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ABSTRACT

Kim, Dohyeung Ph.D., Purdue University, December 2019. Multi-Target Tracking
Algorithms for Cluttered Environments. Major Professor: Inseok Hwang.

MTT is the problem to simultaneously estimate the number of targets and their

states or trajectories. Numerous techniques have been developed for over 50 years,

with a multitude of applications in many fields of study; however, there are two most

widely used approaches to MTT: i) data association-based traditional algorithms; and

ii) FISST-based data association free Bayesian multi-target filtering algorithms. Most

data association-based traditional filters mainly use a statistical or simple model of

the feature without explicitly considering the correlation between the target behavior

and feature characteristics. The inaccurate model of the feature can lead to divergence

of the estimation error or the loss of a target in heavily cluttered and/or low SNR

environments. Furthermore, the FISST-based data association free Bayesian multi-

target filters can lose estimates of targets frequently in harsh environments mainly

attributed to insufficient consideration of uncertainties not only measurement origin

but also target’s maneuvers.

To address these problems, three main approaches are proposed in this research

work: i) new feature models (e.g., target dimensions) dependent on the target behav-

ior (i.e., distance between the sensor and the target, and aspect-angle between the

longitudinal axis of the target and the axis of sensor line of sight); ii) new GM-PHD

filter which explicitly considers the uncertainty in the measurement origin; and iii)

new GM-PHD filter and tracker with JMS models. The effectiveness of the analytical

findings is demonstrated and validated with illustrative target tracking examples and

real data collected from the surveillance radar.
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1. INTRODUCTION

1.1 Background and Motivation

MTT has a long history spanning more than 50 years. Due to the evolution of

computing and sensing technologies during the last two decades, the field of MTT is

rapidly expanding and many current algorithms in MTT and associated track filter-

ing have been used in applications in diverse disciplines, including, air traffic control,

ISR, space applications, and autonomous vehicles. MTT has challenges including es-

timating the state of an unknown and time-varying number of targets in the presence

of measurement noise, uncertainties in target maneuvers, and clutter [1–4]. In ad-

dition to process and measurement noises in the dynamic and measurement models,

respectively, one has to deal with much more complex sources of uncertainty such as

the measurement origin uncertainty, data association, clutter, missed-detection, and

appearance and disappearance of targets.

To address the problems, data association-based traditional algorithms have been

proposed and widely used in many tracking systems [4–16]. For the last decade, the

FISST-based data association free Bayesian multi-target filtering algorithms without

the measurement-to-track association have gained significant popularity in the track-

ing community. However, the target tracking algorithms have uncertainty in terms of

the system models and the measurement origin, which can lead to divergence of the

estimation error or the missed estimate of a target.

The complex nature of the correlation between the kinematics and feature states,

states of a target, and measurements make designing proper system models and con-

sidering the measurement origin uncertainty quite challenging tasks. Some of the

main challenges are described as follows.
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First, the data association-based traditional algorithms utilize not only the kine-

matic of a target but also the feature (e.g., amplitude, RCS, or dimensions) of mea-

surement signal to decide which measurement is generated from a target [9,10]. How-

ever, most data association-based traditional filters mainly use a statistical or simple

model of the feature without explicitly considering the correlation between the target

behavior and feature characteristics. Inaccurate model of the feature could lead to

divergence of the estimation error or the loss of a target in heavily cluttered and/or

low SNR environments.

Second, FISST-based data association free Bayesian multi-target filtering algo-

rithms, such as the well-known GM-PHD filter, are a promising solution to the MTT

problem, which successfully integrates target detection, tracking, and identification.

Despite its wide applicability and computational efficiency, existing GM-PHD filter

can lose the estimates of the targets frequently in heavily cluttered and/or low SNR

environments. This is mainly attributed to insufficient consideration of uncertainties

of whether a measurement is from a target or not in the GM-PHD filter. At each

time step, the GM-PHD filter generates new Gaussian components corresponding to

individual measurements which have the same estimate error covariances regardless

of whether the measurement is from a target or not, so that it can lose the estimates

of targets when the clutter density is high and/or the detection probability is low.

Another challenge occurs when states of targets are subject to abrupt changes

due to internal or external conditions (e.g., acceleration of a target in surveillance

systems can abruptly change due its aggressive maneuvers). Rapid change in the

trajectory of the maneuvering target can cause the existing GM-PHD filter and tracker

to lose the estimate of the maneuvering target frequently due to the target’s maneuver

uncertainty. The estimate of the GM-PHD filter with abrupt state changes is quite

challenging because the GM-PHD filter should be able to detect the abrupt changes

in a timely manner and appropriately adjust the estimates of GM-PHD filter to

compensate for the changes. Furthermore, in the GM-PHD algorithm, it is quite

challenging to provide not only the state estimates of maneuvering targets at each
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time step, but also their identities (or labels) due to the complexity of the label

assignment. These challenges necessitate the development of an adaptive GM-PHD

approach, which can perform the state jump detection and provide the trajectories

of targets in a systematic manner.

1.2 Objectives and Contributions

The contribution of this thesis is theoretical development of new state estimation

algorithms that overcome the aforementioned challenges in complex MTT.

The first objective of this thesis is to develop new feature models that can explicitly

consider the correlation between kinematics and feature of a target. To achieve this

goal, we first develop new feature models (e.g., target dimensions) dependent on

the target behavior (i.e., distance between the sensor and target, and the aspect-

angle between the longitudinal axis of the target and the axis of sensor line of sight)

via rigorous mathematical derivations. With the feature models developed, we then

propose a data association filter which can facilitate the feature models dependent on

the target kinematics to reduce the misassociations.

The second objective of this thesis is to develop a new state estimation algorithm

that can explicitly consider the measurement origin uncertainty. To mathematically

describe the measurement origin uncertainty, a new covariance update equation of

a Gaussian component is introduced. This equation computes the estimate error

covariance of a newly generated Gaussian component corresponding to each measure-

ment conditioned on the uncertainty in the measurement origin, i.e. whether: 1)

measurement is clutter; 2) measurement is originated from a target; and 3) there is

no measurement.

Third objective of this thesis is to develop a multiple model GM-PHD filter

with state-dependent mode transition probabilities which are represented as Gaussian

probability density functions, and a new multi-target tracker based on the GM-PHD

filter with JMS models, referred to as the GM-PHD tracker with JMS models, which
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provides both the state estimates of maneuvering targets and their identities (or la-

bels).

1.3 Outline of Thesis

The rest of the thesis is organized as follows: In Chapter 2, kinematic and feature

models of a target and the data association algorithm based on the JPDAF framework

integrated with the target dynamic model-based feature are presented. In Chapter 3,

the proposed GM-PHD filter that explicitly accounts for the measurement origin un-

certainty for the FISST-based filter. Chapter 4 proposes a new GM-PHD filter with

SD-JMS models and a new GM-PHD tracker with JMS models. Finally, a summary

of the thesis and future research direction is presented in Chapter 5. The appen-

dices provide the detailed proofs of the Lemmas developed to support the proposed

approaches in this research.
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2. DYNAMIC MODEL-BASED FEATURE AIDED DATA

ASSOCIATION FILTER IN TARGET TRACKING

This chapter discusses feature models dependent on the kinematic models of a tar-

get to improve the performance of the data association-based filters. In Section 2.1,

the motivation and literature review for this problem are presented. In Section 2.2,

kinematic and feature models of a target are mathematically formulated. A target

dynamic model-based feature, integrated into the data association algorithm based

on the JPDAF framework is presented in Section 2.3. In Section 2.4, the perfor-

mance of the proposed feature models and the proposed data association algorithm

is demonstrated via comparison with the existing feature model and the well-known

JPDAF-AI algorithms, respectively.

2.1 Background and Motivation

Target tracking in a noisy environment necessitates data association to distinguish

the true target measurement from clutter. If the clutter or false measurements are

used for tracking targets, the resulting tracks could be diverged, merged, or swapped,

causing the loss of crucial information for tracking the targets [1,2]. Therefore, a num-

ber of data association algorithms have been proposed to assign proper measurements

to the tracks.

To estimate the accurate target state in a noisy environment including clutter

or spurious measurements, the distance between the expected output of the target’s

dynamic propagation model and the measurement is used in most data association

algorithms such as the NNF, PNNF, PDAF, and MHT [3,5–8]. On the other hand, the

SNF and PSNF use the feature (e.g., amplitude, RCS, or dimensions) of measurement

signal to decide which measurement is generated from a target [9, 10]. To increase
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the performance of the data association algorithms in heavily cluttered and/or low

SNR environments, the PDAF-AI and JPDAF-AI that exploit both the distance and

the amplitude information were proposed for tracking a single target and multiple

targets, respectively [11,12].

The conventional data association algorithms using amplitude information, how-

ever, are based on the restrictive assumption that a measurement with high amplitude

is originated from a target, while those with smaller amplitude are from clutter. How-

ever, in some target tracking scenarios, the amplitude of false measurements could

be stronger than that of the target to deceive the position of the target. For exam-

ple, Figure 2.1(a) shows that a fighter jet launches an anti-missile system or flares

to distract the target tracking system with an infrared sensor. In this case, the tem-

peratures of flares are much higher (2,500 degrees Celsius) than that of the fighter

(1,200 degrees Celsius) [17,18]. As a result, the target tracking system on the missile

is likely to lock on a false measurement instead of the fighter. Furthermore, the con-

ventional data association algorithms utilize a single statistical model for representing

the amplitudes of multiple targets. However, the signals for individual targets could

have different amplitudes based on the RCSs which are determined by the target di-

mensions, the distance between the target and a radar, and the aspect-angle between

the heading and the line of sight of the target. For instance, Figure 2.1(b) shows

the image of a port surveilled by a radar, where the signals from an oil tanker and a

tugboat have quite different RCSs due to their dimensions.

In general, the RCS consists of a constant RCS dependent on the dimensions of

a target and RCS fluctuation due to noise in radar measurements when the target

does not move [19, 20]. The RCS fluctuation can be expressed in terms of stochastic

models but it is difficult to compute the constant RCS since it changes corresponding

to the motion of a target relative to a radar. However, the constant RCS can be

estimated, and the estimated constant RCS is used in the FAT approaches to reduce

the divergence of the estimation error or loss of a target [21–24]. Despite the promising

capability of the estimated constant RCS, the existing FAT approaches model the
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Tugboat

Oil tanker

Fig. 2.1. Examples of distraction of amplitude-based target tracking sys-
tem [28–30]

constant RCS as either constant or slowly varying parameters with respect to the

target kinematic state because of a lack of information on the relation between the

feature state and the kinematic state [25–27].

In this thesis, we attempt to exploit the feature state of a target depending on

the target kinematics to improve the trajectory tracking performance of the data

association filter. First, we propose two models to estimate the feature state (e.g.,

dimensions) of a target depending on the distance between the target and a radar, and

the aspect-angle. To derive the first model, we consider the variation of the constant

RCS corresponding to the distance in the near-field region while the RCS is assumed to

be independent of the distance in the far-field region [31]. To derive the second model,

we use the relationship between the RCS measured by a radar and the predicted RCS

corresponding to the aspect-angle. We then integrate the feature state dependent on

the kinematic state into the data association filter within the well-known JPDAF for

tracking multiple targets in the presence of clutter [32]. We call the proposed data

association filter as the JPDAF-TKSDFI. The feature state in the proposed JPDAF-

TKSDFI can be estimated with state estimation algorithms (e.g., KF, EKF, or IMMF)

with the proposed TKSD feature models [33–35]. With the estimated feature state,

the proposed JPDAF-TKSDFI can select validated measurements more accurately
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by rejecting clutter which can cause track divergence, coalescence or swap problems.

Then the probability that a target-originated measurement is associated to a track

can be increased. The performance of the proposed data association algorithm is

demonstrated with an illustrative simulation example in terms of track continuity,

and further tested with real data collected from the surveillance radar in the vessel

traffic tracking system.

2.2 System State Model

In this section, we introduce the target kinematic models and tractable feature

models that account well for the feature state dependent on the kinematics of a target.

For the target kinematic models, most target tracking algorithms treat a target as

a point object. On the other hand, the target feature information comes from a

rigid body model. To derive the target models, we consider the linear discrete-time

state-space model as follows:

xk = Fk−1xk−1 + wk−1 (2.1)

zk = Hkxk + vk (2.2)

where xk =
[
xTm,k xTf,k

]T
and zk =

[
zTm,k zTf,k

]T
are the target state and measure-

ment at time step k, respectively. The target state, xk consists of the kinematic

state, xm,k and the feature state, xf,k. The measurement, zk consists of the kine-

matic measurement, zm,k and the feature measurement, zf,k. The process noise, wk−1

and the measurement noise, vk are assumed to be uncorrelated zero mean, Gaussian

noises, with known covariances, Qk−1 and Rk, respectively. The state transition and

observation matrices are given by:

Fk−1 =

Fm,k−1 0

0 Ff,k−1

 , Hk =

Hm,k

Hf,k

 (2.3)

where Fm,k−1 and Ff,k−1 are the kinematic and feature state transition matrices,

respectively. Hm,k and Hf,k are the kinematic and feature observation matrices, re-

spectively.
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2.2.1 Models for Kinematic State

Many models for the kinematic state, xm,k have been proposed [36]. In this paper,

we consider two models among those models: the constant velocity model for a non-

maneuvering target and the coordinated turn model with a known turn rate for

a maneuvering target. To describe the kinematic state of the target, we consider

2D horizontal motion xm,k =
[
Px,k Py,k Vx,k Vy,k

]T
in the Cartesian coordinate

system. We assume a radar can obtain the kinematic measurement which represents

the position of a target, zm,k =
[
zx,k zy,k

]T
in the Cartesian coordinate system.

Constant Velocity Model

This model assumes that a target moves with constant speed. The kinematic state

transition matrix of the discrete-time CV model is given by [36]:

Fm,k−1 =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 (2.4)

where T is the sampling interval. The kinematic observation matrix of this model is:

Hm,k =

1 0 0 0

0 1 0 0

 (2.5)
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Coordinated Turn Model with Known Turn Rate

This model presumes that a target maneuvers with constant speed and constant

angular (or turn) rate, ωk−1. The kinematic state transition matrix of the discrete-

time CT model is given by [36]:

Fm,k−1 =


1 0 sinωk−1T

ωk−1
−1−cosωk−1T

ωk−1

0 1 1−cosωk−1T

ωk−1

sinωk−1T

ωk−1

0 0 cosωk−1T − sinωk−1T

0 0 sinωk−1T cosωk−1T

 (2.6)

where the angular rate can be predefined by a constant value or calculated as follows:

ωk−1 =
{

tan−1
Vy,k−1
Vx,k−1

− tan−1
Vy,k−2
Vx,k−2

}
/T (2.7)

For this model, the kinematic observation matrix is the same as that of the CV model.

2.2.2 Models for Feature State

In this section, we propose two models to estimate the feature state of a target

dependent on the distance between a target and a radar, and the aspect-angle. Al-

though the feature state can include amplitude, dimensions, RCS, or other target

signature information, in this paper, we consider target dimensions to describe the

feature state. Without loss of generality, the following assumptions are used to derive

two models for the feature state.

Assumption 1 The dimensions of a target do not change.

Assumption 2 The heading of a target is the same as its velocity.

Target Dimensions with Distance Model

The RCS is mostly defined in the far-field region, which is independent of the

distance between a radar and a target. In the near-field region, however, this definition
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of the RCS cannot be used to estimate the feature state of a target since the RCS

changes depending on the distance between the radar and the target [31, 37]. To

accurately estimate the feature state of a target, we propose an elaborate feature

model considering the distance between the target and the radar. In this section, we

assume that a target’s shape is approximated as a circle. Under Assumption 1, the

feature state of the TDD model is the radius of a target, xf,k = rk, and thus, the

feature state transition matrix of the discrete-time TDD model is given by [27]:

Ff,k−1 = 1 (2.8)

In this section, we assume that the radar can obtain the RCS as the feature

measurement. The radius of a target does not change under Assumption 1, but the

constant RCS varies depending on the distance between the target and the radar

when it is measured by the radar [31, 37]. To derive the feature observation matrix,

we consider the non-linear discrete-time observation model for the RCS of a circular

target as follows [31]:

zf,k = 2πd2k

{
1− cos

(hr2k
dk

)}
+ vf,k (2.9)

where h is the wave number of the radar signal. dk is the distance between the radar

and the target. The feature measurement noise, vf,k is Gaussian noise with mean

zero and covariance, Rf,k. Based on the observation model, the feature observation

matrix of this model is obtained as:

Hf,k =
δzf,k
δrk

= 4πdkhrk sin(
hr2k
dk

) (2.10)

Target Dimensions with Aspect-angle Model

In this section, we propose a model for the feature state of a target dependent on

the aspect-angle between the heading and the line of sight of the target. A target is

assumed to have an ellipsoidal shape. Under Assumption 1, the feature state of the

TDA model is the dimensions of a target, xf,k =
[
ak bk

]T
where ak and bk are the
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semi-major and the semi-minor axes of a target, and thus, the feature state transition

matrix of the discrete-time TDA model is given by:

Ff,k−1 =

1 0

0 1

 (2.11)

Under Assumption 2, Figure 2.2(a) shows the velocity, Vk, aspect-angle, θk and

specular point, SPk of an ellipsoidal target with X as the axis of symmetry. We

assume that the radar can obtain the dimensions of the RCS as the feature mea-

surement. Although the dimensions of a target do not change under Assumption 1,

the semi-major and semi-minor axes of the RCS measured by a radar, zak and zbk

vary corresponding to the aspect-angle, respectively [19, 38]. To derive the feature

observation matrix, we need to derive a formula for the semi-major and semi-minor

axes of the measured RCS corresponding to the aspect-angle at the specular point.

To derive the formula, we first consider the non-linear discrete-time RCS, σk of an

ellipsoidal target as follows [38]:

σk ≈ πrL,krS,k (2.12)

where rL,k and rS,k are the radii of curvature at the specular point in the direction

of 0 and 90 degrees, respectively. Then, we derive the following Lemma 1 which will

be used to compute the radii of curvature corresponding to the aspect-angle at a

specular point.

Lemma 1 Under Assumptions 1 and 2, the radii of curvature in the direction of

0 and 90 degree, rL,k(θk) and rS,k(θk) corresponding to the aspect-angle, θk at the

specular point, SPk are given by:

rL,k(θk) =
ak

2

bk

[
1 + ((

bk
ak

)2 − 1)
a2k cos2 θk

a2k cos2 θk + b2k sin2 θk

]3/2
(2.13)

rS,k(θk) = bk

√
1 + ((

bk
ak

)2 − 1)
a2k cos2 θk

a2k cos2 θk + b2k sin2 θk
(2.14)

The proof of Lemma 1 is given in Appendix A.
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Note that if the specular point is located at the intersection point between the

red ellipse and the y axis in Figure 2.2(a) (i.e., the aspect-angle is 90 degrees), then

the left principal cross section (blue ellipse) in Figure 2.2(b) can be expressed by the

actual semi-major axis and semi-minor axis of the target, ak and bk, respectively.

Also, the right principal cross section (red ellipse) in Figure 2.2(b) becomes a circle

with its radius equal to the actual semi-minor axis of the target, bk. However, as the

aspect-angle changes, the major-axis and minor-axis of the left principal cross section

in Figure 2.2(b) are changed to the semi-major axis and the semi-minor axis of the

RCS measured by the radar, zak and zbk . Also, the minor-axis of the right principal

cross section in Figure 2.2(b) is changed to the semi-minor axis of the RCS measured

by the radar, zbk . Hence, the radius of curvature of the left and right principal cross

sections in Figure 2.2(b) are given by:

r̄L,k =
z2ak
zbk

(2.15)

r̄S,k =
b2k
zbk

(2.16)

Since the RCS computed by the predicted radii of curvature in (2.13) and (2.14)

is the same as the RCS computed by the radii of curvature in (2.15) and (2.16), the

semi-major and semi-minor axes of the measured RCS, zak(θk) and zbk(θk) dependent

on the aspect-angle can be described as follows:

zak(θk) = ak

(
1 + ((

bk
ak

)2 − 1)
a2k cos2 θk

a2k cos2 θk + b2k sin2 θk

)1/2
(2.17)

zbk(θk) = bk

(
1 + ((

bk
ak

)2 − 1)
a2k cos2 θk

a2k cos2 θk + b2k sin2 θk

)−1/2
(2.18)

With (2.17) and (2.18), we define the feature observation matrix of the discrete-

time TDA model as follows:

Hf,k =

 δzak (θk)δak

δzak (θk)

δbk
δzbk (θk)

δak

δzbk (θk)

δbk

 (2.19)

The elements of the matrix, Hf,k are given in Appendix B.
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2.3 Joint Probability Data Association Filter with Target Kinematic-

State-Dependent Feature Information

In this section, we now present a new data association algorithm with TKSD

feature information, based on the JPDAF for tracking multiple targets. Figure 2.3

shows the structure of the proposed JPDAF-TKSDFI. As illustrated, the kinematic

state at time step k − 1 is predicted, and then, the predicted kinematic state is used

to predict the feature state since the feature state depends on the kinematic state

(i.e., the distance between the target and the radar, or the aspect-angle between the

heading and the line of sight of the target). Note that the propose the existing single

target data association filters such as the NNF, PNNF and PDAF but also to the

multi-target data association filters such as the MHT.

2.3.1 Data Association

Measurement Validation

This process selects validated measurements to reduce the processing load in the

data association and increase the association probability that the true measurement

can be associated to the target. To enhance the accuracy of the clutter-rejection, both

the kinematic and feature states are used in the measurement validation process. Let

zk represent the set of measurements obtained by a radar at time step k, and {zjk}
Tk
j=1

where Tk denotes the number of measurements at time step k. We use superscript i

to represent a track and possible target that track i may be following. Let ziv,k be the

set of validated measurements of the i-th track at time step k, and ziv,k = {zi,lv,k}
T i
k
l=1

where T ik is the number of measurements in the validation region of the i-th track at

time step k. To make the set of validated measurements for each track, we need to

define the validation matrix as follows:

Ω = [Di,j
k ] i = 1, ..., N, j = 1, ..., Tk (2.20)
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where N denotes the number of tracks. The NDS, Di,j
k of the j-th measurement

corresponding to the i-th track is defined as [32]:

Di,j
k = (zjk − ẑ

i
k|k−1)

T (Sik)
−1(zjk − ẑ

i
k|k−1)

= (νi,jk )T (Sik)
−1νi,jk (2.21)

where Sik is the covariance of the residual, νi,jk of the i-th track, and ẑik|k−1 is the

predicted measurement. The validated measurement of the track corresponding to

the column of Ω is one unit which has the smallest NDS that is less than the valida-

tion region after scanning Ω by a column (i.e., a measurement can be the validated

measurement of one track). The validation region is identified as a region centered

at the predicted measurement of a target where the measurement is expected to be

for the target. The region is given by [32]:

Ri
γ = {zi,jv,k : Di,j

k ≤ γ} (2.22)

where
√
γ is called the region size which depends on the variance of both the mea-

surement noise and the predicted measurement.

Remark 1 Most data association algorithms use only the position estimate to find

the validated measurements via the measurement validation process. In this case, the

measurements which are closely spaced could be assigned to a target or targets that

are not related to the measurements even if they have different feature state values

(e.g., RCS or dimensions). With both the kinematic and feature state estimates, the

measurement validation process can more precisely remove measurements which are

irrelevant to the target being tracked. Especially, the data association algorithms us-

ing the association probabilities of the validated measurements such as PNNF, PSNF,

PDAF and JPDAF can have an accurate estimate since the association probability

increases as the number of validated measurements decreases. Furthermore, in multi-

target tracking, the feature state can help the data association algorithms to reject

clutter and the measurements originated from other targets. Hence, the track coales-

cence or swap can be reduced.
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Association Probability

Denote association events as Hi,l
k = {zi,lv,k is originated from the target being fol-

lowed by the i-th track}, l = 1, 2, . . . , T ik and Hi,0
k = {none of the measurements are

originated from the target being followed by the i-th track}. The association prob-

ability, βi,lk of the l-th measurement originating from the target being followed by

the i-th track is expressed as the likelihood that all of the measurements lie in the

validation region [32]:

βi,lk = p{Hi,l
k |zk} =


ei,lk

bk+
∑Ti

k
j=1 e

i,j
k

l = 1, . . . , T ik

bk

bk+
∑Ti

k
j=1 e

i,j
k

l = 0
(2.23)

where

ei,lk =
PDVDl

k
Λi,lk

T ik
(2.24)

bk = T ik

(
1−PDPG

PDPGV
D

i,l
k

)
is the probability that none of the validated measurements are

target-originated. PD is the detection probability, and PG is the probability that the

target falls inside the validation region. The volume of the n-dimensional NDS, Di,l
k

is given by:

VDi,l
k

= Cn|Sik|
1
2 (Di,l

k )
n
2 (2.25)

where Cn is the volume of the n-dimensional unit hypersphere given by [5]:

Cn =
πn/2

Γ (n/2 + 1)
(2.26)

Λi,lk is the measurement-to-track likelihood between the predicted measurement of the

i-th track and the l-th measurement given by [32]:

Λi,lk =
1√
|2πSk|

exp
(
− 1

2
(νi,lk )T (Sik)

−1νi,lk

)
(2.27)

Note that the data association events are mutually exclusive and collectively exhaus-

tive, i.e.,
∑T i

k
l=0 β

i,l
k = 1.
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Remark 2 To compute the likelihood of a measurement, the conventional data asso-

ciation algorithms assume that the feature measurement of a target is independent of

its kinematic measurement, which implies that [11, 12, 24]:

Λk = p(zm,k|Zm,k)p(zf,k|Zf,k) (2.28)

However, the proposed data association algorithm using the feature state dependent

on the kinematic state does not need this assumption. Hence, the proposed algorithm

can account for the more general case.

2.3.2 State Estimation

State Prediction

This process is to predict the states of targets at time step k. The prediction

equations for the JPDAF-TKSDFI are given as follows [32]:

x̂ik|k−1 = Fk−1x̂
i
k−1|k−1 (2.29)

P̂ i
k|k−1 = Fk−1P̂

i
k−1|k−1F

T
k−1 +Qk−1 (2.30)

where x̂ik−1|k−1 and P̂ i
k−1|k−1 denote the state estimate and covariance of the state for

the i-th track at time step k− 1, respectively. x̂ik|k−1 and P̂ i
k|k−1 denote the predicted

estimate and covariance of the estimate for the i-th track at time step k, respectively.

We can compute the predicted measurement ẑik|k−1 =
[
ẑim,k|k−1 ẑif,k|k−1

]T
and residual

covariance Sik as follows:

ẑim,k|k−1 = Hm,kx̂
i
m,k|k−1 (2.31)

ẑif,k|k−1 = hf (x̂
i
k|k−1) (2.32)

Sik = HkP̂
i
k|k−1H

T
k +Rk (2.33)

where the measurement noise covariance Rk is given by:

Rk = diag([Rm,k, Rf,k]) (2.34)
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where diag(•) denotes the diagonal matrix whose diagonal elements are given by vec-

tor •. Rm,k and Rf,k denote the kinematic and feature measurement noise covariances,

respectively. The predicted measurement and the residual covariance are used to get

the validated measurements and reject clutter in the measurement validation process.

State Correction

This process is to update the states of targets at time step k. With the association

probabilities, the update equations for the JPDAF-TKSDFI are given by [32]:

x̂ik|k = x̂ik|k−1 +Ki
k

( T i
k∑

l=1

βi,lk ν
i,l
k

)
(2.35)

P̂ i
k|k = P̂ i

k|k−1β
i,0
k + [1− βi,0k ]P̂ i,c

k|k + P̃ i
k (2.36)

where Ki
k = P̂ i

k|k−1H
T
k (Sik)

−1 is the Kalman gain. The covariance of the state with

the correct measurement is given by [32]:

P̂ i,c
k|k = [In −Ki

kHk]P̂
i
k|k−1 (2.37)

where In is the n-dimensional identity matrix. The spread of the residual term is

given by [32]:

P̃ i
k = Ki

k

[ T i
k∑

l=1

βi,lk ν
i,l
k (νi,lk )T − νi,lk (νi,lk )T

]
(Ki

k)
T (2.38)

2.4 Simulation Results

In this section, the performance of the proposed feature models is demonstrated

with the video of the real radar screen, in comparison to the feature model inde-

pendent of the kinematic state. Furthermore, we compare the performance of the

proposed data association algorithm using the proposed feature models with the well-

known JPDAF and the JPDAF-AI.
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Fig. 2.4. Distance between the target and the radar, and RCS of the
target [37]

2.4.1 Target Kinematic-State-Dependent Feature Models Results

To evaluate the performance of the proposed feature models, we compare the

estimates of the tracking algorithms using the proposed feature models with that of

the tracking algorithm using the feature model independent of the kinematic state.

We utilize the videos of the radar screens of the ship and VTS system to evaluate the

performance of the proposed TDD and TDA models, respectively.

Target Dimensions with Distance Model Results

We extract one target information from the video of the marine radar screen on the

ship for 9 time steps [37]. Figure 2.4 shows the distance between the target and the

radar, and the RCS of the target, which are extracted from the video of the radar. As

illustrated in Figure 2.4, the RCS expressed in term of the number of pixels on screen
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decreases while the target moves toward the radar. To investigate the accuracy of the

model, we compare the performance of the KF using the feature model independent

of the distance and the EKF using the proposed TDD model. Note that the EKF

is used for the TDD model since it is nonlinear. Let xf,k = rk be the feature state.

The discrete-time feature model independent of the distance and the TDD model are

represented by:

xf,k = xf,k−1 +
T 2

2
wf,k−1 (2.39)

zf,k =


xf,k + vf,k Feature model independent of distance

2πd2k

{
1− cos

(hr2k
dk

)}
+ vf,k TDD model

(2.40)

where the sampling interval, T is 10 minutes. The process noise, wf,k−1 is Gaussian

with zero mean and 0.01 standard deviation. The feature measurement noise, vf,k is

Gaussian with zero mean and the covariance Rf,k = diag([102, 102]).

Figure 2.5 illustrates the measurement and the estimates of the RCS computed by

the KF using the feature model independent of the distance between the target and

the radar, and the EKF using the proposed TDD model. The blue, red and green

lines represent the measurement, the estimates of the RCS computed by the KF and

the EKF, respectively. As illustrated in Figure 2.5, the estimate computed by the

KF using the feature model independent of the distance is significantly deviated from

the measurement as time goes by. This could severely degrade the performance of

the target tracking system if the feature model without considering the distance is

used in the data association algorithm. However, the estimate computed by the EKF

using our proposed TDD model is close to the measurement, which demonstrates its

superior performance.

Target Dimensions with Aspect-angle Model Results

In this section, the performance of the proposed TDA model is demonstrated with

the ship surveillance data extracted from the radar screen of the VTS system [39].



23

1 2 3 4 5 6 7 8 9
Time (step)

200

400

600

800

1000

1200

1400

1600

R
C

S 
(p

ix
el

)

Measurement
Estimate with Feature model independent of kinematics
Estimate with Feature model depending on kinematics (TDD)

Fig. 2.5. Measurement and estimates computed by the KF using feature
model independent of distance and the EKF using TDD model



24

100 110 120 130 140 150 160 170
X axis (m)

200

250

300

Y 
ax

is
 (m

)

(a) Target position

1 1.5 2 2.5 3 3.5 4
Time (step)

60

70

80

90

an
gl

e 
(d

eg
re

e)

(b) Aspect angle

1 1.5 2 2.5 3 3.5 4
Time (step)

60

70

80

90

an
gl

e 
(d

eg
re

e)

(b) Aspect angle

18 20 22 24 26 28 30 32
Semi-major axis (m)

11

12

13

14

Se
m

i-m
in

or
 a

xi
s 

(m
) (c) Target size

Fig. 2.6. Position, aspect-angle and dimensions of measurement [39]
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Figure 2.6 shows the position, aspect-angle and dimensions of the measurement.

From time step 3 to time step 4, the semi-major axis of the RCS changes rapidly

from 29 meters to 19 meters since the aspect-angle suddenly changes from 82 degrees

to 68 degrees. To investigate the accuracy of the proposed model, we compare the

performance of the KF using the feature model without considering the aspect-angle

and the EKF using the TDA model. Note that similarly, the EKF is used for the

TDA model since it is nonlinear. Let xf,k =
[
ak bk

]T
be the feature state. The

discrete-time feature model independent of the aspect-angle and the TDA model are

represented by:

xf,k =

1 0

0 1

xf,k−1 +

T 2

2
0

0 T 2

2

wf,k−1 (2.41)

where the sampling interval, T is 5 seconds. The process noise, wf,k−1 is Gaussian

with zero mean and 0.5 standard deviation. The feature measurement represents the

dimensions of the target, zf,k =
[
zak zbk

]T
. The observation models of the feature

state are given by:

zf,k =



1 0

0 1

xf,k + vf,k
Feature model

independent of aspect-angle

 ak
(

1 + (( bk
ak

)2 − 1)
a2k cos2 θk

a2k cos2 θk+b
2
k sin2 θk

)1/2
bk

(
1 + (( bk

ak
)2 − 1)

a2k cos2 θk
a2k cos2 θk+b

2
k sin2 θk

)−1/2


+vf,k TDA model

(2.42)

where the feature measurement noise vf,k is Gaussian with zero mean and the covari-

ance Rf,k = diag([0.32, 0.32]).

Figure 2.7 shows the measurement and the estimates computed by the KF using

the feature model independent of the aspect-angle and the EKF using the TDA

model. As illustrated in Figure 2.7, the difference between the measurement and the

estimate computed by the KF denoted as the red line is getting bigger as time goes by.

However, the estimate computed by the EKF denoted as the green line is similar to
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Fig. 2.7. Measurement and estimates computed by the KF using feature
model independent of aspect-angle and the EKF using TDA model

the measurement since the TDA model explicitly accounts for the correlation between

the target kinematic state and the feature state. As a result, improving the accuracy

of the feature state estimates computed by the EKF using the proposed TDD or TDA

model could reduce the track loss of the target in the presence of clutter if the models

are implemented in the data association algorithms.

2.4.2 Joint Probabilistic Data Association Filter with Target Kinematic

State-Dependent Feature Information Results

In this section, two scenarios are considered to demonstrate the performance of

the proposed data association algorithm. In order to evaluate the performance of the

proposed JPDA-TKSDFI versus the well-known JPDAF and JPDAF-AI in terms of

the numbers of the track losses, the first scenario tests whether or not the three algo-



27

rithms can correctly maintain the tracks for two targets in noisy environments with

a range of the clutter density and the target detection probability. In the second sce-

nario, the multi-target tracking ability of the JPDAF and proposed JPDAF-TKSDFI

is tested by comparing the target state estimates computed by each filter with the

data extracted from the radar screen of the VTS system.

Scenario 1

In this scenario, the performance of the proposed JPDAF-TKSDFI is demon-

strated with an illustrative multi-target tracking example, in comparison to the orig-

inal JPDAF and JPDAF-AI. To test the proposed algorithm in the case shown in

Figure 2.1(b), the example considers that two ships with different sizes are crossing

in the presence of clutter. The radii of target 1 and target 2 are 6 m and 50 m,

respectively. The amplitudes of target 1 and target 2 are 8 dB and 30 dB, respec-

tively. We generate clutter whose radius and amplitude are 5 m and 15 dB in the

surveillance ares of [−1500, 1500]× [−500, 4000] m, respectively. Figure 2.8 shows the

trajectories of the two targets and clutter (the average number of the clutter is 100

in the surveillance region) which are denoted as the black circle and the blue cross,

respectively. The state of a target is composed of its position, velocity, and radius:

xk =
[
Px,k Py,k Vx,k Vy,k rk

]T
. The discrete-time dynamic model of the target is

represented by:

xk =


I2 TI2 02×1

02×2 I2 02×1

01×2 01×2 1

xk−1 +


T 2

2
I2 02×1

TI2 02×1

01×2
T 2

2

wk−1 (2.43)

where the sampling interval, T is 1 second and the total simulation time is 400

seconds. The process noise, wk denotes Gaussian with zero mean and 0.1 standard

deviation. The measurement consists of the position and dimensions of the target,
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zk =
[
zm,k zf,k

]T
=
[
Pzx,k Pzy ,k zRCSk

]T
. The observation model equation is

represented by:

zm,k =

1 0 0 0 0

0 1 0 0 0

xk + vk

zf,k = 2πd2k

{
1− cos

(hr2k
dk

)}
+ vf,k (2.44)

where the measurement noise, vk is assumed to be Gaussian with zero mean and the

following covariance, Rk = diag([102, 102, 1]).

In order to compare the performance of the track persistence between the three

filters, we perform Monte Carlo simulation of 500 runs with the different detection

probabilities and the average number of clutter values. Figures 2.9 and 2.10, and

Table 1 show the number of track losses of three filters, which is defined as an event

that the distance between the target and its track is longer than 50 m. The number

of track losses is the sum of the numbers of track losses of target 1 and target 2. From

Figures 2.9 and 2.10, and Table 1, the number of track losses of the JDAF and that

of the JPDAF-AI are significantly high in the heavily cluttered and low detection

probability environment since the filters cannot accurately distinguish the origin of

the measurement when two targets are very close, and the amplitude of target 1 is less

than that of clutter. However, the number of track losses of the proposed JPDAF-

TKSDFI is very low even when the clutter density is high and/or the detection

probability is low. On the whole, the proposed JPDAF-TKSDFI has much better

performance than the JPDAF and JPDAF-AI in persistent target tracking, and thus

is more robust than the JPDAF and JPDAF-AI for the closely spaced targets and in

the heavily cluttered environment.

To show the computational complexity of the proposed algorithm, a Monte Carlo

simulation with 500 runs was performed and average execution times of the proposed

JPDAF-TKSDFI as well as JPDAF and JPDAF-AI were compared. For this simula-

tion, we used a computer which has a 2.6 GHz Intel Core i5 processor and 8 GB 1600

MHz DDR3 memory. As shown in Figure 2.11, the execution time of the proposed
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Fig. 2.12. Screen shot of the radar video of the Færder seilasen with
C-Scope radar [40]

algorithm is higher than that of two other filters due to the augmented feature state

of the proposed algorithm, but the growth rate of the proposed algorithm is similar

to that of two other filters as the number of clutter increases.

Scenario 2

In comparison to the original JPDAF, the performance of the proposed JPDAF-

TKSDFI is demonstrated with an illustrative multi-target tracking example in this

scenario. Figure 2.12 shows a screen shot of the radar video of the Færder seilasen

with C-Scope radar in Norway [40]. In the video, the total area is 5 km × 2.8 km and

there are approximately 1,000 targets. For comparing the performance of the JPDAF

and that of the proposed JPDAF-TKSDFI, we extract information on two targets

from the area within the red box. The state of a target is composed of its position,
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velocity, and dimensions: xk =
[
Px,k Py,k Vx,k Vy,k ak bk

]T
. The discrete-time

dynamic model of the target is represented by:

xk =


I2 TI2 02×2

02×2 I2 02×2

02×2 02×2 I2

xk−1 +


T 2

2
I2 02×2

TI2 02×2

02×2
T 2

2
I2

wk−1 (2.45)

where the sampling interval, T is 1 second. The process noise, wk denotes Gaussian

with zero mean and 0.1 standard deviation. The measurement consists of the position

and dimensions of the target, zk =
[
zm,k zf,k

]T
=
[
Pzx,k Pzy ,k zak zbk

]T
. The

observation model equation is represented by:

zm,k =

1 0 0 0 0 0

0 1 0 0 0 0

xk + vk

zf,k =

 ak
(

1 + (( bk
ak

)2 − 1)
a2k cos2 θk

a2k cos2 θk+b
2
k sin2 θk

)1/2
bk

(
1 + (( bk

ak
)2 − 1)

a2k cos2 θk
a2k cos2 θk+b

2
k sin2 θk

)−1/2
+ vk (2.46)

where the measurement noise, vk is assumed to be Gaussian with zero mean and the

following covariance, Rk = diag([32, 32, 1, 1]).

Figure 2.13 shows the estimates of the JPDAF and the proposed JPDAF-TKSDFI.

For 18 time steps, the measurements denoted as the black crosses are originated from

the two targets and clutter from the terrain in the lower right corner of Figure 2.13.

Target 1 moves at a bearing of N45oE from (861, 148) m, and target 2 moves at a

bearing of S45oW from (905, 193) m. The measurements of two targets extracted

using the Fourier transform are merged when two targets are very close. When the

two targets are closely spaced and the measurements are merged, the JPDAF uses

the merged measurement to update the track 2 for target 2. Thus, the red asterisk

trajectory (track 2) almost stay at the same place over time. Since there remains

only the measurement from the terrain in the validation region of the track 1, the

track 1 is likely to use the measurement which is deviated from the actual position of

target 1. On the other hand, the proposed JPDAF-TKSDFI can identity the merged

measurement and terrain measurement as clutter since the difference between the
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estimated target dimensions and the measured ones are large. Therefore, the proposed

JPDA-TKSDFI can accurately keep track of both targets even in this difficult case

where two targets get close to each other in the cluttered environment.
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3. GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS

DENSITY FILTER AGAINST MEASUREMENT ORIGIN

UNCERTAINTY

This chapter discusses a new GM-PHD filter which explicitly considers the uncertainty

in the measurement origin. In Section 3.1, the motivation and literature review for

this problem are presented. In Section 3.2, the models for multiple target tracking

and the PHD filter are summarized. Section 3.3 presents a new GM-PHD filter

that explicitly accounts for the measurement origin uncertainty. In Section 3.4, we

demonstrate the performance of the proposed GM-PHD filter via comparison with

the existing GM-PHD and its variant, N-scan GM-PHD filter.

3.1 Background and Motivation

MTT is the problem that assigns the measurements or identifications to tracks of

targets and manages multiple tracks over time [1,3]. Initially, many MTT algorithms

have been developed while considering the known and fixed number of targets [1,

2, 4, 41]. To further investigate MTT under the varying number of targets, Musicki

et al. have proposed the JIPDA algorithm that simultaneously addresses the track

initiation/termination along with each target track [13, 14]. To initiate, terminate,

and update the tracks systematically, the JIPDA computes the probability of the

individual track existence and extracts the valid sensor measurements for tracks out

of clutter, called the JPDA [15,32]. The JIPDA, however, is based on the restrictive

assumptions that the target dynamics is linear and all the noises are assumed to be

Gaussian [13,14].

To eliminate the restrictive assumptions, Mahler has proposed an MTT algorithm

using a point process theory, called the FISST [42, 43]. This method integrates the
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track initiation/termination and data association all together for MTT, while includ-

ing practical considerations such as non-uniform distribution of clutter, intermittent

transmission, etc. Despite its promising capability, the multi-target Bayesian filter

based on the FISST framework is in general computationally demanding, making

it difficult for practical implementation [44]. To address the computational com-

plexity, the PHD filter has been proposed based on RFS theory and point process

theory [44,45]. Vo et. al. have proposed the GM-PHD filter as a closed-form solution

to the PHD filter [46,47]. Unlike the majority of the conventional data association fil-

ters [5,8,9,16], the GM-PHD (and PHD) filter does not have explicit data association

(i.e., the measurement-to-track association) [44, 47]. Yazdian-Dehkordi et. al. have

proposed the penalization scheme refining the weights of the Gaussian components

due to the degradation of the estimation performance of the GM-PHD (and PHD)

filter when targets are closely spaced [48]. However, this approach is prone to lose

the estimates of targets when missed detection occurs consecutively over time. To

improve the missed estimates problem, the RGM-PHD tracker was proposed which

computes survival probability based on the state of a target and refines the weights

of the closely spaced Gaussian components [49]; and the IPHD tracker has two aux-

iliary parameters in the standard target state, named the label and probability of

existence [50]. However, these two improved approaches (RGM-PHD and IPHD) are

based on ad-hoc tuning of some key parameters without explicit formulae, making it

difficult to be implemented and generalized for other applications. To improve the

accuracy of cardinality of the target estimates (i.e., more accurate estimate of the

number of targets), the GM-CPHD filter has been proposed [51]. However, this ap-

proach suffers from not only heavy computational load in that it jointly propagates the

target posterior intensity and cardinality distribution of targets, but also the missed

estimates of targets, especially when the clutter density is high and/or the detection

probability is low. To address the missed estimates of the targets in the GM-PHD

filter, the N-scan GM-PHD filter was proposed which considers the history of weights

of Gaussian components in the last N time steps, i.e., if the number of weights of
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individual Gaussian component in the last N time steps exceeds a predefined weight

threshold (empirically chosen), then the Gaussian component will not be pruned [52].

However, the N-scan GM-PHD filter has its own problems such as defining the empir-

ical parameters and delay in computing the estimates, when targets appear and/or

disappear (since it needs N time steps to make a decision). Thus, to address the prob-

lem of the missed estimates of targets of the GM-PHD filter without suffering from

the above-mentioned issues, we have proposed a new GM-PHD filter. Our approach

explicitly considers the uncertainty in the measurement origin, i.e., whether 1) the

measurement is clutter; 2) the measurement is originated from a target; and 3) there

is no measurement [4]. To account for this uncertainty, a new error covariance update

equation has been derived which computes the estimate error covariance of a newly

generated Gaussian component corresponding to each measurement conditioned on

the above three events. Hence, the new error covariance explicitly accounts for the

uncertainty on whether a measurement is from a target or not analytically (i.e., not

ad-hoc tuning); while the original GM-PHD filter computes the same estimate error

covariances for all the newly generated Gaussian components. Different from the N-

scan GM-PHD filter, our approach does not require to collect information over N time

steps, and thus it does not suffer from time delay inherent in the N-scan GM-PHD

filter.

In addition, if the proposed filter is implemented in the GM-PHD tracker, it

can improve the trajectory tracking performance. This is because the GM-PHD

tracker [53] (which is an extension of the GM-PHD filter) has a tendency to fre-

quently lose the estimate of a target in heavily cluttered and/or low SNR environ-

ments [53,54], while the proposed filter does not. Thus, the proposed GM-PHD filter

can improve the trajectory tracking performance if it is implemented as a GM-PHD

tracker. This thesis demonstrates the performance of the proposed filter via compar-

ison with the original GM-PHD and N-scan GM-PHD filters with illustrative target

tracking examples.
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3.2 Models and Probability Hypothesis Density Filter

In this section, we introduce the state propagation and measurement models and

the PHD filter to address MTT with the RFS in the Bayesian filtering framework.

Let Xk and Zk denote the RFS of the multi-target states and the measurements

at time step k, respectively.

Xk = {x1k, . . . , x
Nk
k } (3.1)

Zk = {z1k, . . . , z
Tk
k } (3.2)

where xik ∈ RS and zjk ∈ RO denote the state of the i-th target and the j-th mea-

surement at time step k, respectively. Nk and Tk denote the number of targets and

measurements at time step k, respectively. The spaces of RFSs of the multi-target

states and measurements are Euclidean spaces RS × Nk and RO × Tk, respectively.

Since multiple targets can appear and disappear randomly in the surveillance area,

the number of targets nk can vary at each time step. Similarly, the number of mea-

surements Tk can change over time due to false measurements.

Given the state and measurement RFSs, the discrete-time Bayesian recursive fil-

tering equations for MTT are given by:

f(Xk|Z(k−1)) =

∫
f(Xk|Xk−1)f(Xk−1|Z(k−1))δXk−1 (3.3)

f(Xk|Z(k)) =
f(Zk|Xk)f(Xk|Z(k−1))∫
f(Zk|Xk)f(Xk|Z(k−1))δXk

(3.4)

where Z(k) = {Z1, . . . , Zk} is the measurement RFS sequence. f(Xk−1|Z(k−1)) is the

posterior distribution conditioned on the measurement RFS sequence Z(k−1) at time

step k − 1. f(Xk|Xk−1) is the multi-target Markov transition density. f(Xk|Z(k−1))

is the prior distribution given the measurement RFS sequence Z(k−1) at time step k.

f(Zk|Xk) is the multi-target likelihood function.
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3.2.1 State Propagation and Measurement Models

In order to determine the multi-target Markov transition density f(Xk|Xk−1), we

specify a multi-target state propagation model, i.e., a formula for the propagated

random state set Xk in terms of the previous multi-target RFS Xk−1 = {x1k−1, . . . ,

x
Nk−1

k−1 } at time step k. The state RFS propagation can be described as follows [45]:

Xk = Ξ(Xk−1) ∪ Ψ(Xk−1) ∪ Ψ0,k (3.5)

where Ξ(Xk−1) = Ξ(x1k−1) ∪ · · · ∪ Ξ(x
Nk−1

k−1 ) presents the state RFS of surviving

targets propagated from the targets at the previous time step, x1k−1, . . . , x
Nk−1

k−1 , re-

spectively. Ξ(xik−1) = ∅ (target disappearance) with probability 1 − ps(x
i
k−1) and

Ξ(xik−1) = {X(xik−1)} with probability ps(x
i
k−1), where ps(x

i
k−1) is the probability

that a target with state xik−1 will survive at time step k and X(xik−1) is a random

vector whose distribution is f(xk|xik−1). Ψ(Xk−1) = Ψ(x1k−1)∪ · · · ∪ Ψ(x
Nk−1

k−1 ) denotes

the state RFS of newly spawned targets around the targets at the previous time step,

x1k−1, . . . , x
Nk−1

k−1 , respectively. For instance, a target can be spawned when a fighter

launches a missile or a tugboat finishes towing a ship and leaves the place. Ψ0,k is

the state RFS of born targets at time step k which are independent of the previous

target states. This can happen when a target comes into the surveillance area of a

sensor.

The RFS model of the measurements from the targets can be described as [45]:

Zk = Σ(Xk) ∪ C(Xk) ∪ Ck (3.6)

where Σ(Xk) = Σ(x1k) ∪ · · · ∪ Σ(xNk
k ) presents the measurement RFS produced by

the targets whose states at current time step are x1k, . . . , x
Nk
k , respectively. Σ(xik) = ∅

(no measurement) with probability 1−pD(xik) and Σ(xik) = {Z(xik)} with probability

pD(xik), where Z(xik) is a random vector whose distribution is f(zk|xik). C(Xk) and Ck

are the measurement RFSs of clutter which are dependent on and independent of the

targets, respectively. In this thesis, the state-independent survival probability Ps and

detection probability PD, both of which are assumed to be constant are considered.
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3.2.2 Probability Hypothesis Density Filter

To alleviate the computationally demanding problem in the multi-target Bayesian

filter based on the FISST framework, the PHD filter has been proposed. The prior

equation for the PHD filter is given as follows [45]:

I(xk|Z(k−1)) = b(xk) +

∫
(Psf(xk|xk−1) + sp(xk|xk−1))I(xk−1|Z(k−1))dxk−1 (3.7)

If we assume that the prior probability distribution of multi-target is approximately

Poisson, the posterior equation for the PHD filter can be derived as [45]:

I(xk|Z(k)) w [1− PD]I(xk|Z(k−1)) +
∑
zk∈Zk

PDp(zk|xk)I(xk|Z(k−1))

λc(zk) +
∫
PDp(zk|ηk)I(ηk|Z(k−1))dηk

(3.8)

where I(xk|Z(k−1)) and I(xk|Z(k)) denote the intensities corresponding to the prior

and posterior density functions of the multiple targets, respectively. b(xk) and sp(xk|xk−1)

denote the intensities of birth and spawn RFSs, respectively. λ is the density of the

Poisson clutter measurements. c(zk) is the pdf of the Poisson clutter process. Note

that the GM-PHD filter has been proposed for an analytical solution to the PHD

filter, which is explained in detail next.

3.3 Algorithm Development

In this section, the proposed GM-PHD filter is presented in detail. First, the

filtering algorithm is presented in Section 3.1. Then, a new error covariance update

equation for a Gaussian component is derived in Section 3.2.

3.3.1 Gaussian Mixture Hypothesis Density Filtering Algorithm

The GM-PHD filter interprets the prior and posterior intensities (3.7) and (3.8)

as the Gaussian components, each can be presented as the propagation and update

structures similar to the KF. In order to derive the propagation and update of the

Gaussian components, the following assumptions are used.
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Assumption 3 The Markov density function and likelihood density function of a

single target are assumed to be Gaussian.

Assumption 4 The intensities of the birth and spawn RFSs are Gaussian mixtures

as follow [47]:

b(xk) =

Jb,k∑
j=1

wjb,kN (xk;x
j
b,k, P

j
b,k) (3.9)

sp(xk|xk−1) =

Jsp,k∑
j=1

wjsp,kN (xk;F
j
sp,k−1xk−1 + djsp,k−1, Q

j
sp,k−1) (3.10)

where N (·;m,P ) denotes the Gaussian density function with mean m and covari-

ance P . Jb,k and Jsp,k are the number of born and spawned Gaussian components at

time step k, respectively. wjb,k and wjsp,k are the weights of the j-th Gaussian com-

ponent born and spawned at time step k, respectively. xjb,k and P j
b,k are the mean

and covariance of the j-th born Gaussian component at time step k, respectively.

F j
sp,k−1xk−1 + djsp,k−1 and Qj

sp,k−1 are the mean and covariance of the j-th spawned

Gaussian component at time step k, respectively.

With Assumption 3, the posterior intensity at time step k − 1 is given by [47]:

I(xk−1|Z(k−1)) =

Jk−1|k−1∑
i=1

wik−1|k−1N (xk−1; x̂
i
k−1|k−1, P̂

i
k−1|k−1) (3.11)

where Jk−1|k−1 represents the number of posterior Gaussian components at time step

k−1. wik−1|k−1 is the posterior weight, and x̂ik−1|k−1 and P̂ i
k−1|k−1 denote the mean and

covariance of the i-th Gaussian component at time step k−1. Based on Assumptions

3 and 4, the prior intensity can be derived with a Gaussian mixture function. Then,

the prior intensity at time step k is given by [47]:

I(xk|Z(k−1)) = b(xk) + Isp(xk|Z(k−1)) + Isv(xk|Z(k−1)) (3.12)
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where Isp(xk|Z(k−1)) and Isv(xk|Z(k−1)) are the intensities with the spawned and the

survived Gaussian components, respectively. The intensity with the spawned Gaus-

sian components can be written as [47]:

Isp(xk|Z(k−1)) =

Jk−1|k−1∑
i=1

Jsp,k∑
j=1

wik−1|k−1w
j
sp,kN (xk; x̂

i,j
sp,k|k−1, P̂

i,j
sp,k|k−1) (3.13)

where

x̂i,jsp,k|k−1 = F j
sp,k−1x̂

i
k−1|k−1 + djsp,k−1 (3.14)

P̂ i,j
sp,k|k−1 = F j

sp,k−1P̂
i
k−1|k−1{F

j
sp,k−1}

T
+Qj

sp,k−1 (3.15)

and wik−1|k−1 denotes the posterior weight at time step k − 1. The intensity with the

surviving Gaussian components is given by [47]:

Isv(xk|Z(k−1)) = Ps

Jk−1|k−1∑
i=1

wik−1|k−1N (xk; x̂
i
sv,k|k−1, P̂

i
sv,k|k−1) (3.16)

where

x̂isv,k|k−1 = Fk−1x̂
i
k−1|k−1 (3.17)

P̂ i
sv,k|k−1 = Fk−1P̂

i
k−1|k−1F

T
k−1 +Qk−1 (3.18)

where Fk−1 and Qk−1 are the transition matrix for the surviving Gaussian components

and the covariance of the process noise, respectively. Based on the three intensities,

the prior intensity can be represented as a Gaussian mixture function [47]:

I(xk|Z(k−1)) =

Jk|k−1∑
i=1

wik|k−1N (xk; x̂
i
k|k−1, P̂

i
k|k−1) (3.19)

where wik|k−1 = Psw
i
k−1|k−1 denotes the prior weight from the posterior weight at time

step k−1. Jk|k−1 = Jb,k+(Jsp,k+1)×Jk−1|k−1 represents the number of prior Gaussian

components at time step k.

Then, the posterior intensity at time step k is given by [47]:

I(xk|Z(k)) w [1− PD]I(xk|Z(k−1)) +

Tk∑
l=1

Jk|k−1∑
i=1

wik|k(z
l
k)N (xk; x̂

i,l
k|k, P̂

i
k|k) (3.20)
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where

wik|k(z
l
k) =

PDw
i
k|k−1p(z

l
k|x̂ik|k−1, P̂ i

k|k−1)

λc(zlk) + PD
∑Jk|k−1

j=1 wjk|k−1p(z
l
k|x̂

j
k|k−1, P̂

j
k|k−1)

(3.21)

Ki
k = P̂ i

k|k−1H
T
k (HkP̂

i
k|k−1H

T
k +Rk)

−1
(3.22)

x̂i,lk|k = x̂ik|k−1 +Ki
k(z

l
k −Hkx̂

i
k|k−1) (3.23)

P̂ i
k|k = [I −Ki

kHk]P̂
i
k|k−1 (3.24)

where Hk is the measurement matrix, Rk is the measurement noise covariance matrix

and I is the identity matrix. Jk|k = (1 + Tk)Jk|k−1 denotes the number of posterior

Gaussian components at time step k. Note that equations (3.20) and (3.24) are

rederived in Section 3.2 because the estimate error covariance does not explicitly

account for the uncertainty on whether a measurement is from a target or not.

The prior and posterior numbers of targets are given by [47]:

N̂k|k−1 = N̂k−1|k−1

Ps +

Jsp,k∑
i=1

wisp,k

+

Jb,k∑
i=1

wib,k (3.25)

N̂k|k = N̂k|k−1[1− PD] +

Tk∑
l=1

Jk|k−1∑
i=1

wik|k(z
l
k) (3.26)

Note that the pruning and extracting procedures of the proposed GM-PHD filter

are the same as those used in the original GM-PHD filter in [47].

3.3.2 Modified Estimate Error Covariance

In this section, the uncertainty of whether the measurement used for the posterior

process comes from a true target or false measurement is taken into account. Hence,

the true/false uncertainty of the measurements used in the posterior process is math-

ematically derived and appropriately modified (3.20) and (3.24) based on uncertainty

information. In particular, the estimate error covariances are derived corresponding

to the three events that a measurement is a true target, clutter, and no measurement.

In the presence of clutter, the three events concerning a measurement can occur

at any time.
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• M0,k is the event that there is no measurement for updating the state at time

step k.

• M l
T,k is the event that the l-th measurement is the true one at time step k.

• M l
F,k is the event that the l-th measurement is the false one at time step k.

The following assumption allows for analytically deriving the new estimate error

covariance update equation while considering the uncertainty in the measurement

origin.

Assumption 5 The following statements hold:

• The targets are detected regardless of the false measurements. The detection of

both targets and clutter are independent.

• The distribution of false measurements is the independent identically distributed

(iid) uniform distribution.

• The location of a false measurement is independent of the true target and clutter

measurements at all times.

• The number of false measurements m has a Poisson distribution with the density

λ such that

µF (T ) =
(λVG)T

T !
e−λVG (3.27)

where VG is the volume of the surveillance region.

• The discrete events M l
T,k, M

l
F,k, and M0,k are independent of the previous events.

Based on Assumption 5, the conditional pdfs under events M l
T,k and M l

F,k as well

as the estimate error covariances corresponding to the three events are derived. The

proposed algorithm uses both the distance information and ordering of all the mea-

surements to evaluate the conditional probabilities that individual measurements are

from the targets for the Gaussian component.
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Probability Density Functions

In this section, the conditional probability that the l-th measurement is from a

target for a i-th Gaussian component is described. To derive the conditional proba-

bility, we need to derive the pdfs of the NDS Dl,i
k depending on the origin of the l-th

measurement where the NSD of the l-th measurement zlk corresponding to the i-th

Gaussian component is defined by [5]:

Di,l
k = (zlk − ẑik|k−1)T (Sik)

−1(zlk − ẑik|k−1)

= (νi,lk )T (Sik)
−1νi,lk (3.28)

where ẑik|k−1 = Hkx̂
i
k|k−1 denotes the predicted measurement and Sik is the covariance

of the residual νi,lk of the i-th Gaussian component, respectively. l is the order of

the measurements from the predicted measurement of i-th Gaussian component. The

probability functions derived in Lemmas 2 and 3 are used to calculate the conditional

probability that the l-th measurement is from a target for the i-th Gaussian compo-

nent.

Lemma 2 With Assumption 5, the pdf of Di,l
k conditioned on the l-th measurement

originated from a target among the Tk measurements is given by:

f(Di,l
k |M

l
T,k, Tk) =

1

Pr{M l
T,k, Tk}

(
Tk − 1

l − 1

)
((
Di,l
k

γ
)
n
2 )l−1(1− (

Di,l
k

γ
)
n
2 )Tk−l

·µF (Tk − 1)
nVDi,l

k

2Di,l
k

N (Di,l
k )U(Di,l

k ; (0, γ])PD (3.29)

where f(·|·) using a round bracket denotes a pdf and Pr{·} using a brace denotes a

probability. Pr{M l
T,k, Tk} represents the probability that the l-th measurement among

the Tk measurements is the true one. n is the dimension of the state. γ is the size of

the surveillance region. The volume of the n-dimensional NDS Di,l
k is defined as [5]:

VDi,l
k

= Cn|Sik|
1
2 (Di,l

k )
n
2 (3.30)
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The coefficient, Cn is given by:

Cn =
πn/2

Γ (n/2 + 1)
(3.31)

where the Gamma function, Γ (n) is given by:

Γ (n) =

∫ ∞
0

xn−1e−xdx (3.32)

To reduce the computational cost of the integral, in the thesis, we show the values of Cn

in the 1, 2 and 3-dimensional cases such as C1 = 2, C2 = π and C3 = 4
3
π.
(
Tk
l

)
is the

combination of l selection of the Tk measurements at time step k. N (Di,l
k ) denotes the

multivariate Gaussian pdf of the target residual under event M l
T,k, ν

i,l
k ∼ N (νi,lk ; 0, Sik)

obtained by replacing νi,lk to Di,l
k such that

N (Di,l
k ) =

1√
(2π)n|Sik|

exp{−D
i,l
k

2
} (3.33)

U(Di,l
k ;R) is a unit step function, defined by:

U(Di,l
k ;R) =

 1, Di,l
k ∈ R

0, elsewhere
(3.34)

Note that (
Di,l

k

γ
)
n
2 is the probability of the event that there is a false measurement

closer to the i-th predicted measurement than the true one. Thus, 1− (
Di,l

k

γ
)
n
2 is the

probability of the complement event. The proof of the Lemma 2 is given in Appendix

C

For event M l
F,k, the l-th measurement comes from a false measurement and has

the distance information Dl,i
k . As illustrated in Figure 3.1, there are three cases under

the assumption that the l-th measurement is a false measurement.

Case 1: The target is not detected.

Case 2: The target is detected but the NDS of the target is smaller than Di,l
k .

Case 3: The target is detected but the NDS of the target is larger than Di,l
k .
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𝑫𝒌
𝒊,𝒍

𝒍 = 𝟑

𝑻𝒌 = 𝟔

(a) Target is not detected

𝑫𝒌
𝒊,𝒍

𝒍 = 𝟑

𝑻𝒌 = 𝟔

(b) NDS of target is smaller than Di,l
k

𝑫𝒌
𝒊,𝒍

𝒍 = 𝟑

𝑻𝒌 = 𝟔

(c) NDS of target is larger than Di,l
k

: Target : selected 𝑙-th measurement: measurement

Fig. 3.1. An example of three cases conditioned on l-th measurement
originated from clutter in 2-dimensional space
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Lemma 3 With Assumption 5 and the three cases, the pdf of Di,l
k conditioned on the

l-th measurement originated from clutter among the Tk measurements is given by:

f(Di,l
k |M

l
F,k, Tk) =

1

Pr{M l
F,kTk}

(
(1− PD)fcl(D

i,l
k |Tk)µF (Tk)

+PD(1− PR(Di,l
k ))fcl(D

i,l
k |Tk − 1)µF (Tk − 1)

+PDPR(Di,l
k )fcl−1

(Di,l
k |Tk − 1)µF (Tk − 1)

)
(3.35)

where Pr{M l
F,k, Tk} represents the probability that the l-th measurement among the

Tk measurements is a false one. fcl(D
i,l
k |Tk) is the conditional pdf of NDS Di,l

k of

the l-th measurement under the assumptions that the l-th measurement comes from

clutter and the number of false measurements is Tk. PR(Di,l
k ) is the probability that

the target exists in the region with size
√
Di,l
k such that [7]

PR(Di,l
k ) =

1

2
n
2Γ (n

2
)

∫ Di,l
k

0

q
n
2
−1e−

q
2dq (3.36)

This result is proved in Appendix D.

The results of Pr{M l
T,k, Tk} and Pr{M l

F,k, Tk} are following:

Pr{M l
T,k, Tk} =

∫ ∞
0

f(Di,l
k ,M

l
T,k, Tk)dD

i,l
k (3.37)

Pr{M l
F,k, Tk} =

∫ ∞
0

f(Di,l
k ,M

l
F,k, Tk)dD

i,l
k (3.38)

It can be shown that

Pr{M l
T,k, Tk}+ Pr{M l

F,k, Tk} = (1− PD)µF (Tk) + PDµF (Tk − 1) (3.39)

This means the probability that the total number of measurements at time step k is

Tk.

With the two pdfs of Di,l
k , the conditional probability that the l-th measurement

comes from the target for the i-th Gaussian component is denoted as βi,lk and it can

be derived as:

βi,lk = Pr{M l
T,k|D

i,l
k , Tk}

=
f(Di,l

k ,M
l
T,k, Tk)

f(Di,l
k ,M

l
T,k, Tk) + f(Di,l

k ,M
l
F,k, Tk)

(3.40)
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The conditional probability is used to calculate the estimate error covariance of the

Gaussian component. The conditional probability that the l-th measurement is not

target originated from target for the i-th Gaussian component becomes 1− βi,lk .

Mean Square Error State Estimate

In this section, the error covariance of the state estimate for each Gaussian com-

ponent is derived. Let the prior and posterior estimate errors of the i-th Gaussian

component be defined as:

x̄ik|k−1 , xik − x̂ik|k−1 (3.41)

x̃ik|k , xik − x̂ik|k (3.42)

First, under event M0 where there is no measurement in the surveillance area, the

estimate error covariance of the i-th Gaussian component for the target estimate x̂ik|k

is equal to the prior estimate error covariance. However, the target is assumed to be

perceivable [55], i.e, the target can be detected or not regardless of their existence.

Owing to the target perceivability, the posterior estimate error covariance of the i-th

Gaussian component under event M0 is modified as [5]:

P̂ i
k|k,Mo,k

= P̂ i
k|k−1 +

PD(1− CT )

1− PD
Ki
kS

i
k(K

i
k)
T (3.43)

where P̂ i
k|k−1 is the prior estimate error covariance of the i-th Gaussian component

and CT satisfies

CT =

∫ γ
0
q

n
2 e−

q
2dq

n
∫ γ
0
q

n
2
−1e−

q
2dq

(3.44)

Note that the GM-PHD filter does not use the validation gate. In this case, the

value of CT is approximately 1 since γ is infinite value. Therefore, the estimate

error covariance of the priori intensity in (3.20) is the same as (3.43). Second,

the estimate error covariance of the i-th Gaussian component conditioned on event

M l
T,k is equivalent to the estimate error covariance update equation of the KF,
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P̂ i
k|k,M l

T,k
= P̂ i

k|k−1 − Ki
kS

i
k(K

i
k)
T . Lastly, the estimate error covariance of the i-th

Gaussian component conditioned on the number of total measurement Tk and the

available NDS Di,l
k of the l-th measurement assumed to be originated from a clutter

for event M l
F,k can be derived as follows.

Lemma 4 With Assumption 5, the estimate error covariance of the i-th Gaussian

component conditioned on event M l
F,k with the NDS, Di,l

k , of the l-th measurement is

given by:

P̂ i,l

k|k,M l
F,k

= P̂ i
k|k−1 −Ki

kS
i
k(K

i
k)
T + αi,lk K

i
kS

i
k(K

i
k)
T (3.45)

where

αi,lk =
λ(1− PDCT )VDi,l

k
(VG − VDi,l

k
)

λ(1− PD)VDi,l
k

(VG − VDi,l
k

)

+PD(CT − PR(Dl,i
k )CT (Di,l

k ))(m− l)VDi,l
k

+PD(1− PR(Di,l
k ))(m− l)VDi,l

k

+PDPR(Di,l
k )CT (Dl,i

k )(l − 1)(VG − VDi,l
k

)

+PDPR(Di,l
k )(l − 1)(VG − VDi,l

k
)

(3.46)

CT (Di,l
k ) =

∫ Di,l
k

0
q

n
2 e−

q
2dq

n
∫ Di,l

k

0
q

n
2
−1e−

q
2dq

(3.47)

The estimate error covariance (3.45) can represent the actual measurement error

by accounting for the uncertainty of a false measurement. The detailed proof is

given in Appendix E. Note that the estimate error covariance of the i-th Gaussian

component conditioned on event M l
F,k quantifies the increase of error in the state

update from the state prediction due to the use of the l-th measurement which turns

out to be the false measurement.

With P̂ i
k|k,Mo,k

, P̂ i
k|k,M l

T,k
and P̂k|k,M l

F
(Di,l

k ), the posterior intensity at time step k

of the proposed GM-PHD filter is given by:

I(xk|Z(k)) w [1− pD(xk)]I(xk|Z(k−1)) +
∑
zlk∈Zk

Jk|l−1∑
i=1

wik(z
l
k)N (xk; x̂

i,l
k|k, P̂

i,l
k|k) (3.48)
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where

P̂ i,l
k|k = (1− βi,lk )P̂ i,l

k|k,M l
F

+ βi,lk P̂
i
k|k,M l

T,k
+ βi,lk (1− βi,lk )Ki

kν
i,l
k (νi,lk )T (Ki

k)
T (3.49)

The posterior weight, Kalman gain and state equations of (3.48) are the same as

(3.21), (3.22) and (3.23), respectively. Note that the proposed GM-PHD filter uses

(3.48) for the posterior intensity instead of (3.20). The crucial part is the estimate

error covariance (3.49), which is modified from (3.24) of the original GM-PHD filter,

comprises three uncertainty. The first accounts for the uncertainty that the measure-

ment might be clutter. It can be derived by P̂k|k,MF
(Di,l

k ) with weighting 1−βi,lk . The

second represents the estimate error covariance when the measurement might be orig-

inated from a target. The third denotes the estimate error covariance reflecting the

distance between the l-th measurement and the i-th propagated Gaussian component.

Remark 3 Equation (3.49) can increase the covariance of the Gaussian component

corresponding to the measurement originated from clutter. Due to the difference be-

tween the covariances of Gaussian components corresponding to the measurements

from a target or clutter, the weight of the newly generated Gaussian component cor-

responding to the measurement originated from a target can be increased in the next

time step. As a result, the proposed GM-PHD filter can provide the state estimate for

the target which could have been lost in the original GM-PHD filter.

3.4 Simulation Results

In this section, the performance of the proposed GM-PHD filter is demonstrated

with illustrative target tracking examples, in comparison to the original GM-PHD

and N-scan GM-PHD filters. The state vector of a target is composed of its position
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and velocity: xk = [Px,k Py,k Vx,k Vy,k]
T . The discrete-time dynamic model of the

target is represented by:

xk =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

xk−1 +


T 2/2 0

0 T 2/2

T 0

0 T

wk−1 (3.50)

where the sampling interval T is 1 second and the total simulation time is 100 seconds.

The process noise wk of the surviving target is Gaussian with zero mean and 5 m/s2

standard deviation. The process noise of the spawned target is Gaussian with zero

mean and the following covariance

Q
(i)
sp,k = diag([100, 100, 400, 400]) (3.51)

The weight of the spawned target is 0.05. The measurement vector represents the

position of a target, zk = [Pzx,k Pzy ,k]. The observation model equation is given by:

zk =

1 0 0 0

0 1 0 0

xk + vk (3.52)

where measurement noise vk is assumed to be Gaussian with zero mean and 10 m

standard deviation. In the Gaussian component pruning part, the truncation thresh-

old of a Gaussian component is set to 10−5 and the merging threshold of Gaussian

components is 4. The extraction threshold is set to 0.5. Note that all the noise

and threshold values follow the simulation set-up in [47] for fair comparison of the

proposed GM-PHD filter with the original GM-PHD filter.

The surveillance region is [-10000, -10000] × [10000, 10000] m2. The possible max-

imum number of Gaussian components is set to be 400. Two scenarios demonstrate

the performance of the proposed GM-PHD filter. In order to evaluate the performance

of the proposed GM-PHD filter versus the original GM-PHD and N-scan GM-PHD

filters in terms of the missed estimate of a target, the first scenario tests whether

or not the three algorithms can correctly extract the estimate for a target while the
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Fig. 3.2. Trajectory of a target, clutter, and target state estimates com-
puted by GM-PHD, N-scan GM-PHD, and proposed GM-PHD filters

clutter density and PD are varying. In the second scenario, the multi-target tracking

ability of the three algorithms is tested by comparing the estimated number of targets

computed by each algorithm with the true number of targets along when the number

of targets varies over time. In the two scenarios, the clutter is uniformly distributed

with respect to a Poisson distribution of the clutter density, λ, which is assumed to

be known to the filters.

Scenario 1. In this scenario, only a single target is generated and maneuvers

throughout the simulation, but the number of true target, i.e., Nk = 1, is unknown

to the three algorithms. The intensity of the born target is set to be:

b(xk) = 0.1N (xk;m
(1)
b,k, P

(1)
b,k ) (3.53)

where m
(1)
b,k = [0, 5000, 25,−120]T and P

(1)
b,k = diag([100, 100, 25, 25]) are the state

vector and the error covariance of the each Gaussian component, respectively.
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Fig. 3.3. Measurements, true target positions, and target state estimates
computed by GM-PHD, N-scan GM-PHD, and proposed GM-PHD filters
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Figure 3.2 shows the trajectory of the true target, the measurements obtained

from a sensor, and the target state estimates computed by the GM-PHD, N-scan

GM-PHD, and proposed GM-PHD filters, respectively, for the duration of 100 time

steps. Figure 3.3 presents the filtering results separately along the X and Y axes

so that the estimates of the three algorithms are clearly compared over time. The

measurements include the position of the target along with the measurement noise

and the false measurements coming from clutter. Specifically, the blue crosses indicate

the measurements which consist of the target with noise as well as clutter. The black

line indicates the position of the true target without the noise component. The red,

gold, and green circles indicate the target state estimates computed by the GM-PHD,

N-scan GM-PHD, and the proposed GM-PHD filters, respectively. In this case, the

detection probability is set to 0.98 and the clutter density, λ, is 5 × 10−8 (i.e., an

average of 200 clutter are generated in the surveillance area at each time step). Note

that, at 65 and 69 seconds, the original GM-PHD and N-scan GM-PHD filters lose

the estimate of the target and cannot provide the estimate for the target since after,

while the proposed GM-PHD filter successfully regenerates the estimate of the target

even after missing the estimate of the target for some time steps. This shows that the

Gaussian component in the proposed GM-PHD filter is not eliminated by the pruning

process but held by the extracting process since the weight of the Gaussian component

is below 0.5. After several time steps, the weight of the Gaussian component in the

proposed GM-PHD filter is increased by the measurement originated from the target.

From these results, the proposed GM-PHD filter is able to keep the estimate of the

target even though there are some missed state estimates for the target. The reason

behind the intermittent missed estimate for the target depends on various factors such

as the abrupt motion of the target, high clutter density, low signal-to-noise ratio, etc.

In order to compare the performance of the estimate persistence between the

three algorithms, Monte Carlo simulation of 100 runs with different PD and λ values

is performed. Table 3.1 shows the number of the missed estimates of the target which

is defined as an event that the estimate of the target does not exist successively in 3
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Table 3.1.
Number of missed estimates of the target in GM-PHD, N-scan GM-PHD,
and proposed GM-PHD filters

PD λ (Average number of clutter) GM-PHD N-scan

GM-PHD

Proposed

GM-PHD

0.9 5× 10−10 (2) 54 19 35

1× 10−8 (40) 90 59 38

5× 10−8 (200) 100 79 63

0.95 5× 10−10 (2) 31 14 17

1× 10−8 (40) 69 42 11

5× 10−8 (200) 95 85 26

0.98 5× 10−10 (2) 13 9 2

1× 10−8 (40) 65 55 5

5× 10−8 (200) 92 85 18
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scans or a distance between the target and its estimate is longer than 50 m. From

Table 3.1 , the number of the missed estimates of the target in the GM-PHD and

N-scan GM-PHD filters are similar to that in the proposed GM-PHD filter in the

cases of high detection probability (e.g., PD = 0.98) and low clutter density (e.g.,

λ = 5× 10−11). However, the miss rate of the estimate of the target in the GM-PHD

and N-scan GM-PHD filters significantly degrades when the detection probability is

low and the clutter density is high. In cases when the detection probability and

clutter density are both high, the number of the missed estimates of the target is still

low for the proposed GM-PHD filter compared to the other two algorithms. Overall,

the proposed GM-PHD filter has much better performance than the GM-PHD and

N-scan GM-PHD filters in persistent target tracking under a large spectrum of PD

and λ values, and thus is more robust than the GM-PHD and N-scan GM-PHD filters

in the presence of false measurements. Improving the missed estimate of the target by

the proposed GM-PHD filter could also increase the trajectory tracking performance

in the GM-PHD tracker if it is implemented in the GM-PHD tracker.

To evaluate the quality of the newly derived error covariance, we compare the

credibility ratio of the proposed GM-PHD filter with those of the original GM-PHD

and N-scan GM-PHD filters [56]. Since there are the multiple error covariance matri-

ces of the Gaussian components in the proposed GM-PHD filter, we have computed

the average of the credibility ratios of the error covariance matrices as follows:

ACRk =
1

Jk|l−1 × Tk∑
zlk∈Zk

Jk|l−1∑
i=1

(xk − x̂i,lk|k)T (P̂ i,l
k|k)
−1(xk − x̂i,lk|k)

(xk − x̂i,lk|k)T (P i,l
k )−1(xk − x̂i,lk|k)

(3.54)

Figure 3.4 depicts the average credibility ratio computed by the original GM-PHD,

N-scan GM-PHD, and proposed GM- PHD filters when the average number of clutter

per scan is 2 and the detection probability is 0.98. As illustrated in Figure 3.4, the

average credibility ratio computed by the proposed GM-PHD filter is always lower
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than the others, demonstrating the accuracy of the new covariance in the proposed

algorithm outperforms others.

From Figure 3.5, a Monte Carlo simulation with 500 runs was performed and

average execution times of the proposed GM-PHD filter as well as original GM-PHD

filter and N-scan GM-PHD filter were compared. For this simulation, we used a

laptop computer which has a 2.6 GHz Intel Core i5 processor and 8 GB 1600 MHz

DDR3 memory. As shown in Figure 3.5, the execution time of the proposed algorithm

is higher than that of two other filters due to the extra complexity of considering the

measurement origin uncertainty, but the growth rate of the proposed algorithm is

similar to that of two other filters as the number of clutter increases.

Scenario 2. This scenario emulates the terminal airspace area around an airport

where there is high volume of air traffic. Here, multiple targets are generated at two

possible locations and spawned from other targets. The maximum number of true
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targets is 10 but the number varies over time since the targets appear and disappear

randomly. The intensity of the born target is given by:

b(xk) = 0.1N (xk;m
(1)
b,k, P

(1)
b,k ) + 0.1N (xk;m

(2)
b,k, P

(2)
b,k ) (3.55)

where m
(1)
b,k = [0, 5000, 25,−120]T and m

(2)
b,k =[-2500, 2000, 120, -25]T are the state

vectors of individual Gaussian components. The covariances are set to be the same

as those used in Scenario 1.

Figure 3.6 shows the simulated multiple target tracking scenario with false mea-

surements uniformly generated over 100 seconds. Here, the black dots are the trajec-

tories of the true targets without the measurement noise and the blue crosses are the

measurements that consist of the targets with measurement noise and clutter. The

maneuvers of the targets vary randomly and the average number of clutter per scan

is 200.
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In Figures 3.7 and 3.8, we consider the OSPA distance [57] as a metric to evaluate

the performance of the proposed GM-PHD filter in comparison to the original GM-

PHD, N-scan GM-PHD filters while varying the detection probability and the average

number of clutter per scan. The OSPA distances (with order two and cutoff 10,000

m) are obtained via Monte-Carlo simulation with 100 runs. In this case, the OSPA

distance predominantly reports a cardinality penalty (i.e. difference between the true

number of targets and the estimated number of targets) because of a very high cutoff

value relative to the magnitude of a typical localization error. As illustrated in Figures

3.7 and 3.8, both GM-PHD and N-scan GM-PHD filters have larger OSPA values than

the proposed algorithm when the detection probability is high, which demonstrates

the superior performance of the proposed algorithm in that the estimated number of

targets computed by the proposed filter is more accurate than those of the other two

filters. In case of the low detection probability, the OSPA distance of the N-scan GM-

PHD filter is slightly lower than the proposed algorithm, but it has many high peaks

due to the delay in Gaussian component initiation and termination as illustrated in

Figure 3.9.

Figure 3.9 presents the true number of targets and the estimated number of tar-

gets computed by the GM-PHD, N-scan GM-PHD, and proposed GM-PHD filters

when the number of average clutter per scan changes from 0 to 200. To demonstrate

the multi-target tracking capability of the proposed GM-PHD filter, we perform the

simulation subject to different densities of clutter. The black, red, gold, and green

lines represent the true number of targets and the estimated numbers of targets com-

puted by the GM-PHD, the N-scan GM-PHD, and the proposed GM-PHD filters,

respectively. The estimated numbers of target are averaged over 100 Monte Carlo

simulations. Note that the detection probability is set to 0.98 throughout the simu-

lation, which is insignificant compared to the missed estimates of the targets.

At the Gaussian component initiation stage, when a new Gaussian component is

generated, the initial covariance is large enough to account for the rapid maneuver

of the target subject to heavy clutter. For that reason, the GM-PHD, N-scan GM-
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PHD, and proposed GM-PHD filters all perform equally well up to 20 seconds in this

simulation. However, the N-scan GM-PHD filter always shows the time delay when

the targets appear and/or disappear as it requires at least N steps of weight history to

determine whether or not extracting the estimate of the target. Furthermore, after 60

and 70 seconds, there are a large number of the missed estimates of targets observed

in both the GM-PHD and N-scan GM-PHD filters due to their unreliable update of

the error covariance without considering the uncertainty on whether a measurement

is from a true target or not. This significantly degrades their tracking performance

while our proposed GM-PHD filter maintains the estimated target number close to

the true number. The difference between the true number target and the estimated

numbers of targets computed by the GM-PHD, N-scan GM-PHD and the proposed

GM-PHD filters is getting bigger as the number of false measurements (i.e., clutter

density) increases.

Note that there are some parameters (i.e., model uncertainty, measurement noise,

new birth target information, clutter density, detection probability, and packet loss/delay

of a measurement, etc.) which need to be determined when the proposed target

tracking filter is implemented in practical systems [58–64]; however, this is true for

the original GM-PHD filter and its variants. Thus, further investigation addressing

these practical concerns is needed for the proposed algorithm to be implemented in

real-world applications.
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4. GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS

DENSITY FILTER AND TRACKER WITH JUMP

MARKOV SYSTEM MODELS

This chapter discusses a new GM-PHD filter with SD-JMS models and a GM-PHD

tracker with JMS models to improve the performance of the existing GM-PHD filter

with JMS models and to provide the identities of the target estimates, respectively.

In Section 4.1, the motivation and literature review for this problem are presented. In

Section 4.2, we summarize the system model for MTT with JMS models. Section 4.3

presents a new GM-PHD filter with SD-JMS models that can detect the state jumps

depending on the state of a target. Section 4.4 presents a new GM-PHD tracker with

JMS models which can provide the identities of target estimates. In Section 4.5, we

demonstrate the performance of the proposed GM-PHD filter with SD-JMS models

via comparison with the original GM-PHD filter and the GM-PHD filter with the

JMS model. Additionally, we demonstrate the performance of the proposed GM-

PHD tracker with JMS models via comparison with the GM-PHD tracker [65].

4.1 Background and Motivation

The GM-PHD filter could lose the estimates of maneuvering targets frequently due

to the target’s maneuver uncertainty. To address this issue, Pasha et al. proposed

the GM-PHD filter which utilizes JMS models (or modes), each matched to a specific

maneuver of the target, to address the maneuver uncertainty. The JMS models

considered assume that mode transition probabilities are constant, irrespective of the

target state [58]. However, this assumption is not valid in some applications where

a target follows its planned trajectory. In this case, the mode transition probability

is dependent on the target state. To address the state-dependent mode transition,
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Dong et al. considered a VS-MM algorithm which selects a subset of modes from

the set of all possible modes depending on the target state [66]. However, the mode

transition probabilities in each mode set are constant, as in the GM-PHD filter with

JMS models. Due to the imprecise mode transition probabilities, the existing GM-

PHD filter with JMS models could be likely to lose the estimates of the targets (e.g.,

aircraft, ships, ground vehicles or satellites) frequently in heavily cluttered and/or

low SNR environments. Furthermore, the GM-PHD filter with JMS models does not

provide temporal association of state estimates to targets over time, making it difficult

for practical implementation in real target tracking systems that are interested in the

trajectories of targets.

To address the missed estimates of the targets in the GM-PHD filter with JMS

models, we propose a new GM-PHD filter with JMS models which have the state-

dependent transitions, called the GM-PHD filter with the SD-JMS models. For ex-

ample, in air traffic control, a target (aircraft) follows its planned trajectory which is

composed of a series of waypoints. When the target reaches a waypoint, it takes a

maneuver (i.e., changes its mode) to go to the next waypoint, thereby a mode transi-

tion occurs when the target state satisfies a condition (called as guard condition). A

multiple-model based estimation algorithm for the JMS with state-dependent mode

transitions was proposed in the authors’ earlier work [67]. By integrating this algo-

rithm with the GM-PHD filter, we develop the GM-PHD filter with SD-JMS models,

which can address uncertainties in the number of targets to be tracked, clutter, and

maneuvers. To provide both the state estimates of maneuvering targets at each time

step and the labels of the state estimates for maneuvering targets over time, we pro-

pose a new GM-PHD tracker with JMS models. To determine the label of the state

estimate for a maneuvering target, a new tag is assigned to newly generated Gaus-

sian components for the target in the prior intensities. In the posterior intensities,

the newly generated Gaussian components corresponding to measurements have the

same tag as their associated Gaussian component in the prior intensities. After the
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pruning procedure, the unique label and state estimate for the target is extracted

from the Gaussian components with the same tag.

4.2 System Model

In this section, we model a target as a discrete-time stochastic linear hybrid system

whose mode transitions are dependent on the target state via a stochastic guard

condition. A discrete-time stochastic linear hybrid system is given by

xk = Fk−1(mk)xk−1 + wk−1(mk) (4.1)

zk = Hk(mk)xk + vk(mk) (4.2)

where xk ∈ Rn and zk ∈ Rp denote the target state and measurement at time k,

respectively. mk ∈M = {1, 2, . . . , r} is the mode and r denotes the number of modes

(or models). Fk−1(mk) and Hk(mk) are the state transition and the measurement

matrices corresponding to mode mk. wk−1(mk) and vk(mk) are the process and mea-

surement noises which are uncorrelated zero-mean, Gaussian sequences for mode mk,

respectively.

Then, the state transition probability density and the measurement likelihood are

defined as

p(xk|xk−1,mk) (4.3)

p(zk|xk,mk) (4.4)

where p(·|·) denotes a conditional probability density function (pdf). In addition, the

mode evolution, m1,m2, . . . is a Markov chain described by a state-dependent mode

transition matrix

Π(xk−1) = {π(i|j, xk−1)}i,j=1,2,...,r (4.5)

where π(i|j, xk−1) is the conditional mode transition probability from mode j to mode

i conditioned on the state xk−1,

π(i|j, xk−1) := p(mk = i|mk−1 = j, xk−1). (4.6)
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Fig. 4.1. Targets moving along planned trajectories [68,69]

The transition of the augmented state vector ξk = [xk,mk]
T ∈ X = Rn×M is governed

by,

p(ξk|ξk−1) = p(xk|xk−1,mk)π(i|j, xk−1). (4.7)

Then, a linear Gaussian JMS is a JMS with linear Gaussian models, i.e., conditioned

on mode mk−1 the state transition density and measurement likelihood are given by

p(xk|xk−1,mk) = N (xk;Fk−1(mk)xk−1, Qk−1(mk)) (4.8)

p(zk|xk,mk) = N (zk;Hk(mk)xk, Rk(mk)) (4.9)

where Qk(mk) and Rk(mk) are covariance matrices of the process noise and measure-

ment noise for mode mk at time k, respectively. For brevity, we use the symbol, Ξ to

represent the ordered pair of mean and covariance (x, P ) of a Gaussian distribution

as following,

N (x, P ) = N (Ξ). (4.10)

For the mode transition model, we consider a maneuvering target which follows

the planned trajectory. As shown in Figure 4.1, aircraft or ships move along planned

trajectories such as air routes or sea lanes. To track the target in the route, the
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dynamics of the target can be modeled as a stochastic linear hybrid system with

multiple modes. In this scenario, a target is likely to take a maneuver when it

gets close to its waypoints along the planned trajectory. Thus, the mode transition

probability is dependent on the target state. In this thesis, we model the mode

transition probability as a multivariate Gaussian pdf [67]

π(i|j, xk−1) = f(Lijxk−1 − µij)

= aij + bijN (Lijxk−1;µij, Σij) (4.11)

where Lij is a constant q×n matrix (q ≤ n), and aij and bij are scalar constants such

that π(i|j, xk−1) ≥ 0 for all i, j = 1, . . . , r and
∑r

j=1 π(i|j, xk−1) = 1.

4.3 Gaussian Mixture Probability Hypothesis Density Filter with State-

Dependent Jump Markov System Models

In this section, we present a closed-form PHD solution for linear Gaussian JMS

models with state-dependent mode transition.

The posterior intensity at time k − 1 is given by [58]:

I(xk−1,mk−1|Z(k−1)) =

J
mk−1
k−1|k−1∑
s=1

wsk−1|k−1(mk−1)N (xk−1; Ξ̂
s
k−1|k−1(mk−1)) (4.12)

where J
mk−1

k−1|k−1 represents the number of posterior Gaussian components for mode

mk−1 at time k − 1; wsk−1|k−1(mk−1) is the weight of the s-th posterior Gaussian

component for mode mk−1 at time k− 1; Ξ̂s
k−1|k−1(mk−1) is the ordered pair of mean,

x̂sk−1|k−1(mk−1) and covariance, P̂ s
k−1|k−1(mk−1) of the s-th Gaussian component for

mode mk−1 at time k − 1. Then, the prior intensity at time k is given by [58]:

I(xk,mk|Z(k−1)) = b(xk,mk) + Isp(xk,mk|Z(k−1)) + Isv(xk,mk|Z(k−1)) (4.13)

where Isp(xk,mk|Z(k−1)) and Isv(xk,mk|Z(k−1)) are the intensities with the spawned

and the survived Gaussian components for mode mk, respectively. Each intensity can
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be derived by using the transition of the augmented state vector (4.7). The intensity

of birth RFS for mode mk at time k can be written as [58]:

b(xk,mk) =

J
mk
b,k∑
t=1

πb(mk)w
t
b,k(mk)N (xk; Ξ̂

t
b,k(mk)) (4.14)

where Jmk
b,k is the number of newborn Gaussian components for mode mk at time

k; πb(mk) is the mode probability that the target is operating in mode mk at time

k; wtb,k(mk) is the weight of born Gaussian components for mode mk at time k;

Ξ̂t
b,k(mk) denotes the pair of the mean, (x̂tb,k(mk) and covariance, P̂ t

b,k(mk)) of the

born Gaussian component. The intensity with the spawned Gaussian components

can be written as [58]:

Isp(xk,mk|Z(k−1))

=
∑
mk−1

J
mk−1
k−1|k−1∑
s=1

J
mk,mk−1
sp,k∑
t=1

ws,tsp,k|k−1(mk,mk−1)N (xk; Ξ̂
s,t
sp,k|k−1(mk,mk−1)) (4.15)

where J
mk,mk−1

sp,k is the number of spawned Gaussian components for mode mk from the

Gaussian components for mode mk−1; The weight of the spawned Gaussian compo-

nents for mode mk, w
s,t
sp,k|k−1(mk,mk−1) and the pair of the mean and covariance

of the spawned Gaussian component, Ξ̂s,t
sp,k|k−1(mk,mk−1) = (x̂s,tsp,k|k−1(mk,mk−1),

P̂ s,t
sp,k|k−1(mk,mk−1)) are given by [58]:

ws,tsp,k|k−1(mk,mk−1) = πsp(mk|mk−1)w
s
k−1|k−1(mk−1)w

t
sp,k−1(mk,mk−1) (4.16)

x̂s,tsp,k|k−1(mk,mk−1) = F t
sp,k−1(mk)x̂

s
k−1|k−1(mk−1) + dtsp,k−1 (4.17)

P̂ s,t
sp,k|k−1(mk,mk−1) = F t

sp,k−1(mk)P̂
s
k−1|k−1(mk−1){F t

sp,k−1(mk)}
T

+Qt
sp,k−1(mk)

(4.18)

where πsp(mk|mk−1) is the mode transition probability from mode mk−1 to mode

mk independent of the target state; wtsp,k−1(mk,mk−1) is the weight of the Gaussian

component spawned at time k; F t
sp,k−1(mk) and Qt

sp,k−1(mk) are the transition matrix

for the spawned Gaussian components and the covariance of the process noise for
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mode mk, respectively. The intensity with the surviving Gaussian components is

given by: [58]:

Isv(xk,mk|Z(k−1)) =
∑
mk−1

J
mk−1
k−1|k−1∑
s=1

wsk|k−1(mk,mk−1)N (xk; Ξ̂
s
k|k−1(mk,mk−1)) (4.19)

where the weight of surviving Gaussian components for mode mk, w
s
k|k−1(mk,mk−1)

and the pair of the mean and covariance, Ξ̂s
sv,k|k−1(mk,mk−1) = (x̂ssv,k|k−1(mk,mk−1),

P̂ s
sv,k|k−1(mk,mk−1)) are given by

wsk|k−1(mk,mk−1) = Psv(mk−1)π(mk|mk−1, x̂
s
k−1|k−1(mk−1))w

s
k−1|k−1(mk−1) (4.20)

x̂ssv,k|k−1(mk,mk−1) = Fk−1(mk)x̂
s
k−1|k−1(mk−1) (4.21)

P̂ s
sv,k|k−1(mk,mk−1) = Fk−1(mk)P̂

s
k−1|k−1(mk−1){Fk−1(mk)}T +Qk−1(mk) (4.22)

where π(mk|mk−1, x̂
s
k−1|k−1(mk−1)) is the mode transition probability from mode mk−1

to mode mk dependent on the target state estimate, x̂sk−1|k−1(mk−1). The mode transi-

tion probability is computed by (4.11). Psv(mk−1) is the probability of target survival

which is assumed to be independent of the target state. Fk−1(mk) and Qk−1(mk) are

the transition matrix for the surviving Gaussian components and the covariance of

the process noise for mode mk, respectively. Based on these three intensities, the

prior intensity can be represented as a Gaussian mixture function [58]:

I(xk,mk|Z(k−1)) =

J
mk
k|k−1∑
s=1

wsk|k−1(mk)N (xk; Ξ̂
s
k|k−1(mk)) (4.23)

where Jmk

k|k−1 represents the number of prior Gaussian components for mode mk at

time k; wsk|k−1(mk) is the weight of the s-th prior Gaussian component for mode mk at

time k; Ξ̂s
k|k−1(mk) is the ordered pair of mean, x̂sk|k−1(mk) and covariance, P̂ s

k|k−1(mk)

of the prior Gaussian component.

Then, the posterior intensity at time k is given by [58]:

I(xk,mk|Z(k)) = [1− PD(mk)]I(xk,mk|Z(k−1))

+

Tk∑
t=1

J
mk
k|k−1∑
s=1

wsk|k(mk; z
t
k)N (xk; Ξ̂

s,t
k|k(mk)) (4.24)
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where the weight, wsk|k(mk; z
t
k), and the pair of the mean and covariance of the Gaus-

sian component in the posterior intensity, Ξ̂s,t
k|k(mk) = (x̂s,tk|k(mk), P̂

s,t
k|k(mk)) are given

by [58]:

wsk|k(mk; z
t
k) =

PDw
s,mk

k|k−1p(z
t
k|x̂

s,mk

k|k−1, P̂
s,mk

k|k−1)

κk(ztk) + PD
∑J

mk
k|k−1

j=1 wj,mk

k|k−1p(z
t
k|x̂

j,mk

k|k−1, P̂
j,mk

k|k−1)
(4.25)

Ks
k(mk) = P̂ s

k|k−1(mk){Hk(mk)}T (Hk(mk)P̂
s
k|k−1(mk){Hk(mk)}T +Rk(mk))

−1

(4.26)

x̂s,tk|k(mk) = x̂sk|k−1(mk) +Ks
k(mk)(z

t
k −Hk(mk)x̂

s
k|k−1(mk)) (4.27)

P̂ s
k|k(mk) = [I −Ks

k(mk)Hk(mk)]P̂
s
k|k−1(mk) (4.28)

where I is the identity matrix; Jmk

k|k = (1 + Tk)J
mk

k|k−1 denotes the number of posterior

Gaussian components for mode mk at time k. Then, the expected number of predicted

targets is given by [58]:

N̂k|k−1 = N̂b,k + N̂sp,k|k−1 + N̂sv,k|k−1 (4.29)

where

N̂b,k =
∑
mk

J
mk
b,k∑
t=1

πb(mk)w
t
b,k(mk) (4.30)

N̂sp,k|k−1 =
∑
mk

∑
mk−1

J
mk−1
k−1|k−1∑
s=1

J
mk,mk−1
sp,k∑
t=1

πsp(mk|mk−1)w
s
k−1|k−1(mk−1)w

t
sp,k−1(mk,mk−1)

(4.31)

N̂sv,k|k−1 =
∑
mk

∑
mk−1

J
mk−1
k−1|k−1∑
s=1

Psv(mk−1)π(mk|mk−1, x̂
s
k−1|k−1(mk−1))w

s
k−1|k−1(mk−1)

(4.32)

The expected number of targets is given by [58]:

N̂k|k =
∑
mk

[1− PD(mk)]

J
mk
k|k−1∑
s=1

wsk|k−1(mk) +

Tk∑
t=1

∑
mk

J
mk
k|k−1∑
s=1

wsk|k(mk; z
t
k). (4.33)
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The pruning and extracting procedures of the proposed GM-PHD filter are the same

as those used in the original GM-PHD filter in [47].

In summary, the pseudo-codes for the prior and posterior equations of the proposed

GM-PHD filter with SD-JMS models are summarized in Algorithms 1 and 2.

Algorithm 1 Pseudo-code for the prior intensity of the GM-PHD filter with SD-JMS

models

1: Input {{wsk−1|k−1(mk−1), x̂
s
k−1|k−1(mk−1), P̂

s
k−1|k−1(mk−1)}

J
mk−1
k−1|k−1

s=1 }rmk−1=1

2:

3: // Initiation of the number of prior Gaussian components

4: for mk = 1 to r do

5: Jmk

k|k−1 = 0

6: end for

7:

8: // Prior intensity for born targets

9: for mk = 1 to r do

10: for t = 1 to Jb,k|k do

11: Jmk

k|k−1 = Jmk

k|k−1 + 1,

12: w
J
mk
k|k−1

k|k−1 (mk) = π(mk)w
t
b,k(mk),

13: x̂
J
mk
k|k−1

k|k−1 = xtb,k(mk), P̂
J
mk
k|k−1

k|k−1 = P t
b,k(mk)

14: end for

15: end for

4.4 Gaussian Mixture Probability Hypothesis Density Tracker with Jump

Markov System Models

In this section, we propose a GM-PHD tracker with JMS models which represents

the prior and posterior intensities (3.7) and (3.8) with the Gaussian components, each



78

1: // Prior intensity for spawned targets

2: for mk = 1 to r do

3: for mk−1 = 1 to r do

4: for s = 1 to J
mk−1

k−1|k−1 do

5: for t = 1 to J
mk,mk−1

sp,k do

6: Jmk

k|k−1 = Jmk

k|k−1 + 1,

7: w
J
mk
k|k−1

k|k−1 (mk) = π(mk|mk−1)w
s
k−1|k−1(mk−1)w

t
sp,k−1(mk,mk−1)

8: x̂
J
mk
k|k−1

k|k−1 (mk) = F t
sp,k−1(mk)x̂

s
k−1|k−1(mk−1) + dtsp,k−1,

9: P̂
J
mk
k|k−1

k|k−1 (mk) = F t
sp,k−1(mk)P̂

s
k−1|k−1(mk−1){F t

sp,k−1(mk)}T

10: +Qt
sp,k−1(mk)

11: end for

12: end for

13: end for

14: end for
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1: // Prior intensity for existing targets

2: for mk = 1 to r do

3: for mk−1 = 1 to r do

4: for s = 1 to J
mk−1

k−1|k−1 do

5: Jmk

k|k−1 = Jmk

k|k−1 + 1,

6: w
J
mk
k|k−1

k|k−1 (mk) = Psv(mk)π(mk|mk−1x̂
s
k−1|k−1(mk−1))w

s
k−1|k−1(mk−1)

7: x̂
J
mk
k|k−1

k|k−1 (mk) = Fk−1(mk)x̂
s
k−1|k−1(mk−1),

8: P̂
J
mk
k|k−1

k|k−1 (mk) = Fk−1(mk)P̂
s
k−1|k−1(mk−1){Fk−1(mk)}T +Qk−1(mk)

9: end for

10: end for

11: end for

12:

13: // Calculation of Kalman gain

14: for mk = 1 to r do

15: for s = 1 to Jmk

k|k−1 do

16: Ssk(mk) = Hk(mk)P̂
s
k|k−1(mk){Hk(mk)}T +Rk(mk),

17: Ks
k(mk) = P̂ s

k|k−1(mk){Hk(mk)}T{Ssk(mk)}−1

18: end for

19: end for

20:

21: Output {{wsk|k−1(mk), x̂
s
k|k−1(mk), P̂

s
k|k−1(mk)}

J
mk
k|k−1

s=1 }rmk=1
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Algorithm 2 Pseudo-code for the posterior intensity of the GM-PHD filter with

SD-JMS models

1: Input {{wsk|k−1(mk), x̂
s
k|k−1(mk), P̂

s
k|k−1(mk)}

J
mk
k|k−1

s=1 }rmk=1, Zk = {ztk}
Tk
t=1

2:

3: // Posterior intensity for the case that there is no measurement

4: for mk = 1 to r do

5: for s = 1 to Jmk

k|k−1 do

6: wsk|k(mk) = (1− PD)wsk|k−1(mk),

7: x̂sk|k(mk) = x̂sk|k−1(mk),

8: P̂ s
k|k(mk) = P̂ s

k|k−1(mk)

9: end for

10: end for
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1: // Posterior intensity for the existing Gaussian components and new Gaussian

components

2: for mk = 1 to r do

3: for t = 1 to Tk do

4: SumWeight = 0

5: for s = 1 to Jmk

k|k−1 do

6: ID = (t+ 1)× Jmk

k|k−1 + s,

7: wIDk|k(mk) = PDw
s
k|k−1(mk)N (ztk;Hk(mk)x̂

s
k|k−1(mk)),

8: SumWeight = SumWeight+ wIDk|k,

9: x̂IDk|k(mk) = x̂sk|k−1(mk) +Ks
k(mk)(z

t
k −Hk(mk)x̂

s
k|k−1(mk)),

10: P̂ ID
k|k (mk) = P̂ s

k|k(mk)

11: end for

12: for s = 1 to Jmk

k|k−1 do

13: ID = (t+ 1)Jmk

k|k−1 + s,

14: wIDk|k(mk) =
wID

k|k(mk)

κk(z
t
k)+SumWeight

15: end for

16: end for

17: Jmk

k|k = (Tk + 1)Jmk

k|k−1

18: end for

19:

20: Output {{wsk|k(mk), x̂
s
k|k(mk), P̂

s
k|k(mk)}

J
mk
k|k
s=1 }rmk=1
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of which can be expressed with the prior and the posterior structures similar to the

KF [58].

The main idea of the GM-PHD tracker with JMS models is to assign tags to

Gaussian components and update the assigned tags over time, and thus to provide

the trajectories of targets. In the prior intensities, a new tag is assigned to the Gaus-

sian components for a born target or a spawned target. In addition, the Gaussian

components for a surviving target have the same tag as the Gaussian components in

the posterior intensities at previous time. In the posterior intensities, newly gener-

ated Gaussian components corresponding to measurements have the same tag as the

associated Gaussian component in the prior intensity. Based on this concept, the tag

is managed over time without affecting the GM-PHD recursion with JMS models.

The posterior intensity for mode mk−1 at time k − 1 is given by (4.12). The set

of tags of the Gaussian components in the posterior intensity for mode mk−1 at time

k − 1 can be written as:

Tk−1|k−1(mk−1) =
{
τ 1k−1|k−1(mk−1), · · · , τ sk−1|k−1(mk−1), · · · , τ

Jk−1|k−1(mk−1)

k−1|k−1 (mk−1)
}

(4.34)

where τ sk−1|k−1(mk−1) is the tag of the s-th Gaussian component for mode mk−1 at

time k. Then, the set of tags of the Gaussian components in the posterior intensities

at time k − 1 can be written as:

Tk−1|k−1 =
r⋃

mk−1=1

Tk−1|k−1(mk−1) (4.35)

The prior intensity for mode mk at time k can be decomposed into three terms

as (4.13). With Assumption 4, the intensity of birth RFS for mode mk at time k is

given by (4.14). To identify the newborn Gaussian components for mode mk at time

k, new tags are assigned to the individual newborn Gaussian components. The set of

tags of the newborn Gaussian components for mode mk at time k can be written as:

Tb,k(mk) =
{
τ 1b,k(mk), · · · , τ tb,k(mk), · · · , τ

Jb,k(mk)

b,k (mk)
}

(4.36)
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Fig. 4.2. Tree structures of the Gaussian components for a born target in
the prior intensities

where τ tb,k(mk) is the tag of the t-th newborn Gaussian components for mode mk at

time k. Then, the set of tags of the newborn Gaussian components at time k can be

written as:

Tb,k =
r⋃

mk=1

Tb,k(mk) (4.37)

Note that the tag of the newborn Gaussian components for a born target is the

same as those in all other modes, i.e., τ
t(1)
b,k (1) = · · · = τ

t(mk)
b,k (mk) = · · · = τ

t(r)
b,k (r) (see

Figure 4.2 With Assumption 4, the intensity of the spawned Gaussian components

for mode mk at time k is given by (4.15). For the spawned Gaussian component for

mode mk at time k, a new tag which is different from that of the associated Gaussian

component for mode mk−1 at time k − 1 is assigned. The set of tags of the spawned

Gaussian components for mode mk at time k can be written as:

Tsp,k|k−1(mk) =
{
τ 1,1sp,k|k−1(mk), · · · , τ s,tsp,k|k−1(mk), · · · , τ

Jk−1|k−1(mk−1),Jsp,k(mk,mk−1)

sp,k|k−1 (mk)
}

(4.38)
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Fig. 4.3. Tree structures of the Gaussian components for a spawned target
in the prior intensities

where τ s,tsp,k|k−1(mk) is the tag of the spawned Gaussian component for mode mk at

time k. Then, the set of tags of the spawned Gaussian components at time k can be

written as:

Tsp,k|k−1 =
r⋃

mk=1

Tsp,k|k−1(mk) (4.39)

Note that the tag of the spawned Gaussian component for mode mk from the

posterior Gaussian component for mode mk−1 is the same as those in all other modes.

However, the tag is different from that of the posterior Gaussian component for

mode mk−1, i.e., τ sk−1|k−1(mk−1) 6= τ
s(1),t(1)
sp,k|k−1(1) = · · · = τ

s(mk),t(mk)
sp,k|k−1 (mk) = · · · =

τ
s(r),t(r)
sp,k|k−1(r) (see Figure 4.3 With Assumption 3, the intensity of the surviving Gaussian

components is given by (4.19). The survived Gaussian component for mode mk at

time k has the same tag as that of the associated Gaussian component for mode mk−1
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Fig. 4.4. Tree structures of the Gaussian components for a surviving target
in the prior intensities

at time k. The set of tags of the survived Gaussian components for mode mk at time

k can be written as:

Tsv,k|k−1(mk) =
{
τ 1sv,k|k−1(mk), · · · , τ ssv,k|k−1(mk), · · · , τ

Jk−1|k−1(mk−1)

sv,k|k−1 (mk)
}

(4.40)

where τ ssv,k|k−1(mk) is the tag of the s-th survived Gaussian component for mode mk

at time k. Then, the set of tags of the survived Gaussian components at time k can

be written as:

Tsv,k|k−1 =
r⋃

mk=1

Tsv,k|k−1(mk) (4.41)

Note that the tag of the survived Gaussian component from the posterior Gaussian

component for mode mk−1 at time k − 1 is the same as those in all other modes as

well as that of the posterior Gaussian component for mode mk−1 at time k − 1, i.e.,

τ sk−1|k−1(mk−1) = τ
s(1)
sv,k|k−1(1) = · · · = τ

s(mk)
sv,k|k−1(mk) = · · · = τ

s(r)
sv,k|k−1(r) (see Figure 4.4

Based on these three intensities, the prior intensity at time k is given by (4.23).
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Based on the sets of the tags corresponding to the individual modes in (4.37),

(4.39) and (4.41), the set of tags of the Gaussian components in the prior intensities

can be expressed as follows:

Tk|k−1 =
r⋃

mk=1

Tb,k(mk) ∪ Tsp,k|k−1(mk) ∪ Tsv,k|k−1(mk) (4.42)

=
r⋃

mk=1

{
τ 1k|k−1(mk), · · · , τ sk|k−1(mk), · · · , τ

Jk|k−1(mk)

k|k−1 (mk)
}

(4.43)

where τ sk|k−1(mk) is the tag of the s-th Gaussian component of the prior intensity for

mode mk at time k. Figures 4.2, 4.3, and 4.4 show not only the tree structures of the

Gaussian components in the posterior intensity at time k−1 and the prior intensities

at time k but also the tags of the newborn, the spawned and the surviving Gaussian

components at time k.

The posterior intensity at time k is given by (4.24). The newly generated Gaussian

components corresponding to the measurements have the same tag of the associated

the Gaussian component in the prior intensity. The set of tags of the Gaussian

components in the posterior intensity for mode mk can be written by:

Tk|k(mk) =
{
τ 1k|k(mk), · · · , τ s,tk|k(mk), · · · , τ

(1+Tk)Jk|k−1(mk)

k|k (mk)
}

(4.44)

Based on the sets of the tags corresponding to the individual modes in (4.44), the set

of tags of the Gaussian components in the posterior intensities can be expressed as

follows:

Tk|k =
r⋃

mk=1

Tk|k(mk) (4.45)

Figure 4.5 illustrates the structure of the Gaussian components in the posterior in-

tensity for mode mk and their tags. Note that the tags of the generated Gaussian

components corresponding to the measurements are the same as that of the associated

Gaussian component in the prior intensity at time k, i.e., τ
s(mk)
k|k−1 (mk) = τ

s(mk)
k|k (mk) =

τ
s1(mk)
k|k (mk) = τ

s2(mk)
k|k (mk) = · · · = τ

s(1+Tk)(mk)

k|k (mk).

The expected number of predicted targets is given by (4.29). The expected number

of targets is given by (4.33).
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Fig. 4.5. Tree structure of the Gaussian components in the posterior
intensity

The pruning procedure of the proposed GM-PHD tracker with JMS models is

the same as that used in the GM-PHD filter with JMS models in [58]. In the ex-

tracting procedure of the proposed GM-PHD tracker with JMS models, the Gaussian

components that have weights greater than a threshold are selected as the candidate

Gaussian components. To extract the target’s estimate and its label, there are two

methods; The first is to merge the means of the candidate Gaussian components with

the same tag based on their weights. The other is to pick the mean of the candidate

Gaussian component with the largest weight among the components with the same

tag. For simplicity, in this thesis we use the second approach.

In summary, the pseudo-codes for the prior equation, the posterior equation and

the extracting procedure of the proposed GM-PHD tracker with JMS models are

summarized in Algorithms 1, 2 and 3, respectively.

4.5 Simulation Results

In this section, the performance of the proposed GM-PHD filter and tracker are

demonstrated with illustrative target tracking examples. For illustration purposes, we
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Algorithm 3 Pseudo-code for the prior intensities of the GM-PHD tracker with JMS

models
1: Input {{wsk−1|k−1(mk−1),x̂

s
k−1|k−1(mk−1),

2: P̂ s
k−1|k−1(mk−1), τ

s
k−1|k−1(mk−1)}

Jk−1|k−1(mk−1)

s=1 }rmk−1=1, tag

3:

4: // Initiation the number of Gaussian components in the prior intensity

5: for mk = 1 to r do

6: Jk|k−1(mk) = 0

7: end for

8:

9: // Prior intensity for born targets

10: for t = 1 to Jb,k|k do

11: tag = tag + 1

12: for mk = 1 to r do

13: Jk|k−1(mk) = Jk|k−1(mk) + 1,

14: w
Jk|k−1(mk)

k|k−1 (mk) = π(mk)w
t
b,k(mk),

15: x̂
Jk|k−1(mk)

k|k−1 = xtb,k(mk),

16: P̂
Jk|k−1(mk)

k|k−1 = P t
b,k(mk),

17: τ
Jk|k−1(mk)

k|k−1 (mk) = tag

18: end for

19: end for



89

1: // Prior intensity for spawned targets

2: for mk−1 = 1 to r do

3: for s = 1 to Jk−1|k−1(mk−1) do

4: for t = 1 to Jsp,k(mk−1) do

5: tag = tag + 1

6: for mk = 1 to r do

7: Jk|k−1(mk) = Jk|k−1(mk) + 1,

8: w
Jk|k−1(mk)

k|k−1 (mk) = π(mk|mk−1)w
s
k−1|k−1(mk−1)w

t
sp,k−1(mk,mk−1),

9: x̂
Jk|k−1(mk)

k|k−1 (mk) = F t
sp,k−1(mk)x̂

s
k−1|k−1(mk−1) + dtsp,k−1,

10: P̂
Jk|k−1(mk)

k|k−1 (mk) = F t
sp,k−1(mk)P̂

s
k−1|k−1(mk−1){F t

sp,k−1(mk)}T +

Qt
sp,k−1(mk),

11: τ
Jk|k−1(mk)

k|k−1 (mk) = tag

12: end for

13: end for

14: end for

15: end for

16:

17: // Prior intensity for existing targets

18: for mk−1 = 1 to r do

19: for s = 1 to Jk−1|k−1(mk−1) do

20: for mk = 1 to r do

21: Jk|k−1(mk) = Jk|k−1(mk) + 1,

22: w
Jk|k−1(mk)

k|k−1 (mk) = Psv(mk)π(mk|mk−1, x̂
s
k−1|k−1(mk−1))w

s
k−1|k−1(mk−1),

23: x̂
Jk|k−1(mk)

k|k−1 (mk) = Fk−1(mk)x̂
s
k−1|k−1(mk−1),

24: P̂
Jk|k−1(mk)

k|k−1 (mk) = Fk−1(mk)P̂
s
k−1|k−1(mk−1){Fk−1(mk)}T +Qk−1(mk),

25: τ
Jk|k−1(mk)

k|k−1 (mk) = τ
Jk−1|k−1(mk−1)

k−1|k−1 (mk−1)

26: end for

27: end for

28: end for
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1: // Calculation of Kalman gain

2: for mk = 1 to r do

3: for s = 1 to Jk|k−1(mk) do

4: Ssk(mk) = HkP̂
s
k|k−1(mk)H

T
k +Rk,

5: Ks
k(mk) = P̂ s

k|k−1(mk)H
T
k (Ssk(mk))

−1

6: end for

7: end for

8:

9: Output {{wsk|k−1(mk), x̂
s
k|k−1(mk), P̂

s
k|k−1(mk), τ

s
k|k−1(mk)}

Jk|k−1(mk)

s=1 }rmk=1, tag

Algorithm 4 Pseudo-code for the posterior intensities of the GM-PHD tracker with

JMS models

1: Input {{wsk|k−1(mk)
, x̂sk|k−1(mk), P̂ s

k|k−1(mk), τ
s
k|k−1(mk)}

Jk|k−1(mk)

s=1 }rmk=1, Zk =

{ztk}
Tk
t=1, tag

2:

3: // Posterior intensity for the case that there is no measurement

4: for mk = 1 to r do

5: for s = 1 to Jk|k−1(mk) do

6: wsk|k(mk) = (1− PD)wsk|k−1(mk),

7: x̂sk|k(mk) = x̂sk|k−1(mk),

8: P̂ s
k|k(mk) = P̂ s

k|k−1(mk),

9: τ sk|k(mk) = τ sk|k−1(mk)

10: end for

11: end for
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// Posterior intensity for the existing Gaussian components and new Gaussian

components

for mk = 1 to r do

for t = 1 to Tk do

SumWeight = 0

for s = 1 to Jk|k−1(mk) do

ID = (t+ 1)× Jk|k−1(mk) + s,

wIDk|k(mk) = PDw
s
k|k−1(mk)N (ztk;Hkx̂

s
k|k−1(mk)),

SumWeight = SumWeight+ wIDk|k,

x̂IDk|k(mk) = x̂sk|k−1(mk) = +Ks
k(mk)(z

t
k −Hkx̂

s
k|k−1(mk)),

P̂ ID
k|k (mk) = P̂ s

k|k(mk),

τ IDk|k (mk) = τ sk|k(mk)

end for

for s = 1 to Jk|k−1(mk) do

ID = (t+ 1)Jk|k−1(mk) + s,

wIDk|k(mk) =
wID

k|k(mk)

κk(z
t
k)+SumWeight

end for

end for

Jk|k(mk) = (Tk + 1)Jk|k−1(mk)

end for

Output {{wsk|k(mk), x̂
s
k|k(mk), P̂

s
k|k(mk), τ

s
k|k(mk)}

Jk|k(mk)

s=1 }rmk=1, tag
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Algorithm 5 Pseudo-code for the state extraction of the GM-PHD tracker with JMS

models

1: Input {{wsk|k(mk), x̂
s
k|k(mk), P̂

s
k|k(mk), τ

s
k|k(mk)}

Jk|k−1(mk)

s=1 }rmk=1

2:

3: i = 1

4:

5: Set Candidatek|k = ∅.

6:

7: for mk = 1 to r do

8: for s = 1 to Jk|k(mk) do

9: if wsk|k(mk) > The then

10: Candidatek|k(i) =
[
wsk|k(mk), x̂

s
k|k(mk), P̂

s
k|k(mk), τ

s
k|k(mk)

]
,

11: i = i+ 1

12: end if

13: end for

14: end for

15:

16: l = 1

17: while do I = ∅

18: j = argmaxi∈I weight of Candidatek|k(i),

19: L =
{
i ∈ I| tag of Candidatek|k(j) = tag of Candidatek|k(i)

}
,

20: I = I\L,

21: l = l + 1

22: end while

23:

24: Output {Candidatek|k(i)}li=1 as the state estimates of the GM-PHD tracker

25: with JMS model }
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consider a two-dimensional scenario where two aircraft fly in the surveillance region

of [-10000, -10000] × [10000, 10000] m2. The state vector of a target (aircraft) is

composed of its position and velocity: xk = [Px,k Py,k Vx,k Vy,k]
T .

Three discrete-time dynamic models (or modes) of the surviving and spawned

targets are described as follows: Model 1 (mk = 1) is a constant velocity model given

by:

Fk−1(mk = 1) = Fsp,k−1(mk = 1) =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 (4.46)

where the sampling period T is 1 second. Models 2 (mk = 2) and 3 (mk = 3) are a

coordinate turn model with known turn rates (ω) given by:

Fk−1(mk = 2 or 3) = Fsp,k−1(mk = 2 or 3) =


1 0 sin(ωT )

ω
−1−cos(ωT )

ω

0 1 1−cos(ωT )
ω

− sin(ωT )
ω

0 0 cos(ωT ) 0− sin(ωT )

0 0 sin(ωT ) cos(ωT )

 (4.47)

where Models 2 and 3 have a clockwise turn rate, ω = 4o/s and a counterclockwise

turn rate, ω = −4o/s, respectively. The process noises of the surviving and the

spawned targets are Gaussian with zero means and the following covariances:

Qk−1(mk = 1, 2 or 3) = σ2(ω)


T 4

4
0 T 3

2
0

0 T 4

4
0 T 2

2

T 3

2
0 T 2 0

0 T 3

2
0 T 2

 (4.48)

Qt
sp,k−1(mk = 1, 2 or 3) = diag([100, 100, 400, 400]) (4.49)
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The mode transition probabilities of the spawned target, the born target, and the

surviving target in the GM-PHD filter with JMS models and the GM-PHD tracker

are taken as [58]:

[πsp(mk|mk−1)] =


0.8 0.1 0.1

0.8 0.1 0.1

0.8 0.1 0.1

 (4.50)

[πb(mk)] =
[
0.8 0.1 0.1

]T
(4.51)

[π(mk|mk−1)] =


0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

 . (4.52)

A sensor located at (0, 0) obtains the measurement vector which represents the

position of a target, zk = [Pzx,k Pzy ,k]
T . The observation model is given by

zk =

1 0 0 0

0 1 0 0

xk + vk (4.53)

where measurement noise vk is assumed to be Gaussian with zero mean and 10 m

standard deviation. Clutter is modeled as a Poisson RFS with intensity

κk(zk) = λV U(zk) (4.54)

where λ and V are the clutter density and the surveillance region, respectively. U(·)

denotes a uniform density function. In the Gaussian component pruning part, the

truncation threshold of a Gaussian component is set to 10−5 and the merging threshold

of Gaussian components is 4. The extraction threshold is set to 0.5.

The intensity of the born target is given by

b(xk) = 0.1πb(mk)[N (xk;m
(1)
b,k, P

(1)
b,k ) +N (xk;m

(2)
b,k, P

(2)
b,k )] (4.55)

where m
(1)
b,k =

[
0 6000 0 −140

]T
and m

(2)
b,k =

[
−2500 −1000 120 −25

]T
are the

state vectors of individual Gaussian components. P
(1,2)
b,k = diag([100, 100, 25, 25]) is
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T1

T2

Fig. 4.6. Target trajectories, clutter, sensor and waypoints

the error covariance of the each Gaussian component. The weight of the spawned

target is 0.05. In the Gaussian component pruning part, the truncation and the

merging thresholds of a Gaussian component are set to 10−5 and 4, respectively. The

extraction threshold is set to 0.5. Note that the remaining noise and threshold values

follow the simulation set-up in [47, 58] for fair comparison. This scenario is used to

demonstrate the performance of the proposed GM-PHD filter and tracker.

4.5.1 Simulation Results for Gaussian Mixture Probability Hypothesis

Density filter with State-Dependent Jump Markov System Models

In this section, we present an illustrative numerical example to compare the pro-

posed GM-PHD filter with SD-JMS models with the original GM-PHD filter and the

GM-PHD filter with JMS models in terms of the performance of the target state

estimate persistence.
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Figure 4.6 shows a series of waypoints (w1, w2, w3 and w4), false measurements

and trajectories of two aircraft flying along two air routes over 100 seconds. Target 1

(T1) exists for the entire simulation but Target 2 (T2) appears at time k = 21 second

and disappears at time k = 72 second. To model the mode transitions, we define the

guard condition of (4.11) where

Lij =

1 0 0 0

0 1 0 0

 i, j = 1, 2, 3 (4.56)

µ21 = w1 =
[
0 3200

]T
, µ12 = w2 =

[
983 2224

]T
µ31 = w3 =

[
5462 2258

]T
, µ13 = w4 =

[
5728 1359

]T
(4.57)

Σij =

1002 0

0 1002

 i, j = 1, 2, 3 (4.58)

Then, the conditional mode transition probabilities at the waypoints are modeled as,

At w1, π(2|1, xk−1) = N (L21xk;µ21, Σ21) (4.59)

At w2, π(1|2, xk−1) = N (L12xk;µ12, Σ12) (4.60)

At w3, π(3|1, xk−1) = N (L31xk;µ31, Σ31) (4.61)

At w4, π(1|3, xk−1) = N (L13xk;µ13, Σ13) (4.62)

In order to compare the performance of the target estimate persistence between

the GM-PHD filter, the GM-PHD filter with JMS models and the proposed GM-

PHD filter with SD-JMS models, we perform Monte Carlo simulation of 500 runs

with different detection probabilities and clutter densities. Figure 4.7 presents the

true number of targets and the estimated numbers of targets computed by the original

GM-PHD filter, the GM-PHD filter with JMS models, and the proposed GM-PHD

filter with SD-JMS models when the values of PD and λ change from 0.8 to 0.98

and from 40 to 200, respectively. The black, red, purple, and green lines represent
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Fig. 4.7. The true number of targets and the estimated numbers of tar-
gets computed by GM-PHD filter, GM-PHD filter with JMS models, and
proposed GM-PHD filter with SD-JMS models (average over 500 Monte
Carlo runs)



98

the true number of targets and the estimated numbers of targets computed by the

GM-PHD filter, the GM-PHD filter with JMS models, and the proposed GM-PHD

filter with SD-JMS models, respectively. Note that, after 65 seconds, the estimated

number of targets computed by the GM-PHD filter is significantly deviated from the

true number of targets due to the rapid maneuver of Target 1. Furthermore, in the

low detection probability and high clutter density environment, there are a number of

missed estimates of the targets by the GM-PHD filter with JMS models because of the

inaccurate constant mode transition probabilities. However, the estimated number of

targets computed by the our proposed GM-PHD filter with SD-JMS is close to the

true number of targets, which demonstrates its superior performance over the two

existing filters.

4.5.2 Simulation Results for Gaussian Mixture Probability Hypothesis

Density Tracker with Jump Markov System Models

In this section, an illustrative numerical example is considered to demonstrate

the performance of the target state estimate persistence of the proposed GM-PHD

tracker with JMS models. To evaluate its performance, we compare the proposed

tracker with the GM-PHD tracker [65].

Figures 4.8 and 4.9 depict the trajectories of two aircraft, the measurements from

a sensor and the target state estimates computed by the GM-PHD tracker and the

proposed GM-PHD tracker with JMS models over 100 seconds. In this case, the

detection probability is set to 0.98 and the clutter density is 5×10−8 (i.e., an average

of 200 clutter are generated in the surveillance area at each time step). As shown

in Figure 4.9, Target 1 exists for the entire simulation but Target 2 appears at time

k = 21 second and disappears at time k = 72 second. The blue crosses indicate

the measurements composed of the targets with noise and clutter. The red and the

magenta circles indicate the state estimates of Target 1 and Target 2 computed by

the GM-PHD tracker, respectively. Note that the red circle disappears at 65 seconds
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due to a turning maneuver of Target 1. However, the state estimates for Target 1,

indicated by the green and the yellow circles, can be produced by the proposed GM-

PHD tracker with JMS models even though the label of the state estimate for Target

1 is changed from 1 to 3.

To compare the performance of the target estimate persistence between the GM-

PHD tracker and the proposed GM-PHD tracker with JMS models, we perform Monte

Carlo simulation of 500 runs with various values of detection probabilities, PD and

clutter densities, λ. Figure 4.10 presents the true number of targets and the estimated

numbers of targets computed by the GM-PHD tracker and the proposed GM-PHD

tracker with JMS models averaged over 500 Monte Carlo runs when the values of

PD and λ change from 0.8 to 0.98 and from 40 to 200, respectively. The black, red

and green lines represent the true number of targets and the estimated numbers of

targets computed by the GM-PHD tracker and the proposed GM-PHD tracker with

JMS models, respectively. From 20 seconds to 34 seconds, the estimated number of

targets computed by the GM-PHD tracker is less than that of the proposed GM-

PHD tracker with JMS model due to the maneuver of Target 1. However, after 33

seconds, the estimated number of targets computed by the GM-PHD tracker becomes

similar to that of the proposed GM-PHD tracker with JMS model since the Gaussian

component might not be pruned or if it is pruned around 20 seconds, it is regenerated

after a certain amount of time. Note that, after 65 seconds, the estimated number

of targets computed by the GM-PHD tracker is significantly deviated from the true

number of targets due to the rapid maneuver of Target 1. However, the estimated

number of targets computed by the our proposed GM-PHD tracker with JMS models

is close to the true number of targets, which demonstrates its superior performance

over the existing tracker.
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Fig. 4.10. The true number of targets and the estimated numbers of
targets computed by GM-PHD tracker and proposed GM-PHD tracker
with JMS models (averaged over 500 Monte Carlo runs)
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5. SUMMARY

In this thesis, we discussed challenges of jointly estimating the number of targets and

their states or trajectories in MTT, and developed new models and MTT algorithms

that effectively overcome the challenges. The developed algorithms are demonstrated

with illustrative simulation examples, and further tested with real data collected from

the surveillance radar in the vessel traffic tracking system.

To improve the performance of the data association-based traditional filters, we

have proposed a feature-aided data association filter for multi-target tracking. The

proposed data association filter facilitates target kinematic state-dependent feature

models which can explicitly account for the correlation between the kinematic and

feature states of a target. Algorithmically, two feature models are derived based on the

characteristics of the RCS. With the real data collected from the marine radar and the

surveillance radar of a VTS system, the performance of the proposed target kinematic

state-dependent feature models are validated via comparison with the existing feature

model which is independent of the target kinematic state. The results have shown

that the proposed models are more accurate than the feature model independent

of the target’s kinematic state. Furthermore, we have proposed a data association

algorithm using the proposed feature models, which does not require the widely-used

assumption that the kinematic state of the target is independent of its feature state.

Illustrative multi-target tracking examples with simulated data and real data have

been presented to demonstrate that the proposed data association filter outperforms

the existing data algorithms in terms of the tracking continuity and the accuracy of

estimate in heavily cluttered and/or low SNR environments.

To address the problem of the missed estimate of a target in the GM-PHD filter,

we proposed a new GM-PHD filter which can explicitly account for the uncertainty

in the measurement origin, i.e., whether 1) measurement is clutter; 2) measurement
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is originated from a target; and 3) there is no measurement. The conditional prob-

abilities, whether the measurement is target-originated or not, have been derived

algorithmically based on the measurement proximity information. A new estimate

error covariance update equation was derived based on the conditional error covari-

ances subject to the three different measurement origin events: true measurement,

false measurement, and no measurement. With the new estimate error covariance

update equation based on the conditional probability, proposed GM-PHD filter can

adjust the filtering process to improve the reliability of updated Gaussian component

against heavily cluttered and/or low SNR environments. Illustrative multi-target

tracking examples demonstrated that the proposed GM-PHD filter has better perfor-

mance than the original GM-PHD and N-scan GM-PHD filters in terms of the missed

estimates of targets against the presence of false measurements. Simulation results

showed that the number of the missed estimates of targets of the proposed method is

significantly less than that of the original GM-PHD and N-scan GM-PHD filters as

the clutter density increases and the detection probability decreases.

Finally, we proposed the GM-PHD filter with SD-JMS models to accurately ac-

count for maneuver uncertainty of a target moving along a planned trajectory. An

illustrative multi-target tracking example demonstrates that the proposed GM-PHD

filter with SD-JMS models outperforms the original GM-PHD filter and the GM-

PHD filter with JMS models which assumes constant mode transition probabilities

irrespective of the target state, in terms of the missed estimates of maneuvering tar-

gets. Simulation results showed that the number of the missed estimates of targets

by the proposed method is significantly less than those of the original GM-PHD filter

and the GM-PHD filter with JMS models, especially in harsh environments where the

clutter density is high and the detection probability is low. Also, we have proposed

the GM-PHD tracker with jump Markov system (JMS) models to estimate the tra-

jectories of the maneuvering targets. An illustrative multi-target tracking example

demonstrates that the proposed GM-PHD tracker with JMS models can persistently

provide the state estimates of targets and their labels even though there are the some
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label changes. Through Monte Carlo simulations, we demonstrate that the proposed

GM-PHD tracker with JMS models outperforms the original GM-PHD tracker which

has a linear Gaussian target model, in terms of the missed estimates of maneuvering

targets. Simulation results showed that the number of the missed estimates of tar-

gets by the proposed algorithm is significantly less than that of the GM-PHD tracker,

especially in harsh environments where the clutter density is high and the detection

probability is low.

In my future work, it is planned: i) to improve the proposed models and algorithm

and apply them to various applications, including integration with other nonlinear

filters and multiple model based tracking filters; ii) to generalize the target dimen-

sions with aspect-angle model by relaxing the assumption, ψ = 0 and b = c; iii) to

incorporate feature information of multiple targets to the proposed GM-PHD filters

and tracker in order to further increase its accuracy and iv) to extend the problems

to include practical factors such as unknown detection probability, and parameters

for the new born targets and time varying clutter density.
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A. PROOF OF LEMMA 1 IN CHAPTER 2

For deriving the semi-major and semi-minor axes, we need the equation of ellipsoid

in the 3D coordinate, which is given by:

x2

a2
+
y2

b2
+
z2

c2
= 1 (A.1)

We can rewrite (A.1) as:

F (x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1 = 0 (A.2)

The normal to the ellipsoid at (x, y, z) is given by:

~N =
2x

a2
î+

2y

b2
ĵ +

2z

c2
k̂ (A.3)

so that the direction cosines of the normal are given by:

cos δx =
x

a2r
, cos δy =

y

b2r
, cos δz =

z

c2r
(A.4)

where r =
√

x2

a4
+ y2

b4
+ z2

c4
.

The direction cosines for the line of sight are given by:

cos δx = sin θ cosψ

cos δy = sin θ sinψ

cos δz = cos θ

(A.5)

where θ and ψ are the aspect-angle of the ellipsoid given in its own (or local) coordi-

nate system. Then, the specular point (xs, ys, zs) can be obtained (A.3):

xs =
a2

p
sin θ cosψ

ys =
b2

p
sin θ cosψ

zs =
c2

p
cos θ

(A.6)
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where p =
√
a2 sin2 θ cos2 ψ + b2 sin2 θ sin2 ψ + c2 cos2 θ. We can also rewrite (A.1) as:

x = f(y, z) = a

√
1− y2

b2
− z2

c2
(A.7)

where we take only the positive square root. Then, the vector form of (A.7) is given

by:

x =
(
a

√
1− y2

b2
− z2

c2
, y, z

)
(A.8)

The radii of curvature at a point are described by [70]:

r =

δx
δy
× δx

δz

dx • dx
(A.9)

where

dx =
δx

δy
dy +

δx

δz
dz (A.10)

The cross product and dot product are given by:

δx

δy
× δx

δz
=
δ2x

δy2
• n̂dy2 + 2

δ2x

δyδz
• n̂dydz +

δ2x

δz2
• n̂dz2 (A.11)

dx • dx =
δx

δy
• δx
δy
dy2 + 2

δx

δy
• δx
δz
dydz +

δx

δz
• δx
δz
dz2 (A.12)

where the unit normal vector at a point n̂ is given by:

n̂ =
δx

δy
× δx

δz
=
(

1,
a2y

b2x
,
a2z

c2x

)
(A.13)

The inverse radii of curvature at a point are given by:

r(0) =
b2
√

1 +
(
(a
c
)2 − 1

)
z2

c2

a
(A.14)

r(π/2) =
c2
[
1 +

(
(a
c
)2 − 1

)
z2

c2

]3/2
a

(A.15)

The radii of curvature at the specular point are obtained from (A.6), (A.14), and

(A.15) (assume ψ = 0, b = c)

rL,k(θk) =
a2

b

[
1 + ((

b

a
)2 − 1)

a2 cos2 θk
a2 cos2 θk + b2 sin2 θk

]3/2
(A.16)

rS,k(θk) = b

√
1 + ((

b

a
)2 − 1)

a2 cos2 θk
a2 cos2 θk + b2 sin2 θk

(A.17)
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B. ELEMENTS OF OBSERVATION MATRIX OF

TARGET DIMENSIONS WITH ASPECT-ANGLE MODEL

IN CHAPTER 2

The feature observation matrix of he discrete-time TDA model as follows:

Hf,k =

 δzak (θk)δak

δzak (θk)

δbk
δzbk (θk)

δak

δzbk (θk)

δbk

 (B.1)

The elements of the feature observation matrix, Hf,k are calculated subsequently:

δzak(θk)

δak
=

√√√√ a2k(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θk
+ 1− (ak(

2a3k(
b2k
a2k
− 1) cos4 θk

(a2k cos2 θk + b2k sin2 θk)2

+
2b2k cos2 θk

ak(a2k cos2 θk + b2k sin2 θk)
−

2ak(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θk
))

/(2

√√√√ a2k(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θk
+ 1) (B.2)

δzak(θk)

δbk
= (ak(

2bk cos2 θk
a2k cos2 θk + b2k sin2 θk

−
2a2kbk(

b2k
a2k
− 1) cos2 θk sin2 θk

(a2k cos2 θk + b2k sin2 θk)2
))

/(2

√√√√ a2k(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θk
+ 1) (B.3)

δzbk(θk)

δak
= (bk(

2a3k(
b2k
a2k
− 1) cos4 θk

(cos2 θka2k + sin2 θkb2k)
2

+
2b2k cos2 θk

ak(a2k cos2 θk + b2k sin2 θk)

−
2ak(

b2k
a2k
− 1) cos2 θ

a2k cos2 θk + b2k sin2 θk
))/(2(

a2k(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θk
+ 1)3/2) (B.4)



113

δzbk(θk)

δbk
= (

a2k(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θk
+ 1)−1/2 − (bk(

2bk cos2 θk
a2k cos2 θk + b2k sin2 θ

−
2a2kbk(

b2k
a2k
− 1) cos2 θk sin2 θk

(a2k cos2 θk + b2k sin2 θ)2
))/(2(

a2k(
b2k
a2k
− 1) cos2 θk

a2k cos2 θk + b2k sin2 θ
+ 1)3/2)

(B.5)
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C. PROOF OF LEMMA 2 IN CHAPTER 3

Define that A is the event that a target is detected. We assume the detection proba-

bility is a constant.

P{A} = PD (C.1)

Under event M l
T,k, the l-th measurement with the NDS Di,l

k is considered as tar-

get originated, such that the numbers of true measurements and clutter within the

surveillance area are 1 and Tk − 1, respectively. Therefore, f(Di,l
k M

l
T,k, Tk) can be

rewritten as:

f(Di,l
k ,M

l
T,k, Tk) = f(Di,l

k ,M
l
T,k, Tk, A) (C.2)

= Pr{M l
T,k|D

i,l
k , Tk, A}f(Di,l

k |Tk, A)Pr{Tk|A}Pr{A} (C.3)

The first term of (C.2) represents that the l− 1 false measurements among Tk− 1

measurements have the NDS smaller than Di,l
k , and the remaining measurements have

the larger one. With Assumption 5, we have

Pr{M l
T,k|D

i,l
k , Tk, A} =

(
Tk − 1

l − 1

)
((
Di,l
k

γ
)
n
2 )l−1(1− (

Di,l
k

γ
)
n
2 )Tk−l (C.4)

From Assumption 5, the second term of (C.2) can be rewritten as follows:

f(Di,l
k |Tk, A) =

nVDi,l
k

2Di,l
k

N (Di,l
k )U(Di,l

k ; (0, γ]) (C.5)

where VD is the volume of the ellipsoid with the gate size of
√
D.
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Then the third term of (C.2) becomes Pr{Tk|A} = µF (Tk −1). Thus, we can

rewrite the pdf f(Di,l
k M

l
T,k, Tk) as follows:

f(Di,l
k ,M

l
T,k, Tk) =

(
Tk − 1

l − 1

)
((
Di,l
k

γ
)
n
2 )l−1(1− (

Di,l
k

γ
)
n
2 )Tk−l

·µF (Tk − 1)
nVDi,l

k

2Di,l
k

N (Di,l
k )U(Di,l

k ; (0, γ])PD (C.6)
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D. PROOF OF LEMMA 3 IN CHAPTER 3

Under event M l
F,k, the l-th measurement with the NDS Di,l

k is considered as a false

measurement. Therefore, f(Di,l
k , M

l
F,k, Tk) can be written as:

f(Di,l
k ,M

l
F,k, Tk) = Pr{M l

F,k|Tk, D
i,l
k }f(Di,l

k |Tk)Pr{Tk} (D.1)

Under the three cases and Assumption 5, the first factor of (D.1) can be written

as:

Pr{M l
F,k|Tk, D

i,l
k } = Pr{target is not detected}

+Pr{target is detected but it is not the l-th measurement}

= (1− PD)fcl(D
i,l
k |Tk) + PD(1− PR(Di,l

k ))fcl(D
i,l
k |Tk − 1)

+PDPR(Di,l
k )fcl−1

(Di,l
k |Tk − 1) (D.2)

where

fcl(D
i,l
k |Tk) = Tk

(
Tk − 1

l − 1

)
((
Di,l
k

γ
)
n
2 )l−1

n

2Di,l
k

(
Di,l
k

γ
)
n
2 (1− (

Di,l
k

γ
)
n
2 )Tk−l (D.3)

Thus, we can rewrite the pdf f(Di,l
k M

l
F,k, Tk) as follows:

f(Di,l
k ,M

l
F,k, Tk) = Pr{target is not detected}f(Di,l

k |Tk)Pr{Tk}

+Pr{target is detected but it is not the l-th measurement}

·f(Di,l
k |Tk − 1)Pr{Tk}

= (1− PD)fcl(D
i,l
k |Tk)µF (Tk)

+PD(1− PR(Di,l
k ))fcl(D

i,l
k |Tk − 1)µF (Tk − 1)

+PDPR(Di,l
k )fcl−1

(Di,l
k |Tk − 1)µF (Tk − 1) (D.4)
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E. PROOF OF LEMMA 4 IN CHAPTER 3

The prior error covariance of the i-th Gaussian component conditioned on event M l
F,k

is given by:

P̂ i,l

k|k−1,M l
F,k

, E[x̄ik|k−1(x̄
i
k|k−1)

T |Zk−1,M l
F,k]

=

∫
x̄ik|k−1(x̄

i
k|k−1)

Tp(x̄ik|k−1|M l
F,k)dx̄

i
k|k−1

=

∫
[

∫
x̄ik|k−1(x̄

i
k|k−1)

TN (x̄ik|k−1;K
i
kν

i,l
k , P

i,∗
k )dx̄ik|k−1]

·p(νi,lk |M
l
F,k)dν

i,l
k

= P i,∗
k +Ki

k[

∫
νi,lk (νi,lk )Tp(νi,lk |M

l
F,k)dν

i,l
k ](Ki

k)
T (E.1)

The last equation in (E.1) is based on Assumption 5 that νi,lk is uniformly distributed

in the surveillance region and independent of the state of the true target. Under event

M l
F,k, the l-th measurement with the NDS Di,l

k is not target-originated. The pdf of
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Di,t
k , the NDS of the target-originated measurement conditioned on event M l

F,k and

Tk are needed. In order to derive p(νi,lk |M l
F,k), we first compute

p(Di,t
k |D

i,l
k ,M

l
F,k, Tk) =

p(Di,t
k , D

i,l
k ,M

l
F,k, Tk)

p(Di,l
k ,M

l
F,k, Tk)

=
(1− PDU(γ −Di,t

k ))fcl(D
i,l
k |Tk)

(1− PD)fcl(D
i,l
k |Tk)

nVDi,t
k
N (Di,t

k )µF (Tk)U(Di,l
k )U(γ −Di,l

k )

2Di,t
k µF (Tk)

+PD(U(γ −Di,t
k )− U(Di,l

k −D
i,t
k ))fcl(D

i,l
k |Tk − 1)

+PD(1− PR(Di,l
k ))fcl(D

i,l
k |Tk − 1)

µF (Tk − 1)U(Di,l
k )

µF (Tk − 1)

+PDU(Di,l
k −D

i,t
k )fcl−1

(Di,l
k |Tk − 1)

+PDPR(Di,l
k )fcl−1

(Di,l
k |Tk − 1)

µF (Tk − 1)U(γ −Di,l
k )

µF (Tk − 1)
(E.2)

With this pdf, we can rewrite the error covariance as follows:

P̂ i,l

k|k−1,M l
F,k

= P i,∗
k +Ki

k

∫
νi,lk (νi,lk )Tp(νi,lk |MF,k)dν

i,l
k (Ki

k)
T

= P i,∗
k +Ki

k

∫
Di,t
k (Di,t

k )Tp(Di,t
k |MF,k)

2Di,t
k

nVDi,t
k

dDi,t
k (Ki

k)
T

= P i,∗
k +Ki

k

∫
Di,t
k (Di,t

k )Tp(Di,t
k |D

i,t
k ,MF,k,m)

2Di,t
k

nVDi,t
k

dDi,t
k (Ki

k)
T

= P̂ i
k|k−1 + αi,lk K

i
kS

i
k(K

i
k)
T (E.3)

Here, αi,lk is computed as:

αi,lk =
λ(1− PDCT )VDi,l

k
(VG − VDi,l

k
)

λ(1− PD)VDi,l
k

(VG − VDi,l
k

)

+PD(CT − PR(Di,l
k )CT (Di,l

k ))(Tk − l)VDi,l
k

+PD(1− PR(Di,l
k ))(Tk − l)VDi,l

k

+PDPR(Di,l)CT (Di,l
k )(l − 1)(VG − VDi,l

k
)

+PDPR(Di,l
k )(l − 1)(VG − VDi,l

k
)

(E.4)
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Based on the prior covariance conditioned on event M l
F,k, the posterior covariance

conditioned on event M l
F,k can be derived as:

P̂ i,l

k|k,M l
F,k

= E[x̃ik|k(x̃
i
k|k)

T |M l
F,k, Tk, Z

k]

= E[(x̄ik|k−1 −Ki
kν

i,l
k )(x̄ik|k−1 −Ki

kν
i,l
k )T |M l

F,k, Tk, Z
k, νi,lk ]

= E[x̄ik|k−1(x̄
i
k|k−1)

T |M l
F,k, Tk, ν

i,l
k ]−Ki

kνkE[(x̄ik|k−1)
T |M l

F,k, ν
i,l
k ]

−E[x̄ik|k−1|M l
F,k, ν

i,l
k ](νi,lk )T (Ki

k)
T +Ki

kν
i,l
k (νi,lk )T (Ki

k)
T

= P̂ i
k|k−1,M l

F,k
−Ki

kν
i,l
k (νi,lk )T (Ki

k)
T (E.5)
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