplest case, a perfect sphere can be produced if all R values are equal to 

a constant number.  

 
Figure 5.5 Spherical Coordinate System. 

 

By changing the R values, it is possible to produce a particle with predefined shape 

parameters. Additionally, as observed by Mollon and Zhao (2014), 2,562 points on the surface of 

a particle are enough to define a particle shape. The random values of R for all 2,562 points on the 

surface of a particle can be determined using Equation 5.5: 
2562

i i i
i=1

[R]=[μ]+ ξ . λ .[ψ ]∑                                                    (5.5) 
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where, μ is the average of R values, and λi and ψj are the ith eigenvalue and eigenvector of 

covariance matrix (C), respectively and ξi is a Gaussian random variable with zero-mean and unit 

variance.  The covariance matrix (C) can be determined using a discrete normalized Fourier 

spectrum of 64 independent amplitude modes (Dk with 0 ≤ k ≤ 127) (Equation 5.6). The normalized 

Fourier spectrum (D0=1) is considered as symmetric, therefore, the normalized Fourier spectrum 

is a function of 63 independent modes (Dk=D128-k for 2 ≤ k ≤ 64).  
k127 2iπn2 128

n k
k=1

C(α )= D .e 0 n 127≤ ≤∑                                               (5.6) 

where, αn is the angle between a pair of points at the nth mode and can be determined using 

Equation 5.7: 

n
2α = 0 n 127
128

nπ
≤ ≤                                                    (5.7) 

For sand materials, Das (2007) showed the relationship between the Fourier spectrum 

modes and the number of mode descriptors is log-log linear and therefore, the surface roughness 

of sand aggregates can be estimated by the slope and intercept of this linear relationship. For 

simplicity, Mollon and Zhao (2014) suggested that using only the values of D2, D3, and D8 can 

result in particles with different shape parameters. All eight mode descriptors can be determined 

using Equation 5.8: 
kalog ( )+log (D )2 2 33

kblog ( )+log (D )2 2 88
k

2 for3<k<8
D =

2 for k>8

 
 
 
 
 

                                       (5.8) 

where, a and b are the slopes of the log-log linear relationships between the Fourier 

spectrum modes and the number of mode descriptors between modes 3-8 and 8-63, respectively. 

Das (2007) proposed that a and b both equal to -2 result in the best estimation for sand aggregates. 

Figure 5.6 shows that different combinations of the three main spectrum mode descriptors 

(D2, D3 and D8) can result in particles with different flatness, elongation, roundness, sphericity and 

regularity. These can be used to select particles with desirable shape parameters. Furthermore, the 

sensitivity analysis of mode descriptor D2 reveals that it has a significant influence on particle 

flatness and elongation if the D3 and D8 modes are zero (see Figure 5.7 a).  Increases in the D2 

parameter result in decreasing flatness and elongation form parameters and increases in dispersions 
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between them. Although an increase in D2 can decrease the sphericity and regularity of the 

generated particles, it has a negligible effect on particle roundness.  

An increase in D3 creates a decreasing trend in all five shape descriptors, especially 

roundness, sphericity, and regularity if the D2 and D8 modes are set to be zero. Changes in D8 have 

a notable effect on surface roughness (regularity), but a negligible and limited effect on the flatness 

and elongation form parameters and sphericity, respectively. An increase in D8 also leads to a 

significant decrease in particle roundness. 
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Figure 5.6 Effect of Change in D2, D3, and D8 on: (a) Flatness, (b) Elongation, (c) Roundness, (d) 

Sphericity, and (e) Regularity of a Particle. 
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Figure 5.7 Illustrative Example of Change in Three Selected Spectrum Mode Descriptors (D2, D3 
and D8) on Shape Parameters (Flatness (F); Elongation (E); Roundness (R); Sphericity (S); and 

Regularity (R)). 
 

6.3.2 Sample Preparation 

After computer generation of particles, it is necessary to pack them in a given container for discrete 

modeling.  In this study, the container was partitioned using a Constrained Voronoi Tessellation 

(CVT) method. Generally, VT is a powerful geometric approach to partition a space with a 

dimension n into cells or convex polyhedrons (Aurenhammer, 1991). The CVT is a special version 

of the VT method with the capability to control all cells properties, such as cell size or volume 

distribution. As asphalt mixtures are multi-sized particle mixtures, the CVT approach is an 

effective approach for packing particles with a predetermined size or volume distribution.  

As a first step, the bonded VT for a random set of points in a given domain is calculated. 

Then, based on a criterion parameter, for example, the volume distribution of cells, the 

corresponding statistical property of the parameter is calculated and compared to the target 

parameter to determine the error level. Depending on the error level, one of the seeding points 
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randomly moves to another random position and a new bonded VT of the new cells and their 

statistical properties are computed, and the level of error is determined. If the current error is less 

than the one previously found, the modification is accepted and compared to the target error. This 

approach continues until the desirable error level is reached. 

After determination of polyhedral convex cells with the desired size distribution, the 3D 

particle can be generated in each cell to fill it using the approach explained in Section 5.3.1. During 

the cell filling stage, it is necessary to make sure the same volume fraction between the generated 

and convex cells is obtained and no part of the generated particle is outside the cell after the filling. 

Figure 5.8 shows an example of the developed polyhedral convex cell and the 2000 generated 

particles with flatness, elongation, roundness, sphericity, and regularity of 0.86, 0.81, 0.36, 0.78, 

and 1.30, respectively, in the unit cubic container. The normal volume distribution with covariance 

of 0.8 and error level of 10% was assumed as the volume distribution of the generated particles.  

 
Figure 5.8 (a) Convex Polyhedral Cells; (b) Corresponding 2000 Generated 3D Particles; (c) 

Normal Distribution (Covariance = 0.80) at 10% Error. 
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6.4 Discrete Element Method Simulation 

Based on the approaches previously explained, 100 mixtures with 2000 particles each were 

selected for the study. Figure 5.9 shows the selected gradation (size distribution) for all virtual 

mixtures. To increase the efficiency of simulations, the particles above the primary control sieve 

(PCS) were selected and the effect of the rest of sizes was considered in the constitutive mechanical 

interaction between the coarse particles, those larger than the PCS. Based on the Bailey method, 

the PCS is used as a break between the coarse and fine part of an aggregate gradation and is a 

function of the nominal maximum aggregate size (NMAS) of the mixture (PCS = 0.22×NMAS) 

(Vavrik et al., 2002). Previous studies have revealed the overall shape of a gradation can be 

characterized using a power function, Equation 5.9 (Goltermann et al., 1997; Pouranian and 

Haddock, 2018, 2019): 
n

r

d-( )
dP(d)=100×e                                                           (5.9) 

where, d is the aggregate size of each sieve used in the gradation (mm), P(d) is the 

cumulative percentage retained on each sieve size, and dr is the size considered to be representative 

of the gradation (mm). The gradation selected for this study is a 12.5 mm NMAS and therefore the 

PCS is 2.36 mm. The larger particles were simulated according to the RRD distribution with dr 

and n equal to 8.58 and 0.746, respectively. 

As previously discussed, DEM is based on spherical particles. To insert irregular-shaped 

particles into DEM the overlapping discrete element cluster (ODEC) algorithm proposed by 

Ashmawy et al. (2003) and Das (2007) is used. In this algorithm, a number of overlapping spherical 

discrete elements is used to create illustrative assemblies of irregular-shaped particles for DEM 

simulations. Figure 5.10 shows an irregular particle assembled using this technique. 

An open source 3D DEM code was used to perform discrete element analysis. The code is 

a numerical package developed in the c++ Object and Python programming languages (Kozicki 

and Donzé, 2009). Based on the different values of particle shape descriptors, 100 simulations 

were performed to cover all the shape parameter combinations. The numerical simulations were 

conducted using the soft-particle approach, where all particles are allowed to deform and overlap 

numerically.   
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Figure 5.9 Selected Gradation (Size Distribution) Simulated. 

 

 
Figure 5.10 Applying the Overlapping Discrete Element Cluster Algorithm to Import a 3D 

Irregular Particle into the Discrete Element Model Package. 
 

The dynamic behavior of particles was considered using a force-displacement Lagrangian 

approach to determine the position, velocity, and the acceleration of each particle. The normal and 

shear forces between particles were computed using Burger’s viscoelastic model. The Burgers’ 

model is a popular viscoelastic model that has been used to study the rheological behavior of 

asphalt mixtures (Abbas et al., 2005; Chen et al., 2014). The model is comprised of Maxwell and 

Kelvin materials in series, making it possible to consider creep and relaxation behaviors, as well 
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as the dynamic properties of the asphalt mixture. Figure 5.11(a) illustrates the Burger’s constitutive 

model and corresponding parameters (Em, ηm, Ek, and ηk). Previous studies have shown the 

Burger’s model parameters can be determined using the dynamic modulus test results, i.e. E* 

master curve (Chen et al., 2014; Ma et al., 2018; Pouranian et al., 2019). In this study, the asphalt 

mastic, a mixture of the fine portion of the selected gradation and asphalt binder, was used to 

define the viscoelastic mechanical contact model between coarse aggregates. 

 For asphalt mixtures, the typical compaction temperature is 120-135°C. Therefore, the 

E* master curve should be shifted to the compaction temperature using the time-temperature 

superposition principle. In this study, four mastic mixtures of the aggregate (crushed sand) with 

6% asphalt binder (PG 70-22) by total mixture mass were fabricated and their dynamic moduli 

values determined at three temperatures (Figure 5.12). These were then used to establish a master 

curve for the mastic. The Burger’s parameters at 130°C can be determined from the master curve 

using curve fitting techniques from Equation 5.10. 

*

2 2k k
2 2 2 2 2 2

m k k m k k

1|E |=
E ωη1 1( + ) +( + )

E E +ω η ωη E +ω E

                                       (5.10)  

where, E* is the complex modulus and ω is the radial frequency. Based on the Burger’s 

parameters, the mechanical contact model for the normal (Emn, ηmn, Ekn, and ηkn) and shear (Ems, 

ηms, Eks and ηks) directions can be determined using Equations 5.11 and 5.12, respectively. 

m Agg
mn ave mn m ave kn k ave kn k ave

m Agg

4E E
E = R ; η =4η R ; E =4E R ;η =4η R

E +E
                     (5.11) 

m Agg m ave k ave k ave
ms ave mn kn kn

m Agg m m m m

4E E 2η R 2E R 2η RE = R ; η = ; E = ;η =
E (1+ν)+E (1+ν ) (1+ν ) (1+ν ) (1+ν )

           (5.12) 

where, Rave is the average of two particle radii in contact, EAgg is the elastic modulus of 

coarse aggregates, and υ and υm are the poison ratio of coarse aggregate and asphalt mastic mixture, 

respectively. The parameters of the contact model are shown in Table 5.4. 

Table 5.4 Contact Model’s Parameters. 
Parameters EAgg (GPa) υ υm Em (MPa) ηm (MPa.s) Ek (MPa) ηk (MPa.s) 

Value 55 0.3 0.50 22.973 1389.33 21.84 9.69 
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Figure 5.11 (a) Burger’s Contact Model; (b) Normal and (c) Shear Aggregate Contact Models. 

 

 
Figure 5.12 Asphalt Mastic MixtureE* Master Curve. 
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To simulate the SGC compaction mechanism for each mixture, first an initial package 

(cloud) of particles, based on the approach explained in section 5.3.2, is prepared in a container 

(Figure 5.13a). Cloud packing refers to a condition in which there is no contact between particles. 

Gravity force is then applied, and the particles are allowed to settle in a cylindrical mold beneath 

the container (Figures 5.13b and c). Once the particles are in the compaction mold a 600 kPa 

vertical pressure is applied using a virtual loading plate. The mold is then tilted to a 1.16-degree 

angle and rotated the desired number of gyrations (Figures 5.13d and e).  Seventy-five gyrations 

was selected for this work because it takes less computational time than would 100 or 125 

gyrations. Seventy-five is the recommended design gyration number (Ndes) for asphalt mixtures 

placed for traffic of 0.3 to 3 million equivalent single axle load (ESAL) (AASHTO, 2015).  

 

 
(a)               (b)                (c)                              (d)                                              (e) 

Figure 5.13 Compaction Simulation Process: (a) Cloud Condition; (b) Applying Gravity Force; 
(c) Settlement in the Mold; (d) Applying Vertical Load; and (e) Final Compaction Condition. 

 

Two important SGC compaction parameters (initial density and compaction slope) can be 

obtained from the virtual compaction curve. As in actual practice, the virtual compaction curve 

shows the change in density as a function of the number of gyrations applied. Based on the 

Superpave mixture design method, for a Ndes of 75, the initial gyration number (Nini) is 6. 

Therefore, 6 gyrations were selected as the point to measure initial density. The compaction slope 
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is defined as the slope of density change divided by the log of gyrations from Nini to Ndes.  An 

example of compaction curve for two mixtures is shown in Figure 5.14. 

 
Figure 5.14 Example Compaction Curve. 

 

6.5  Results and Discussion 

5.1 Compaction Parameters 

In order to determine the relationship between the shape descriptors as explanatory variables and 

the compaction parameters, a statistical regression analysis was conducted. In statistical analyses, 

before establishing a statistical relationship, it is necessary to determine if the regression 

assumptions are violated. This is done by first evaluating the normality assumption and correlation 

between the explanatory variables. When done for the compaction data in this experiment, a high 

correlation between flatness and elongation and sphericity is revealed (see Figure 5.15). This 

means the variables of flatness and elongation and sphericity cannot simultaneously be used in a 

regression analysis, 

 In the Box-Cox transformation, there is an exponent parameter (λ) that can vary from -5 

to 5; all λ values should be tested to find the optimum value, the λ value which results in the best 
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approximation of a normal distribution. The Box-Cox transformation of Y, the response variable, 

can be expressed by Equation (5.13) (Neter et al., 1996): 
λY -1, if λ> 0;Y(λ)= λ

logY, if λ=0;






                                                             (5.13) 

The Box-Cox results indicated that λ=3 and λ=2.75 are the best values for the two 

regression analyses, initial density as a function of (1) flatness and elongation, and (2) roundness, 

sphericity and regularity, respectively. Using initial density raised to the 3rd power and initial 

density raised to the 2.75 power as response variables allows the use of linear regression analysis 

for both models. Results of ANOVA analyses are shown in Table 5.5. The results for both models 

indicate the Student’s t-tests for each model’s explanatory parameters and overall model are 

significant at a significance level of α = 5% (P-values ≤ 0.05). Figure 5.16 graphically shows how 

well the proposed regression models predict the initial density change due to changes in particle 

shape parameters. 

 

 
Figure 5.15 Correlation between Flatness and Elongation and Sphericity. 
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Table 5.5 Regression Equations and Corresponding Statistical Parameters for Initial Density. 
3Initial Density (%)= (54436+60765×Flatness+78588×(Elongation)  

Root MSE 3,955.78 R2 0.89 Adjusted R2 0.87 

Variable DF Parameter 
Estimate t Value Pr > |t| 

Intercept 1 18,145 16.51 <0.0001 
Flatness 1 20,255 16.13 <0.0001 

Elongation 1 26,196 19.72 <0.0001 
2.75Initial Density (%)= 19044+54725×(Roundness)+13599×(Sphericity)-2643×(Regularity)  

Root MSE 0.942 R2 0.94 Adjusted R2 0.934 

Variable DF Parameter 
Estimate t Value Pr > |t| 

Intercept 1 6,925.7 21.18 <.0001 
Roundness 1 19,900 39.90 <.0001 
Sphericity 1 4,945.26 15.85 <.0001 
Regularity 1 -961.72 -7.43 <.0001 

 

Figures 5.17 and 5.18 are contour maps that illustrate the changes in initial density due to 

changes in flatness and elongation, and roundness and sphericity. The classification names on these 

figures are based on those proposed by Blott and Pye (2008) for flatness and elongation, Powers 

(1953) for roundness, and Riley (1941) for sphericity. In the case of flatness and elongation, 

flatness and elongation values greater than 0.6 (E1F1, E1F2, E2F2 and E2F1) result in high initial 

density, while flatness and elongation values less than 0.4 show the lowest value of initial density 

(see Figure 5.17). Additionally, increasing a mixture’s average flatness and elongation from 0.2 

(class E5F5) to 0.9 (class E1F1) results in a 27% initial mixture density increase. This implies that 

compared to cubic or spherical shaped particles, the particles with relatively equal dimensions in 

all directions, flat or elongated particles tend to reduce the packing density of a mixture. This is 

likely due to flat and elongated particles resisting reorientation into a denser packing condition 

because they lock with adjacent aggregate particles. This mechanism also creates bridged particles 

and results in inter-particle voids. 
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Figure 5.16  Predicted vs. Actual Initial Density Values: (a) Flatness, Elongation as Explanatory 
Variables, and (b) Roundness, Sphericity, and Regularity as Explanatory Variables. 

(a) 

(b) 
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For mixture with sphericity values less than 0.4 (class S5), changes in roundness have an 

insignificant effect on the initial mixture density (see Figure 5.18). However, high sphericity, 

values greater than 0.70 (class S1, S2, and S3), show high initial densities. Therefore, changes in 

sphericity have a significant effect on mixture packing density. In general, high sphericity and 

roundness (less angularity) particles tend to compact easily, as is experienced in asphalt mixture 

field compaction. Changes in roundness and sphericity from 0.1 (class R6S5) to 0.9 (class R1S1) 

can result in an approximate 30% improvement in initial mixture density. A previous study 

revealed that most crushed and natural sands have a roundness and sphericity of about R=0.2 to 

0.3 and S=0.7–0.8 and R=0.3–0.9 and S=0.5–0.9, respectively (Cho, 2004). For these ranges, 

Figure 5.18 suggests the maximum percent change in initial mixture density would be 5 and 18% 

for crushed and natural sands, respectively.  

 
 Figure 5.17 Changes in Initial Density due to Changes in Flatness and Elongation. 
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Figure 5.18 Changes in Initial Density due to Changes in Roundness and Sphericity. 
 

When compaction slope is the dependent variable, analysis reveals that roundness and 

regularity are the only particle shape descriptors that are statistically significant, as shown in Table 

7. The results indicate that particles with high roundness and regularity indices tend to have a lower 

compaction slope. In combination with the roundness effect on initial density, it can be concluded 

that although increasing roundness results in higher initial density, the rate of change in density 

becomes smaller with increasingly larger roundness values. As mentioned previously, a higher 

compaction slope means higher shear modulus or lower shear strains in asphalt mixtures. 

Therefore, lower roundness values (higher angularity) can result in improved asphalt mixture 

permanent characteristics while increasing the necessary compaction effort to reach a desirable 

density due to lower initial mixture density. 
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Table 5.6 Regression Equation and Corresponding ANOVA for Compaction Slope. 
Compaction Slope= 2.699-1.575×Roundness-0.059×Regularity  

Root MSE 3955.78 R2 0.74 Adjusted 
R2 0.724 

Variable DF Parameter 
Estimate t Value Pr > |t| 

Intercept 1 2.699 31.56 <0.0001 
Roundness 1 -1.575 -7.85 <0.0001 
Regularity 1 -0.059 4.78 <0.02 

 

In most of asphalt mixture design methods, the maximum percentage of flat and elongated 

particles in an asphalt mixture is typically a design parameter and specified. In the asphalt industry, 

one of the most popular definitions for defining flat and elongated aggregate particles for use in 

asphalt mixtures is the flat and elongated (F&E) parameter. F&E is defined as the ratio of the 

smallest to largest dimensions of a particle. The minimum value of F&E varies from specification 

to specification, but it is typically 3:1, 4:1 or 5:1. For example, the Superpave mixture design 

method suggests the dimensional ratio 5:1 as the criterion to define the flat and elongated coarse 

particles and that coarse aggregates should not contain more than 10% F&E by total mixture 

aggregate mass. Additionally, using more than 10% 5:1 F&E particles can result in a significant 

asphalt mixture performance decrease due to aggregate breakage (Aho, 2001). 

To further investigate the effect of F&E particles in an asphalt mixture, a set of simulations 

with four F&E ratios (2:1, 3:1, 4:1 and 5:1) and ten different F&E percentages (0, 5, 10, 15, 20, 

30, 40, 50 ,80 and 100) compared to particles with flatness and elongation equal to 0.88. The results 

in Figure 5.19 show that increasing the percentage of F&E particles in a mixture (more than 15%) 

results in larger changes to the initial mixture density as the dimensional ratio increases. Although 

the DEM method cannot account for particle fracture, the results suggest that increasing the 

percentage of F&E particles above approximately 15% may result in a significant decrease in 

initial density due to less optimum particle orientation. This finding consistent with practice. 
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Figure 5.19 Effect of Flat and Elongated Particle Percentage on Initial Mixture Density. 

 

5.2 Microscopic Packing Properties  

The average coordination number (CN) of a particle packing system is a micro-structural 

parameter widely used to describe the bulk strength and structure of granular materials (Delaney 

and Cleary, 2010; Wu et al., 2017). CN is defined as the number of particles in contact with a 

considered particle. Figure 5.20 demonstrates the changes in the average of CN due to changes in 

flatness and elongation. The figure shows that flatness and elongation values greater than 

approximately 0.75 (E1F1, E1F2 and E2F1) produce lower CN values (3.6±0.37), while flatness 

and elongation values less than 0.75 result in an approximately constant CN value (4.04 

±0.05).  Comparison between Figures 5.17 and 5.20 indicates that a high packing density does not 

necessarily mean high CN in a packing system. Previous attempts to define a relationship between 

CN and the packing density of mixtures containing ellipsoidal (Delaney and Cleary, 2010; Zhou 

et al., 2011) and cubical particles (Wu et al., 2017) with different aspect ratios (a ratio between the 

largest and smallest particle dimensions) have indicated the same conclusion, a high packing 

density does not necessarily have a high CN. 
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Figure 5.20 Changes in Average Coordination Number due to Changes in Flatness and 

Elongation. 
 

The analyses to determine the relationship between sphericity and the average CN of 

packing mixtures show the same conclusion (Figure 5.21). Sphericities greater than 0.7 results in 

a significant reduction in CN values, while for sphericities less than 0.7, an approximately constant 

CN is observed. As mentioned earlier, there is a high correlation between flatness and elongation 

and sphericity, and so the trend of CN with sphericity is expected. Figure 5.22 shows the frequency 

distribution of average CN values for three mixtures with different flatness (F), elongation (E) and 

sphericity (S). It can be seen that distribution for all three can be described by Gaussian 

distributions; as flatness, elongation, or sphericity decrease, the distribution moves to the right, 

corresponding to the increase of average CN. However, the peaks of distribution curves do not 

show any specific trend. 
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Figure 5.21 Changes in Average Coordination Number due to Changes in sphericity. 

 

 

 
Figure 5.22 Coordination Number Distributions for Three Mixtures with Different Shape 

Parameters. 
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It has been reported that distribution of internal contact forces is an influential factor 

affecting stress localization and fracture behavior of bonded granular mixtures, such as asphalt 

mixtures (Guises et al., 2009; Dondi et al., 2012a and b). in this study, the total force (summation 

of normal and shear forces) of particles was used to determine the distribution of contact 

forces.  Since normalization allows a comparison between different simulation results having 

different numbers of total contact forces, the total force of each particle was normalized using the 

following equations: 

ti
norm-i

t

FF =
F                                                                                  (5.14a) 

ti ni siF = F +F
 

                                                                                (5.14b) 

 

where Fni, Fsi and Fti are normal, shear, and magnitude of the total forces of particle i, 

respectively.  Fnorm-i is the normalized total force of particle i and 𝐹𝐹𝑡𝑡 is the average contact force of 

the packing system. Marketos and Bolton (2007) and Dondi et al. (2012a) also proved that the 

probability distribution function (PDF) of the normalized force (Fnorm) for a packed granular 

system can be explained by the following exponential equation: 

 
P2

norm norm 1 3 norm 4PDF(F )=(F +P ) ×exp(P ×F +P )                                                         (5.15) 

 

where, P1, P2, P3, and P4 are the fitting curve parameters. 

Figure 5.23 shows the distribution of the normalized contact forces and the corresponding 

PDF curves for four packing systems constructed from particles with different flatness, elongation 

and sphericity values. The figure shows an exponential decrease of forces larger than the average 

force (Fnorm=1) for all packing systems regardless of the variation in flatness, elongation, and 

sphericity. Additionally, for the very high contact forces (Fnorm > 3) the exponential tail of the PDF 

curves appears to be same for all packing systems. The distribution of the very high contact forces 

is independent of the particle shape. However, for high contact forces (1<Fnorm < 3), no particular 

trend is detected. For low contact forces (Fnorm<1), it appears the distribution of contact force 

depends on the flatness, elongation and sphericity of particles. As the flatness, elongation, and 

sphericity decrease, the variation in the frequency of low contact forces increases. 
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Given the CN results, it appears that although decreasing flatness, elongation or sphericity 

can result in increasing contact between particles (higher CN), this higher CN mainly affects the 

total number of low contact forces and does not have a notable effect on high or very high contact 

force distribution.  The values of fitting parameters (P1, P2, P3, and P4) for the four packing systems 

with different shape parameters as shown in Table 5.7.  From this table, it can be seen there is no 

specific correlation between the fitting parameters of PDF curves and shape parameters. 

 

 
Figure 5.23 Probability Density Function of Normalized Contact Force for Mixtures with 

Different Shape Parameters. 
 

Table 5.7 Fitting Parameters of PDF Distribution for some Mixtures. 
Shape Parameters P1 P2 P3 P4 R2 

F=0.98, E=0.9, S=0.99 0.6783 5.486 -3.982 -0.6187 0.98 
F=0.58, E=0.84, S=0.76 0.5291 5.698 -3.659 -0.6414 0.95 
F=0.34, E=0.81, S=0.62 0.2733 2.405 -2.032 -0.5965 0.98 
F=0.19, E=0.65, S=0.49 0.6315 1.816 -1.611 -1.5470 0.99 
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6.6  Summary  

In this chapter, the effect of coarse aggregate shape properties on the compactability of 

asphalt mixtures was investigated using five shape descriptors, i.e., flatness, elongation, sphericity, 

roundness and regularity. To create mixtures with controllable shape descriptors, a method based 

on discrete random fields theory and spherical harmonics was implemented and a DEM framework 

was used to simulate the SGC compaction of the virtual asphalt mixtures. The fine aggregates and 

asphalt binder were assumed to be an asphalt mastic and its effect on compaction of coarse 

aggregates was considered using Burger’s viscoelastic model. This study shows that particle shape 

can significantly affect the laboratory compactability parameters of asphalt mixtures. While some 

shape parameters such as elongation and flatness mainly affect the initial density, other parameters 

such as roundness and regularity primarily influence the compaction slope of asphalt mixtures. 

Additionally, the results proved that the shape parameters (flatness, elongation and sphericity) of 

particle mainly impact the average coordination number and frequency distribution of low contact 

forces in a packing system.  

The findings presented in this chapter also suggest that having less rounded, flat and 

elongated particles reduce the energy requires to compact asphalt mixtures and consequently result 

in better compactability. Finally, the findings of this study put a workable mathematical theory to 

the compactability of asphalt mixtures based on aggregate properties. With such a theory in place 

it should be possible to predict asphalt mixture compactability numerically, rather than performing 

numerous asphalt mixture design trials, thus saving time and money. 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

Aggregate size distribution, or gradation, and aggregate shape characteristics are two important 

parameters in asphalt mixture design, compactability and performance due to their significant 

impact on the development of aggregate structure in asphalt mixtures. In this research, the 

objective was to use particle packing theories and discrete element methods (DEM) to better define 

the impact of aggregate morphological properties and particle size distribution on asphalt mixture 

aggregate structure and thereby asphalt mixture volumetric and compaction properties. The work 

had three main tasks. 

The first task proposed an analytical approach for estimating changes in voids in the 

mineral aggregate (VMA) due to gradation variation and determining the relevant aggregate 

skeleton characteristics of asphalt mixtures using the linear-mixture packing model, an analytical 

packing model that considers the mechanisms of particle packing, filling and occupation. 

Application of the linear-mixture packing model to estimate the VMA of asphalt mixtures shows 

there is a high correlation between laboratory measured and model estimated values. Additionally, 

the model defines a new variable, the central particle size of asphalt mixtures that characterizes an 

asphalt mixture’s aggregate skeleton. Finally, the proposed analytical model shows a significant 

potential to be used in the early stages of asphalt mixture design to determine the effect of 

aggregate gradation changes on VMA and to predict mixture rutting performance. 

As the second task, a framework to define and understand the aggregate structure of asphalt 

mixtures was proposed. To develop this framework, an analytical model for binary mixtures was 

suggested. The model considers the effect of size ratio and air volume between the particles on the 

aggregate structure and packing density of binary mixtures. Based on this model, four aggregate 

structures, namely coarse pack (CP), coarse-dense pack (CDP), fine-dense pack (FDP) and fine 

pack (FP), were defined. The model was validated using a series of 3D discrete element simulations. 

Furthermore, the simulation of multi-sized aggregate blends using two representative sizes 

for fine and coarse stockpiles was completed and the proposed analytical model applied to actual 

aggregate blends. In order to assess how well the model applies to asphalt mixtures, compaction 

parameters including compaction slope (CS), initial density (Nini), locking point and compaction 

energy index (CEI) were analyzed. The numerical simulations verify the proposed analytical model 

can satisfactorily determine the particle structure of binary and multi-sized asphalt mixture 
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gradations and can, therefore, be used to better design asphalt mixtures for improved field 

performance.  

 Additionally, the effect of aggregate gradation on asphalt mixture compactability was 

investigated using different combinations of coarse and fine aggregates and, four gradation zones 

of CP, CDP, FDP and FP. Two main compaction parameters, the compaction slope and initial 

density, and three gradation parameters, chosen to describe the representative size and uniformity 

of the gradation were compared. Statistical analyses indicate a significant correlation between the 

two compaction parameters as response variables and three gradation parameters as explanatory 

variables. These relationships were used to determine the optimum aggregate gradation with respect 

to asphalt mixture compactability and rutting performance. The models developed using the 

gradation parameters were used with two independent data sets, on from a laboratory experiment 

and one from a field project, to show the parameters can predict the compactability behavior of 

asphalt mixtures. 

After gradation, the physical properties of aggregates are the most influential parameters for 

the development of the aggregate skeleton, compactability, and performance of asphalt mixtures. 

As a third task, the effect of coarse aggregate shape characteristics on the compactability of asphalt 

mixtures was virtually investigated using a discreet element method (DEM). The 3D particles were 

constructed using a method based on discrete random fields’ theory and spherical harmonic and 

their size distribution in the container was controlled by applying a constrained Voronoi tessellation 

(CVT) method. The effect of fine aggregates and asphalt binder was considered by constitutive 

Burger’s interaction model between coarse particles.  Five aggregate shape descriptors including 

flatness, elongation, roundness, sphericity and regularity and, two Superpave gyratory compactor 

(SGC) parameters (initial density at Nini and compaction slope) were selected for investigation and 

statistical analyses. Results reveal there is a statistically significant correlation between flatness, 

elongation, roundness, and sphericity as shape descriptors and initial compaction density. The 

analyses discovered that among all particle shape descriptors, only roundness and regularity had a 

statistically significant relation with compaction slope, and as the amount of roundness and 

regularity increase (low angularity), the compaction slope decreases. Additionally, the effect of flat 

and elongated (F&E) particles percentage in a mixture was investigated and the results indicated 

that increase of F&E particles in a mixture (more than 15%) results in a significant reduction in the 

initial density of the mixture especially for lower dimensional ratio.  
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In summary, the findings of this study use the workable analytical models to determine the 

impact of aggregate gradation and morphological properties on volumetric properties and the 

compactability of asphalt mixtures. With such models in place, it should be possible to predict 

asphalt mixture volumetric properties and compactability in the early stages of asphalt mixture 

design, rather than performing numerous asphalt mixture design trials, thus saving time and money. 

The following recommendations are offered as future works: 

• the proposed linear-mixture packing model could predict the effect of change in gradation 

on the aggregate structure of asphalt mixture by assuming constant asphalt binder. 

Therefore, improvement and modification of the proposed model to consider the effect of 

asphalt binder content and type is highly recommended as a future work. 

• The proposed framework to understanding the role of aggregate structure on compactability 

of asphalt mixtures can be used to determine the impact of different aggregate structures on 

other performance criteria such as cracking and rutting of asphalt mixtures. 

• The effect of coarse aggregate shape characteristics on the compactability of asphalt 

mixtures was virtually investigated. Therefore, an experimental work to verify the 

numerical results is to be necessary. 
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