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There are millions of individuals in the world who currently experience limited mobility as a result 

of aging, stroke, injuries to the brain or spinal cord, and certain neurological diseases. Robotic 

Assistive Devices (RADs) have shown superiority in helping people with limited mobility by 

providing physical movement assistance. However, RADs currently existing on the market for 

people with limited mobility are still far from intelligent. 

 

Learning control strategies are developed in this study to make a Cable-Driven Assistive Device 

(CDAD) intelligent in assisting a human joint (e.g., a knee joint, an ankle joint, or a wrist joint). 

CDADs are a type of RADs designed based on Cable-Driven Parallel Robots (CDPRs). A PID–

FNN control strategy and DDPG-based strategies are proposed to allow a CDAD to learn physical 

human-robot interactions when controlling the pose of the human joint. Both pose-tracking and 

trajectory-tracking tasks are designed to evaluate the PID–FNN control strategy and the DDPG-

based strategies through simulations. Simulations are conducted in the Gazebo simulator using an 

example CDAD with three degrees of freedom and four cables. Simulation results show that the 

proposed PID–FNN control strategy and DDPG-based strategies work in controlling a CDAD with 

proper learning. 
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 INTRODUCTION 

For chapter one, the problem that motivates this study is introduced: Robotic Assistive Devices 

(RADs) used for people with limited mobility are still far from intelligent. The study aims to take 

advantage of the recent development of artificial intelligence technologies to answer the research 

question - how learning control strategies can make Cable-Driven Assistive Devices (CDADs) 

intelligent when assisting a human joint. The significance, scope, assumptions, limitations, and 

delimitations of this study are introduced as well. 

1.1 Problem Statement 

The percentage of the elder people is increasing along with the worldwide population aging. The 

weaknesses of the skeletal muscles trouble Activities of Daily Living (ADLs) of the elder people 

(Huo, Mohammed, Moreno, & Amirat, 2016). Moreover, there are millions of individuals in the 

world who currently experience various movement-related disabilities (Babaiasl, Mahdioun, 

Jaryani, & Yazdani, 2016) frequently as a result of stroke, injuries to the brain or spinal cord, and 

certain neurological diseases (Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-Troy, & Leonhardt, 

2014). Healthcare research has provided evidence for those with movement-related disabilities can 

restore their impaired movement capabilities by performing repetitive rehabilitation training of 

their impaired extremities (Barreca, Wolf, Fasoli, & Bohannon, 2003; Dobkin, 2004). Robots have 

shown superiority in helping people with limited mobility to provide physical movement 

assistance (Barreca et al., 2003). However, current RADs for people with limited mobility (e.g., 

the elderly and people with movement-related disabilities) are still far from intelligent. 

1.2 Significance 

According to a survey from the United Nations Population Fund, in 2012, people aged 60 and over 

represent 11.5% of the global population, and the percentage is predicted to 22% by 2050 (UNFPA, 

2012). Aging is a particularly prominent problem in regions and countries. For example, according 

to China’s national 6th demographic census in 2010, the proportion of the population aged 65 and 

over in the total population is 8.9%, indicating that China is the country with the biggest aged 
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population in the world (Liu, Lin, Lin, & Zheng, 2018). The weakness of the skeletal muscles 

seriously limits the elderly to achieve their ADLs without intelligent RADs (Huo et al., 2016). 

 

Moreover, stroke is the leading cause of permanent disability in industrialized nations. Over 

920,000 Europeans and 700,000 North Americans have a stroke each year, and more than a half 

survive but with severe impairments (Morales, Badesa, García-Aracil, Sabater, & Pérez-Vidal, 

2011). The survivors of stroke can experience paralysis or loss of physical strength making it 

difficult to perform ADLs (Lo & Xie, 2012). Healthcare research has provided evidence that 

people with movement-related disabilities can restore their impaired movement capabilities by 

performing repetitive rehabilitation training of their impaired extremities (Barreca et al., 2003; 

Dobkin, 2004). However, the traditional manual rehabilitation training processes, without 

intelligent RADs, are labor-intensive and time-consuming (Fazekas, Horvath, Troznai, & Toth, 

2007; Kwakkel, Kollen, & Krebs, 2008; Prange, Jannink, Groothuis-Oudshoorn, Hermens, & 

Ijzerman, 2009). 

1.3 Research Question 

Compared to other RADs, CDADs offer several merits, such as low inertia, high payload-to-

weight ratio, modularity, simple architecture, and convenient for reconfiguration (Du & Agrawal, 

2015; Mayhew, Bachrach, Rymer, & Beer, 2005). Thus, CDADs are suitable for providing 

movement assistance for people with limited mobility. Since a CDAD is with modularity, simple 

architecture, and convenient for reconfiguration, the same CDAD is potential to be used in various 

scenarios in assisting people with limited mobility. However, the control of the CDAD is 

challenging because of the inconsistent setups, modularity of the CDAD, and reconfiguration of 

the CDAD. The study focuses on the following question - how to apply learning control strategies 

to a CDAD assisting a human joint. 

1.4 Scope 

Learning control strategies are developed for a CDAD in this study. The CDAD is designed to 

assist a human joint adaptively. Learning control strategies proposed in this study are based on 

Artificial Neural Networks (ANNs) or Deep Reinforcement Learning (DRL) algorithms. The 
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interactions between a person and a CDAD is twofold: physical human-robot interaction and 

cognitive human-robot interaction (Gopura, Bandara, Kiguchi, & Mann, 2016). The CDAD is 

supposed to learn the physical human-robot interactions, not the cognitive human-robot 

interactions. 

 

The learning control strategies will be verified via simulations in this study. Since upper-level 

assistive strategies or rehabilitation strategies (Xiong & Diao, 2019) of CDADs set target pose or 

target trajectory inevitably, pose-tracking and trajectory-tracking tasks are designed to evaluate 

the proposed learning control strategies. An example CDAD with four cables will be established 

in the Gazebo simulator (Koenig & Howard, 2004), a physical simulator, to assist a joint with three 

Degrees Of Freedom (DOFs). The example CDAD with proposed learning control strategies will 

learn the physical human-robot interactions and then assist the joint in the Gazebo simulator. 

 

The following research tasks are carried out to answer the research question: 

• Review literature on RADs, CDADs, Cable-Driven Parallel Robots (CDPRs), ANNs, 

and DRL. 

• Propose learning control strategies to allow a CDAD to adapt to physical human-robot 

interaction when assisting a human joint. 

• Evaluate the learning control strategies through simulation. 

1.5 Assumptions 

The following assumptions were inherent to the study: 

• A CDAD is designed for a human joint that has up to three DOFs. 

• The setup of a CDAD is not consistent in each time. 

• The CDAD works in the pose tracking mode and the target pose depends on a higher-

level assistive mode (e.g., partially assistive control, triggered passive control, and 

passive control) (Proietti, Crocher, Roby-Brami, & Jarrassé, 2016). 

 • The CDAD is driven by torque/force-controlling actuators (e.g., Direct-Current 

motors). 
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1.6 Limitation 

The following limitation was inherent to this study: 

• The CDAD is not applied to clinical trials.  

1.7 Delimitations 

The study is conducted with the following delimitations: 

• Since a human joint is concerned, the optimal design of the configuration of a CDAD 

for a specific human joint is not discussed in this study. 

• Since assistive modes of RADs (e.g., partially assistive control, triggered passive 

control, and passive control) (Basteris et al., 2014; Cao, Xie, Das, & Zhu, 2014; Jarrassé 

et al., 2014; Marchal-Crespo & Reinkensmeyer, 2009; Proietti et al., 2016; Yan, 

Cempini, Oddo, & Vitiello, 2015) can also be applied to CDADs, the discussion of 

assistive modes of CDADs is not mentioned in this study. 

1.8 Dissertation Layout 

The dissertation is organized into five chapters. The dissertation starts with an introduction in 

chapter one. For chapter two, studies related to CDPRs, CDADs, requirements of RADs, pros and 

cons of CDADs, ANNs, and DRL are reviewed. For chapter three, the methodologies used in the 

dissertation are introduced. Fundamental studies for CDADs are discussed at first. A PID–FNN 

control strategy and DDPG-based strategies are proposed for a CDAD. Simulations are designed 

to verify the proposed learning control strategies. Chapter four presents the findings from the 

fundamental studies on CDPRs and CDADs and the evaluation results of the proposed learning 

control strategies in simulations. The dissertation is summarized in chapter five. 
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 REVIEW OF LITERATURE 

A review of literature related to CDADs and learning control strategies is necessary to develop 

learning control strategies for a CDAD that can adaptively assist a human joint. For chapter two, 

studies of cable-driven parallel robots, cable-driven assistive devices, requirements of robotic 

assistive devices, pros and cons of cable-driven assistive devices, artificial neural networks, and 

deep reinforcement learning are reviewed. Sections 2.2, 2.3, and 2.4 of chapter two are revised 

based on the author’s published paper (Xiong & Diao, 2019). The review of literature related to 

CDADs and learning control strategies comprises searches in the databases of PubMed, IEEE 

Xplore Digital Library, Science Direct, and Google Scholar using various combinations of the 

following keywords: cable, wire, rehabilitation, assistance, therapy, training, robot, elastic, 

pneumatic, neural networks, and deep reinforcement learning. 

2.1 Cable-Driven Parallel Robots 

Since a CDAD is based on a CDPR in this study, studies related to the CDPR are necessary to be 

reviewed. The kinematics, dynamics, workspace, stiffness and control aspects of the CDPR are 

presented in this study.  

2.1.1 Kinematics 

Based on a CDPR that assists a joint via four cables, the kinematics architecture of the CDPR, as 

shown in Figure 2.1, is introduced. 𝐴𝑖 and 𝐵𝑖 are the two attaching points of the ith cable on the 

base and the end-effector, respectively. 𝒍𝑖 ∈  𝑅3 (𝑖 = 1, 2, 3, 4) is the vector along the ith cable. 𝒖𝑖 

is the unit vector along the ith cable. The magnitude of vector 𝒍𝑖, represented by scalar 𝑙𝑖, is the 

length of the ith cable between attaching points 𝐴𝑖 and 𝐵𝑖. The positions of the attaching points 𝐴𝑖 

and 𝐵𝑖 are represented by vectors 𝒂𝑖 and 𝒃𝑖 defined in the base frame, respectively. The origin of 

the base frame 𝐹𝑏 is denoted by point O, and the origin of the end-effector frame 𝐹𝑒 is denoted as 

point P. Both O and P locate at the rotation center of the end-effector, namely the rotation center 

of the joint. The attitude of 𝐹𝑒 with respect to 𝐹𝑏 is described by three Euler angles 𝜴 = [𝜓, 𝜃, 𝜙]𝑇 

with the 𝜓-𝜃-𝜙 sequence. 
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Figure 2.1 Kinematics notations of a joint assisted by a CDPR 

 

Based on the above kinematics notations, the position of the end-effector with respect to the base 

frame can be described as (Diao & Ma, 2007) 

 𝒑 =  𝒂𝑖 − 𝒍𝑖 − 𝒃𝑖  𝑓𝑜𝑟 𝑖 =  1, 2, 3, 4        (2.1) 

from which one has 

 𝑙𝑖
2 = [𝒂𝑖 − 𝒑 −  𝒃𝑖]

𝑻[𝒂𝑖 − 𝒑 −  𝒃𝑖]  𝑓𝑜𝑟 𝑖 =  1, 2, 3, 4   (2.2) 

Differentiating (2.2) with respect to time, and then organizing the four resulting equations into a 

matrix form, one obtains 

�̇� = −𝑱�̇�                        (2.3) 

where 

�̇� = [𝑙1̇ 𝑙2̇ 𝑙3̇ 𝑙4̇]𝑇                                      (2.4) 

 𝑱 =  [
𝒖1

𝒃1 × 𝒖1
  

𝒖2

𝒃2 × 𝒖2
  

𝒖3

𝒃3 × 𝒖3
  

𝒖4

𝒃4 × 𝒖4
]

𝑇

   (2.5) 

�̇� = [
𝒗𝑝

𝝎
] = [�̇� �̇� �̇� �̇�𝑥 �̇�𝑦 �̇�𝑧]

𝑇
                  (2.6) 

         1

         1

         1

         1

Second part of a joint

First part of a joint

End-effector

Base
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For the equations (2.1)-(2.6), �̇� is the velocity vector in joint space. �̇� denotes the twist of the end-

effector. 𝒗𝑝 = [�̇� �̇� �̇�]𝑇 and 𝝎 = [�̇�𝑥 �̇�𝑦 �̇�𝑧]
𝑇

 represent the translational and rotational velocity 

vectors of 𝐹𝑏 with respect to 𝐹𝑒. 𝑱 is the Jacobian (Diao & Ma, 2009) of the CDPR. 

2.1.2 Dynamics 

Compared to the inertia of the end-effector, the inertia of cables is usually much smaller and can 

be ignored (Ottaviano & Castelli, 2010). Then, the motion of the end-effector can be expressed 

based on Newton-Euler Formulation as (Khosravi & Taghirad, 2014b) 

𝑴(𝑿)�̈� + 𝑪(𝑿, �̇�)�̇� + 𝑮(𝑿) + 𝒘𝑒 = 𝒘   (2.7) 

where 𝑴(𝑿) denotes the mass matrix. 𝑪(𝑿, �̇�) denotes the Coriolis and centripetal matrix. 𝑮(𝑿) 

represents the gravity vector. 𝒘𝑒  represents the external wrench vector. 𝒘 is a wrench vector 

applied on the CDPR via cables. 𝑿 represents the pose of the CDPR. The mass matrix 𝑴(𝑿), 

Coriolis and centripetal matrix 𝑪(𝑿, �̇�), and the gravity matrix 𝑮(𝑿) have been defined by several 

scholars (Khosravi & Taghirad, 2014b; Ma & Diao, 2005)  

𝑴(𝑿) = [
𝑚𝑰 𝟎
𝟎 𝑰𝑝

]       (2.8) 

𝑪(𝑿, �̇�)�̇� = [
𝝎 × 𝑚𝒗𝑝

𝝎 × 𝑰𝑝𝝎]            (2.9) 

𝑮(𝑿) = [
𝑭𝑔

𝒘𝑔
]                  (2.10) 

where 𝒗𝑝 is the translational velocity vector of the center of mass of the end-effector. 𝑰𝑝 is the 

inertia tensor of the end-effector about point O in 𝐹𝑏. 𝑚 is the mass of the end-effector. 𝑰 is the 

identity matrix. 𝟎 is the zero matrix. 𝑭𝑔 is the gravity of the end-effector, and 𝒘𝑔 is the moment 

of the gravity. 

 

If there is no collision between the cables, base, and end-effector, and the Jacobian of the CDPR 

is certain, the set of cable tensions required to generate a certain wrench on the end-effector can 

be obtained by solving the inverse dynamics problem (Khosravi & Taghirad, 2014b) as 

𝒘 = −𝑱𝑇𝝉                  (2.11) 

where 𝝉 is a cable tension vector. However, if the Jacobian of the CDPR is uncertain, the set of 

cable tensions required to generate a certain wrench cannot be obtained based on (2.11). 
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2.1.3 Workspace 

The workspace of a CDPR was discussed by researchers in the past decades. Generally speaking, 

a force-closure workspace of a CDPR is defined as the set of all the poses (i.e., both positions and 

orientations) that the end-effector can physically reach while the force feasibility condition (i.e., 

all the cables are in tension) and perhaps additional constraints leading to different types of 

workspace (Diao & Ma, 2008). The controllable workspace (Verhoeven & Hiller, 2000) is defined 

as the set of all the poses at which the end-effector can statically balance a specific set of external 

wrenches with positive cable forces. Barrette and Gosselin introduced the concept of dynamic 

workspace, defined as the set of all end-effector poses and accelerations at which the end-effector 

can be balanced with non-negative cable forces (Barrette & Gosselin, 2005). The static workspace 

(Pusey, Fattah, Agrawal, & Messina, 2004) is defined as the set of all the poses at which the end-

effector can be statically balanced with non-negative cable forces. 

2.1.4 Stiffness 

The stiffness of a CDPR has been discussed by a few researchers. Behzadipour and Sohi 

(Behzadipour & Sohi, 2007) introduced the antagonistic cable tensions of a CDPR and proposed 

the concepts of antagonistic stiffness and elastic stiffness. The antagonistic cable tensions can 

generate antagonistic stiffness in addition to the conventional elastic stiffness of a CDPR. The 

stability of a CDPR with respect to antagonistic cable tensions was discussed (Behzadipour & 

Khajepour, 2005). A positive semi-definite antagonistic stiffness matrix is sufficient and necessary 

to guarantee the corresponding pose of the CDPR is stable. A set of sufficient conditions was 

derived to achieve the positive semi-definite antagonistic stiffness matrix of a CDPR. Moreover, 

it was proved (B. Zhang, Shang, Cong, & Liu, 2017) that the sufficient and necessary condition 

for a CDPR to have a stable pose in the force-closure workspace is that its Jacobian matrix has a 

full rank and the active stiffness matrix is positive definite. The concept of stiffness ratio was 

proposed (Azadi, Behzadipour, & Faulkner, 2009) to demonstrate the ratio of the antagonistic 

stiffness to the stiffness (i.e., the antagonistic stiffness plus the elastic stiffness) of a CDPR. The 

maximum and the minimum stiffness ratios of the CDPR were investigated when the CDPR is in 

singular configurations.  
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2.1.5 Control 

The control of CDPRs has also been investigated by researchers. Proportional–Integral–Derivative 

controllers (PID controllers) were wildly used in the control of CDPRs (Alamdari & Krovi, 2015a; 

Brackbill, Mao, Agrawal, Annapragada, & Dubey, 2009; W. Chen, Cui, Zhang, & Wang, 2015; 

Cui, Chen, Jin, & Agrawal, 2017; Feki et al., 2013). The control of CDPRs based on optimal 

controllers (Jamshidifar, Khosravani, Fidan, & Khajepour, 2018; Meunier, Boulet, & Nahon, 2009) 

as well as fuzzy controllers (Wang, Tong, Yi, & Li, 2015; Zi, Duan, Du, & Bao, 2008) was also 

discussed by researchers. Alikhani and Vali proposed a sliding mode controller to control a CDPR  

(Alikhani & Vali, 2011). Adaptive controllers have a reliable performance in the control of CDPRs 

(Babaghasabha, Khosravi, & Taghirad, 2015; Kino, Yoshitake, Wada, Tahara, & Tsuda, 2018; 

Lamaury, Gouttefarde, Chemori, & Herve, 2013). Singular perturbation approach was developed 

to control CDPRs with elastic cables (Khosravi & Taghirad, 2014a). A passivity-based control 

method was applied to CDPRs (Caverly & Forbes, 2014). Moreover, computed torque methods 

showed promising performance in controlling CDPRs (Alp & Agrawal, 2002; Williams, Gallina, 

& Vadia, 2003). In order to deal with uncertainties of CDPRs, the robustness of controllers was 

studied (Babaghasabha et al., 2015; Jamshidifar et al., 2018; Khosravi & Taghirad, 2014b; Kino, 

Yahiro, Takemura, & Morizono, 2007). All the above-mentioned control strategies assume the 

Jacobians (Diao & Ma, 2009) of the CDPRs can be determined in the control process. 

2.2 Current Cable-Driven Assistive Devices  

Robotic assistive devices can provide customized, prolonged, intensive, and repetitive movement 

assistance to people with limited mobility (Niyetkaliyev, Hussain, Ghayesh, & Alici, 2017). RADs 

from stationary ones to portable ones have become widespread and clinically accepted in the past 

decade. Cable-driven assistive devices are a type of RADs designed based on CDPRs. One 

example CDAD for ankle rehabilitation is shown in Figure 2.2. The cuff worn on the shank is the 

base of the CDPR while the brace on the foot is the end-effector of the CDPR. The end-effector is 

connected to the base through four cables in this example. Anchor points are points where cables 

are connected to the end-effector and the base. Because of the benefits of CDADs, the CDADs 

have attracted the attention of researchers. 
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Figure 2.2 One example CDAD for ankle rehabilitation 

 

2.2.1 Cable-Driven Assistive Devices for Upper Limbs and Fingers  

CDADs for upper limb have been developed in the past years. Cuffs worn by a person are used on 

the CDADs. Specifically, CAREX is a five-DOF CDAD with three cuffs (i.e., shoulder cuff, upper 

arm cuff, and forearm cuff) (Mao & Agrawal, 2012). A seven-DOF CDAD with four cuffs (i.e., 

shoulder cuff, upper arm cuff, forearm cuff, and hand cuff) and eight cables was proposed (Cui et 

al., 2017; Cui, Chen, Zhang, & Wang, 2015). A three-DOF cable-driven shoulder exoskeleton with 

two cuffs (i.e., shoulder cuff and upper arm cuff), which is a simplified version of CAREX, was 

conceptually developed (Shao, Tang, & Yi, 2014) for shoulder rehabilitation. Moreover, CARR-4 

(Z. Li, Chen, Zhang, & Bai, 2017) is a CDAD with six cables and three cuffs (i.e., shoulder cuff, 

upper arm cuff, and forearm cuff) for the rehabilitation of shoulders and elbows. The CARR-4 can 

provide three DOFs in shoulder rehabilitation and one DOF in elbow rehabilitation. Moreover, a 

CDAD consisting of four cables and two cuffs (i.e., forearm cuff and hand cuff) was designed (W. 

Chen et al., 2015) for wrist rehabilitation. The design of CDADs is based on cuffs (e.g., shoulder 

cuff, upper arm cuff, forearm cuff, and hand cuff) and a group of cables. The cables connect one 

or more cuffs and are driven by actuators usually mounted on a fixed platform. The motion of the 

cuffs and the corresponding segments of a person is controlled by the group of cables 

simultaneously.  

 

Soft braces are employed in CDADs for upper limb rehabilitation as well. A soft cable-driven one-

DOF exoskeleton was developed (Galiana, Hammond, Howe, & Popovic, 2012) and (Kesner, 

Cables
Anchor points

Brace

Cuff
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Jentoft, Hammond, Howe, & Popovic, 2011) for shoulder rehabilitation. The CDAD has one 

shoulder brace, one elbow brace, two Bowden cables, and two Series Elastic Actuators (SEAs). 

The abduction and adduction motion of a human shoulder are controlled by both Bowden cables 

attached to the braces. A Bowden-cable-driven soft exoskeleton was proposed for elbow 

rehabilitation (Wei, Qu, Wang, Zhang, & Hao, 2018). The CDAD utilizes four cables and strips to 

assist the flexion and extension of an elbow. Moreover, Auxilio, a CDAD with three cables for 

shoulder and elbow rehabilitation, was proposed (Gaponov, Popov, Lee, & Ryu, 2017). The 

Auxilio provides two DOFs in shoulder rehabilitation and one DOF (i.e., flexion) in elbow 

rehabilitation. The design of CDADs is based on soft braces and a group of cables. Since soft 

braces, strips, and cables are soft and compact, CDADs are potentially able to be smuggled 

underneath clothing. 

  

CDADs have been untied to finger rehabilitation by several researchers, such as CADEX (D. H. 

Kim & Park, 2018) and others (In, Cho, Kim, & Lee, 2011; Jeong, In, & Cho, 2013; Kang, In, & 

Cho, 2012; Mohamaddan & Komeda, 2010; S. Park, Weber, Bishop, Stein, & Ciocarlie, 2018; 

Yeow, Baisch, Talbot, & Walsh, 2014). Several CDPRs with two cables are used in CDADs to 

control one-DOF (i.e., flexion and extension) of fingers. Although various rigid and soft sleeves 

are utilized, CDADs are free of revolute axes. Thus, the CDADs have adaptability and do not have 

misalignment problems.  

2.2.2 Cable-Driven Assistive Devices for Lower Limbs  

Several CDADs for lower limb rehabilitation have been discussed by researchers. Cuffs are used 

by the CDADs. A cable-driven three-DOF exoskeleton for lower limb rehabilitation, named C-

ALEX, was developed (X. Jin, Cui, & Agrawal, 2015). Furthermore, C-ALEX has three cuffs (i.e., 

waist cuff, thigh cuff, and shank cuff). Ankle prosthesis can be driven by four cables and two cuffs 

(i.e., shank cuff and foot cuff) for gait training (Dhir, Dallali, Ficanha, Ribeiro, & Rastgaar, 2018). 

Also, a CDAD driven by four Pneumatic Muscle Actuators (PMAs) was designed for ankle 

rehabilitation (Jamwal, Xie, & Aw, 2009).  

 

Several CDADs for lower limb rehabilitation have soft braces. “Second Skin” is a one-DOF 

CDAD proposed (Y. Park, Santos, Galloway, Goldfield, & Wood, 2014) for knee rehabilitation. 
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“Second Skin” is composed of PMAs and soft sleeves. A series of soft “exosuits” were proposed 

and developed (Bae et al., 2018; J. Kim et al., 2018; Lee et al., 2018; Wehner et al., 2013) for 

lower limb assistance and rehabilitation. The CDADs consist of cables (or PMAs) and soft braces, 

so the CDADs possess the inherent safety.  

 

A bio-inspired CDAD was developed (Nagpal, 2014) for ankle-foot rehabilitation. The design of 

this CDAD is based on one knee brace, one ankle brace, one foot brace, one tendon-ligament-skin 

architecture, and four PMAs. The tendon-ligament-skin and four PMAs correspond to muscles, 

mimicking the anatomy of the human’s ankle and foot. The four PMAs mimic both the morphology 

and the functionality of biological muscles to control dorsiflexion, plantar flexion, inversion, and 

eversion of the ankle (Nagpal, 2014). However, the bionic structure of this CDAD is complicated, 

which limits its wider applications. 

2.3 Requirements of Robotic Assistive Devices  

Several papers that review the research and development of RADs have been published recently, 

covering the assistance of the full spectrum of human extremities, including upper limbs (Babaiasl 

et al., 2016; Basteris et al., 2014; Gopura et al., 2016; Jarrassé et al., 2014; Lo & Xie, 2012; 

Loureiro, Harwin, Nagai, & Johnson, 2011; Maciejasz et al., 2014; Masiero & Armani, 2011; 

Morales et al., 2011; Niyetkaliyev et al., 2017; Norouzi-Gheidari, Archambault, & Fung, 2012; 

Proietti et al., 2016), lower limbs (Belda-Lois et al., 2011; G. Chen, Chan, Guo, & Yu, 2013; Huo 

et al., 2016; Hussain, 2014; Jamwal, Hussain, & Xie, 2013; Pennycott, Wyss, Vallery, Klamroth-

Marganska, & Riener, 2012; Sánchez, Díaz, & Gil, 2011; Yan et al., 2015), and hands 

(Balasubramanian, Klein, & Burdet, 2010; Heo, Gu, Lee, Rhee, & Kim, 2012; Lum, Godfrey, 

Brokaw, Holley, & Nichols, 2012). Requirements for general RADs are applicable to CDADs. 

Popular requirements on safety, weight, adaptability, versatility, and misalignment are discussed 

in chapter two. 

2.3.1 Safety  

Since RADs are usually in direct contact with people, their safety in use is paramount (Tsagarakis 

& Caldwell, 2003). Researchers have been working mainly from the following three aspects in 

order to improve the safety of RADs.  
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• Design optimization. When a RAD is at a singular pose, it is out of control, which could 

lead to injuries to people. Thus, singularities of the RAD must be avoided within the 

workspace of the RAD (Gopura et al., 2016). Singularities within the workspace of the 

RAD can be eliminated or avoided by optimizing the design of the RAD.  

• Inherent safety. Inherent safety means the design of a RAD can guarantee the safety of the 

people to some extent, even in case of failure (Veneman, Ekkelenkamp, Kruidhof, van der 

Helm, & van der Kooij, 2006). Actuators with inherent safety, such as PMAs (Tsagarakis 

& Caldwell, 2003) and SEAs (Veneman et al., 2006), have been applied on RADs to 

achieve the inherent safety. 

• Back-drivability. Back-drivability of a RAD allows a person with limited mobility to 

override the motion of the RAD and back-drive the RAD (J. Li et al., 2012; Mao & Agrawal, 

2012). Back-drivability can improve the safety of the people (Maciejasz et al., 2014). 

2.3.2 Weight 

The weight requirement of a RAD depends on its specific application. If the RAD is used in a fixed 

location (e.g., a hospital), the mass of the non-movable parts (e.g., the base fixed on the floor) of 

the RAD is usually not a problem, but the mass of the movable parts moving with a person with 

limited mobility could be an issue because movable parts require the use of actuators to 

counterbalance gravity effects (Tsagarakis & Caldwell, 2003) and control their motions. However, 

if the RAD needs to be portable, the total weight of the RAD is critical. The portability of a RAD 

requires the RAD to be compact, lightweight, and energy-efficient (Moreno, Brunetti, Navarro, 

Forner-Cordero, & Pons, 2009; Pons, 2010). A portable RAD makes it convenient for a person 

with limited mobility to support his or her ADLs. Ambulatory platforms (e.g., a wheelchair) can 

be used to support RADs and make them ambulatory (Pedrocchi et al., 2013). Nonetheless, no 

matter the RAD is carried by the person with limited mobility or an ambulatory platform, 

lightweight allows the RAD to be applied in more scenarios.  

2.3.3 Adaptability  

People vary in size, shape, and motor ability, which presents a tremendous challenge to the design 

of RADs (S. Ball, Brown, & Scott, 2007). Robotic assistive devices have to be adaptive to 

accommodate people with various demographic and anthropomorphic parameters (Riener, 2007). 
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For RADs with rigid linkages, the adaptability is challenging. The lengths of their linkages need 

to be adjustable to fit various people to make the RADs adaptive to various people (S. J. Ball, 

Brown, & Scott, 2007). However, using linkages with adjustable length inevitably increases the 

mass of the RAD and the setup time of each wearing.  

2.3.4 Versatility 

Human joints (e.g., human wrist and human shoulder) have multiple DOFs, which makes human 

joints versatile and flexible, but presents design challenges for RADs. A robotic joint of a RAD 

can employ multiple single-DOF revolute axes to mimic a multi-DOF human joint. Considering 

space limitation, it is challenging to have a compact design of such a robotic joint.  

2.3.5 Misalignment 

Joint misalignment between a person and a RAD occurs during the setup of a RAD (Esmaeili, 

Gamage, Tan, & Campolo, 2011). A robotic joint (e.g., robotic shoulder) and a human joint (e.g., 

human shoulder) are misaligned if any revolute axis of the robotic joint doesn’t align perfectly 

with the corresponding anatomical axis of the human joint (Loureiro et al., 2011). Joint 

misalignment can cause excessively joint forces and torques, resulting in discomforts or even 

injuries (e.g., excessive joint wear) to people (Gopura et al., 2016). Various techniques have been 

used in RADs to minimize joint misalignment. For example, MEDARM employed additional 

revolute axes to allow the RAD to shift its revolute axes to mitigate the misalignment problem (S. 

J. Ball et al., 2007). Moreover, NEUROExos (Vitiello et al., 2013) utilized a special mechanism 

that allows small relative adjustment of the revolute axis of a robotic elbow. However, additional 

mechanisms increase the weight and the complexity of RADs and thus, are not practical for 

portable RADs (Gopura et al., 2016).  

2.4 Pros and Cons of Cable-Driven Assistive Devices 

A robotic joint of a CDAD is formed by a CDPR. The robotic joint has no physical revolute axes 

and thus, the pros and cons of a CDAD are special. 
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2.4.1 Benefits of Cable-Driven Assistive Devices 

A CDAD has several benefits. Firstly, a CDAD has adaptability because it does not have any rigid 

linkage and a robotic joint is free of revolute axes. Thus, a CDAD can be worn by people with 

various sizes. If the controller of the CDAD can also adapt to the various sizes of people, additional 

adjustment mechanisms for various people are not necessary anymore. In this case, the time spent 

on setting up the CDAD can be reduced as well. 

 

Secondly, a robotic joint of the CDAD can provide multiple DOFs for a human joint via a proper 

number of cables. Thus, the CDAD has great versatility and does not restrict the natural DOFs of 

a human joint (Gopura et al., 2016). Moreover, formed by a CDPR, a robotic joint of a CDAD 

does not need to employ multiple revolute axes to provide multiple DOFs for a human joint, such 

as human shoulder and human wrist.  

 

Thirdly, a CDAD does not have rigid linkages, which makes it lighter. The shape and the mass of 

a CDAD do not increase significantly if the number of DOFs of its robotic joint is increased. Only 

additional cables, rather than linkages, are needed to provide additional DOFs. If soft braces are 

utilized to replace cuffs, the mass of a CDAD can be further reduced. Making a CDAD light and 

compact enough to be worn by a person to support ADLs is possible. 

 

 Fourthly, a CDAD does not have the misalignment issue between the revolute axes of the device 

and the anatomical axes of the people. The reason is that the robotic joint of a CDAD is formed 

by a CDPR which does not have any revolute axis.  

 

Fifthly, if SEAs, PMAs, or soft braces are utilized on a CDAD, SEAs, PMAs, or soft braces can 

provide the inherent safety. In general, a CDAD can meet all five rehabilitation requirements 

discussed above.  

2.4.2 Drawbacks of Cable-Driven Assistive Devices 

A CDAD also has drawbacks. Firstly, it is challenging to control a CDAD. The robotic joint of a 

CDAD is formed by a CDPR. Modeling and control methods of a CDPR usually assume the end-

effector of the CDPR has no collision with cables. However, such a cable-collision-free 
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assumption is not always true for a CDAD. Moreover, when soft braces are utilized, anchor points 

(Merlet, 2010) of a CDAD are possible to be close to or even in contact with segments of a person. 

The collision between cables and segments of a person is inevitable in this case. Thus, traditional 

modeling and control methods of a CDPR cannot be applied to CDADs if collisions occur between 

segments of a person and cables. Moreover, uncertainties (e.g., uncertain positions of anchor points 

due to the wearing inconsistency for each training) make the control of the CDAD even more 

challenging.  

 

Secondly, the most distinguished characteristic of a CDPR is the unidirectional constraint of cables 

(i.e., cables can pull but cannot push) (Xiong & Diao, 2017a). Hence, a robotic joint of a CDAD 

formed by a CDPR cannot be pressed. The robotic joint applies additional pressure to a human 

joint when assisting a human joint (Xiong, Zhang, Liu, & Diao, 2018). Such a drawback of the 

robotic joint formed by a CDPR might constrain the application of the CDAD. 

2.5 Artificial Neural Networks 

Artificial neural networks are models for solving intelligent tasks by machines inspired by 

biological neural networks (Yegnanarayana, 2009). The ANN is considered as a “black-box” as it 

imitates a behavior rather than a structure from the system engineering point of view (Prieto et al., 

2016). A benefit of the “black box” is that, it is able to describe virtually any non-linear dynamics 

(Prieto et al., 2016). ANNs have proven to be competitive in the resolution of non-linear problems 

(L. Jin, Zhang, & Li, 2016; D. Lin, Wang, Nian, & Zhang, 2010; Xiao & Liao, 2016). The 

modification of the parameters of the ANN carries out an adaptation to the environment via 

learning (Prieto et al., 2016). Using ANNs for controlling robots have attracted much attention in 

recent years (L. Jin, Li, Yu, & He, 2018). Several types of ANNs, such as Recurrent Neural 

Networks (RNNs), Feedforward Neural Networks (FNNs), and Deep Neural Networks (DNNs), 

have been used in the control of robotics. 

2.5.1 Feedforward Neural Networks 

Feedforward Neural Networks with multiple layers is composed of one or more hidden neural 

layers (Da Silva, Spatti, Flauzino, Liboni, & dos Reis Alves, 2017). The diagram of an example 

FNN with one hidden layer is shown in Figure 2.3. The FNN is the most popular type of ANNs 
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due to the flexibility in structure, representational capabilities, and several available training 

algorithms (Sharma & Chandra, 2010). FNNs are capable of approximating nonlinear functions to 

any desired degree of accuracy (Anastassiou, 2011; Z. Chen, Cao, & Hu, 2015). 

 

Figure 2.3 Diagram of a FNN 

 

2.5.2 Recurrent Neural Networks 

Recurrent Neural Networks can be applied to time-variant systems, such as system identification, 

time series prediction, process control, and so forth (Da Silva et al., 2017). The diagram of an 

example RNN is shown in Figure 2.4.  
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Figure 2.4 Diagram of a RNN 

 

2.5.3 Deep Neural Networks 

The concept of deep learning algorithms was proposed in the late 20th century inspired by deep 

hierarchical structures of human speech perception and production systems (Liu et al., 2017). 

Hinton (Hinton, Osindero, & Teh, 2006) developed a novel training method giving the birth of 

deep learning techniques in 2006. Either FNNs or RNNs can form DNNs with deep hierarchical 

structures, as shown in Figures 2.5 and 2.6. The DNNs are built from a cascade of hidden layers 

of units between the input and output layers (Schmidhuber, 2015). If the numbers of layers and 

units are increased, the DNNs can represent functions with higher complexity (Liu et al., 2017). 
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Figure 2.5 Diagram of a deep hierarchical FNN 

 

 

Figure 2.6 Diagram of a deep hierarchical RNN 

 

2.5.4 Applications of Artificial Neural Networks on Cable-Driven Robots 

Artificial neural networks have been applied to the studies of cable-driven robots. The forward 

kinematics problem of a CDPR was solved by a FNN (Ghasemi, Eghtesad, & Farid, 2010). 

Moreover, the inverse kinematics problem of a soft robot controlled by three cables was discussed 

in a reference (Giorelli, Renda, Ferri, & Laschi, 2013). Authors of a reference (Giorelli et al., 2015) 
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compared a Jacobian-based method with a FNN in solving the inverse kinematics problem of a 

cable-driven soft robot with two cables in terms of accuracy and computational time based on 

experiments. 

2.6 Deep Reinforcement Learning 

Deep reinforcement learning can extract features from high-dimensional data and learn complex 

policies by introducing DNNs to solve reinforcement learning problems. The DRL is suitable for 

various tasks (Tsurumine, Cui, Uchibe, & Matsubara, 2019), especially for sequential decision-

making applications. Several DRL algorithms, such as DQN (Mnih et al., 2013), Trust Region 

Policy Optimization (TRPO) (Schulman, Levine, Abbeel, Jordan, & Moritz, 2015), Deep 

Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), and Mirror Descent Guided Policy 

Search (MDGPS) (Montgomery & Levine, 2016), have recently been used to solve various 

manipulation tasks in robotics (F. Li, Jiang, Zhang, Wei, & Song, 2019; Z. Li, Xue, Lin, & Tong, 

2018; A Nagabandi, Kahn, Fearing, & Levine, 2018; Passalis & Tefas, 2019; Rahman, Rashid, & 

Hossain, 2018; M. Zhang et al., 2017; T. Zhang, Kahn, Levine, & Abbeel, 2016). 

2.6.1 Deep Deterministic Policy Gradient 

Since the DDPG was proposed by (Lillicrap et al., 2015) to solve reinforcement learning problems 

with continuous state and action, it is appropriated for a CDAD to learn to assist a human joint. 

The DDPG uses an actor-critic architecture combined with the DQN (Mnih et al., 2016) and the 

Deterministic Policy Gradient (DPG) (Silver et al., 2014). The DDPG utilizes four DNNs (i.e., 

actor network, actor-target network, critic network, and critic-target network) to approximate two 

policies (i.e., behavior policy and target policy), as shown in Table 2.1. 

Table 2.1 Networks of DDPG 

Network Input Output Policy 

Actor Network 𝒔𝑡 𝒂𝑡 = 𝝁(𝒔𝑡| 𝜃𝜇) Behavior Policy 

Actor-Target Network 𝒔𝑡+1 𝒂𝑡
′ = 𝝁′(𝒔𝑡+1| 𝜃𝜇′

) Target Policy 

Critic Network 𝒔𝑡 , �̃�𝑡
 𝑄 = 𝑄(𝒔𝑡, �̃�𝑡| 𝜃𝑄) Behavior Policy 

Critic-Target Network 𝒔𝑡+1, 𝒂𝑡
′  𝑄′ =  𝑄′(𝒔𝑡+1, 𝒂𝑡

′ | 𝜃𝑄′
) Target Policy 
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The actor network of DDPG approximates a behavior policy 𝝁, and the output of the actor network 

is (Lillicrap et al., 2015) 

𝒂𝑡 = 𝝁(𝒔𝑡| 𝜃𝜇)      (2.12) 

where 𝑡  represents a specific time step. 𝒔𝑡  represents the state in time step 𝑡 . 𝜃𝜇  is the actor 

network parameter. The policy function uses deterministic policy instead of stochastic policy. The 

critic network of DDPG approximates a value function as (Lillicrap et al., 2015) 

𝑄 = 𝑄(𝒔𝑡, �̃�𝑡| 𝜃𝑄)      (2.13) 

𝜃𝑄 is the critic network parameter. �̃�𝑡 can be expressed as 

�̃�𝑡 = 𝒂𝑡 + 𝑵𝑡       (2.14) 

where 𝑵𝑡 is an exploration noise. 

 

The actor-target network approximates a target policy 𝝁′ and the output of the actor-target network 

is (Lillicrap et al., 2015) 

𝒂𝑡
′ = 𝝁′(𝒔𝑡+1| 𝜃𝜇′

)      (2.15) 

where 𝜃𝜇′
 is the actor-target network parameter. The critic-target network approximates a value 

function (Lillicrap et al., 2015) 

𝑄′ =  𝑄′(𝒔𝑡+1, 𝒂𝑡
′ | 𝜃𝑄′

)     (2.16) 

where 𝜃𝑄′
 is the critic-target network parameter. 

 

The actor network is updated with respect to the gradient of expected performance objective 𝐽 as 

∇𝜃𝜇𝐽 ≈ 𝔼𝒔𝑡~𝜌𝛽[∇𝑎𝑄(𝒔, 𝒂|𝜃𝑄)|𝒔𝑡,𝝁(𝒔𝑡)∇𝜃𝜇𝝁(𝒔| 𝜃𝜇)|𝒔𝑡
]   (2.17) 

where performance objective 𝐽 is defined as 

𝐽 = 𝔼𝒔𝑡~𝜌𝛽[𝑄(𝒔, 𝒂|𝜃𝑄)|𝒔𝑡,𝝁(𝒔𝑡)]                    (2.18) 

where 𝜌𝛽 is a state distribution. The critic network is updated by minimizing the loss 𝐿, defined 

as 

𝐿(𝜃𝑄) = 𝔼𝒔𝑡~𝜌𝛽,𝒂𝑡~𝛽,𝑟~𝐸[(𝑦𝑡 − 𝑄(𝒔, 𝒂|𝜃𝑄)|𝒔𝑡,𝝁(𝒔𝑡| 𝜃𝜇))2  (2.19) 

where 𝐸 is the environment and 𝛽 is an action distribution. 𝑦𝑡 can be expressed as 

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄′(𝒔𝑡+1, 𝝁′(𝒔𝑡+1|𝜃𝜇′
)|𝜃𝑄′

)                 (2.20) 

where 𝛾 ∈ (0,1) denotes a discount factor. 𝑟𝑡 is a reward function. After updating actor and critic 

networks, two target networks are updated by 
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𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

                                (2.21) 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

                                (2.22) 

where update rate 𝜏 ≪ 1. The DDPG also utilizes experience replay buffer to avoid correlations 

in sequences. A mini-batch is randomly selected from the replay buffer for the training of DDPG 

in each time step. 

2.7 Summary 

A comprehensive review of CDPRs, CDADs, RADs, ANNs, and DRL is presented in chapter two. 

A CDAD meets the requirements of RADs, such as safety, weight, adaptability, versatility, and 

misalignment. But the control of a CDAD is challenging. Thus, ANNs and DRL, which have been 

used to solve a variety of manipulation tasks in robotics, are taken into account in this study to 

control a CDAD.  
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 RESEARCH METHODOLOGY  

According to the literature review in chapter two, a CDAD meets the requirements of RADs such 

as safety, weight, adaptability, versatility, and misalignment. However, the control of the CDAD 

is challenging because of the inconsistency of setups, the modularity of the CDAD, and the 

reconfiguration of the CDAD. Thus, learning control strategies are developed in this study for a 

CDAD that can adaptively assist a human joint. The author’s work about fundamental studies of 

CDADs is demonstrated at the beginning of chapter three. Then, a PID–FNN control strategy and 

DDPG-based strategies are proposed to enable a CDAD to learn physical human-robot interactions 

and to control the pose of the human joint. Simulations are designed to validate the learning control 

strategies. Sections 3.1.1, 3.1.2, 3.2.1, and 3.2.2 of chapter three are revised based on the author’s 

published papers (Xiong & Diao, 2018a), (Xiong et al., 2018), (Xiong, Zhang, & Diao, 2019), and 

(Xiong, Ma, Zhang, & Diao, 2019), respectively.  

3.1 Fundamental Studies of Cable-Driven Assistive Devices 

3.1.1 Workspace Isotropy 

Workspace isotropy analysis in terms of the geometric shape of the workspace is crucial for many 

applications in which the base of a parallel manipulator (e.g., CDPR) is movable. To better 

understand and analyze workspace isotropy for parallel manipulators, a clear definition of 

workspace isotropy is essential. A robotic manipulator is said to be isotropic if its end-effector has 

the same properties in any arbitrary direction (Gosselin & Angeles, 1989). The properties include, 

but are not limited to, characteristics of kinematics, dynamics, force, and workspace. The study 

proposes workspace isotropy indices to evaluate the workspace of a parallel manipulator in terms 

of its geometric shape. The workspace of a parallel manipulator is geometrically isotropic about a 

selected point, called isotropy analysis center (IAC), if, with an arbitrary rotation applied to the 

movable base of the parallel manipulator about the IAC, the workspace after the rotation overlaps 

the workspace before the rotation. The study assumes that the base of a parallel manipulator is 

movable and that the workspace of the parallel manipulator rotates, but does not deform, with the 

rotation of the movable base. The workspace of a parallel manipulator should be continuous, rather 

than a union of a few separated spaces. 
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The concept of isotropy of a robotic manipulator has been discussed by many researchers. Gosselin 

et al. studied the symmetry of planar parallel manipulators (Gosselin & Angeles, 1989). The 

mobility isotropy of a mobile robot was investigated in (S. Kim, Kim, & Moon, 2005). Rosati et 

al. studied how to evenly distribute the inertia of planar robotic manipulators designed for upper-

limb rehabilitation (Rosati, Secoli, Zanotto, Rossi, & Boschetti, 2008) while others proposed 

isotropy indices, such as tension factor (Pham, Yeo, Yang, & Chen, 2009) and force index (Rosati, 

Zanotto, & Agrawal, 2011) concerning isotropy of cable tensions in CDPRs. Salcudean and Stocco 

studied the force isotropy of haptic devices to achieve a uniform force capability matching that of 

the human hand (Salcudean & Stocco, 2000). The kinematics isotropy of serial manipulators 

(Gosselin & Lavoie, 1993) and rigid-link parallel manipulators (Fattah & Ghasemi, n.d.; Zanganeh 

& Angeles, 1997) was addressed by researchers based on the condition number of the Jacobian 

matrix (Salisbury & Craig, 1982). Moreover, Hwang et al. discussed the kinematics isotropy of a 

haptic device (Yoon, Ryu, & Hwang, 2010) based on a global conditioning index (Gosselin & 

Angeles, 1991). Although the geometric shapes of the workspaces of various haptic device designs 

were compared in (Yoon et al., 2010) via Euler angles, no quantitative isotropy index was defined 

to evaluate workspace isotropy in terms of geometric shape. To the author’s best knowledge, this 

is the first time to quantitatively study the workspace isotropy of parallel manipulators in terms of 

the geometric shape of the workspace. 

3.1.1.1 Workspace Isotropy Indices 

The IAC is a reference point selected for workspace isotropy analysis. It is not necessary the 

geometric center of the workspace. It even does not need to be inside the workspace. For a CDPR, 

the IAC could be set at the centroid of the polyhedron formed by the anchor points on the base if 

no specific position is of interest in workspace isotropy analysis. For a rigid-link parallel 

manipulator, the IAC could be set at the centroid of the end-effector when all joints are in the 

middle of their motion ranges. Alternatively, if one is interested in how isotropic a workspace is 

around a specific point, then the IAC should be set at that point. Different IACs generally lead to 

different values of the workspace isotropy indices.   
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The distance of a pose of a parallel manipulator is defined as the distance between the position of 

the pose and the IAC. For the study, a parallel manipulator is studied with three reference frames, 

namely, base frame, end-effector frame, and inertial frame. The base frame is mounted on the base 

of the parallel manipulator. The origin of the base frame is always set at the IAC. The end-effector 

frame is mounted on the end-effector of the parallel manipulator. The inertial frame is mounted on 

the ground. Both the base frame and the end-effector frame are movable while the inertial frame 

is fixed. The workspace of the parallel manipulator is described in the base frame and the motion 

of the base in the inertial frame. The inertial frame coincides with the base frame when there is no 

rotational disturbance to the movable base of the parallel manipulator. Given a rotational 

disturbance to the movable base of the parallel manipulator, the base frame and the workspace 

rotate while the inertial frame does not. For a general parallel manipulator, assuming the position 

of a pose in the base frame is described by three Cartesian coordinates x, y, and z, then the distance 

of this pose, denoted by 𝑟, is mathematically defined as 

𝑟 =  √𝑥2 +  𝑦2 + 𝑧2   () 

For a planar parallel manipulator, 𝑧 = 0. One can see from (3.1) that the distance of a pose depends 

on the position of the pose only. 

 

The translational workspace of a parallel manipulator is defined as a set of positions that the 

parallel manipulator can physically reach at an arbitrary orientation with or without additional 

constraints (e.g., force-closure, singularity-free, etc.). The translational workspace is isotropic if, 

after an arbitrary rotation of the movable base of the parallel manipulator about the IAC, the new 

translational workspace completely overlaps with the original one. To quantitatively measure how 

isotropic the translational workspace of a parallel manipulator is, TWII is defined as 

TWII =  
∫ 𝜂𝑡

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

𝑑𝑟

𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
   () 

where 𝑟 is the distance of a pose in the translational workspace. 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are the minimum 

and the maximum distances of poses in the translational workspace, respectively. If the IAC is 

inside the translational workspace, then 𝑟𝑚𝑖𝑛 = 0. 𝜂𝑡 represents the isotropy of the translational 

workspace intersecting with a surface denoted as 𝑠𝑟. All positions on surface 𝑠𝑟 have the same 

distance 𝑟 (𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥) to the IAC. In other words, surface 𝑠𝑟 is a spherical surface for a 
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three-dimensional translational workspace or a circle for a two-dimensional translational 

workspace with the IAC at its geometric center. 𝜂𝑡 is defined as 

𝜂𝑡 =  
∫ 𝑡𝑑𝑑𝑠𝑟𝑠𝑟

𝐴𝑠𝑟

   () 

where 𝐴𝑠𝑟
 is the area of surface 𝑠𝑟  for a three-dimensional translational workspace or the 

circumference of the corresponding circle for a two-dimensional translational workspace. 𝑑𝑠𝑟 is 

the infinitesimal of 𝑠𝑟. 𝑡𝑑 is a factor to tell whether a 𝑑𝑠𝑟 is in the translational workspace.  

𝑡𝑑 = {
1, if 𝑑𝑠𝑟 is in the translational workspace        
0, if 𝑑𝑠𝑟 is not in the translational workspace

 () 

Therefore, the numerator in (3.3) is the surface area of surface 𝑠𝑟  or the arc length of the 

corresponding circle intersecting with the translational workspace. Thus, one has  

0 < 𝜂𝑡 ≤ 1   () 

If all the poses with a distance of 𝑟 are in the translational workspace, namely, surface 𝑠𝑟 is entirely 

embedded in the translational workspace, then 𝜂𝑡 = 1. According to the definition of TWII in (3.2), 

𝜂𝑡  with different distances have the same weight. Therefore, TWII is the arithmetic mean of 𝜂𝑡 

with the distance ranging from 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥. 

 

Based on the definition, TWII ranges from 0 to 1. The larger the TWII, the more isotropic the 

translational workspace of the parallel manipulator. The geometric interpretation of TWII is the 

arithmetic mean of ratios of the total cross-section area to the total area of all spheres intersecting 

with the translational workspace if the translational workspace is three-dimensional. If the 

translational workspace is two-dimensional, TWII is the arithmetic mean of ratios of the total 

cross-section arc length to the total circumference of all circles intersecting with the translational 

workspace. Thus, if the translational workspace is spherical for a spatial parallel manipulator or 

circular for a planar one, then the translational workspace is isotropic (i.e., TWII = 1) if the IAC 

is selected at the geometric center of the translational workspace.  

 

By inspecting how isotropic a translational workspace is, TWII can be used to evaluate the 

robustness of the translational workspace of a parallel manipulator to rotational disturbances about 

the IAC to the movable base. In other words, TWII is an indicator to a parallel manipulator’s 

capability of returning to its original position when a rotational disturbance about the IAC is 

applied to the movable base of the parallel manipulator. It should be noted that the translational 
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workspace is isotropic (i.e., TWII = 1) is a necessary, but not sufficient, condition for a parallel 

manipulator to be able to compensate rotational disturbances and return to its original position.  

 

The rotational workspace of a parallel manipulator is defined as a set of orientations that the 

parallel manipulator can physically reach at an arbitrary position with or without additional 

constraints (e.g., force-closure, singularity-free, etc.). The rotational workspace is isotropic if, after 

an arbitrary rotation of the base of the parallel manipulator about the IAC, the new rotational 

workspace completely overlaps with the original one. The more isotropic the rotational workspace, 

the better chance the manipulator returns to its original orientation after a rotation of its base. It 

should be pointed that the isotropy of the rotational workspace has nothing to do with the positions 

or the distances of poses, because the rotational workspace of a manipulator depends on its 

reachable orientations only. To quantitatively measure how isotropic the rotational workspace of 

a parallel manipulator is, RWII is defined as 

RWII =  
𝑤𝑟

𝑝𝑟
   () 

where 𝑤𝑟 is the volume, the area, or the orientation range of the rotational workspace when the 

rotational workspace is three-, two-, or one-dimensional, respectively. For example, if the 

rotational workspace is one-dimensional and the orientation of the parallel manipulator changes 

from -30 degrees to 50 degrees, then 𝑤𝑟 =80 degrees in this case. 𝑝𝑟 is the volume, the area, or 

the orientation range of the RWII-analysis space which includes all possible orientations of the 

manipulator. For example, if the RWII-analysis space is one-dimensional, then 𝑝𝑟 is 360 degrees. 

If the rotational workspace includes all possible orientations, then 𝑤𝑟 = 𝑝𝑟 or RWII = 1.  

 

Based on the definition, RWII ranges from 0 to 1. The larger the RWII, the more isotropic the 

rotational workspace of the parallel manipulator. The geometric interpretation of RWII is the 

volume, area, or length ratio of the rotational workspace to the RWII-analysis space. By inspecting 

how isotropic a rotational workspace is, RWII can be used to evaluate the robustness of the 

rotational workspace of a parallel manipulator to rotational disturbances to the movable base of 

the parallel manipulator. The rotational disturbances are not necessary about the IAC. In other 

words, RWII is an indicator to a parallel manipulator’s capability of returning to its original 

orientation when a rotational disturbance occurs to the movable base of the parallel manipulator. 

The rotational workspace is isotropic (i.e., RWII = 1) is a necessary, but not sufficient, condition 
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for a parallel manipulator to be able to compensate rotational disturbances and return to its original 

orientation. 

 

The entire workspace of a parallel manipulator is defined as a set of poses that the parallel 

manipulator can physically reach with or without additional constraints (e.g., force-closure, 

singularity-free, etc.). The entire workspace is isotropic if, after an arbitrary rotation of the movable 

base of the parallel manipulator about the IAC, the new entire workspace completely overlaps with 

the original one.  For example, assume the entire workspace of the planar CDPR shown in Fig. 2a 

is isotropic with the IAC located at point O. The xy frame is the base frame and the 𝑥𝐼𝑦𝐼 frame is 

the inertial frame. The solid red square and the dashed black square represent the end-effector and 

the base of the CDPR, respectively. The solid black lines are cables. Initially, the CDPR is at the 

pose (0,0,0) (unit: mm, mm, deg) in the inertial frame, as shown in Figure 3.1a. After a rotational 

disturbance about the IAC is applied to the base of the CDPR, the CDPR moves to a new pose, as 

shown in Figure 3.1b. The end-effector of the CDPR is now off the pose (0,0,0) in the inertial 

frame. Since the entire workspace of the CDPR is isotropic, it is possible for the CDPR to return 

to the original pose (0,0,0) in the inertial frame. As shown in Figure 3.1c on page 31, although the 

base of the CDPR is rotated due to a disturbance, the end-effector can still return to its original 

pose (0,0,0) in the inertial frame.  

 

Figure 3.1 A planar CDPR with isotropic workspace returns to its original pose 

 

The workspace of a parallel manipulator is isotropy if the parallel manipulator can reach the same 

poses in any arbitrary direction (Gosselin & Angeles, 1989). It should be noted that orientation 

references in different directions are different when discussing “the same poses” in the study of 
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workspace isotropy. Thus, the orientation references of different poses, whose positions are in 

different directions, are different in the study of workspace isotropy. In order to study “the same 

poses” with different orientation references and make “the same poses” have the same orientation 

with respect to different orientation references, local rotational workspace and adjusted local 

rotational workspace, denoted by 𝑎𝑙, are proposed. Specifically, the local rotational workspace at 

a position is the set of orientations that the parallel manipulator can physically reach at that position. 

Local rotational workspaces of all positions have the same orientation reference. For the study, 

local rotational workspaces of all positions share the same orientation reference with the entire 

workspace.  

 

The adjusted local rotational workspace at a position is also the set of orientations that the parallel 

manipulator can physically reach at that position. However, the orientation reference of an adjusted 

local rotational workspace could be different from the local rotational workspace at the same 

position. The orientation reference of an adjusted local rotational workspace depends on the 

direction of the particular position. Thus, the orientation references of adjusted local rotational 

workspaces at different positions in different directions are different. With orientation references 

mentioned above, “the same poses” can have the same orientation with respect to the orientation 

references of their own adjusted local rotational workspace.    

 

One example of illustrating the issue caused by using different orientation references is shown in 

Figure 3.2, where vectors 𝒂, 𝒃, and 𝒂′ represent three different poses in the entire workspace of a 

planar parallel manipulator. The start point of a vector represents the position of a pose and the 

direction of a vector represents the orientation of the pose. The xy frame is the base frame and its 

origin, point O, is also the IAC. The 𝑥𝐼𝑦𝐼 frame is the inertial frame and its origin is point 𝑂𝐼. The 

x axis of the base frame is used as the orientation reference for the entire workspace, rotational 

workspace and all local rotational workspaces. With x axis of the base frame as the orientation 

reference, poses 𝒂 and 𝒃  have the same orientation while poses 𝒂 and 𝒂′  have different 

orientations. However, if the base is rotated by an angle of 𝛽 about the IAC at point O, pose 𝒂′, 

rather than 𝒃, overlaps with pose 𝒂 before the rotation. Namely, 𝒂 and 𝒂′ are “the same poses” in 

different directions. A rotational workspace at a position with x axis of the base frame as the 

orientation reference is a local rotational workspace of that position. 
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Figure 3.2 The effect of a position on its local rotational workspace for a planar CDPR 

  

However, if the orientation reference of a pose is the vector from the IAC at point O to the position 

of the pose, namely, OA is the orientation reference for pose 𝒂 and OB for poses 𝒂′ and 𝒃, poses 

𝒂 and 𝒃 have different orientations while poses 𝒂 and 𝒂′ have the same orientation. In this case, 

“the same poses” (e.g., 𝒂 and 𝒂′ ) have the same orientation based on their own orientation 

references. A rotational workspace at a position with such an orientation reference is an adjusted 

local rotational workspace. EWII introduced below is based on such characteristics – “the same 

poses” in different directions have the same orientation with respect to orientation references 

defined by their positions. It should be pointed out that, since the method of defining the orientation 

reference by the vector from the IAC to the position of the pose for planar parallel manipulators is 

different from that for spatial ones, the adjusted local rotational workspace and EWII cannot be 

applied to spatial parallel manipulators. 

 

To quantitatively measure how isotropic the entire workspace of a parallel manipulator is, EWII 

is defined as 

EWII =  
∫ 𝜂𝑤

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

𝑑𝑟

𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
   () 

𝜂𝑤 =  
∫

𝑉𝑎𝑙
𝑉𝑎𝑟

𝑑𝑠𝑟𝑠𝑟

𝐴𝑠𝑟

   () 

where 𝑎𝑙 is the adjusted local rotational workspace of a position on 𝑠𝑟. 𝑉𝑎𝑙
 is the volume of 𝑎𝑙. 𝑎𝑟 

is the space union set of the adjusted local rotational workspace 𝑎𝑙 of all positions on 𝑠𝑟. 𝑉𝑎𝑟
 is the 

volume of 𝑎𝑟. Therefore, one has 
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0 ≤
𝑉𝑎𝑙

𝑉𝑎𝑟

≤ 1   () 

0 < 𝜂𝑤 ≤ 1                                                                          () 

According to the definition of EWII in (3.7), 𝜂𝑤 with different distances have the same weight. 

Therefore, EWII is the arithmetic mean of 𝜂𝑤 with the distance ranging from 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥. 

 

Based on the definition, the EWII ranges from 0 to 1. The greater the EWII, the more isotropic the 

entire workspace of a parallel manipulator. The geometric interpretation of EWII is the arithmetic 

mean of distance-based entire workspace isotropy with distances ranging from 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥. EWII 

assesses the robustness of the entire workspace of a planar parallel manipulator to rotational 

disturbances about the IAC to the movable base of the manipulator. In another word, EWII can be 

used to evaluate a planar parallel manipulator’s capability of returning to the original pose when a 

rotational disturbance about the IAC is applied to the movable base of the parallel manipulator. 

Again, it should be noted that the entire workspace is isotropic (i.e., EWII = 1) is a necessary, but 

not sufficient, condition for a parallel manipulator to be able to compensate rotational disturbances 

and return to its original pose. 

3.1.2 Joint Force Analysis and Moment Efficiency 

To gain the mobility of a human joint, a CDAD usually rotates the joint repeatedly by generating 

an assistant moment about the axis of the joint (Belda-Lois et al., 2011). In order to generate such 

an assistant moment during rehabilitation training, the CDAD needs to exert a force on the joint. 

Such a force may cause excessive wear of the joint or even break the joint if it exceeds a threshold. 

Thus, it is critical to analyze not only the assistant moment generated by the CDAD to rotate the 

joint, but also the joint force exerted by the CDAD on the joint for the sake of safety and the design 

of CDADs. Joint force issues have been discussed by a few researchers in the study of human-

robot interaction for rehabilitation training. A method of trajectory optimization was proposed for 

a cable-driven upper arm exoskeleton to minimize the assistant moment and joint force in (Mao & 

Agrawal, 2010). A method of evaluating whether a joint force is safe was presented for human-

care robots in (Ikuta, Ishii, & Nokata, 2003). The threshold of a safe joint force is defined in (Ikuta 

et al., 2003) as the minimal force that can cause injury to a human joint. However, a general 

analysis of the joint force generated by a CDAD is still not available in the literature. Such a joint 
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fore analysis can help evaluate the efficiency of the CDAD in providing assistant moment (called 

moment efficiency) with respect to generated joint force. 

3.1.2.1 Moment Efficiency Index 

Compared to the inertia of the end-effector, the inertia of cables is usually much smaller and can 

be ignored (Ottaviano & Castelli, 2010). Then, the motion of the end-effector can be expressed 

based on Newton-Euler Formulation as, 

𝑴(𝑿)�̈� + 𝑪(𝑿, �̇�)�̇� + 𝑮(𝑿) + 𝑭𝑗(𝑿) = −𝑱𝑇𝝉   (3.11) 

where 𝑴(𝑿) denotes the mass matrix. 𝑪(𝑿, �̇�) denotes the Coriolis and centripetal matrix. 𝑮(𝑿) 

represents the 6 × 1 gravity vector. 𝑭𝑗(𝑿) represents the 6 × 1 joint wrench vector. The mass 

matrix 𝑴(𝑿), Coriolis and centripetal matrix 𝑪(𝑿, �̇�), and the gravity matrix 𝑮(𝑿) have been 

defined by several scholars (Khosravi & Taghirad, 2014b; Ma & Diao, 2005)  

𝑴(𝑿) = [
𝑚𝑰3×3 𝟎3×3

𝟎3×3 𝑰𝑝
]     (3.12) 

𝑪(𝑿, �̇�)�̇� = [
𝝎 × 𝑚𝒗𝑝

𝝎 × 𝑰𝑝𝝎]     (3.13) 

𝑮(𝑿) = [
𝑭𝑔

𝑾𝑔
]       (3.14) 

𝑭𝑗(𝑿) = [
𝑭𝑗

𝟎3×1
]      (3.15) 

where 𝒗𝑝 is the translational velocity vector of the center of mass of the end-effector. 𝑰𝑝 is the 

inertia tensor of the end-effector about point O in 𝐹𝑏. 𝑰3×3 is the 3 × 3 identity matrix. 𝟎3×3 is the 

3 × 3 zero matrix. 𝟎3×1 is the 3 × 1 zero vector. 𝑭𝑔 is the gravity of the end-effector, and 𝑾𝑔 is 

the moment of the gravity. 𝑭𝑗  is the 3 × 1 joint force exerted on the joint by the end-effector. 

Moreover, one can write 𝑱𝑇𝝉 as 

𝑱𝑇𝝉 = [
𝑭𝑡

𝑾𝑡
]       (3.16) 

where 𝑭𝑡 is the resultant force of the cable tensions, and 𝑾𝑡 is the resultant moment of the cable 

tensions. 
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Since the joint has three rotational DOFs, and the origin of the end-effector frame and the base 

frame are both set at the rotation center of the joint, one has �̇� = [0 0 0 �̇�𝑥 �̇�𝑦 �̇�𝑧]
𝑇

and �̈� =

[0 0 0 �̈�𝑥 �̈�𝑦 �̈�𝑧]
𝑇
. Then the last three equations of (3.11) can be rewritten as 

𝑰𝑝�̇� + 𝝎 × 𝑰𝑝𝝎 + 𝑾𝑔 = −𝑾𝑡    (3.17) 

where �̇� is the derivative of 𝝎. The first three equations of (3.11) can be rewritten as 

𝑭𝑗 = −𝑭𝑡 − 𝑭𝑔 − 𝝎 × 𝑚𝒗𝑝     (3.18) 

where (3.17) determines the rotation of the end-effector, and the joint force can be calculated based 

on (3.18). 

 

The joint force generated by the CDAD is −𝑭𝑡 and the joint force generated by the gravity of the 

end-effector is −𝑭𝑔. Moreover, the joint force generated by the centrifugal is −𝝎 × 𝑚𝒗𝑝. The 

study defines a moment efficiency index 𝜂 as the magnitude of the assistant moment of the CDAD 

(i.e., |𝑾𝑡|) divided by the magnitude of the joint force generated by the CDAD (i.e., |𝑭𝑡|) 

𝜂 =
|𝑾𝑡|

|𝑭𝑡|
      (3.19) 

The characteristic length of 𝜂 is set to 1 m in this study, so the unit of 𝜂 is homogeneous (Nguyen 

& Gouttefarde, 2014). The moment efficiency index reflects the ability of a CDAD to assist a joint 

while leading to a unit magnitude of joint force acting on the joint. 𝜂 varies according to the 

orientation of the joint and the design of the CDAD. 

 

Antagonistic cable tensions (Xiong & Diao, 2017b, 2017a) of a CDAD are cable tensions that 

balance each other. Since a joint with three rotational DOFs can balance any translational force in 

theory, antagonistic cable tension vector of the CDAD with three rotational DOFs, noted as 𝝉𝑎, 

satisfies 

𝑱𝑇𝝉𝑎 = [
𝑭𝑎

𝟎3×1
]      (3.20) 

Antagonistic cable tensions only balance the moment generated by each other. The resultant force 

generated by antagonistic cable tensions acts on the joint. It should be noted from (3.20) that, since 

antagonistic cable tensions create zero moment, they do not affect the rotation of the end-effector. 

However, antagonistic cable tensions do create a nonzero joint force, denoted as 𝑭𝑎, acting on the 

joint. According to (3.20), in the force-closure workspace (Diao & Ma, 2007) of the CDAD, 
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increasing antagonistic cable tensions does not affect the wrench acting on the end-effector, but it 

does increase the magnitude of the joint force generated by the CDAD. Thus, based on (3.19), the 

moment efficiency index will decrease. 

3.2 Learning Control Strategies Designed for Cable-Driven Assistive Devices 

3.2.1 A Learning Control Framework Based on Artificial Neural Networks 

The control of CDPRs has also been investigated by many researchers. PID controllers were 

widely used in the control of CDPRs (Alamdari & Krovi, 2015b; W. Chen et al., 2015; Cui et al., 

2017; J. Lin & Liao, 2016; Xiong & Diao, 2018b; Zi, Ding, Cao, Zhu, & Kecskeméthy, 2014). 

The control of CDPRs based on optimal controllers (Jamshidifar et al., 2018; Korayem, 

Yousefzadeh, & Beyranvand, 2017) as well as fuzzy controllers (Wang et al., 2015) was also 

discussed by researchers. Alikhani and Vali proposed a sliding mode controller to control a large 

scale CDPR in (Alikhani & Vali, 2011). Adaptive controllers have a reliable performance in the 

control of CDPRs (Babaghasabha et al., 2015; Kino et al., 2018; Lamaury et al., 2013). An adaptive 

controller based on a ANN was used to control a CDPR in (Asl & Janabi-Sharifi, 2017). Singular 

perturbation approach was developed to control CDPRs with elastic cables in (Khosravi & 

Taghirad, 2014a). In (Caverly & Forbes, 2014), a passivity-based control method was applied to 

CDPRs. To deal with uncertainties of CDPRs, the robustness of controllers was studied 

(Babaghasabha et al., 2015; Jamshidifar et al., 2018; Khosravi & Taghirad, 2014b). The control of 

CDPRs with position-controlled actuators was discussed in (Begey, Cuvillon, Lesellier, 

Gouttefarde, & Gangloff, 2019). All the above-mentioned control strategies assumes the Jacobians 

(Diao & Ma, 2009) of the CDPRs can be determined in the control process. In other words, the 

above-mentioned control strategies are not applicable to the control of CDPRs with unknown 

Jacobians. 

 

The Jacobian of a CDPR may be unknown in some applications. Take the CDPR in Figure 2.2 for 

an example. When setting up the CDPR for the rehabilitation of ankles, the positions and 

orientations of both the cuff and the brace may vary from person to person and from time to time, 

so do the positions of the anchor points. Since the Jacobian of a CDPR is determined by the 

positions of anchor points (Diao & Ma, 2008), the Jacobian of the CDPR in Figure 2.2 is not known 
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for each setup due to the inconsistency of each setup. Therefore, the control strategies based on 

known Jacobians cannot be directly applied to control the CDPR in Figure 2.2. Although one can 

measure the positions of the anchor points after each setup to determine the Jacobian, it is 

inconvenient. 

 

To control CDPRs with unknown Jacobian, learning-based control strategies are taken into account. 

DRL is suitable for sequential decision-making applications (e.g., robot manipulation) without the 

knowledge of the system dynamics (Tsurumine et al., 2019). Many learning-based control 

strategies based on DRL algorithms, such as deep Q-network (DQN) (Mnih et al., 2013) and 

DDPG (Lillicrap et al., 2015) have recently been developed for a variety of robot manipulation 

problems. Physics simulators are wildly used to validate learning-based control strategies for robot 

manipulation problems. TRPO was used by (A Nagabandi et al., 2018) to control bio-inspired 

robots in the MuJoCo simulator (Todorov, Erez, & Tassa, 2012). Reference (Rahman et al., 2018) 

applied a DQN to control a self-balancing robot with two wheels in the Gazebo simulator (Koenig 

& Howard, 2004). Although DRL is powerful in solving robot manipulation problems and is 

promising in controlling CDPR with unknown Jacobian, DRL is lack of data efficiency and 

stability guarantee (Golemo, Taïga, Oudeyer, & Courville, 2018). 

 

Artificial Neural Network is known for its universal approximation (Anastassiou, 2011; Huang, 

Yan, Zhou, & Xu, 2015; Y. Li & Wang, 2018; Yang & Yan, 2015) for a nonlinear system and has 

been applied to some CDPRs. An ANN has been used to approximate the forward kinematics of a 

CDPR in (Ghasemi et al., 2010). An ANN has been used in parallel with a controller to compensate 

for model uncertainties in controlling a CDPR in (Asl & Janabi-Sharifi, 2017). 

3.2.1.1 A Learning Control Framework Based on Artificial Neural Networks 

A novel control framework for a CDAD is proposed, concerning uncertainties of parameters in 

each setup of the CDAD. The control framework has a robust controller and an ANN. The robust 

controller controls the device in task space by calculating a wrench that is supposed to be applied 

to the device. The ANN is able to map the wrench applied on the end-effector at a pose in task 

space to a set of cable tensions in joint space based on training. Then, one can obtain a set of cable 

tensions corresponding to a wrench at a pose using this mapping, even the setup the device is 
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different from case to case. Therefore, one can control the CDAD. Such a mapping can be 

expressed as 

𝝉 = 𝐴𝑁𝑁(𝒘, 𝑿)     (3.21) 

where 𝝉 is the vector of cable tensions that can generate a wrench 𝒘 at the current pose 𝑿. The 

inputs of the ANN are the wrench 𝒘 required to control the CDAD in task space and the current 

pose 𝑿 of the CDAD. The ANN outputs a cable tension vector 𝝉 that contains a set of cable 

tensions that can generate the wrench 𝒘 at the current pose 𝑿.  

 

The flow diagram of the novel control framework is shown in Figure 3.3. When a CDAD is 

controlled to move from the current pose to a target pose, the robust controller calculates the target 

wrench required to achieve such a motion based on the dynamics model of the CDAD. The ANN 

then maps the target wrench to be applied on the end-effector at current pose in task space to a set 

of cable tensions in joint space according to (3.21). The actuators finally deliver the target cable 

tensions and drive the CDAD to the target pose. 

 

Figure 3.3 Diagram of a control framework for CDADs 

 

Various ANNs, such as FNNs (Anastassiou, 2011; Z. Chen et al., 2015; Costarelli & Spigler, 2013), 

RNNs (Funahashi & Nakamura, 1993), or DNNs (Hinton & Salakhutdinov, 2006), can be used in 

this control frameworks. The robust controller can be a PID controller (Khosravi & Taghirad, 

2014b), a sliding mode controller (Alikhani & Vali, 2011), a fuzzy controller (Wang et al., 2015), 
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or other robust controllers. Depending on the specific robust controller and ANN used in the 

control framework, various control strategies can be developed to control CDADs. 

 

The ANN in the proposed control framework has to be trained before it is used to map a wrench 

applied on the end-effector at a pose in task space to a set of cable tensions in joint space. The 

ANN maps a wrench 𝒘 at a pose 𝑿 to a cable tension vector 𝝉. Thus, data of wrenches, poses, and 

cable tensions are necessary to be collected to train the ANN.  

 

The study assumes that the disturbance wrench caused by model uncertainties (e.g., mass 

uncertainty and moment of inertia uncertainty) is denoted by 𝒘𝑑. Moreover, an approximation 

error is inevitable when the ANN maps the target wrench at the current pose to the set of target 

cable tensions. Namely, the set of target cable tensions derived via the ANN does not generate the 

target wrench exactly. Compared to the target wrench computed by the robust controller, the 

wrench generated by the set of target cable tensions derived via the ANN has an error, denoted as 

𝒘𝑁. Then, the dynamics equation of the CDAD can be rewritten as 

𝑴(𝑿)�̈� + 𝑪(𝑿, �̇�)�̇� + 𝑮(𝑿) + 𝒘𝑒 + 𝒘𝑑 + 𝒘𝑁 = 𝒘  (3.22) 

3.2.1.2 A Learning Control Strategy Based on a Feedforward Neural Network 

To illustrate how to use the proposed control framework to control a fully-constrained CDPR with 

unknown Jacobian, a control strategy, named PID–FNN control strategy, is developed in this 

section. A PID controller and an FNN with one hidden layer are employed for the robust controller 

and the ANN in the proposed control framework, respectively. Different from the conventional 

control strategies for CDPRs with known Jacobians (e.g., (Khosravi & Taghirad, 2014b)), the 

PID–FNN control strategy uses the FNN to map a wrench applied on the end-effector at a pose in 

the task space to a set of cable tensions in the joint space, rather than solving the inverse dynamics 

equation. 

 

The architecture of the FNN used in the PID-FNN control strategy for a CDPR with p DOFs and 

n cables is shown in Figure 3.4. The FNN is a fully connected ANN. Since the CDPR has p DOFs, 

a wrench applied on the CDPR has p elements and a pose of the CDPR has p elements as well. 

There are n cable tensions since the CDPR has n cables. Therefore, the FNN has 2p inputs and n 
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outputs. To map a wrench applied on the end-effector at a pose in the task space to a set of cable 

tensions in the joint space, one just needs to input the p wrench elements of 𝒘 and the p pose 

elements 𝒙 to the ANN and the ANN can output n cable tension elements of the cable tension 

vector 𝝉. 

 

Figure 3.4 The architecture of the FNN used in the PID–FNN control strategy 

 

The complexity problem of the FNN (i.e., how many units are necessary for the hidden layer to 

yield a certain degree of approximation) has been discussed in (Z. Chen et al., 2015). The required 

number of the hidden layer units of the FNN depends on the CDPR and the required degree of 

approximation. A larger number of hidden layer units of the FNN is necessary if the CDPR has 

more DOFs or the required degree of approximation is higher. Meanwhile, more data samples are 

usually needed to train the FNN with more hidden layer units to achieve the same degree of 

approximation. The more data samples required, the longer time it takes to collect them. Given a 

certain number of data samples, the number of hidden layer units of an FNN to approximate the 

data samples can be selected using the cross-validation approach (Haykin, Haykin, Haykin, 

Elektroingenieur, & Haykin, 2009).  

 

The implementation of the PID–FNN control strategy is shown in Figure 3.5. The implementation 

has two parts, namely, training of the FNN and control of the CDPR. Training the FNN is to have 

the FNN learn how to map wrenches at a pose in the task space to sets of cable tensions in the joint 

space when the Jacobian of the CDPR is unknown. As shown at the top of Figure 3.5, to collect 
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data samples of wrenches, poses, and cable tensions to train the FNN, random cable tensions are 

applied to the CDPR first. The applied cable tensions generate a wrench which tends to move the 

CDPR. The applied cables tensions, the current pose, and the wrench generated by the applied 

cable tensions are recorded as one data sample. If the wrench cannot be measured directly, one can 

record the motion (i.e., pose, velocity, and acceleration) of the CDPR alternatively. The wrench 

generated by cable tensions can then be calculated based on the dynamic model of the CDPR. The 

pseudo-code to collect data and train the FNN used in the PID–FNN control strategy is shown in 

Algorithm 1.  

 

The FNN in the PID–FNN control strategy maps a wrench applied on the end-effector at a pose in 

the task space to a set of cable tensions in the joint space. For a fully-constrained CDPR, different 

cable tension vectors may generate the same wrench at a pose in the task space (Lim, Yang, Yeo, 

& Mustafa, 2011). As a result, data samples collected in the above way may have the same wrench 

𝒘 and pose 𝒙 but different cable tension vectors 𝝉. Nonetheless, the FNN cannot map one set of 

wrench 𝒘 and pose 𝒙 to different cable tension vectors 𝝉. Thus, the FNN is unable to approximate 

data samples in the above-mentioned scenario of a fully-constrained CDPR. In order to avoid this 

shortcoming of the FNN, one can discard data samples with the same wrench and pose but different 

cable tension vectors when collecting data samples. 

 

When a certain number of data samples is recorded, it is ready to train the FNN. Sophisticated 

ANN optimization algorithms, such as ADAM (Kingma & Ba, 2014) and SGD (Recht, Re, Wright, 

& Niu, 2011), can be used to train the FNN. After training, the FNN can be used together with the 

PID controller to control the CDPR. As shown in Figure 3.5, the PID controller controls the CDPR 

in the task space and calculates the target wrench needed to move the CDPR from the current pose 

to the target pose. Then the FNN maps the target wrench at the current pose to a set of target cable 

tensions which will be delivered by actuators. 
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Figure 3.5 Flow diagram of the PID–FNN control strategy 
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Algorithm 1: Training the PID–FNN control strategy applied on a CDAD 

1:  Reset the CDAD  

2: for the number of data samples do 

3:     Randomly apply cable tensions 

4:     Record the cable tensions and the pose 

5:     Record the wrench calculated based on the dynamics model of the CDAD 

6:     if the CDAD is out of the training workspace then 

7:          Reset the CDAD  

8:          Continue 

9:      Stack the data sample (i.e., wrenches, poses, and cable tensions)  

10: end for 

11: Update the FNN based on the stack of data samples 

 

Similar to the control strategy in (Khosravi & Taghirad, 2014b), the control of a CDPR via the 

PID–FNN control strategy in the task space is based on the dynamic model of the CDPR. The 

major difference of the PID–FNN control strategy from the control strategy in (Khosravi & 

Taghirad, 2014b) is the way to derive the set of cable tensions from a target wrench. Since the 

Jacobians are known in (Khosravi & Taghirad, 2014b), the set of cable tensions to generate the 

target wrench is simply calculated by solving the inverse dynamics problem. However, based on 

the PID–FNN control strategy, the set of cable tensions is the output of the trained FNN whose 

inputs are the target wrench and the current pose. Thus, even if the Jacobian of the CDPR is 

unknown, one still can use the PID–FNN control strategy to control the CDPR. 

 

Assuming that the disturbance wrench caused by model uncertainties is bounded, it was proved in 

(Khosravi & Taghirad, 2014b) that a PID controller of a CDPR in the task space is stable of the 

form of uniformly ultimately bounded (UUB) with proper controller gains. The proper controller 

gains can be achieved by increasing 

 𝛽 = min {𝛼𝑘𝐼 , 𝛼(𝑘𝑃 − 𝑘𝐷) − 𝑘𝐼 , 𝑘𝐷}   (3.23) 

till the stability conditions are satisfied (Khosravi & Taghirad, 2014b). 𝛼 is a scalar satisfied 0 <

𝛼 < 0.5. 𝑘𝑃, 𝑘𝐼, and 𝑘𝐷 are the gains of the PID controller. It is assumed that both disturbance 

wrenches (i.e., 𝒘𝑑 caused by model uncertainties and 𝒘𝑁 by the approximation error of the FNN) 
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are bounded. Therefore, according to (Khosravi & Taghirad, 2014b), the PID–FNN control 

strategy for a CDPR is also stable of the form of UUB. 

3.2.2 Learning Control Strategies Based on Deep Reinforcement Learning 

DRL introduces DNNs to solve reinforcement learning problems. With the help of DNNs, DRL 

can extract features from high-dimensional data and learn complex policies. DRL is especially 

suitable for sequential decision-making applications (e.g., robot manipulation) (Tsurumine et al., 

2019). Many DRL algorithms have recently been developed into end-to-end DRL strategies used 

for a variety of robot manipulation tasks (F. Li et al., 2019; Z. Li et al., 2018; A Nagabandi et al., 

2018; Passalis & Tefas, 2019; Rahman et al., 2018; M. Zhang et al., 2017; T. Zhang et al., 2016). 

An off-policy DRL strategy based on DNNs and guided policy search (GPS) was used to control 

a quadrotor to avoid obstacles in (T. Zhang et al., 2016). The off-policy DRL strategy employs the 

pose and the velocity of the quadrotor and data from 30 laser rangefinders installed on the 

quadrotor as its states. High-dimensional states are challenging to be integrated into non-learning-

based control strategies, such as PID controllers, but can be easily processed by DRL strategies. 

In (A Nagabandi et al., 2018), TRPO was used to control bio-inspired robots in the MuJoCo 

simulator (Todorov et al., 2012). MDGPS was applied to the locomotion control of a tensegrity 

robot with 36 states in (M. Zhang et al., 2017). The high-dimension of states makes it hard to 

control the tensegrity robot using non-learning-based control strategies. Moreover, in (Rahman et 

al., 2018), a DQN was applied to control a self-balancing robot with two wheels in the Gazebo 

simulator (Koenig & Howard, 2004). When DRL strategies were used to control the robots in (F. 

Li et al., 2019; Z. Li et al., 2018; A Nagabandi et al., 2018; Passalis & Tefas, 2019; Rahman et al., 

2018; M. Zhang et al., 2017; T. Zhang et al., 2016), the tasks of controlling the robots were treated 

as black boxes, without any knowledge of the internal workings of the robots. Therefore, DRL 

strategies are regarded as end-to-end DRL strategies (Levine, Finn, Darrell, & Abbeel, 2016). 

 

The task of controlling a robot is not always a complete black box in practice. Besides inputs and 

outputs of the black box, one usually has certain knowledge about its internal workings. For 

example, when manipulating a robot, the robot manipulation task can be decomposed into multiple 

subtasks (Kober, Bagnell, & Peters, 2013). If one knows the internal workings of a subtask, this 

subtask may be accomplished by a non-learning-based approach (e.g. an inverse dynamics 



55 

 

equation or a PID algorithm). This raises the question of whether there is any benefit of integrating 

DRL with non-learning-based approaches in a robot manipulation task. To the best knowledge of 

the authors, the effects of integrating DRL with non-learning-based approaches on the learning 

speed and the robustness of DRL to model uncertainties have not been discussed in the literature. 

 

To study the effects of integrating DRL with non-learning-based approaches on the learning speed 

and the robustness of DRL to model uncertainties, an end-to-end DRL strategy and a hybrid DRL 

strategy are developed and compared in this study in controlling a CDPR. The end-to-end DRL 

strategy, called the end-to-end DDPG strategy, is developed based on a DDPG algorithm. When 

the end-to-end DDPG strategy is applied, the task of controlling the CDPR is accomplished 

entirely by the DDPG algorithm. The hybrid DRL strategy, called the hybrid DDPG strategy, is 

developed by integrating a DDPG algorithm and the inverse dynamics equation of the CDPR. 

When the hybrid DDPG strategy is applied, some subtasks of the task of controlling the CDPR are 

accomplished by the DDPG algorithm, while the other subtasks are accomplished by the inverse 

dynamics equation of the CDPR. 

3.2.2.1 A Learning Control Strategy Based on Deep Reinforcement Learning 

Figure 3.6a illustrates how a CDPR is controlled to move to a target pose. Given the target pose, 

the controller of the CDPR needs to calculate a set of target cable tensions. Actuators are used to 

physically deliver the set of target cable tensions to drive the CDPR to the target pose. The task of 

the controller of the CDPR, calculating a set of target cable tensions from a given target pose, can 

be divided into two subtasks. The first subtask is to calculate the target wrench in the task space to 

drive the CDPR to the target pose. Since cables can be pulled only, the target wrench in the task 

space has to be converted to a set of target cable tensions in the joint space, which is the second 

subtask. Only when such a set of target cable tensions is available can actuators reel cables in or 

out to drive the CDPR to the target pose. In this section, a hybrid DDPG strategy and an end-to-

end DDPG strategy are developed to control the CDPR. The hybrid DDPG strategy accomplishes 

the first subtask by DDPG and the second subtask by the inverse dynamics equation of the CDPR. 

The end-to-end DDPG strategy accomplishes the whole task (i.e., both the first and the second 

subtasks) of the controller of the CDPR using DDPG. 
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Figure 3.6 Flow diagrams of the DDPG-based strategies:  

(a) the task of the controller of a CDPR in controlling the CDPR to a target pose; (b) flow 

diagram of the hybrid DDPG strategy; and (c) flow diagram of the end-to-end DDPG strategy 

  

The flow diagram of the hybrid DDPG strategy is shown in Figure 3.6b. The hybrid DDPG strategy 

integrates DDPG and the inverse dynamics equation of a CDPR. The hybrid DDPG strategy 

accomplishes the first subtask of the controller of the CDPR by DDPG. To accomplish the first 

subtask, the DDPG in the hybrid DDPG strategy employs the following state variables: the pose 

of the CDPR at a certain time step, the difference between the target pose and the pose of the 

CDPR at a certain time step, and the velocity of the CDPR at a certain time step. Action variables 

of the DDPG in the hybrid DDPG strategy is the target wrench in the task space that is expected 

to drive the CDPR to the target pose. Once the first subtask is accomplished, the DDPG of the 

hybrid DDPG strategy outputs the target wrench in the task space. The second subtask takes such 

a target wrench in the task space and converts it to a set of target cable tensions. The second subtask 

is accomplished by solving the inverse dynamics equation of the CDPR. When converting the 

target wrench in the task space to a set of target cable tensions of a fully-constrained CDPR by 

solving the inverse dynamics equation of the CDPR, there is an infinite number of feasible tension 

distributions. The optimal tension distribution is calculated using the pseudo-inverse of Jacobian 

(Babaghasabha et al., 2015). Once the optimal tension distribution is obtained, actuators physically 

deliver the set of target cable tensions. Algorithm 2 illustrates the implementation of the hybrid 

DDPG strategy. 
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The flow diagram of the end-to-end DDPG strategy is shown in Figure 3.6c. The end-to-end DDPG 

strategy accomplishes the whole task (i.e., both the first and the second subtasks) of the controller 

of the CDPR using DDPG. State variables of the DDPG in this strategy consist of the pose of the 

CDPR at a certain time step, the difference between the target pose and the pose of the CDPR at a 

certain time step, and the velocity of the CDPR at a certain time step as well. However, action 

variables of the DDPG in this strategy is a set of target cable tensions in the joint space, rather than 

a target wrench in the task space. The set of target cable tensions is derived based on the behavior 

policy of the DDPG. Algorithm 3 illustrates the implementation of the end-to-end DDPG strategy. 
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Algorithm 2: Implementation of the hybrid DDPG strategy in controlling a CDPR 

1: Randomly initialize the actor network and the critic network 

2:     Initialize the actor-target network and the critic-target network 

3:     Initialize an experience replay buffer 

4:     for number of episodes do 

5:     Reset the CDPR 

6:     Randomly set a target pose 

7:     Record the 𝒔𝑡 

8:     for maximum number of time steps do 

9:         Calculate 𝒂𝑡 (target wrench) according to the current policy and exploration noise 

10:         Calculate the optimal tension distribution based on the inverse dynamics equation 

11:         Execute the optimal tension distribution and observe reward and 𝒔𝑡+1 

12:         if the CDPR is out of the training workspace then 

13:             Break; 

14:         if the CDPR reaches the target pose then 

15:             Break;  

16:         Stack the data (i.e., states, actions, reward, and next states) in the replay buffer 

17:         Select a mini-batch of data from the replay buffer 

18:         Update the critic network via minimizing the training loss 

19:         Update the actor network using the sampled policy gradient 

20:         Update the actor- and critic-target networks 

21:     end for 

22: end for 
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Algorithm 3: Implementation of the end-to-end DDPG strategy in controlling a CDPR 

1: Randomly initialize the actor network and the critic network 

2:  Initialize the actor-target network and the critic-target network 

3: Initialize an experience replay buffer 

4: for number of episodes do 

5:     Reset the CDPR 

6:     Randomly set a target pose 

7:     Record the 𝒔𝑡 

8:       for maximum number of time steps do 

9:         Calculate 𝒂𝑡 according to the current policy and exploration noise 

10:         Execute 𝒂𝑡and observe reward and 𝒔𝑡+1 

11:         if the CDPR is out of the training workspace then 

12:             Break; 

13:         if the CDPR reaches the target pose then 

14:             Break;  

15:         Stack the data (i.e., states, actions, reward, and next states) in the replay buffer 

16:         Select a mini-batch of data from the experience replay buffer 

17:         Update the critic network via minimizing the training loss 

18:         Update the actor network using the sampled policy gradient 

19:         Update the actor- and critic-target networks 

20:         end for 

21: end for 

3.2.3 Safety Robustness of Learning Control Strategies 

Reinforcement learning (RL) studies how an agent learns a policy by maximizing the expected 

cumulative rewards when interacting with the environment (Henderson et al., 2018). In recent 

years, RL has achieved dramatic success in many areas such as robot manipulation (Lillicrap et 

al., 2015), playing Go (Silver et al., 2016), and playing Atari (Mnih et al., 2013). Although the 

success of RL has made a deep impression to the control community, the RL community and the 

control community still remain practically disjointed (Recht, 2018). On the other hand, solving 

problems in safety-critical applications, such as self-driving of vehicles and robot manipulation, 
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requires the deep fusion of both machine learning and control technologies (Recht, 2018). For 

safety-critical applications, the failure of a learned policy may lead to dangerous situations 

(Pattanaik, Tang, Liu, Bommannan, & Chowdhary, 2018). Appropriate control techniques from 

the control community can be used to improve the safety of learned policies (Recht, 2018). 

 

Reward functions may not always be specified for some RL problems (e.g., robot manipulation) 

(Y. Li, 2017). Reward shaping (Ng, Harada, & Russell, n.d.) is an inevitable and significant step 

to solve these problems. In reward shaping, one may design various reward functions to test how 

to better guide an agent to learn. Different policies can be learned by the agent with different 

reward functions. The robustness of the learned policies (called policies for short) is usually 

evaluated based on either the achieved reward (Z. Gu, Jia, & Choset, n.d.; Pattanaik et al., 2018; 

Pinto, Davidson, Sukthankar, & Gupta, 2017) or the success rate (Peng, Andrychowicz, Zaremba, 

& Abbeel, 2018; Tobin et al., 2017). When using RL to solve problems in safety-critical 

applications, the robustness of policies needs to be evaluated from the perspective of safety as well. 

However, a method to evaluate the robustness of policies from the perspective of safety is not 

available currently. 

 

Robustness plays a pivotal role since its introduction in the 1860s in the control community 

(Bhattacharyya, 2017). Robust control studies from robustness through quadratic optimization to 

robustness under parametric uncertainty in recent years (Bhattacharyya, 2017). Robust control 

aims to minimize the effects of unknown initial conditions and external influences on system 

behavior, subject to the constraints of not having a complete representation of the system (Dullerud 

& Paganini, 2013). Achieving close loop stability and tracking performance while providing 

adequate stability margins are the main goal of robust control (Eugene, Kevin, & Howe, 2013). A 

robust controller can be thought of as a policy capable of regulating a system whose dynamics may 

contain bounded uncertainties (Eugene et al., 2013). 

 

The robustness of a policy is the policy’s ability to maintain functionality when there are 

uncertainties and perturbations (Bhattacharyya, 2017). Various types of robustness are 

summarized in Table 3.1. Reward robustness of a policy refers to the policy’s ability to achieve a 

high reward (Z. Gu et al., n.d.; Pattanaik et al., 2018; Pinto et al., 2017). Success robustness of a 
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policy refers to the policy’s ability to successfully solve the RL problem (Peng et al., 2018; Tobin 

et al., 2017). When it comes to robust control, stability robustness (Yedavalli, 1985) of a policy 

(i.e., a controller) refers to the policy’s ability to stabilize the state. Reward robustness and success 

robustness have been intensively discussed in the RL community while stability robustness has 

been studied in the control community.  

Table 3.1 Robustness of policies 

Type of Robustness Description 

Reward robustness Ability of a policy to achieve a high reward 

Success robustness Ability of a policy to solve the RL problem 

Stability robustness Ability of a policy to stabilize state 

Safety robustness Ability of a policy to maintain safe state 

 

The robustness proposed in this study is called safety robustness. Safety robustness refers to a 

policy’s ability to maintain safe state. Since safe state does not necessary mean that the RL problem 

is successfully solved, safety robustness is generally different from success robustness. Moreover, 

safety robustness is different from stability robustness as well because to maintain the state within 

a safe range is not necessary to stabilize the state to a certain state. The safe range is usually 

bounded in practice, while the state of an unstable system is usually diverging and exceeding the 

safe range. Therefore, an unstable system is usually unsafe. This suggests that the stability 

robustness of a policy affects the safety robustness of the policy. 

  

Robot manipulation can be treated as an RL problem. Such an RL problem often bears safety 

concerns. Various RL algorithms, such as DDPG (Lillicrap et al., 2015), DQN (Mnih et al., 2013), 

TRPO (Schulman et al., 2015), MDGPS (Montgomery & Levine, 2016), Normalized Advantage 

Function (NAF) (S. Gu, Lillicrap, Sutskever, & Levine, 2016), and Proximal Policy Optimization 

(PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017), have been used to solve a variety 

of robot manipulation problems (F. Li et al., 2019; Z. Li et al., 2018; Lowrey, Kolev, Dao, 

Rajeswaran, & Todorov, 2018; A Nagabandi et al., 2018; Passalis & Tefas, 2019; Rahman et al., 

2018; Tan et al., 2018; Xie, Berseth, Clary, Hurst, & Panne, 2018; M. Zhang et al., 2017; T. Zhang 

et al., 2016). Duan et al. (Duan, Chen, Houthooft, Schulman, & Abbeel, 2016) provided baseline 

implementations for developing RL algorithms for robot manipulation. Various methods (e.g., 
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injecting noise (Jakobi, Husbands, & Harvey, 1995), robust RL (Z. Gu et al., n.d.; Pattanaik et al., 

2018; Pinto et al., 2017), domain randomization (Tobin et al., 2017), and dynamics randomization 

(Peng et al., 2018)) have been used to improve the reward robustness and the success robustness 

of policies for robot manipulation. However, safety robustness of policies has not been discussed 

for robot manipulation. 

 

Researchers have discussed safe RL (Garcia & Fernández, 2012; Garcıa & Fernández, 2015), a 

process of learning policies that maximize the expectation of reward in problems in which it is 

important to respect safety constraints during the learning and deployment process. Moreover, 

risk-sensitive RL (Geibel & Wysotzki, 2005) has been discussed to find less risky policies. The 

robust Markov Decision Process (MDP) has been discussed to minimize the cost when the 

parameters have uncertainties (Osogami, 2012). However, the above-mentioned studies (Garcia & 

Fernández, 2012; Garcıa & Fernández, 2015; Geibel & Wysotzki, 2005; Osogami, 2012) aimed to 

find safe policies, rather than to evaluate how safe the policies are when subject to uncertainties 

and perturbations. 

3.2.3.1 Stability Margin of Policies for Solving an LQR Problem 

A Linear Quadratic Regulator (LQR) problem is a class of optimal control problems with convex 

quadratic cost functions and linear dynamics. An LQR problem can be mathematically described 

as (Recht, 2018) 

minimize 𝐸 (
1

2
 ∑ 𝑥𝑡

𝑇𝑸𝑥𝑡 + 𝑢𝑡
𝑇𝑹𝑢𝑡 +

1

2
𝑥𝑁+1

𝑇 𝑺𝑥𝑁+1
𝑁
𝑡=0 )     (3.24) 

subject to 𝑥𝑡+1 = 𝑨𝑥𝑡 + 𝑩𝑢𝑡, 𝑢𝑡 = 𝜋𝑡(𝑥𝑡)      (3.25) 

where 𝑸, 𝑹, and 𝑺 are positive semi-definite matrices. 𝑥𝑡 is the state at step t and 𝑢𝑡 is the action 

at step t. The state transition is governed by the update rule with matrices 𝑨 and 𝑩. The quadratic 

cost function of the LQR problem can be regarded as a negative reward function from the 

perspective of RL. It has been shown that RL algorithms can guide an agent to learn the optimal 

policy to solve an LQR problem (Recht, 2018). 

 

Since the stability robustness of a policy affects the safety robustness of the policy and control 

techniques in the control community are available to analyze the stability robustness of a policy, 

the author studies the stability robustness of the optimal policy before discussing safety robustness. 
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The stability robustness of a system (e.g., a system that has a policy and an environment) to 

uncertainties or perturbations can be evaluated by Structured Singular Value (SSV) (Doyle, Wall, 

& Stein, 1982). SSV is a scalar index. A larger SSV means the system has a stronger ability to 

stabilize state when subject to uncertainties or perturbations. Consider a discrete-time double 

integrator system with the dynamic model 

𝑥𝑡+1 = [
1 0.1
0 1

] 𝑥𝑡 + [
0.005

0.1
] 𝑢𝑡     (3.26) 

with the cost function defined as 

𝐽 = ∑ (𝑥𝑡
𝑇 [

1 0
0 𝑞22

] 𝑥𝑡 + 𝑢𝑡
𝑇𝑟0𝑢𝑡)𝑁

𝑡=0      (3.27) 

In this case, matrices 𝑸, 𝑹, and 𝑺 in (3.24) are 

𝑸 = [
1 0
0 𝑞22

] , 𝑹 = 𝑟0, 𝑺 = [
0 0
0 0

]     (3.28) 

where 𝑞22  ranges from 0 to 0.5 and 𝑟0  from 1𝑒 − 6 to 1𝑒 − 1. 𝑞22  is the penalty of the state 

changing rate. 𝑟0  is the penalty of action. Assume the state has at most 20% error when it is 

observed by an agent, and the action has at most 20% error when it is applied to the environment 

as well. Then, the SSV of the system controlled by optimal policies corresponding to the cost 

functions with variables 𝑞22 and 𝑟0 can be calculated (Doyle et al., 1982). 

 

As shown in Figure 3.7, the SSV, denoted by 𝜇, of the system controlled by optimal policies 

corresponding to different cost functions are generally different. It means that the stability 

robustness of the above-mentioned optimal policies is generally different. The stability robustness 

of the above-mentioned optimal policies is indeed affected by the cost functions. This suggests 

that, for an LQR problem, if an RL algorithm guides an agent to learn an optimal policy as shown 

in (Recht, 2018), the stability robustness of the optimal policy to uncertainties and perturbations 

is generally affected by the reward function. As discussed in section 3.2.3.1, the stability 

robustness of a policy affects the safety robustness of the policy. Hence, the safety robustness of a 

policy to uncertainties and perturbations is generally affected by the reward function as well. This 

motivated the authors to further study the safety robustness of policies, since reward functions may 

not always be specified for some RL problems (Y. Li, 2017). 
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Figure 3.7 The SSV of the system controlled by optimal policies 

 

3.2.3.2 A Method to Approximate Safety Robustness of Learning Control Strategies 

To evaluate the robustness of policies of an RL problem from the perspective of safety, the system 

architecture of robust control (Eugene et al., 2013) is applied to the RL problem, as shown in 

Figure 3.8. To adapt to the RL problem, the controller and the plant of the original system 

architecture of robust control are replaced by the policy and the environment, respectively. 𝛥1 

represents the uncertainty of action and 𝛥2  represents the uncertainty of state. According to 

(Eugene et al., 2013), 𝛥1 and 𝛥2 can be constructed to model any type of uncertainties. More 

specifically, 𝛥1 can be used to model uncertainties from actuators, dynamics, time delays, or any 

environment inputs, while 𝛥2 can be used to model uncertainties from sensors, dynamics, time 

delays, or any environment outputs. Since uncertainties are applied to the state and the action of 

the RL problem, rather than the RL algorithm, the reward function, or the environment of the RL 

problem, the system architecture in Figure 3.8 is generally applicable to any RL problems to study 

the robustness of policies. 
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Figure 3.8 The system architecture of robust control applied to an RL problem 

 

Based on the system architecture in Figure 3.8, one can approximate the safety robustness of 

policies via applying the policies to solve an RL problem when subject to 𝛥1  and 𝛥2 . The 

pseudocode for approximating the safety robustness of policies is illustrated in Algorithm 4. To 

approximate the safety robustness of policies, one needs to determine the number of policies L, 

the safe states, the maximum magnitude of uncertainties of action 𝛥𝑎
𝑙𝑖𝑚𝑖𝑡, the maximum magnitude 

of uncertainties of state 𝛥𝑠
𝑙𝑖𝑚𝑖𝑡, the number of episodes M, and the number of steps of an episode 

T. A counter, 𝑘𝑙( 𝛥𝑠
𝑚𝑎𝑥, 𝛥𝑎

𝑚𝑎𝑥), is used to count the number of safe episodes when a policy is 

subjected to 𝛥𝑠
𝑚𝑎𝑥 and 𝛥𝑎

𝑚𝑎𝑥. 
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Algorithm 4: Approximate Safety Robustness of Policies 

1: Load all L policies 

2: Define safe states 

3: for 𝛥𝑠
𝑚𝑎𝑥 = 0, 𝛥𝑠

𝑙𝑖𝑚𝑖𝑡 do 

4:     𝐟𝐨𝐫 𝛥𝑎
𝑚𝑎𝑥 = 0, 𝛥𝑎

𝑙𝑖𝑚𝑖𝑡  𝐝𝐨 

5:         Randomize 𝛥𝑎 and 𝛥𝑠, satisfying | 𝛥𝑎| ≤  𝛥𝑎
𝑚𝑎𝑥 and     | 𝛥𝑠| ≤  𝛥𝑠

𝑚𝑎𝑥 

6:         for l = 1, L do 

7:             𝑘𝑙( 𝛥𝑠
𝑚𝑎𝑥, 𝛥𝑎

𝑚𝑎𝑥) = 0 

8:         end for 

9:           for episode = 1, M do 

10:             for l = 1, L do 

11:                 Initialize the environment 

12:                 Randomize a target if necessary 

13:                 for step = 1, T do 

14:                     Apply 𝜋𝑙 with 𝛥𝑎 and 𝛥𝑠 

15:                 end for 

16:                 if all states when applying 𝜋𝑙 are within the safe ranges then 

17:                     𝑘𝑙( 𝛥𝑠
𝑚𝑎𝑥 , 𝛥𝑎

𝑚𝑎𝑥) = 𝑘𝑙( 𝛥𝑠
𝑚𝑎𝑥, 𝛥𝑎

𝑚𝑎𝑥) + 1 

18:             end for 

19:         end for 

20:     end for 

21: end for 

22: The safety robustness of 𝜋𝑙 can be approximated 
𝑘𝑙( 𝛥𝑠

𝑚𝑎𝑥,   𝛥𝑎
𝑚𝑎𝑥)

𝑀
 

 

3.3 Verify the Learning Control Strategies in Simulations 

To validate the fundamental studies of CDADs, Matlab 2015b is used to evaluate workspace 

isotropy and to analyze joint force. To study the learning control strategies for controlling CDADs, 

Gazebo 7.0 (Koenig & Howard, 2004) and ROS kinetic 1.12.14 are used to simulate the dynamics 
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of CDADs and TensorFlow 1.12.0 and Keras 1.0.5 are used to build neural networks based on 

Python 2.7. 

 

Training a strategy on a real CDAD is possible to damage the CDAD, especially when the strategy 

has not been well-trained in the initial stage. Thus, a CDAD model in a simulator, rather than a 

real CDAD, is highly desirable as simulations are always safe for the real robot (Kober et al., 2013). 

Moreover, a simulator is also helpful in developing and fine-tuning DRL algorithms because the 

iteration of simulations is much faster than that of real experiments (Kober et al., 2013). Therefore, 

simulations will be conducted to verify the effectiveness of learning control strategies. The model 

of the CDAD is established in the Gazebo simulator as shown in Figure 3.9. Cable tensions will 

be applied between every pair of anchor points of the CDAD. 

 

Figure 3.9 The model of the example CDAD in the Gazebo Simulator 

 

3.4 Summary 

For chapter three, fundamental studies of CDADs – workspace isotropy and joint force analysis - 

are presented. A PID–FNN control strategy and DDPG-based strategies are proposed for CDADs 

to control the pose of the human joint. Besides, simulations are designed to validate the learning 

control strategies. Simulations of research methodologies proposed in chapter three will be 

introduced in chapter four. 
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 RESULTS 

According to the research methodologies discussed in chapter three, simulations are conducted to 

validate the proposed concepts (i.e. workspace isotropy, moment efficiency, and safety robustness) 

and strategies (a PID–FNN control strategy and DDPG-based strategies) in chapter four. Sections 

4.1.1, 4.1.2, 4.2, and 4.3 of chapter four are revised based on the author’s published papers (Xiong 

& Diao, 2018a), (Xiong et al., 2018), (Xiong, Zhang, et al., 2019), and (Xiong, Ma, et al., 2019), 

respectively. 

4.1 Fundamental Studies of Cable-Driven Assistive Devices 

4.1.1 Evaluation of Workspace Isotropy Indices 

To assess the effectiveness of TWII, RWII, and EWII in reflecting the robustness of a CDPR to 

rotational disturbances to its movable base, random rotations are applied to the bases of a CDPR 

in simulation. TWII, RWII, and EWII are assessed on the CDPR. Example designs of a planar 

CDPR with three DOFs and four cables are used in the simulation.  

4.1.1.1 Simulation Setup 

The simulation is conducted in MATLAB on a computer with an Intel Core i7-6700 CPU @ 3.40 

GHz and 16 GB of RAM. The time to compute the proposed workspace isotropy indices is affected 

by the interval size in simulation, the workspace determination method, etc. Smaller interval size 

can improve the accuracy of the proposed indices, but it also increases the computational cost at 

the same time.  

 

The effectiveness of workspace isotropy indices is assessed with the planar CDPR shown in Figure 

4.1. The four anchor points 𝐴1, 𝐴2, 𝐴3, and 𝐴4 on the base forms a square depicted with dashed 

lines. The red lines connecting anchor points 𝐵1, 𝐵2, 𝐵3, and 𝐵4 depict the end-effector. The three 

example designs of the CDPR have the same base, but different end-effectors. The end-effectors 

of the three example designs are square, vertical rectangular, and horizontal rectangular, 

respectively. The origin of the base frame xy is located at the centroid of the square base and it is 

also the IAC. The origin of the end-effector frame is located at the centroid of the end-effector. 
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The pose of the CDPR is represented by (x, y, θ) (unit: mm, mm, deg). When the base frame 

coincides with the end-effector frame, coordinates of the anchor points on the base and the end-

effectors of all three designs are listed in Table 4.1. 

 

(a)                                 (b)                                (c) 

Figure 4.1 Three example designs of a planar CDPR:  

(a) square design; (b) vertical rectangular design; and (c) horizontal rectangular design 

 

Table 4.1 Positions of the anchor points (unit: mm) 

Base in Figure 4.1 
End-effector in 

Figure 4.1a 

End-effector in 

Figure 4.1b 

End-effector in 

Figure 4.1c 

𝐴1: (-250, -250) 𝐵1: (-50, 50) 𝐵1: (-50, 100) 𝐵1: (-100, 50) 

𝐴2: (-250, 250) 𝐵2: (-50, -50) 𝐵2: (-50, -100) 𝐵2: (-100, -50) 

𝐴3: (250, 250) 𝐵3: (50, -50) 𝐵3: (50, -100) 𝐵3: (100, -50) 

𝐴4: (250, -250) 𝐵4: (50, 50) 𝐵4: (50, 100) 𝐵4: (100, 50) 

 

The workspaces of the example designs of the CDPR need to be determined before one can assess 

their isotropy using the proposed workspace isotropy indices. Researchers have proposed quite a 

few approaches for workspace determination. The force- or wrench-closure workspaces of the 

example designs of the CDPR are determined using the workspace determination approach 

proposed in (Gallina & Rosati, 2002; Gouttefarde & Gosselin, 2004). The translational workspaces 

and the entire workspaces of the three example designs of the CDPR are shown in Figure 4.2 and 

Figure 4.3. 



70 

 

 

(a)      (b) 

 

(c) 

Figure 4.2 Translational workspaces of example designs of the planar CDPR:  

(a) square design; (b) vertical rectangular design; and (c) horizontal rectangular design  
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(a) 

  

(b) 

  

(c) 

Figure 4.3 Entire workspaces of example designs of the planar CDPR:  

(a) square design; (b) vertical rectangular design; and (c) horizontal rectangular design 
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4.1.1.2 Simulation Results 

Workspace isotropy indices, TWII, RWII, and EWII, are applied to evaluate the workspace 

isotropy of the three example designs of the CDPR as shown in Figure 4.1. The calculated TWII, 

RWII, and EWII of the three example designs are listed in Table 4.2. It takes about 16 minutes to 

determine the workspace and compute all three workspace isotropy indices for one example design 

of the CDPR. The EWII of the planar CDPR is much smaller than RWII and TWII. It means that, 

after a random rotation of the base of the planar CDPR, the possibility for the three-dimensional 

entire workspace to overlap the original three-dimensional entire workspace is much smaller than 

the possibility for the two-dimensional translational workspace (or one-dimensional rotational 

workspace) to overlap the original two-dimensional translational workspace (or one-dimensional 

rotational workspace). 

Table 4.2 TWII, RWII, and EWII of the three example designs of the CDPR 

Example designs of the CDPR TWII RWII EWII 

Figure 4.1a 0.692 0.204 0.099 

Figure 4.1b 0.659 0.204 0.100 

Figure 4.1c 0.641 0.154 0.077 

 

To verify the effectiveness of TWII, RWII, and EWII, 1,000 random rotations about the IAC, 

ranging from -180 degrees to 180 degrees, are applied to the movable bases of the three example 

designs of the CDPR in simulation. The simulation results are listed in Table 4.3, Table 4.4, and 

Table 4.5. It is shown that the percentage of the original translational workspace, rotational 

workspace, and entire workspace that can be reached by a CDPR match the corresponding TWII, 

RWII, and EWII, respectively. After a random rotation of the base, the design with higher TWII, 

RWII, and EWII can reach a higher percentage of its original translational workspace, rotational 

workspace, and entire workspace, respectively. Therefore, the robustness of the translational 

workspace, rotational workspace, and entire workspace of a CDPR to rotational disturbances to its 

movable base can be reflected by TWII, RWII and EWII, respectively.  

Table 4.3 Percentage of the original translational workspace that can be reached  

Example designs of the CDPR TWII 
Percentage of the original translational 

workspace that can be reached 
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Figure 4.1a 0.692 69.24% 

Figure 4.1b 0.659 65.56% 

Figure 4.1c 0.641 64.41% 

Table 4.4 Percentage of the original rotational workspace that can be reached 

Example designs of the CDPR RWII 
Percentage of the original rotational 

workspace that can be reached 

Figure 4.1a 0.204 20.77% 

Figure 4.1b 0.204 20.84% 

Figure 4.1c 0.154 15.72% 

Table 4.5 Percentage of the original entire workspace that can be reached  

Example designs of the CDPR EWII 
Percentage of the original entire 

workspace that can be reached 

Figure 4.1a 0.099 10.69% 

Figure 4.1b 0.100 11.04% 

Figure 4.1c 0.077 8.74% 

4.1.2 Joint Force Analysis 

One knee with one DOF (i.e., flexion and extension) assisted by an example three-DOF four-cable 

CDAD, as shown in Figure 4.4, is discussed based on the moment efficiency index in quasi-static 

conditions in this section.  

4.1.2.1 Simulation Setup 

The collision between cables, cuffs, the shank, and the upper leg are not taken into account in this 

discussion. One cuff with a radius of 0.1 m is worn on the upper leg and the shank, respectively. 

The shank is able to rotate about 𝑥𝑒 axis. The angle of the knee, denoted as 𝜙𝑘, is measured from 

the shank to 𝑧𝑏 axis. Let 𝑑𝑢 denote the distance between the centroid of the cuff worn on the upper 

leg and the knee joint. Let 𝑑𝑠 denote the distance between the centroid of the cuff worn on the 

shank and the knee joint. Both 𝑑𝑢 and 𝑑𝑠 are variables in this study. Initially, 𝐹𝑒 coincides with 𝐹𝑏, 

and the positions of the anchor points are shown in Table 4.6. 
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Figure 4.4 Notations of a knee assisted by a three-DOF four-cable CDAD 

 

Table 4.6 Positions of anchor points (unit: m) 

Anchor points 
Positions of Anchor points            

on the base (upper leg) 

Positions of Anchor points          

on the end-effector (shank) 

1 𝐴1: [0.1, 0.0, −𝑑𝑢]𝑇 𝐵1: [0.0707, −0.0707, 𝑑𝑠]𝑇 

2 𝐴2: [0.1, 0.0, −𝑑𝑢]𝑇 𝐵2: [0.0707, 0.0707, 𝑑𝑠]𝑇 

3 𝐴3: [−0.1, 0.0, −𝑑𝑢]𝑇 𝐵3: [−0.0707, 0.0707, 𝑑𝑠]𝑇 

4 𝐴4: [−0.1, 0.0, −𝑑𝑢]𝑇 𝐵4: [−0.0707, −0.0707, 𝑑𝑠]𝑇 

 

4.1.2.2 Simulation Results 

If the angle of the knee, the position of the upper leg cuff, and the position of the shank cuff are 

given, the maximum moment efficiency index, denoted by 𝜂𝑚𝑎𝑥, is achieved when the antagonistic 

cable tensions are all zero. In the simulation, the maximum moment efficiency index is calculated 

in the force-closure workspace of the CDAD. The maximum moment efficiency of the CDAD 

with respect to 𝑑𝑠 and 𝑑𝑢 in assisting the flexion and extension of the knee are plotted in Figure 

4.5 and Figure 4.6, respectively. 
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Figure 4.5 Maximum moment efficiency index of the CDAD assisting the flexion of knee 

 

 

 Figure 4.6 Maximum moment efficiency index of the CDAD assisting the extension of knee 

 

According to Figure 4.5 and Figure 4.6, the angle of the knee and the distances from both cuffs to 

the knee joint significantly affect the maximum moment efficiency index. When assisting the knee 

in flexion, the maximum moment efficiency index does not change much with the shank cuff 

moving closer to the knee (i.e., 𝑑𝑠  decreases) or the flexion of the knee (i.e., 𝜙𝑘  increases). 
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However, when the upper leg cuff is within 0.1 m from the knee (𝑑𝑢 ≤ 0.1 m), the maximum 

moment efficiency index decreases sharply with the upper leg cuff moving closer to the knee (i.e., 

𝑑𝑢  decreases). When assisting the knee in extension, the maximum moment efficiency index 

increases with the shank cuff moving closer to the knee (i.e., 𝑑𝑠 decreases), the upper leg cuff 

moving farther away from the knee (i.e., 𝑑𝑢  increases), or the flexion of the knee (i.e., 𝜙𝑘 

increases). 

 

Based on Figure 4.5 and Figure 4.6, one can conclude that if the CDAD showed in Figure 4.4 is 

used for knee rehabilitation or assistance, wearing the shank cuff close to the knee allows the 

CDAD to assist the knee with a large angle of the knee while wearing the upper leg cuff far away 

from the knee (up to about 0.15 m) can improve the moment efficiency of the CDAD. Findings on 

positioning the cuffs provide a cornerstone for further study (e.g., control and assistance strategies) 

of this CDAD. 

4.2 A Learning Control Strategy Based on a Feedforward Neural Network 

The PID–FNN control strategy is applied to control the fully-constrained CDPR shown in Figure 

4.7 in this section. The CDPR with three rotational DOFs and four cables is designed for the 

rehabilitation training of a human joint (e.g., ankle). Since a pose of the CDPR can be measured 

by an Inertial Measurement Unit (IMU) in practice, the pose of the CDPR is assumed to be known 

in the simulation. Even though the pose of the CDPR is known, due to the wearing inconsistency 

among training setups, the positions of anchor points in each training setup are unknown and thus, 

the Jacobian of the CDPR is unknown (Diao & Ma, 2008).  

4.2.1 Simulation Setup 

The feasible cable tension that can be delivered by an actuator of the CDPR is assumed to range 

from 0 to 10 N. In the simulation, a random disturbance wrench (i.e.,  𝒘𝑑 ) caused by model 

uncertainties is applied to the CDPR. The random disturbance is a 3-dimensional vector varying 

randomly over time. The direction of the random disturbance wrench distributes uniformly in 3-

dimensional space. The magnitude of the random disturbance wrench satisfies a uniform 

distribution within a range from 0 to 0.1 Nm. The random disturbance wrench is applied both in 

collecting data samples and in controlling the CDPR. Namely, the collected data samples are with 
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noise and controlling the CDPR is with disturbance. Gravity is neglected in the simulation to 

simplify the analysis. 𝐹𝑏 represents the base frame and 𝐹𝑒 represents the end-effector frame. The 

attitude of 𝐹𝑒 with respect to 𝐹𝑏 is described by a vector of three Euler angles [𝜙, 𝜃, 𝜓]𝑇 with a 𝜓-

𝜃-𝜙 sequence. The parameters of the CDPR are shown in Table 4.7.  

 

Figure 4.7 Notations of the CDPR 

 

Table 4.7 Parameters of the CDPR 

Parameter Value 

Mass of the end-effector 3kg 

Moment of inertia of end-effector about x axis of 𝐹𝑒 0.03kg ∙ m2 

Moment of inertia of end-effector about y axis of 𝐹𝑒 0.03 kg ∙ m2 

Moment of inertia of end-effector about z axis of 𝐹𝑒 0.005 kg ∙ m2 

 

The model of the CDPR is created in the Gazebo simulator as shown in Figure 3.9 on page 58. A 

cable tension is applied between a pair of anchor points of the CDPR. The control simulation is 

conducted in the Gazebo simulator using a computer with an Intel i7-7700HQ CPU and an 8-

Gigabyte memory. Graphics Processing Unit is not used to train the FNN. The frequency of the 

simulation is 100 Hz. 
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To have data samples more uniformly distributed (i.e., data samples are more representative to 

wrenches and poses when controlling the CDPR), two requirements are set when recording data 

samples: 1) the norm of the pose vector 𝒙 = 𝜴 = [𝜙, 𝜃, 𝜓]𝑇 changes from the last data sample by 

2.86 degrees or more; or 2) the norm of the wrench vector 𝒘 changes from the last data sample by 

5 Nm or more. In this way, the recorded data samples are sparser and more uniformly distributed 

and thus more representative to wrenches and poses when controlling the CDPR.  

 

Three FNNs (i.e., FNNs I-III) with one hidden layer but different numbers of hidden layer units 

are investigated in the simulation. Each FNN is trained and validated using a certain number of 

data samples. Data samples used for training an FNN are not used for validating the FNN. The 

number of data samples used for training quadruples that for validation. In the simulation, all three 

FNNs are trained by the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.1 and a 

maximum number of iterations of 51,200. The training time and the mean square errors of the three 

FNNs are listed in Table 4.8. The more data samples or the more hidden layer units, the longer 

time to train the FNNs.  

Table 4.8 Parameters of FNNs 

Parameter FNN I FNN II FNN III 

Number of data samples used in training 256 1024 1024 

Number of hidden layer units 32 32 128 

Training time (unit: sec) 163.1 227.1 300.9 

Mean square error in training 0.0961 0.2935 0.0564 

Mean square error in validation 1.258 0.4743 0.5855 

 

After the three FNNs are trained, each FNN is paired up with the same PID controller to form a 

PID-FNN control strategy to control the CDPR to track a target trajectory. For performance 

comparison, the same PID controller is also paired up with the known Jacobian of the CDPR to 

control the CDPR to track a target trajectory. The control gains of the PID controller are 𝑘𝑃 = 10, 

𝑘𝐼 = 0.5, and 𝑘𝐷 = 0.1.  



79 

 

4.2.2 Simulation Results 

The pitch, roll, and yaw of the CDPR, tracking errors, cable tensions, and the norm of disturbance 

wrench 𝒘𝑁 caused by the approximation error of every FNN are plotted in Figures 4.8-4.19. As 

shown in Figures 4.8-4.10, the CDPR can be controlled to track the target trajectory using the PID–

FNN control strategy with FNNs I-III and the same PID controller plus the known Jacobian. If 

there is no disturbance, the PID controller plus the known Jacobian can control the CDPR to track 

the target trajectory with negligible errors. However, according to the tracking errors shown in 

Figures 4.11-4.13, when subject to a random disturbance generating a disturbance wrench ranging 

from 0 to 0.1 Nm, the PID–FNN control strategy with FNNs I-III outperforms the PID controller 

plus the known Jacobian in tracking the target trajectory. A possible reason for this phenomenon 

is that the data samples used to train the FNNs have already taken into account the random 

disturbance, leading the FNNs to be adaptive to the random disturbance. The adaptability of a 

learning-based control strategy to the environment was also observed in (Anusha Nagabandi et al., 

2017). 

 

Cable tensions of the CDPR controlled by the PID–FNN control strategy with FNNs I-III and the 

same PID controller plus the known Jacobian are shown in Figures 4.14-4.18. As shown in Figure 

4.17 and Figure 4.18, at any time instant, at least one cable tension is zero. This is because, with 

the PID controller plus the known Jacobian, the optimal cable tension distribution (Otis et al., 2009) 

can be achieved by solving the inverse dynamics equation. However, as shown in Figures 4.14-

4.16, the cable tensions are all non-zero at some time instants. This suggests that cable tensions 

derived from the FNNs do not always achieve the optimal cable tension distribution. It makes 

sense because cable tensions of data samples used to train the FNNs do not necessary obey the 

optimal cable tension distribution. Thus, cable tensions derived from the FNNs do not necessarily 

obey the optimal cable tension distribution. 

 

As shown in Figures 4.8-4.10, although the trajectories of the CDPR controlled by the PID-FNN 

control strategy with different FNNs are close to the given trajectory, there are errors. Because the 

trajectories of the CDPR controlled by different control strategies are different, Jacobians of the 

CDPR controlled by different control strategies are different in every moment. As a result, even if 

the target wrench of the CDPR is the same, the corresponding sets of target cable tensions of the 
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CDPR are generally different. Therefore, to study the approximation errors of the FNNs in the 

simulation, one cannot simply compare the sets of cable tensions of the CDPR controlled by the 

PID–FNN control strategy with FNNs I-III to that of the CDPR controlled by the PID controller 

plus the known Jacobian. Alternatively, to study the approximation error of an FNN in the 

simulation, one can analyze the disturbance wrench (i.e., 𝒘𝑁) caused by the approximation error 

of an FNN. 𝒘𝑁 is the difference between the wrench generated by cable tensions derived from an 

FNN and the wrench generated by cable tensions calculated by solving the inverse dynamics 

equation. The norms of 𝒘𝑁 for FNNs I-III are shown in Figure 4.19. It can be seen that the norms 

of 𝒘𝑁 are bounded indeed. According to the discussion in the last paragraph of section 3.2.1.3, the 

PID–FNN control strategy with FNNs I-III is stable of the form of UUB in this case. 

 

 

Figure 4.8 Tracking the roll of the CDPR 

 



81 

 

 

Figure 4.9 Tracking the pitch of the CDPR 

 

Figure 4.10 Tracking the yaw of the CDPR 
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Figure 4.11 Roll tracking errors 

 

Figure 4.12 Pitch tracking errors 
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Figure 4.13 Yaw tracking errors 

 

Figure 4.14 Cable tensions of the CDPR with FNN I 
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Figure 4.15  Cable tensions of the CDPR with FNN II 

 

Figure 4.16 Cable tensions of the CDPR with FNN III 
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Figure 4.17 Cable tensions of the CDPR with known Jacobian and disturbance 

 

Figure 4.18 Cable tensions of the CDPR with known Jacobian but without disturbance 
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Figure 4.19 Norm of approximation error of FNNs 

 

4.2.3 Conclusion 

Simulation results show that the FNN can help the PID–FNN control strategy control the CDPR 

to track a target trajectory. However, the PID–FNN control strategy also has limitations. One of 

the limitations is that the ANN of this control framework needs to be trained before it can be used 

together with the robust controller to control a CDPR. Moreover, the requirements of the number 

of hidden layer units of the ANN and the number of data samples used to train the ANN can vary 

from case to case. Thus, one may try a few times to obtain the proper number of hidden layer units 

of the ANN and the proper number of data samples used to train the ANN for a specific application.  

4.3 Learning Control Strategies Based on Deep Reinforcement Learning 

For the study, simulations are conducted to evaluate DDPG-based strategies in control a CDPR. 

Polices included in strategies are trained by DDPG at first. Then, cable tensions of the CDPR in 

reaching a randomly selected target pose are studied. The robustness of DDPG-based strategies to 

model uncertainties is evaluated in a case study as well. 
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4.3.1 Training of DDPG in Control Strategies 

The hybrid DDPG strategy and the end-to-end DDPG strategy have to be trained before they can 

be used to control a CDPR. Training a DRL algorithm on a real robot may damage the robot, 

especially when the DRL strategy has not been well-trained in the initial stage. Thus, a robot model 

in a simulator, rather than a real robot, is highly desirable as simulations are always safe for the 

real robot (Kober et al., 2013). Moreover, a simulator is also helpful in developing and fine-tuning 

the DRL strategy because the iteration of simulations is much faster than that of real experiments 

(Kober et al., 2013). DDPG in the proposed strategies is trained to control an example CDPR using 

the Gazebo simulator in this section. 

  

As shown in Figure 4.20 on page 80, the example CDPR has three rotational DOFs and four cables. 

𝐹𝑏 represents the base frame and 𝐹𝑒 represents the end-effector frame. The pose of the end-effector 

with respect to the base (i.e., the pose of the CDPR) is described by a vector of three Euler angles 

[𝜙  𝜃  𝜓]  with a 𝜓-𝜃-𝜙 (i.e., yaw-pitch-roll) sequence (Craig, 2009). DDPG in the proposed 

strategies is trained within a workspace, called training workspace, of the CDPR. The training 

workspace in this study is the set of poses that the CDPR can reach with the roll, pitch, and yaw 

of the CDPR within [−20, 20] (unit: deg). Gravity is neglected in this study to simplify the 

analysis. 

 

Figure 4.20 Notations of the example CDPR 
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A model of the example CDPR is created in the Gazebo simulator, as shown in Figure 3.9. The 

four cables of the CDPR are not shown in Figure 3.9. Cable tension is applied between a pair of 

anchor points of the CDPR. The parameters and the positions of the anchor points of the CDPR 

are shown in Table 4.9 and Table 4.10, respectively. 

 

Table 4.9 Parameters of the CDPR 

Parameter Value 

Mass of the end-effector 3 kg 

Moment of inertia of end-effector about x axis of 𝐹𝑒 0.02 kg ∙ m2 

Moment of inertia of end-effector about y axis of 𝐹𝑒 0.02 kg ∙ m2 

Moment of inertia of end-effector about z axis of 𝐹𝑒 0.02 kg ∙ m2 

Table 4.10 Positions of anchor points of the CDPR (unit: m) 

Pair of anchor points 
Positions of anchor 

points on the base 

Positions of anchor points on 

the end-effector 

1 𝐴1:  [0.1, 0.0, −0.15]𝑇 𝐵1:  [0.0707, −0.0707, 0.05]𝑇 

2 𝐴2:  [0.1, 0.0, −0.15]𝑇 𝐵2:  [0.0707, 0.0707, 0.05]𝑇 

3 𝐴3: [−0.1, 0.0, −0.15]𝑇 𝐵3:  [−0.0707, 0.0707, 0.05]𝑇 

4 𝐴4:  [−0.1, 0.0, −0.15]𝑇 𝐵4:  [−0.0707, −0.0707, 0.05]𝑇 

4.3.1.1 Training Setup 

For the study, the state variables of the hybrid DDPG strategy are the same as those of the end-to-

end DDPG strategy. The state variables of the proposed strategies at time step t can be expressed 

as 

𝒔𝑡 = [𝑿 �̇� 𝛥𝑿]     (4.1) 

where 𝑿 = [𝜙 𝜃 𝜓] is the pose of the CDPR at time step t. �̇� = [�̇� �̇� �̇�] is the angular 

velocity of the CDPR at time step t. 𝛥𝑿 is the difference between the target pose of the CDPR, 

denoted as 𝑿∗, and the pose of the CDPR at time step t. Thus, 𝛥𝑿 can be expressed as 

𝛥𝑿 = 𝑿∗ − 𝑿      (4.2) 

It should be noted that 𝒔𝑡 is a vector having nine scalar elements in this study. 
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The action variables of the hybrid DDPG strategy are different from those of the end-to-end DDPG 

strategy. The action variables of the hybrid DDPG strategy at time step t can be expressed as 

𝒂𝑡
𝑤 = [𝑤𝑥 𝑤𝑦 𝑤𝑧]     (4.3) 

where 𝑤𝑥, 𝑤𝑦, and 𝑤𝑧 represent the target torques about the x, y, and z axes of 𝐹𝑒, respectively. 

The action variables of the end-to-end DDPG strategy at time step t can be expressed as 

𝒂𝑡
𝜏 = [𝜏1 𝜏2 𝜏3 𝜏4]    (4.4) 

where 𝜏𝑖  (𝑖 = 1, 2, 3, 4) is the target cable tension in the ith cable. 

 

Rewards of the hybrid DDPG strategy and the end-to-end DDPG strategy used in this study are 

defined below. For the hybrid DDPG strategy, the reward is designed as 

𝑟𝑡
𝑤 = −2‖𝛥𝑿‖ − ‖�̇�‖    (4.5) 

where ‖∗‖ represents the Euclidean norm of ∗. 𝑟𝑡
𝑤 has two terms. The first term is defined by the 

difference between the target pose and the pose of the CDPR at time step t. The second term is 

defined by the velocity of the CDPR at time step t. In this way, a larger reward is granted if the 

CDPR is closer to the target pose or the velocity of the CDPR is smaller. If the CDPR reaches the 

target pose with a full stop, the maximum reward (i.e., 𝑟𝑡
𝑤 = 0) is granted. 

 

For the end-to-end DDPG strategy, whether the strategy can learn the optimal tension distribution 

of cables or not depends on the reward. Thus, two rewards are designed and tested, aiming to find 

a reward with which the end-to-end DDPG strategy can learn the optimal tension distribution of 

cables. The two rewards of the end-to-end DDPG strategy are designed as 

𝑟𝑡
𝜏1 = −2‖𝛥𝑿‖ − ‖�̇�‖    (4.6) 

𝑟𝑡
𝜏2 = −2‖𝛥𝑿‖ − ‖�̇�‖ − 0.2‖𝒂𝑡

𝜏‖   (4.7) 

where 𝑟𝑡
𝜏1 is the same as 𝑟𝑡

𝑤. Compared to 𝑟𝑡
𝜏1, 𝑟𝑡

𝜏2 has a third term, namely, the Euclidean norm 

of the vector of cable tensions or the action variables of the end-to-end DDPG strategy. Such a 

cable tension term gives higher rewards to actions producing smaller tensions. The design of 𝑟𝑡
𝜏2 

is inspired by the reward consisting of both balancing and goal-oriented terms for a simulated 

bicycle riding task in (Randløv & Alstrøm, 1998). With 𝑟𝑡
𝜏2, a larger reward is granted if the CDPR 

is closer to the target pose; the velocity of the CDPR is smaller; or the Euclidean norm of the vector 

of cable tensions is smaller. In this manner, the end-to-end-DDPG strategy's goal is not only to 
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accomplish the task of controlling a CDPR, but also achieve the optimal tension distribution of 

cables. 𝑟𝑡
𝑤, 𝑟𝑡

𝜏1, and 𝑟𝑡
𝜏2 are possible to be further optimized according to studies of multi-objective 

reinforcement learning that aims to find compromising solutions balancing different objectives to 

RL problems (Moffaert, Drugan, & Nowé, 2013). Multi-objective reinforcement learning has been 

successfully applied to control variable speed wind turbines achieving the optimal balance of 

power generation stability and rotor angular speed in (Fernandez-Gauna, Fernandez-Gamiz, & 

Grana, 2017). 

 

For the study, the four networks of the DDPG used by both the hybrid DDPG strategy and the end-

to-end DDPG strategy are fully connected neural networks with two hidden layers. The 

architecture of the four DNNs is shown in Table 4.11 and the hyper-parameters used to train the 

DDPG are shown in Table 4.12. The architecture of the four DNNs of the DDPG and the hyper-

parameters used by both the hybrid DDPG strategy and the end-to-end DDPG strategy are the 

same except the number of outputs of the actor network and the actor-target network and the 

number of inputs of the critic network and the critic-target network. 𝑁𝑎 represents the number of 

actions. For the study, 𝑁𝑎 = 3 for the hybrid DDPG strategy and 𝑁𝑎 = 4 for the end-to-end DDPG 

strategy. The learning rates of the critic network and the critic-target network change from 0.0001 

to 0.00005 if the training loss is less than 0.001. The data (i.e., states, actions, reward, and next 

states) used to train DDPG in both the hybrid DDPG strategy and the end-to-end DDPG strategy 

are collected from the Gazebo simulator. For each episode, the CDPR starts at 𝑿 = [0 0 0] 

(unit: deg). An episode ends if the CDPR reaches a target pose, the maximum number of 1,000 

time steps is reached, or the CDPR goes out of the training workspace.  
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Table 4.11 Architecture of the four networks of the DDPG 

 
Actor and actor-target 

networks 

Critic and critic-target 

networks 

Number of inputs 9 9 + 𝑁𝑎
 

Activation function 1 ReLU ReLU 

Number of units in layer 1 90 150 

Activation function 2 ReLU ReLU 

Number of units in layer 2 60 120 

Activation function 3 tanh None 

Number of outputs 𝑁𝑎 1 

Table 4.12 Hyper-parameters used to train the DDPG 

Hyper-Parameter Value 

Maximum number of time steps for each episode 1000 

Learning rate of the actor and actor-target networks 0.001 

Learning rate of the critic and critic-target networks 0.0001 → 0.00005 

Discount factor 𝛾 0.95 

Update rate (target) 𝜏 0.001 

Size of the experience replay buffer 10000 

Size of mini-batch 1024 

Maximum magnitude of random exploration noise (i.e., 

an element of 𝑵𝑡) 

range of an action

number of episodes + 2
 

4.3.1.2 Training 

For the study, it is assumed that elements of 𝒂𝑡
𝜏 (i.e., the individual cable tensions) are within [0,1] 

(unit: N) and elements of 𝒂𝑡
𝑤 (i.e., the target wrenches about the x, y, and z axes of 𝐹𝑒) are within 

[−0.1, 0.1] (unit: Nm). The Adam optimizer (Kingma & Ba, 2014) is utilized in training. With the 

training setup shown in Table 4.12, DDPG in the proposed strategies is trained based on a CDPR 

model in the Gazebo simulator. The frequency of the Gazebo simulator is set to 100 Hz and the 

time step of the DDPG is 0.1 second. The average rewards in every episode are shown in Figure 

4.21. It is shown that the hybrid DDPG strategy converges within 70 episodes, while the end-to-
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end DDPG strategy with 𝑟𝑡
𝜏1  and 𝑟𝑡

𝜏2  converges within 100 and 400 episodes, respectively. 

Therefore, the hybrid DDPG strategy learns faster than the end-to-end DDPG strategy even when 

they use the same reward. 

  

Figure 4.21 Average rewards of DDPG in the proposed strategies 

 

According to (Kober et al., 2013), a complicated task becomes easier to learn if some of its subtasks 

have already been accomplished. For the hybrid DDPG strategy, the second subtask of converting 

the target wrench in the task space to a set of target cable tensions in the joint space is accomplished 

by solving the inverse dynamics equation. Thus, the DDPG of the hybrid DDPG strategy can focus 

on the first subtask while the DDPG of the end-to-end DDPG strategy has to deal with both the 

first and the second subtasks. This explains why the hybrid DDPG strategy learns faster than the 

end-to-end DDPG strategy. Moreover, the number of actions of the DDPG in the end-to-end 

DDPG strategy is four while that in the hybrid DDPG strategy is three. The reduced number of 

actions is another possible reason that the hybrid DDPG strategy learns faster than the end-to-end 

DDPG strategy. 
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4.3.2 Optimal Tension Distribution of Cables 

The example CDPR concerned in this study is a fully-constrained CDPR. A fully-constrained 

CDPR in its force-closure workspace has an infinite number of feasible tension distributions. 

Therefore, how to obtain the optimal tension distribution (Fang, Franitza, Torlo, Bekes, & Hiller, 

2004; Oh & Agrawal, 2005; Otis et al., 2009) of cables is studied for the example CDPR in this 

section. The hybrid DDPG strategy calculates the optimal tension distribution of cables by solving 

the inverse dynamics equation. The end-to-end DDPG strategy has to learn the optimal tension 

distribution of cables on its own. This section demonstrates that, with a proper reward, the end-to-

end DDPRG strategy can learn the optimal tension distribution of cables as well as the hybrid 

DDPG strategy obtains the optimal tension distribution of cables using a non-learning-based 

approach. 

 

The tension distributions of the CDPR controlled by the end-to-end DDPG strategy with 𝑟𝑡
𝜏1 and 

𝑟𝑡
𝜏2 in reaching a randomly selected target pose 𝑿 = [9  12  15] (unit: deg) is studied. The end-to-

end DDPG strategy with 𝑟𝑡
𝜏2 whose third term is about cable tensions is expected to be able to 

learn the optimal tension distribution of cables. The tension distributions of the end-to-end DDPG 

strategy with 𝑟𝑡
𝜏1 and 𝑟𝑡

𝜏2 are shown in Figure 4.22 and Figure 4.23, respectively. The optimal 

tension distribution (i.e., the dash lines in Figure 4.22 and Figure 4.23) is obtained by solving the 

inverse dynamics equation. It is shown that the end-to-end DDPG strategy with 𝑟𝑡
𝜏2 is able to learn 

the optimal tension distribution, while the end-to-end DDPG strategy with 𝑟𝑡
𝜏1 cannot. Therefore, 

with a proper reward (e.g., 𝑟𝑡
𝜏2), the end-to-end DDPG strategy can learn the optimal tension 

distribution of a fully-constrained CDPR. 
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Figure 4.22 Cable tensions of the CDPR 

 

 

Figure 4.23 Cable tensions of the CDPR 
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4.3.3 Robustness to Model Uncertainty 

The model of a robot used to train a DRL algorithm may not capture all the details of the real robot 

in practice (Kober et al., 2013). A setup or model of the CDPR to be controlled by the proposed 

strategies may be slightly different from the setup or model of the same CDPR based on which 

DDPG in the proposed strategies is trained. It would be ideal if the proposed strategies whose 

DDPG is trained using one model of the CDPR can be used to control the CDPR whose model has 

slightly changed. Such an adaptive capability requires the proposed strategies to be robust to model 

uncertainties (Kober et al., 2013). 

   

The robustness of the proposed strategies to model uncertainties is investigated in this section 

based on a pose-tracking test and a trajectory-tracking test. The proposed strategies whose DDPG 

is trained using one of the models of the CDPR in the Gazebo simulator are first used to control 

the CDPR with the same model. In this case, there is no model uncertainty or difference between 

the model based on which DDPG is trained and the model to be controlled by DDPG. This works 

as the baseline for the study of the robustness of the proposed strategies to model uncertainties. 

Then, the proposed strategies are used to control the CDPR whose model has been slightly changed 

to test the robustness of the proposed strategies to model uncertainties. 

 

For the pose-tracking test, the CDPR is controlled by the proposed strategies to move from 𝑿 =

[0  0  0] (unit: deg) to 1,000 randomly selected target poses within the training workspace, as 

shown in Figure 4.24. A pose-tracking test is considered successful if the CDPR is able to reach a 

target pose (i.e., the Euclidean norm of the tracking error defined by ‖𝛥𝑿‖ is less than 1.8 degrees) 

and it takes no more than 150 time steps (i.e., 15 seconds). Otherwise, the pose-tracking test is 

considered failed. 
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Figure 4.24 Randomly selected target poses 

 

In the trajectory-tracking test, the target trajectory to be tracked is designed as 

{

𝜙 = 45 sin(0.01𝜋𝑗) /𝜋                      

𝜃 = 22.5 cos(0.01𝜋𝑗) /𝜋 − 22.5/𝜋

𝜓 = 45 sin(0.02𝜋𝑗) /𝜋                       

      (4.8) 

where 𝑗 = 0,1, … ,599 and 𝑗 is updated in every 15 time steps (i.e., 1.5 seconds). 

4.3.3.1 Evaluate Control Strategies on a CDPR without Model Uncertainty 

The proposed strategies whose DDPG is trained using a model of the CDPR in the Gazebo 

simulator are used to control the CDPR with the same model. For the proposed strategies, the 

model of the CDPR based on which DDPG in the strategies is trained is regarded as the model of 

the CDPR without model uncertainty. The outcomes of the pose-tracking test are shown in Table 

4.13. The success rate of the end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏1 is slightly lower 

than those of the hybrid DDPG strategy and the end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏2. 

To investigate why the proposed strategies cannot control the CDPR to reach a target pose, the 

target poses that the proposed strategies cannot control the CDPR to reach are plotted in Figure 

4.25. It turns out that all target poses the CDPR fails to reach are close to the boundary of the 
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training workspace. If a target pose is close to the boundary of the training workspace, the CDPR 

may move out of the training workspace when moving towards such a target pose. If the CDPR is 

out of the training workspace, it is very likely that the CDPR cannot move back to the training 

workspace because the training of DDPG in the strategies is limited to the training workspace. 

Thus, poses close to the boundary of the training workspace are more challenging to track than 

those close to the center of the training workspace. This suggests that the training workspace 

should be larger than the workspace used in a control task in practice. 

Table 4.13 Outcomes of the pose-tracking test 

Strategy 

Number of target 

poses the CDPR 

reaches successfully 

Number of target 

poses the CDPR 

fails to reach 

Success 

rate 

Hybrid DDPG strategy 

with the reward of 𝑟𝑡
𝑤 

993 7 99.3% 

End-to-end DDPG strategy 

with the reward of 𝑟𝑡
𝜏1 

978 22 97.8% 

End-to-end DDPG strategy 

with the reward of 𝑟𝑡
𝜏2 

995 5 99.5% 

 

Figure 4.26 shows the trajectories of the CDPR controlled by the proposed strategies to track the 

target trajectory defined in (4.8). The proposed strategies can control the CDPR to track the target 

trajectory indeed. Figure 4.27 shows the Euclidean norm of the tracking error when the CDPR is 

controlled to track the target trajectory. The hybrid DDPG strategy and the end-to-end DDPG 

strategy with the reward of 𝑟𝑡
𝜏1 have smaller tracking error than the end-to-end DDPG strategy 

with the reward of 𝑟𝑡
𝜏2. Since the magnitude of cable tensions is included in the reward of 𝑟𝑡

𝜏2, the 

end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏2 tends to achieve not only smaller tracking error 

and velocity, but also smaller cable tensions. It makes sense that the end-to-end DDPG strategy 

with the reward of 𝑟𝑡
𝜏2 leads to a larger tracking error than the end-to-end DDPG strategy with the 

reward of 𝑟𝑡
𝜏1 and the hybrid DDPG strategy with the reward of 𝑟𝑡

𝑤.  
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(a)       (b)  

 

(c) 

Figure 4.25 Target poses fails to be reached by the CDPR without model uncertainty using:  

(a) the hybrid DDPG strategy; (b) the end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏1; and (c) 

the end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏2 
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Figure 4.26 Trajectories of the CDPR without model uncertainty 
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Figure 4.27 Tracking error of the CDPR without model uncertainty 

 

4.3.3.2 Evaluate Control Strategies on a CDPR with Model Uncertainties 

The proposed strategies are used to control the CDPR with model uncertainties in this section. In 

other words, the model of the CDPR to be controlled is slightly different from the model of the 

CDPR based on which DDPG in the strategies is trained. 

  

For the study, the model uncertainties are supposed to be caused by position errors of anchor points 

of the CDPR, as shown in Figure 4.28. The positions of anchor points of the CDPR without model 

uncertainty are shown in Table 4.10, while the positions of anchor points of the CDPR with model 

uncertainties are shown in Table 4.14. The anchor points on the end-effector of the CDPR with 

model uncertainties are supposed to rotate 5.73 degrees about the z axis of 𝐹𝑒 and slide 0.01 meter 

along the z axis of 𝐹𝑒, compared to those of the CDPR without model uncertainty. Moreover, the 

moment of inertias and the mass of the CDPR with model uncertainties are assumed the same as 

those of the CDPR without model uncertainty, as shown in Table 4.9. The Jacobian of the CDPR 

used in the inverse dynamics equation in the hybrid DDPG strategy is calculated based on the 
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CDPR without model uncertainty. Thus, the inverse dynamics equation of the CDPR is no longer 

accurate in controlling the CDPR with model uncertainties due to the position errors of anchor 

points. 

 

Figure 4.28 Position errors of anchor points of the CDPR:  

a) top view; and b) side view 

 

Table 4.14 Positions of anchor points of the CDPR with model uncertainties (unit: m) 

Pair of anchor points 
Positions of anchor points 

on the base 

Positions of anchor points on the 

end-effector 

1′ 𝐴1
′ :  [0.1, 0.0, −0.15]𝑇 𝐵1

′ :  [0.0774, −0.0633, 0.04]𝑇 

2′ 𝐴2
′ :  [0.1, 0.0, −0.15]𝑇 𝐵2

′ :  [0.0633, 0.0774, 0.04]𝑇 

3′ 𝐴3
′ :  [−0.1, 0.0, −0.15]𝑇 𝐵3

′ :  [−0.0774, 0.0633, 0.04]𝑇 

4′ 𝐴4
′ :  [−0.1, 0.0, −0.15]𝑇 𝐵4

′ :  [−0.0633, −0.0774, 0.04]𝑇 

 

The pose-tracking test and the trajectory-tracking test are conducted on a CDPR with model 

uncertainties in this section. In the pose-tracking test, the target poses are the poses shown in Figure 

𝐴2 𝐴1 

𝐵1 𝐵2 

𝐵3 

𝐵4 

𝐵1 𝐵2 

𝐵1
′  

𝐵2
′  

𝐵3
′  

𝐵4
′  

𝐴1
′  𝐴2

′  

𝐵1
′  𝐵2

′  

Anchor points of 

the CDPR with 

model uncertainties

Anchor points of 

the CDPR without 

model uncertainties

(a) (b)
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4.24. The outcomes of the pose-tracking test are shown in Table 4.15. The control performance of 

the end-to-end DDPG strategy is affected by the model uncertainties. However, the control 

performance of the hybrid DDPG strategy is not affected much, even though the inverse dynamics 

equation of the CDPR is not accurate in this case. Therefore, the hybrid DDPG strategy is more 

robust to model uncertainties than the end-to-end DDPG strategy. Target poses that the CDPR fails 

to reach are shown in Figure 4.29. Target poses that the CDPR fails to reach are close to the 

boundary of the training workspace. 

Table 4.15 Outcomes of the pose-tracking test with model uncertainties 

Strategy 

Number of target 

poses the CDPR 

reaches successfully 

Number of target 

poses the CDPR 

fails to reach 

Success 

rate 

Hybrid DDPG strategy 

with the reward of 𝑟𝑡
𝑤 

992 8 99.2% 

End-to-end DDPG strategy 

with the reward of 𝑟𝑡
𝜏1 

921 79 92.1% 

End-to-end DDPG strategy 

with the reward of 𝑟𝑡
𝜏2 

981 19 98.1% 

 

For the trajectory-tracking test, the CDPR with model uncertainties is controlled by the proposed 

strategies to track the target trajectory defined in (4.8). The trajectories and tracking errors of the 

CDPR with model uncertainties are shown in Figure 4.30 and Figure 4.31, respectively. The CDPR 

with model uncertainties can still be controlled by the proposed strategies to track the target 

trajectory. Namely, the proposed strategies are robust to certain model uncertainties. However, 

comparing Figure 4.27 and Figure 4.31, one can see that, controlled by the end-to-end DDPG 

strategy with the reward of 𝑟𝑡
𝜏1, the CDPR with model uncertainties has larger tracking errors 

(about 2.7 degrees) than the CDPR without model uncertainty (about 2.2 degrees). It means a 

decrease in control performance. Moreover, controlled by the hybrid DDPG strategy and the end-

to-end DDPG strategy with the reward of 𝑟𝑡
𝜏2, the CDPR with model uncertainties has almost the 

same tracking errors as the CDPR without model uncertainty. 
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(a)      (b) 

 

(c) 

Figure 4.29 Target poses fails to be reached by the CDPR with model uncertainties using:  

(a) the hybrid DDPG strategy; (b) the end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏1; and (c) 

the end-to-end DDPG strategy with the reward of 𝑟𝑡
𝜏2 
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Figure 4.30 Trajectories of the CDPR with model uncertainties 
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Figure 4.31 Tracking errors of the CDPR with model uncertainties 

 

4.3.4 Conclusion 

The study shows that the hybrid DDPG strategy learns faster than the end-to-end DDPG strategy 

in training. Both the hybrid DDPG strategy and the end-to-end DDPG strategy are robust to certain 

model uncertainties. However, the hybrid DDPG strategy is more robust to model uncertainties 

than the end-to-end DDPG strategy. Moreover, the end-to-end DDPG strategy can learn the 

optimal tension distribution of cables as well as the hybrid DDPG strategy calculates it from the 

inverse dynamics equation of the CDPR. The study demonstrates that, by taking advantages of 

both learning and non-learning-based approaches, the hybrid DDPG strategy provides an 

alternative to accomplish a robot manipulation task. 

 

To control a CDPR in practice, the state variables of the proposed strategies can be measured, and 

the action variables can be implemented. State variables (i.e., the pose and velocity of the CDPR) 

can be measured by instruments such as IMUs (Aflakian, Safaryazdi, Tale Masouleh, & Kalhor, 

2018). Action variables (i.e., cable tensions of the CDPR) can be delivered by direct-current 
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motors with proper voltage inputs (Niyetkaliyev et al., 2017). One should note that controlling a 

robot with DRL strategies may have safety issues in practice. For example, although controlling a 

robot with DRL strategies is feasible for non-safety-critical applications such as robotic palletizing, 

regulations may prevent the implementation of DRL strategies for safety-critical applications such 

as robotic surgery. 

4.4 Safety Robustness of Learning Control Strategies 

When RL policies are employed to control CDPRs for rehabilitation (Xiong & Diao, 2019), safety 

robustness of policies bears a concern because the failure of policies may injure trainees. When 

using an assistive device for rehabilitation, the safety of the trainee always has a higher priority 

than the success of a training maneuver assisted by the assistive device. Thus, one would like to 

evaluate how safe a policy is in manipulating an assistive device when subject to uncertainties and 

perturbations. 

 

This section aims to demonstrate how to use safety robustness to evaluate the robustness policies, 

rather than how to improve the safety robustness of policies or how to better shape reward 

functions. Three policies trained by DDPG with three different reward functions to control a CDPR 

to assist human joints are used in this section. For the section, the Gazebo simulator (Koenig & 

Howard, 2004) is used to conduct simulations. 

 

The CDPR used in this study has three rotational degrees of freedom and four cables, as shown in 

Figure 4.32. The problem to be solved by RL is to control the orientation of the end-effector of the 

CDPR via cable tensions. Cable tensions are assumed to range from 0 N to 20 N in this study. The 

orientation of the end-effector of the CDPR is represented by three Euler angles [𝜙, 𝜃, 𝜓] with a 

𝜓-𝜃-𝜙 sequence. 
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Figure 4.32 The model of a CDPR in the Gazebo simulator 

 

4.4.1 Learning Setup 

For the study, the state space is 9-dimensional and the action space is 4-dimensional. Namely, 𝑆 ∊

ℝ9 and 𝐴 ∊ ℝ4. State variables at time step t can be expressed as 

𝒙𝑡 = [𝑿, �̇�, 𝛥𝑿]     (4.9) 

where 𝑿 = [𝜙, 𝜃, 𝜓] is the orientation of the end-effector of the CDPR at time step t. �̇� = [�̇�, �̇�, �̇�] 

is the angular velocity of the CDPR at time step t. 𝛥𝑿  is the difference between the target 

orientation of the end-effector of the CDPR, denoted as 𝑿∗ = [𝜙∗, 𝜃∗, 𝜓∗], and the orientation of 

the end-effector of the CDPR at time step t. Thus, 𝛥𝑿 can be expressed as 

𝛥𝑿 = 𝑿∗ − 𝑿 = [𝜙 − 𝜙∗, 𝜃 − 𝜃∗, 𝜓 − 𝜓∗]   (4.10) 

𝒙𝑡 is a 9-dimenionsal state vector. Action variables at time step t can be expressed as 

𝒂𝑡 = [𝜏1, 𝜏2, 𝜏3, 𝜏4]     (4.11) 

where 𝜏𝑖  (𝑖 = 1, 2, 3, 4) is the cable tension in the ith cable. 𝒖𝑡 is a 4-dimensional action vector. 

 

 

 

 

 

End-effector
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Joint

Cables
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In the simulations, policies are trained by DDPG. Three reward functions are designed to guide an 

agent to learn three different policies. The three reward functions are expressed as 

𝑟1 = −[(√|𝜙 − 𝜙∗| + √|𝜃 − 𝜃∗| + √|𝜓 − 𝜓∗|) + 0.01(�̇�2 + �̇�2 + �̇�2) + 0.0001 ∑ 𝜏𝑖
2]  (4.12) 

𝑟2 = −[(|𝜙 − 𝜙∗| + |𝜃 − 𝜃∗| + |𝜓 − 𝜓∗|) + 0.01(�̇�2 + �̇�2 + �̇�2) + 0.0001 ∑ 𝜏𝑖
2]  (4.13) 

𝑟3 = −[(𝜙 − 𝜙∗)2 + (𝜃 − 𝜃∗)2 + (𝜓 − 𝜓∗)2 + 0.0001 ∑ 𝜏𝑖
2]      (4.14) 

All three reward functions can guide an agent to learn policies that move the end-effector of the 

CDPR to a target orientation. With 𝑟1, 𝑟2, and 𝑟3, the policies 𝜋1, 𝜋2, and 𝜋3 are learned by the 

agent accordingly. The four networks of the DDPG are fully connected neural networks with two 

hidden layers. The architecture of the four networks of the DDPG is shown in Table 4.16. Hyper-

parameters used in training are shown in Table 4.17. The learning rates of the critic network and 

the critic-target network change from 0.0001 to 0.00005 if the training loss is less than 0.001. 

Table 4.16 Architecture of the four networks of the DDPG 

 
Actor and actor-target 

networks 

Critic and critic-target 

networks 

Number of inputs 9 9+4 

Activation function 1 ReLU ReLU 

Number of units in layer 1 64 64 

Activation function 2 ReLU ReLU 

Number of units in layer 2 64 64 

Activation function 3 tanh None 

Number of outputs 4 1 
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Table 4.17 Hyper-parameters in training 

Hyper-Parameter Value 

Maximum number of time steps for each episode 1000 

Learning rate of the actor and actor-target networks 0.001 

Learning rate of the critic and critic-target networks 0.0001 → 0.00005 

Discount factor 𝛾 0.95 

Update rate (target) 𝜏 0.001 

Size of the experience replay buffer 10000 

Size of mini-batch 1024 

Maximum magnitude of random exploration noise 
range of an action

number of episodes + 2
 

4.4.2 Safety Robustness Analysis 

Safety robustness is applied to evaluate the robustness of the three policies (i.e., 𝜋1, 𝜋2, and 𝜋3). 

In the simulations, the number of episodes is M = 1000 and the number of steps is T = 100. 

𝛥𝑠
𝑚𝑎𝑥and 𝛥𝑎

𝑚𝑎𝑥 are set to be the same, represented by 𝛥𝑚𝑎𝑥. 𝛥𝑚𝑎𝑥 ranges from 0 to 0.5 with a step 

size of 0.1. Without hyperextending a joint, safe states are defined as states that satisfy 

|𝜙| < 30 deg, |𝜃| < 30 deg, |𝜓| < 30 deg    (4.15) 

For each episode, a random target orientation satisfying 

|𝜙| < 15 deg, |𝜃| < 15 deg, |𝜓| < 15 deg    (4.16) 

is set for policies. In an episode, the end-effector of the CDPR is initialized to the orientation 

[0, 0, 0] then controlled by a policy to a randomly generated target orientation [𝜙∗, 𝜃∗, 𝜓∗]. Safety 

robustness with 95% confidence interval (based on 1000 tests) of the three policies is plotted in 

Figure 4.33. Table 4.18 lists the numerical values of the safety robustness of the three policies. 
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Figure 4.33 Safety robustness of the three policies 

 

Table 4.18 Safety robustness of the three policies 

𝜟𝒎𝒂𝒙 Safety robustness of 𝝅𝟏 Safety robustness of 𝝅𝟐 Safety robustness of 𝝅𝟑 

0.0 0.954 0.985 0.990 

0.1 0.949 0.958 0.984 

0.2 0.859 0.903 0.965 

0.3 0.754 0.821 0.919 

0.4 0.610 0.666 0.881 

0.5 0.465 0.536 0.794 

 

As shown in Figure 4.33, the safety robustness of all three policies decreases with the increase of 

the magnitude of uncertainties or perturbations. This suggests that increasing uncertainties or 

perturbations degrade the safety robustness of policies. In other words, should uncertainties and 

perturbations be attenuated, the safety robustness of policies would be improved. Another 

observation is that policies learned with the same DDPG but different reward functions have 

different safety robustness. Policy 𝜋3 has better safety robustness than policies 𝜋1 and 𝜋2. This 

means that policy 𝜋3 is safer than policies 𝜋1 and 𝜋2 when subject to uncertainties or perturbations. 
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The safety robustness of policies to different magnitudes of uncertainties or perturbations is 

approximated statistically. Based on the safety robustness, one can tell how safe the policies are 

when subject to uncertainties or perturbations. Moreover, one can find that policy 𝜋3 has the best 

safety robustness among the three policies. In other words, one should select policy 𝜋3 to control 

the CDPR to mitigate safety concerns.  

4.4.3 Conclusion 

Safety robustness reflects a policy’s ability to maintain safe state when subject to uncertainties or 

perturbations. In section 4.4, simulations are conducted to demonstrate how to approximate safety 

robustness of policies. Simulation results show that safety robustness can be used to evaluate the 

robustness of policies and select policies from the perspective of safety. 

4.5 Summary 

For chapter four, simulations are conducted to demonstrate the workspace isotropy and the 

moment efficiency of CDADs. Workspace isotropy and moment efficiency can be used for the 

optimization of CDADs. Moreover, based on simulation conducted in Gazebo, the effectiveness 

of the PID–FNN control strategy and DDPG-based strategies are verified. The safety robustness 

of DDPG-based strategies is analyzed as well. 
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 SUMMARY 

Learning control strategies are developed in this dissertation to make a CDAD intelligent in 

assisting a human joint. The summary of the development of learning control strategies for CDADs 

and the recommendations for future work of learning control strategies for CDADs are 

demonstrated in this chapter. 

5.1 Summary 

The dissertation has the following contributions to the communities of assistive devices, robotics, 

control, and reinforcement learning: 

• The dissertation addresses the isotropy of a workspace in terms of its geometric shape. 

The dissertation proposes three novel workspace isotropy indices - TWII, RWII, and 

EWII - for workspace isotropy analysis in terms of the geometric shape of the workspace. 

All three indices are mathematically defined. Simulation results show that the proposed 

workspace isotropy indices reflect how isotropic the geometric shape of a workspace is.  

• The dissertation studies how a CDAD with three DOFs and four cables exerts a joint force 

on a general three-DOF human joint. An index to evaluate the efficiency of a CDAD in 

providing an assistant moment is proposed. The moment efficiency index provides a 

guideline for the design of CDADs. 

• A learning-based control framework consisting of a robust controller and an ANN in 

series is proposed. As an example, a PID–FNN control strategy is developed to 

demonstrate how the proposed control framework works. The PID–FNN control strategy 

includes a PID controller and a feedforward neural network. Simulation results show that 

the PID–FNN control strategy can successfully control a CDPR with four cables, three 

degrees of freedom, and unknown Jacobian. 

• For the study, an end-to-end DRL strategy and a hybrid DRL strategy are developed and 

compared in controlling a cable-driven parallel robot. The study shows that, by 

integrating DRL with non-learning-based approaches, the hybrid DRL strategy learns 

faster and is more robust to model uncertainties than the end-to-end DRL strategy. 

Specifically, the hybrid DRL strategy converges in 70 episodes while the end-to-end DRL 
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strategies converge in more than 100 episodes. When the same model uncertainty is 

applied, the success rate of the hybrid DRL strategy decreases from 99.3% to 99.2%, 

while the success rate of the end-to-end DRL strategies with 𝑟𝑡
𝜏1 and 𝑟𝑡

𝜏2 decrease from 

97.8% to 92.1% and 99.5% to 98.1%, respectively. The study demonstrates that, by taking 

advantage of both learning and non-learning-based approaches, the hybrid DRL strategy 

provides an alternative to accomplish a joint assisting task. 

• Inspired by the system architecture of robust control and the concept of safe state in safe 

RL, the dissertation proposes the concept of safety robustness to evaluate the robustness 

of policies from the perspective of safety. Safety robustness reflects the ability of a policy 

to maintain safe state when subject to uncertainties and perturbations. Simulations are 

conducted to demonstrate how to analyze safety robustness to evaluate the robustness of 

policies.  

5.2 Recommendations 

Two important research issues to further enrich the developed learning control strategies for 

CDADs are discussed in section 5.2. 

• The proposed learning control strategies will be further improved based on more 

simulations and experiments. For the study, simulations are conducted aiming to validate 

the effectiveness of the proposed learning control strategies. However, the proposed 

learning control strategies have not been optimized based on the parameters of a real 

human joint. Thus, the proposed learning control strategies can be further improved based 

on simulations and experiments with the parameters of a real human joint. 

• Detailed guidelines of the learning control strategies for CDADs will be published to 

improve the ease of use. Learning control strategies have been proposed and validated in 

this study. However, some details about how to use the proposed learning control 

strategies are not fully discussed. Therefore, more details, such as the optimal choice of 

ANNs, will be discussed in the future. 
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