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taneous motility benefit, max.{∆Ū}, with βC scaled by (|∇C|ref lref/uref ).
The motility benefit increases with the chemotactic sensitivity (inverse of
βC), but not indefinitely; a saturation occurs for βC < 0.4µMcm−1s. . . . . 32

2.6 (Color online) (a) Time evolution of the dimensionless motility benefit
for different swimming speeds. (b) Time evolution of the chemotactic
amplification for different swimming speeds; the units of Vs are µm/s. (c)
The maximum motility benefit scales linearly with the swimming speed
(Vs,0 = 100 µm/s). The other parameters are: d = 1.32 mm; φ ≈ 11%;
αC = 1x10−8 cm3s−1cell−1; βC = 40.0 µMcm−1s; Dm = Db = 5x10−4

cm2/s; C0 = 25 µM; B0 = 1.5x105 cells/cm3; Eo = 0.40; Ga = 2x104. . . . 33

2.7 (Color online) (a) Time evolution of the chemotactic amplification fac-
tor, for different drop diameters, but same volume fraction in all cases:
φ ≈ 11%. The units of Vs are µm/s, and of βC are µMcm−1s. (b) Time
evolution of the chemotactic amplification factor, for different volume frac-
tions, but same drop diameters in all cases. Eo = 0.40; Ga = 2x104.
d ≈ 1 mm. The other parameters are: αC = 1x10−8 cm3s−1cell−1;
Dm = Db = 5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105 cells/cm3. We
would like to emphasize that the motility benefit, ∆Ū , follows an identi-
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3.15 Mean trapping times (T̄h) as a function of diffusivity D and radius of drop
A, for (a) a clean drop (λ = 12), (b) surfactant-laden drop with λ same
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4.1 (Color online) A schematic of the problem being solved, showing a spher-
ical nutrient source of radius R, a spherical swimming microorganism of
radius b oriented along the unit vector p, and the spherically symmetric
chemoattractant distribution around it C(r). The origin of a ‘fixed’ co-
ordinate system XY Z lies at the center of the source. The coordinate
system defined by the unit vectors r̂, r̂⊥ and r̂⊥ × r̂ can rotate and trans-
late with respect to the fixed coordinate system, as the microorganism
moves through the fluid. In a quiescent, unbounded, fluid (h → ∞), the
microorganism will swim along the direction p. The hydrodynamic inter-
action induced translational velocity, uHI , and rotational velocity, ΩHI , of
the microorganism is expressed as functions of the microorganism separa-
tion from the surface h, and its in-plane orientation θ (see equations 4.4
and 4.5). Note that h is the dimensionless separation of the microorganism
from the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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4.2 (a) The concept of the critical trapping radius [127]: the swimmer trajec-
tory around the smaller sphere escapes, while that around the larger sphere
(whose radius is greater than a critical trapping radius) gets trapped. The
swimmers’ initial orientation, p(0) = eY . (b) Alternatively, for a fixed
radius, only the swimmer with αD larger than a ‘critical dipole strength’
will get trapped around the sphere. (c) The concept of the basin of attrac-
tion [127]: the swimmer whose initial location is marked by a circle (resp.
square) and whose trajectory is shown by a solid line (resp. by a dashed
line), starts inside (resp. outside) the basin of hydrodynamic attraction,
and thus it gets trapped onto (resp. escapes) the surface. The swimmers’
initial orientation, p(0) = eX . It is important to note that the basin of
attraction is defined only in cases when hydrodynamic trapping is ensured. 101

4.3 (Color online) An illustration of the effect of hydrodynamics on the motion
of the microorganism as it gets trapped onto the surface of the nutrient
source. The thin blue arrows are the microorganism’s intrinsic motility
Vsp, the thick orange arrows are the hydrodynamic component of mi-
croorganism’s motion toward the center of the nutrient (uHI · r̂), and the
black arrows are the instantaneous velocity dx2/dt (eqn. 4.17). (i-ii)
Hydrodynamics−if strong enough−rotates the microorganism such that it
always maintains a constant separation ht(≈ 1) and in-plane angle θt, and
such that (uHI + Vsp) · r̂ ≤ 0. As a result, the microorganism swims tan-
gentially along the surface and stays trapped. (iii) Rotary diffusion−if
significant−can cause the microorganism to rotate to an in-plane an-
gle greater than θt which reduces the hydrodynamic attraction, causes
(uHI + Vsp) · r̂ > 0, and thus leads to escape. . . . . . . . . . . . . . . . 103

4.4 (Color online) A schematic of the effect of chemotaxis strength on the
accumulation around the nutrient source. The left, central and right
columns show the x-y, y-z and x-z projections, respectively, of the mi-
croorganisms’ trajectories. The microorganisms are located initially at
(x(0), y(0), z(0)) = (0,−40, 0), and oriented arbitrarily. It is important
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their orientations. The upper (resp. lower) row represents strong (resp.
weak) chemotaxis, which could either be due to C0/KD = 1.0 (resp.
C0/KD � 1.0), or a small (resp. large) value of τ ∗. Clearly, strong
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4.5 (Color online) (a) Visualization of the different behaviors elicited by the
mechanisms discussed in Table 4.1. The starting positions are shown by
black dots. Red: this microorganism is unable to locate the source in
the time for which the simulations were run. Blue: this microorganism
‘chemotaxes’ close enough to the source, but does not enter the basin of
hydrodynamic attraction. Magenta: in this case, the microorganism does
make contact with the source, but the hydrodynamic attraction is not
strong enough for trapping to occur. Green: an example of a successful
trapping wherein chemotaxis and hydrodynamics work in conjunction to
bring and trap a microorganism onto the source. See main text for details
about the regimes in which such behaviors occur. (b) The time evolution
of the distance from the source, h(t), of trajectories in panel (a). . . . . . 106

4.6 (Color online) (a) Variation of the surface concentration, Cs, with the
dipole strength αD for D ≈ 0 (negligible rotary diffusion), and D = 7.5×
10−4 (moderate rotary diffusion). (b) Main figure: The distribution f(r)
for D ≈ 0, and αD = 0.1 (green dashed line), αD = 0.6 (orange dash-
dotted line), αD = 0.7 (blue solid line), αD = 1.0 (red dotted line). Inset:
The distribution f(r) for αD = 0.7 for D ≈ 0 and 7.5×10−4 (corresponding
surface concentrations are shown in panel (a) by filled symbols). Notice
the drastic difference in the values of Cs and f(r) for the two different
values of rotary diffusivities. . . . . . . . . . . . . . . . . . . . . . . . . . 108
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4.9 (Color online) The four qualitatively different behaviors, or spatial dis-
tributions f(r), that can be realized due to the combined influence of
hydrodynamics (abbreviated in the legend as H.I.) and chemotaxis (ab-
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weak) influence. The inset shows the surface colonization Cs for each of
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5.3 (a) The critical trapping radius for a stationary sphere: a bacterium gets
trapped (resp. escapes) if the radius of the sphere being encountered is
larger (resp. smaller) than a critical value. (b) Bacterium with dipole
strength larger (resp. smaller) than the critical dipole strength, αD,c0 is
trapped (resp. escapes) around a sphere of given radius R. (c) Trapping
around a settling sphere: the trajectories are plotted in the frame of refer-
ence moving with the sphere and gravity acts along the −z direction; αD,c
is the critical dipole strength above which hydrodynamic trapping occurs
(for a settling sphere). (d) Variation of the critical trapping radius of a
sphere settling under gravity, Rct, with the bacterium’s dipole strength,
for different values of dimensionless excess density K∆ρ. Rc0 is the value
of the critical trapping radius for a stationary sphere. (e) An illustration
of the fact that hydrodynamic capture fails to occur if the dimensionless
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can be seen that all three trajectories begin just outside the aggregate’s
swept volume but are able to ‘chemotax’ onto the surface. The amount
of time each bacterium spends on the surface of the source depends on
their dipole strengths. The other parameters are: R = 45, K∆ρ = 0.0109,
Sc = 1000, τ ∗ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



xx

Figure Page

5.6 (a) Spatial variation of the nutrient’s (normalized) concentration around
the sinking sphere. The thickness of the concentration boundary layer,
δC , reduces as the nutrient diffusivity reduces. The corresponding val-
ues of the Péclet number are 100, 2000, 5000. (b) The variation in the
average nutrient exposure, C̄, for chemotactic and non-chemotactic bac-
teria, with strong and weak hydrodynamic interactions, as a function of
the Schmidt number. The legends in the main figure are as follows: Dia-
monds - chemotactic, αD = 2; Boxes - chemotactic, αD = 0.1; Triangles -
non-chemotactic, αD = 2; Circles - non-chemotactic, αD = 0.1. The filled
symbols (for Sc = 2500) correspond to simulation results with Nb = 5000
bacteria. Inset: The hydrodynamic amplification, AC , as a function of
Sc, comparing separately the percentage increase in nutrient exposures
for chemotactic and non-chemotactic bacteria (recall the definition of AC
from eqn. 5.7). The other parameters are: R = 45, K∆ρ = 0.0109, τ ∗ = 1. 140
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5.9 A comparison of the average nutrient exposure, C̄, between motile but
non-chemotactic bacteria and non-motile bacteria, as a function of (a) the
nutrient diffusivity, and (b) the (dimensionless) radius of the marine snow
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6.1 A schematic of the problem being solved. Shown here is the microorgan-
ism located at x = y, along with its ‘images’ at y∗ (w.r.t. the fluid-fluid
interface) and at y∗∗ (w.r.t. the air-fluid interface). A− F (resp. F − F )
refers to the air-fluid (fluid-fluid) interface. Note that the e2 component of
the swimmer’s orientation has been set to zero without loss of generality.
The vertical distribution of a suspension of non-interacting microorgan-
isms depends on the morphology of the microorganisms and the viscosity
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6.4 (a-b) Swimmer distribution in the film, F(z̄), as a function of λ for γ = 1,
for σ′ 6= 0, κ′ = ν ′ = 0. Panel (a) marks a slight peak near z̄ ≈ 0.1 by the
text ‘brief retention near F-F’. This corresponds to the brief time spent
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6.6 z′(t) − θ(t) phase plane for force quadrupole swimmers with (a) ν ′ < 0
corresponding to microorganisms with relatively shorter flagella, and, (b)
ν ′ > 0 corresponding to microorganisms with longer flagella. In panel (b),
the hexagrams at z′ ≈ 0.08, θ ≈ 3π/2 show the fixed points near the fluid-
fluid interface. These correspond to the stable swimming regime where
the microorganism swims parallel to the interface. All other multipole co-
efficients are set to zero and the viscosity ratio is λ = 10. The phase plane
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6.8 Swimmer trajectories in a flowing film under external flow given by eqn.
6.23. (a) Trajectories without inclusion of hydrodynamic interactions
(H.I.s), and, (b) trajectories with inclusion of H.I.s. The starting position
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6.10 Schematic depiction of why elongated pullers can escape from a wall at
lower values of the critical external flow, vcr.max. The angular velocity due
to the external flow, Ωext, is largest when the swimmer is oriented toward
the wall, and the angular velocity due to the hydrodynamic interactions,
ΩHI , is same for any perturbations to the stable swimmer orientation, i.e.,
θ = 3π/2−∆θ (resp. θ = π−∆θ) for a puller (resp. pusher). In this way,
pullers face a greater ‘overturning’ effect due to the external flow. . . . . 189
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ABSTRACT

Desai, Nikhil Ph.D., Purdue University, December 2019. Oil-microbe Interactions:
Hydrodynamic and Chemotactic Influences. Major Professor: Dr. Arezoo M.
Ardekani, School of Mechanical Engineering.

Advances in modern research have unveiled numerous fundamental and practical

benefits of studying the hydrodynamics of microorganisms. Many microorganisms,

especially bacteria, actively search for nutrients via a process called chemotaxis. The

physical constraints posed by hydrodynamics in the locomotion of microorganisms

can combine with their chemotactic ability to significantly affect functions like col-

onization of nutrient sources. In this thesis, we investigate the interplay between

hydrodynamics and chemotaxis toward dictating bacterial distribution around fluid-

fluid interfaces, which often act as a source of nutrition. We approach our problem

statements using mathematical models and numerical and/or semi-analytical tools.

Our studies are particularly relevant in the context of hydrocarbon degradation after

oil-spills.

We begin by showing that the flow generated by rising oil drops delocalizes dis-

solved nutrient patches in the ocean, and aids chemotactic bacteria in improving

their nutrition (over non-chemotactic bacteria) by 45%. We then move from study-

ing colonization of soluble nutrient patches to colonization around nutrient sources,

e.g., oil drops, marine snow. Towards this, we first demonstrate the phenomenon

of hydrodynamics-mediated ‘trapping’ of bacteria around oil drops and show that a

surfactant-laden drop can retain an approaching bacterium on its surface for ≈ 35%

longer times than a clean drop. We also analyze hydrodynamic trapping of bacte-

ria around settling marine snow particles and show how bacteria can collide with

and colonize the marine snow, even when the latter moves 10 times faster than the

former. In all the cases above, we show how the hydrodynamic interactions are com-
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plemented by chemotaxis to enable extremely effective bacterial foraging. We next

explore how propulsion mechanisms of microorganisms affect their ability to form

biofilms on fluid-fluid interfaces and unveil the hydrodynamic origins behind the ten-

dency of flagellated bacteria to swim parallel to plane surfactant-laden interfaces.

Finally, we summarize our results, identify further avenues of research and propose

problem statements related to them.
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1. INTRODUCTION

1.1 Overview

Micro-organisms exist, naturally and otherwise, across a plethora of habitats

around us, ranging from inside our own bodies to some of the most uninhabitable

places on Earth. They are the essential entities for sustaining life as we know it to-

day; and advances in science and technology continue to unravel their fundamental

and practical importance [1]. Scientists strive to understand the behavior of microor-

ganisms in isolation, and under external stimuli−e.g., light, heat, pH, electromagnetic

fields, oxygen and/or other nutrients−to answer questions in fields like evolutionary

biology, applied microbiology, condensed matter physics, chemistry, biochemistry,

limnology, oceanography and ecology, to name a few. A significant number of these

questions pertain to the motion of microorganisms, particularly bacteria, in their im-

mediate surroundings, i.e., in a fluid; and so the concepts of fluid mechanics enter

the fray to explain much of what is observed in this most interdisciplinary of modern

sciences.

In this thesis, we investigate how fluid flow and nutrient availability around bac-

teria dictates their motion, and subsequent distribution, near fluid-fluid interfaces.

In particular, we wish to identify how hydrodynamics affects critical oil-microbe in-

teractions like bacterial bioremediation, i.e., the disintegration of (hydrocarbon rich)

oil drops by bacteria, leading to substantial reduction in any adverse effects on the

environment, and/or on organisms that are higher in the food chain.

0Some parts of this chapter have been reprinted with minor changes, with permission, from the

material as it appears in the article “Modeling of active swimmer suspensions and their interactions

with the environment”, by N. Desai and A. M. Ardekani, Soft Matter, vol. 13, pp. 6033, 2017

(DOI: 10.1039/c7sm00766c). Copyright (2017) of The Royal Society of Chemistry.
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The role of marine bacteria in the biodegradation of hydrocarbons emanating from

sub-oceanic sources−natural oil seeps and anthropogenic oil spills−is well studied

[2–4]. However, little is known about the fundamental mechanisms that initiate and

promote biodegradation by bacteria. In general, the motion of motile bacteria is

influenced by local physicochemical properties, like nutrient distribution, fluid flow,

and proximity to interfaces. For example, marine bacteria perform chemotaxis, i.e.,

sense gradients in ambient nutrient concentrations and alter their motility based on

the feedback, to colonize nutrient ‘hotspots’ in the ocean [5,6]. In addition, fluid flow

interacts with the morphology of the bacteria to produce rotation and linear drift

in their motion. Moreover, the mere presence of a rigid or a compliant boundary

near a motile bacterium affects its trajectory non-trivially. The above influences are

extensively coupled, and result in microbial patchiness on different length-scales and

concomitant changes in the marine biogeochemistry [7]. They are also expected to

affect the rate of attraction and adhesion of microbes to oil drops, and thus are likely

to alter the rates of biodegradation.

An understanding of the ideas presented in this thesis warrants some knowledge of

bacterial locomotion, which we briefly discuss next. In particular, we elucidate some

aspects of: (i) the physics governing the fluid flow around microorganisms, and, (ii)

the basics of bacterial chemotaxis. For greater detail regarding the former topic, the

reader is advised to consult ref. [8,9], while for the latter, one can consult ref. [5–7,10].

1.2 Motion of a single microorganism in a Newtonian fluid

1.2.1 Hydrodynamics

The phenomena described in this thesis are mainly concerned with fluid flow

around motile microorganisms, i.e., micron sized ‘swimmers’ that are capable of self

propulsion in a fluid by converting energy from one form (e.g. chemical) to another
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(mechanical). The equations governing the fluid velocity and pressure are the Navier-

Stokes and the continuity equations, which, in their dimensionless form, are:

Re

St

∂ũ

∂t̃
+ Reũ · ∇̃ũ = −∇̃p̃+ ∇̃2ũ + f̃ ,

∇̃ · ũ = 0,

(1.1)

where ũ, p̃ and t̃ are the dimensionless fluid velocity, fluid pressure, and time, respec-

tively, and f̃ is the dimensionless external force (per unit volume) acting on the fluid.

The non-dimensionalization is done by using uref , lref , tref and µuref/lref as the ref-

erence velocity, length, time and pressure scales, respectively. Re = ρuref lref/µ is the

Reynolds number, where ρ and µ are the fluid’s density and viscosity, respectively.

It is a measure of the relative magnitudes of the inertial forces to that of the viscous

forces acting on the fluid. St = uref tref/lref is the Strouhal number, which compares

the characteristic time scale tref to the flow time scale lref/uref .

The typical sizes (lref =1-100 µm) and swimming speeds (uref =10-1000 µm/s) of

microorganisms, combined with the density (ρ ∼1000 kg/m3) and viscosity (µ ∼0.001

Pa-s) of the media in which they swim (mostly water), render the Reynolds number

of these systems to be O(10−5 − 0.1). As a result, fluid inertia is negligible, and if

St ≥ O(1), then the eqn. 1.1 simplify to:

−∇p+ µ∇2u = f ,

∇ · u = 0,
(1.2)

i.e., the Stokes equation and the continuity equation. This simplification leads to two

very important properties: (i) time independence, and, (ii) linearity. Time indepen-

dence lends instantaneity to the fluid velocity and pressure, which means that they

‘adjust instantaneously’ to any time-dependent changes in the flow conditions [11],

e.g, moving boundaries like the locomotory appendages of microorganisms. Linearity

is an extremely important property, as it allows the development of Stokes flow solu-

tions via methods of superposition, and makes it possible to obtain solutions to eqn.

1.2 analytically. In the context of microorganism locomotion, the aforementioned

properties make it imperative for a microorganism to swim by deforming its body in
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a time-irreversible fashion (such that the time lapse of its body geometry does not

appear identical when viewed forward and backward in time). This idea is referred

to as Purcell’s ‘scallop theorem’ [12].

When the force in eqn. 1.2 is concentrated at a single point, say at x0, it can

be written as f = (fe)δ (x− x0), where e is the direction along which the force is

acting. The corresponding solution of the flow field uS, is called a Stokeslet, and it

is a fundamental, singular solution of the Stokes equations:

uS(x) =
f

8πµ
·
(

I

r
+

(x− x0) (x− x0)

r3

)
=

f

8πµ
·G (x,x0)

, (1.3)

where r = |x− x0|. Moreover, because the Stokes equations are linear, one can obtain

higher order singular solutions by taking derivatives of eqn. 1.3 (see ref. [13, 14] for

details). Of special interest, is the solution obtained via the operation e · ∂G
∂x0

, which

is called an ‘axisymmetric Stokeslet dipole’ or a force dipole:

uD(x) = κ

(
−(x− x0)

r3
+

3

r3
((x− x0) · e)2 (x− x0)

)
, (1.4)

where κ is called the dipole strength and has units of m3/s. Eqn. 1.4 represents the

flow field due to an axisymmetric force dipole located at x0. We call it axisymmetric

because it was obtained by taking the derivative of the Stokeslet along the direction in

which the force f is acting, i.e., along e. Physically, eqn. 1.4 is the flow induced by two

equal and opposite, collinear forces (directed along e and −e) with an infinitesimal

separation between them. It is also important to note that the force dipole strength

scales as κ ∼ fb/ (8πµ), where b is a measure of the separation between the collinear

forces’ points of application. If these forces are assumed to originate due to a mi-

croorganism’s appendages exerting a propulsive force and its cell body exerting a drag

force on the fluid, then b represents the characterisitc size of the microorganism. The

force dipole thus acts as a leading order approximation of the flow generated by a mi-

croorganism exerting an axisymmetric forcing (about the direction e) on the ambient

fluid. Higher order approximations of the microorganism’s effect on the ambient fluid
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flow can be obtained by performing a multipole expansion of the Stokeslet solution,

about the direction e [14,15]. These higher order approximations account for: (i) the

finite size of the microorganism, (ii) the asymmetry in its structure (e.g., the relative

sizes of the cell-body and the flagellum), and, (iii) the equal and opposite torques that

its body and flagellum exert on the surrounding fluid. The singularities representing

these three effects are called: (i) the source dipole, (ii) the force quadrupole, and,

(iii) the rotlet dipole, respectively. We now provided the expressions for the fluid flow

caused by these three singularities, in an unbounded fluid. The source dipolar flow is

given by:

uSD(x) = σ

(
− e

r3
+

3

r5
((x− x0) · e) (x− x0)

)
, (1.5)

where σ is the source dipole strength. The force quadrupolar flow is given by:

uQ(x) =ν

[
e

r3
− 3

r5

{
3 (x− x0) ((x− x0) · e) + ((x− x0) · e)2e

}]
+ ν

[
15

r7
((x− x0) · e)3 (x− x0)

] , (1.6)

where ν is the force quadrupole strength. Finally, the rotlet dipolar flow is given by:

uRD(x) =
3τ

r5
((x− x0) · e) (e× (x− x0)) , (1.7)

where τ is the rotlet dipole strength. The units of σ, ν, τ are m4/s, as can be deduced

from a simple dimensional analysis. It is important to note that while the force dipole

(eqn. 1.4) and the source dipole (eqn. 1.5) contributions are expected to be non-zero

for most microorganisms, the same cannot be said for the force quadrupole (eqn. 1.6)

and the rotlet dipole (eqn. 1.7) contributions. In particular the force quadrupolar

contributions are significant only for microorganisms that display sufficient fore-aft

asymmetry (e.g., most flagellated bacteria, spermatozoa), while the rotlet dipole con-

tributions are significant only for microorganisms that propel themselves either via

a single rotating flagellum (e.g., V. alginolyticus), or via a rotating flagellar bundle

(e.g., E. coli). The key point to note is that a rotlet dipole can only be ‘generated’ if

the microorganism exerts equal and opposite torques on the ambient fluid.
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The most important point to take from the above discussion is that the analysis

of fluid flow at large distances from a microorganism can be done by ‘replacing’ it

with a combination of the singularities, whose flows are represented by eqns. 1.4 to

eqn. 1.7. By tuning the singularity strengths (κ, σ, ν, τ), one can model a host of mi-

croorganisms. Fig. 1.1 lists the signs of these singularities for typical microorganisms

studied by researchers in this field [14,16–18].

Microorganism Force dipole (κ ) Source dipole (σ ) Force quadrupole (ν ) Rotlet dipole (τ )

E. coli > 0 < 0 > 0 > 0

C. reinhardtii < 0 < 0 N.A. ≈ 0

V. carteri ≈ 0 > 0 ≈ 0 ≈ 0

V. cholera > 0 < 0 < 0 N.A.

P. aeruginosa > 0 < 0 > 0 N.A.

Figure 1.1. : Signs of the multipole strengths for different microorganisms, based on

the flow-fields generated by them and their morphologies/geometries. ‘N.A.’ denotes

that the sign is not decipherable based on the geometry alone. More details about

the significance of these signs can be found in Chapter 6.

It must be emphasized that the presence of bounding surfaces/interfaces dras-

tically changes the form of the flow fields uD(x),uSD(x),uQ(x),uRD(x). This is

because in an unbounded fluid, the flow due to these singularities decays to zero as

r → ∞, but the same would not be true always if there were to exist, say, a wall at

some r = Rw <∞. In the latter case, the fluid velocity would need to satisfy certain

boundary conditions based on the type of confinement [11]. These restrictions in the

decay rate of the velocity due to a force dipole, and the fact that the microorganism

experiences zero force and torque at all times−because its inertia is negligible−lead

to interesting dynamical changes in its motion. They result in hydrodynamically

induced linear and angular velocities in the motion of the microorganism, which is

responsible for many interesting swimming behaviors displayed by them [19–30] (see

the introduction to Chapter 6 for extensive details). The incorporation of bound-
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ary conditions onto the singularity solutions and the calculation of hydrodynamically

induced velocities is a non-trivial process, and requires knowledge of solution method-

ologies beyond the scope of the present Chapter [13]. At this point, it suffices to say

that when the need to do so arises, we resort to previously published literature in

this field and cite the appropriate references for the interested reader. Although

this somewhat simplistic representation hides the intricate details of fluid flow in the

immediate vicinity of the microorganism, it is still able to predict experimentally

observed phenomena like: (i) attraction of the bacteria E. coli to plane [21, 29] and

curved [26] solid surfaces, (ii) attraction of bacteria to air-fluid interfaces [27, 30],

(iii) circular swimming of bacteria near rigid surfaces [20] and air-fluid interfaces [24],

and, (iv) swimming of bacteria and spermatozoa parallel to rigid surfaces, at a fixed

separation [19, 22–25, 28, 31]. The last of these points has been discussed in detail in

this thesis in Chapter 6.

In Chapters 3 to 5 of this thesis, we use the ideas discussed above to model the

hydrodynamic interaction of a microorganism (modeled as a force dipole, eqn. 1.4)

with a spherical nutrient source (marine snow or oil drop) that is either stationary

(Chapters 3, 4) or moving under the influence of gravity (Chapter 5). In Chapter 6

we explore the effects of the higher order singularities (eqn. 1.4 to eqn. 1.6) on the

motion of microorganisms near fluid-fluid interfaces. Hydrodynamic interactions can

alter the swimming characteristics of microorganisms in non-trivial ways (see ref. [8])

and are a passive mechanism of motility alteration. In addition, microorganisms

themselves have various propulsion strategies that enable them to make the most of

their surroundings. One of these is chemotaxis, which is the focus of our next section.

1.2.2 Chemotaxis

Chemotaxis can be defined as the ability of microorganisms (primarily bacteria)

to detect gradients in ambient chemical concentrations, and then tune their motility

in accordance with their needs, so as to ‘climb’ up or down these gradients. The
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chemical responsible for chemotaxis is termed as a chemo-attractant/-repellant, or

more generally, a chemoeffector. In essence, it can be thought of as being the nutrient

that the bacteria seek. The chemoeffector molecules bind to chemoreceptors on a

bacterium’s cell membrane, and the ensuing chemical reactions enable the bacterium

to ‘sense’ ambient chemoeffector concentrations and react accordingly (see ref. [5] for

details). Bacteria rely on temporal sensing−their ability to continuously compare

the concentrations in their immediate vicinity as they swim−to gauge chemoeffector

gradients in three-dimensional space [32]. In rare cases, they may even compare

the concentrations at the two ends of their cell-body and thus directly sense spatial

gradients, though still at length scales of the order of a few microns [33]. Bacteria

utilize an intricate chemosensory apparatus to alter their swimming metrics based on

the feedback they receive from gradient-sensing [34–38].

Typical bacterial motion comprises of bursts of straight ‘runs’ interspersed with

sudden changes in the swimming direction, called ‘tumbles’. Chemotaxis induced

deviation from this behavior can be of different types, e.g., a change in the frequency

of tumbling as a function of ambient nutrient/chemoeffector concentration, or even

a shift in the regime of swimming from ‘run-and-tumble’ to ‘run-and-reverse’ [39].

These changes aim to prolong a bacterium’s stay in a desired region, e.g., bacteria

are known to tumble (or reverse) less often in nutrient-rich environments, to increase

their average nutrient exposure and fulfill their energetic requirements. Therefore,

the tumbling frequency is an important metric for quantifying a bacterium’s ability

to find nutrition. The pioneering work by Macnab and Koshland [32], and Berg and

Brown [5, 10, 40, 41], and subsequent studies [42, 43] have proposed models relating a

bacterium’s tumbling frequency to the rate of change of chemoeffector concentration

experienced by the bacterium, say Ċh. The main idea is the same in all cases: when-

ever Ċh > 0 (bacterium is experiencing progressively higher nutrient concentrations)

the fractional amount of chemoreceptor reacting with the chemoeffector increases,

and the subsequent cellular processes suppress tumbling. Thus, a bacterium in a

nutrient rich region is less likely to leave it abruptly on account of a tumble.
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In Chapter 4 of this thesis, we show how the intricacies of chemotaxis summarized

above are incorporated into a simple mathematical formulation describing the loco-

motion of a chemotactic bacterium near nutrient effusing sources like marine snow

particles or crude oil drops. Combined with the ideas of the previous section, this

enables us to understand the colonization of nutrient sources by motile, chemotac-

tic microorganisms; and the importance of different hydrodynamic and chemotactic

parameters in this process. In Chapter 5, we extend the studies of Chapters 3 and

4 to study the problem of hydrodynamics- and chemotaxis-mediated accumulation

of marine microorganisms around sinking (resp. rising) nutrient sources like marine

snow (resp. oil drops). Thus, in totality, Chapters 3 to 5 answer many questions

pertaining to the effects of: (i) hydrodynamics alone, and, (ii) hydrodynamics and

chemotaxis on the colonization of stationary and translating (rising/settling) nutrient

sources by microorganisms.

1.3 Motion of a suspension of microorganisms in a Newtonian fluid

So far, we have discussed how fluid flow and motility of a single microorganism

affect each other. A natural extension is the study of a number of microorganisms

in a fluid, or an active suspension. From a first principles perspective, this would

involve solving for the fluid flow around finite (micron sized) immersed bodies while

accounting for the specifics of the locomotion of each one of them. A number of

studies have been carried out based on this idea and variations thereof; details can be

found in ref. [44–46]. This approach is extremely useful when interactions between

microorganisms may not be ignored, and the fluid flow occurs primarily because of

forces exerted by the microorganisms. In many cases however, microbes are found in

reasonably dilute concentrations in preexisting background flows that are generally

stronger than the ‘dipole flows’ of Section 1.2.1. The effect of microbes on the flow

can then be neglected altogether, and we have a ‘one-way coupling’ wherein one only

considers the effect of the flow on the microbes. Although these situations can be
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treated using the first principles approach, it sometimes makes more sense to use

reduced order models like continuum theories for active suspensions. This is because

the latter offer crucial simplifications in the desired analysis, e.g., the possibility of

analytical derivations, reduction in computational costs etc.

Continuum theories of microorganism suspensions model them as a scalar field

that is being advected by some background fluid flow, and more crucially, by a ‘flow’

that arises from the microorganisms’ motility. A very general continuum field equa-

tion for the concentration n of an active suspension would look like:

∂n

∂t
+∇ · (nu) +∇ · (nV) = ∇ · (Dn · ∇n) , (1.8)

where the intrinsic motility is codified in the advective and diffusive flux terms, (nV)

and (Dn · ∇n), respectively. The success of continuum theories is contingent on how

accurately are these terms represented. We will discuss one such representation, and

guide the reader interested in extensive details to ref. [47–51]. We will try to answer

the question: how can a collective reaction−to chemical cues−by a suspension of

chemotactic bacteria be incorporated into the paradigm of eqn. 1.8? The answer lies

in the fact that when length scales of observation are large enough, then (i) individual

‘gradient climbing’ of multiple chemotactic bacteria can be lumped together as a

collective flux V, and, (ii) randomness associated with swimming can be represented

by a diffusion tensor Dn, in eqn. 1.8. As an example, consider the equation:

∂n

∂t
+∇ · (nu) +∇ ·

(
nχ
∇C
|∇C|

)
= ∇ · (Dn · ∇n) , (1.9)

which states that in addition to advection by a (background) fluid velocity u, a sus-

pension of bacteria will tend to swim along the direction of increasing chemoeffector

concentration (denoted by C) at a rate χ, and at the same time, diffuse in space with

mean squared displacement proportional to ‖Dn‖. This idea was first proposed by

Keller and Segel in 1970, who stated that “even though a cell may not be capable of

making an accurate assessment of the gradient to which it is exposed at a given time,

its average behavior can nevertheless reflect the gradient with arbitrary accuracy” [52].
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The idea of eqn. 1.9, as simple as it is, has been used in the past to successfully

explain a number of observable phenomena like, oxytaxis/chemotaxis driven plume

dynamics [53–57], bioconvection in sessile drops [58, 59], chemotaxis driven instabil-

ity in thin films [60] and chemotactic foraging in the turbulent ocean [61, 62]. We

will use a variation of this concept in Chapter 2 of the thesis to study the effects

of buoyancy-induced multiphase flow on chemotactic foraging in sub-marine nutrient

plumes.

1.4 Outline of the thesis

Thus far, we have given a general outline of the overarching goals of this thesis

(Section 1.1), and the technical details (Sections 1.2 and 1.3) involved in answering

some of the questions that interest us. We now provide motivations behind choosing

our problem statements, and briefly list the methodologies adopted to solve them.

• Our study in Chapter 2 is motivated by the process of methane biodegrada-

tion in wake of the events of the Gulf of Mexico oil spill. We investigate the

consumption of a dissolved chemo-effector by model micro-organisms, in a flow

generated by buoyancy driven rise of mono-disperse oil drops. We employ direct

numerical simulations to resolve the multiphase flow, chemo-effector transport,

and microorganism transport in a swarm of rising oil drops. We quantify the

difference in the rate of consumption by motile and non-motile microorganisms,

and identify the key biophysical parameters affecting this difference. This work

has been published in the International Journal for Multiphase Flow, 2018 [63].

• While Chapter 2 details the influence of oil drops in the consumption of soluble

hydrocarbons, Chapter 3 investigates the same for insoluble hydrocarbons. The

central question of this chapter is: through what mechanisms do marine bacteria

attach themselves onto the surface of oil drops to begin biodegradation? We fo-

cus specifically on the hydrodynamics of this complex process. In particular, we

investigate the swimming dynamics of a model microorganism/microswimmer
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(a force dipole) in the vicinity of a clean drop, and of a surfactant covered drop.

Our results highlight the importance of considering dispersant-addition in oil

spills involving insoluble hydrocarbons. This study has been published in Soft

Matter 2018 [64].

• A key result that emerges from Chapter 3 is that hydrodynamics can act as an

effective ‘trap’ only when a microorganism of size ∼ O(10) µm is at most O(20)

µm away from the surface of a drop. Therefore, the role of chemotaxis becomes

very crucial in leading a distant bacterium up to a food source so that the nutri-

ent uptake can commence. In Chapter 4, we study how the interaction between

hydrodynamics and chemotaxis affects the colonization of nutrient sources by

microorganisms. We use an individual based model and perform probabilistic

simulations to ascertain the impact of environmental and motility characteris-

tics on the distribution of microorganisms around a spherical nutrient source.

Our study provides an insight onto the interplay of two important mechanisms

governing microorganism behavior near nutrient sources, isolates each of their

effects, and offers greater predictability of this non-trivial phenomenon. This

work has been published in Physical Review E [65].

• Nutrient sources aren’t always stationary; in fact, quite often, they are moving

under the influence of external forces (e.g., gravity) or flow. This motivates us to

generalize the works of Chapters 3, 4 to the motion (and possible accumulation)

of microorganisms around moving nutrient sources. In Chapter 5, we document

hydrodynamics-mediated trapping of microorganisms around a moving spheri-

cal nutrient source such as a settling marine snow aggregate. We find that there

exists a range of size and excess density of the nutrient source, and motility and

morphology of the microorganism under which hydrodynamic interactions en-

able the passive capture of approaching microorganisms onto a moving nutrient

source. We simulate trajectories of chemotactic and non-chemotactic bacteria

encountering a sinking marine snow particle effusing soluble nutrients to calcu-
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late the average nutrient concentration to which the bacteria are exposed. We

thus provide a consistent description of how microorganism motility, fluid flow

and nutrient distribution affect foraging by marine microbes, and the forma-

tion of biofilms on spherical nutrient sources under the influence of fluid flow.

The results from this Chapter have been published in Frontiers in Microbiology

2019 [66].

• Chapter 6 deals with a slight variation of the oil-microbe interactions discussed

thus far. Instead of studying colonization of oil drops (or marine snow par-

ticles), we focus on bacterial accumulation at/near floating fluid films. This

is important because bioremediation almost invariably involves the interaction

of bacteria with planar fluid-fluid interfaces, e.g., hydrocarbon degradation by

bacteria at oil-spill sites. “Films of bacteria at interfaces” [67] are formed before

the breakdown of heavy oil begins. It is thus necessary to understand the role

played by hydrodynamics in biofilm incipience on fluid surfaces. In particular,

we study the dynamics and statistics of microorganisms in a ‘floating biofilm’,

i.e., a confinement with an air-fluid interface on one side and a fluid-fluid inter-

face on the other. We use an extension of the force dipole model to account for

the finer features of bacterial propulsion and geometry (relative sizes of the cell

body and the flagellum). We then perform probabilistic simulations to ascertain

the spatial distribution of bacteria as a function of their morphology and the

viscosity contrast across the fluid-fluid interface.

• In Chapter 7, we summarize our studies in the context of our original goal. In

addition, we propose further investigations that can help to improve our funda-

mental understanding of the relation between hydrodynamics and oil-microbe

interactions.
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2. NUTRIENT UPTAKE BY CHEMOTACTIC MICROORGANISMS IN

PRESENCE OF RISING OIL DROPS

2.1 Introduction

Subsurface hydrocarbon (HC) spills/leaks−both natural and anthropogenic−are

a major source of carbon and energy for a plethora of marine microorganisms [2]. In

fact, the role of methanotrophs in degrading methane in the Deepwater Horizon spill

in 2010 is well documented [3,4,68]. A major portion of this degradation occurred in

the presence of a rising swarm of oil drops, i.e., in an inherently unsteady flow envi-

ronment consisting of at least two distinct fluid phases [69]. Similarly, it is expected

that the many soluble HCs being leaked into the oceans are also consumed by marine

bacteria under the influence of flows that are driven by buoyancy of the insoluble

oil components (e.g., high-molecular-weight aliphatic hydrocarbons). These flows re-

sult in significant three dimensional velocity fluctuations (called ‘pseudo-turbulence’)

due to the hydrodynamic interactions between the oil drops [70–73]. The velocity

fluctuations in turn drive dispersion of the dissolved HCs via combined diffusive and

convective transport. Therefore, pseudo-turbulence ensures that not only is the fluid

medium in a state of agitation, but that any concentrated ‘patches’ of dissolved HCs

are being continuously stirred (dispersed into thinner or smaller patches, resulting

in enhanced HC/nutrient gradients) and mixed (homogenized due to fluid flow and

nutrient diffusion).

The aforementioned processes are expected to create a fundamental difference

in the nutrient uptake by motile bacteria, as compared to that by the non-motile

0This chapter has been reprinted with minor changes, with permission, from the material as it

appears in the article “Nutrient uptake by chemotactic bacteria in presence of rising oil drops”, by

N. Desai, S. Dabiri and A. M. Ardekani, International Journal of Multiphase Flow, vol. 108, pp.

156, 2018 (DOI: 10.1016/j.ijmultiphaseflow.2018.06.016). Copyright (2018) of Elsevier Ltd.
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ones. Central to understanding this difference is a well studied phenotype of bacteria

called chemotaxis [40]: the ‘gradient sensing ability’ of a bacterium that allows it to

alter its swimming strategy in order to reside in regions of high (low) concentrations

of desired (undesired) chemical species called chemoattractants (chemorepellants).

The pseudo-turbulence engenders nutrient gradients and drives chemotactic motion

of motile microbes. For example, methanotrophic bacteria like Methylomonas can

chemotax toward methane-rich regions in a HC plume [68]. This directed motion

exists only for motile bacteria, which hints at the advantage that they might have

over their non-motile counterparts. However, the extent to which chemotaxis can be

beneficial is not known a priori, and requires detailed investigation of the transport

phenomena involved. The way in which these organisms consume nutrients relative

to each other, and the factors that influence this competition are unclear, and subject

to multifarious bio-physical interactions. In the present work, we unravel the results

of these interactions, through mathematical models and direct numerical simulations

(DNS).

Our problem statement entails modeling the consumption (uptake) of a dissolved

chemoattractant (nutrient) by model bacteria−both motile and non-motile−in a

swarm of oil drops rising through a column of fluid. The chemoattractant is present

in a patch that gets de-localized into thinner ‘strands’ due to the fluid flow induced by

the drops (see Fig. 2.1 (a) and (b)). We investigate the interaction of physical/flow

characteristics (oil drop diameter and volume fraction) with biological characteris-

tics (time scale of nutrient consumption by bacteria, sensitivity to nutrient gradients,

swimming speed), and the resulting effect on the competitive consumption of the

available nutrient. Our aim is to ascertain and quantify the ‘chemotactic advantage’,

i.e., the difference between the consumption rates by motile and non-motile bacte-

ria, that arises due to chemotactic ability of the former [61]. An important physical

parameter that governs the consumption dynamics is the molecular diffusivity of the

nutrient, which eventually smears out any heterogeneities in the nutrient distribution.

Nutrient gradients developed by pseudo-turbulence disappear quickly, or slowly, de-
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pending on whether the nutrient diffusivity is high, or low, respectively. The typical

diffusivity values for nutrients range from 10−5 to 10−8 cm2/s [74], which is three

orders of magnitude smaller than the momentum diffusivity of water (10−2 cm2/s).

A fully resolved DNS for the nutrient distribution with such small diffusivities is very

expensive from a computational perspective. This forces us to choose a larger nutrient

diffusivity in our simulations: 5×10−4 cm2/s. Thus, the quantification of the chemo-

tactic advantage presented in this paper is conservative due to this choice of nutrient

diffusivity. The results presented improve our understanding about the consumption

of soluble nutrients in sub-surface hydrocarbon plumes. In the Appendix of our paper,

we comment on the sensitivity of the results to the nutrient diffusivity and discuss the

possible changes that could transpire for more realistic diffusivity values. Although

we are motivated by sub-surface HC degradation, we point out that our study can

be easily tailored−by merely changing the values of the dimensionless parameters−to

simulate chemotaxis in situations involving chemoeffector/nutrient dispersion in other

multi-phase flows. In the next Section, we describe our mathematical model and the

governing equations in detail.

2.2 Mathematical model

We numerically solve the equations governing multi-phase flows, i.e., the continuity

equation and the Navier-Stokes equation:

∇ · u = 0, (2.1)

∂u

∂t
+∇ · uu = −1

ρ
∇p+

(
1− ρ0

ρ

)
g +

1

ρ
∇ · (2µE)

+
1

ρ

∫
∂V

σκ′n′δβ (x− x′) dA′,
(2.2)

where u(x, y, z, t) is the fluid velocity field, t is the time, p is the fluid pressure,

ρ and µ are the density and viscosity of the fluid, respectively, ρ0 is the average



17

X

Y
Z

C

(a)

X

Y
Z

C

(b)

X

Y
Z

B
M

(c)

X

Y
Z

B
NM

(d)

Figure 2.1. : (a) The initial distribution of the chemoattractant/nutrient. (b) The

distribution of the nutrient after some time has elapsed in the simulations. (c) The

distribution of the motile bacteria at the same instant of time as in (b). Notice higher

concentrations of motile bacteria BM in the nutrient-rich regions, due to chemotaxis.

(d) The distribution of the non-motile bacteria at the same instant of time as in (b).

Note that the distribution of the non-motile bacteria remains more or less uniform,

as there is no bias in their motion.
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density of the oil-water system, and σ is the surface tension between oil and water.

E is the rate of strain tensor, defined as E = 1
2

(
∇u +∇uT

)
, with T denoting the

transpose operator acting on the velocity gradient tensor ∇u. Equation 2.1 is the

condition for incompressibility of a fluid and equation 2.2 is a differential form of the

conservation of fluid momentum. The last term in equation 2.2 is the contribution

of surface tension forces on the fluid flow, with the area integral carried out over all

points on the oil-water interface ∂V ; x is the point in the fluid domain where we want

to evaluate the fluid velocity, κ′ is the mean curvature, and n′ is the outward pointing

unit vector normal to the interface at the interface point x′, and δβ is the three-

dimensional Dirac-delta function [75,76]. The interface corresponds to the surface of

mono-disperse drops of diameter d, density ρg and viscosity µg, where the subscript

g indicates that the desired properties are of the dispersed phase (in our case, an

insoluble oil drop). The fluid flow is governed by the Eötvos number Eo =
ρfgd

2

σ
(a

measure of the relative importance of the buoyancy and surface tension forces), and

the Galileo number Ga =
ρ2fgd

3

µ2f
(a measure of the relative importance of the inertial

and viscous forces), where the subscript f indicates that the desired properties of the

carrier phase (in our case, water) are being used. The −(ρ0/ρ)g term in equation 2.2

is a force that prevents free fall of the fluid and ensures zero momentum flux through

the boundaries of our computational domain [70]. The bacteria−both motile (BM)

and non-motile (BNM)−are modeled as a continuum, being transported according to

the following advection-diffusion equations:

∂BM

∂t
+∇ · ((u + Vsp)BM) = ∇ · (Db∇BM) , (2.3)

dp

dt
=

1

2
ω × p +

1

βC
(I− pp) · ∇C, (2.4)

∂BNM

∂t
+∇ · (BNMu) = 0. (2.5)

The non-motile species act as mere tracers that follow the fluid flow, while the

motile bacteria have an additional chemotaxis driven velocity Vsp with respect to
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the fluid (equation 2.3). In addition to deterministic swimming, the motile bacteria

can also diffuse with diffusivity Db. This diffusion is indicative of the stochastic na-

ture of bacterial motion. Equation 2.4−solved only in case of the motile species−is

an expression for time evolution of the swimming orientation p, modified to include

the effects of external nutrient gradients. The first term on the right hand side is

the influence of the background vorticity ω. In addition to the vorticity, the back-

ground strain rate E also affects the swimming orientation, but only if the bacteria

are elongated. As a first approximation, we neglect this latter effect, and assume

the bacteria to be nearly spherical in shape. The chemotactic bias in the swimming

direction is introduced through the second term on the right hand side of equation

2.4, which models the effect of an external nutrient gradient (∇C, C being the con-

centration of the nutrient) on the rate of change of swimming orientation. βC is the

inverse of the chemotactic sensitivity, which determines the relative importance of

steering by external chemical gradients as compared to that by external vorticity. In

their present form, equations 2.3 and 2.4 assume that all cells around a differential

volume δV at position x are oriented along the same direction p. This is a strong

assumption, but it adds considerable simplicity to our numerical simulations. A more

complete description would require us to couple our multi-phase DNS procedure with

a transport equation for the probability distribution ψ(x,p, t) of the bacterial posi-

tions and orientations, and then perform appropriate averaging to fully incorporate

the effects of randomness in swimming orientations in equation 2.3 (see [50]). This

will increase the dimensionality of the system from three to five, and together with

the front-tracking method used to fully resolve the evolution of oil-water interface,

render the problem computationally unwieldy. A justification of our method is that

re-orientations due to flow, and particularly chemotaxis, are strong enough to ensure

rapid correction in the swimming direction, over the smallest length scale in our sys-

tem (≈ 0.03 mm). Therefore, we use the present formulation and integrate equation

2.4 at each time step and position, instead of using averaged ‘equilibrium’ values of

the vector p (see a similar method in the context of gyrotaxis, first proposed by Ped-
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ley, Hill and Kessler [77], and recently solved numerically by Karimi and Ardekani

in the context of gyrotaxis in stratified media [78]). In addition, equation 2.4 does

not contain any rotary diffusive terms, i.e., random, smooth changes in the swimming

direction of the bacterium. We chose to neglect this effect based on a simple scaling

analysis, towards which we first re-write equation 2.4, with the inclusion of a random

orientation de-correlation due to the rotary diffusivity DR:

dp =

[
1

2
ω × p +

1

βC
(I− pp) · ∇C

]
dt+

[√
4DRηR × p

]
dt, (2.6)

where the rotary diffusion is modeled via a Gaussian white-noise on the unit sphere,

ηR. The vorticity scales as |ω| ≈
√
g/d ≈ 44 s−1 to 86 s−1, based on the typical

values given in Table 2.1. In comparison, the orientation change due to a rotary

diffusivity value DR = 0.035 to 0.45 rad2/s amounts to ≈
√

4DR · O(1) s−1/2 ≈ 0.42

s−1 to 1.34 s−1. Thus, as long as there exists a sufficiently strong background flow,

we can safely neglect the effect of rotary diffusion on the bacterial orientation. Fig.

2.9 in the Appendix shows the difference in the results between the instance that

considers rotary diffusivity, and one that does not; clearly, the difference is impercep-

tible. Note that the use of a deterministic, continuum formulation for chemotaxis, as

opposed to the classic run-and-tumble formulation, is justified based on the ratio of

the characteristic length scale lref of our problem (lref ≡ drop diameter d ≈1 mm)

to the typical run length lrun of marine bacteria (≈ 0.05 mm) being much greater

than unity [43, 79]. In such large length scale systems, we can say that equation 2.4

captures the average reorientation tendency of a chemotactic swimmer in response

to chemical cues and ambient flows [52]. It can be thought of as a ‘chemotactic

torque’, or a means to the ‘spatial sensing’ of nutrient gradients, which is indeed

found in some species of microorganisms [33, 80]. Similar models have been used in

the absence [81,82] and presence [83] of external fluid flows to explain phenomena like

micro-swimmer clustering and aerotaxis-induced bioconvection plumes, respectively.

Lushi et al. have performed a study highlighting the similarities between the present

model and the run-and-tumble model, in the context of stability and collective mo-
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tion of auto-chemotactic suspensions [84]. The chemoeffector distribution, C (x, t), is

governed by the scalar transport equation with a sink term:

∂C

∂t
+∇ · (Cu) = ∇ · (Dm∇C)− αCBMC − αCBNMC, (2.7)

where Dm is the diffusivity of nutrient in water and αC is a constant which quantifies

the nutrient uptake rate by the bacteria. The last two terms on the right hand side

of equation 2.7 are the reductions in the nutrient concentration due to uptake by the

motile and non-motile species, respectively. It is postulated that chemotactic species

will ‘climb up’ the gradients, and as a result, will consume higher concentrations.

Since our study is motivated by the extent of consumption, the instantaneous motility

benefit is defined as the volume averaged difference between the rates of consumption

by the motile and the non-motile species, i.e., motility benefit ∆U(t) = ĊM − ĊNM
[62], where

Ċ =

∫
V

αCBCdV∫
V

dV
, (2.8)

and B = BM and BNM , for motile and non-motile species, respectively. A benefit

due to motility exists only if ĊM > ĊNM . In our results, we normalize ∆U(t) by the

quantity αCB0C0−where B0 is a baseline number density and C0 is a baseline nutrient

concentration−which has the units µM/s, and signifies a reference consumption rate.

In addition to the normalized motility benefit ∆Ū = ∆U/(αCB0C0), we present

a measure of the relative rates of consumption by motile and non-motile bacteria,

called the ‘chemotactic amplification factor’ RU [62]:

RU =
ĊM + ĊNM

2ĊNM
, (2.9)

It is clear from the definition that RU compares the rate of consumption in a re-

gion inhabited by both motile and non-motile species, with the scenario where all

consumption is assumed to be done by non-motile species alone. It quantifies en-

hancement in the total uptake rate by a bacterial population due to the chemotactic

species. This definition is particularly useful in assessing the chemotactic advantage

when the nutrient availability is very low.
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We use the finite-volume method on a uniform, structured, staggered grid, com-

bined with the projection method to solve equations 2.1 and 2.2 [85]; and track

the interface using the front-tracking method [75, 76]. The validation of the front-

tracking method being used in this article can be seen in previous publications by the

authors [72,86]. All terms in equation 2.2 are discretized explicitly using the QUICK

scheme for the convective terms [87], central differences for diffusive terms and front-

tracking, with second order accurate representation for δβ [88], for the surface tension

contributions. Equations 2.3, 2.5 and 2.7 are also solved explicitly using the finite-

volume method, with convective terms discretized using a fifth order accurate WENO

scheme [89] and diffusive terms discretized using central differences. A second order

accurate predictor-corrector scheme is employed for all time-integrations. The magni-

tude of p is preserved at unity by using a post-stabilization approach used in ref. [78]

and detailed in ref. [90].

The initial condition for the fluid-velocity is obtained as the statistically steady-

state for a rising swarm of drops [70, 71]. The time evolution of the fluctuation

Reynolds number for the various background fluid-flows in the simulations is shown

in Fig. 2.2; while other quantities pertaining to the pseudo-turbulence are detailed in

Table 2.1. It is interesting to note that the energy dissipation rates generated by rising

oil drops−O(10−3) W/kg−are at least 3 orders of magnitude higher than those cor-

responding to ‘relatively strong’ marine turbulence (∼ 10−6 W/kg) [91]. This allows

us to neglect the effects of marine turbulence, and focus solely on the hydrodynamic

interactions between rising drops, in our simulations. The initial nutrient-rich region

is in the form of a cylinder placed centrally (see Fig. 2.1), occupying ≈ 8% of the

domain volume and with its axis along the direction g/ |g|. We note that we have also

carried out investigations for different initial shapes of the nutrient-rich region, i.e.,

for (i) a cylindrical shape perpendicular to the direction of ascent (along the y axis in

Fig. 2.1), and, (ii) a spherical shape of same volume as the cylinder (see Fig. 2.11 in

the Appendix and the accompanying discussion). The nutrient concentration inside

the drops is set to zero. The concentration of the motile and non-motile bacteria is
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Figure 2.2. : (Color online) Time evolution of the fluctuation Reynolds numbers

Reu′+v′+w′ of the drops in the simulations; see the Appendix and the ref. [70, 71]

for the definition of the drop fluctuation Reynolds number. The statistical steady

states can be easily identified in all 5 cases (at t̄ ≈ 50), the background flow-fields

(and drop positions) at these instants are used as the initial condition for the fluid

velocity u(t = 0) in the simulations that are performed to ascertain the chemotactic

advantage.

uniform everywhere, except inside the drops (where it is set to zero). Note that the

equation 2.5, for the evolution of non-motile bacteria does not have any diffusivity,

but there exists some numerical diffusion. We do not expect significant clustering of

the non-motile bacteria to take place. This is because of the initially uniform dis-

tribution of BNM , combined with absence of a term with non-zero divergence in the

convective flux of BNM (see the explanations of microorganism clustering based on

the divergence of their velocities, as given in ref. [92]). Thus, BNM(x, t) is expected to

be ≈ B0 everywhere in the domain. In our simulations, the value of |BNM −B0| /B0

stays below ≈ 3% for most of the domain; and therefore numerical diffusion is small.

The orientations of the (motile) bacteria are randomly initialized. Periodic boundary

conditions are enforced in all directions, for u, C, BM and BNM .
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In order to elucidate the effects of external flow on nutrient uptake and motility

benefit, we solve equations 2.1 to 2.7, subject to parametric sweeps in (i) the important

biological parameters at play, i.e., αC , βC and Vs, and, (ii) the relevant hydrodynamic

parameters, i.e., drop diameter d and volume fraction of the oil phase φ, for drop

diameters commensurate with those of an oil spill. The values of these parameters are

listed in Table 2.1. The fluid properties (µf , µg, ρf , ρg, σ) are those of Light Louisiana

oil (involved in the Deepwater Horizon oil-spill) and water [93]. The size of the drops

was estimated based on previous literature pertaining to droplet size distribution

from sub-surface oil-spills [94–96]. The bacterial swimming speed values encompass a

range from 50 to 300 µm/s. This range is expected to cover a wide variety of bacterial

species, with values >≈ 60 µm/s being more appropriate for marine bacteria [6]. The

uptake rate constant αC was estimated based on typical bacteria length-scales and

nutrient diffusivities, as done in the first paragraph of Section 2.3.1. An estimate

of the inverse chemotactic sensitivity, βC , as defined by us was not available, and

so we decided to cover a broad range for the values of βC . The bacterial diffusivity

was estimated from the scaling Db ∼ V 2
s τ/3 [10], where Vs is the swimming speed

and τ is the mean bacterial run time. For Vs ≈ 100 µm/s, and τ = 1.5 s, this yields

Db = 5×10−5 cm2/s. But once again, numerical constraints force us to choose a larger

diffusivity of Db = 5× 10−4 cm2/s, this time for the bacteria. The reference nutrient

concentration was chosen based on the values reported by Valentine et al. [68]. Our

computational domain corresponds to a representative fluid volume (L3 ≈ 0.15 − 9

cm3) consisting of mono-disperse oil drops of prescribed diameters (d ≈ 0.1−0.5 cm),

rising in a water column that has a patch of dissolved nutrient, as shown in Fig. 2.1.

2.3 Results and Discussion

We will first discuss some important bio-physical mechanisms at play, which will

be visible in the solutions to equations 2.1 to 2.7. The initial nutrient distribution,

as shown in Fig. 2.1(a) gets distorted once the drops rise through the fluid column.
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Table 2.1. : List of simulation parameters.

Parameter (description) Value (units)

Flow/physical parameters

µf (viscosity of suspending fluid) 0.01 (poise)

µg (viscosity of dispersed phase) 0.12 (poise)

ρf (density of suspending fluid) 1.00 (g/cm3)

ρg (density of dispersed phase) 0.85 (g/cm3)

σ (surface tension) 40 (dyne/cm)

d (diameter of drops) 0.13 - 0.5 (cm)

Eo = ρfgd
2/σ (Eötvos number) 0.41 - 6

Ga = ρ2
fgd

3/µ2
f (Galileo number) 2.15×104 - 1.22×106

Reu′+v′+w′ (fluctuation Reynolds number) 0.5 - 10

εf/ρf (dissipation rate per unit mass) 2.7×10−3 - 1.2×10−2 (W/kg, or, m2s−3)

Rer (rise Reynolds number) 15 - 400

We (Weber number) 2.8×10−3 - 0.54

Bacteria/biological parameters

Vs (swimming speed) 20 - 300 (µm/s)

αC (nutrient uptake rate constant) 10−11 - 10−7 (cm3/s/cell)

βC (inverse chemotactic sensitivity) 0.4 - 4000.0 (µMcm−1s)

Db (diffusivity) 5×10−4 (cm2/s)

B0 (reference number density) 1.5×105 (cells/cm3)

Nutrient

C0 (reference concentration) 25 (µM)

Dm (diffusivity) 5×10−4 (cm2/s)

Sc = µf/(ρfDm) (Schmidt number) 2, 20

Vp/L
3 (volume fraction of nutrient patch) 2 - 8 (%)

Numerical simulation

L (computational box length) 0.5325, 1.3564, 2.0833 (cm)

N3 (number of grid points) 1923

Nd (number of drops) 8, 16, 64

h = L/N (smallest length scale resolved) 0.0028, 0.0071, 0.0108 (cm)
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As a result, the fairly homogeneous, ‘cylindrical’ nutrient distribution at the verti-

cal mid-plane gets heterogenized, leading to (i) ‘breaking’ or stirring of the nutrient

patch into strands of varying thicknesses and concentration, and (ii) subsequent dis-

sipation of these strands−both by the flow, and molecular diffusion−into increasingly

uniform concentrations across the entire fluid domain. The chemotactic, motile bac-

teria forage for nutrient-rich regions, and are also transported and rotated by the

flow. The non-motile organisms are simply carried by the flow, and can encounter

nutrient rich regions only by chance. This fundamental difference in the ability of

motile and non-motile species to access and consume nutrients is expected to yield an

instantaneous chemotactic advantage to the former (∆U(t) > 0 and RU(t) > 1). But

this benefit diminishes because as time progresses, the heterogeneities−engendered

by mechanisms described in point (i) above−are lost and the nutrient distribution

relaxes to a uniform non-zero concentration. Once this relaxation occurs, there aren’t

any significant chemoattractant gradients left for chemotaxis to be beneficial and the

chemotactic advantage ceases to exist (i.e., ∆U(t) ∼ 0 and RU(t) ∼ 1). However,

nutrient consumption will continue to occur and the volume-averaged nutrient con-

centration will continue to decrease. Eventually, over a time scale of the order of a

few hours or days (depending on the nutrient availability and consumption rate con-

stant), the entire nutrient available will get consumed by the bacteria (both motile

and non-motile) and the volume-averaged nutrient concentration will reduce to ∼ 0.

But this does not happen in our simulations because the time for which we run them

is smaller than the time required to completely consume the entirety of the available

nutrient.

The previous paragraph suggests that slower distortion of the initial nutrient field

and/or faster detection of the nutrient gradients will provide maximum nutrient ex-

posure to the motile species. Therefore, the time scale of the chemotactic response

relative to that of changes in the ambient nutrient concentrations is of utmost impor-

tance. The time scale of the chemotactic response is dictated by the inverse sensitivity

βC and the swimming speed Vs, while the ambient nutrient concentration changes over
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a time scale governed by the flow. Another important consideration in the following

discussions is the characteristic length scale associated with nutrient (and bacterial)

heterogeneity lC , i.e,

l2
C
≡ (C − C0)2

|∇C|2
, (2.10)

and the volume-averaged (denoted by an over-bar) nutrient gradient |∇C|. This latter

quantity is a useful measure of the scale of the nutrient gradient being experienced by a

bacterium in the flow field. Thus, any comparative analysis of the resulting dynamics

is best understood by keeping in mind (i) the chemotactic and hydrodynamic time

scales, and (ii) the nutrient gradient length scales. In what follows, we bring out

the effect of each relevant biophysical parameter by resorting to a comparison of the

above mentioned intrinsic scales of the problem.

2.3.1 Influence of biological parameters, αC, βC and Vs

As discussed above, the nutrient strand formation is driven by fluid flow, while

the localization of the bacteria in regions of high nutrient concentration is achieved by

chemotaxis. This means that the biological parameters primarily govern the speed

with which a nutrient ‘hot-spot’ is encountered. We performed simulations for a

wide range of these parameters, in order to bring out their effect on the consumption

process. We begin by analyzing the influence of the uptake rate constant αC . A

measure of this constant can be obtained by first calculating the uptake rate on a

“per cell” basis, which is estimated from the diffusion limited uptake time scale that

scales as τ−1
diff. ≈ aDmB0, where a is the characteristic size of the bacterium [97].

For a given number density B0, αC then scales as ≈ (B0τdiff.)
−1 ≈ aDm. This gives

αC ≈ O (10−8) cm3s−1cell −1, for a ≈ O (10) µm and Dm ≈ O (10−9) m2/s.

Fig. 2.3(a) shows how the instantaneous motility benefit changes with time for

rate constants ranging from 1x10−10 cm3s−1cell−1 to 1x10−7 cm3s−1cell−1. We notice

a monotonic increase in the motility benefit as αC increases. The results indicate

that a faster rate of consumption translates directly to enhanced motility benefit. A
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physical reason for the behavior shown in Fig. 2.3(a) can be understood by comparing

two time scales pertinent to the problem: the uptake time scale and the time scale

for the persistence of nutrient gradients. A faster rate of uptake enables the motile

species to profit more from staying in regions of high nutrient concentration. These

regions eventually perish due to diffusion and their ephemeral nature is best exploited

if the bacteria consume the nutrient rapidly enough. But we must keep in mind that

higher αC means faster consumption by the non-motile species as well. Therefore,

the relative rate of consumption, i.e., the chemotactic amplification RU stays more

or less the same for each case−particularly for αC = 10−10 and 10−9 cm3s−1cell−1−as

seen in Fig. 2.4(a). In other words, any advantage offered to the motile species by

an increase in αC is offered equally to the non-motile species, resulting in no relative

benefit for the former. Our calculations show that, for the parameters of Fig. 2.3,

the motile bacteria consume the nutrient ≈ 5% (∆U/ĊNM ≈ 0.05) faster than the

non-motile ones, irrespective of the value of αC .

The next biological parameter we consider is the inverse chemotactic sensitivity βC

(see equation 2.4). This parameter is only relevant for motile bacteria. It is a measure

of the time taken by a chemotactic bacterium to reorient towards the direction ∇C,

i.e., in the direction of increasing concentration of the chemoeffector C. Lower values

of βC indicate one of the following two scenarios: (i) for a fixed |∇C|, the bacterium

rotates more rapidly to attain a swimming direction along ∇C, or (ii) the bacterium

is able to sense subtler spatial gradients in its vicinity, and reorient accordingly.

Fig. 2.3(b) shows a series of curves wherein the value of the dimensionless motility

benefit, ∆Ū(t), increases progressively, as βC is reduced from 4000.0 µMcm−1s to

0.4 µMcm−1s. This is an implication of the balance between the two reorientation

effects in equation 2.4: rotation due to the ambient vorticity (ω × p) vs. rotation as

a response to local gradients in C
(
β−1
C (I− pp) · ∇C

)
. The rotation due to ambient

vorticity dominates for large values of βC , and although bacteria always tend to rotate

towards the direction of increasing nutrient concentration, they are unable to do so

quickly enough. This reveals a second balance of time scales inherent in our problem:
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Figure 2.3. : (Color online) (a) Time evolution of the dimensionless motility benefit

for different uptake rate constants (αC). βC = 40.0 µMcm−1s. (b) Time evolution of

the dimensionless motility benefit for different inverse chemotactic sensitivities (βC);

the units of βC are µMcm−1s. αC = 1x10−8 cm3s−1cell−1. The other parameters are:

d = 1.32 mm; φ ≈ 11%; Vs=100 µms−1; Dm = Db = 5x10−4 cm2/s; C0 = 25 µM;

B0 = 1.5x105 cells/cm3; Eo = 0.40; Ga = 2x104.
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Figure 2.4. : (Color online) (a) Time evolution of the chemotactic amplification factor

for different uptake rate constants (αC). βC = 40.0 µMcm−1s. Clearly, a change in

αC does not affect the relative consumption rates significantly, because it proportion-

ately enhances the values of ĊM and ĊNM . (b) Time evolution of the chemotactic

amplification factor for different inverse chemotactic sensitivities (βC); the units of

βC are µMcm−1s. αC = 1x10−8 cm3s−1cell−1. The other parameters are: d = 1.32

mm; φ ≈ 11%; Vs=100 µms−1; Dm = Db = 5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105

cells/cm3; Eo = 0.40; Ga = 2x104.
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the competition between |ω|−1 (the time scale for reorientation by flow) and βC
|∇C|

(a chemotactic reorientation time scale). As long as βC
|∇C| > |ω|

−1, the reorientation

will predominantly be due to the local rotation rate of the fluid. In this case, the

possibility of chemotaxis being beneficial is contingent on the proximity of motile

bacteria to regions of high concentration gradients (large values of |∇C|), because low

values of |∇C| prove insufficient to overcome the tendency of hydrodynamics-induced

reorientation. Scaling analysis reveals that in order for chemotactic reorientation

to be effective, βC must be ≤ |∇C|
(uc/lref )

; which gives−for parameters used in Fig.

2.3(b)−βC ≤ O(10) µMcm−1s.

Fig. 2.3(b) shows that the increase of motility benefit ∆Ū(t) is not always com-

mensurate with the increase in β−1
C , particularly when βC is very large (least sen-

sitive chemotaxis) or small (most sensitive chemotaxis). The rate of increase in

max.
{

∆Ū
}
−with respect to βC−becomes smaller when βC reduces. This suggests

an upper limit to the chemotactic advantage that can be offered by enhanced sensi-

tivity to gradients in nutrient concentration. This is seen in the reduced difference

in the motility benefit curves for βC = 4.0 µMcm−1s to 0.4 µMcm−1s, and quantified

in Fig. 2.5. It is also apparent that the value of ∆Ū(t) for βC = 4000.0 µMcm−1s to

400.0 µMcm−1s is not substantial. This observation corresponds to a regime where

chemotaxis is not as significant in reorienting the bacteria as hydrodynamics. Thus,

we conclude that βC ≥ O(100) µMcm−1s represents negligible effect of ∇C on the

bacteria’s orientation, while βC ≤ O(10) µMcm−1s represents almost instantaneous

reorientations to ambient ∇C. A true coupling of the chemotactic and hydrody-

namic reorientation effects takes place only for the intermediate values of βC (O(10)

µMcm−1s ≤ βC ≤ O(100) µMcm−1s). Fig. 2.4(b) shows that higher chemotactic

sensitivity (low βC) enhances the total uptake by 4% for Vs = 100 µm/s. This factor

increases for higher swimming speeds, which is discussed next.

The swimming speed is another biological factor that allows marine bacteria to

exploit gradients in nutrient concentration. Since diffusion tends to smoothen all

gradients, it is imperative that the bacteria swim to nutrient-rich regions as fast
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Figure 2.5. : (Color online) Variation of the maximum value of the dimensionless

instantaneous motility benefit, max.{∆Ū}, with βC scaled by (|∇C|ref lref/uref ). The

motility benefit increases with the chemotactic sensitivity (inverse of βC), but not

indefinitely; a saturation occurs for βC < 0.4µMcm−1s.
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Figure 2.6. : (Color online) (a) Time evolution of the dimensionless motility benefit

for different swimming speeds. (b) Time evolution of the chemotactic amplification

for different swimming speeds; the units of Vs are µm/s. (c) The maximum motility

benefit scales linearly with the swimming speed (Vs,0 = 100 µm/s). The other param-

eters are: d = 1.32 mm; φ ≈ 11%; αC = 1x10−8 cm3s−1cell−1; βC = 40.0 µMcm−1s;

Dm = Db = 5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105 cells/cm3; Eo = 0.40;

Ga = 2x104.
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as possible. This balance between the diffusion and the chemotactic time scales

is one of the most important factors in determining the extent to which motility

can be beneficial in marine environments [61]. Fig. 2.6(a) brings out the effect of

swimming speeds on the motility benefit, with speeds ranging from 50 to 300 µm/s;

a range of values that is typical for marine bacteria. The first feature we observe is

that increasing Vs has a fairly monotonous effect on the consumption characteristics:

faster bacteria profit considerably. This is a direct consequence of the chemotactic

time scale being progressively shorter than the diffusion time scale, as Vs is increased.

This means that under identical conditions, a faster bacterium will be able to travel

deeper into the nutrient-rich regions as compared to a slower bacterium. Just like

βC , Vs only affects the performance of the motile species, and so higher swimming

speeds also lead to an increase in the relative consumption, as shown in Fig. 2.6(b).

An interesting observation is the dependence of the maximum motility benefit on the

normalized swimming speed Vs/Vs,0; which is linear for a wide range of swimming

speeds, as shown in Fig. 2.6(c). This is an important result because it allows us to

estimate the motility benefit at different swimming speeds of the bacterium under

more varied conditions set by the other parameters involved. One can estimate the

maximum possible enhancement in the consumption rate by noting two things: (i)

for the highest chemotactic sensitivity (βC = 0.4 µMcm−1s), the consumption is

enhanced by ≈ 4%, and, (ii) the maximum motility benefit scales linearly with the

swimming speed Vs. One subtle aspect of higher swimming speeds leading to enhanced

consumption is the assumption that the span of nutrient-rich regions is wide enough

to ensure that they are not simply bypassed by the faster bacteria. There is a trade-

off between reaching nutrient-rich regions faster and staying there for as long as

possible [61]. Based on the results of our simulations, the spatial extent of nutrient-

rich regions is wide enough for increased Vs to pose significant benefits.

To conclude this Section, we stress on the nature of dependence of ∆Ū and RU on

each of the biological parameters studied. We saw that a the change in αC only affects

∆Ū and not RU , because increasing αC increases the consumption rate by both motile
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and non-motile bacteria. But an increase in βC and Vs affects only the consumption

by motile bacteria, and thus results in significant changes in both ∆Ū and RU . In

case of Vs, the chemotactic advantage is derived from faster gradient climbing, which

enables the fast bacteria to seek out proportionately higher nutrient concentrations

and increase the uptake rate. Therefore, the maximum motility benefit achieved

increases linearly with Vs. The variation of ∆Ū with βC is more complex and the

response of Fig. 2.3(b) is due to the continuously evolving nature of both ∇C and

|ω|, and their interaction via equation 2.4. The apparent saturation in instantaneous

∆Ū(t̄) for low values of βC is due to purely chemotactic reorientations; while negligible

∆Ū(t̄) for high values of βC can be attributed to purely hydrodynamic reorientations.

2.3.2 Influence of physical parameters: drop diameter and volume frac-

tion

Biological parameters like the ones discussed above are only one set of properties

that can influence the nutrient consumption by motile and non-motile bacteria. An-

other set of properties comes from the hydrodynamic aspects of oil spill, namely the

diameter of the rising drops and their volume fraction. These properties change the

background flow field and in this way, fundamentally alter the process of chemotaxis.

While there was very little qualitative change in the evolution of the nutrient field

in the DNS of the previous set of results, we cannot say the same when the back-

ground hydrodynamics−the major cause of nutrient redistribution−itself is different.

The size and volume fraction of the rising oil drops can drastically change the length

scales of the nutrient strands and the time scales of their transport through the do-

main. It will also directly affect the transport of the bacteria (see equations 2.3 and

2.4), thus providing us with a wide array of bio-physical effects to investigate. We

study these effects systematically by: (a) first varying the diameter of the drops but

keeping the volume fraction constant; and then (b) varying the volume fraction of
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the oil but keeping the drop diameters constant, in order to facilitate comparisons

between the various cases considered.
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Figure 2.7. : (Color online) (a) Time evolution of the chemotactic amplification factor,

for different drop diameters, but same volume fraction in all cases: φ ≈ 11%. The

units of Vs are µm/s, and of βC are µMcm−1s. (b) Time evolution of the chemotactic

amplification factor, for different volume fractions, but same drop diameters in all

cases. Eo = 0.40; Ga = 2x104. d ≈ 1 mm. The other parameters are: αC = 1x10−8

cm3s−1cell−1; Dm = Db = 5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105 cells/cm3. We

would like to emphasize that the motility benefit, ∆Ū , follows an identical trend as

the amplification factor, RU , and therefore is not shown here (max
{

∆Ū
}

= 0.006).

Fig. 2.7(a) shows evolution of the amplification factor RU(t) as a function of the

diameter of the oil drops. It is to be noted that in all of the cases described, the size

of our representative system (i.e., the computational domain) is adjusted such that

the volume fraction of the oil phase remains the same. We note that dispersants are

often used in oil spill remediation efforts to help break the oil into smaller droplets by

reducing the interfacial tension between water and oil. The reduced drop diameters

(due to break up) increase the effective surface area of the oil phase, making it easier
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for the biodegrading agents to break down the heavier (insoluble) HCs released in

the oil spill. Here, we show that this also has an indirect effect on the degradation

of the soluble HCs, as the flow field around the rising drops depends heavily on the

drop diameter, via the Eötvos and the Galileo numbers. The drop diameters for a

surfactant-laden oil phase are typically ≈ 1 mm or smaller, and those for a pure

oil phase emanating from a leak are ≈ 5 mm or larger [94–96]. In this Section, we

investigate the dependence of the amplification factor on d, for three drop diameters,

spanning across a range that includes the aforementioned sizes. We see a marked

difference in the values of RU(t̄) for the three cases, as shown in Fig. 2.7(a). The

amplification is seen to be the highest for the smallest drop diameters. In fact, for the

largest diameters (the red lines in Fig. 2.7(a)) motility doesn’t lead to any significant

advantage whatsoever, irrespective of changes in the two most important biologi-

cal parameters−Vs and βC−governing the sensitivity of motile bacteria to ambient

gradients. The advantage offered by high swimming speeds and/or high chemotactic

sensitivity seems to get enhanced as the diameter of the oil drops is reduced. The first

effect (increased sensitivity to Vs with lower d) is a direct consequence of the length

scales traversed by the motile bacteria to reach the high-concentration regions, which

scale as lc (see equation 2.10), and are much shorter for smaller drop diameters. In

fact, it is seen that lC ≈ O(1) mm for d = 1 mm, and lC ≈ O(100) mm for d = 5

mm (see Fig. 2.12 in Appendix). The second effect (increased sensitivity to βC with

lower d) is also directly attributed to a change in the drop diameters; with smaller

drops engendering stronger gradients, and faster reorientations. When the character-

istic length scale of the problem decreases, it leads to a proportional increment in the

magnitude of concentration gradients, making chemotaxis more effective. Thus, even

though the spatial extent of heterogeneities increases with increasing drop diameters,

the gradients within these heterogeneities are not strong enough to provide sufficient

advantage to motile bacteria. We note that larger drop diameters also mean reduced

values of the characteristic vorticity (|ω| ≈
√
g/d), but this just means that bacte-

ria do not change their swimming directions fast enough even due to rotation by the
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flow. In such a scenario, the bacteria do not deviate much from their initial swimming

direction, and it can be said that their encounter with nutrient-rich regions depends

heavily on them simply straying into regions with high enough values of C, or |∇C|.

In light of this discussion, the results presented in Fig. 2.7(a) suggest a potential

benefit that may be incurred by motile bacteria if dispersants are used during an oil

spill.

Finally, we discuss what happens if the volume fraction φ of oil in the oil-water

system changes, but the diameter of the drops remains the same. This parameter is a

reasonable metric to quantify the intensity of any leak, with higher volume fractions

representative of regions of intense dispersive activity by the rising, insoluble HCs.

In the DNS, we simply change the number of drops occupying the computational

domain to change the volume fraction of the system. We analyze small drop diameters

(d ≈ 1 mm) so as to characterize chemotactic advantages that are significant. Our

studies indicate a non-trivial temporal evolution of the chemotactic amplification

as a function of the volume fraction. There are significant differences, both in the

maximum amplification achieved, the time scale at which said maximum is reached,

and the rate of the eventual decay in RU(t). The maximum value of RU is higher

for φ ≈ 6% and φ ≈ 22%, than it is for φ ≈ 11%. This increase in the maximum

value of RU either side of φ ≈ 11% can be explained by examining how the nutrient

patch deforms in the two cases. The pseudo-turbulent dissipation rate increases as the

volume fraction of the system increases [71]. In our study, the values of the steady

state dissipation rates per unit mass (in the suspending fluid) for φ ≈ 22%, 11%

and 6% are 9.3 × 10−3 W/kg, 4.3 × 10−3 W/kg and 2.7 × 10−3 W/kg, respectively.

Thus, the nutrient dispersion−which increases monotonically with the dissipation

rate in the fluid [61]−is fastest for φ ≈ 22% and slowest for φ ≈ 6%. This results

in more intense stirring of the nutrient in the former case, leading to a relatively

higher initial availability of the nutrient, and thus an earlier peak in RU . But high

dissipation rate also means faster mixing. The strong gradients that form disappear

equally quickly and therefore the chemotactic advantage isn’t sustained for long.
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The behavior for φ ≈ 6% is exactly opposite, wherein the initial distribution is not

‘broken’ quickly enough. This can be explained by considering the anisotropy in the

fluid velocity fluctuations, or equivalently, the same for the drop velocity fluctuations:

Reu′/Rev′+w′ [70, 71]. This ratio is a measure of the dispersion of the nutrient in the

rise-direction, as compared to the dispersion transverse to the rise-direction. Its values

for φ ≈ 6%, 11%, and 22%, are 3.3541, 1.4248 and 1.3403, respectively. Clearly,

for the lowest volume fraction, there isn’t appreciable transverse dispersion due to

pseudo-turbulence. As a result, the nutrient is not distributed over an appreciable

region of the domain early on in the simulations. But this also means that it takes

greater time for the nutrient to diffuse away to a uniform background concentration.

Therefore, for φ ≈ 6%, the chemotactic species get ample time to populate the

nutrient-rich regions, and so a maximum in RU is reached, but much later than

that for φ ≈ 22%. The motile bacteria are afforded more nutrient-rich regions, and

importantly, for longer times, if the fluid flow is driven by a lower volume fraction of

drops. This prolongation of the chemotactic advantage−and a very gradual decay−is

readily seen in Fig. 2.7(b). For φ ≈ 11%, the two effects−initial nutrient stirring and

eventual homogenization−balance each other and neither one is dominant enough.

Thus, the amplification for φ ≈ 11% is not stronger than φ ≈ 6% because of relatively

faster homogenization of the nutrient, and is not stronger than φ ≈ 22% because

of relatively slower initial dispersion of the cylindrical nutrient patch. Finally, we

emphasize that for the range of parameters considered in Fig. 2.7(b), the average

rise Reynolds number of the system does not vary much with the volume fraction

(Rer ≈ 15−35); leading us to believe that it is solely the aforementioned chemotactic

interactions of the bacteria with the nutrient field−and not the specific bacterium-flow

interactions−that result in the varied behavior exhibited in this Section.
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2.4 Chemotactic amplification vis-à-vis nutrient availability

We have seen how different bio-physical parameters shape the evolution of the

motility benefit ∆Ū(t̄) and the chemotactic amplification RU(t̄), in pseudo-turbulent

flows generated by a swarm of rising drops. The motility benefit only quantifies the

difference between the consumption rates of motile and non-motile bacteria, but does

not fully specify the advantages of motility, e.g., even though ∆Ū(t̄) increases with αC ,

RU(t̄) remains unchanged, indicating that for the parameter values considered, faster

consumption doesn’t necessarily help the motile bacteria exclusively. On the other

hand, whenever motile bacteria are provided an exclusive advantage (i.e., motility re-

sults in higher relative rates of consumption), the nature of the variation of RU(t̄) and

∆Ū(t̄) is almost identical. Therefore, the importance of defining a second metric to

quantify chemotactic advantage doesn’t become immediately obvious. But whenever

the nutrient availability is low, the value of ∆Ū(t) is bound to be smaller than the

cases where the nutrient availability is high [62]. In such cases it is more instructive

to assess the chemotactic advantage in terms of the chemotactic amplification factor.

Fig. 2.8 highlights the importance of measuring the quantity RU . It can be seen

that the absolute motility benefit ∆Ū is higher when the initial nutrient volume (Vp)

is higher, but maximum amplification occurs for the case in which Vp is lower. This

shows how motile bacteria are expected to profit most from situations where nutrient

availability is sparse. It is also seen that the motility benefit and the amplification

factor decay to zero and to unity respectively, much faster for lower values of Vp.

This is because of the smaller nutrient patch being mixed up faster. Therefore, even

though low nutrient availabilities favor consumption by motile species, this advantage

doesn’t last for long.

In our studies, the chemotactic amplification varies from being negligible (< 1%)

for the larger values of d and φ, to ≈ 24% for systems where d ≈ 1 mm, φ ≈ 6%,

swimming speeds are particularly high, and nutrient availability Vp/L
3 = 2%, as

seen in the inset in Fig. 2.8(b). An important observation is that under suitable
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Figure 2.8. : (Color online) (a) Time evolution of the dimensionless motility benefit,

for different nutrient availabilities (volume of the nutrient patch Vp, normalized by

the volume of the computational domain L3). (b) Time evolution of the chemotactic

amplification factor, for the same nutrient availabilities as in part (a). The inset

shows the case of maximum RU ≈ 24% obtained in our study (for d ≈ 1 mm, φ ≈ 6%,

Vs = 300 µm/s, βC = 0.4 µMcm−1s, and Vp/L
3 = 2%). Note the significant increase

in the time taken to reach a maximum in RU , and as a consequence, an almost 4-

fold prolongation of the motility benefit as compared to the baseline simulations.

While the maximum is reached somewhere around t̄ ≈ 50 in the baseline simulations,

it takes t̄ ≈ 200 to observe a maximum for the inset. The other parameters for

the main figures (a) and (b) are: Eo = 0.40; Ga = 2x104; d ≈ 1 mm; φ = 6%;

αC = 1x10−8 cm3s−1cell−1; Dm = Db = 5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105

cells/cm3.
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conditions, chemotaxis leads to significant prolongation of the motility benefit: up to

4 times longer than the time durations for the baseline simulations. The amplification

factor is expected to increase even more if the availability of nutrient is limited to

≈ 1% of the computational domain by volume. We emphasize that due to our choice

of a much higher nutrient (and bacteria) diffusivity than usual, the values of RU

and ∆Ū are under-predicted for the results discussed thus far. An examination of

the chemotactic advantage for lower diffusivities, along with Vp/L
3 = 1%, yields an

upper limit of chemotactic amplification to be ≈ 45% (see Fig. 2.10 in the Appendix,

and the accompanying discussion). This particular scenario is quintessential for any

chemotactic species to profit heavily, and represents the case where ∆Ū(t) is extremely

small, yet the nutrient has been consumed almost exclusively by the motile bacteria.

2.5 Conclusion

In this paper, we quantified the chemotaxis driven consumption of a dissolved

chemoeffector in the presence of a rising swarm of oil drops, and unraveled the role

of motility on the consumption dynamics. The pseudo-turbulence induced by the

rising drops causes significant dispersion of the nutrient patches in the water column.

The motile bacteria−capable of chemotactic foraging−benefit from local gradients

in nutrient concentration to reach nutrient-rich regions. They thus gain an advan-

tage which is unavailable to their non-motile, non-chemotactic counterparts, that rely

solely on the ambient flow to carry them towards any nutrient hot-spots. The maxi-

mum motility benefit is seen to saturate with enhanced chemotactic sensitivity, and

is seen to increase linearly with the swimming speed. Lower volume fractions of the

dispersed (oil) phase prove beneficial to the motile bacteria, owing to less vigorous

mixing−and consequently greater availability−of nutrient-rich regions. The motility

benefit for low volume fractions is seen to extend to much longer times. On the

other hand, higher volume fractions also prove advantageous, because they increase

the initial availability of the nutrient to the motile bacteria by vigorously dispersing
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the nutrient patch. The most important effect of the hydrodynamic factors, however,

is the significant difference between the instantaneous values of motility benefit, for

larger oil drops versus those for smaller oil drops (that could result due to addition

of dispersant). This difference stems from the relatively weaker nutrient gradients

formed in the former case, which do not prompt sufficiently strong chemotaxis, thus

reducing the disparity between the behaviors of motile and non-motile species. In

terms of relative rates of consumption, we find that motility can provide an advan-

tage ranging from a O(1)% to ≈ 24% faster consumption of the available nutrient,

depending on the parameters detailed above and the spatial scale of a nutrient patch.

We estimate that lower nutrient diffusivities lead to even more advantageous condi-

tions for chemotactic bacteria, and an amplification of ≈ 45% can be achieved if the

chemotaxis is strong enough, the initial nutrient availability is restricted to 1% of the

domain, and the fluid flow is driven by a low (≈ 6%) volume fraction of oil drops. Our

study provides useful insights, and scope for experimentation, into the role of droplet

size on the microbial biodegradation of dissolved HCs in marine environments.

2.6 Appendix

We provide the definitions of the various pseudo-turbulence parameters given in

Table 2.1. These definitions are borrowed from the papers by Bunner and Tryggvason

[70, 71]. The volume-averaged velocities of the dispersed phase (oil drops) are given

by Vg = (Ug, Vg,Wg), and those of the suspending fluid (water) are given by Vf =

(Uf , Vf ,Wf ). The slip velocity between the two phases is defined as, Vr = Vg −Vf ,

and the rise Reynolds number as, Rer = ρf |Vr| d/µf . The velocity of the center of

mass of the l th drop, V
(l)
g , is obtained by differentiating its position, r

(l)
g , with respect

to time:

V(l)
g (t) =

dr
(l)
g

dt
, (2.11)
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and the instantaneous volume-averaged velocity of the dispersed phase, Vg(t), is then

obtained by averaging V
(l)
g over all the drops:

Vg (t) =
1

Nd

Nd∑
l=1

V(l)
g (t); (2.12)

finally, Vg is obtained by the following time-averaging:

Vg =
1

T

∫
T

Vg (t) dt, (2.13)

and the Weber number is defined as, We = ρfU
2
g d/σ. The fluctuation Reynolds

number Reu′+v′+w′ is defined based on the fluctuation velocities of the dispersed phase,

which we define next. The instantaneous fluctuation velocities are defined as:

V ′gi (t) =

√√√√ 1

Nd

Nd∑
l=1

(
V

(l)
gi (t)− Vgi (t)

)2

, (2.14)

where, i = 1, 2, 3 refers to the velocities along the x, y, z directions, respectively. The

fluctuation Reynolds number is then given by:

Reu′+v′+w′ =
ρg
(
U ′2 + V ′2 +W ′2)1/2

d

µg
, (2.15)

and the mean fluctuation Reynolds number by:

Reu′+v′+w′ =

√√√√√ 1

T

T∫
t=0

Re2

u′+v′+w′ (t) dt, (2.16)

where U ′ = V ′g1 , V
′ = V ′g2 ,W

′ = V ′g3 , and T is the time for which the simulations

are run. The pseudo-turbulent dissipation rate per unit volume of the suspending

fluid (water), εf , is given by:

εfij = 1
2Ωf

∫
Ωf
µ
(
∂ui
∂xj

+
∂uj
∂xi

)2

dV ,

εf =
∑
εfij,

(2.17)

where Ωf is the total volume of the suspending liquid. The dissipation rate on a per

unit mass basis is given by εf/ρf .
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Fig. 2.9 shows the time evolution of the dimensionless motility benefit and the

chemotactic amplification factor, for two cases: one with DR 6= 0 (dashed lines) and

another with DR = 0 (solid lines). All our results have been generated using the

latter assumption, and it is clear from the negligible difference between the two cases

in Fig. 2.9 that our assumption is justified for the present scenario.
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Figure 2.9. : The effect of rotary diffusivity (in the equation governing the orientation

of the bacteria, i.e., equation 2.4) on the instantaneous motility benefit ∆Ū and the

chemotactic amplification RU . We conclude that as long as there exists a background

flow that is strong enough, the rotary diffusivity can be safely neglected. The value

of DR is borrowed from a reference calculating the same for the marine bacterium V.

alginolyticus [98].

Fig. 2.10 details the influence of nutrient diffusivity, Dm, on the chemotactic am-

plification. A comparison between the plots for Sc = 2, 20 and 666 reveals trends

that can be used to estimate the consumption dynamics for more realistic nutrient

diffusivities (10−5 − 10−9 cm2/s). Note that for Sc = 666, Dm = 1.5 × 10−5 cm2/s;

a value that lies on the upper limit of realistic nutrient diffusivities and is indicative

of the diffusivity of methane in water [99]. We also stress that the DNS for Sc = 666

is not fully resolved: there is a 5% error in the values of volume-averaged consump-
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tion rates, and a 15% error in the values of RU, between the highest and the second

highest grid resolutions used. Nevertheless, the results of Fig. 2.10, for Sc = 666, do

provide an approximation of the chemotactic advantage for more realistic diffusivity

values. The first observation is that RU decays faster as nutrient diffusivity increases

(Sc decreases); though this effect is most pronounced for the smallest Schmidt num-

ber. Secondly, RU is much less sensitive to the swimming speed for higher nutrient

diffusivities. Both these behaviors occur because the time scale for the smearing away

of nutrient gradients is faster if the nutrient’s diffusivity is large, and thus nutrient

hot-spots do not persist long enough to yield greater motility benefit and chemotactic

amplification for a given increase in the swimming speed. One can thus say that for

nutrient diffusivities lower than that considered in this paper (i.e., for Dm < 5× 10−4

cm2/s, Sc > 20), the chemotactic advantage will extend for longer times and the bi-

ological parameters−swimming speed and chemotactic sensitivity−will more signifi-

cantly affect the magnitude of the motility benefit and the chemotactic amplification.

See for example, the inset in Fig. 2.10, wherein a 45% amplification in the over-

all nutrient consumption is observed, for fairly strong chemotaxis (Vs = 300 µm/s,

βC = 4 × 10−7 Mcm−1s), low nutrient availability (Vp/L
3 = 1%), and low volume

fraction of oil drops (φ ≈ 6%). In this way, we demonstrate that the results of this

study are indeed a conservative estimate of the actual chemotactic advantage that

can be derived by marine bacteria in their search for nutrients.

The effect of the shape of the initial nutrient patch on the chemotactic advantage

is shown in Fig. 2.11. The initial behavior is identical irrespective of the shape of

the nutrient patch and so is the behavior after the attainment of the maximum; but

the maximum value of the motility benefit and chemotactic amplification is different

in the three cases considered. We find that if the initial shape is a cylinder with axis

perpendicular to the direction of gravity−i.e., along the y axis−then the chemotactic

advantage is reduced significantly after some time. This behavior can be attributed

to the fact that the nutrient patch perpendicular to the drops’ average rise direction

gets distorted and homogenized much faster than one which is along the direction



47

0 20 40 60 80 100
1

1.02

1.04

1.06

1.08

1.1

0 150
1

1.45

Figure 2.10. : The effect of nutrient diffusivity on the chemotactic amplification RU .

The variation is shown as a function of the swimming speed Vs (200 (red) and 300

µm/s (blue)). As evident from Fig. 2.6, the higher RU values correspond to the

higher swimming speeds. Inset: A significant chemotactic amplification of 45% is

observed for Dm = 1.5× 10−5 cm2/s (Sc = 666), if the nutrient availability is lowered

to Vp/L
3 = 1%. The values of the hydrodynamic parameters for the inset are the

same as those for φ ≈ 6% in Fig. 2.7, and the values of the biological parameters are

given in the main text.

in which the drops rise. The same is true for the spherical nutrient patch, although

the difference in the maximum is not as significant. A key point is that although

there exists a quantitative difference, the qualitative evolution is very similar in all

three cases. This leads us to believe that the nature of variation of the chemotactic

advantage, with respect different biophysical parameters, should be similar for the

three different patch-shapes.

Finally, the length scales used to describe the results of Fig. 2.7(a) in Section

2.3.2 are quantified in Fig. 2.12. We note a direct correlation between low values of

l̄C (or, high values of |∇C|) and high values of ∆Ū .
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Figure 2.11. : Time evolution of the (a) instantaneous motility benefit ∆Ū , and, (b)

amplification factor RU , as a function of the initial shape of the chemoattractant

patch. The spherical patch has the same volume as the cylindrical; ‘axis’ refers to

the direction along which the axis of the cylindrical patch is oriented. The other

parameters are: αC = 1x10−8 cm3s−1cell−1; βC = 40.0 µMcm−1s; Vs = 100 µm/s;

Dm = Db = 5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105 cells/cm3.
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Figure 2.12. : (Color online) (a) Time evolution of the nutrient heterogeneity length-

scale lC normalized by the drop diameter d0 = 0.13 cm, for the background flows

corresponding to different drop diameters, d. (b) Time evolution of the volume-

averaged nutrient gradient |∇C| normalized by a reference gradient C0/lref , for the

background flows corresponding to different drop diameters, d. The other parameters

are: αC = 1x10−8 cm3s−1cell−1; βC = 40.0 µMcm−1s; Vs = 100 µm/s; Dm = Db =

5x10−4 cm2/s; C0 = 25 µM; B0 = 1.5x105 cells/cm3.
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3. HYDRODYNAMICS-MEDIATED TRAPPING OF MICRO-SWIMMERS

NEAR DROPS

3.1 Introduction

The ubiquity of micro-organisms coupled with the ever increasing knowledge about

their relevance has inspired vast amounts of fundamental research in the field of

hydrodynamics of micro-swimmers [7–9, 47, 48, 100–106]. A key feature of micro-

swimmer locomotion is their fascinating behavior under the influence of bounding

surfaces, with examples including−but not limited to−“swimming on the right-hand

side” [107], “swimming in circles”, with the direction of rotation depending on the

rigidity [20] or fluidity [23, 24] of the surface, reversal of swimming direction [108]

and wall-accumulation [21,22,109–111]. These near-surface phenomena are of utmost

importance in the comprehension of bio-film formation and evolution [112–114]. In

depth understanding of microbial motion in varied environments can also be sought by

conducting experiments on artificial micro-swimmers, which provide greater control

over their swimming behavior [115–124]. These artificial swimmers have indeed been

used to study the intricacies of locomotion near solid boundaries [122,125,126]. Takagi

et al. [125] performed one such study on the locomotion of a Janus micro-rod in

the vicinity of inert colloidal particles. Their experiments revealed that the rod got

trapped near the surface of a colloid, orbited around it for some time, before escaping

and progressing toward similar interactions with other colloids encountered in its

path. This behavior was explained using lubrication theory and steric interactions.

Later, Spagnolie et al. [127] performed a theoretical analysis of a micro-swimmer near

0This chapter has been reprinted with minor changes, with permission, from the material as it ap-

pears in the article “Hydrodynamics-mediated trapping of micro-swimmers near drops”, by N. Desai,

V. A. Shaik and A. M. Ardekani, Soft Matter, vol. 14, pp. 264, 2018 (DOI: 10.1039/c7sm01615h).

Copyright (2018) of The Royal Society of Chemistry.
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a colloid (rigid sphere) based on far-field hydrodynamic approximations, and reported

a number of conclusions: (i) the existence of a threshold colloid radius above which

swimmers can not escape the colloid via hydrodynamics alone; (ii) the existence of a

“basin of attraction” at most 2-3 body lengths in depth; and, (iii) the possibility of

a diffusion-induced escape, even off colloids larger than the critical trapping radius.

In this paper, we aim to extend the analysis by Spagnolie et al. to locomotion

near (spherical) drops that can either be clean, or have a surfactant on the interface.

Due to the presence of a surfactant, the fluid-fluid interface can exhibit miscellaneous

behavior [128,129] such as viscous, elastic or viscoelastic properties [128,129]. To en-

sure analytical tractability, we assume that the surfactant is insoluble, incompressible

and has zero diffusivity, while the interface is assumed to behave as a “Newtonian

fluid interface” [130] (possessing only interfacial shear and dilatational viscosities, the

latter does not affect the physics due to the incompressible surfactant condition) fol-

lowing the Boussenisq-Scriven constitutive law [130–134]. Our aim is to bring out the

variation in trapping characteristics−in the presence and absence of a surfactant−of

drops of different sizes, and bulk and interface viscosities. A study of this kind is

particularly relevant to the phenomenon of bio-degradation of oil drops by marine

microbes in the event of an oil spill [2, 3]. As an example, consider the Deepwater

Horizon oil spill in the Gulf of Mexico in 2010 [3]. The role played by marine bacteria

in the degradation of the contents of the spill [135] (both water soluble and insoluble)

is well known and has been documented [4, 68, 136, 137]. It is also known that huge

amounts of dispersant/surfactant was added at the well head to break down the heav-

ier hydrocarbons into tiny droplets, and aid bioremediation [3]. These oil droplets, 10

- 60 µm in diameter, got trapped in the subsurface hydrocarbon plumes [69, 93, 138]

and acted as a rich source of carbon for the marine bacterial community. A purely

hydrodynamics-driven attraction of swimmers to drops hints at an intriguing passive

mechanism through which motile marine bacteria may forage for nutrition amongst

oil droplets. The influence of surfactants on the aforementioned attraction is also of

prime interest, as it offers insight on the efficacy of using dispersant in the aftermath
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of an oil spill. Yet another interesting application could be the selective capture,

analysis and treatment of bacteria using air bubbles [139–141]; an approach prevalent

in the food processing industry [142]. Towards this end, we analyze the locomotion

of a micro-swimmer in the vicinity of a drop, and conclude that the addition of sur-

factant results in a drastic reduction in the critical trapping radius of a drop, as long

as the surface viscosity is small. For a given drop size, the surfactant-laden drops

are more likely to trap nearby bacteria. We also show that the diffusion-induced

escape is delayed by the addition of a surfactant, meaning that a bacterium is likely

to be retained on a surfactant-laden drop for longer time, resulting in an increased

possibility of bioremediation via other microbiological processes.

The rest of this paper is organized as follows. We first describe our modeling tech-

nique, the governing equations of fluid flow and swimmer motion, and the boundary

conditions on the surface of a clean and a surfactant covered stationary drop. We

then proceed to solve for the translational and rotational dynamics of the swimmer

and obtain its swimming trajectories to ascertain quantities of interest, like the crit-

ical trapping radius and the basin of attraction. We present a scaling analysis for

the critical trapping radius and the depth of the basin of attraction in the case of

locomotion around a clean bubble. Finally, we incorporate the effects of randomness

in swimming, and estimate the time that a swimmer spends on the surface of the drop

(both clean and surfactant-laden). We obtain the probability distribution function

(p.d.f.) for the trapping time using our simulation results for 104 cases. In all cases,

we perform comparative studies to pinpoint the influence of the drop’s bulk and in-

terface viscosities. In the end, we conclude by reiterating our results and discussing

them with regards to subsurface bioremediation.

3.2 Mathematical model

The bacteria/swimmer is modeled as a prolate spheroid with aspect ratio γ. In a

quiescent fluid in an unbounded domain, it simply swims with a constant swimming
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Figure 3.1. : A schematic of the problem being solved, showing a spherical drop

covered with surfactant. The origin of a ‘fixed’ coordinate system XY Z lies at the

center of the spherical drop. In a quiescent, unbounded, fluid, the swimmer will swim

along the direction p. In cases where the swimmer’s diffusive motion is negligible, the

swimming trajectory is restricted to the plane defined by the vectors r̂⊥ and p, with

the motion governed by eqns. 3.14, and the unit vector r̂⊥ × r̂ always directed along

eZ . Note that h is the dimensionless separation of the swimmer from the surface of

the drop.

speed Vs along its orientation p. The fluid-flow far away from the bacteria/swimmer

can be approximated by a force dipole (dipole strength is F and its orientation is

along p; see Fig. 3.1) acting on the fluid. The flow is governed by the conservation

of mass (eqns. 3.1 and 3.3) and momentum (eqns. 3.2 and 3.4):

∇ · v(e) = 0, (3.1)
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−∇p(e) + µe∇2v(e) = F (p · ∇) {p · δ (x− x2)} , (3.2)

∇ · v(i) = 0, (3.3)

−∇p(i) + µi∇2v(i) = 0. (3.4)

Eqns. 3.1 and 3.2 apply to the exterior, while eqns. 3.3 and 3.4 apply to the interior

of the drop. v(k) (x), p(k) (x) and µk denote the fluid’s velocity, pressure and viscosity,

respectively (k = i (e) for the region interior (exterior) to the drop).

In addition to the governing equations, the fluid velocity and pressure must also

satisfy the following velocity boundary conditions

v(e) · n = v(i) · n = 0 at |x| = R, (3.5)

(I− nn) · v(e) = (I− nn) · v(i) at |x| = R, (3.6)

∣∣v(i)
∣∣ <∞, for |x| = 0; v(e) → 0, for |x| → ∞, (3.7)

The stress boundary conditions written in spherical polar coordinates are given by

n ·
(
T(i) −T(e)

)
· (I− nn) = ∇Sσ +∇S · τS at |x| = R,

∇S · τS = µS

[
2vθ
r21

+ 1
r1 sin(θ)

∂ω̄
∂φ

]
eθ + µS

[
2vφ
r21
− 1

r1
∂ω̄
∂θ

]
eφ,

where ω̄ = 1
r1 sin(θ)

[
∂vθ
∂φ
− ∂

∂θ
(sin (θ) vφ)

]
,

(3.8)

where r1 is the distance from the center of the drop. The surfactant-transport equa-

tion is given by

∇S · vS = 0 at |x| = R, (3.9)
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where R in the above equations is the radius of the drop, n is the normal vector

to the surface, pointing radially outward, ∇S = (I− nn) · ∇ is the surface gradient

operator, vS = (I− nn) ·v, is the tangential fluid velocity on the surface of the drop,

T(e) and T(i) are the fluid stress tensors in the region external and internal to the drop

(T = −pI + µ
(
∇u +∇uT

)
). σ is the interfacial tension of the fluid-fluid interface

and it can be non-uniform if the drop is covered with a surfactant. Eqn. 3.9 is a

reduced form of the surfactant transport equation for the case of an incompressible

surfactant [131]. It needs to be satisfied only if we are considering locomotion near a

surfactant-laden drop; in which case we use the Boussinesq-Scriven constitutive law

for the interfacial stress τS [130]. This is shown in the second line of eqn. 3.8, where

µS is the interfacial shear viscosity. The boundary conditions for the case of a clean

drop can be recovered by disregarding eqn. 3.9, substituting τS = 0 in eqn. 3.8, and

neglecting ∇Sσ in the stress balance equation.

In deriving the aforementioned boundary conditions, we assume that the drop is

not deforming. Drop deformation is negligible when the capillary number (ratio of

bulk viscous stress and the capillary stress), Ca = µeVs/σ0 , (σ0 is the equilibrium

interfacial tension) is much smaller than one [11, 143]. In the case of a weakly de-

forming drop, our analysis, along with the normal stress boundary condition, can

be used to determine the leading order drop deformation. Note that the capillary

number for a bacterium swimming with a speed [8], Vs ∼ O (10− 1000) µm/s in wa-

ter, µe ∼ O
(
10−3

)
Pa s, near oil drops [144], σ0 ∼ O (10) mN/m, lies in the range

O
(
10−6 − 10−4

)
; this justifies our assumption of a non-deforming drop.

We note that a force dipole cannot move on its own in an unbounded Newtonian

fluid, but our model swimmer does swim, due to its intrinsic motility. In presence of

surfaces (solid or liquid interface), however, the swimmer interacts hydrodynamically
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with the surface and develops a component of locomotion−both translational and

rotational−that exists solely due to its proximity to the aforementioned surface, i.e.,

dx
dt

= uHI + Vsp

dp
dt

= ΩHI × p,

(3.10)

where uHI and ΩHI are the hydrodynamic components of bacteria/swimmer loco-

motion, obtained after an application of the Faxen’s laws for a spheroid using the

solution v(e) [13]. The (dimensionless) expressions for uHI and ΩHI are given in

the Appendix. In their present forms, eqns. 3.10 do not include the effects of ran-

domness in the motion of the micro-swimmer. These random effects may occur due

to Brownian motion and/or other intrinsic random behaviors of the swimmer. The

random components of swimmer motility−its linear and angular velocities−are mod-

eled as Gaussian white-noises in three dimensions (ηT ), and on the unit sphere (ηR),

respectively [10,105,145]:

xn+1 = xn + ∆t(uHI + Vsp)n +
√

6DT∆tηT

pn+1 = pn + ∆t(ΩHI)n × pn +
√

4DR∆tηR × pn.

(3.11)

We emphasize that the far-field description employed here has been shown to be

accurate to distances as small as a few body lengths away from rigid walls [14],

and from deformable clean interfaces [146]. In addition, far-field hydrodynamics has

also shown qualitative agreement with experimental results on locomotion near plane

interfaces that are clean, as well as surfactant-laden [147]. But it is important to note

that this far-field description, in spite of its accuracy, does not preclude the swimmer

from ‘penetrating’ into the interface; an occurrence which is not physically realized.

A more accurate analytical description will involve: (i) the inclusion of higher order

singularities (and images) as the swimmer approaches the interface, or (ii) use of

the lubrication/thin-film approximation as the swimmer-interface distance reduces

beyond a threshold. Both these methods will become extremely unwieldy from a
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mathematical standpoint, and therefore, for the sake of simplicity we model the ‘near-

field’ dynamics simply as a hardcore repulsion [127], i.e., we set the normal velocity of

the swimmer (velocity along the line joining the swimmer center to the drop center) as

zero if the swimmer begins to penetrate into the interface. Thus, in addition to eqns.

3.10 (or, 3.11), we need to implement the following constraint/condition, whenever

the swimmer touches the interface:

dx

dt
=

 uHI + Vsp, (uHI + Vsp) · r̂ > 0

(uHI + Vsp) · r̂⊥, (uHI + Vsp) · r̂ ≤ 0
, (3.12)

where r̂ and r̂⊥ are unit vectors along, and perpendicular to the line joining the center

of the drop to the center of the swimmer, respectively (see Fig. 3.1).

An active swimmer can get trapped or adsorbed onto a liquid-liquid interface due

to factors like affinity for one of the two phases comprising the interface (amphiphilic-

ity) [148], chemotaxis driven attachment, or one of the many interfacial phenomena

discussed in [67], and references therein. However, this phenomenon will not, in gen-

eral, occur universally. The details of such an interface-attachment are subject to a

wide range of effects like the nature of the bacterial solution, the fluid-fluid interface,

the presence/absence of surfactant on the drop surface, the nature of the surfactant,

the availability of other compounds and biological material, and the motility traits

(tendency of flagellar bundling-unbundling for petrichous organisms, flagellum flick-

ing for mono-flagellates, strength of diffusive motion, etc.) of the micro-swimmers

themselves. In particular, we note that the bacterium C. crescentus gets trapped

onto an air/water interface when swimming in a nutrient-rich growth medium, but

not in “minimal salt motility medium” [149]. In fact, the ‘competitive adsorption’

of surfactants can also hinder swimmer adsorption onto drop surfaces [149]. Differ-

ent strains of bacteria respond differently to oil-water interfaces; with their response

depending on motility, stage of colony growth, availability of other nutrients and/or

dispersant, nature and composition of the hydrocarbon oil that the bacteria are be-

ing exposed to, and other environmental factors [67, 150–153]. Some hydrocarbon

degrading bacteria (P. aeruginosa) have been observed as showing ‘poor adherence’
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to the target hydrocarbon (hexadecane) [154]. Therefore, it is fair to say that a

description of swimmer motion near oil drops, that is consistent with all aspects of

hydrodynamics and surface chemistry, is quite a formidable task to undertake. With

the above discussion in mind, we assume that the conditions (nutrient availability,

type of surfactant, micro-swimmer affinity) in our study are ideal for the preclusion

of any ‘non-hydrodynamic’ entrapment, and that the repulsive ‘lubrication force’

(and stochastic diffusion [21, 149]) is strong enough to prevent adsorption of micro-

swimmers onto the spherical drops. We do acknowledge however, that the exact

values of critical trapping radius and the mean trapping time being presented in this

paper are subject to change based on the adsorption kinetics of active swimmers near

interfaces. These changes though, can be easily incorporated into our present model,

if a more comprehensive analysis is desired and the adsorption kinetics are known.

We non-dimensionalize the above equations using the following scales: lengths

by the semi-major axis length of the swimmer b, velocities by the swimming speed

Vs, time by b/Vs, viscosity by µe, and pressure by µeVs/b. The important dimen-

sionless parameters in our study then become: the viscosity ratio, λ = µi/µe, the

dimensionless surface viscosity, β = µS/(µeR), the ratio of radius of the drop to

the swimmer length scale, A = R/b, the dimensionless swimmer dipole strength,

α = F/ (8πµeb
2Vs), and the dimensionless translational diffusivity, D = DT/(bVs).

In the subsequent sections, we integrate eqns. 3.10 and 3.11 numerically and

bring out the influence of different viscosity ratios, (dimensionless) surface viscosities,

diffusion strengths and drop radii, on the trapping characteristics of a micro-swimmer

swimming in the vicinity of a clear or surfactant covered drop. We note that all our

results have been obtained for the case of α > 0 (equivalently, F > 0), i.e., for

swimmers called pushers, like the well-studied bacterium E. coli [8].

Next, we justify the range of parameter values used in this manuscript. We assume

the suspending fluid is water. The viscosity ratio of the crude oil drops to water

is λ ∼ O (0.1− 100) [155], λ � 1, and λ � 1, respectively. To understand the

physics associated with the motion of microorganisms near drops of different viscosity,
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we vary the viscosity ratio in the range 10−3 to 103. Since the dipole moment of

E. coli., is F ≈ 0.1 − 1 pNµm [8, 21]; its swimming speed in an unbounded fluid

is [8], Vs ≈ 10µm/s and its length is [8, 21], b ≈ 1 − 10µm, we derive the range

of its dipole strength α = F
8πµeb2Vs

≈ 0.004 − 4. We note that the dimensionless

interfacial viscosity depends on both the dimensional interfacial viscosity and the

radius of the drop, β = µS/ (µeR). Since the typical size of a microorganism lies

in the range of b ∼ O (1− 100)µm [8], we assume the radius of the drop lies in the

range of R ∼ O (10− 1000)µm. At an oil-water interface, high molecular weight

surfactants such as proteins display large interfacial shear viscosities [156,157], µS =

0.1−1000 mN s m−1. However, at air-water interface, low molecular weight surfactants

like sodium lauryl sulfate or a mixture of sodium lauryl sulfate and lauryl alcohol

or decanoic acid or steric acid monolayers show very small surface shear viscosities

[158, 159], µS = O
(
10−4

)
mN sm−1. Furthermore, this interfacial shear viscosity of

low molecular weight surfactants increases with an increase in the concentration of the

surfactant, achieves a maximum value, and then decreases a little. Hence, depending

on the surfactant used, the viscosity ratio, the size of the drop and the surfactant

concentration, the value of the dimensionless interfacial viscosity can vary in the range

0 ≤ β <∞. The value of β → 0 is achieved for small concentration of low molecular

weight surfactant distributed over large bubbles, while the value of β →∞ is achieved

for high molecular weight surfactant distributed over small oil drops.

3.3 Deterministic scattering and trapping

We begin our discussion by analyzing the solution of eqns. 3.10. Firstly, we

aim to identify the minimum radius (the “critical trapping radius” [127]) for which

a swimmer approaching a drop gets trapped, i.e., begins to orbit the drop (see Fig.

3.2). Next, we proceed toward computing the basin of attraction [127], i.e., the

threshold region around the drop within which a tangentially directed swimmer gets

attracted to−and trapped onto−the interface (see Fig. 3.6). Finally, we show that
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the numerically obtained expressions can also be estimated analytically for the special

case of locomotion around a clean (spherical) bubble (λ→ 0).

3.3.1 Critical trapping radius, Ac

We emphasize that the trapping of the swimmer results due to a balance between

the hardcore repulsion (‘enforced’ to prevent the penetration/ of swimmer into the

drop), and the hydrodynamic attraction inherent in eqn. 3.10. Once the latter effect

brings the swimmer close enough to the interface (∼ 1 swimmer body length), the for-

mer effect becomes dominant, thus preventing interface penetration. The subsequent

motion of the swimmer is governed by the hydrodynamics induced rotation, which in

turn depends acutely on the dimensionless parameters described earlier. Crucially,

there exists a critical trapping radius of the drop, below which an approaching swim-

mer simply skims the drop surface for some time before escaping (see Fig. 3.2(a-c)).

This kind of behavior is called scattering [127]. We re-iterate that this scattering be-

havior is contingent upon the swimmer adsorption being negligible, or, the adsorption

time scale being larger than the time taken by the swimmer to traverse the surface of

the drop. This is because if the swimmer adsorption is fast enough, then no scattering

is likely to occur. For radii larger than the critical trapping radius, the swimmer is

unable to escape and becomes hydrodynamically trapped onto the drop surface (see

Fig. 3.2(d,e)).

Fig. 3.3 shows how the critical trapping radius for a clean drop, Ac,clean, varies

as a function of the viscosity ratio, (λ), for different values of the dipole strength α.

The particular nature of the Ac vs. α variation is explained via scaling analysis, and

physically, in a later section. We note that a significant difference in the values of

Ac,clean occurs only for low values of the dipole strength, with the most viscous drops

being more capable of trapping micro-swimmers that approach them directly. A drop

is said to be ‘more capable’ if its Ac value is smaller. On the other hand, for higher
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Figure 3.2. : Schematics showing the idea of the critical trapping radius [127]. Notice

how the trajectories around smaller drops escape (a-c), while those around drops with

radius larger than the critical trapping radius (A > Ac ∼ 10.7) get trapped, and orbit

the surface (d,e).

values of α, the threshold does not vary much, i.e., the viscosity ratio does not dictate

the trapping strength for swimmers with high dipole strengths.

Next, we investigate the effect of surface viscosity in Fig. 3.4 (a) and (b). It

is clear that the addition of surfactant leads to interesting changes in the trapping

characteristics, by rendering the viscosity ratio immaterial for high values of surface

viscosities (β ≥ 1), as shown by the more or less coincident curves in Fig. 3.4(b). It

is only for negligible surface viscosities, i.e., β → 0, that the viscosity ratio becomes
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Figure 3.3. : Variation of the critical trapping radius, Ac,clean, with the swimmers’

dipole strengths, α, for different viscosity ratios, λ. The origin is located at the center

of the drop, and the swimmer is initially placed at (X0, Y0, Z0) = (0.1,−(A+ 20.0), 0).

Eqn. 3.10 are integrated using the explicit-Euler method, with time-interval ∆t =

10−3.

important, and affects the values of the critical trapping radii (Fig. 3.4(a)) for the

case of surfactant-laden drops.

The surfactant-laden drops exhibit another very interesting behavior: they are

more effective in trapping approaching swimmers than even the rigid sphere, partic-

ularly for small values of α. This advantage is highest for β → 0 and reduces with

increasing β, ultimately resulting in an Ac,surf. vs. α trend that is coincident with

the corresponding curve for a rigid sphere (Fig. 3.4(b)). It also means that the effect

of λ on Ac is opposite for surfactant-laden drops, when compared to the clean drops.

For a clean drop, Ac was seen to decrease as λ was increased; but for surfactant-laden

drops, the effect is reversed, i.e., Ac increases with an increase in λ. This observation

helps us to answer a key question: does the addition of surfactant yield any benefit in

terms of the ability of a drop to trap nearby swimmers? To answer this, we refer to

Fig. 3.5, where we note that the addition of surfactant does prove extremely useful

in cases where the dipole strength of the swimmer is not very high and the surface

viscosity (due to presence of surfactant) is negligible. Even for typical values of α
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Figure 3.4. : Variation of the critical trapping radius for surfactant-laden drops,

Ac,surf., with the swimmers’ dipole strengths, α, for different viscosity ratios, λ. (a)

β = 0; and (b) β = 1.

(0.4 - 0.6), the addition of surfactant (with small surface viscosity) can lead to a

∼ 30% reduction in the critical trapping radius. It must be noted that this differ-

ence increases even more if the viscosity ratio is below unity, with the most beneficial

scenario for surfactant addition being when λ → 0, i.e., for micro-organism locomo-

tion around drops with negligible viscosity as compared to the suspending fluid. The

above dicussions hint at a potential benefit that may be gained by using dispersant

in oil spills as it would result in disintegration into smaller oil drops that could still

passively attract bio-degrading bacteria, while simultaneously increasing the surface

area to carry out the bio-degradation.

3.3.2 Basin of attraction, h∗

Fig. 3.6 shows an example of two swimming trajectories−one just inside the

basin, and another just outside−and their different evolutions with time, depending

on their proximity to the interface. The swimmer that started inside the basin of
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Figure 3.5. : A comparison between the critical trapping radii for three cases: the

rigid sphere, a surfactant-laden drop (β = 0; λ = 1), and a clean drop (λ = 1). It is

seen that surfactant-laden drops with negligible surface viscosities have the smallest

critical trapping radius.

attraction gets hydrodynamically trapped, while the one that started outside the

basin escapes. This shows that a true indication of a swimmer’s entrapment is dictated

not only by the critical trapping radius, but also by the basin of attraction, because

hydrodynamic effects on their own are not strong enough to attract distant swimmers

onto surfaces/interfaces. We emphasize here that unlike the critical trapping radius,

which may change depending on the adsorption kinetics of the system, the concept

of the basin of attraction remains valid even in cases where the micro-swimmer can

get easily adsorbed onto the drop surface.

In what follows, we define the ‘basin depth’ h∗ as the maximum distance from

the surface of the drop, for which a swimmer released tangentially (θ(0) = 0) gets

attracted to, and begins to orbit, the drop. It should be noted that such a basin of

attraction exists only if the drop radius is larger than the critical trapping radius. Fig.

3.7 shows the depth of the basin of attraction of a clean, spherical drop, for a range of

dipole strengths and viscosity ratios. In each of the sub-figures, we see that the basin’s

extent (h∗) increases with the viscosity ratio, which is expected based on our earlier
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Figure 3.6. : An example of the basin of attraction: the magenta trajectory falls

just inside the basin of attraction h∗ and so begins to orbit the interface; the green

trajectory on the other hand, falls outside h∗, and hence escapes the interface. Note

that the radius of the drop is large enough to trap any directly impacting swimmers,

and the escape in this case is only because of an increased initial separation, i.e.,

h > h∗.

discussion, where we saw that the clean drop’s ability to trap swimmers enhances as

the viscosity ratio increases. Another important observation is the reduced role of the

viscosity ratio in dictating entrapment, as the swimmer’s dipole strength increases.

For higher dipole strengths (α), the curves for the three viscosity ratios are seen to

almost collapse onto each other, i.e., h∗ has a weaker dependence on λ. Thus, the

swimmers with larger values of α get attracted to the interface, regardless of it being

a low-viscosity fluid-sphere (λ < 1), or a high viscosity one (λ > 1). In contrast,

swimmers with low values of α are trapped better by the more viscous drops.

Finally, Fig. 3.8 depicts these variations for a surfactant-laden drop. In this case,

the effects of changing λ, A and α, are qualitatively the same as those for a clean

drop; while an increase in the surface viscosity leads to a reduction in the depth of

the basin. We notice a correlation between the basin depth and the critical trapping
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Figure 3.7. : Variation of the basin of attraction for a clean drop, as a function of the

swimmer’s dipole strength (α), the drop radius (A), and the viscosity ratio (λ).

radius, in that the drops having lower values of Ac have higher values of h∗. Therefore,

we conclude that drops with lower values of β are more successful in trapping nearby

swimmers, owing to their smaller critical trapping radii.

Based on the above results, we conclude that the radius of the basin of attraction

(Abasin = A+ h∗), is at best, only about three body-lengths larger than the radius of

the drop (for the case of A ∼ 80, α = 2.0, β = 0, λ = 102). This means that the

swimmer must be at most O (10) µm off the interface, in order to get trapped. In all

other cases, the swimmer will most definitely escape the hydrodynamic attraction of

the drop.

3.3.3 Swimming dynamics: h(t)− θ(t) phase space analysis

In this section, we discuss the solution to eqns. 3.10 from a dynamical system

perspective. In the deterministic case, given an initial condition, the position and

orientation of the swimmer are determined uniquely by the evolution equations for
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Figure 3.8. : Variation of the basin of attraction for a surfactant-laden drop, as a

function of the swimmer’s dipole strength (α), the drop radius (A), and the viscosity

ratio (λ). The dimensionless surface viscosity β = 0.

h(t) and θ(t). It is therefore instructive to look at the vector field/phase space of h(t)

vs. θ(t) to gain an insight into the various kinds of behaviors that are possible. The

nature of such a vector field is governed by parameters A, α, λ and β. Fig. 3.9 shows

the vector field for two different cases: A = 10, α = 0.8 and A = 90, α = 2.0, with

λ and β being the same in both cases. We can immediately see that in Fig. 3.9(a),

there are no initial points, h (0) and θ (0), that correspond to a trajectory which,

after a sufficiently long time, ends up on the surface of the drop (h(tend) ∼ 1). This

is because of the radius in that case being smaller than the corresponding critical

trapping radius. On the other hand, Fig. 3.9(b)shows several initial points in the

phase space with trajectories that lead to swimmer capture. Notably, the concept of

the basin of attraction is quite clear when we see how increasing h (0) (while keeping

θ (0) = 0) first leads to swimmer entrapment, and then to escape, as h (0) increases

beyond the depth of the basin of attraction, h∗ (see the curves in Fig. 3.9(b) that
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are colored and marked by symbols). Interestingly, all phase spaces for A > Ac are

characterized by a saddle point, as shown by the diamond symbol for Fig. 3.9(b),

that divides the phase space into ‘trapping’ and ‘escaping’ regions. In Fig. 3.9(b),

the regions marked ‘T1’ and ‘T2’ are the trapping regions, while those marked ‘E1’

and ‘E2’ are the escaping regions of the phase space.
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Figure 3.9. : Phase space plots for, (a) a surfactant-laden drop with radius less

than the corresponding Ac, and, (b) one with radius larger than Ac. There are no

trajectories that eventually get trapped at h = 1 in (a), while in (b) there are a host

of such trajectories, most notably the ones marked with symbols. The h = 1 region

can easily be discerned by the bottom-most row of vectors. The dashed lines bound

the regions in the h − θ space that we term as ‘escaping’ regions, while the solid

lines bound all initial (h, θ) pairs that will eventually get trapped onto the surface

of the drop, or the ‘trapping’ region. For the lines in the legend, θ(0) = 0; these

correspond to the tangential release used to define the basin of attraction (see Fig.

3.6). Notice the change in the swimmer dynamics (from trapping to escape) as h(0)

increases beyond h∗ (∼ 3 in the case shown).
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The idea behind the critical trapping radius becomes clearer, when we note that

reducing the value of the drop radius leads to a “loss of the saddle point” into the

surface of the drop, an idea explained in detail by Ishimoto and Gaffney in the context

of swimming motion near plane walls/interfaces [160].
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Figure 3.10. : (a) Variation of the saddle point location (hs, θs) as a function of the

drop radius, for a surfactant covered drop. Similar behavior is also seen for all other

cases, i.e., for clean drops, and for a rigid sphere (not shown here). (b) Variation

of the saddle point location (hs, θs) as a function of the viscosity ratio, for a clean

drop (filled symbols), and a surfactant covered drop (hollow symbols, β = 0.01).

The meaning of the symbols is: triangles → λ = 0.1, circles → λ = 1.0, squares

→ λ = 10.0, diamond → rigid sphere, i.e., eqn. 3.13.

In our case, we see from Fig. 3.10(a) that reducing the value of A brings the saddle

point closer and closer to h = 1, and this in turn reduces the area of the ‘trapping’

region. We note that although in Fig. 3.10(a) we show this ‘loss of saddle point’

for one set of parameters, it is a general occurrence for all parametric ranges in our

study. Another interesting aspect of this section is the sensitivity of the saddle point

(of course, for cases when A > Ac) to variations in λ and β. This is shown in Fig.
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3.10(b). We notice straight away that the behavior for λ and/or β → ∞ matches

that for a rigid sphere [127]:

hs =
(9α2A/2)

1/5

2

θs =

(
3α

8A2

)1/5

.

(3.13)

Secondly, we see once again, the opposite effects of changing the viscosity ratio for

a clean drop, and a surfactant-laden drop. For a given surfactant (fixed β), reducing

λ moves the saddle point to higher values of h, and lower values of θ. The extent

of this shift is determined by the value of β (it is not very significant, so it has not

been shown in the manuscript). In case of a clean drop however, reducing λ moves

the saddle point to lower values of h, and lower values of θ. These changes in the

saddle point location, although significant from a qualitative aspect, are quite minor

in a quantitative sense; thus highlighting the utility of our discussions in the previous

sections towards gaining a more physical understanding of the system dynamics.

3.3.4 Scaling laws for Ac and h∗, as λ→ 0

In this section, we derive analytical expressions for the critical trapping radius and

the size of the basin of attraction, for the case of locomotion around a clean bubble,

i.e., when the viscosity ratio, λ→ 0. In cases where the diffusivities are negligible, the

motion of the swimmer is restricted to two dimensions: in a plane that is the defined

by the unit vectors r̂ and p. This two-dimensional motion can be completely specified

by the following (dimensionless) dynamic equations for the swimmer separation h and

its in-plane orientation θ [127](see Fig. 3.1):

dh
dt

= sin θ + uHI · r̂,

dθ
dt

= 1
A+h

(
cos θ + uHI · r̂⊥

)
+
(
r̂⊥ × r̂

)
·ΩHI ,

(3.14)
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along with the repulsion condition (when h ∼ 1, for a spherical swimmer) of eqn.

3.12, written as:
dh

dt
= max {(sin θ + uHI · r̂) , 0} . (3.15)

To make analytical progress, we expand the expressions for uHI and ΩHI (see Ap-

pendix) in terms of the small parameter h/A � 1, and then linearize the system of

equations about θ = 0 [127], thus obtaining:

dh

dt
= θ − α

4h2
+O

(
θ2
)
,

dθ

dt
=

1

A
− 3α

8h3
θ +O

(
θ2
)
.

(3.16)

In order for the swimmer to be trapped at the bubble surface, we need to find the

equilibrium solutions to eqn. 3.16, i.e., set dθ/dt = 0, to obtain:

θeqb. =
8h3

eqb.

3Aα
. (3.17)

We now require that for θ = θeqb., dh/dt, given by:

dh

dt
=

8h3
eqb.

3Aα
− α

4h2
eqb.

, (3.18)

stays non-positive (or alternatively, zero, as constrained by eqn. 3.12), which imme-

diately yields (upon setting heqb. = 1)

Ac,bubble ≥ 32/
(
3α2
)
, (3.19)

for a spherical (pusher) swimmer. A comparison with the full numerical simulations,

in Fig. 3.11 shows that our theoretical prediction is an excellent approximation for the

critical trapping radius. While bubbles with A ≥ Ac,bubble trap the micro-swimmers

on their surface, the ones with A < Ac,bubble can only scatter the micro-swimmers

(like the trajectories in Fig. 3.2(a-c)). The reason behind this is easily understood

upon examining dθ/dt from eqn. 3.16. If A ≥ Ac,bubble, then θ continues to decrease

with time and dh/dt continues to become more and more negative, thus precluding

any escape. However, for A < Ac,bubble, θ will increase with time, until it reaches an

‘escape value’

θesc. =
4h2

α
, (3.20)
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after which dh/dt becomes positive and the swimmer is able to escape the hydro-

dynamic attraction of the bubble. Eqn. 3.18 is also instructive in physically un-

derstanding the variation of Ac with the dipole strength α, as shown in Fig. 3.3 to

3.5. Although the derivation presented in this section holds for locomotion around

a spherical bubble, it can still be used to get a mechanistic description of the more

general cases. While the monotonic reduction in Ac with increasing values of α is ex-

plicitly seen in eqn. 3.11, we can also interpret this in terms of the swimming speed Vs.

Clearly, lower swimming speeds correspond to higher (dimensionless) dipole strengths

(α ∝ V −1
s ), which in turn results in lower values of dh/dt at θ = θeqb. (see eqn. 3.18).

This means that deterministically, slower swimmers will struggle to escape from the

hydrodynamic attraction of drops. Thus, the drops as small as even 10-15 swim-

mer body lengths, can hydrodynamically capture swimmers that are slow enough,

e.g., for typical values discussed in Section 3.2, we see that bubbles as small as 30

µm in diameter can trap microbes (∼ 2 µm in length) with swimming speeds less

than ∼ 10 µm/s. Thus, based on the motility characteristics of bacterial strains, the

methodology discussed herein can help estimate bubble sizes for bacterial removal

applications.

Eqns. 3.16 can also be used to estimate the size of the basin of attraction around

a bubble, for small times. We proceed, in the vein of Spagnolie et al., and expand h

and θ in a polynomial series in time t:

h (t) = h0 + h1t+ h2t
2 + . . . ,

θ (t) = θ1t+ θ2t
2 + . . .

(3.21)

Next, we make use of the definitions of dh/dt and dθ/dt from eqn. 3.16, along

with the time derivative of the polynomials in eqn. 3.21, to get the relation:

(h1 + 2h2t) = (θ1t+ θ2t
2)− a

4(h0+h1t+h2t2+...)2
,

(θ1 + 2θ2t) = 1
A
− 3α

8(h0+h1t+h2t2+...)3
(θ1t+ θ2t

2 + . . .),

(3.22)
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Figure 3.11. : A comparison between the scaling for the critical trapping radius of a

clean bubble, as derived in eqn. 3.19 (solid line), and by the numerical solution to

eqns. 3.10 (asterisks). Also shown is the comparison between numerics (circles) and

scaling analysis (dashed lines) for a rigid sphere, as derived by Spagnolie et al. [127].

which can be solved by comparing terms of same order in t. This yields:

h (t) = h0−
α

4h2
0︸ ︷︷ ︸

h1

t+

(
1

2A
− α2

16h5
0

)
︸ ︷︷ ︸

h2

t2,

θ (t) =
1

A︸︷︷︸
θ1

t− 3

16

α

Ah3
0︸ ︷︷ ︸

θ2

t2,

(3.23)

where h0 = h(0) is the initial separation, the limiting case of which will correspond

to the depth of the basin of attraction. Minimization of h (t) in the top line of eqn.

3.23 gives,

tmin = − h1

2h2

=
2αAh3

0

(8h5
0 − Aα2)

. (3.24)

Evaluating θesc. (tmin) from eqn. 3.20, and then using the bottom line of eqn. 3.23

to set θ (tmin) ≤ θesc. (tmin) (see eqn. 3.20), gives us an equation in h0. Substituting



74

h0 = (α2Aρ)
1/5

in this equation for h0, we obtain a cubic equation in ρ with only one

real root, 1024ρ3− 1024ρ2 + 237ρ− 16 = 0. Hence the basin of attraction is given by

h∗ = ρ(1/5)
(
α2A

)(1/5)
, (3.25)

where ρ(1/5) = 0.93. As seen in Fig. 3.12, this result does not match accurately with

the numerics. Instead, we note that the scaling given by (α2A)
1/5

is still correct,

and so we use the numerical results to obtain a satisfactory fit to an expression with

the form of eqn. 3.25. This method yields a value of ρ(1/5) ∼ 0.8. This results in

excellent agreement between our numerical simulations and the scaling analysis (see

Fig. 3.12). It is very interesting to note that the (α2A)
1/5

scaling law for h∗ for the

case of a clean bubble is the same as the one derived by Spagnolie et al. for the case

of a rigid sphere [127].

An important aside to our present study could be the analysis of locomotion near

a drop that is acted upon by a prescribed force, e.g., due to its weight and buoyancy.

We would like to point out that we have also performed similar simulations (not

shown here) for this particular scenario. We found that for very low values of the

force acting on the drop, a swimmer does get hydrodynamically trapped to the drop’s

surface, much like our results in this paper; but it tends to escape (as seen from the

drop’s frame of reference) once the force acting on the drop becomes large. A drop

rising/sinking with a speed much larger than the speed of the swimmer may never

trap a swimmer.

3.4 Effects of diffusive motion

We now move on to the discussion of randomness in swimming, i.e., the transla-

tional and rotational diffusive motion, modeled using the Gaussian white-noise terms

in eqn. 3.11. The results discussed up until now were obtained for a deterministic

swimmer, where diffusivity is zero and swimmer behavior can be exactly predicted,

based on the swimmer’s dipole strength (α), the size of the drop (A), and nature of

the interface (β, λ). In reality however, swimming is far from deterministic, and ran-
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Figure 3.12. : Variation of the basin of attraction (h∗) with (a) the product of the

square of swimmer’s dipole strength and drop radius (α2A) and (b) the drop radius

(A) for the motion of swimmer near a clean bubble (λ = 0). Symbols denote the

numerical results while the lines indicate the scaling laws. For h∗ = 0.8(α2A)
1/5

, the

numerical results match with the scaling laws.

domness is a key component of the swimmer dynamics. The randomness we study in

this section accounts both for the stochasticity of swimmer motion, and the inherent

variabilities that will always be observed across different swimmers in an The random-

ness in swimmer motion can have a thermal origin, or it can stem from factors like

flagellar imperfections, or ciliary sensitivity to the availability of ATP molecules [105].

Note that we are not modeling the ‘run-and-tumble’ nature of bacteria, because it is

debatable that bacteria employ the same motility traits near interfaces as they do in

a ‘free solution’ [23, 24, 105, 110]. Moreover, for an isotropic tumbling−implemented

using the method described in [161,162]−the swimmer escapes in most of the cases for

all drop radii, due to the (tumble induced) sudden increase in the angle θ to a value

beyond the ‘escape angle’ θesc. (see eqn. 3.20). For spherical swimmers, we assume the

rotational diffusivity, DR = 3DT/4. Note that this is a simplification, and is derived

for the case of motion of a spherical swimmer in an infinite fluid; for flow near confine-
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ments, or other general configurations, the diffusivity tensors need to be calculated

by making use of the Stokes-Einstein equations, and the mobility matrices particular

to the system [8]. The most striking contrast offered by the inclusion of randomness

effects is that the swimmer is no longer guaranteed to be trapped whenever it gets

hydrodynamically attracted to a drop larger than the critical trapping radius [127].

If we assume that the swimmers are unlikely to be adsorbed onto the interface, then

the diffusive motion can allow them to reorient away from the interface, and in the

process even escape the hydrodynamic trap. This escape can happen at any instant

of time, and is not dictated deterministically. Therefore, we need to quantify it using

the underlying p.d.f. for the trapping characteristics. A natural option is to quantify

the time the swimmer spends orbiting the interface before it escapes (if at all such

an escape occurs). Towards this end, we perform multiple simulations and record

the ‘interface-retention time’, or trapping time, in each case, and finally report the

p.d.f. We also report the mean trapping time and its variation with the dimensionless

quantities of interest.

Fig. 3.13 shows, qualitatively, the difference between the diffusion-based swim-

ming behavior around a surfactant laden drop and a clean drop. It is clear that all

other parameters remaining the same, a swimmer is more likely to escape a clean drop

earlier than it does a surfactant-laden one. This trend shows how advantageous is

the use of dispersant in enabling hydrodynamics-induced trapping around oil drops.

To quantify our observations, we performed 104 numerical simulations for different

λ and β and aimed to extract underlying p.d.f. of the trapping time. In each of

the simulations the swimmer is released tangentially, from an initial separation of

h(0) = 1.001. We define the trapping time as the time spent by the swimmer at

a separation less than or equal to h = 1.5 from the drop surface; before it exceeds

this threshold for the first time, i.e., Th = mint {t : h ≥ 1.5} [127]. These results are

shown in Fig. 3.14. All probability distribution functions follow the inverse Gaussian

distribution when the simulations are run for times as large as tend = 400. We see

that a swimmer spends more time orbiting a drop if the interface is a surfactant
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(a) (b)

Figure 3.13. : Trajectories of 20 instances of direct impact on to a (a) surfactant-laden

drop with β = 0.1 and λ = 1.0, and, (b) clean drop with λ = 1.0. The radius A = 20

and the dimensionless translational diffusivity D = 5x10−4. Notice that in the former

case, there is only one swimmer that escapes the hyrdodynamic attraction, which

might be due to the low value of D [127]. In the latter case, a greater number of

swimmers are able to escape the confinements of the drop, even for low diffusivities.

covered drop, and that this time is inversely related to the dimensionless surface

viscosity β. In case of a clean drop, the mean trapping time is less than that of a

rigid sphere, but just by adding surfactants one can get a drastic enhancement in

swimmer-retention near interfaces. Even here, the behavior of the trapping time (Th)

with respect to the viscosity ratio (λ) depends acutely on whether the drop is clean,

or surfactant-laden. For a clean drop, the mean trapping time is seen to decrease

as λ increases (Fig. 3.14(a)); but for a surfactant-laden drop, a comparison across

Fig. 3.14(b-d) reveals that the mean trapping time actually increases as λ increases.

It is also clear that the limiting cases of large β and λ tend toward the behavior

observed for locomotion around a rigid sphere. However, β and λ need not be several
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orders of magnitude larger than O(1), in order to replicate the results obtained for a

rigid sphere. Finally, just like in the study of the critical trapping radius, we see the

occurrence of a saturation in the trapping dynamics as β increases beyond a threshold

value of ∼ 10.
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Figure 3.14. : Probability distributions f(t) for the case of tangential release of micro-

swimmer from an initial separation, h(0) = 1.001, from the drop’s surface, for (a)

a clean drop at different viscosity ratios (simulations run until tend = 120); and

surfactant-laden drop with: (b) λ = 10.0 (tend = 200), (c) λ = 1.0 (tend = 200),

(d) λ = 0.1 (tend = 200; except for the case when β = 0.1, where tend = 400), and

different surface viscosities. The other parameters are: A = 20, α = 0.8, D = 2x10−3.
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Next, we investigate the variation of trapping times of swimmers having different

diffusivities, that are swimming around clean drops (surfactant-covered drops) of

different radii, but all having fixed viscosity ratios (a fixed viscosity ratio and a

fixed dimensionless surface viscosity). Physically speaking, the diffusive motion will

dominate when directed motion due to a swimmer’s intrinsic motility is not significant

enough (D ∝ V −1
s ). Therefore, even though slower swimmers are more likely to get

hydrodynamically trapped near fluid-fluid interfaces (see discussion in Section 3.3.4),

they are also more capable of escaping. This idea further highlights the necessity for

a detailed analysis of locomotion around spherical surfaces. This variation is shown

in the contour plots in Fig. 3.15. It can be seen that in certain cases (A = 25, D =

0.006), the mean trapping time for surfactant-laden drops is as much as ∼ 25% higher

than that for clean drops. The trends of reduction in the mean trapping times with

increasing diffusivities, and decreasing interface radii are also apparent in Fig. 3.15.

We also performed parametric sweeps in λ and β (for surfactant-laden drops), for

different values of A and D, but the results in those cases were seen to be in line with

our observations thus far, i.e., an attainment of saturation in the trapping behavior

as β ≥ O (1) so they are not included.

3.5 Conclusion

We investigated the locomotion of micro-swimmers (modeled as a force dipole)

near stationary, clean and surfactant-laden drops. In our analysis, it was assumed

that the swimmer does not get adsorbed onto the (liquid-liquid) interface. The surfac-

tant was considered incompressible, and its presence imparted an interfacial viscosity

to the drop. This was incorporated using the Boussinesq-Scriven constitutive law for

surface stresses in the shear stress boundary condition. A combination of hydrody-

namic interaction and near-surface steric repulsion results in the swimmer orbiting

the drop. Straight swimmers (no random component of motility) are seen to react

in a binary way: they either orbit the drop endlessly, or are scattered, with the re-
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Figure 3.15. : Mean trapping times (T̄h) as a function of diffusivity D and radius of

drop A, for (a) a clean drop (λ = 12), (b) surfactant-laden drop with λ same as (a),

and β = 0.1. Results have been obtained from 100 trials, with simulations running

until t = 100. The other parameters are: α = 0.8.

sponse contingent upon the drop radius. The former effect is seen only if the drop

size exceeds a threshold called the critical trapping radius.This radius is the least for

drops that are covered with surfactants of low interface viscosity; signifying the ease

with which such drops may attract nearby swimmers−particularly those that are not

fast enough−compared to clean drops. Moreover, this disparity (between clean and

surfactant-laden drops) in the ‘ability’ to trap micro-swimmers only increases as the

viscosity ratio of the drops decreases ; thus highlighting a particularly non-trivial as-

pect of surfactant addition. We were able to obtain a scaling for the critical trapping

radius for the case of a clean bubble (λ→ 0), and our analytical result matches very

well with full numerical simulations. Next, we showed that even for the strongest-

attraction case−of low surface viscosities−the influence of hydrodynamic attraction

does not extend beyond a region that is about 3 swimmer body lengths larger, radius

wise, than the drop itself. This means that in order for hydrodynamics-based attach-

ment to occur, a bacterium must somehow reach within an O(1) body length from the
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drop-surface. The mechanism for this initial approach could either be a chance en-

counter, or directed motion in the form of chemotaxis. We also analyzed the swimmer

dynamics, in the deterministic case, by careful consideration of the h(t)− θ(t) phase

space. We found that there exists a saddle point in the system dynamics in all cases

where the drop radius is larger than the corresponding critical trapping radius. The

sensitivity of the critical trapping radius and the depth of the basin of attraction−to

λ and β−was explained in terms of the change in the saddle point location as one or

more of the said parameters were varied.

In another set of simulations (Section 3.4), which included Brownian/athermal

diffusive effects, we observed that a swimmer could escape from the drop surface,

even when the drop radius was larger than the corresponding critical trapping radius.

This escape also occurs due to other orientation decorrelation mechanisms such as

run and tumble reorientation. We first carried out numerical simulations for multiple

(104) instances to obtain the underlying probability distribution of the trapping times.

It was seen that even in cases where the behavior of the drop departed from that of the

rigid sphere [127] (β, λ < O(10)), the inverse Gaussian distribution was a reasonable

match for our empirical distributions. Ultimately, we analyzed the variation of the

mean trapping time with the viscosity ratio and dimensionless surface viscosity and

concluded that in general, a surfactant-laden drop retains a swimmer at its surface

longer than a clean drop. We noticed how addition of surfactant leads to opposite

effects as the viscosity ratio of the drop changes. Clean (surfactant-laden) drops

tend to trap the micro-swimmer for shorter (longer) times as their viscosities, with

respect to background fluid, decrease. This result is important from the perspective of

dispersant addition in oil spills. We stress that in all cases, the influence of surfactant

is seen to saturate rapidly with increasing surface viscosity, which makes it imperative

to perform validating experiments in the regime of very small surface viscosities. We

believe it will be an exciting venture to experimentally test our results, and build

upon them to include more sophisticated biophysical mechanisms that can then be

used to explain oil-microbe interactions in lab-on-a-chip setups or marine ecosystems.
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3.6 Appendix A: Velocity of a swimmer outside a clean/surfactant laden

drop

The expressions for dimensional translational and rotational velocity of a swimmer

(modeled as a force dipole) outside a clean/surfactant laden drop have been derived

in [134]. We utilize the characteristic scales mentioned in the main text to non-

dimensionalize these expressions. A general expression for the translational velocity

of a swimmer outside a drop is given by

uHI = sin2 (θ) uHI,1 − sin (θ) cos (θ) uHI,2 + cos2 (θ) uHI,3. (3.26)

The expressions for uHI,1, uHI,2 and uHI,3 for a drop covered with incompressible

surfactant are given as

uHI,1 =
α

R̄2

3y

(−1 + y)2(y + 1)2 r̂,

uHI,2 =− α

R̄2
r̂⊥

∞∑
n=0

3 (2n+ 3)
[
1 + βn2 +

(
3β + λ+ 1

3

)
n
]
y2n+3

6 + 2βn2 + (6β + 2λ+ 2)n
,

uHI,3 =− 3α

2R̄2

y

(−1 + y)2(y + 1)2 r̂,

(3.27)

while those for a clean drop without any interfacial viscosity are given as

uHI,1 =
α

R̄2

(Λ + 2) y

(−1 + y)2(y + 1)2 r̂,

uHI,2 =− α

R̄2
r̂⊥

∞∑
n=0

3Λ (n− Λ + 1) (2n+ 3)

2n+ 6− 6Λ
y2n+3,

uHI,3 =− α

2R̄2

(Λ + 2) y

(−1 + y)2(y + 1)2 r̂.

(3.28)

Here Λ = λ/ (λ+ 1), y = A/ (A+ h), R̄ = A + h, and A is the dimensionless radius

of the drop. Similarly, the expression for the dimensionless angular velocity of a

swimmer outside a drop, ΩHI = ΩHI

(
r̂⊥ × r̂

)
is given as

ΩHI = ΩHI,1 + Γ ΩHI,2, (3.29)
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where Γ = γ/ (γ + 1), γ is the aspect ratio of the swimmer. γ = 0 for a spherical

swimmer and γ →∞ for a rod shaped swimmer. Here, the expressions for ΩHI,1 and

ΩHI,2 for a drop covered with incompressible surfactant are given as

ΩHI,1 =− 3α sin (2θ)

4R̄3

∞∑
n=0

n (n+ 2)
[
βn2 +

(
β + λ+ 5

3

)
n− 2β − λ+ 7

3

]
βn2 + (β + λ+ 1)n− 2β − λ+ 2

y2n+1,

ΩHI,2 =
α sin (2θ)

2R̄3

(
Ω̃cos2 (θ) + Ω̂

)
;

(3.30)

where,

Ω̃ =
9

8

(6β + 3λ− 2)

(2β + λ− 2)
y

+
3

4

∞∑
n=0

n3β +
(

5
2
β + λ+ 3

)
n2 +

(
−1

2
β + 1

2
λ+ 17

2

)
n− 3β − 3

2
λ+ 5

βn2 + (β + λ+ 1)n− 2β − λ+ 2

× (n+ 3) y2n+1,

Ω̂ =− 1

2

(6β + 3λ− 2)

(2β + λ− 2)
y

− 3

2

∞∑
n=0

n3β +
(
2β + λ+ 5

3

)
n2 +

(
−β + 14

3

)
n− 2β − λ+ 8

3

βn2 + (β + λ+ 1)n− 2β − λ+ 2

× (n+ 2) y2n+1.

Finally, the expressions for ΩHI,1 and ΩHI,2 for a clean drop without any interfacial

viscosity are given as

ΩHI,1 =− 3α sin (2θ)

4R̄3

∞∑
n=0

n (n+ 2) (−2Λ2 + n+ 1)

n+ 2− 3Λ
y2n+1,

ΩHI,2 =
α sin (2θ)

2R̄3

(
Ω̃cos2 (θ) + Ω̂

)
;

(3.31)
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where,

Ω̃ =
27

8

Λ2x

(−2 + 3Λ)

− 3

4

∞∑
n=0

(Λ− 2)n2 +
(
3Λ2 + 5

2
Λ− 6

)
n+ 3

2
Λ2 + 4Λ− 4

(n+ 2− 3Λ)
(n+ 3) y2n+1,

Ω̂ =− 3

2

Λ2x

(−2 + 3Λ)

− 3

2

∞∑
n=0

n2 + (−2Λ2 − Λ + 3)n− Λ2 − 2Λ + 2

(n+ 2− 3Λ)
(n+ 2) y2n+1.

3.7 Appendix B: Velocity of a swimmer outside a clean bubble

A simplified expression for the translational velocity of a swimmer outside a clean

bubble is given as follows

uHI = − αA (A+ h)

h2(2A+ h)2

(
1− 3sin2 (θ)

)
r̂ (3.32)

while the angular velocity of a swimmer outside a clean bubble, ΩHI = ΩHI

(
r̂⊥ × r̂

)
is given as

ΩHI =
3Aα cos (θ) sin (θ)

h3(2A+ h)3

 Γ
(
A2 + 3Ah+ 3

2
h2
)

cos2 (θ)

+ (−Γ− 1)A2 − 2AΓh− Γh2

 (3.33)

For h/A � 1, we can write the above expressions for velocities as a series in h/A.

The leading order term in this expansion gives the velocity of the swimmer near a

plane stress-free interface. This expansion is given by

uHI =
1

16

(
1− 3sin2 (θ)

)
α

h2

(
h2

A2
− 4

)
r̂ +O

(
α

h2

(
h

A

)3
)

(3.34)

ΩHI =− 9α sin (θ) cos (θ)

16h3

 Γ
(
h2

A2 − h
A
− 2

3

)
cos2 (θ)

+ (−Γ/3+1)h2

A2 + (Γ/3−1)h
A

+ 2
3
Γ + 2

3


+O

(
α

h3

(
h

A

)3
) (3.35)
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Since the position and orientation of the swimmer are governed by eqns. 3.14, we

substitute the above expansion for the velocity of the swimmer in these equations to

obtain the following simple equations, valid for h/A� 1,

dh

dt
= sin (θ)− α

4h2

(
1− 3sin2 (θ)

)
dθ

dt
=

1

A
cos (θ)− 3α

32h3
[Γ (1− cos (2θ)) + 2] sin (2θ)

(3.36)

Furthermore, we pursue a small θ expansion of the above equations, given as

dh

dt
=θ − α

4h2
+O

(
θ2
)

dθ

dt
=

1

A
− 3α

8h3
θ +O

(
θ2
) (3.37)
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4. COMBINED INFLUENCE OF HYDRODYNAMICS AND CHEMOTAXIS IN

THE DISTRIBUTION OF MICROORGANISMS AROUND SPHERICAL

NUTRIENT SOURCES

4.1 Introduction

Chemotaxis can be defined as the ability of bacteria to perceive gradients in am-

bient nutrient/chemical concentrations and adjust their motility so as to ‘climb’ up

or down these gradients. It is one of the most widely studied properties of bacteria,

particularly for the enteric bacterium E. coli [5,10,40,41]. The nutrient/chemical re-

sponsible for chemotaxis is called the chemoeffector. The motion of E. coli is termed

‘run-and-tumble’ because it consists of almost straight runs separated by sudden tum-

bles, i.e., abrupt changes in the swimming direction [5, 10, 40, 41]. Bacteria rely on

temporal comparison of ambient nutrient concentrations to gauge chemoeffector gra-

dients, and refine their motion as required [34–38]. Based on the feedback, a variety

of changes can take place to alter bacterial motion, e.g., a change in swimming speed

as a function of ambient concentration (chemokinesis), a change in the frequency of

tumbling, or even a shift in the regime of swimming from run-and-tumble to ‘run-

reverse-and-flick’ [163]. The cumulative effect of the above sequence of actions is to

prolong the bacterium’s stay in any desired region. For example, chemokinesis can

either slow bacteria down in regions of high nutrient concentration, or it can speed

them up so as to have proportionately faster gradient-climbing. Similarly, bacteria are

known to increase their average exposure to nutrients and thus fulfill their energetic re-

0This chapter has been reprinted with minor changes, with permission, from the material as it

appears in the article “Combined influence of hydrodynamics and chemotaxis in the distribution

of microorganisms around spherical nutrient sources”, by N. Desai and A. M. Ardekani, Physical

Review E, vol. 98, pp. 012419, 2018 (DOI: 10.1103/PhysRevE.98.012419). Copyright (2018) of

The American Physical Society.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012419
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quirements, by tumbling (or reversing) less often in nutrient hot-spots. In addition to

chemotaxis−which is an ‘active response’ by a bacterium to ambient physico-chemical

stimuli−a bacterium’s motility can also get altered ‘passively’ via hydrodynamic in-

teractions (H.I.) with nearby boundaries [8]. Some examples are “swimming on the

right-hand side” [107],“swimming in circles” [20,23,24,149,160], reversal of swimming

direction [108] and wall-attraction/accumulation [14,21,64,109–111,127,164]. These

near surface phenomena, coupled with bacterial chemotaxis, are of utmost importance

in the comprehension of bio-film formation and evolution [112–114]. While studies fo-

cusing solely on H.I. (ref. [107]- [64]), on chemotaxis without H.I. [6,79,165–171], or on

chemotaxis and H.I. due to self-generated bacterial flows in infinite domains [172,173]

abound; the combined effect of chemotaxis and H.I. on the locomotion of microorgan-

isms near a boundary that is also a source of a chemoattractant, has not been studied.

The studies that do consider the effects of fluid flow on bacterial motion (chemotactic

or otherwise) near surfaces have been mostly limited to the cases where the bacte-

rial cell is translated and rotated by a pre-existing background flow [79, 166–170].

In absence of any background flows, a consistent description of H.I.s should involve

fluid-flow that is generated on account of bacterial swimming and its proximity to

surfaces.

In this paper, we aim to understand the combined/competitive effects of hydro-

dynamic and chemotactic attraction of model microorganisms to spherical nutrient

sources. We study the motion of a bacterium that can run-and-tumble, near a station-

ary, spherical surface which acts as a source of the chemoeffector. Therefore, the mo-

tion is dictated by three different mechanisms: (i) translation due to inherent motility

as well as hydrodynamic interaction (attraction) with the nutrient source (which can

be a rigid sphere or a drop), (ii) rotation due to hydrodynamic interaction and ran-

dom effects like thermal/athermal diffusion, and, (iii) chemotactic re-orientation due

to the spatial distribution of a chemoeffector having a prescribed concentration on

the surface of the source [165].
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The fluid flow far from a bacterium can be modeled as that due to a force dipole,

i.e., two equal and opposite, collinear forces with an infinitesimal separation between

them [14]. A force dipole that lies within a few (1-3) body lengths from the surface of

a rigid sphere (which, in an experiment, can be a colloid [125] or an isolated nutrient

source like a marine snow particle) is prone to getting ‘hydrodynamically trapped’

onto the surface of the sphere [64, 127]. Beyond this separation, hydrodynamics

alone cannot lead to attachment of microorganisms onto nutrient sources. In fact,

Drescher et al. performed experiments and concluded that hydrodynamics becomes

important only when a bacterium reaches “within a few microns” from a surface,

and that hydrodynamic interactions successfully explain the “long residence times”

of E. coli near no-slip surfaces [17]. This means that in order for hydrodynamics-

based capture to occur, a bacterium must reach within an O(1) body length from

the spherical surface. This ‘initial approach’ could either be a chance encounter, or

directed motion in the form of chemotaxis. It is this idea that motivates our study

to understand how effective chemotaxis is, in conjunction with hydrodynamics, in

the ‘capture’ of microorganisms around a spherical nutrient source with prescribed

surface concentration of the chemoattractant.

A study of this type has been carried out in the past by Jackson [165], but without

accounting for any hydrodynamic interactions. Another related work is by Bearon

[169] where they quantify the rate at which motile bacteria colonize sinking aggregates

like marine snow, phytoplankton, etc [6]. This study neglects H.I.s and considers the

effect of the background flow (generated due to a sphere settling at zero Reynolds

number [11]) on the bacterium’s position and orientation, but does not consider biased

tumbling due to chemotaxis. In a similar fashion, Locsei and Pedley [170], studied the

motion of a bacterium tracking an alga wherein they evaluate a background flow field

due to a model algal cell. They then use this flow to translate and rotate the bacterial

cell and neglect other H.I.s between the algal and the bacterial cell. In addition, they

model chemotaxis in an empirical fashion based on experimental observations [174];
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where the chemotactic re-orientation involves just a reversal in the swimming direction

whenever the separation between the algal and bacterial cells exceeds a threshold.

In this paper, we wish to provide a mathematical model that consistently ac-

counts for chemotaxis and hydrodynamic interactions, in situations where no other

background flow exists. Towards this, it is essential to include, (i) chemotactic bias in

bacterial motion stemming from the temporal comparison of nutrient concentrations

by a bacterium, and, (ii) the fluid-flow (and concomitant bacterial motion) that stems

solely from the interaction between the bacterium and the surface or boundary. Our

objective is to obtain the spatial distribution (in the form of a probability distribu-

tion function, or, p.d.f.) of non-interacting chemotactic microorganisms ‘released’ at

a given separation from the (nutrient) source, and with an arbitrary initial orien-

tation. This p.d.f. will, in general, be a function of: (i) hydrodynamic parameters

like the size (diameter) of the source, the swimming speed of the microorganism and

the thrust force it exerts on the fluid, i.e., its dipole strength; and, (ii) chemotac-

tic parameters like the chemoeffector concentration on the surface of the source and

the tumbling frequency of the microorganism. A thorough understanding of these

functional dependencies is warranted to successfully isolate the effects of chemotaxis

from those of hydrodynamics; and in the process, better understand the dynamics of

microorganism locomotion and colonization in the context of lab-on-a-chip setups or

marine ecosystems.

The rest of the paper is organized as follows. We first describe the governing equa-

tions of fluid flow and the boundary conditions on the surface of a rigid, stationary

sphere (which, in our case, represents the source of chemoattractant). This enables

us to discuss the hydrodynamics induced locomotion of the model microorganism.

We then describe the randomness in the microorganism motion, the chemoattractant

distribution and the modeling of run-and-tumble chemotaxis for a single microor-

ganism. We also comment on the near field effects and how they are expected to

alter our model. Once the mathematical model is laid out, we present the results

of the probabilistic simulations for the translational and rotational dynamics of the
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microorganism. In all cases, we perform relevant comparative studies and discussion

of the results, to pinpoint the influence of different parameters involved. Finally, we

end by making some concluding remarks.

4.2 Mathematical modeling and methodology

4.2.1 Hydrodynamic Interaction

The contribution of the microorganism to the fluid flow is modeled as a pusher

force dipole (dipole strength F oriented along p; see Fig. 4.1). Even though the force

dipole representation is most accurate when the flow field is being analyzed far away

from the microorganism, we note that such representations have been shown to be

accurate at distances as small as a few body lengths away from rigid walls [14, 21],

and interfaces [146, 147]. These have also been used to study the locomotion, and

hydrodynamic trapping, of microswimmers around rigid spherical obstacles [127] and

spherical drops [64]. To model the bacterial motion in the unbounded case (when it

is far away from any surface), we make two additions: (i) we allow the force dipole to

have swimming velocity Vsp in an unbounded fluid, where Vs is the swimming speed of

the microorganism; (ii) we assume that in an unbounded fluid, the dipole orientation

can ‘tumble’ with a characteristic tumbling frequency τ−1
0 and diffuse over the unit

sphere with a (rotary) diffusivity Dr, this part is discussed in detail in Section 4.2.2.

The effect of a solid boundary near the bacterium, i.e., the hydrodynamic inter-

action (H.I.), is incorporated by first solving the governing equations for fluid-flow

with appropriate boundary conditions. These include the differential forms of the

conservation of mass,

∇ · v = 0, (4.1)

and momentum,

−∇P + µ∇2v = −F (p · ∇) {p · δ (x− x2)} , (4.2)
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Figure 4.1. : (Color online) A schematic of the problem being solved, showing a

spherical nutrient source of radius R, a spherical swimming microorganism of radius

b oriented along the unit vector p, and the spherically symmetric chemoattractant

distribution around it C(r). The origin of a ‘fixed’ coordinate system XY Z lies at

the center of the source. The coordinate system defined by the unit vectors r̂, r̂⊥

and r̂⊥ × r̂ can rotate and translate with respect to the fixed coordinate system,

as the microorganism moves through the fluid. In a quiescent, unbounded, fluid

(h → ∞), the microorganism will swim along the direction p. The hydrodynamic

interaction induced translational velocity, uHI , and rotational velocity, ΩHI , of the

microorganism is expressed as functions of the microorganism separation from the

surface h, and its in-plane orientation θ (see equations 4.4 and 4.5). Note that h is

the dimensionless separation of the microorganism from the source.

in the Stokes flow regime, because for the length scales involved in our problem, the

flow inertia is negligible. Equations 4.1 and 4.2 need to be solved subject to the

boundary conditions:

v (|x| = R) = 0,

v (|x| → ∞) = 0
(4.3)
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In the above equations, v, P and µ are the fluid’s velocity, pressure and dynamic

viscosity, respectively. R is the radius of the spherical nutrient source. x is the position

at which the velocity needs to be evaluated, x2 is the position vector from the origin

of the coordinate system to the center of the microorganism (see Fig. 4.1), and δ (x)

is the three-dimensional Dirac-delta function. Equations 4.1 - 4.3 can be solved for

v(x) and P (x), by using the method of images as shown in ref. [13]. Thereafter,

an application of the Faxen’s law for a sphere, by treating the image flow field as

an ambient flow and utilizing the force free and torque free conditions, yields the

linear (uHI) and angular (ΩHI) velocity of the force dipole, due to the hydrodynamic

influence of the nearby particle (see ref. [64, 127]):

uHI

Vs
= −

3AαD
(
1− 3sin2θ

)
(A+ h)

2h2(2A+ h)2 r̂

+
3A3αD (2A2 + 6Ah+ 3h2) sin 2θ

4h2(2A+ h)2(A+ h)3 r̂⊥, (4.4)

ΩHI

Vs/b
= −3A3αD (2A2 + 6Ah+ 3h2) sin 2θ

4h3(2A+ h)3(A+ h)2

(
r̂⊥ × r̂

)
. (4.5)

In equations 4.4 and 4.5, b is a measure of the microorganism size (if the microorgan-

ism is assumed to be spherical, then b is its radius), h = (|x2|−R)/b is the dimension-

less separation of the microorganism from the surface of the source, A = R/b is the

dimensionless radius of the source, θ is the in-plane orientation of the microorganism

(see Fig. 4.1), and αD = F/(8πµb2Vs) is the dimensionless dipole strength of the

microorganism. Before proceeding, we make an important note regarding the gener-

ality of the hydrodynamic aspect of our study. Equations 4.4 and 4.5 describe the

swimming dynamics of a model microorganism near a rigid spherical nutrient source.

It is also possible to derive the same for motion around spherical drops by using ap-

propriate boundary conditions in place of 4.3, as done by Shaik and Ardekani [134].

In this study, we restrict ourselves to the analysis of motion around rigid, spherical

nutrient sources (e.g., marine snow particles). However, a similar analysis can be

performed for a nutrient source like an oil drop (i.e., for a spherical fluid-fluid inter-

face); for details see ref. [64] and the Appendix. For a viscosity ratio corresponding
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to crude oil, there is only a minor quantitative change in the final results of interest

(see Fig. 4.12 in the Appendix). Therefore, we note that our study also reflects the

accumulation trends around crude oil drops that are the sole source of carbon for

a wide class of marine bacteria [2]. Thus, the results of this study can be used to

understand bioremediation in an oil spill.

Once uHI and ΩHI are known, the motion of the microorganism can be defined

in terms of the evolution equations for its position x2(t) and orientation p(t), where

t is the time. The former is given by,

dx2

dt
= uHI + Vsp, (4.6)

while the hydrodynamic component of the latter is,

dp

dt

∣∣∣∣
hydrodynamic

= ΩHI × p. (4.7)

Equation 4.7 is not complete yet because we haven’t accounted for two important

randomness effects in the motion of any bacterium: the run-and-tumble motion and

thermal/athermal diffusion. We now turn our attention to modeling these effects.

4.2.2 Chemotactic Re-orientation

The motion of a bacterium in an unbounded, quiescent fluid is characterized by

run-and-tumble, i.e., nearly straight swimming (runs) interspersed with abrupt re-

orientations (tumbles) due to certain flagellar mechanisms [175–177]. The runs them-

selves are not perfectly straight due to various reasons (Brownian rotation, flagellar

imperfections, ATP availability) and the bacterium is seen to undergo rotary diffu-

sion during the course of each run [105]. In this Section, we discuss the incorporation

and implementation of these re-orientations into our model. The rotary diffusion is

straightforward and just adds a random component to the right-hand-side of equation

4.7; written as a stochastic differential equation, this yields:

pn+1 = pn + ∆t(ΩHI)n × pn +
√

4Dr∆tηr × pn, (4.8)
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where Dr is the rotary diffusivity of the bacterium, ηr is the Gaussian white noise on

the unit sphere [10,105,145], and the subscripts n and n+ 1 refer to the values of the

variables at the current, and the next time step, respectively. In general, the rotary

diffusivity is obtained by using the Stokes-Einstein relations along with the mobility

matrices of the system under consideration [8]. Due to the changing geometry of the

problem, the mobility matrices will be a function of the position and the orientation

of the microorganism, and the effect of Brownian rotation will be a more involved

stochastic differential equation (see ref. [178,179] for details) instead of eqn. 4.8. Also,

the magnitude of the fluctuations will be a function of the microorganism’s distance

from the source. For the sake of simplicity however, we assume the mobility matrix

to be constant and isotropic, in which case eqn. 4.8 holds. We emphasize that this

does not alter the essential physics that we observe in our study. We discuss this idea

in detail in the Appendix. The tumbling of the bacterial cell is a probabilistic event,

modeled as a Poisson process with rate τ−1
0 [10]. This means that in an unbounded

fluid, the probability of a tumble to occur after an infinitesimal interval dt is constant

and is given by,

Pt,0 = dt/τ0. (4.9)

Therefore, 1/τ0 is the mean tumbling frequency for a bacterium, and a tumble is

effected by the following ‘rule’ [180,181]:

pn+1 = φpn + (1− φ) p′,

φ ≡ H (<n+1 − Pt,0) ,
(4.10)

where H is the Heaviside function [182], and <n+1 is a random number chosen from a

uniform distribution on [0, 1]. Therefore, during a run (if Pt,0 < <n+1), the bacterium

re-orients ‘smoothly’ via equation 4.8, but in case of a tumble (if Pt,0 > <n+1) it

changes its orientation instantaneously to a new orientation p′. This post-tumble

orientation could either be one from a uniform distribution on the unit sphere (an

isotropic tumble); or, it could be biased, i.e., correlated in some way to the pre-tumble

orientation (anisotropic tumble). In this study, we use a probability distribution g(β),

of the angle β between the pre- and post-tumble orientations which has been observed
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experimentally for the bacterium E. coli [40], and a succinct mathematical expression

is provided in ref. [43]: g(β) = (1 + cos β) /2. Note that in reality, a tumble is not

instantaneous (it takes around 0.1s) but we assume it to be so for the current work.

The run-and-tumble described thus far enables a bacterium to perform a ‘random

walk’ through its environment, just like Brownian/diffusive motion. The effective

diffusivity of this random walk is given by Deff = V 2
s τ0/3 [183]. The true utility of

this motility feature however, is observed when a bacterium forages for nutrients. An

intricate mechanism [110,177] allows the bacterium to alter its tumbling frequency−or

equivalently, its run time−in such a way that it spends more (resp. less) time in a

desired (resp. undesired) region, e.g., in a region that is rich (resp. poor) in nutrients.

As a result, the rate of the Poisson process (or, equivalently, the tumbling frequency)

is no longer a constant τ−1
0 , but it changes depending on the nutrient exposure of the

bacterium. If the organism finds itself in regions of progressively increasing nutrient

concentration, then its tumbling frequency reduces (τ > τ0); and if the organism

moves to regions of declining nutrient concentrations, then the tumbling frequency

stays unaltered at τ = τ0. It is therefore imperative to have an idea about the nutrient

distribution, before proceeding on to model bacterial chemotaxis. The concentration

C of the nutrient/chemoeffector is governed by the following conservation equation:

∂C

∂t
+∇ · (Cv) = DC∇2C, (4.11)

subject to the boundary conditions:

C (|x| = R) = C0,

C (|x| → ∞) = 0.
(4.12)

DC in eqn. 4.11 is the nutrient diffusivity. We now proceed to make two simplifica-

tions to equation 4.11. Firstly, we consider steady-state nutrient distribution, thus

dropping the first term on the left hand side of equation 4.11. Next, we note that the

characteristic Peclet number for the problem is very small, which allows us to neglect

the advection terms in eqn. 4.11. The Peclet number is,

Pe =
Vslref
DC

, (4.13)
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where Vs ≈ 10 µm/s is the reference velocity scale (the bacterium’s swimming speed)

and lref is a reference length scale (for phytoplankton, lref ≈ 10 µm; for oil drops,

lref ≈ 20 − 60 µm [94–96]). The value of DC for some typical nutrients−like C6

sugar, or hydrocarbons like CH4−is ≈ 10−5 cm2/s [74, 99]. For the above mentioned

parameters, we see that the Pe is O (0.1), and thus advection can be neglected as

a first approximation [170, 184]. As a result, we obtain the very simple diffusion

equation for the chemoeffector concentration,

DC∇2C = 0, (4.14)

which can be solved using the boundary conditions 4.12 to get:

C(r) =
C0R

r
, (4.15)

here r = |x2| is the radial distance from the origin of the coordinate system (see Fig.

4.1). We can now define the chemotactic motion of the bacterium by relating its

tumbling frequency to the temporal evolution of the nutrient concentration C in the

bacterial reference frame. Towards this, we employ the ‘bi-phasic tumbling frequency’

model developed by Brown and Berg for E. coli [41], but without the ‘memory effect’,

i.e.,

τ =


τ0 exp

(
αC

KD

(KD + C)2

DC

Dt

)
,
DC

Dt
> 0

τ0,
DC

Dt
≤ 0

(4.16)

where KD is a measure of how well the chemoattractant binds to the chemoreceptor,

and αC is a time scale characteristic to the system being studied. A lack of the ‘mem-

ory effect’ means that τ depends only on the instantaneous rate of change (material

derivative) of C (i.e., DC/Dt) with respect to the bacterial motion, and not on the

averaged time history of nutrient concentration [32]. It is clear that if the material

derivative is positive, then the run-time τ > τ0; if the material derivative is nega-

tive, then the run-time does not change, as observed in experiments with E. coli [41].

Equation 4.16 thus provides us with a framework that explains how tumbles assist

a microorganism in foraging for desired chemical species. As the organism swims
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through its evironement, it ‘senses’ the changes in the ambient nutrient concentra-

tion and alters its tumbling statistics according to equation 4.16 [185,186]. Therefore,

in the presence of a chemoeffector, a tumble occurs within an infinitesimal time in-

terval dt, if Pt = dt/τ > <n+1; notice how Pt can be lesser than Pt,0 (equation 4.9) if

a chemoeffector is involved. We note that although the above model was developed

for the enteric E. coli, a judicious choice of the quantity αC and slight changes in the

type of re-orientation can enable us to mimic chemotactic responses that are not of

the ‘run-and-tumble’ type, e.g., see the recent work by Son et al. [39].

4.2.3 Near wall Effects

So far, we have described the effect of H.I. and chemotaxis on the locomotion

of a microorganism modelled as a force dipole. These descriptions are apt in situ-

ations when the microorganism is a few (> 2) body-lengths away from the source.

What happens when the microorganism drifts to within 2 body lengths from the

solid surface? In such a scenario, the far field force dipole assumption can lead to

the microorganism penetrating into the solid surface; an occurrence which is clearly

aphysical. This could be prevented by: (i) the inclusion of higher order singularities

(and images) in equation 4.2; or (ii) use of the lubrication/thin-film approximation,

as the microorganism-surface distance becomes very small. Both these methods are

unwieldy, and so, for the sake of simplicity, we model the ‘near field’ hydrodynamics

as a hard-core repulsion [109,127,164], i.e., we set the normal velocity of the microor-

ganism to be zero if the microorganism distance becomes less than 1 body-length

from the surface:

dx2

dt
=

 uHI + Vsp; |x2| ≤ (R + b), (uHI + Vsp) · r̂ > 0

(uHI + Vsp) · r̂⊥; |x2| ≤ (R + b), (uHI + Vsp) · r̂ ≤ 0
, (4.17)

where b is a characteristic microorganism dimension. While the evolution of the

microorganism position x2, is clear from the relation 4.17, we still need to ascertain

the evolution of the microorganism orientation p, when it is close to the surface. The
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microorganism orientation is affected deterministically by ΩHI , and randomly via

the Gaussian white-noise (rotary diffusion, Dr) and the Poisson process (tumbling,

equation 4.10). It is the third behavior that we need to treat carefully, keeping in

mind how surfaces affect bacterial tumbling. As stated by Elgeti et al. in a recent

review article,“The swimming behavior of bacteria close to surfaces differs from the

run-and-tumble motion in free solution” [105]. This difference in swimming behavior

is well-documented in prior experimental studies [20,23,24,107,110,187]. Specifically,

it is known that tumbling of the bacterium E. coli is reduced by as much as ≈ 50%

in the proximity of solid surfaces [110,187]; and that E. coli can escape these surfaces

not by tumbling away, but by diffusing their orientation away from the surface and

then swimming away [109,164]. Even in the event that a tumble does occur, the post-

tumble orientations are mostly restricted to the tangent plane at the location of the

bacterium. The near interface behavior of marine bacteria−that do not necessarily

utilize the run-and-tumble motion of E. coli−has not been investigated in detail.

Therefore, we take an empirical approach to near surface tumbling and postulate

that the microorganism ceases to tumble at distances from the solid surface that are

less than twice its body-length. The rotary diffusion of a bacterium on the other

hand, is independent of its ability to tumble, or display other motility traits [10]. It

is a well known behavior of most bacterial species, both enteric and marine, and is

attributed to thermal fluctuations and/or intrinsic irregularities. Therefore, the ‘Dr

term’ influences the orientation p of the microorganism irrespective of its distance

from the surface. In summary, the microorganism motion in the bulk (> 2 body-

lengths separation) is governed by equations 4.6, 4.8, 4.10, 4.15 and 4.16; while that

near the surface (< 2 body-lengths separation) is governed by 4.8 and 4.17. In

what follows, we numerically solve these equations for sufficiently large number of

instances, to get statistically meaningful results and deduce the effect of the various

mechanisms (see Table 4.1) on the distribution of microorganisms around spherical

nutrient scources.
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4.3 Results and Discussion

4.3.1 Interplay between hydrodynamic interaction and chemotaxis

We select the following scales to non-dimensionalize the various quantities of in-

terest: lengths by the characteristic microorganism dimension b (1 µm), speeds by

the swimming speed Vs (10 µm/s), time by b/Vs (0.1 s), dipole strength by µb2Vs

(0.01 pN-µm), nutrient concentration by KD, and rotary diffusivity by Vs/b (10

s−1). This yields the important dimensionless parameters, along with their orders

of magnitude, in our study to be: radius of the source A = R/b ≈ 20 − 60,

dipole strength αD = F/(8πµb2Vs) ≈ 0.1 − 2.0 (F ≈ 0.1 − 10 pN-µm), diffusivity

D = Drb/Vs ≈ 10−5−10−3, surface concentration (representative nutrient availbility)

C0/KD ≈ 10−2 − 102, and run-time (or equivalently, inverse of tumbling frequency)

τ ∗ = τ0Vs/b ≈ 4− 12.

Table 4.1. : Summary of various mechanisms dictating swimming behavior near a

rigid, spherical surface exuding a chemoattractant with a specified concentration at

the surface of the source.

Mechanism: dimensionless parameter Contribution

Hydrodynamic interaction (H.I.): αD and A
Attraction of nearby microorganisms leading

to scattering/trapping

Chemotaxis: C0/KD and τ ∗
Initial attraction of distant bacteria

towards the nutrient source

Hard-core repulsion: |x2| /(R + b) ≤ 1 Balance with H.I. leads to orbiting/entrapment

Rotary diffusion: D
Orientational fluctuations may cause

the microorganism to escape from surface
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In our simulations, the baseline parameters are: αC = 300 s, C0/KD = 1.0,

τ ∗ = 6, αD = 0.8 or 10−3, A = 20, D = 7.5x10−4 (or, D ≈ 0, when rotary diffusion

is neglected). The swimming dynamics is solved for 10000 instances, each running

up to 200 dimensionless time units (tend = 200). In each case, the initial position of

the microorganism is 20 body-lengths away from the source (|x2(0)| = 40), and the

initial orientation is randomly assigned. The final result that we investigate is the

distribution of the microorganisms’ locations r(= |x2|) at the end of the simulations.

We compute two different quantities of interest: (i) a ‘surface concentration’ Cs, and,

(ii) a radial distribution function f(r). Cs is the fraction of the total microorganisms

that get trapped at the surface, i.e., those whose trajectory end-point lies within

a separation of 1.5 body-lengths from the source. It is a measure of the surface

colonization by the bacteria. f(r) is a distribution function such that the fraction of

microorganisms that lie in a thin spherical shell of radius dr is equal to 4πr2f(r)dr.

In other words, the probability of finding a microorganism between r and r + dr is

proportional to 4πr2f(r)dr. f(r) is normalized such that together with Cs, it satisfies

Cs +

∞∫
r=A

4πr2f (r) dr = 1. (4.18)

A confluence of chemotaxis, hydrodynamics, ‘hard-core repulsion’ and rotational

diffusion shapes the behavior, and subsequent distribution of the swimming microor-

ganisms around the source. Before proceeding to isolate the effects of each of these,

we provide a qualitative description of the important physico-chemical interactions

taking place. Spagnolie et al. used solely hydrodynamics based arguments to show

that if the radius of a spherical obstacle is larger than a ‘critical trapping radius’,

then it can hydrodynamically capture or trap swimmers that directly impinge upon

it (see Fig. 4.2(a)). Alternatively, swimmers with dipole strengths larger than a

critical value can get hydrodynamically trapped around spherical obstacles (see Fig.

4.2(b)). In addition, for all cases where hydrodynamic trapping is expected to occur,

there exists a ‘basin of attraction’ such that tangentially directed pusher swimmers
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that lie within the basin get trapped and travel along the surface of the sphere (see

Fig. 4.2(c)). The ‘depth’ of this basin varies with the sphere radius A, and the dipole

strength αD. It is at most 2.5 body-lengths for A as large as 200 and αD = 0.8.

At such small separations, Molaei et al. have shown the inability of an E. coli cell

to tumble, or even escape the solid surface [110, 187]. Therefore, hydrodynamics is

strongest, and tumbling weakest, when the microorganism is located very close to

the source. Conversely, when the microorganism is far from the source, the hydro-

dynamics becomes negligible and chemotaxis is the dominant factor in dictating its

motion.
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Figure 4.2. : (a) The concept of the critical trapping radius [127]: the swimmer

trajectory around the smaller sphere escapes, while that around the larger sphere

(whose radius is greater than a critical trapping radius) gets trapped. The swimmers’

initial orientation, p(0) = eY . (b) Alternatively, for a fixed radius, only the swimmer

with αD larger than a ‘critical dipole strength’ will get trapped around the sphere.

(c) The concept of the basin of attraction [127]: the swimmer whose initial location

is marked by a circle (resp. square) and whose trajectory is shown by a solid line

(resp. by a dashed line), starts inside (resp. outside) the basin of hydrodynamic

attraction, and thus it gets trapped onto (resp. escapes) the surface. The swimmers’

initial orientation, p(0) = eX . It is important to note that the basin of attraction is

defined only in cases when hydrodynamic trapping is ensured.
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Thus, a bacterium located far away from the source can get attracted to, and even

trapped onto, it via the following sequence of events: (i) chemotaxis, i.e., biased tum-

bling causing the bacterium to come within 2-3 body lengths from the source, followed

by (ii) hydrodynamic attraction on account of the theory detailed in Sections 4.2.1

and 4.2.3. Once the bacterium reaches the nutrient, its behavior is governed by the in-

terplay of: (i) hydrodynamics, (ii) hard-core repulsion, and (iii) rotary diffusion. The

interaction between the first two may result in the trapping of the microorganism, de-

pending on its dipole strength and the radius of the source. If the radius is larger than

the critical trapping radius (corresponding to the bacterium’s dipole strength), then

the bacterium will be trapped at the surface−due to a balance between hydrodynamic

attraction and hard-core repulsion−and will orbit around the source. The third effect

contributes toward probable escape of any bacterium that would get trapped onto the

surface based purely on hydrodynamics. The escape can occur due to a reorientation

that turns the bacterium to an extent that (uHI + Vsp) · r̂ > 0 (see equation 4.17),

thus allowing it to swim away from the surface. This three-way coupling has been

explained schematically in Fig. 4.3, and discussed in greater detail in ref. [64, 127].

Note also that rotary diffusion causing escape (for a variety of microorganisms) from

solid surfaces has been observed experimentally in ref. [17, 109,164].

Quantitatively, it suffices to remember that hydrodynamic trapping is most fa-

vored for high values of αD and low values of D. This is because large αD results

in stronger hydrodynamic attraction, and small D reduces the influence of rotary

diffusion. We further explain this idea in the next Section. Table 4.1 summarizes

the influence of the mechanisms discussed above, on the fate of a microorganism lo-

cated initially at some arbitrary distance from the source, and oriented along any

arbitrary direction. Fig. 4.4 shows typical trajectories and provides an understand-

ing of microorganism distribution around the source for the case of strong and weak

chemotaxis; in the subsequent sections we quantify these results.
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Figure 4.3. : (Color online) An illustration of the effect of hydrodynamics on the

motion of the microorganism as it gets trapped onto the surface of the nutrient source.

The thin blue arrows are the microorganism’s intrinsic motility Vsp, the thick orange

arrows are the hydrodynamic component of microorganism’s motion toward the center

of the nutrient (uHI · r̂), and the black arrows are the instantaneous velocity dx2/dt

(eqn. 4.17). (i-ii) Hydrodynamics−if strong enough−rotates the microorganism such

that it always maintains a constant separation ht(≈ 1) and in-plane angle θt, and

such that (uHI + Vsp) · r̂ ≤ 0. As a result, the microorganism swims tangentially

along the surface and stays trapped. (iii) Rotary diffusion−if significant−can cause

the microorganism to rotate to an in-plane angle greater than θt which reduces the

hydrodynamic attraction, causes (uHI + Vsp) · r̂ > 0, and thus leads to escape.
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Figure 4.4. : (Color online) A schematic of the effect of chemotaxis strength on the

accumulation around the nutrient source. The left, central and right columns show

the x-y, y-z and x-z projections, respectively, of the microorganisms’ trajectories.

The microorganisms are located initially at (x(0), y(0), z(0)) = (0,−40, 0), and ori-

ented arbitrarily. It is important to note that in the absence of chemotaxis, most

of the microorganisms would just ‘swim away’ from the source without appreciably

changing their orientations. The upper (resp. lower) row represents strong (resp.

weak) chemotaxis, which could either be due to C0/KD = 1.0 (resp. C0/KD � 1.0),

or a small (resp. large) value of τ ∗. Clearly, strong (resp. weak) chemotaxis leads to

the microorganisms being, in general, closer to (resp. further from) the nutrient.

4.3.2 Types of behaviors

Fig. 4.5 provides us with an intuition about the different physical mechanisms

dictating microorganism attraction and entrapment onto nutrient sources. It contains
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features of run-and-tumble chemotaxis as well as hydrodynamic trapping. We see that

chemotaxis doesn’t always succeed in bringing the microorganism to the source (red

trajectory); or that chemotaxis can lead the microorganism close enough to the source

but still outside its basin of attraction (blue trajectory). In the case shown by the

magenta trajectory, we see how chemotaxis allows a microorganism to make ‘contact’

with the source but it later gets scattered instead of being trapped. Finally, we also see

how chemotaxis and hydrodynamics enable the microorganism to make ‘contact’ with

the source and then glide along its surface due to hydrodynamic entrapment (green

trajectory). This rich variety of trajectories emerges due to an interplay involving

varying strengths of one or all of the mechanisms detailed in Table 4.1. It is clear

that the phenomena being investigated is very non-trivial in all its complexity. A

better understanding can be obtained by first considering limiting values of certain

parameters, and then moving on to more general parametric regimes. In particular,

an understanding of the limiting scenarios D ≈ 0 and/or αD ≈ 0 is warranted. We

will see that both these parameters play an important role in the extent of surface

colonization Cs, and the nature of the distribution function f(r).

4.3.3 Influence of the dipole strength αD and the rotary diffusivity D

Fig. 4.6(a) shows the variation in Cs with αD for D ≈ 0 and D = 7.5× 10−4. The

corresponding bulk distributions f(r) are shown in Fig. 4.6(b). The other parameters

are kept at their baseline values, such that chemotactic approach is guaranteed in most

cases. The bulk concentration is highest near the surface and reduces monotonically to

zero as r increases. This shows that chemotaxis, on average, helps the microorganisms

to locate nutrient rich regions in their surroundings.

We note that for D ≈ 0, the response is binary, i.e., Cs is either ≈ 0.155 or ≈ 0.60

and f(r) varies as one of the two discernible curves in the main plot of Fig. 4.6(b).

This is because in the absence of orientational fluctuations, bacteria that enter the

basin of attraction (through chemotaxis) behave deterministically: they either get
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Figure 4.5. : (Color online) (a) Visualization of the different behaviors elicited by

the mechanisms discussed in Table 4.1. The starting positions are shown by black

dots. Red: this microorganism is unable to locate the source in the time for which

the simulations were run. Blue: this microorganism ‘chemotaxes’ close enough to

the source, but does not enter the basin of hydrodynamic attraction. Magenta: in

this case, the microorganism does make contact with the source, but the hydrody-

namic attraction is not strong enough for trapping to occur. Green: an example of

a successful trapping wherein chemotaxis and hydrodynamics work in conjunction to

bring and trap a microorganism onto the source. See main text for details about the

regimes in which such behaviors occur. (b) The time evolution of the distance from

the source, h(t), of trajectories in panel (a).

trapped or they escape. For a given size of the source (A = 20 in all our results), the

type of behavior−both qualitative and quantitative−depends only on the value of αD:

(i) for large enough αD, a majority of microorganisms get trapped at r ≈ 20; while,

(ii) for smaller αD, a majority is distributed in the bulk fluid (recall Fig. 4.2(b)).

This behavior can be understood by considering the dependence of hydrodynamic

interactions on the dipole strength and on the distance of the microorganism from
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the source. At large distances, hydrodynamics has a negligible impact on reorienting

the bacteria, and they behave more or less similarly, irrespective of their αD values.

However, once inside the basin, the fate of a bacterium (trap or escape) depends

acutely on αD; and for a given size A, any bacterium with αD above (resp. below) a

critical value gets hydrodynamically trapped (resp. escapes). In fact, for a fixed A,

purely hydrodynamics based trapping occurs above a critical αD ≥ 8/(3A1/2) [127].

Therefore, for A = 20, trapping should occur for αD ≥ 0.65, as evident in Fig. 4.6.

Even then, the randomness of the initial approach means that Cs < 1, i.e., not all

microorganisms get trapped (recall the red and the blue trajectories in Fig. 4.5).

Another feature of the results in this Section is that higher Cs values imply a

lower average value of f(r). This allows us to identify the regions where most of the

microorganisms accumulate. In all scenarios when Cs < 0.2, the nature of f(r) is such

that
2A∫
A

4πr2f (r) dr ≈ 0.5. This can be interpreted as an ‘off-surface’ accumulation.

It occurs due to an efficient chemotactic approach combined with weak hydrodynamic

attraction; causing most microorganisms to gather within one (source) radius from

the surface.

As a microorganism with αD ≥ 0.65 comes in contact with the source, it begins

to travel along the surface due to the mechanisms explained in Fig. 4.3. The only

mechanism that can get such a trapped microorganism to escape is its own rotary

diffusivity. This idea was explained schematically in Fig. 4.3 and an example of such

an escape can be seen in the magenta trajectory of Fig. 4.5. Fig. 4.6(a) shows (blue

line marked with squares) the variation of Cs with αD for D = 7.5 × 10−4. It can

be seen that rotary diffusivity markedly affects the tendency of the microorganism to

accumulate at the surface and consequently, results in more microorganisms in the

fluid surrounding the source (inset in Fig. 4.6(b)). For example, for αD = 0.7 there

is ≈ 60% reduction (resp. increment) in surface colonization (resp. average bulk

distribution) for a modest rotary diffusivity. As the strength of hydrodynamic at-

traction grows (αD increases) a greater fraction of the microorganisms get trapped at

the surface, in spite of orientational fluctuations. Therefore, the near-field hydrody-
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Figure 4.6. : (Color online) (a) Variation of the surface concentration, Cs, with the

dipole strength αD for D ≈ 0 (negligible rotary diffusion), and D = 7.5 × 10−4

(moderate rotary diffusion). (b) Main figure: The distribution f(r) for D ≈ 0, and

αD = 0.1 (green dashed line), αD = 0.6 (orange dash-dotted line), αD = 0.7 (blue

solid line), αD = 1.0 (red dotted line). Inset: The distribution f(r) for αD = 0.7 for

D ≈ 0 and 7.5 × 10−4 (corresponding surface concentrations are shown in panel (a)

by filled symbols). Notice the drastic difference in the values of Cs and f(r) for the

two different values of rotary diffusivities.

namic attraction acts as a crucial mechanism that allows microorganisms to colonize

nutrient sources.

Finally, whenever hydrodynamic attraction is weak (αD < 0.65), the rotary dif-

fusivity does not affect the surface concentration at all (values of Cs for D ≈ 0 and

D > 0 are coincident for αD < 0.65, for a wide range of D). This is understand-

able because if hydrodynamic interactions are weak, the microorganism just doesn’t

rotate fast enough to stay trapped onto the surface, and thus its escape is guaran-

teed regardless of other influences (see Fig. 4.3). The very weak dependence on D

comes from the fact that far away from the source−where the microorganisms pre-

dominantly reside−orientational changes due to rotary diffusivity are negligible as
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compared to those due to a tumble; as also seen for collective motion of active sus-

pensions [188]. Fig. 4.10 in the Appendix shows that the bulk distributions are also

practically identical in this case.

4.3.4 Variability in chemotactic factors: C0/KD and τ ∗

In Section 4.3.3, we saw the importance of hydrodynamics in trapping chemotactic

microorganisms onto the source. We also explained how rotary diffusivity of the mi-

croorganisms reduces surface colonization. The main question that we aim to answer

in this Section is: how does chemotaxis-based initial approach affect the colonization

of nutrient sources by bacteria? There are two factors that we need to consider: (i) nu-

trient availability in the form of a prescribed background concentration, and, (ii) the

microorganism’s intrinsic response to gradients in nutrient concentration. The nutri-

ent availability−which is an environmental factor−is quantified by the ratio C0/KD.

Thus, it could be an indication of the actual concentration of a given chemoattractant

at the source (e.g., the amount of soluble hydrocarbons in a drop of crude oil), or the

affinity of the chemoreceptor to the chemoattractant [79]. The intrinsic chemotac-

tic response−which is a motility trait of individual bacteria−depends on the mean

tumbling frequency τ−1
0 .

Does greater nutrient availability enhance the colonization of nutrient sources by

bacteria? Fig. 4.7(a) shows that this is not necessarily the case, irrespective of the

hydrodynamic influences. The Cs vs. C0/KD trend for all combinations (high/low)

of αD and D is the same: an approximately two-fold initial increase, followed by little

change for a wide range of C0/KD, and then a reduction. There isn’t much difference

in the surface concentration (and the bulk distribution; see Fig. 4.8(a)) between

C0/KD = 0.1, 1.0, 10.0. This behavior is explained by the scaling of the run-time τ

with C0/KD, which can be easily assessed by examining equation 4.16. If C0 � KD,

then τ/τ0 ∼ exp (DC/Dt); if C0 ∼ KD, then τ/τ0 ∼ exp (C−1DC/Dt); and if C0 �

KD, then τ/τ0 ∼ exp (C−2DC/Dt) [41]. This means that higher nutrient availability
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Figure 4.7. : (Color online) Variation of the surface concentration Cs with (a) C0/KD,

and, (b) τ ∗. In each case, Cs is highest when αD > 0.65 and D is negligible, as

expected based on the discussion in Section 4.3.3. Also, the results are independent

of D for αD ≈ 0. For small τ ∗, Cs varies almost linearly with τ ∗.

doesn’t always result in a proportionate increase in the run-time τ in nutrient-rich

regions, and so, it doesn’t necessarily translate to improved chemotactic performance.

In fact, if C0/KD is increased even further to 100.0, then we observe a decline in Cs

as compared to the previous three cases, due to the dominant contribution of the C−2

term, as described above. Physically, C0 � KD would mean that the ambient nutrient

concentration is not high enough to prompt rapid chemotaxis, while the other extreme

C0 � KD is equivalent to a nutrient abundance that makes ‘chemotactic foraging’

unnecessary.

The chemotactic response of bacteria is much more sensitive to τ ∗ (dimensionless

run time), than it is to C0/KD. The variation of Cs with respect to τ ∗ is monotonic,

and bacteria with lower mean run-lengths are much more effective in colonizing nu-

trient sources. Fig. 4.7(b) shows that surface colonization can be as high as 80 % for

τ ∗ = 4. The green trajectory of Fig. 4.5 is a good example of such strong surface col-

onization, wherein chemotaxis enables the microorganism to make contact with the
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source and strong hydrodynamic attraction keeps it trapped at the surface. Owing

to their random initial orientations, it is essential for the distant bacteria to tumble

more frequently in order to ‘locate’ the source. This is why bacteria with smaller

τ ∗ values are able to orient themselves along ∇C−and ultimately enter the basin of

hydrodynamic attraction−faster than those with larger τ ∗, and high Cs values for the

former are just a consequence of this rapid chemotactic response.

An inspection of Fig. 4.8 in the context of Fig. 4.7 enables us to draw useful con-

clusions about the bacterial distribution in the bulk for different values of C0/KD and

τ ∗. A general observation from Fig. 4.7 is that chemotaxis can be considered ‘strong’

(resp. ‘weak’) whenever C0/KD ≈ O(1) (resp. C0/KD << 1) and/or τ ∗ < 8 (resp.

τ ∗ > 8). We see that the value of f(r = 20) and the subsequent decline of f(r) is much

more gradual for weak chemotaxis (Fig. 4.8(a) and 4.8(c)), with
4A∫
A

4πr2f (r) dr ≈ 0.5.

This suggests insignificant accumulation at any particular location because the chemo-

tactic bias isn’t strong enough. The curves for C0/KD = 0.01, 100 in Fig. 4.8(b), and

for τ ∗ = 12 in Fig. 4.8(d) exemplify the scenarios when hydrodynamic attraction is

strong enough to promote surface-aggregation, but the initial approach toward the

source is highly hindered. As opposed to all other cases, these distributions exhibit

a gentle maximum at a distance r ≈ 30. This is an interesting aspect of the present

study: the existence of a ‘depletion zone’ in the bulk distribution of microorgan-

ism positions for all scenarios involving strong hydrodynamics and weak chemotaxis.

In spite of the latter effect, some microorganisms do encounter the source and get

trapped onto it; while others move in an almost random fashion. The depletion zone

spatially demarcates these two extremes.

4.4 Conclusion

We formulated a mathematical model and performed probabilistic simulations to

ascertain the distribution of microorganisms around a spherical nutrient source. The

model was based on, and the distribution was mediated by, a combination of (i) hy-
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Figure 4.8. : (Color online) The bulk distribution f(r) as a function of (a-b) C0/KD,

and, (c-d) τ ∗. Note the almost similar distributions for C0/KD = 0.1, 1.0, 10.0, just

like the corresponding Cs values in Fig. 4.7. In conjunction with Fig. 4.7, it is

evident how rotary diffusion causes more microorganisms to stay in the bulk. For

weak chemotaxis, there is no appreciable accumulation anywhere in the bulk. f(r)

increases to a maximum and then decays to zero for weak chemotaxis in the panels

(b) and (d). See main text for details.

drodynamic interaction (H.I.) with the source, and, (ii) chemotaxis (Ch.) toward the

nutrient/chemoeffector emanating from the source. In our model, we assumed that

hydrodynamic interactions and rotary diffusion dominate in the near-field of the nu-
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trient source, while chemotaxis dominates when the microorganism is far away. This

distinction stems from the fact that bacterial tumbling is hindered in the proximity

of solid surfaces (thus precluding run-and-tumble chemotaxis and surface-escape via

tumbling) [110], and so near surface bacterial behavior is governed by hydrodynamics

in conjunction with rotary diffusion [109, 127, 164]. Hydrodynamic interactions can

be strong or weak, depending on the value of the microorganism’s dipole strength

and the radius of the source. Chemotaxis too, can be strong or weak, depending

on the microorganism’s mean tumbling frequency, and the nutrient availability in its

surroundings. Therefore, the distribution is affected by environmental (source size

and nutrient availability) factors, as well as by the microorganism’s intrinsic motility

features (dipole strength, tumbling frequency, etc.). Although both hydrodynamics

and chemotaxis attract a bacterium toward the source, their separate ‘domains of

influence’ and relative strengths can lead to interesting changes in the spatial dis-

tribution of microorganisms around the surface from which the nutrient diffuses out

into the environment. Towards this, we performed a systematic parametric study and

revealed different surface colonization and bulk distribution features, highlighted in

Fig. 4.9.

We see that stronger H.I. always leads to greater surface colonization (i.e., the

quantity Cs), irrespective of the strength of the chemotactic influence. Similarly,

stronger chemotaxis always leads to greater surface colonization, irrespective of the

strength of the hydrodynamic influence. Understandably, Cs is greatest when both

the influences are strong, because this scenario corresponds to a more effective ‘initial

approach’ (toward the source) due to chemotaxis, followed by a strong hydrodynamic

attraction. On the other hand, it is the least when both chemotaxis and H.I. are weak.

The surface colonization is also not substantial (Cs < 0.5) whenever chemotaxis or

H.I. is weak. Strong chemotaxis, but weak H.I. leads to an off-surface accumula-

tion with majority of microorganisms collecting in the bulk within a distance of one

(source) radius from the surface. Finally, we find an interesting bulk distribution for

the case of weak chemotaxis and strong H.I., which leads to the formation of a de-
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Figure 4.9. : (Color online) The four qualitatively different behaviors, or spatial dis-

tributions f(r), that can be realized due to the combined influence of hydrodynamics

(abbreviated in the legend as H.I.) and chemotaxis (abbreviated in the legend as Ch.)

on the locomotion of microorganisms around a spherical nutrient source. ↑ (resp. ↓)

denotes a strong (resp. weak) influence. The inset shows the surface colonization Cs

for each of the four behaviors, with correspondence based on marker type.

pletion zone in the microorganism distribution, characterized by a gentle maximum

in the value of f(r) at r ≈ 30. This is because weak chemotaxis does not enable

enough bacteria to come close to the source, but those that do come close enough,

get trapped due to strong hydrodynamic attraction. These sufficiently general trends

help establish the importance of chemotaxis and hydrodynamics in our problem. From

them, we conclude that strong chemotaxis is essential to obtain greater aggregation of

microorganisms near nutrient sources, and strong hydrodynamic interactions enable
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surface colonization. In addition to these generalities, we also find that higher nutri-

ent availability−reflected in the value of the dimensionless parameter C0/KD−doesn’t

lead to proportionate increase in surface colonization (see Fig. 4.7(a)). This is because

the bacterium’s run-length τ depends on both its ambient nutrient concentration, C,

and the instantaneous rate at which this concentration changes, DC/Dt, via eqn.

4.16. However, strong chemotaxis on account of lesser mean run time τ0 is much

more effective in enhancing the surface colonization (see Fig. 4.7(b)). In this way,

our study yields a qualitative and quantitative insight into the process of bacterial

attraction to, and aggregation around, nutrient sources under the combined influence

of the two major factors dictating microorganism locomotion: passive response via

hydrodynamics and active response via chemotaxis.

An important assumption in our study is that tumbling, and hence chemotaxis, is

suppressed when the bacterium is at a distance less than or equal to two body-lengths

from the source. The basis of this assumption is the experimental work by Molaei et

al. which confirmed tumbling suppression near rigid walls [110,187]. In addition, we

use the model proposed by Brown and Berg to incorporate bacterial chemotaxis [41],

and neglect any ‘memory effects’ when calculating the run time in presence of a

chemoeffector (see equation 4.16). We emphasize that the finer aspects of chemotaxis

can be easily incorporated into our study, like tumbling anisotropy enforced due to

proximity to surfaces and/or due to altogether different foraging tactics like reversals

and flicks. It would be interesting to see the extent to which these influences affect the

results of our study. Equally interesting is the possibility of studying hydrodynamic

interactions between microorganisms in the semi-dilute regime, and how it would af-

fect their spatial distribution around nutrient sources. A more complex mathematical

model−one which includes some, or all, of the aforementioned effects−would require

experiments to ascertain tumbling alteration close to curved surfaces, and predict

bacterial re-orientations differing from the archetypal tumble. The present study

improves our understanding of bacterial colonization of surfaces, and is expected to
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have far reaching consequences in bioremediation, selective microorganism capture,

lab-on-a-chip assays and investigations on bacteria in porous media.

4.5 Appendix

In Fig. 4.7 we saw that rotary diffusivity has no effect on the surface colonization

when hydrodynamic effects are negligible, i.e., αD ≈ 0. Fig. 4.10 shows that even the

bulk distribution is not affected significantly in this case. This is because for αD ≈ 0,

the microorganisms execute a biased random walk and get reflected from the surface

irrespective of the magnitude of rotary diffusion, as explained in Section 4.3.3.
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Figure 4.10. : (Color online) The bulk distribution f(r) as a function of (a) C0/KD,

and, (b) τ ∗, for negligibly small hydrodynamic attraction (αD ≈ 0) and D ≈ 0,

D = 7.5× 10−4.

In Section 4.2.2 we mentioned that the effect of rotary diffusion as given by eqn.

4.8 is strictly correct only if the rotary diffusion tensor−say DR−is isotropic, i.e.,

when DR = DrI. In reality, the presence of a surface and the approach of bacterium

to the spherical source imparts anisotropy and time dependence, respectively, to DR.

The stochastic effects become considerably involved when the diffusivities evolve with

time (see eqns. (13) and (14) in ref. [179]). However, in our problem, fluctuations in
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the bacterial orientation are only important in the near-field, i.e., when a bacterium

orbits around the source (see Fig. 4.5, Table 4.1 and the discussion in the last

paragraph of Section 4.3.3 in relation to Fig. 4.6(a) and Fig. 4.10). Also, the change

in ‖DR‖ for a sphere is most significant when it is very close to a solid wall [189–191].

In fact, using the mobility expressions given by Cichocki and Jones [190] we can

estimate that ‖DR‖ is halved when a sphere almost makes contact with the wall

(assuming, of course, that their results can be reasonably used for our configuration

of two spheres−the source and the bacterium−because R/b� 1). Therefore, the Dr

in eqn. 4.8 can be considered as the ‘reduced’ rotary diffusivity due to close proximity

to a surface. In other words, if the rotary diffusivity in the unbounded fluid is Dr0,

then that near the source will be Dr = kDr0, where k ≈ 1/2. Note that using two

different values of Dr:

Dr =


Dr0, |x2| � (R + b)

Dr0

2
, |x2| ≈ (R + b)

, (4.19)

instead of using only Dr = (Dr0/2) everywhere in the domain, will not change our

results appreciably, once again because of the near-field significance of rotary diffusion

(see Fig. 4.11).

The methodology outlined in Section 4.2 also enables us to compute the dis-

tribution of microorganisms around more general surfaces, for example, that near

fluid-fluid interfaces. The fundamental difference in this case is that the boundary

conditions change from those given in eqn. 4.3, to the more general form of continuity

of fluid velocity and stress [11]. As a result, for microorganism motion around clean

drops, the viscosity ratio of the drop with respect to the suspending fluid−denoted

by λ−appears as an extra parameter that can dictate the distribution function f(r).

This change is reflected in the expressions for uHI and ΩHI , which were derived re-

cently by Shaik and Ardekani [134]. If we assume that the near field hydrodynamic

and tumbling characteristics remain the same as those in Section 4.2.3, and that the

microorganism does not simply adsorb onto the drop’s surface, we can estimate the

distribution of chemotactic bacteria around drops as well. Fig. 4.12 shows the spatial
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Figure 4.11. : (Color online) The bulk distribution f(r) for two different cases: (i)

when the value of Dr in eqn. 4.8 is taken to be half of the rotary diffusivity in an

unbounded fluid, Dr0, in the entire domain (solid line), and, (ii) when eqn. 4.19 is

used to assign bacterial rotary diffusivities based on separation of the microorganism

from the source (dashed line marked with circles). The surface colonization values

are within 1.25% of each other. The value of the dimensionless rotary diffusivity in

unbounded fluid is 7.5× 10−4, i.e., Dr0b/Vs = 7.5× 10−4.

distribution of chemotactic microorganisms around a stationary drop with viscosity

ratio 10, which is indicative of crude oil [192]. The distribution is almost the same as

that around a rigid, spherical nutrient source (limiting case of λ→∞); thus suggest-

ing the utility of our results in the analysis of biodegradation of hydrocarbon effusing

crude oil drops.
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Figure 4.12. : Comparison of the bulk distribution f(r) for combined chemotactic and

hydrodynamic attraction to (i) a rigid sphere (asterisks), and, (ii) a clean drop with

viscosity ratio λ = 10 corresponding to crude oil (circles), for the baseline simulation

parameters given in Section 4.3.1. The difference between the two cases is not very

significant. The surface colonization for the rigid sphere (Cs,rigid =0.3589) is 4 %

larger than that for the drop (Cs,drop =0.3446). For motion around the drop, the

hydrodynamics induced linear and angular velocities are taken from ref. [134].
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5. HYDRODYNAMIC INTERACTION ENHANCES COLONIZATION OF

SINKING NUTRIENT SOURCES BY MOTILE MICROORGANISMS

5.1 Introduction

Chemotaxis−the directed motion of bacteria along favorable gradients in chemical

concentration−is one of the primary mechanisms through which marine bacteria lo-

cate nutrition, from sources like phytoplankton, marine snow and oil drops [6]. In the

past, researchers have studied how chemotaxis helps in the colonization of settling

particles [193], and of the nutrient plumes that trail these particles [166, 167, 194].

Besides, chemotaxis is also vital in following nutrient sources with inherent motil-

ity, e.g., the tracking of the motile algae Pavlova lutheri by the marine bacteria

Pseudoalteromonas haloplanktis [174]. Bacteria utilize a number of strategies, like

‘run-and-tumble’ or ‘run-reverse-flick’, to bias their motion to chemical cues, and find

and populate nutrient-rich regions in their environment [5, 39, 51, 194]. These strate-

gies are actively regulated on the level of an individual cell, via chemosensing, i.e.,

feedback mechanisms involving membrane receptors and intracellular signals [37].

In addition to external chemical cues, microorganism locomotion is also affected

by the ambient fluid flow. Microorganisms are translated and rotated by background

flows and they undergo changes in their swimming motion by ‘interacting hydrody-

namically’ with their surroundings [8, 195]. As a bacterium swims, its appendages

disturb the fluid around it, setting up a flow. The presence of bounding surfaces

and/or obstacles−especially within a few body-lengths from the bacterium−affects

0This chapter has been reprinted with minor changes, with permission, from the material as it ap-

pears in the article “Hydrodynamic Interaction Enhances Colonization of Sinking Nutrient Sources

by Motile Microorganisms”, by N. Desai, V. A. Shaik and A. M. Ardekani, Frontiers in Microbiol-

ogy, vol. 10, article 289, 2018 (DOI: 10.3389/fmicb.2019.00289). Copyright (2019) of Desai, Shaik

and Ardekani.
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this flow, which in turn affects the motion of the microorganism itself. This mecha-

nism, wherein an alteration of the fluid flow around a microorganism−due to nearby

surfaces/interfaces, or even other microorganisms−changes its motion, is called a hy-

drodynamic interaction. Hydrodynamic interactions have been used to successfully

describe a number of non-trivial phenomena, like the circular trajectories of E. coli

in the vicinity of plane walls [20,107] and air-fluid or fluid-fluid interfaces [23,24,147];

the tendency of microorganisms to be attracted to and accumulate near walls [21,196];

the enhanced residence time of bacteria and microswimmers near plane and curved

solid surfaces [17,125,127]. Examination of the flow fields around bacteria reveals that

hydrodynamic interactions are most important at small cell-surface separations [17],

which suggests that they can affect the trajectories of bacteria that encounter sinking

particles either by chance or through chemotaxis.

The influence of near-surface hydrodynamic interactions on foraging by marine

bacteria is thus an interesting topic, which has not been considered in detail in

prior studies on chemotaxis toward settling particles. Recently, Desai and Ardekani

analyzed the influence of hydrodynamic interactions in the motion and distribu-

tion of chemotactic bacteria around stationary, spherical nutrient sources, and con-

cluded that hydrodynamic interactions greatly assist in the colonization of nutrient

sources [64]. This significance of hydrodynamic interactions in the accumulation

around fixed nutrient sources motivates us to examine the combined effects of hydro-

dynamic interactions and chemotaxis on the distribution of marine microbes around

moving (due to gravity) nutrient sources. Our study is particularly relevant in the

context of microbial colonization of sinking marine snow particles, and of rising oil

drops emanating from natural or anthropogenic oil spills [3]. We wish to identify the

factors affecting a bacterium’s average nutrient exposure under these conditions. This

is pivotal in determining the overall uptake rates by marine bacteria and the subse-

quent microbiological processes dictating bacterial populations in particular, and the

marine biogeochemistry in general [197]. We formulate, and solve, a mathematical

model which incorporates the essential features of the mechanisms governing bacterial
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motion: (i) run-and-tumble chemotaxis toward a nutrient/chemoattractant emanat-

ing from a spherical, sinking nutrient source (e.g., an aggregate like marine snow),

(ii) fluid flow caused by the source, and, (iii) hydrodynamic interactions caused by

proximity to the nutrient source (a rigid obstacle). We emphasize here that the first

response is an active motility trait of most bacteria, and the latter two are passive,

i.e., driven solely by hydrodynamics. While the chemotactic response may be specific

to bacterial species, the hydrodynamic effects are more generally valid. Through our

analysis, we identify the effect of hydrodynamic interactions on the average nutrient

exposure of marine bacteria swimming close to sinking nutrient sources. We quantify

it as a function of important environmental (size of nutrient source and the diffu-

sivity of the nutrient) and biological factors (mean run-time of the bacterium and

magnitude of the force its appendages exert on the surrounding fluid).

5.2 Influence of Hydrodynamics and Chemotaxis

We consider a spherical aggregate or marine snow particle of radius a (shown in

Fig. 5.1), which also acts as the source of a chemoattractant/nutrient, sinking under

the influence of gravity with a force Fext = ∆ρVpg acting on it; where, ∆ρ is the excess

density of marine snow [ranging from 10−5 g/cm3 to 10−3 g/cm3; [198]], Vp = 4
3
πa3

is its volume and g is the acceleration due to gravity. The nutrient diffusing out of

the source is carried by the fluid and forms a downstream plume as shown. At a

position x2 with respect to the center of this particle, lies a microorganism of size b.

The fluid flow is affected by both the sinking particle and the microorganism. The

presence of the particle is expected to affect the swimming motion of the microorgan-

ism through hydrodynamic interactions, and vice-versa. As the aggregate sinks, it

encounters bacteria either because they lie in its path, or because they are attracted,

via chemotaxis, to its surface. Once the bacterium-aggregate separation reduces to

within a few bacterial body-lengths, chemotaxis becomes less important and hydro-

dynamic interactions become significant. On the other hand, bacterial motion far
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Figure 5.1. : A schematic of the problem being solved. A marine snow aggregate of ra-

dius a sinks under the influence of an external force (gravity) Fext. A chemoattractant

emanates from the surface of marine snow, and forms a plume ‘behind’ the marine

snow. We consider a system of Nb bacteria (of size b) that are not interacting with

each other but can perform chemotaxis toward nutrient hot-spots (the concentration

boundary layer and the plume around the aggregate), and interact hydrodynamically

with the aggregate upon encountering it. We consider the motion of each bacterium

by simulating its trajectory, i.e., the time evolution of its position with respect to the

aggregate x2, and its orientation p, as dictated by hydrodynamic and chemotactic

effects.

from the marine snow is affected primarily by chemotaxis. We, thus, first consider

the motion of bacteria due to hydrodynamics and chemotaxis separately, and then

get the complete description obtained by combining the two effects.
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5.2.1 Bacterium as a force dipole
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Figure 5.2. : The drag, fdp, and thrust, −f, exerted by a (a) pusher, and, (b) puller,

on the surrounding fluid. p is the direction in which the microorganism swims in an

unbounded, quiescent fluid.

Fig. 5.1 shows the bacterium’s location x2 with respect to the center of the marine

snow, and its orientation p. These govern the bacterium’s trajectory and evolve in

time according to

dx2

dt
= uHI −Up + Vsp,

dp

dt
= ΩHI × p, (5.1)

where uHI and ΩHI are the hydrodynamically induced linear and angular velocities

of the bacterium, respectively; Up is the velocity of the marine snow particle; and

Vs is the swimming speed of the bacterium. Eqn. 5.1 shows that in the absence

of hydrodynamic interactions−say, in an unbounded quiescent fluid−the bacterium

simply swims along its instantaneous direction p. In order to calculate uHI , ΩHI

and Up, we need knowledge of the fluid flow around the bacterium. The typical

size of marine bacteria ranges from 1-10 µm; for these length scales, the Reynolds

number−which is the ratio of inertial forces to viscous forces−associated with fluid

flow is exceedingly small. In addition, we only consider marine snow particles of
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diameter d and settling speed Up such that their associated Reynolds number, Rems =

ρUpd/µ << 1, where ρ and µ are the density and viscosity of the suspending fluid,

respectively. This allows us to safely neglect the effect of fluid inertia in our analysis.

The fluid flow is governed by the equations describing the conservation of mass

and momentum. We incorporate the effect of the bacterium on the fluid flow by

considering it as a ‘force dipole’, i.e., two equal and opposite forces being exerted

on the fluid by the bacterium’s cell body and its flagellum/flagella [17]. The force

exerted by the cell body is called the drag (say f = fdp), and that by the flagellum

is called the thrust (-f). The force dipole representation arises because of the small

separation between the points of application of the drag and the thrust. An impor-

tant parameter in our study is the ‘dipole strength’ of the bacterium, denoted by FD.

Physically, it is the scalar product of the drag force exerted by the bacterium on the

fluid, fdp, and the position of the point of application of the drag, with respect to

the center of the bacterium, i.e. , FD ≈ fdp · xD (see Fig. 5.2). The magnitude of

FD ranges from 0.1-1 pN-µm, for a wide range of bacterial species, e.g., Escherichia

coli, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella typhimurium, Vibrio al-

ginolyticus [17, 21, 199]. A stronger influence of the microbe on the flow, and thus a

stronger hydrodynamic interaction, occurs for larger values of FD. From Fig. 5.2 and

the definition of FD, it is clear that FD > 0 for microorganisms that exert thrust near

their tail (called pushers, e.g., most bacteria) and FD < 0 for microorganisms that

exert thrust near their head (called pullers, e.g., algae); in this work, we consider the

former case. The details of the mathematical formulation are given in Appendix A,

and the expressions for the various hydrodynamically induced velocities are given in

Appendix B.

The dynamics described by eqns. 5.1 is most accurate when the separation be-

tween the bacterium and the aggregate is large; as this separation reduces, the accu-

racy of the model deteriorates. Specifically, [21] measured the distribution of E. coli

in a suspension confined by parallel glass plates and concluded that the force dipole

model ceases to be a valid approximation at distances of around 10 body lengths
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(i.e., at (|x2| − a) ≈ 10b) from the surface. For (|x2| − a) < 10b, the effects of finite

size of the bacterium, its shape asymmetry and flagellar rotation become important

and these are not captured by a force dipole. As the bacterium approaches to within

touching distance from the aggregate the force dipole model results in unrealistic ef-

fects like the penetration of the bacterium through the rigid surface of the aggregate.

This can be remedied using more involved hydrodynamics but for the sake of simplic-

ity we model the near-field interaction between the bacterium and the aggregate as

a hardcore repulsion. This means that upon contact, we ensure that the bacterium

doesn’t penetrate into the aggregate, but moves tangentially along its surface while

being free to rotate. Thus, the bacterium cannot penetrate into the aggregate but

can still rotate away and escape from it after spending some time on its surface. Such

rigid-body or steric interactions are not uncommon and have indeed been observed

for a number of microorganisms in contact with rigid surfaces [27,164].

The force dipole model just described has been used in the past to explain the

hydrodynamic trapping of microswimmers/bacteria impinging on stationary rigid

spheres [127] and drops [64]. This trapping phenomena has been observed experi-

mentally as well, for both artificial micro-swimmers [125] and for the bacterium E.

coli and its predator Bdellovibrio bacteriovorus [26]. In this study, we show that such

trapping can also occur when a bacterium encounters a sinking sphere (see Section

5.3.1).

5.2.2 Bulk nutrient distribution and chemotaxis

Many bacteria follow a run-and-tumble behavior, wherein their orientation, p, can

change abruptly depending on the instantaneous rate of change of chemoattractant

concentration in their vicinity. In our case, the chemoattractant concentration, C,

satisfies the steady-state convection-diffusion equation

∇ · (vStC) = DC∇2C, (5.2)
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where DC is the nutrient diffusivity, and vSt is the flow field due to a sphere sediment-

ing under gravity, in an unbounded fluid. This is a simplification, because we are not

accounting for the effects of the hydrodynamic interactions on the convection-diffusion

equation. In reality, hydrodynamic interactions would cause the sphere to rotate as

it settles and the presence of the bacterium would disturb the fluid flow, making it

different from vSt. Thus, the fluid flow−and through it, the nutrient transport−will

be affected by both the rotation of the marine snow and by the bacterium. But for

the parameter range of our study (see Table 5.1), the fluid flow associated with the

marine snow particle’s rotation, and also with the bacterium’s locomotion, is negli-

gible in comparison to that associated with the marine snow particle’s gravitational

settling (see eqns. 5.25 to 5.28 in Appendix). Therefore, we can justify the simplifi-

cation made in eqn. 5.2. We solve eqn. 5.2 subject to the conditions that C = C0 at

the sphere surface, and C → 0 at large distances away from the sphere. Note that a

fixed surface concentration of the nutrient corresponds to transport limited nutrient

transfer [91].

Once the concentration C is known, the run-and-tumble chemotaxis is imple-

mented by prescribing the run-time τ of the bacterium as a function of DC/Dt, i.e.,

the instantaneous rate of change of the chemoattractant concentration as seen by the

bacterium. This is done by providing a bias to the mean run-time of the bacterium in

absence of chemoattractant, τ0, according to the relation (see Appendix C for details):

τ = τo exp

(
αC

KD

(KD + C)2

DC

Dt

)
,
DC

Dt
> 0; and, τ = τ0,

DC

Dt
≤ 0, (5.3)

where αC is a time-constant and KD is the half-saturation constant of the receptors

that bind to the chemoattractant. Eqn. 5.3 shows how chemotactic bacteria can

climb up nutrient gradients: by increasing their run-time whenever they swim along

regions with increasing ambient nutrient concentration. One important point is that

bacterial tumbling is significantly hindered when they are near solid surfaces and most

tumbles are limited to the tangent plane at the surface [110]. Therefore, we restrict

near-surface tumbling, and any bacterium that comes into contact with the nutrient
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source cannot simply tumble away and escape. Finally, we introduce stochasticity to

the bacterium’s orientation−stemming from flagellar imperfections and other inherent

fluctuations−in between tumbles (when its orientation is governed by the second

equation in eqn. 5.1) by allowing for rotational diffusion of the orientation p with a

diffusivity Dr. This changes the second equation in eqn. 5.1 to:

p (t+ ∆t)− p (t) = ∆t (ΩHI(t)× p(t)) +
√

4Dr∆tηR × p (t) , (5.4)

where ηR is a Gaussian white noise term over the unit-sphere.

5.3 Results

The major bio-physical parameters, and their respective dimensionless represen-

tations in our study are: the bacterial dipole strength, αD = FD/(8πµb
2Vs); the

mean run-time of the bacterium, τ ∗ = τ0Vs/b; the rotational diffusivity of the bac-

terium, D = Drb/Vs; the nutrient’s molecular diffusivity DC , represented by the

Schmidt number, Sc = ν/DC , where ν is the kinematic viscosity of the surrounding

fluid (water); the radius of the settling aggregate R = a/b; and the excess den-

sity K∆ρ = 2∆ρgb2/(9µVs). Another important parameter is the Péclet number

Pe = Upa/DC , which is the ratio of advective transport of the nutrient to its diffu-

sion. The values of all these parameters are calculated by using the corresponding

dimensional values listed in Table 5.1.

5.3.1 Hydrodynamic trapping: with and without orientational diffusion

We first discuss how hydrodynamics affects a bacterium’s behavior in close prox-

imity to sinking marine snow, in the absence of tumbling (and hence, chemotaxis),

and rotational diffusion (Dr = 0 in eqn. 5.4). The idea is that fluid flow caused

by a bacterium, if strong enough, causes it to rotate toward a nearby rigid surface

and approach it. This ‘hydrodynamic attraction’ is balanced by hardcore repulsion,
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which results in the bacterium swimming tangentially to the surface. In the following

discussion, the dimensionless radii (of spherical marine snow) are represented by ‘R’.
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Figure 5.3. : (a) The critical trapping radius for a stationary sphere: a bacterium

gets trapped (resp. escapes) if the radius of the sphere being encountered is larger

(resp. smaller) than a critical value. (b) Bacterium with dipole strength larger (resp.

smaller) than the critical dipole strength, αD,c0 is trapped (resp. escapes) around a

sphere of given radius R. (c) Trapping around a settling sphere: the trajectories are

plotted in the frame of reference moving with the sphere and gravity acts along the

−z direction; αD,c is the critical dipole strength above which hydrodynamic trapping

occurs (for a settling sphere). (d) Variation of the critical trapping radius of a sphere

settling under gravity, Rct, with the bacterium’s dipole strength, for different values

of dimensionless excess density K∆ρ. Rc0 is the value of the critical trapping radius

for a stationary sphere. (e) An illustration of the fact that hydrodynamic capture

fails to occur if the dimensionless excess density K∆ρ exceeds 4× 10−2.
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Microswimmers/bacteria encountering stationary spherical obstacles−like rigid

spheres or liquid drops−can get trapped onto their surface due to hydrodynamic

interactions, if the obstacle radius is larger than a critical radius, say Rc0 [127]. This

is shown in the trajectories in Fig. 5.3(a). The dipole strength is the same for the

bacterium trajectory marked by diamonds and the one by circles; in the former, the

radius of the sphere is larger than Rc0, while in the latter, it is smaller than Rc0.

Recent experiments on the motion of B. bacteriovorus near beads also observed this

interesting dependence of hydrodynamic trapping on sphere radius [26]. A different in-

terpretation is that spherical obstacles of a prescribed radius can (hydrodynamically)

trap bacteria with dipole strengths larger than a critical value, say αD,c0. Therefore, a

bacterium with dipole strength less than αD,c0, does not get trapped around a sphere

[the blue trajectory marked by circles in Fig. 5.3(b)], while one with dipole strength

greater than αD,c0 does get trapped [the red trajectory marked by diamonds in Fig.

5.3(b)]. For a stationary liquid drop, the dimensionless critical trapping radius can

be estimated as,

Rc,drop ≈
64

3α2
D

λ+ 1

3λ+ 2
, (5.5)

where λ is the ratio of the drop’s viscosity to the viscosity of its surrounding fluid.

Eqn. 5.5 has been obtained from numerical calculations of the critical trapping ra-

dius for clean drops, reported in [64]. The critical trapping radius for a stationary

rigid sphere, Rc0, can be obtained by taking the limit λ → ∞ in eqn. 5.5, which

yields Rc0 ≈ 64/(9α2
D) [127]. This variation is shown by the circles in Fig. 5.3(d).

Alternatively, one can also evaluate the critical dipole strength for which a bacterium

will trap around a rigid sphere of radius R by inverting the previous expression, i.e.,

αD,c0 ≈ 8/(3R1/2). If we use the diameters of marine snow particles (0.4 - 100 mm) as

a reference, we obtain the corresponding critical dipole strength values in the range

0.05 < αD,c0 < 0.6. Measurements and calculations for E. coli estimate a wide range

of dipole strengths, 0.01 < αD < 2 [17, 177], owing to heterogeneities among differ-

ent cells [200]. The same is also true for other genera, like the uniflagellated marine

bacterium V. alginolyticus [39, 199]. Therefore, one can conclude that there do exist
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scenarios under which most motile bacteria can get hydrodynamically trapped around

stationary, rigid spherical obstacles.

Does hydrodynamic trapping occur if the obstacle encountered by the bacterium

is moving, instead of being fixed? To answer this, we numerically simulated (without

tumbling and rotary diffusion) the dynamics of a bacterium located initially at x(0) =

(0.1, 0,−R − 15), and orientated along the direction opposite gravity, i.e., p(0) =

(0, 0, 1), as shown in Fig. 5.3(c). Thus, the bacterium lies directly in the path of the

sinking aggregate and eventually collides with it, after which its motion is dictated by

hydrodynamic interactions with, and hardcore repulsion from the aggregate surface.

In addition to dipole strength and the sphere radius, we have a third factor that

governs the bacterial dynamics when the sphere is settling under gravity: the density

difference between the sphere and the ambient fluid, denoted, in dimensionless form,

by K∆ρ. A major difference due to gravitational settling is that if the settling speed is

very large (due to large aggregate radius and/or excess density), then the bacterium

cannot ‘keep up’ with the sphere and thus cannot be trapped, as seen in the magenta

trajectory in Fig. 5.3(c). This is particularly true for low dipole strengths, i.e., when

the hydrodynamic interactions between the bacterium and the sphere are weak. But

there exists a range of sizes (0.2 mm < a < 0.65 mm) and excess densities (10−4

g/cm3 < ∆ρ < 10−3 g/cm3) of marine snow for which hydrodynamic trapping occurs

[198], specifically if the bacterium’s dipole strengths are large. Fig. 5.3(d) shows that

for excess density values that are representative of our system, substantial differences

between the critical trapping radii of the stationary (Rc0) and the translating (Rct)

case occur only for small bacterial dipole strengths. In this regime [αD < 0.6 in

Fig. 5.3(d)], the critical trapping radius for the case of a sinking aggregate increases

as the excess density of the aggregate increases. However, there is no Rct shown

corresponding to αD = 0.3 for K∆ρ = 1.09 × 10−4, and corresponding to αD =

0.3, 0.4 for K∆ρ = 2.18 × 10−4. For these parameter values, trapping does occur

at larger values of R, but the Reynolds number of the aggregate corresponding to

these large values is ∼ O(1), and so our theory is not valid in those regimes. It
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is interesting that even though larger spheres settle faster, they also have a greater

‘hydrodynamic pull’ on a bacterium with large enough dipole strength. Intuitively,

one would expect larger spheres/aggregates to be less effective hydrodynamic traps

as they settle faster and so an approaching bacterium might not be able to keep

up with the settling sphere. But for the range of excess density considered (10−4

g/cm3 to 10−3 g/cm3), our analysis shows that an increase in aggregate radius also

strengthens the hydrodynamic interaction between the aggregate and the bacterium.

This enables larger aggregates to act as more effective traps for nearby bacteria. In

this way, a sphere of radius less than the critical trapping radius sinks slowly but

still doesn’t trap an approaching bacterium (as the hydrodynamic interaction effects

are weak), while one with radius larger than the critical trapping radius sinks more

rapidly yet it manages to trap oncoming bacteria with large enough dipole strength

(due to stronger hydrodynamic interactions). But this effect of larger aggregate radii

being more conducive to trapping might not extend indefinitely, as eventually the

aggregate Reynolds number will become ∼ O(1), and the ideas presented here will

become inapplicable. In the low Reynolds number regime discussed here, there is

an upper limit of aggregate radii−albeit in a few cases−above which bacteria with

smaller dipole strengths fail to remain hydrodynamically bound to the aggregate.

This upper limit, Rcu, is shown whenever it exists, via filled symbols in Fig. 5.3(d).

This upper limit of aggregate radius exists because the hydrodynamic trapping effect

competes with the settling rate of the sphere, and there does exist some threshold

settling speed above which the sphere’s fast settling precludes hydrodynamic capture

altogether. In accordance with this idea, we also see that if the excess density is

too high (K∆ρ > 4 × 10−2) then hydrodynamic trapping does not occur for realistic

values of the bacterium dipole strength and marine snow radius. This upper limit

of K∆ρ was computed by simulating the encounter of a bacterium of dipole strength

αD = 2 (which is the maximum value used in our work), with an aggregate of radius

R = 10 (which is the minimum value used in our work). As the value of K∆ρ was

increased from 2.18 × 10−5, the bacterium got trapped until K∆ρ = 4.36 × 10−2
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[see Fig. 5.3(e)]. Thus, when K∆ρ ≥ 4.36 × 10−2, even the bacterium with highest

dipole strength considered will fail to get trapped to any aggregate that we have

considered in this study. An increase in the sphere size at this value of the excess

density also does not favor trapping, because it further increases the sphere’s settling

speed, without yielding greater advantages for hydrodynamics based trapping. Since

even intra-species bacterial dipole strengths can span a wide range−owing to their

dependence on cell size, shape and swimming speed−one can expect a multitude of

behaviors in reality. The conclusion therefore is that hydrodynamic trapping around

a sinking sphere depends acutely on the sphere’s excess density and the bacterium’s

dipole strength.

The above behavior is deterministic because we have neglected the bacterium’s

rotational diffusivity. In the deterministic case, a bacterium encountering a sinking

obstacle is either trapped, or it escapes, depending on the sphere’s radius, its excess

density and the bacterium’s dipole strength. But stochasticity is introduced because

of noise/rotational diffusion in the bacterium’s orientation, quantified by the dimen-

sionless parameter D = Drb/Vs, where Dr is the rotary diffusivity of the bacterium.

If the bacterium’s rotary diffusivity is large, then its escape is possible even if the

radius of the spherical obstacle is larger than the critical values shown in Fig. 5.3.

A large enough rotary diffusion may overpower the fluid-flow induced rotation of the

bacterium toward the aggregate. This can cause it to reorient away from the surface

of the nutrient source, and simply swim away to escape the hydrodynamic entrap-

ment (see [127] and [64] for details). In presence of noise, the bacterium’s interaction

with the aggregate is no longer binary (i.e., either trap or escape), and the time a

bacterium spends at the surface of the aggregate is a random variable which we call

the ‘trapping time’, shown qualitatively by the trajectories in Fig. 5.4(a).

The distribution of the trapping time, Th, depends on the size and excess density of

the aggregate, and the dipole strength and rotational diffusivity of the bacterium. We

use it to quantify the trapping fraction, Ftrap, defined as the mean trapping time in a

simulation of 1000 bacteria divided by the total simulation time, i.e., Ftrap = T̄h/Tend,



134

-50 0 50
-80

-60

-40

-20

0

20

40

60

80

A

-50 0 50
-80

-60

-40

-20

0

20

40

60

80

B

0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

C

5 10 15 20
0

0.2

0.4

0.6

0.8

1

D

Figure 5.4. : (a) Ten trajectories of bacteria/micro-swimmers (dipole strength αD =

0.6, dimensionless rotary diffusivity D = 10−3) encountering a sinking sphere of radius

R = 40, K∆ρ = 4.36 × 10−4. (b) Ten trajectories of micro-swimmers with a higher

dipole strength (αD = 1.2) than case (a), but same dimensionless rotary diffusivity

(D = 10−3) encountering the same sinking sphere as in (a). (c) The trapping fraction

Ftrap as a function of the dipole strength for parameter values given in the title, with

Tend = 500. Clearly, Ftrap → 1 if the swimmer’s dipole strength is large enough. (d)

The trapping fraction as a function of the aggregate’s settling speed (Up) normalized

by the bacterium’s swimming speed (Vs). The legend contains values of the dipole

strength, along with the parameter that was varied (to vary Up) in each case. In

the plots marked by circles and squares, Tend = 500; Up is changed by changing

the excess density (∆ρ) of the aggregate from 10−4 g/cm3 to 2 × 10−3 g/cm3, and

aggregate radius is fixed at a = 45 µm. In the plots marked by triangles, Tend = 3000;

Up is changed by changing the aggregate radius from 20 µm to 450 µm, and excess

density is fixed at 5× 10−4 g/cm3.

where T̄h is the mean over all trial simulations. Fig. 5.4(c) shows that for typical

values of the bacterial rotational diffusivity, hydrodynamic trapping is still very likely

for αD > 1; thus suggesting that the trapping mechanism is quite robust to noise

[see also Fig. 5.4(b)]. As an example of bacteria with αD > 1, consider E. coli

cells (in water) of size b ≈ 1 µm, swimming speed 22± 5 µm/s, and dipole strength

FD ≈ 0.4−0.6 pN-µm [17], or V. alginolyticus cells of similar size but under conditions

where the availability of sodium (Na+) is somehow inhibited [199]. This is because the
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flagellar motor of V. alginolyticus is driven by transmembrane Na+ gradients, so Na+

deficient conditions reduce its swimming speed from ≈ 100 µm/s to ≈ 20 µm/s, thus

increasing the value of αD [6, 199]. In Fig. 5.4(d), we plot the trapping fraction as a

function of Up/Vs, i.e., the aggregate’s sinking speed in an unbounded fluid, divided

by the bacterium’s swimming speed. The aggregate’s speed depends on its excess

density ∆ρ and radius a; and we have plotted Ftrap for the cases where ∆ρ or a is

varied independently. An increase in ∆ρ increases the settling speed and weakens the

hydrodynamic attraction effect, therefore Ftrap reduces monotonically with Up/Vs.

Noticeably, if the bacterium’s dipole strength is large then hydrodynamic trapping

is quite likely (Ftrap ≈ 0.8) even when Up/Vs ≈ 10. The nature of Ftrap vs. a is

non-monotonic because an increased aggregate radius affects both the settling speed

and the hydrodynamic interactions (as seen in Fig. 5.3). Higher settling speeds on

account of larger aggregate radii do not necessarily diminish hydrodynamic capture,

reflected in the gradual initial increase of Ftrap as Up/Vs increases from ≈ 1 to ≈ 6.

This was also apparent in the results shown in Fig. 5.3(d), and is attributed to the

fact that hydrodynamic attraction is enhanced for larger radii. But this enhancement

does not last indefinitely and as the aggregate’s radius increases further [i.e., when

Up/Vs > 6 in Fig. 5.4(d)] we begin to see a decline in the trapping fraction. This

is because hydrodynamic attraction is now being overpowered by the more rapid

settling of the aggregate and the rotary diffusion, making it exceedingly difficult for

the bacterium to be retained on the surface of the sinking aggregate.

It is to be noted that the trapping behavior discussed above depends on whether

a ‘direct encounter’ takes place between the bacterium and the sphere. The most

common way such an encounter may happen is if the bacterium lies in the swept

volume below a settling marine snow particle. Another possibility is chemotaxis

toward the surface of the nutrient-effusing marine snow, although this will depend

strongly on the relative speeds and on the strength of chemotaxis. Irrespective of

the mechanism of the initial contact, hydrodynamic interaction plays a crucial role in
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enhancing the nutrient exposure of marine bacteria. In the subsequent sections, we

demonstrate this enhancement and explain the factors affecting it.

5.3.2 Average nutrient exposure and the hydrodynamic amplification

In this section, we combine the hydrodynamic and chemotactic effects described in

Sections 5.2.1 and 5.2.2 to simulate the trajectories of marine bacteria encountering

a sinking nutrient source. The complete details of the simulation methodology are

given in Appendix C. In case of a stationary source, the nutrient concentration is

spatially symmetric and the solution to eqn. 5.2 (with v = 0) is just C/C0 = a/r;

thus there is abundant nutrient availability all around the source. This changes as

the source settles under gravity because the nutrient which diffuses out of its surface

gets convected downstream as a plume [see Fig. 5.6(a)]. The width of this plume can

be thought of as a measure of the spatial ‘nutrient availability’, with wider plumes

being more amenable to location and population by bacteria via chemotaxis. An

equivalent metric is the concentration boundary layer thickness, denoted by δC . It

is defined roughly as the (small) radial distance from the source, transverse to the

settling direction, within which the nutrient concentration C drops from C0 to within

1% of C0. This boundary layer thickness depends on the nutrient’s Péclet number as

δC ∼ aPe−1/3, for Pe >> 1, and Reynolds number, Rems << 1 [11]. Fig. 5.6 shows

how the boundary layer thickness reduces as Pe increases due to reducing nutrient

diffusivity.

In our simulations, as the bacteria swim past the sinking source they either (i)

encounter it (via chemotaxis or otherwise), (ii) enter the boundary layer but do not

come into contact with the source, (iii) swim past the sphere but into the plume,

or, (iv) just swim past the sphere with minimal hydrodynamic interaction and/or

nutrient exposure. The behaviors are shown in Figs. 5.5 and 5.9. Chemotaxis is

key for cases (i) through (iii), while hydrodynamics is most important for the case

(i). Our aim is to compute the bacteria’s nutrient exposure as a function of vari-
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ous bio-physical parameters governing the problem’s hydrodynamic and chemotactic

influences. Towards this, we define the average nutrient exposure as:

C̄ =

Nb∑
i=1

Tend∫
0

Ci (t) dt/C0Tend

Nb

, (5.6)

where Ci(t) is the nutrient history of the i-th bacterium and Tend is the simulation-time

for it. We use the subscripts Ch. and N.Ch. to refer to the average nutrient con-

centrations for chemotactic and non-chemotactic bacteria, respectively. We simulate

the system for four different ‘bacteria types’: either chemotactic or non-chemotactic,

with either high or low dipole strengths [see the legend description of Fig. 5.6(b)].

Next, we define a term called the ‘hydrodynamic amplification’, i.e., the (possible)

increase in the nutrient exposure, attributable to hydrodynamic interactions:

AC =

(
C̄H − C̄L

)
C̄L

× 100, (5.7)

where the sub-scripts H and L refer, respectively, to the cases in which the hydro-

dynamic interactions are high/strong and low/weak. The varying strengths of these

hydrodynamic interactions could be due to the aggregate’s size and excess density,

or the bacterium’s motility characteristics represented via the dipole strength αD.

In our study we focus on the amplification stemming from the dipole strength, and

use αD = 2 (resp. αD = 0.1) for the case of strong (resp. weak) hydrodynamic

interactions. Thus the value of AC will be indicative of whether hydrodynamics is of

significant nutritional benefit or not. We postulate that near-surface hydrodynamic

interaction significantly increases nutrient exposure as it affects colonization of mov-

ing nutrient sources, particularly by the bacteria having large dipole strengths. As

explained in Section 5.3.1, this is because strong hydrodynamic attraction results in

the bacteria getting trapped on the surface of the nutrient source, instead of just

glancing the surface and getting swept away [recall the trajectories in Fig. 5.3(c)].

Fig. 5.5 shows that there is indeed a gentle increase in the value of C̄ as the

(dimensionless) dipole strength, αD, increases from 0.1 to 2, both for chemotactic

(C̄Ch.) and non-chemotactic (C̄N.Ch.) bacteria. Naturally, chemotaxis enables the
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Figure 5.5. : Variation in average nutrient exposure, C̄, as a function of the dimen-

sionless bacterial dipole strength αD, for chemotactic (Ch.) and non-chemotactic

(N.Ch.) bacteria. Inset: The trajectories of three chemotactic bacteria with different

αD values (these are given in the legend). It can be seen that all three trajectories

begin just outside the aggregate’s swept volume but are able to ‘chemotax’ onto the

surface. The amount of time each bacterium spends on the surface of the source

depends on their dipole strengths. The other parameters are: R = 45, K∆ρ = 0.0109,

Sc = 1000, τ ∗ = 1.

former to have more than two-folds higher average nutrient exposure, as also remarked

by [166]. It is the reinforcing effect of the hydrodynamic interactions with an increase

in the dimensionless dipole strength which is of major significance. The increment is

not exactly monotonic and most of it occurs over the range 0.5 < αD < 1.5. There are

upper (resp. lower) limits beyond which an increased (resp. reduced) dipole strength

doesn’t yield proportionate increments (resp. reductions) in C̄. The reason simply

is that for very low dipole strengths, any bacterium encountering the source just

doesn’t spend enough time swimming along its surface. In fact, the time a bacterium
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spends on the source increases as the dimensionless dipole strength increases, to an

upper limit after which the bacterium gets trapped and does not escape. This can

be seen in the inset of Fig. 5.5: the dipole strength is highest for the red (trapped)

trajectory, followed by that for the green and then the blue trajectory. Clearly, the

time spent in contact with the source−and thus in a region of maximum nutrient

concentration−is directly related to the dipole strength. Therefore, αD < 0.5 (resp.

αD > 1.5) represents very weak (resp. strong) hydrodynamic interactions, leading to

negligible changes in C̄ in those regimes. In the former case, the bacterial residence

time (on surface) is not long enough, and in the latter case there is a saturation due

to sufficiently strong hydrodynamic interactions. The intermediate region reflects the

non-trivial balance between deterministic trapping and stochasticity, as explained in

Section 5.3.1.

We saw that hydrodynamic interactions indeed enhance the average nutrient ex-

posure for both chemotactic and non-chemotactic bacteria. More precisely, the hy-

drodynamic amplification, AC , as defined in eqn. 5.7 is ≈ 20% for both chemotactic

and non-chemotactic bacteria, when comparing the C̄ values in Fig. 5.5 for the weak-

est and the strongest hydrodynamic interactions. Next, we analyze the dependence

of the average nutrient exposure on the nutrient’s diffusivity, quantified in our sim-

ulations by the Schmidt number, Sc. Note that lower values of nutrient diffusivity

mean higher values of Sc.

Fig. 5.6(a) shows how the nutrient is restricted to a narrower region around the

source as its diffusivity decreases, and the effect of this is seen in the reduction of

the average nutrient exposure with increasing values of the Schmidt number for all

combinations of chemotactic/non-chemotactic bacteria with strong/weak hydrody-

namic interactions in Fig. 5.6(b). This is to be expected though, as in general, a

reduction in nutrient diffusivity will reduce the number of bacteria that encounter

the source due to chemotaxis, and will also reduce the likelihood of most bacteria in

the bulk−chemotactic or otherwise−to populate the nutrient-rich plume. The more

interesting aspect can be seen in the inset, wherein stronger hydrodynamic interac-
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Figure 5.6. : (a) Spatial variation of the nutrient’s (normalized) concentration around

the sinking sphere. The thickness of the concentration boundary layer, δC , reduces as

the nutrient diffusivity reduces. The corresponding values of the Péclet number are

100, 2000, 5000. (b) The variation in the average nutrient exposure, C̄, for chemotac-

tic and non-chemotactic bacteria, with strong and weak hydrodynamic interactions,

as a function of the Schmidt number. The legends in the main figure are as follows:

Diamonds - chemotactic, αD = 2; Boxes - chemotactic, αD = 0.1; Triangles - non-

chemotactic, αD = 2; Circles - non-chemotactic, αD = 0.1. The filled symbols (for

Sc = 2500) correspond to simulation results with Nb = 5000 bacteria. Inset: The

hydrodynamic amplification, AC , as a function of Sc, comparing separately the per-

centage increase in nutrient exposures for chemotactic and non-chemotactic bacteria

(recall the definition of AC from eqn. 5.7). The other parameters are: R = 45,

K∆ρ = 0.0109, τ ∗ = 1.

tions become much more beneficial as the nutrient availability reduces; particularly

for the non-chemotactic bacteria wherein they experience more than double the nu-

trient exposure if hydrodynamic interactions are strong enough. The reason is that

hydrodynamic interactions, being a purely passive phenomenon, do not depend on

the nature of the nutrient that bacteria seek. They are influenced only by the mor-
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phology of the bacteria (via dipole strength, rotational diffusivity) and the size of

the sinking nutrient source. Non-chemotactic bacteria can experience nutrient-rich

regions in the bulk only by chance. If they do encounter the nutrient source, then the

bacteria with low dipole strengths spend very little time on the aggregate surface. In

essence, non-chemotactic bacteria with low dipole strengths have no way to maximize

their nutrient exposure. Non-chemotactic bacteria with high dipole strengths on the

other hand, get trapped onto the nutrient source whenever they encounter it, which

greatly benefits them, particularly when nutrients are scarce (high values of Sc). The

same explanation applies to chemotactic bacteria as well, but the amplification is

not as high. This is because chemotaxis, if reasonably strong, enables chemotactic

bacteria with lower dipole strengths to remain in the proximity of the source or in the

nutrient-rich plume behind the source. This somewhat reduces their nutrient deficit

as compared to their counterparts with higher dipole strengths.

We saw through Fig. 5.6 that thicker concentration boundary layers around sink-

ing aggregates favor foraging. This was because bacteria could easily enter the bound-

ary layer and increase nutrient availability. This idea can be succinctly explained

by considering the system of Nb non-interacting bacteria as a continuum with ‘self-

diffusion coefficient’ Db, which scales as ∼ V 2
s τ0, and then defining a bacterial Péclet

number Peb = Upa/Db (see [201] and [169] for details and applicability of such a sim-

plification). Now, because the ‘bacterial boundary layer’ around the nutrient source

scales as δB ∼ aPe
−1/3
b , and the nutrient boundary layer scales as δC ∼ aPe−1/3,

the ratio δB/δC = (Pe/Peb)
1/3 decides whether bacteria can effectively colonize the

nutrient hot-spots. In the present study, Peb ranges from 50 to 40000. As long as

Peb > Pe, the bacteria can form a boundary layer thinner than the nutrient bound-

ary layer, i.e., δB < δC and so chemotaxis will be profitable. As Peb reduces, so does

the bacterial accumulation around the nutrient source and thus the average nutrient

exposure should decline. This concept is borne out in our simulations too−especially

for the chemotactic bacteria−as the plots of C̄ versus the dimensionless mean run-

time τ ∗ show in Fig. 5.7. For non-chemotactic bacteria with αD = 2, the variation
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Figure 5.7. : The variation in the average nutrient exposure, C̄, for chemotactic

and non-chemotactic bacteria, with strong and weak hydrodynamic interactions, as

a function of the (dimensionless) mean run-time τ ∗. The legends in the main figure

are as follows: Diamonds - chemotactic, αD = 2; Boxes - chemotactic, αD = 0.1;

Triangles - non-chemotactic, αD = 2; Circles - non-chemotactic, αD = 0.1. Inset:

The hydrodynamic amplification, AC , as a function of τ ∗. The other parameters are:

R = 45, K∆ρ = 0.0109, Sc = 1000.

is fairly non-monotonic because there is no ‘directionality’ to their motion. Their

nutrient exposure depends mostly on their direct encounter with the aggregate. [169]

predicted that the encounter rate Er of non-chemotactic bacteria with the aggregate

varies non-monotonically with τ0 via a scaling Er ∼ τ
2/3
0 I(τ0). The function I(τ0) de-

creases as τ0 increases, thus leading to non-monotonic variation of the encounter rate,

Er; based on the results for smaller τ0 values, this is also reflected in our simulations.

The inset in Fig. 5.7 shows that the hydrodynamic amplification, for chemotactic

bacteria, varies non-monotonically as τ ∗ increases and a maximum of AC,max ≈ 35%

is reached at τ ∗0,opt ≈ 2. A physical interpretation is that chemotaxis is too strong
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for τ0 < τ0,opt, and thus even weak hydrodynamic interactions cannot prevent the

bacteria with the smallest mean run-times from either locating nutrient-rich regions

in the bulk (the concentration boundary layer), or from staying close enough to the

sinking nutrient source. As a result, the amplification is only ≈ 5% for the lowest

self-diffusion coefficient of bacteria (Db,min. = 5×10−7 cm2/s) being considered in our

study. On the other hand, for the larger mean run-times of τ0 > τ0,opt, the reduction

in the hydrodynamic amplification can be explained by the weaker chemotaxis leading

to lesser colonization of the aggregate surface by bacteria with high dipole strengths.

Due to this, hydrodynamics is unable to affect the nutrient exposure as severely as it

does for τ0 < τ0,opt, resulting in obtained reduction in the values of AC .

In the foregoing discussions, the size of the sinking aggregate, and thus its sinking

speed, was fixed. The effect of hydrodynamic interactions entered the discussion via

the different dipole strengths of the bacteria, with trapping (resp. escaping) being

favored by high (resp. low) dipole strengths. Fig. 5.8 details the changes in the

nutrient exposure and the corresponding hydrodynamic amplifications as a function

of the aggregate size. A change in the aggregate size has two implications: the first is

that larger aggregates sink more rapidly and thus it becomes difficult for chemotactic

bacteria to ‘catch up’ and get trapped onto them. Therefore, even though higher

aggregate radius is suitable for hydrodynamic trapping (Section 5.3.1), it doesn’t

help because of the large initial separations between the bacteria and the aggregate

in our simulations. On the other hand, smaller aggregates sink slowly, giving plenty

of time for chemotactic bacteria with high dipole strengths to locate the nutrient

source and get trapped onto it. This is why the hydrodynamic amplification reduces

as the size of the aggregate increases: the significance of hydrodynamic interactions

diminishes and so does the difference between the behaviors of bacteria based on their

dipole strengths.
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Figure 5.8. : The variation in the average nutrient exposure, C̄, for chemotactic

and non-chemotactic bacteria, with strong and weak hydrodynamic interactions, as a

function of the (dimensionless) radius of the marine snow particle R. The legends in

the main figure are as follows: Diamonds - chemotactic, αD = 2; Boxes - chemotactic,

αD = 0.1; Triangles - non-chemotactic, αD = 2; Circles - non-chemotactic, αD = 0.1.

Inset: The hydrodynamic amplification, AC , as a function of R. The other parameters

are: K∆ρ = 0.0109, τ ∗ = 1, Sc = 2000.

5.3.3 Motile, non-chemotactic bacteria versus non-motile bacteria

The locomotion of motile bacteria−both chemotactic and non-chemotactic−was

discussed in detail in Sections 5.2.1, 5.2.2 and the Appendix. In comparison, the

motion of non-motile bacteria in the ocean is fairly simple: they just act as passive

tracers being carried by the fluid flow. It has been shown in the past that the nutrient

exposure is more or less the same for motile, non-chemotactic bacteria when compared

to non-motile bacteria, over a wide range of initial conditions and Péclet numbers

[166]. This is indeed accurate if hydrodynamic interactions are negligible, as seen in
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the comparison between the pentagrams and circles in Fig. 5.9(a). In fact, for our

simulations, C̄NM was slightly larger than C̄N.Ch. for a wide range of marine snow

radii, when hydrodynamic interactions were particularly weak [see Fig. 5.9(b)]. But

stronger hydrodynamic interactions greatly improve the nutrient exposure for the

non-chemotactic bacteria with the percentage increase

AC2 =

(
C̄N.Ch. − C̄NM

)
C̄NM

× 100, (5.8)

being even greater than 100% (i.e., more than two-fold increase) for the case of the

scarcest nutrient availability (Sc = 2.5 × 104, Pe = 5000). The amplification is a

little less drastic as a function of aggregate size though, with enhanced hydrodynamic

interactions enabling the non-chemotactic bacteria to profit by AC2 ≈ 40% for the

highest aggregate size, and by ≈ 20% for the lowest. This is a significant contribution

and hints at potential motility induced advantage, irrespective of the chemotactic

nature of marine microorganisms. Needless to say, the (motile) chemotactic bacteria

are always at an advantage with respect to the non-motile bacteria and therefore we

do not discuss their comparison in this section.

5.4 Conclusion

In this paper, we investigated the combined influence of hydrodynamics and

chemotaxis on the colonization of sinking nutrient sources by marine bacteria. We

first developed and simulated a comprehensive mathematical model incorporating

bacterial swimming as influenced by: (i) fluid flow, and, (ii) chemotaxis toward the

nutrient-rich regions surrounding and trailing a sedimenting marine snow aggregate.

In addition to swimming with respect to the ambient fluid, bacteria are rotated and

translated due to hydrodynamic interactions with nearby surfaces, such as the sink-

ing aggregate in our case. These interactions, if sufficiently strong, can passively

trap bacteria that stray too close to the aggregate and thus play a major role in

enhancing a bacterium’s stay in the nutrient hot-spots in marine ecosystems. We

quantified the critical value of aggregate radius above which oncoming bacteria are
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Figure 5.9. : A comparison of the average nutrient exposure, C̄, between motile but

non-chemotactic bacteria and non-motile bacteria, as a function of (a) the nutrient

diffusivity, and (b) the (dimensionless) radius of the marine snow particle, R. (c)

Sample trajectories for the three cases whose nutrient exposures are plotted in panels

(a-b), with correspondence based on line colors. The blue and brown trajectories are

indistinguishable until they near the aggregate, and the latter gets trapped. Notice the

‘smoothness’ of the non-motile trajectory (black) versus that of the non-chemotactic

trajectory of bacterium with weak hydrodynamic interaction (blue). The nutrient

exposure for motile, non-chemotactic bacteria has been evaluated for both strong

(αD = 2) and weak (αD = 10−3) hydrodynamic interactions. The other parameters

are: K∆ρ = 0.0109, τ ∗ = 1.

trapped, and its dependence on the aggregate’s excess density and the bacterial dipole

strength (dimensionless propulsive force exerted by a bacterium on the fluid). The

critical trapping radius was lowest for the smallest excess densities and largest dipole

strengths. We note however, that the analysis of the critical trapping radius was

carried out in absence of noise/rotational diffusion of the bacterium. In presence of

noise, the bacterium’s interaction with the aggregate was quantified via a trapping

fraction, Ftrap. This is a measure of the likelihood of a bacterium being captured onto

the aggregate surface, when its orientation is affected by thermal and/or athermal
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fluctuations. We showed that the phenomenon of hydrodynamic trapping is robust

to noise, and discussed how factors such as the aggregate’s radius and excess density

can affect the trapping fraction.

Even though the attractive nature of the hydrodynamic interactions is restricted

to within a few body-lengths from the aggregate, we showed that it can drastically

alter a marine bacterium’s nutrient exposure. For example, chemotactic bacteria

with higher dipole strengths had ≈ 40% greater nutrient exposure, as compared to

chemotactic bacteria with relatively lower dipole strengths. A quintessential sce-

nario when such large amplifications could occur is the bacterial encounter of sinking

phytoplankton cells (d ≈ 100µm) exuding low molecular weight glycolates [74, 202].

Interestingly, this advantage is not restricted to chemotactic bacteria alone. Due to

the purely hydrodynamic nature of the trapping phenomenon, any motile bacteria

lying downstream in an aggregate’s swept volume can potentially get trapped onto

its surface. Hydrodynamics therefore, can yield substantial nutritional benefit even

to non-chemotactic, but motile bacteria, when compared to the non-motile bacteria.

These benefits depend on a variety of environmental conditions and biological param-

eters, like the size of the marine snow, the molecular diffusivity of the nutrient un-

der consideration and the average run-length of bacterial species. We systematically

studied these variations and provided an explanation for the obtained trends based on

the influence of hydrodynamic and/or chemotactic effects. In particular, we demon-

strated that hydrodynamics becomes progressively more important as the bulk nu-

trient availability−quantified by a concentration boundary layer thickness−declines,

especially for non-chemotactic bacteria. This is particularly significant because the

diffusion coefficients of the nutrients consumed by marine bacteria vary over a few

orders of magnitude (10−8 cm2/s < DC < 10−5 cm2/s). Our results thus suggest that

bacteria can accrue substantial nutritional gains due to motility, particularly when

foraging for high molecular weight (thus low diffusion coefficient) solutes which form

a major part of available dissolved organic matter in oceans [203]. In contrast, we

showed that larger aggregates (marine snow particles with radii greater than 1 mm)



148

proved too fast for the bacteria to get trapped onto, thus diminishing the role played

by hydrodynamics in those regimes. An implication of the nutrient source’s speed

being very high is that rising crude oil drops are not amenable to hydrodynamic trap-

ping. Their ‘excess’ densities are quite large (∆ρ ≈ −0.15 g/cm3), thus preventing

hydrodynamic trapping to occur at all, even for the smallest drops of diameter ≈ 1

mm. We performed simulations like those discussed before, for rising oil drops and

found that the amplification is practically non-existent, irrespective of bacteria being

chemotactic or non-chemotactic. Therefore, bacteria must attach onto the rising oil

drops via interfacial phenomena other than near-surface hydrodynamics, possibly via

adsorption after a random encounter [67, 153]. However, surfactant addition breaks

down larger oil drops into droplets ranging from 20-60 µm in diameter [3], which are

almost neutrally buoyant and get trapped in sub-surface hydrocarbon plumes [69,138]

or pycnoclines [93]. In these cases, hydrodynamics does affect the accumulation of

bacteria around oil drops. Specifically, hydrodynamics enables surfactant-laden drops

to trap bacteria more effectively than surfactant-free drops [64], and strong hydro-

dynamic interactions increase the bacterial colonization of oil drops by ≈ 60% [in

comparison to weak hydrodynamic interactions; [65]].

Our study reveals a passive, non-trivial mechanism that can enable marine bac-

teria to reside on, and populate, moving nutrient sources in the ocean. A key insight

is the generality of the hydrodynamic aspects of the results, which do not depend

heavily on the details of the bacteria involved. This enables one to use the deriva-

tions presented here in combination with different active behaviors−chemotactic or

otherwise−to investigate a variety of phenomena involving motile bacteria in fluid

flows past nutrient sources. The present work reveals some intricacies of the initial

stages of microbial colonization of nutrient sources, and extensions can be developed

over the framework presented here. If the rate of aggregate consumption is slow, then

our analysis can be extended to the case of time-varying aggregate size by simply

replacing the constant Fext by some time-dependent Fext(t). The number of bacte-

ria in the simulation would have to be continuously updated over such longer time
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scales, with possible alterations to their surface motility, e.g., a change from near-

surface swimming/swarming to surface twitching/gliding [204]. Other details in the

bacterium’s intrinsic motility−like chemokinesis, near-surface tumbling−are also easy

to add in the present study, given the availability of experimental data [39,110,187].

In this way, the model described can be extended, in conjunction with observations,

to incorporate finer details like evolution of microbial demographics based on surface

accumulation and substrate consumption. We thus envision rich applications of this

study toward analyzing complex processes involving close association of fluid flow and

active motility, e.g., bioremediation, microswimmer sorting/isolation, predator-prey

interactions at the micron scale.

5.5 Appendix

Appendix A: Equations governing fluid flow

The fluid velocity, v, and pressure, P , are governed by the conservation of mass,

∇ · v = 0, (5.9)

and the conservation of momentum under negligible inertia (Stokes equations),

−∇P + µ∇2v + FD = 0, (5.10)

where, µ is the dynamic viscosity of the suspending fluid. FD is the contribution of

the bacterium to the fluid flow, which is well approximated by a force dipole. Mathe-

matically it can be represented as a difference between two point forces separated by

a distance b (which is the characteristic size of the microorganism):

FD = fdpδ {x− (x2 + bp/2)} − fdpδ {x− (x2 − bp/2)} , (5.11)

where δ is the three dimensional Dirac delta function, x2 is the location of the bac-

terium’s center and p is the bacterium’s orientation. More formally, a Taylor series
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Figure 5.10. : Schematic depicting the coordinate systems, the vectors and the sym-

bols used to describe the linear and angular velocities of the aggregate and the bac-

terium. The simulations are performed in the coordinate system xyz, which is fixed

to the center of the marine snow particle, with the y axis pointing into the plane of the

figure. The coordinate system defined by the orthogonal vectors r̂, r̂⊥ and r̂⊥× r̂ can

translate and rotate with respect to xyz. Note that h is the dimensionless separation

of the bacterium (assumed to be spherical in our analysis) from the aggregate and θ

is the in-plane angle, i.e., the angle between the bacterium’s orientation p and the

unit vector r̂⊥.

expansion of the two terms in eqn. 5.11 yields the force dipole to be the gradient of

a point force along p, taken in the direction of p itself,

FD = FD (p · ∇) {pδ (x− x2)} , (5.12)

the quantity FD ≈ fdb is called the dipole strength of the microorganism.
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Eqns. 5.9 and 5.10 need to be solved subject to the boundary condition

v (xs) = Up + Ωp × xs, (5.13)

where xs corresponds to the surface of the marine snow particle, Up is the velocity

with which the particle is sinking and Ωp is its angular velocity. Note that if the

bacterium is not present (i.e., FD = 0), then Ωp = 0, and Up is given by the Stokes

settling velocity Fext/(6πµa). But the presence of the bacterium, and concomitant

hydrodynamic interactions, mean that Up and Ωp are not known a priori. So, we

utilize a well-known technique called the ‘method of reflections’ [13] to obtain uHI ,

ΩHI , Up and Ωp. The resulting expressions are provided in Appendix B [eqns. 5.14

to 5.21]. It is very important to note the dependence of these expressions on the

quantity αD, which is the dimensionless dipole strength.

Appendix B: Expressions for hydrodynamically induced translational and

angular velocities

The relevant expressions on the right-hand-side of eqn. 5.1 are obtained after the

application of the ‘method of reflections’ and Faxén laws for the marine snow particle

and the bacterium [13]. They are represented in terms of the unit vectors r̂ and r̂⊥. r̂

is directed along the line joining the center of the aggregate to the bacterium, and r̂⊥

is perpendicular to r̂, as shown in Fig. 5.10. The coordinate system defined by the

unit vectors r̂, r̂⊥ and r̂⊥× r̂ can rotate and translate with respect to the body-fixed

coordinate system xyz. The expression for uHI is:

uHI
Vs

= uHI,1 + uHI,2 + uHI,3, (5.14)

with,

uHI,1 =
3

4

R

R + h

[
F̄ext

{
1 +

1

3

(
R

R + h

)2
}

+
(
F̄ext · r̂

)
r̂

{
1−

(
R

R + h

)2
}]

,

(5.15)
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uHI,2 = −
3RαD

(
1− 3sin2θ

)
(R + h)

2h2(2R + h)2 r̂ +
3R3αD (2R2 + 6Rh+ 3h2) sin 2θ

4h2(2R + h)2(R + h)3 r̂⊥, (5.16)

and

uHI,3 =
3

4

αDR

(R + h)3

 ( R
R+h

)2
{

3 + 1
3

(
R

R+h

)2
}

sin (2θ) r̂⊥

−2
(
1− 3sin2θ

){
1− 4

3

(
R

R+h

)2
+ 1

3

(
R

R+h

)4
}

r̂

 . (5.17)

The expression for ΩHI is:

ΩHI

Vs/b
= ΩHI,1 + ΩHI,2 + ΩHI,3, (5.18)

with

ΩHI,1 =
3

4

R

(R + h)2

(
F̄ext × r̂

)
, (5.19)

ΩHI,2 = −3R3αD (2R2 + 6Rh+ 3h2) sin 2θ

4h3(2R + h)3(R + h)2

(
r̂⊥ × r̂

)
, (5.20)

and

ΩHI,3 =
3

2
αD

{
R

(R + h)2

}3

sin (2θ)
(
r̂⊥ × r̂

)
. (5.21)

All the terms in the right-hand-side of eqns. 5.15 to 5.17, 5.19 to 5.21 are dimension-

less, and are given by:

R =
a

b
, h =

(|x2| − a)

b
, αD =

FD
8πµb2Vs

, F̄ext =
Fext

6πµaVs
. (5.22)

In the above equations, h is the dimensionless separation of the microorganism

from the surface of the marine snow, and the θ is the angle between the bacterium’s

orientation p and the unit vector r̂⊥ (see Fig. 5.10). The terms given by eqns.

5.16, 5.17, 5.20 and 5.21 arise due to the flow generated by the bacterium (hence the

contribution of αD); while those given by eqns. 5.15 and 5.19 arise due to the fluid

flow cause by the settling sphere. Although the latter terms dominate when |x2| is

large, the former terms can become significant as |x2| reduces, i.e., as the bacterium

approaches the sphere/aggregate.
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The velocity of the settling marine snow particle, as altered by the presence of the

microorganism, is given by:

Up

Vs
=

Fext

6πµaVs
+

αD

|x2|2/b2

[
a2

|x2|2
sin (2θ) r̂⊥ −

(
1− 3sin2θ

){
1− a2

|x2|2

}
r̂

]
, (5.23)

and the angular velocity induced due to hydrodynamic interactions is:

Ωp

Vs/b
= − 3αD

2
(
|x2|3/b3

) sin (2θ)
(
r̂⊥ × r̂

)
. (5.24)

The second term on the right hand side of eqn. 5.23 is the correction to the Stokes

settling speed due to the presence of the microorganism. The quantity |x2| ≥ a,

and thus the effect of the microorganism on the marine snow’s settling speed (and

consequently, on the fluid flow and nutrient distribution) can be neglected if

|Fext|
6πµaVs

� αD
R2

, (5.25)

where, recall from eqn. 5.22 that R = a/b. Now, considering Fext = 4/3πa3∆ρg (the

marine snow particle is sinking under gravity), we have,

16π

9

∆ρga4

FD
� 1, (5.26)

which is typically satisfied for the parameter values listed in Table 5.1. Similarly, the

effect of rotation of the marine snow on the nutrient transport can be neglected based

on the inequality |Up| >> |Ωp × ar̂|, or,

|Fext|
6πµaVs

� 3αD
2R2

, (5.27)

which yields,
32π

27

∆ρga4

FD
� 1. (5.28)

Eqns. 5.26 and 5.28 allow us to neglect the effect of aggregate-bacterium hydrody-

namic interactions on the nutrient transport (eqn. 5.2). In addition, the Reynolds

number corresponding to the marine snow aggregates considered in this work, Rems

<< 1; hence, we use,

vSt = −Up,0 +

(
3a

4r
+

a3

4r3

)
Up,0 +

(
3a

4r3
− 3a3

4r5

)
x (Up,0 · x) , (5.29)
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in eqn. 5.2. Eqn. 5.29 is the flow field due to a sphere being acted upon by an

external force Fext, in the regime of negligible inertia. In eqn. 5.29, r = |x| and

Up,0 = Fext/(6πµa) is the velocity of a sphere of radius a in presence of an external

force Fext and negligible inertia, obtained by substituting αD = 0 in eqn. 5.23, hence

the sub-script ‘0’.

Appendix C: Simulation details

Nutrient concentration

We solved eqn. 5.2 using a finite element method, and validated our code by

comparing the value of the Sherwood number (as a function of Péclet number) with

analytical and numerical predictions (see Fig. 5.11 in the Appendix).
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Figure 5.11. : The Sherwood number−a dimensionless measure of the mass transfer

rate at the sphere surface−as a function of the Péclet number evaluated using numeri-

cal simulations and compared against analytical predictions for Pe >> 1 [dashed line,

by [205]] and numerical predictions valid for all Péclet numbers [solid line, by [206]].
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Bacteria trajectories

We simulate the mathematical model described in Sections 5.2.1 and 5.2.2, for a

system containing Nb = 1000 non-interacting bacteria, placed uniformly within a disk

of radius 2a at a vertical separation 5a below the sinking marine snow particle. The

simulations are run until either the bacteria are at separations greater than rlim = 50a

from the center of the marine snow, or the maximum simulation time is reached. As

we are only considering bacteria upstream from the settling marine snow and from

within the disc, we are actually neglecting any bacteria that could drift in from above

the marine snow, or from ‘the side’. However, as long as the aggregate settles at a

rate much faster than the bacterial swimming speed, we can safely neglect the drifting

in of any bacteria from above the marine snow. Also, the time taken by a bacterium

to diffuse in from the sides via a random walk is td ∼ a2/(V 2
s τ0/6). Therefore, as

long as the aggregate falls a distance greater than a in this time, i.e., as long as

Uptd >> a, the diffusion of bacteria from the sides can also be neglected. In our case,

the minimum value of the ratio Uptd/a is ≈ 50, and so bacteria diffusing in from the

sides would not get ample time to locate the nutrient source [167].

We emphasize that the value of the threshold bacteria-aggregate separation above

which the simulations are stopped (i.e., rlim), has a minor quantitative effect on the

final results, with all our descriptions of the possible qualitative behaviors staying

the same. Fig. 5.12 shows that increasing rlim by a factor of two is seen to affect

the C̄ values of chemotactic bacteria most acutely−by almost 10%−for the case of

strongest hydrodynamic interaction. The values of C̄ for chemotactic bacteria with

weak hydrodynamic interaction, and those for non-chemotactic bacteria do not change

appreciably. The maximum change in the values of AC for chemotactic bacteria is by

only 3%, suggesting that our predictions are robust against changes to rlim. It can

also be seen that using larger number of bacteria, say, Nb = 5000, does not have a

very significant quantitative effect on our results (see Fig. 5.6(b) in Section 5.3.2).



156

We march the equations governing x2(t) and p(t) in time using an explicit Euler

method, and track the position and the nutrient concentration to which the bacteria

are exposed. We compute DC/Dt for the bacteria at each time-step ∆t, and effect a

tumble if the quantity ∆t/τ > R, where τ is given by eqn. 5.3, and R is a uniformly

chosen random number from [0,1] [161,180]. The tumble is implemented by changing

the bacterium’s orientation from p to p′, with there being no correlation between

p and p′ (isotropic tumbles). The implementation of correlated tumbles, including

the ‘run-reverse-flick’ strategy, is straightforward in that the angle between p′ and p

must be chosen from a prescribed, non-uniform distribution. We also assume that

the tumbles are instantaneous. It is easy to see that whenever DC/Dt > 0, the

tumbling probability ∆t/τ is smaller than the unbiased tumbling probability ∆t/τ0,

and so a bacterium moving up a nutrient gradient is less likely to veer off in a different

direction.
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Figure 5.12. : The variation in the average nutrient exposure, C̄, for chemotactic

and non-chemotactic bacteria, with rlim = 25 (thick lines) and rlim = 50 (thin lines).

The legends in the main figure are as follows: Diamonds - chemotactic, αD = 2;

Boxes - chemotactic, αD = 0.1; Triangles - non-chemotactic, αD = 2; Circles - non-

chemotactic, αD = 0.1. Note how rlim affects C̄ the most for chemotactic bacteria with

αD = 2: this is because the bacteria that get hydrodynamically trapped contribute

the same amount to the overall mean nutrient exposure irrespective of the value of

rlim.
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Table 5.1. : List of parameters and their values used in the numerical simulations.

Symbol Description Value range (units)

Flow

µ Viscosity of suspending fluid 0.01 (poise)

ρ Density of suspending fluid 1.00 (g/cm3)

d = 2a Diameter of marine snow 0.04 - 0.13 (cm)

∆ρ Excess density of marine snow 10−4 - 10−3 (g/cm3)

Up = (2/9)∆ρga2/µ Settling speed of marine snow 0.004−0.046 (cm/s)

Reb = ρVsb/µ Reynolds number for bacterium 10−5 - 10−4

Rems = ρUpd/µ Reynolds number for marine snow 0.02 - 0.6

Bacteria

Vs Swimming speed 10 - 50 (µm/s)

b Size 1 - 10 (µm)

αC Chemotactic time constant 1200 (s)

τ0 Mean run-time 0.4 - 10 (s)

Dr Brownian rotational diffusivity 10−3 - 10−2 (s−1)

FD Bacterial dipole strength 0.1 - 1 (pN-µm)

αD = FD/(8πµb
2Vs) Dimensionless dipole strength 0.1-2

Nutrient

C0 Reference concentration 25 (µM)

KD Half-saturation constant of chemoreceptor 2.5 - 250 (µM)

DC Diffusivity 4× 10−7 - 2× 10−5cm2/s

Sc = ν/DC Schmidt number 500 - 25000

Pe = Upa/DC Péclet number 100 - 5000

Peb = Upa/(V
2
s τ0/6) bacterial Péclet number 50 - 40000

δC ≈ (9µDC/2∆ρg)1/3 Concentration boundary layer thickness 0.0026−0.0132 (cm)

Simulation

∆t Dimensionless time step 10−3

Nb Number of bacteria in simulation 1000 - 5000

Lup = 5a Upstream bacteria starting distance 0.1 - 0.38 (cm)

Rdisk = 2a Radius of disk of bacteria’s initial positions 0.04 - 0.13 (cm)
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6. BIOFILMS AT INTERFACES: MICROBIAL DISTRIBUTION IN FLOATING

FILMS

6.1 Introduction

Hydrodynamics of swimming microorganisms−a branch of physical sciences with

ever-expanding frontiers−has seen intense research from a host of perspectives, an

important one being the study of motility near rigid/fluid surfaces [8, 105, 207]. The

fluid flow around a microorganism swimming near a surface is fundamentally different

than that in an unbounded domain. This difference stems from the fluid dynamic con-

straints (boundary conditions) imposed by ambient surfaces which result in a ‘hydro-

dynamic interaction’ of the microorganism with the surface. It can cause: (i) a change

in the organism’s swimming speed, or, (ii) a change in its swimming trajectory due to

an induced rotation, or, (iii) a drift toward the surface causing surface-accumulation.

These physical effects have important consequences on the near-surface functions of

microorganisms, e.g., navigation through confinements, foraging, host invasion, stress

evasion, and nutrient-source-colonization [204, 208]. Knowledge of microbial locomo-

tion near surfaces can thus drive discovery and inform developments in applications

like mammalian fertilisation, control of infectious diseases, membrane anti-fouling and

bacterial bioremediation.

In light of these motivations, a large number of analytical, numerical and ex-

perimental studies have been conducted on the motion of microorganisms near sur-

faces. These focus on the motion of micro-swimmers near: (i) a single rigid surface

[14,19,20,22,27,29–31,107,160,195,209–214]; (ii) a single plane [23,24,30,147,215,216],

or deforming [146, 217, 218] fluid-fluid interface; (iii) under confinement by two rigid

0This chapter, with additions and/or changes, will be eventually submitted to a peer-reviewed

journal, to be considered for publication.
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surfaces [21, 109, 196, 219, 220]; or, (iv) under confinement by a rigid surface and a

free surface (also called in a film) [28, 221]. Together, these investigations have re-

vealed a fascinating array of swimming behavior displayed by micro-swimmers in

the vicinity of surfaces. Motion near a single rigid/fluid surface has been catego-

rized as: (i) attraction to rigid walls [14, 21, 22, 27, 31, 160], (ii) attraction to non-

deforming [30, 147, 160, 216] and deforming [146, 217] interfaces; (iii) swimming in

circles with the directionality (clockwise vs. counter-clockwise when seen from the

‘microorganism side’) being determined by the rigidity/fluidity of the nearby sur-

face [20, 23, 24, 30]; (iv) scattering away from a rigid [14] or a free surface [160]; and,

(v) swimming at a fixed distance from a nearby rigid surface [19, 30, 31, 212–214], a

plane, surfactant-laden free surface [23, 24, 30] or deforming free surface [218]. The

swimming behavior within a fluid film is generally a combination of the above ef-

fects, depending on the swimmer’s proximity to either confining surface, and is useful

in predicting microorganism distribution in biofilms [28, 221]. In addition, an im-

posed external flow can yield rich swimming dynamics of confined microorganisms,

depending on the strength of the external flow and the swimmer-surface hydrody-

namic interactions [222], e.g., (i) ‘trapping’ in high-shear regions [223,224], (ii) oscil-

lating across the width of a parallel-plate channel [225,226], and, (iii) detachment of

‘hydrodynamically attached’ swimmers from a wall due to high external shear [18].

While hydrodynamics-mediated microbial distribution in biofilms resting on rigid

substrates has received some attention [18, 28, 221], there are relatively fewer works

which focus on floating biofilms. A floating biofilm is a unique configuration wherein

microorganisms populate a fluid surface instead of a rigid one. It can be idealized as

a suspension of microorganisms in a confinement with an air-fluid interface on one

side and a fluid-fluid interface on the other. These systems, called “films of bacteria

at interfaces” [67], are becoming exceedingly relevant in applications like bioremedia-

tion of oil spills [3], emulsion stabilization [227,228], pathogen control [229] and more

fundamental processes like transfer of organic matter between the surface, the bulk

and the substratum in lakes and oceans [204, 230]. Motivated by these applications,
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we wish to understand how hydrodynamics influences the distribution of microorgan-

isms in floating films. Specifically, under what scenarios does hydrodynamics cause

the microorganisms to preferentially reside at/near one of the two (air-fluid or fluid-

fluid) confining interfaces? How is this preference affected if the film is flowing? The

answer to these questions will depend on the microorganism’s geometry (shape and

propulsion mechanism) and the physical properties of its surroundings (viscosities of

its suspending and underlying fluids, external fluid-flow rates). Our aim is to develop

a mathematical model that allows quantification of microorganism distribution across

the height of the floating film, with consistent treatment of the flow-physics affecting

microorganism dynamics. Towards this, we formulate a problem based on far-field

hydrodynamics, stochastic simulation of microorganism trajectories and computation

of their time-averaged spatial distributions. Section 6.2 introduces the mathematical

model, followed by a description of the solution methodology employed. In Section

6.3.1 we describe the procedure used to obtain the main results in this manuscript,

with Sections 6.3.2 and 6.3.3 discussing microbial dynamics in biofilms that are stag-

nant and flowing, respectively. Finally, Section 6.4 summarizes the main results,

suggests many useful extensions of the present work and concludes this study.

6.2 Mathematical model

The Reynolds number corresponding to microorganism swimming is small enough

to neglect the effects of inertia on fluid flow and on the motion of the microorganism.

The fluid flow is thus governed by the continuity and the Stokes flow equations.

This also allows us to use a multipole expansion representation for the swimmer,

i.e., we model the swimmer as a collection of Stokes flow singularities located at

its centroid, and use them to evaluate any ensuing hydrodynamic interactions. The

geometry of our problem is explained in Fig. 6.1. A microorganism of characteristic

size a is contained in a fluid of viscosity µ1 (henceforth called fluid-1), which floats

on another fluid of viscosity µ2 (fluid-2). Any point of interest in the domain is
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identified by the coordinate x ≡ (x1, x2, x3). The height of the fluid-1 film is H.

The air-fluid (resp. fluid-fluid) interface at x3 = H (resp. x3 = 0) is referred to

as A-F (resp. F-F). The microbe’s configuration is uniquely identified by its height

above the F − F , z, and its in-plane orientation, θ. We must note that the system

described above is an idealization of a biofilm in that the fluid-1 is treated as a

Newtonian fluid, and biofilms are generally complex structures characterized by a

non-Newtonian environment. However, in this first exploration, we focus on films of

bacteria in a Newtonian fluid, which is indeed an appropriate assumption in some

instances [204, 231]. We emphasize that complex interfacial and bulk fluid behavior

can be systematically incorporated into our mathematical model and comment further

on this aspect in Section 6.4.
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Figure 6.1. : A schematic of the problem being solved. Shown here is the microor-

ganism located at x = y, along with its ‘images’ at y∗ (w.r.t. the fluid-fluid interface)

and at y∗∗ (w.r.t. the air-fluid interface). A− F (resp. F − F ) refers to the air-fluid

(fluid-fluid) interface. Note that the e2 component of the swimmer’s orientation has

been set to zero without loss of generality. The vertical distribution of a suspension

of non-interacting microorganisms depends on the morphology of the microorganisms

and the viscosity ratio, λ ≡ µ2/µ1, of the fluids involved.
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6.2.1 Stokeslet in a floating film

A formal solution procedure for our model of swimmer dynamics in a floating film

begins with the fundamental solution to the Stokes equations (in fluid-1) perturbed

by a point force (called a Stokeslet) at a prescribed position y:

∇ · u(1) = 0, (6.1a)

∇ ·T(1) + fδ (x− y) = 0, (6.1b)

u(1) (|x| → ∞) = 0, (6.1c)

where, T(1) is the stress tensor in a Newtonian fluid, given by,

T(1) = −P (1)I + µ1

(
∇u(1) +∇u(1),T

)
, (6.2)

with P (1) being the fluid pressure, I the identity matrix, the super-script ‘T ′ denoting

transposition and µ1 is the fluid viscosity. The linearity of the Stokes flow equations

allow us to write the solution of eqn. 6.1 as:

u(1) (x) = GOs (x− y) · f, (6.3)

where GOs is the free-space Green’s function for the problem, the well-known Oseen

tensor,

GOs (x− y) =
1

8πµ1

(
I

|x− y|
+

(x− y)(x− y)

|x− y|3

)
. (6.4)

Now, if instead of being in an unbounded homogeneous fluid-1, the point-force is

exerted at a distance z from fluid-2, then one must also solve for the Stoke flow

equations in fluid-2 (without the forcing term), subject to the boundary conditions

of continuity of velocity and shear stress at the fluid-fluid interface (F-F):

u(1) = u(2), at x3 = 0, (6.5a)

e3 · {∆T} · e1 = e3 · {∆T} · e2 = 0, at x3 = 0, (6.5b)

where, ∆T = T(1)−T(2). This problem (eqns. 6.1 and 6.5) was solved by Aderogba

and Blake in ref. [232]. u(1) (x) can be represented as a superposition of the original
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force singularity with a system of ‘image singularities’ placed at the ‘image point’

y∗ = y− 2(e3 · y)e3 (see Fig. 6.1). One can write

u(1) (x) = GFF
1 (x,y,y∗;λ) · f , (6.6)

with,

GFF
1 (x,y,y∗;λ) = GOs (x− y)−Nλ ·GOs (x− y∗)

+
{

2Λ1z (e3 · ∇0) + Λ1z
2M · ∇2

0

}
GOs (x− y∗) ,

(6.7)

where ∇0 ≡ ∂/∂y, Nλ ≡ diag. (Λ2,Λ2, 1), with Λ2 = (λ− 1)/(λ+ 1); Λ1 = λ/(λ+ 1);

and, M ≡ diag. (1, 1,−1). The first term on the right hand side of eqn. 6.7 represents

the effect of the force singularity in fluid-1, while the other terms are contributions

from the image. Similarly, the flow-field in fluid-2 can also be represented as contri-

butions from singularities placed at y, as u(2) (x) = GFF
2 (x,y;λ) · f , with,

GFF
2 (x,y;λ) =

2

1 + λ
R · GOs (x− y) +

2

1 + λ

{
z (e3 · ∇0)− z2

2
∇2

0

}
GOs (x− y) ,

(6.8)

where R ≡ diag. (1, 1, 0). Therefore, flow-fields given by u(1) (x) = GFF
1 · f and

u(2) (x) = GFF
2 · f will satisfy the Stokes equations and the boundary conditions in

eqns. 6.5.

One special case of the aforementioned discussion is when the point-force acts near

an air-fluid interface (A-F). Consider now the presence of an A-F at x3 = H, which

requires u(1) (x) to satisfy the boundary conditions:

e3 · u(1) = 0, at x3 = H, (6.9a)

e3 ·T(1) · e1 = e3 ·T(1) · e2 = 0, at x3 = H. (6.9b)

The boundary conditions in eqns. 6.9 are indicative of vanishing normal velocity

and shear stresses. The solution to eqns. 6.1 and 6.9 is obtained easily by a slight

adjustment and reinterpretation of eqns. 6.6 and 6.7. We just need to substitute
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λ = 0 in eqn. 6.7 and note that now the image singularities must lie at y∗∗ =

y + 2 {H − (e3 · y)} e3 (see Fig. 6.1). This yields

u(1) (x) = GAF
1 (x,y,y∗∗) · f , (6.10)

with,

GAF
1 (x,y,y∗∗) = GOs (x− y) + M ·GOs (x− y∗∗) , (6.11)

The solutions discussed thus far−for a point force near a F-F or an A-F−are exact in

terms of satisfying the governing equations and the appropriate boundary conditions.

However, errors are introduced when both these interfaces exist, the configuration of

interest in this work. The errors stem from the fact that the fluid velocity in eqn.

6.6 does not satisfy the boundary conditions given in eqn. 6.9, and the fluid velocity

in eqn. 6.10 does not satisfy the boundary conditions given in eqn. 6.5. Therefore,

an accurate calculation of u(1) (x) for a Stokeslet under confinement by two inter-

faces would require us to obtain successive ‘images of images’ an infinite number of

times [221,233]. However, for the evaluation of a microorganism’s hydrodynamically

induced translational and rotational velocities, we can neglect the effect of the higher

order images as a first approximation; this is discussed in the next section.

6.2.2 Hydrodynamic interactions: Higher order multipoles

Once the image system for a Stokeslet in a floating film is known, we can take

its appropriate derivatives to construct the image systems for more complex force

distributions. This is important because we are modeling the microorganism−and

its hydrodynamic interactions with the interfaces−as a distribution of forces that its

appendages exert on the fluid. These can be recovered by writing the multipole expan-

sion form of the flow induced by the microorganism’s motion [15]. For this, we assume

the microorganism to be an axisymmetric prolate spheroid of major axis length 2a

and minor axis length 2b. At a given instant, it is located at x = y, and oriented

along the direction p. The multipole expansion of the flow due to the microorganism



166

can be represented in terms of its contributions in an unbounded fluid, which involve

gradients of the Oseen tensor GOs (x− y), plus correction terms−encoded in a tensor,

say H−stemming from the planar interfaces:

u(1) (x) = uD (x) + uSD (x) + uQ (x) + uR (x) + . . . , (6.12)

where,

uD

8πµ1

= κ (p · ∇0)
{(

GOs + H
)
· p
}
, (6.13a)

uSD

8πµ1

= −σ
2
∇2

0

{(
GOs + H

)
· p
}
, (6.13b)

uQ

8πµ1

= ν (pp : ∇0∇0)
{(

GOs + H
)
· p
}
, (6.13c)

uR

8πµ1

= τ (p · ∇0)∇0 ×
{(

GOs + H
)
· p
}
. (6.13d)

Note that all directional gradients in eqn. 6.13 have been taken with respect to p,

which is a manifestation of the microorganism’s axisymmetry [15]. The absence of any

terms proportional to ‘
(
GOs + H

)
· p’ signify that the microorganism does not exert

any net force or torque on the fluid. The terms in eqns. 6.13a to 6.13d are called the

force dipole, the source dipole, the force quadrupole and the rotlet dipole respectively,

and each has its own physical meaning. The force dipole represents the equal and

opposite forces the microorganism exerts on the fluid, the source dipole represents the

finite size of the microorganism, the force quadrupole represents the first effects of

asymmetric forcing−stemming from asymmetry in microbial shape−by the microor-

ganism and the rotlet dipole represents the equal and opposite torques that a (helically

flagellated) microorganism exerts on the fluid [14, 221]. The coefficients κ, σ, ν, τ are

called the strengths of each of these singularities. Dimensional consistency requires

their dimensions to be: [κ] =[velocity×length2] and [σ, ν, τ ] =[velocity×length3]. It

is very important to note that in principle, the multipole expansion is a valid de-

scription of the flow in the far-field of a swimmer, but remarkably, experiments (see

ref. [21]) and numerical simulations (see ref. [14]) have shown that it is accurate up to

swimmer-boundary separations as small as one body-length. Also, one could extend
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the multipole expansion of eqn. 6.12 even further, but we restrict ourselves to 4 terms

for simplicity, and also because these terms capture the essential swimmer dynamics

and have easily realizable physical significance. In fact, because we are eventually

interested in swimmer distributions transverse to the floating film, we do not discuss

the hydrodynamic effects of the rotlet dipole (eqn. 6.13d) as it does not yield any

swimmer motion in the e3 direction [14,160,221].

The ‘H terms’ in eqn. 6.13, by definition, denote the hydrodynamic influence

of the confinement (F-F and A-F) on the swimmer-generated flow. This influence

results in the swimmer’s translation and rotation. It is quantified by the Faxén laws

for a force-free and torque-free spheroidal particle:

uHI (y,p) = uH (x = y) +O
(
a2/H2

)
,

ΩHI (y,p) =

[
1

2
∇× uH (x) +

γ2 − 1

γ2 + 1
p×

(
EH (x) · p

)]∣∣∣∣
x=y

+O
(
a2/H2

)
,

(6.14)

where a/H is the characteristic microorganism size normalized by the height of the

film, the super-script ‘H’ denotes contributions to u(1) (x) from the images of the

swimmer’s simgularity representation, γ = a/b is the aspect ratio of the microorgan-

ism and EH is the rate-of-strain tensor derived from the uH flow.

An explicit expression for H will complete our quantification of the swimmer-

interface hydrodynamic interactions. Based on the discussion in Section 6.2.1, one

would require to take infinite images to accurately satisfy the boundary conditions

on both A-F and F-F. However, in the present problem, our aim is to use the above-

described method of images to obtain the hydrodynamically induced translational

and rotational velocities of a model swimmer. This requires evaluation of uH(y),

i.e., the flow due to the image system evaluated at the microorganism’s location (see

Faxén laws given in eqns. 6.14). The major contribution to uH(y) comes from the

first two images: (i) the image at y∗, taken with respect to the fluid-fluid interface

(eqns. 6.6 and 6.7), and, (ii) the image at y∗∗, taken with respect to the air-fluid

interface (eqns. 6.10 and 6.11). The contributions due to any other ‘image of image’
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will be of a higher order in a/H. So as a first approximation, they can be neglected

in comparison to the contributions due to the images at y∗ and y∗∗. In addition, the

higher order images will always be further from the microorganism than the images

at either y∗ or y∗∗, so the dominant contribution to the hydrodynamic interactions

will always stem from one of the two images shown in Fig. 6.1. This is especially true

when considering thick fluid films, i.e., when a/H << 1. Therefore, we approximate

the ‘film correction’ as that due to the first two images of the Stokeslet,

H (x,y,y∗,y∗∗;λ) ≈ GFF
1 (x,y,y∗;λ)

+ GAF
1 (x,y,y∗∗)− 2GOs (x− y) ,

(6.15)

where are GFF
1 and GAF

1 are given in eqns. 6.7 and 6.11, respectively. Along with the

hydrodynamics-induced drift and reorientation, a microorganism has its own active

motility, can interact sterically with either interface and has a tendency to reorient

itself randomly due to structural imperfections. Therefore, the motion of the mi-

croorganism is described by the following coupled, non-linear ordinary differential

equations:

dy

dt
= Vsp + uHI (y,p) + Vst,

dp =
{

ΩHI (y,p)× p +
√

4Dr/dt dW
}
dt,

(6.16)

where Dr is the rotational diffusivity of the microorganism and dW is a random vari-

able chosen from a normal distribution with zero mean and unit variance. The expres-

sions for the e3 component of uHI (y,p), and the e2 component of ΩHI (y,p) have

been provided, singularity-wise, in the Appendix (see eqns. 6.25 to 6.30). These are

the only hydrodynamic components responsible for altering the vertical distribution

of the swimmers. Vst is the steric-interaction-induced velocity of the microorganism

which prevents it from penetrating into the interface; it is implemented as a hard-core

repulsion. Finally, note that swimmer elongation will result in steric torques upon

contact with the interface, but we neglect them in this study as their influence on the

swimmers’ spatial distribution is not very significant.



169

We conclude this section with a physical discussion of the microorganism’s behav-

ior within the floating film. The hydrodynamic-interaction-effects will be strongest

at swimmer-interface separations corresponding to ∼1 swimmer body-length [17,21];

beyond these the swimmer motion will be dictated by self-propulsion and rotary dif-

fusion [109, 207, 226]. Thus, in the present configuration, a swimmer near the center

of the film is expected to swim toward one of the two interfaces, reach close enough

to be affected by hydrodynamic interactions and then translate and/or rotate in a

fashion acutely dictated by the type of interface: A-F or F-F, and the morphology of

the swimmer: the parameters γ and κ, σ, ν. The near-interface hydrodynamic inter-

actions can lead to various behaviors which we identify, one singularity at a time, in

the subsequent sections.

6.3 Results

6.3.1 Dimensionless parameters and simulation methodology

We render the equations dimensionless by scaling lengths with the film height H

and velocities with the swimming speed Vs. The key dimensionless parameters in

our study are the viscosity ratio, λ = µ2/µ1; the swimmer elongation γ; and the

dimensionless force dipole, κ′ = κ/(H2Vs); source dipole, σ′ = σ/(H3Vs); and force

quadrupole, ν ′ = ν/(H3Vs) strengths. We note that by definition, higher values of

λ correspond to a less viscous fluid-film floating on a more viscous underlying fluid.

The symmetry about the azimuthal angle (φ) and along the e1 and e2 directions

allows us to study the swimmer motion in terms of only two degrees of freedom:

its separation from the F-F, z′ = z/H, and its orientation p = (cos θ, 0, sin θ). We

perform probabilistic simulations by integrating eqns. 6.16 using the explicit Euler

method, for Nb = 1000 swimmers whose initial positions (resp. orientations) are

assigned from a uniformly random distribution between [a/H, 1-a/H] (resp. [0, 2π]).

The simulations run until tend = 100H/Vs, after which we extract the probability
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distribution of the time-averaged swimmer position and orientation, Ψ
(
z̄, θ̄
)
, where

the over-bars denote time-averages:

z̄ =
1

tend

tend∫
0

z (t′)

H
dt′, θ̄ =

1

tend

tend∫
0

θ (t′) dt′. (6.17)

The distribution function is normalized such that,

1

2π

1∫
0

2π∫
0

Ψ
(
z̄, θ̄
)
dθdz̄ = 1, (6.18)

i.e., Ψ
(
z̄i, θ̄j

)
dz̄dθ×Nb/(2π) yields the number of swimmers within the bin [z̄i± dz̄,

θ̄j ± dθ̄]. Our main objective is to ascertain the time-averaged swimmer distribution

as a function of film height, F (z̄), toward which we integrate eqn. 6.18 over θ̄, to

obtain,

F (z̄) =
1

2π

2π∫
0

Ψ (z̄, θ) dθ. (6.19)

We also define the ‘fraction’ of swimmers at the F-F (resp. A-F) as F0 (resp. F1),

given by,

F0 =

1.1ā∫
0

F (z̄) dz̄, (6.20a)

F1 =

1∫
1−1.1ā

F (z̄) dz̄, (6.20b)

where ā = a/H [18]. The quantities mentioned above act as useful indicators of

the spatial distribution of swimmers as mediated by hydrodynamic interactions, self-

propulsion and rotary diffusion.

6.3.2 Microorganisms in a stagnant, floating film

The major results to be reported in this section are: (i) swimmer distribution in the

film, and, (ii) difference in swimmer accumulation at the two interfaces; quantified by:

(i) F(z̄), and, (ii) ∆F = F0−F1, respectively. In our simulations we take the films to
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be relatively thick as compared to the swimmer size, i.e., we have a/H = 1/50 << 1.

As a result, the viscosity ratio is expected to significantly alter the swimming behavior

near the F-F, but not near the A-F. Thus for a fixed swimmer geometry, variation

in F(z̄) and ∆F with respect to the film viscosity (λ) can be explained on the basis

of hydrodynamic interactions near the fluid-fluid interface itself. The variation F(z̄)

and ∆F as a function of the swimmer elongation (γ) however, will require careful

consideration of hydrodynamic interactions near both interfaces.

Force dipolar interactions

The force dipole hydrodynamic interactions are the leading order effect/behavior

of microbial swimming. The sign of the dipole strength, κ′, signifies two fundamen-

tally distinct locomotion strategies. Microorganisms with κ′ > 0 are called ‘pushers’

because they push fluid outward along their bodies as they swim. Exactly opposite

to this, microorganisms with κ′ < 0 are called ‘pullers’ as they pull fluid inward along

their bodies as they swim. The pushing (resp. pulling) is achieved by locomotory

appendages at the rear (resp. front) of the cell body [8].

It is common knowledge that a force dipole is always attracted to nearby interfaces.

Hydrodynamic interactions cause pushers (resp. pullers) to orient parallel to (resp.

perpendicular to, and ‘facing’ toward) a nearby interface and be attracted to it [147].

This explains Fig. 6.2 wherein we have almost symmetric distribution of swimmers

across the film. There is slightly more accumulation near z̄ ≈ 0 due to nominally

stronger hydrodynamic interactions at the fluid-fluid interface. This behavior depends

very weakly on both λ and γ, with F0 = F1 + ε, ε ∼ O(0.01) (see Fig. 6.11

in Appendix). However, one does see that pullers (κ′ < 0) accumulate closer to

both the interfaces than the pushers (κ′ > 0). This is because hydrodynamics causes

pullers to orient themselves toward the nearest interface, perpendicular to it; contrary

to pushers who orient parallel to the interfaces. In this way the pullers’ motility

acts in conjunction with their hydrodynamic attraction to enhance their interface
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Figure 6.2. : Swimmer distribution in the film, F(z̄), as a function of λ and γ, for

κ′ 6= 0, σ′ = ν ′ = 0. Notice no appreciable difference between F(z̄ = 0) and F(z̄ = 1)

for a wide range of swimmer elongation, γ, and the normalized film viscosity λ. The

value of the dimensionless rotational diffusivity of the swimmers is Dr/ (Vs/H) = 0.2.

accumulation as compared to pushers. We emphasize here that the stronger attraction

of pullers toward a glass surface was recently observed in experiments of bi-modal

Vibrio alginolyticus, albeit for swimming speeds larger than 20 µm/s [29]. Thus,

dipolar hydrodynamic interactions, to some extent, do prove useful in explaining a

salient feature of near surface swimming.

Unlike the distributions in Fig. 6.2, recent numerical simulations have suggested

the existence of significant asymmetry in bacterial propulsion in both thick and thin

fluid films resting on a rigid substrates [28]. This provides us a motivation to study
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the hydrodynamic interactions resulting from higher order multipoles like the effects

of the source dipole and the force quadrupole. We consider these one by one in the

subsequent sections to identify key behaviors elicited by each, and comment on their

combined effects at the end.

Source dipolar interactions

Source dipolar hydrodynamic interactions provide a finite size to the swimmer

model by generating a separation of flow into regions inside and outside an imper-

meable boundary called the ‘hydrodynamic radius’ of the swimmer [234]. The flow

due to a source dipole is representative of a ‘neutral’ swimmer, i.e., one that is nei-

ther a pusher or a puller (as its force dipolar contributions are negligible). The

sign of the source dipole strength represents ciliated swimmers if σ′ > 0, and non-

ciliated/flagellated swimmers if σ′ < 0 [14,221].

The first important point to note about source dipolar interactions is the existence

of ‘central oscillations’ for elongated ciliated swimmers (σ′ > 0), as shown in Fig.

6.3(a-b). It is attributed to the finite-size-effects of the source dipole, which provides

a ‘hydrodynamic repulsion’ by turning the swimmer away from any surfaces it is

about to encounter. This has been extensively detailed in past studies by Mathijssen

et al. [221, 234, 235]. They demonstrated how this ‘hydrodynamic regularization’

effect causes an elongated source-dipole swimmer to turn away from both a rigid wall

and a free surface [221]. They also postulated the use of the source dipole to avoid

non-singular flows due to model swimmers near walls [235]. This behavior is also

consistent with numerical simulations of model squirmers by Ishimoto and Gaffney

[160], wherein they demonstrated the tendency of source-dipole swimmers/neutral

squirmers to rotate and swim away from rigid walls as well as free-slip surfaces after

reaching a distance of closest approach. The ‘fluidity’ of the interface at z′ = 0 does

not significantly alter this oscillatory behavior. An increase in the viscosity ratio λ

increases−ever so slightly−the mean height around which the swimmers oscillate [or,
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Figure 6.3. : (a-b) Swimmer distribution in the film, F(z̄), as a function of λ for

γ = 8, for σ′ 6= 0, κ′ = ν ′ = 0. (c) Trajectories for a source dipole swimmer with

σ′ = 0.002 and γ = 8. The value of the dimensionless rotational diffusivity of the

swimmers is Dr/ (Vs/H) = 0.2. The trajectories are shown for two different viscosity

ratio values, λ = 0.1, 10. The initial position of the swimmer, (x′(0), z′(0)) = (0, 0.5),

is marked by the black circle and the initial orientation is horizontal, θ(0) = 0.

alternatively, the z̄ position corresponding to the peak in F(z̄)]. This can be seen

qualitatively in the sample trajectories of the source dipole swimmers in Fig. 6.3(c).

A second important concept is the distinctly different spatial distribution for

spherical swimmers, depending on the sign of σ′, as seen in Figs. 6.4(a-b). We

can get useful insights into this behavior by referring to the deterministic z′(t)− θ(t)

phase portraits of the swimmer dynamics, shown in Fig. 6.4(c-d). Let us consider the

fate of swimmers located initially at the film center, i.e., z′(0) = 0.5. Swimmers with



175

Figure 6.4. : (a-b) Swimmer distribution in the film, F(z̄), as a function of λ for

γ = 1, for σ′ 6= 0, κ′ = ν ′ = 0. Panel (a) marks a slight peak near z̄ ≈ 0.1 by the text

‘brief retention near F-F’. This corresponds to the brief time spent by swimmers near

the F-F as they reorient from θ > π to θ < π and then begin their swimming toward

the A-F. This peak is even smaller (barely visible) for λ = 10. (c-d) z′ − θ phase

planes for spherical swimmers with non-zero source dipoles, demonstrating how/why

hydrodynamics in conjunction with rotary diffusion causes, (c) ‘top accumulation’

for σ′ > 0, and, (d) ‘bottom accumulation’ for σ′ < 0. The contour represents the

angular velocity, ΩHI , of the swimmer; note that ΩHI ≈ 0 near the A-F, i.e., near

z′ = 1. The thick dotted lines in panels (a-b) represent the distributions for swimmers

with negative source dipolar coefficients when the rotary diffusion is neglected. In all

other cases, the swimmers’ rotational diffusivity is taken to be Dr = 0.2Vs/H.
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a positive source dipolar coefficient (i.e., ciliated swimmers) accumulate near the free

surface and are oriented toward it. Any such swimmer heading toward the fluid-fluid

surface at an angle θ(0) = θi > π, is turned away at a height of about z′ ≈ 0.1, after

which it swims toward the free surface with a ‘reflected angle’ θf = 2π − θi. The

mechanism of turning away approaching swimmers is quite rapid, to an extent that

there aren’t significant (time-averaged) concentrations near the fluid-fluid interface

at z′ ≈ 0.1 [see arrow and text in Fig. 6.4(a)]. This effect is prevalent for a range

of viscosity ratios, with the ‘residence time’ near the fluid-fluid interface (value of

local maxima at z′ ≈ 0.1) decreasing with an increase in the viscosity ratio: from a

modest value in Fig. 6.4(a) to being barely visible in Fig. 6.4(b). This generalizes

past predictions of “an extended residence of the swimmer in the vicinity of the free

surface during scattering, compared to a no-slip boundary” [160]. It is also in quali-

tative agreement with the numerical simulations of Schaar et al., wherein they report

very low near-surface retention times for neutral swimmers [111]. In contrast to cil-

iated swimmers (σ′ > 0), the behavior of non-ciliated swimmers (σ′ < 0) is affected

acutely by a combination of hydrodynamic interactions and rotational diffusion. Hy-

drodynamic interactions alone would cause significant accumulation at both interfaces

[thick dotted line plot in Fig. 6.4(b)], depending on the initial swimmer orientations.

Swimmers with θ(0) < π accumulate at the A-F (z′ ≈ 1) without changing their angle

of approach, while those with θ(0) > π accumulate at the F-F (z′ ≈ 0) at an angle

3π/2, i.e., pointing toward the F-F. However, as seen in eqn. 6.29 in the Appendix,

the angular velocity
(
ΩSD
HI · e2

)
vanishes at the A-F for spherical swimmers. So the

only source of reorientations at z′ ≈ 1 is rotational diffusion, i.e., the ‘Dr term’ in

eqn. 6.16. This can cause the non-ciliated swimmers at the free surface to even-

tually point downward, after which they get ‘pulled into’ the stable attractor in the

z′−θ phase plane [see Fig. 6.4(d)], leading to accumulation at (z′ ≈ 0, θ = 3π/2). We

thus conclude that to accurately estimate the motility of spherical neutral swimmers

near a free surface, it is crucial to consider the effects of rotary diffusion in conjunc-
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tion with hydrodynamic interactions, as the latter alone predict drastically different

spatial distributions.

In addition to the aforementioned trends of oscillations and asymmetric distri-

butions, we note the small accumulation observed at z̄ ≈ 0 in Figs. 6.4(a-b), for

swimmers with σ′ > 0. This accumulation occurs only for those swimmers whose

initial positions lie within z′(0) < 0.1 ≈ 5a/H, as is clear from the phase plane in

Fig. 6.4(c). Thus, swimmers within a few body-lengths from the fluid-fluid interface

cannot be ‘screened’ from it by the source dipolar interactions. The same effect also

explains the minor peaks around z̄ ≈ 0, 1 in Figs. 6.3(a-b).

Force quadrupolar interactions

The force quadrupolar singularity is associated with the flows produced by flag-

ellated swimmers [209]. Swimmers with a longer flagellum and relatively smaller

cell bodies correspond to a positive quadrupole strength, ν ′ > 0, while those with a

large cell body and relatively shorter flagellum correspond to a negative quadrupole

strength, ν ′ < 0 [14]. In this way, the sign of the force quadrupole indicates the

region of the cell (body plus flagellum) where a greater part of the propulsive thrust

or swimming drag is concentrated. Based on some of the observed geometries of bac-

terial cells, an example of a microorganism with ν ′ > 0 could be P. aeruginosa, while

one with ν ′ < 0 could be V. cholera [31, 100].

The force quadrupolar interactions reveal two fascinating effects which highlight

the utility of employing singularity models for microorganisms. The first effect is the

preferential accumulation at the free surface for swimmers having larger cell bodies

and shorter flagella (i.e., ν ′ < 0). This is most noticeable for elongated, short-

flagellated swimmers in less viscous films (see Fig. 6.5(d); recall that λ = µ2/µ1,

and µ1 is the viscosity of the fluid in which the microorganism swims; so less viscous

floating films imply λ > 1). The asymmetry between accumulation at the free surface



178

0 0.5 1

0

20

40

60

0 0.5 1

0

20

40

60

0 0.5 1

0

20

40

60

0 0.5 1

0

20

40

60

Figure 6.5. : Swimmer distribution in the film, F(z̄), as a function of λ and γ, for

ν ′ 6= 0, κ′ = σ′ = 0. Diamonds (resp. circles) denote maximum values of F for ν ′ < 0

(resp. ν ′ > 0). The value of the dimensionless rotational diffusivity of the swimmers

is Dr/ (Vs/H) = 0.2.

versus accumulation at the fluid-fluid interface increases with an increase in both the

swimmer elongation and the viscosity ratio.

The second important effect revealed by considering force quadrupolar hydrody-

namic interactions is the existence of a stable swimming regime near the fluid-fluid

interface, for swimmers having long flagella (i.e., for ν ′ > 0). By stable swimming, we

mean a regime wherein the microorganism swims parallel to the fluid-fluid interface

at a fixed separation, solely due to hydrodynamic effects. It can be most easily seen

in the phase-portraits in Fig. 6.6(b). The identification of a stable swimming regime
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from the plots for F (z̄) requires some comment. The spatial distribution plots in Figs.

6.5(a-c) show a maximum in F (z̄) at either z̄ ≈ 0.02 or at z̄ ≈ 0.98. These maxima

correspond to the microorganism being ≈ 1 body length away from either interface,

owing to a balance between the hydrodynamics- and motility-based attraction and

steric repulsion. It is only for the plot corresponding to ν ′ > 0 Fig. 6.5(d) (red dashed

line) that we see a clear maxima at z̄ ≈ 0.08, a separation where the microorganism

is not in contact with the fluid-fluid interface and so steric repulsion is absent. Thus,

the peak in concentration at z̄ ≈ 0.08 (for ν ′ > 0, γ = 8, λ = 10) corresponds to a

regime of parallel swimming by long-flagellated microorganisms. Interestingly, this

peak corresponding to stable swimming occurs only for slender swimmers in films

that are relatively less viscous (λ > 1).

It is worth noting that simulations of flagellated bacteria swimming in fluid films

have also indicated that: (i) bacteria with shorter flagella (ν ′ < 0 in our model)

almost exclusively accumulate at the free surface in thick films, and, (ii) bacteria

with longer flagella (ν ′ > 0 in our model) either accumulate at the free surface, or

swim stably at a few body lengths from the wall (see Figs. 4A and 2 in ref. [28]).

These exact behaviors are seen in Fig. 6.5(d) as well, which is intriguing as we

manage to replicate these trends while using a much simpler model for microorganism

locomotion. Moreover, our calculations explain that an asymmetry in the propulsive

forces exerted by bacteria is at the heart of these varied swimming behaviors. We note

here that even though Fig. 6.5(d) shows the spatial distribution for viscosity ratio λ =

10, it is not very different from that for λ→∞. The differences in the accumulation

characteristics saturate drastically for λ > 10 and λ < 0.1, as will be seen shortly in

Fig. 6.7. In addition to the similarities of stable near surface swimming, we observe

the absence of any stable swimming regime near the free surface, for any combination

of γ, ν ′ (notice that all maxima in F(z̄) near the free surface occur at z̄ ≈ 1). Once

again this is in agreement with simulations by Pimponi et al. for flagellated swimmers

[216], and by Ishimoto and Gaffney for spheroidal squirmers [160]. Additionally,

our model is able to accurately predict the stable-swimming-height, say z∗, for the
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Figure 6.6. : z′(t)− θ(t) phase plane for force quadrupole swimmers with (a) ν ′ < 0

corresponding to microorganisms with relatively shorter flagella, and, (b) ν ′ > 0

corresponding to microorganisms with longer flagella. In panel (b), the hexagrams

at z′ ≈ 0.08, θ ≈ 3π/2 show the fixed points near the fluid-fluid interface. These

correspond to the stable swimming regime where the microorganism swims parallel

to the interface. All other multipole coefficients are set to zero and the viscosity

ratio is λ = 10. The phase plane diagrams for λ → ∞ are quite similar, thus

highlighting the similarities in swimming behavior between our reduced-order model

and the numerical simulations involving bacteria with cell body and flagella.

elongated swimmer. In our simulations z∗ is the location of the maximum value of

F(z̄), found at z̄ ≈ 4a/H = 0.08 in Fig. 6.5(d). This value of z∗ corresponds to

a few swimmer body lengths, and is quite close to that obtained from many other

numerical studies for flagellated bacteria swimming near rigid surfaces [28,31,219].

While our multipole model very well predicts several phenomena describing dy-

namics of bacteria near surfaces, there also exist some differences between results

of the multipole model and numerical simulations considering bacterial geometries;

which does necessitate studies of bacterial propulsion by accounting for details of their

morphology [31]. One major difference is the nature of bacterial orientation at the
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stable swimming swimming height z∗: our approach predicts stable swimming of bac-

teria while they are oriented toward the fluid-fluid interface, but detailed simulations

reveal that bacteria undergo stable near-surface motion while oriented away from the

surface. A second important difference between the multipole model and detailed

simulations is existence of certain initial position-orientation pairs (z′(0), θ(0)), which

lead to bacteria with longer flagella ‘colliding’ with nearby rigid walls instead of swim-

ming parallel to them. We would also like to emphasize that simulations predict ‘loss’

of stable swimming when the confinement is increased, i.e., film height is reduced, but

our analysis becomes invalid for this particular regime because higher order effects

of ‘images of images’ become pronounced for thin films and the expression for H

used in eqn. 6.15 loses its applicability. Nevertheless, one can appreciate how mul-

tipole models−beyond the force dipole approximation−capture the many dynamical

features displayed by microorganisms swimming near rigid and free surfaces.

Fig. 6.7 summarizes the distribution characteristics of force quadrupolar swim-

mers. In Fig. 6.7(a), we see that there is monotonic reduction in ∆F with respect to

both the viscosity ratio and the swimmer elongation. In the extreme case of elongated

bacteria (γ = 8) residing in films resting on highly viscous substrates (λ = 10), the

number density at the free surface can be ≈ 80% larger than that at the fluid-fluid

interface. Fig. 6.7(c) also shows that ∆F < 0 in much of the parameter space but

the asymmetry in surface accumulation does not vary substantially; instead there

are two regimes of spatial distributions: (i) nearly symmetric swimmer accumulation

characterized by |∆F| ≈ 0.05, and, (ii) no accumulation at the fluid-fluid interface

(z̄ ≈ 0) due to stable swimming near it (z̄ ≈ 4a/H), and a more or less constant

accumulation at the free surface (z̄ ≈ 1) with F1 ≈ 0.2. The former regime is illus-

trated by the F(z̄) plots for ν ′ > 0 in Figs. 6.5(a-c), while the latter in Fig. 6.5(d).

Fig. 6.7(c) demonstrates a fine interplay between the aspect ratio of the swimmer

and the film’s viscosity in ensuring stable swimming near the fluid-fluid interface, as

shown by the evident demarcation between data points with |∆F| ≈ 0.05 and those

with |∆F| ≈ 0.20.
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Figure 6.7. : Summary of boundary accumulation and bulk fraction, as a function of

swimmer elongation (γ) and viscosity ratio (λ), for force quadrupole swimmers, i.e.,

for ν ′ 6= 0, κ′ = σ′ = 0. The horizontal axis is logarithmically spaced (with base 2)

until λ = 1, beyond which it is linear.

We end this section by postulating a rather insightful application of our math-

ematical model: its ability to predict the experimentally observed stable swimming

regimes near surfactant-laden free surfaces [23,25]. While numerical simulations suc-

cessfully predict the experimentally observed stable swimming of bacteria and sper-

matozoa near solid walls [22,31,160], they fail to do so near free surfaces [28,160,216].

Experiments on the other hand do reveal that both bacteria (ref. [23]) and sperma-

tozoa (ref. [25]) exhibit stable swimming even in the presence of a free surface. The
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discrepancy between numerics and experiments is attributed to the presence of sur-

factant molecules−generated by the bacteria, or added artificially−on the air-water

interface [160]. It is well known that hydrodynamic interactions of swimmers with

surfactant-laden interfaces are markedly different than those for clean interfaces, e.g.,

bacteria follow circular trajectories of different handedness based on the type of sur-

factant added to an interface [23, 147]. In fact, any interface laden with an incom-

pressible surfactant having high interfacial viscosity behaves in the same manner,

hydrodynamics-wise, as a rigid/no-slip wall, as evidenced by studies on rotational

motion of bacteria near interfaces (ref. [147]) and the hydrodynamics-mediated trap-

ping of microswimmers around fluid drops and rigid spheres (ref. [64]). Therefore, we

can predict that if the presence of an incompressible surfactant contributes a large

enough surface viscosity to a free surface, then a ‘force quadrupolar swimmer’ will

behave in the same way near the surfactant-laden free surface as it does near a wall.

Consequently, one would see a fixed point near the surfactant-laden free surface in

the z′(t), θ(t) phase plane of swimmers with long flagella (ν ′ > 0), quite unlike the

swimmer dynamics near a ‘clean’ free surface, the focus of this work. In this way, our

multipole model can explain the observations of stable swimming near surfactant-

laden free surfaces based on hydrodynamics alone.

6.3.3 Microorganisms in a flowing film

Thus far, we discussed how hydrodynamics dictates the spatial distribution of

model microorganisms within the stagnant fluid film of Fig. 6.1, by separately con-

sidering the effects of the fundamental Stokes flow singularities. However, biofilms

also exist under flowing conditions and exposure to fluid flow has been proposed as

a means to either prevent biofilm formation, or erode biofilms whenever their effects

are detrimental. We therefore move our attention to flowing films in this sub-section,

to round-up a comprehensive analysis of microbial distribution in interfacial films.

The key modifications in the mathematical model from Section 6.2 are the addition
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of an external-flow-induced translational (uext) and rotational (Ωext) velocity to the

governing equations for swimmer dynamics, i.e., eqns. 6.16 change to:

dy

dt
= Vsp + uHI (y,p) + uext (y) + Vst,

dp = {ΩHI (y,p) + Ωext (y,p)} × p dt

+
√

4Drdt dW,

(6.21)

where uext (x) is a prescribed velocity profile depending on the problem geometry,

and,

Ωext =
1

2
∇× uext(y) +

γ2 − 1

γ2 + 1
{p× (Eext(y) · p)} . (6.22)

Physically, the external flow tries to ‘carry’ the swimmers along with it; and the

velocity gradients in the external flow cause the swimmers to reorient with a rate that

balances their tendency to rotate with the local vorticity component (the ‘∇× uext’

term), and to align with the principal axes of the local extensional flow (the ‘Eext’

term).

We first summarize the influence of external flow on microswimmer motion in a

fluid film flowing over a no-slip wall. The external flow in this case is given by the

coating-flow profile:

uext (x) = vmax
x3

H

(
2− x3

H

)
e1, (6.23)

where vmax is the magnitude of fluid velocity at the free surface, and is used henceforth

as a measure of the external flow strength. The dynamics can be viewed under two

distinct categories: without and with the consideration of hydrodynamic interactions

between swimmers and surfaces. The main result in the first category is that back-

ground flow alone can result in different accumulation behaviors of microswimmers in

thin films [18]. A strong external flow results in swimmers being carried along the flow

while ‘tumbling’ continuously in (near-wall) regions of high shear [red trajectory is Fig.

6.8(a)]. But for weak external flows, the swimmers spend much more time at the free

surface while occasionally ‘dipping’ toward the rigid no-slip surface [18] [blue trajec-

tory is Fig. 6.8(a)]. The major results in the second category hint at a competition be-

tween reorientation by external flow−abbreviated herein by Ωmax−and the attractive
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nature of the force dipolar hydrodynamic interactions−abbreviated by ΩHI−resulting

in three kinds of behaviors: (i) ΩHI � Ωmax: the external flow barely affects the

swimmer distribution, which are akin to Fig. 6.2(d); (ii) Ωmax > Ωcr.
max > ΩHI : above

a critical flow strength vcr.max, dipolar swimmers can rotate to get “peeled off” the

rigid substrate and then eventually swim to the free surface [red trajectory in Fig.

6.8(b)]; and, (iii) Ωmax � ΩHI : even though the swimmers get detached from the

wall, they do not swim up to the free surface, but just ‘tumble’ in the high-shear

regions of the flow [orange trajectory is Fig. 6.8(b)]. The swimmer trajectories cor-

responding to these behaviors are shown in Fig. 6.8. An in-depth discussion of the

interplay between motility, external flow and hydrodynamic interactions can be found

in refs. [18, 225,226,236].

In our analysis, we discuss the significant differences, both qualitative and quanti-

tative, between flow-induced “peeling” of spherical pushers and pullers as compared

to elongated ones. We work with the dynamical equations 6.21 and have a new

dimensionless parameter, vmax/Vs quantifying the strength of the background flow

relative to the swimmer speed in an unbounded, quiescent fluid. In what follows, we

only discuss the effects of external flow on the force dipole swimmers, i.e., on pullers

(κ′ < 0) and pushers (κ′ > 0). This allows us to use simple physical ideas to explain

some of the observed behaviors. Beyond a critical flow, say vcr.max, spherical dipolar

swimmers pointing toward a wall are rotated away from it and get detached to join

the bulk flow [18]. Here, we extend this analysis to the case of elongated/spheroidal

dipolar swimmers. For the same absolute value of dipole strength, a spherical puller

oriented toward the wall requires a larger external flow to be peeled off in comparison

to a spherical pusher (see Fig. 6.9(a) and ref. [18]). The reason is simple: the orien-

tation θ = 3π/2 is a stable one for a puller but an unstable one for a pusher. Thus,

the external flow must work against the hydrodynamic reorientation for a puller, and

rotate it by a critical angle θpullc = π/2 before eventual escape. On the other hand,

even a slightest perturbation to a pusher pointing toward the wall will cause it to
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Figure 6.8. : Swimmer trajectories in a flowing film under external flow given by eqn.

6.23. (a) Trajectories without inclusion of hydrodynamic interactions (H.I.s), and, (b)

trajectories with inclusion of H.I.s. The starting position (marked by the filled black

circle) and orientation are (x′(0), z′(0), θ(0)) = (0, 0.1, π/4). It is important to note

the enhanced time spent at the free surface (resp. near bottom wall) for weaker (resp.

stronger) flows. The inset in panel (b) denotes how the swimmers under moderate

external flow, vmax = 8Vs, can escape the rigid wall at z′ = 0 and be trapped at the

free surface at z′ = 1; while under strong flows, vmax = 20Vs, the swimmers traverse

the film centerline in ‘swinging’ trajectories.

rapidly reorient toward θ = π (owing to hydrodynamic interactions and the external

flow), after which it must rotate by an amount θpushc ,

sin θpushc ≥ 3

16

κ′

(a/H)2

{
3 cos

(
2θpushc

)
− 1
}
, (6.24)
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to escape the hydrodynamic pull of the wall. Upon calculation, it is seen that θpushc <

θpullc , i.e., spherical pushers need to be rotated to a lesser extent to overcome any

hydrodynamic attractive effects. Hence, spherical pushers can be peeled off the wall

more easily, i.e., at a lesser value of vcr.max. We have plotted this critical external flow

as a function of dipole strength in Fig. 6.9 along with the results of ref. [18] for the

sake of completeness and also as a check for our calculations.
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Figure 6.9. : The minimum/critical external flow required to detach swimmers off a

wall, vcr.max/Vs, as a function of the swimmer dipole strength, κ, and swimmer elonga-

tion γ. Note that vcr.max is higher for spherical pullers (γ = 1, κ < 0) than for spherical

pushers (γ = 1, κ > 0). vcr.max is lower for elongated pullers (γ > 1, κ < 0) than for

elongated pushers (γ > 1, κ > 0). The thick lines represent the analytical estimates

for the spherical swimmer case, borrowed from ref. [18] and the blue circles are the

results of numerical calculations from ref. [18]. κ > 0 (resp. κ < 0) denotes pushers

(resp. pullers). The swimmers are initially located near the wall at z′(0) = a/H and

oriented such that θ(0) = 3π/2.

The dynamics becomes considerably more complex for elongated pushers and

pullers, due to the interplay of the terms involving the rate-of-strain in the exter-

nal fluid, i.e., the ‘G term’ in eqns. 6.21. The critical flow (vcr.max) required to detach
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elongated pullers is now lower than that required for elongated pushers. While the

actual value of vcr.max stems from the numerical time-marching of the non-linear dy-

namical equations 6.21, the reasoning behind this can be physically intuited based

on the nature of the stable orientations of elongated pushers and pullers, and the

strength of flow-induced-rotation at these stable orientations: Ωext will be strongest

for θ = 3π/2 and weakest for θ = π. Therefore, even though a spheroidal pusher

with initial orientation θ(0) = 3π/2 will quickly reorient to θ = π, it will require

a much stronger flow in the latter orientation to overcome the hydrodynamic pull,

uHI · e3, and a stronger hydrodynamic reorientation tendency owing to elongation.

A spheroidal puller on the other hand faces stronger ‘overturning’ due to external

flow (and steric effects) when it is at θ(0) = 3π/2, thus making its reorientation to

θ = π relatively easier and requiring lower vcr.max than pushers (for same value of |κ′|,

of course). These ideas are plotted in Fig. 6.9(a) and explained schematically in Fig.

6.10.

6.4 Discussion and conclusion

The objective of the current work was to investigate how motility and hydro-

dynamic interactions influence the spatial distribution of microorganisms in floating

fluid films. We approached this problem by utilizing a general multipole-expansion-

based singularity model for the swimming microorganisms and quantifying their hy-

drodynamic interactions with the two interfaces via the ‘method of images’. We then

performed probabilistic simulations−with the stochasticity introduced by the swim-

mers’ rotational diffusion−to obtain statistically significant distributions of the mean

swimmer position across the fluid film. The influence of each multipole singularity

was explored in isolation and a number of interesting swimming behaviors were ob-

served. An important aspect of our analysis was the generalization of past studies on

near-surface swimming. Our simple model yielded many swimming behaviors that

were similar to those seen in more complex numerical simulations, which highlighted



189

Spheroidal pusher Spheroidal puller

𝐮𝑒𝑥𝑡 𝐱

lower Ω𝑒𝑥𝑡

higher Ω𝑒𝑥𝑡
Ω𝐻𝐼

Ω𝐻𝐼

Figure 6.10. : Schematic depiction of why elongated pullers can escape from a wall

at lower values of the critical external flow, vcr.max. The angular velocity due to the

external flow, Ωext, is largest when the swimmer is oriented toward the wall, and

the angular velocity due to the hydrodynamic interactions, ΩHI , is same for any

perturbations to the stable swimmer orientation, i.e., θ = 3π/2 − ∆θ (resp. θ =

π −∆θ) for a puller (resp. pusher). In this way, pullers face a greater ‘overturning’

effect due to the external flow.

the value of performing a far-field, multipole-expansion analysis of swimming motion.

Below, we highlight the main results:

1. The accurate predictions of the degree of interface retention of spherical neutral

swimmers as a function of the viscosity ratio, λ, of the fluid-fluid interface. Our

results were in accordance with previous numerical studies (ref. [111,160]), and

we extended the theory to scattering of neutral swimmers from interfaces with

arbitrary viscosity ratios.

2. The surprisingly accurate predictions about behavior of flagellated microorgan-

isms in fluid films resting on a solid substrate. Our results concurred with

detailed numerical simulations of swimming bacteria in thick films [28]. We

were able to reproduce key observations, e.g., in a thick film (i) bacteria with

long flagella end up either accumulate at the free surface, or swim parallel to
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the rigid surface at few body-lengths’ separation, and, (ii) elongated bacteria

with short flagella accumulate almost exclusively at the free surface.

3. The prediction of stable swimming of flagellated bacteria near surfactant-laden

(as opposed to clean) free surfaces. This can be based solely on our calculations

for λ >> 1 in Section 6.3.2, and the well-known similarity between incompress-

ible surfactant-laden interfaces and rigid surfaces [64,146,147].

The predictions mentioned in the second and third point above were obtained as

a result of studying force quadrupolar hydrodynamic interactions, and noting that

swimmers with ν ′ > 0 (resp. ν ′ < 0) have relatively longer (resp. shorter) flagella

and smaller (resp. larger) cell bodies. It should be noted that even though we stud-

ied each singularity in isolation, the behaviors of near-surface stable swimming and

preferential accumulation at the free surface (described in Section 6.3.2) are robust to

the inclusion of all singularities considered, albeit for certain sets of relative strengths

of the singularities. As long as the force quadrupole strength is assumed to be signif-

icant, our model gives good qualitative, and somewhat quantitative, agreement with

many existing simulations of near-wall/near-free-surface swimming of helically flag-

ellated swimmers [28, 31, 216, 219]. To the best of our knowledge, existing numerical

studies of microswimmer dynamics near non-deforming, clean free surfaces have uni-

versally predicted the absence of a stable/parallel swimming regime [160, 216]. As a

reconciliation with experimental observations, surfactant-induced hydrodynamic ef-

fects have been proposed (see ref. [160]) as one explanation of the observed parallel

swimming regime of flagellated bacteria near free surfaces [23, 30]. If the surfactant

effects are modelled as that due to an incompressible surfactant having large inter-

facial viscosity, then the force quadrupole model can indeed yield a stable swimming

regime near surfactant-laden free surfaces.

While we performed studies near planar interfaces and compared them to numer-

ical simulations under similar situations, we can also point toward the generality of

near-surface motion of bacteria around spherical obstacles. The most important one
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being that ‘long-tailed bacteria’ get trapped in hydrodynamic bound states around

neutrally buoyant, spherical particles; and ‘short-tailed bacteria’ get scattered upon

encountering the same spherical particles [237]. If the spherical particle is large

enough in comparison to the swimmer, then, to a first approximation, the analy-

sis of force quadrupolar interactions in Section 6.3 is able to predict these behaviors

as well. We can even go a step further and hypothesize the behavior of flagellated

swimmers near neutrally buoyant surfactan-laden drops. As an incompressible sur-

factant’s ability to cause fluid-fluid interfaces to behave like rigid walls is independent

of the viscosity ratio of the interface, we can make a very general observation: as long

as a drop is covered by an incompressible surfactant with large enough interfacial vis-

cosity, it will act as a passive hydrodynamic trap for bacteria with long polar flagella,

i.e., they swim along the drop’s surface for substantial times. This can prove to be a

particularly useful observation as it will provide an interesting incentive for the use of

dispersant in the aftermath of oil-spills, with implications in bacterial bioremediation

of heavy oil drops.

The primary motivation of this manuscript was to study microorganism motion in

biofilms floating over a base fluid. The spatial distributions discussed in Figs. 6.2, 6.3,

6.4 and 6.5 tell us how hydrodynamic interactions can affect bacterial concentration

in different regions of a film and thus either aid in, or desist from colony forma-

tion. However, quite often biofilm formation is accompanied by the bacteria secreting

surfactant and other polymeric substances which alter physico-chemistry of their sur-

roundings, most importantly the bulk and interfacial rheology of the fluids involved.

In this study, as a first step, we treated the fluids to be Newtonian and the interfaces

to be clean but useful extensions can be pursued within the current framework. For

example, the effect of interface rheology and more complicated boundary conditions

can be probed via the Fourier-transform-based analysis detailed in refs. [147,238]. The

effects of the bulk fluid’s rheology−at least in the weakly non-Newtonian limit−can

be accounted for, rather straightforwardly as explained in refs. [235, 239]. A second

level of functional detail that can be added to our analysis is the inclusion of active
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behavior by microorganisms. E.g., quite often biofilms form over nutrient-emanating

substrates and thus chemotaxis−directed motion in search of nutrition [6, 171]−is

expected to play an important role in biofilm incipience [65, 66]. Chemotaxis could

lead bacteria toward the fluid-fluid interface if fluid-2 were to be a nutrient source,

or toward the free surface in case of, say, aerotaxis by B. subtilis [240, 241]. Yet

another form of directed motion, more relevant for algal biofilms, could be positive

(resp. negative) phototaxis toward (resp. away from) light sources [242, 243]. The

multipole representation would allow one to model a variety of microorganisms (by

merely tweaking the multipole strengths in eqns. 6.13) and the incorporation of ac-

tive effects would be relatively straightforward in our individual-based model [51]. It

would then be an interesting endeavour to see how the more non-trivial hydrodynamic

interactions listed in this work interact and compete with bacterial chemotaxis or al-

gal phototaxis to dictate colonization hot-spots in the numerous scenarios involving

films of microorganisms at interfaces [67, 231].

6.5 Appendix

6.5.1 Hydrodynamically induced linear and angular velocities

The swimmer’s translational velocities, for each of the singularities considered in

this work, are:

uDHI · e3

Vs
= − κ′ (3λ+ 2)

8 (λ+ 1) z′2
(
1− 3p2

3

)
+

κ′

4(z′ − 1)2

(
1− 3p2

3

)
,

(6.25)

uSDHI · e3

Vs
= − σ′ (4λ+ 1)

4 (λ+ 1) z′3
p3 +

σ′

4(z′ − 1)3p3, (6.26)

and,

uQHI · e3

Vs
=

−ν ′

4 (λ+ 1) z′3
{

(9λ+ 6) p3
2 + (−7λ− 4)

}
p3

+
ν ′

2(z′ − 1)3

(
3p3

2 − 2
)
p3;

(6.27)
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while, the swimmer’s rotational velocities are:

ΩD
HI · e2

Vs/H
=

3κ′

8z′3

{
1 +G

λ+ (λ+ 2) p2
3

2 (λ+ 1)

}
p1p3

− 3κ′

8(z′ − 1)3

(
1 +Gp2

3

)
,

(6.28)

ΩSD
HI · e2

Vs/H
= − 3σ′

8 (λ+ 1) z′4

{
λ+

G

2
(3λ+ 1)

(
1 + p2

3

)}
p1

+G
3σ′

16(z′ − 1)4

(
1 + p2

3

)
p1,

(6.29)

and,

ΩQ
HI · e2

Vs/H
=

−3ν ′

32(λ+ 1) z′4
{

(12λ+ 10) p2
3 − 4λ− 2

}
+

−3ν ′

32(λ+ 1) z′4
G
{

3 (λ+ 2) p4
3 − 2p2

3 − (11λ+ 4)
}
p1

+
3ν ′

16(z′ − 1)4

[{
5p2

3 − 1
}

+G
{

3p4
3 − p2

3 − 2
}]
p1

(6.30)

The super-scripts ‘D’, ‘SD’ and ‘Q’ in the above equations refer to the force dipole,

source dipole and the force quadrupole, respectively. As a check for our derivations,

we note that taking the limit λ→∞ in the expressions in eqns. 6.25 to 6.30 reduces

them to those derived in ref. [18] for the case of a liquid film (wall at z′ = 0, free

surface at z′ = 1). For the force quadrupolar expressions, uQHI and ΩQ
HI , one must

multiply our derivations by −1/2, because of the difference in the definition of uQ

(see eqn. 6.13c) between refs. [14] (which is what we follow) and [18] (which is what

we are comparing our calculations against).

6.5.2 Accumulation characteristics: additional information

In Section 6.3.2 we had mentioned that dipolar swimmers do not show any prefer-

ence toward accumulation at either interface. This is quantified in Fig. 6.11 where we

see that the difference in swimmer accumulation at the two interfaces, ∆F = F0−F1
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(see eqn. 6.20), is very small for both pushers and pullers, over a range of swimmer

elongations, γ, and viscosity ratios, λ.

0.1 0.5 2 4 6 8 10

2

4

6

8

0

5

10

10
-3

0.1 0.5 2 4 6 8 10

2

4

6

8

-2

0

2

4

6

8

10

10
-3

Figure 6.11. : The difference in interface accumulation ∆F (see eqn. 6.20) for dipolar

swimmers: (a) pushers, and, (b) pullers. As discussed in Section 6.3.2, and shown

more qualitatively in Fig. 6.2, the accumulation when considering only the dipole

effects is more or less symmetric with ∆F > 0,∼ O(10−3).
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7. CONCLUDING REMARKS

7.1 Conclusion

In this thesis, we described five studies that aimed to elucidate the effects of

hydrodynamics and/or chemotaxis on interaction of microorganisms with fluid-fluid

interfaces, with applications in bacterial bioremediation. A major motivation in each

study was to isolate the influence of hydrodynamics on the physico-chemical inter-

action being studied. In the first study (Chapter 2) we looked at a somewhat indi-

rect influence of hydrodynamics on the consumption of soluble nutrients by motile,

chemotactic bacteria. We postulated that nutrient patches found in sub-marine envi-

ronments get significantly distorted due to ambient fluid flow (generated by a swarm

of rising drops; see Fig. 2.1), and that this in turn affects a marine bacterium’s

search for food. The distortion of nutrient patches−before subsequent mixing and

homogenization−engendered local gradients in nutrient concentrations, which could

be exploited by chemotactic bacteria. We found that chemotaxis enabled motile or-

ganisms to consume the nutrient/chemoeffector at rates that were ≈ 45% faster than

their non-motile counterparts (see Fig. 2.10). The chemotactic advantage depended

most acutely on the bacterial swimming speed (see Fig. 2.6) and sensitivity toward

chemoeffector/nutrient gradients [see Fig. 2.4(b)]. Furthermore, we showed that the

chemotactic advantage reduced monotonically with an increase in the drop size, and

it varied non-trivially with the volume fraction of the drops (see Fig. 2.7).

Next, we proposed that not only does hydrodynamics acutely affect the consump-

tion of soluble nutrients, but that it also serves to enhance the colonization of in-

soluble nutrient sources−like a crude oil drop−that need to be broken down into

simpler substances (Chapter 3). We described a purely hydrodynamic mechanism

of microorganism capture onto the surface of oil drops. We showed that when a
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microorganism/microswimmer impinges directly onto a drop that is larger than a

‘critical trapping radius’, then it is hydrodynamically bound to the drop’s surface

(see Fig. 3.2). We reported the trapping characteristics of the microswimmer as a

function of the drop’s viscosity and/or the properties of the surfactant covering the

drop’s surface. We found that addition of surfactant reduces the critical trapping ra-

dius of a drop by ∼ 30% (see Fig. 3.5). For hydrodynamics combined with diffusion

based motion, we noted increments ranging from ∼ 5−25% in the interface-retention

times of surfactant-laden drops, as compared to clean drops (see Figs. 3.13, 3.14,

3.15). This was a particularly interesting result as it hinted at potential benefits of

using dispersant in the aftermath of oil spills.

While Chapter 3 talked about the very interesting phenomenon of hydrodynamic

trapping of microorganisms around oil drops, it also revealed that such a trapping is

effective only within a ‘basin of attraction’ that extends 2-3 bacterial body lengths

from the surface of the drop. This led us to ask: how then, do freely swimming

bacteria colonize a distant food source effectively? In Chapter 4, we discussed an in-

teresting possibility: that of chemotactic attraction of a bacterium to nutrient-effusing

sources, followed by hydrodynamic capturing based on the mechanisms detailed in

Chapter 3. The randomness of a bacterium’s ‘run-and-tumble’ motion and the rather

limited extent of the basin of attraction meant that bacteria would, most likely, form

a distribution around the source (see Fig. 4.4). We aimed to quantify the combined

influence of hydrodynamics and chemotaxis on this distribution. In general, we un-

veiled four regimes (see Fig. 4.9) of bacterial distribution around the nutrient source:

(i) strong surface colonization, (ii) rotary diffusion induced ‘off-surface’ accumulation,

(iii) a depletion zone in the spatial distribution, and, (iv) no appreciable aggregation;

with their occurrence dictated by the relative strengths of hydrodynamic and chemo-

tactic effects. Thus by the end of Chapter 4, we had performed a detailed study of

hydrodynamics- and chemotaxis-driven motion of microorganisms around stationary

nutrient sources. The next question was: how are the aforementioned effects altered

if the nutrient source is moving?
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In Chapter 6, we moved on to the more general case of colonization of moving

nutrient sources. We focused on settling marine snow particles as they are known

sources of dissolved organic matter, even absorbed hydrocarbons. We performed a

systematic analysis and studied how bacterial encounters with settling marine snow

are affected by: (i) deterministic hydrodynamics (see Fig. 5.3), (ii) hydrodynamics

and stochasticity in bacterial orientation (see Fig. 5.4), and, (iii) hydrodynamics

combined with chemotaxis (see figures in Section 5.3.2). One of the first implications

of colonization around a moving source was the existence of a threshold sinking speed

of the marine snow beyond which bacteria are unable to colonize it even after a

‘head-on collision’ (see Fig. 5.3C,E). Even then, we were able to identify ‘trapping

regimes’ for bacteria encountering the marine snow. These were dictated by a balance

between the size and settling speed of the marine snow, and the dipole strength of

the bacterium. Interestingly, we found that hydrodynamic capture around settling

spheres was possible even when they move almost 10 times faster than the colliding

bacteria (see Fig. 5.4D). When considering hydrodynamic attraction in conjunction

with chemotaxis toward the nutrient plume emanating from the marine snow (see Fig.

5.1) we found a number of interesting behaviors: (i) strong hydrodynamic interactions

amplified bacterial nutrient exposure by roughly 40% for nutrients with molecular

diffusivity ∼ 10−7 cm2/s [see Fig. 5.6(b)], (ii) the nutrient exposure for chemotactic

bacteria decayed monotonically with an increase in their mean run-length (see Fig.

5.7), and, (iii) hydrodynamic interactions were beneficial for even non-chemotactic

but motile bacteria: strong hydrodynamic interactions almost doubled their nutrient

exposure (when compared against non-motile bacteria; see Fig. 5.9B).

Chapters 3 to 5 modeled a single microorganism as a force dipole and studied

its behavior near stationary and moving nutrient sources. In Chapter 6 we explored

the effects of bacterial geometry and propulsion mechanism, as described by higher

order multipoles in the multipole expansion of a point force placed in a fluid (see

eqns. 1.4 to 1.7 in Chapter 1). Our aim was to study the hydrodynamics of a

model microorganism confined by a free surface (air-fluid interface) on one side and
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a fluid-fluid interface on the other (see Fig. 6.1). This system acts as a first ap-

proximation of an ‘interfacial biofilm’, a configuration of relevance in the context of

bacterial bioremediation of oil films floating on the water surface. Through far-field

hydrodynamics and stochastic simulations, we identified experimentally verifiable be-

haviors exhibited by microorganisms in a fluid film. First, we explained the recent

findings [29] that ‘puller’ microorganisms accumulate more tightly near rigid/fluid

surfaces than ‘pusher’ microorganisms (see Fig. 6.2), based on their respective hy-

drodynamic interactions with surfaces. Second, we revealed the benefits of far-field

modeling of bacteria, beyond just the force dipole approximation, by showing that

our predictions for bacterial distribution across films were consistent with detailed

numerical simulations of flagellated bacteria [28,216] (see Section 6.3.2 and Fig. 6.5).

Finally, using the implications of the previous result, we proposed an explanation of

the hitherto unexplained phenomenon of bacteria swimming parallel to a surfactant-

laden free surface and at a fixed distance from it. This was done by pointing out

similarities between microbial motion near a plane wall and near an incompressible

surfactant-laden interface [64, 146, 147]. Our reduced-order model is able to explain

the parallel swimming of a bacterium near a plane wall, which is sufficient for proving

that it will also predict parallel swimming near surfactant-laden interfaces. In this

way, without solving a new problem we are able to extract useful information about

it, thus highlighting the predictive capabilities of our work.

In summary, the most important conclusion from our studies is that hydrodynam-

ics provides a ‘motility benefit’ to swimming bacteria beyond just enhanced access to

nutrient landscapes. In other words, not only does motility enable the search for nutri-

tion via chemotaxis, it also assists microorganisms in colonizing nutrient sources once

they are located, via hydrodynamic attraction and−wherever applicable−resultant

trapping.
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7.2 Future Work

An important conclusion of our studies so far is that surfactant-laden drops can

significantly influence biodegradation. It is well known that addition of a dispersant

breaks down heavier oil plumes into smaller (10-60 µm) drops [3]. In Chapter 2 we saw

that smaller drops−generated possibly due to dispersant addition−actually improved

chemotactic performance; and in Chapter 3 we saw that surfactant-laden drops were

more capable in hydrodynamically trapping nearby microswimmers. Therefore, inves-

tigation of the dynamics of microswimmer locomotion near surfactant-laden interfaces

is a natural extension to the present research. In particular, there are relatively fewer

numerical studies of microorganisms near surfactant-laden interfaces and this could

be an interesting research direction. It is well known that certain microorganisms

produce extracellular polymeric substances (e.g., see ref. [244]) that can change the

properties of nearby interfaces as well as those of the surrounding fluid by imparting

surface tension gradients and interfacial viscosity to the former, and viscoelasticity

to the latter. Thus, it is natural to ask: how does fluid viscoelasticity (characteristic

of surfactant-coated oil drops) and associated fluid flow alter microbial motility near

free surfaces? The motion of microorganisms near interfaces consisting of at least one

viscoelastic fluid is relatively less explored (e.g., see ref. [245]) and is a fertile avenue

of research. However, because viscoelasticity introduces non-linearities, the use of

a multipole representation becomes rather restrictive. Nonetheless, direct numerical

simulations [246] and semi-analytical methods [235, 239] could be used to isolate the

effects of viscoelasticity and fluid flow on the (possible) accumulation of microorgan-

isms near a fluid-fluid interface. Another insightful extension to this thesis would

be the inclusion of inter-swimmer hydrodynamic interactions. This means extending

our analysis from the dilute to the semi-dilute regime. This can be done by using

reduced-order mathematical models of active suspensions [247,248]. The spatial dis-

tribution of swimmers around interfaces will then depend on their concentrations. It

will be affected not only by the swimmer-surface hydrodynamic interactions but also
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by the bulk fluid flow generated by the swimmers. The former will lead to greater col-

onization and the latter could hinder colonization via collective bulk-scale motion of

microorganisms. One can expect a competition between these two effects, and results

from this study could inform us about biofilm activity beyond the initial incipience,

i.e., when the microorganisms have had time to proliferate. Finally, we invite detailed

numerical and experimental studies to further probe some of our results and check our

predictions. In particular, our results from Chapter 6 can be used as a springboard

to perform numerical analyses of microorganisms swimming near surfactant-laden in-

terfaces. The generalities afforded by numerical methods should reveal interesting

behaviors in the truly non-linear regimes of microorganism dynamics. From an ex-

perimental perspective, it will be intriguing to see data about: (i) microorganism

accumulation around oil drops (both clean and surfactant-laden), (ii) distribution of

microorganisms with differing morphologies across fluid films resting on rigid and fluid

substrates, and, (iii) rates of colonization of spherical nutrient sources−stationary and

moving−by chemotactic bacteria of varying chemotactic strengths.
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