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Architected materials are a class of materials with novel properties that consist of numerous 

periodic unit cells. In past investigations, researchers have demonstrated how architected materials 

can achieve these novel properties by tailoring the features of the unit cells without changing the 

bulk materials. Here, a group of architected materials called Phase Transforming Cellular 

Materials (PXCMs) are investigated with the goal of mimicking the novel properties of shape-

memory alloys. A general methodology is developed for creating 1D PXCMs that exhibit 

temperature-induced reverse phase transformations (i.e., shape memory effect) after undergoing 

large deformations. During this process, the PXCMs dissipate energy but remain elastic (i.e., 

superelasticity). Next, inspired by the hydration-induced shape recovery of feathers, a PXCM-

spring system is developed that uses the superelasticity of PXCMs to achieve shape recovery. 

Following these successes, the use of PXCMs to resist simulated seismic demands is evaluated. 

To study how they behave in a dynamic environment and how well their response can be estimated 

in such an environment, a single degree of freedom-PXCM system is subjected to a series of 

simulated ground motions. Lastly, the concept of PXCMs is extended into two dimensions by 

creating PXCMs that achieve superelasticity in two or more directions. Overall, the findings of 

this investigation indicate that PXCMs: 1) can achieve shape memory and recovery effects through 

temperature changes, 2) offer a novel alternative to traditional building materials for resisting 

seismic demands, and 3) can be expanded into two dimensions while still exhibiting superelasticity.   
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1. INTRODUCTION 

 Background 

Smart materials can change properties in response to external stimuli such as temperature, 

magnetic fields, electric fields, moisture, and ion concentration. For example, the crystalline 

structure of Shape Memory Alloys (SMAs) changes with temperature, thereby changing modulus 

and lattice parameters1,2. In piezoelectric materials, a voltage creates charge redistribution resulting 

in mechanical strain3. Conversely, charge redistribution under an applied strain induces voltages. 

In feather shafts, the hydration process can soften and swell the beta-keratin fibers and matrix, 

causing the stiffer buckled fibers to reorient to their original configurations. As a result, feather 

shafts have the ability to recover their shape and strength with hydration4,5. Carnivorous plants 

such as the Venus Flytrap6, exhibit movements caused by changing certain key ion concentration. 

These unique behaviors have prompted the use of these materials and bio-inspired alternatives in 

applications ranging from cardiac stents to tunable shock absorbers to high-resolution ultrasound 

monitors.  

 Past Investigations 

Shape Memory Alloys are a group of smart materials that exhibit complex thermomechanical 

behavior. The close coupling of mechanical and thermal response in SMAs give them shape 

memory effect (SME) and superelasticity (SE). Shape Memory Alloys can recover from large 

deformations to their original shapes by temperature changes. This thermomechanical coupling 

also gives them superelasticity (SE), in which SMAs exhibit reversible hysteretic curves under 

cyclic demands2,7,8. These properties of SMAs have been exploited across a wide range of scales 

from compact actuators9, medical implants, and minimally-invasive surgical instruments10, to base 

isolation systems and energy dissipation systems that reduce the dynamic response of 

structures11,12. But SMAs have limitations, such as temperature sensitivity, low fatigue properties, 

high cost, and relatively low strain range when used as actuators.  

 

The complex and useful behaviors of SMAs have motivated researchers to develop similar 

materials. These materials, structures, or devices have successfully achieved either shape-memory 
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effect or superelasticity. For example, to achieve shape memory effects, morphing structures can 

recover their original shape via the viscoelasticity of the bulk materials13,14. Hydrogel devices 

attain revisable snapping in response to temperature or pH-induced hydrogel shrinkage15. 3D-

printed architectures consisting of hydrogel and shape-memory polymer (SMP), exhibit shape-

memory effects via hydration and temperature-induced expansion and modulus variation16. Active 

composites made of digital polymers can be programmed to change shape and recover via 

temperature17. And digital micro 3D printing technology has made it possible to fabricate tunable 

microstructures that can recover to their original configurations18.  

 

Architected materials are an emerging class of materials composed of numerous building blocks. 

They can achieve novel properties via tailoring the geometry and topology of the unit cells without 

changing the properties of bulk materials. Several architected materials achieved superelasticity 

by configuring elementary building blocks without changing bulk materials properties. These 

architected materials have been proposed for applications such as reusable, solid state energy 

absorption19–21, shock absorption or impact isolation22,23, and reconfigurable structures24,25. They 

have also been used to create metamaterials whose mechanical properties (e.g., compressive 

modulus, wave propagation behavior) can be altered after the material has been fabricated20,22,26. 

Many of the materials described above are structurally two or three-dimensional because they can 

resist loads applied along with arbitrary directions. However, they are functionally one-

dimensional because they exhibit significant energy dissipation only for loads applied along a 

preferred loading direction.  Recent works address materials that exhibit superelasticity for loads 

applied along multiple directions. For example, straightforward extensions of functionally one-

dimensional architected materials design for two and three dimensions have been proposed by 

Shan et al. and Ren et al.27,28 Topology optimization-based automatic synthesis techniques have 

also been used to generate functionally 2D architected materials unit cells29. Two types of 

architected materials unit cells featuring a 5-bar planar truss and a three-dimensional tetrahedral 

unit cell have been proposed recently30. Some of the architected material designs proposed for 

auxetic materials31 and shape reconfigurable materials 25 have the potential to be functionally two- 

and three- dimensional architected materials. Miura-ori pattern based metamaterials32, three-

dimensional arrays of spherical shells with patterned holes or Bucklicrystals33, and tape-based 

three dimensional multistable structures34,  are other examples of materials that might function as 
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2D or 3D architected materials.  However, in most of the above works, the emphasis has either 

been on the 1D variant of the design or on the response of the higher dimensional material designs 

to uniaxial loads applied along one direction. In this thesis, two designs for two-dimensional Phase 

Transforming Cellular Materials (PXCMs) which exhibit superelasticity are studied. The first 

design is based on a square motif and exhibits four axes of reflectional symmetry (similar to 27–29). 

The second design is based on a triangular motif and has six axes of symmetry.  

 

With superelasticity, PXCMs can undergo large deformations, limit forces, and remain elastic. 

These advantages make PXCMs attractive to structural engineering. For example, buildings 

exposed to earthquakes are designed to exhibit material nonlinearity in structural elements. This 

nonlinearity results in the yielding of steel and cracking or crushing of concrete, which results in 

irreversible damage even in buildings which perform as expected. Buildings that can undergo 

nonlinear deformations without damage would be ideal. Traditional materials are not capable of 

this behavior, but PXCMs are capable of it due to their superelasticity. Here, a single degree of 

freedom-PXCM system exposed to seismic demands is studied via experiments and FE 

simulations.  
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 Objectives and Goals 

The overall goal of this research is to assess the feasibility of a new class of architected materials 

that mimic novel properties of active materials (i.e. shape-memory effects and superelasticity of 

Shape Memory Alloys). More specifically the focus of this work is to create design concepts that 

employ simple combinations of materials that do not necessarily have any particular active 

property (such as shape-memory, etc.). Additionally, this work sought to architect materials that 

can mimic stress- and temperature-induced phase transformations observed in SMAs. Furthermore, 

to create multi-dimensional architected materials that can exhibit superelasticity, rather than the 

one-dimensional variant of the design. An additional goal of this work is to understand the response 

of these materials under loads applied along multiple axes of symmetry rather than the response 

of higher dimensional material designs due to uniaxial loads applied along one preferred direction. 

Eventually, utilizing the superelasticity of this new class of architected materials to apply on 

seismic design.   

 

The objectives of this work are shown as following: 

1. To extend the concept of PXCMs to functionally 2D PXCMs that can achieve 

superelasticity in multiple directions. 

2. To establish the analytical, numerical, and experimental programs for the design and 

analysis of the mechanical behavior of functionally bidimensional PXCMs.  

3. To develop design guidelines for the development of PXCMs that can achieve shape-

memory effects through external/non-mechanical stimuli.  

4. To develop and analyze bioinspired PXCMs with shape-memory properties.   

5. To explore potential and innovative applications of PXCMs.  
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 Thesis Organization 

The rest of the thesis is organized as follow: 

Chapter 2 presents the design concept of thermal-induced PXCMs. The design guide is provided 

to determine geometry and materials combination of PXCMs, in order to achieve phase 

transformation at a certain temperature. The analytical, experimental, and numerical validations of 

this design concept is also included in this chapter.  

 

Chapter 3 includes the study of shape recovery effects of feathers. A new bio-inspired PXCMs 

system can achieve shape-memory effects is also proposed in this chapter.  

 

In Chapter 4, a preliminary study of the application of 1D PXCMs in structural engineering is 

presented. The response of a single degree of freedom with 1D PXCMs and mass system under 

various seismic demands are studied. The experiments grogram and numerical analysis are 

included in this chapter.  

 

Chapter 5 shows the process of extending the concept of functional one-dimensional PXCMs into 

two-dimension. The two types of 2D PXCMs design, S- and T-type 2D PXCMs, are demonstrated. 

The energy dissipation capacity and sensitivity of these two types of 2D PXCMs along multiple 

axes of symmetry are presented in this chapter. The analytical, experimental, and numerical 

validations of this design concept is also included in this chapter. Preliminary results and plan of 

the future study on the response of 2D PXCMs undergo the concentrated loading condition is also 

presented in this chapter.  

 

Finally, the discussions and conclusions of the most important results obtained from this work 

are summarized and concluded in Chapter 6.  
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2. TEMPERATURE-INDUCED PHASE TRANSFORMING CELLULAR 

MATERIALS 

The work in this chapter was done in collaboration with Nilesh D. Mankame from General 

Motors, David Restrepo from The University of Texas at San Antonio, and Mirian Velay-

Lizancos from Purdue University. 

 Overview 

Shape Memory Alloys are a group of smart materials that exhibit complex thermomechanical 

behavior. The close coupling of mechanical and thermal response in SMAs give them shape-

memory effect (SME), wherein they can recover from large deformation back to its original shape 

via temperature variation. The unique combination of crystal lattice configurations and 

thermodynamics (energy and entropy) associated with nearly equiatomic alloys also gives them 

superelasticity (SE), wherein SMAs exhibit reversible hysteretic curves under cyclic demands2,7,8. 

These properties of SMAs have been exploited across a wide range of scales from compact 

actuators9, medical implants, and minimally invasive surgical instruments10, to base isolation 

systems and energy dissipation systems to reduce the dynamic response of infrastructure11,12. But 

SMAs have limitations, such as low fatigue properties, high cost, and relatively low strain range 

when used as actuators. The complex and functional behaviors of these materials have motivated 

researchers to develop similar materials. These materials, structures, or devices have gone 

successfully achieved one of shape-memory or superelasticity. For example, morphing structures 

can recover their original shape via the viscoelasticity of the bulk materials13,14. Hydrogel devices 

attain revisable snapping in response to temperature or pH-induced hydrogel shrinkage15. 3D 

printed architectures composed of hydrogel and shape-memory polymer (SMP), exhibit shape-

memory due to the temperature and hydration induced formation or destruction of soft cross-links 

between parts of the same or adjacent chains16. Active composites made of digital polymers can 

be programmed to change shape and recover via temperature17. And digital micro 3D printing 

technology has made it possible to fabricate tunable microstructures that can recover to the original 

configurations18. Several architected materials also can achieve superelasticity by configuring the 

elementary building blocks without changing the bulk materials properties. 1D metamaterials 
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comprise a number of compliant mechanisms building blocks, such as curved beams19,35 and 

constrained tilted beams36, exhibit superelasticity via the snap-through behavior of these building 

blocks. 2D metamaterials are composed of bistable mechanisms as building blocks exhibit SE 

when loads come along multiple directions25,37. These works have successfully achieved one of 

two novel behaviors of SMAs, shape-memory effect or superelasticity, but not both. An architected 

material that can perform both, stress- and temperature-induced phase transformation by using 

simple mechanisms and combination of materials is proposed here.  

 Analytical model, design, and validation 

A design concept that employs a simple combination of materials that do not require active 

properties such as shape-memory to design materials in order to mimic the stress- and temperature-

induced phase transformation observed in Shape Memory Alloys (SMAs) is presented. We 

demonstrate this design concept using Phase Transforming Cellular Materials (PXCMs) fabricated 

with two widely-used digital materials in additive manufacturing. Our PXCMs exhibit the complex 

thermomechanical behavior of SMAs. The superelastic behavior of PXCMs is described in our 

previous works on 1D and 2D PXCMs19. This study focusses on how to design and tune PXCMs 

to exhibit shape-memory effects via temperature variation.  

 

Figure 2.1: A PXCM building block is bistable at a low temperature and is metastable at a high 

temperature. 
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Shape Memory Alloys can transform between lattice phases through temperature and stress stimuli. 

Here, Figure 2.1 shows how PXCMs can also transform between geometric configurations 

(phases), BP1, BP2, MP1, and MP2 via temperature and stress stimuli. The geometric configurations 

shown in Figure 2.1 define phases at the elementary building block level. The transitions between 

these configurations are denoted as phase transformations. In these PXCMS, a building block 

consists of a bistable/metastable (B/M) sinusoidal beam with stiff walls at its midpoint and at its 

ends as supports. It can transform from P1 to P2 via an external load (Figure 2.1). Once the load is 

released, a bistable building block remains at P2, but a metastable building block will return to P1 

without an external force being applied. Here, the phase transformation of in demonstrated on a 

building block (Figure 2.1).  

 

One key aspect of the phase transformation shown in Figure 2.1 is that the behavior of a PXCM 

building block switches from bistable (B) to metastable (M) at a transition temperature (Tt).  When 

the current temperature T is smaller than Tt, a building block is bistable (Figure 2.1, blue row). We 

define the configuration of this building block under zero external load in its original stable 

configuration as BP1. If an external load is applied, the building block can transform into its second 

stable configuration, BP2 (Figure 2.1 blue row). Because BP2 is a stable configuration, the building 

block will remain in BP2 even when the applied load is removed – an external force is needed to 

return to BP1. When T exceeds Tt, the building block is metastable (Figure 2.1, red row), meaning 

an applied load can transform the block from MP1 to MP2 via stress. In contrast to the previous 

case, in this case, the building block will return to MP1 if the load is released (i.e., no external force 

is needed).  

 

We define when T> Tt, T=Th and T< Tt, T=Tl by specifying the materials and geometry of the 

PXCM. The Force-displacement (F-d) relationship of the generalized bistable and metastable 

building blocks undergoing both stress-induced phase transformation cases are shown in Figure 

2.2 and Figure 2.3. The local maximum and minimum forces are defined as the peak force, Fp, and 

the valley force is defined as Fv. The F-d relationship can be divided into three regimes as shown 

in Figure 2.2 and Figure 2.3. Regime 2, between Fp and Fv, exhibits negative stiffness. Regimes 1 

and 3 exhibit positive stiffness. When T=Th, Fv > 0 the building block is metastable as shown by 
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the red line in Figure 2.3. When T=Tl, Fv < 0 the building block is bistable as shown by the blue 

line in Figure 2.2. The ratio rb is defined as the ratio of -Fv/ Fp to describe the bistability of a 

building block. The bistability of a building block increases with the value of rb. When rb is positive, 

a building block is bistable, and when it is negative a building block is metastable. As temperature 

increases, Fv → Fp, and rb → -1, and consequently the negative stiffness regime disappears. This 

leads the building block to behave as an elastic spring which is neither bistable nor metastable.  

 

Figure 2.2: F-d relation of a building block when it is bistable. 

 

 

Figure 2.3: F-d relation of a building block when it is metastable. 
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As an analogy to SMAs: MP1, MP2, BP1, and BP2 are equivalent to austenite (A), detwinned 

martensite (M+), thermal martensite (M+/ M-), and detwinned martensite (M+) phases (Figure 2.4). 

Here we refer the twinning and detwinning process between M+
 and M- also as phase 

transformation. Parallels between phase transformations of PXCMs and in SMAs are illustrated in 

Figure 2.4. Temperature-induced phase transformation takes place when the temperature in a 

building block in BP2 increases from Tl to Th without external forces. When the material becomes 

metastable, the material undergoes a phase transformation from MP2 to MP1 without any external 

force. This process is equivalent to SMAs transforming from Austenite (A) to a mixture of twinned 

and detwinned martensite phases (M-/M+) by decreasing temperature2. This temperature-induced 

phase transformation process is schematically plotted in the stress-strain-temperature (𝜎-𝜀-T) 

diagram in Figure 1c as points ③→④→⑤→⑥.  When temperature reaches Tl, stress can 

induce a building block to transform from BP1 into BP2, similar to how SMAs transform from M-

/M+ into M+ (points ⓪→①→②→③ in the same figure). SMAs can recover from detwinned 

martensite to austenite (M+ to A) by increasing temperature. Instead of holding an external force-

free condition at Th, if a loading-unloading cycle applies to this PXCMs building block, the 𝜎 − 𝜀 

relation shows reversible hysteresis corresponding to points ⑥→⑦→⑧→⑨→⑩→⑪ in 

Figure 2.4. This reversible hysteresis is equivalent to the reversible transformation of SMAs from 

A →M+→ A via stress, also known as superelasticity. 

 
Figure 2.4: A schematic plot shows the analogy of PXCMs to SMAs through stress- and 

temperature-induced phase transformation diagram. 
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The F-d relationship of a building block is determined by both the thermomechanical properties 

of its base materials and geometry. Differences in the mechanical properties of the base materials, 

m1 and m2, are similar at low temperatures but these differences increase with temperature (Figure 

2.4). In our PXCMS, the stiff walls at the ends of the sinusoidal beam are made of material m2, 

whereas the remaining structure is made of material m1. Figure 2.5 shows such a building block 

exhibits the SME.  

 

 

Figure 2.5: A PXCM building block made of m1  and m2 transforming between phases via 

temperature variation.  
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Figure 2.6 shows a 3D-printed PXCM prototype comprising three of these building blocks. This 

prototype was fabricated using a multi-material polymer 3D printer Connex 350.  The shape of the 

sinusoidal beam follows the expression: 𝑌 = (
𝐴

2
) [1 − cos⁡(

2𝜋𝑋

𝜆
)], where A is the amplitude and 𝜆 

represents the wavelength Figure 2.7, A group of nondimensional parameters 𝜋1 =
𝑡

𝜆
, 𝜋2 =

𝐴

𝜆
, 𝜋3 =

𝑡𝑠

𝜆
, 𝑎𝑛𝑑⁡𝜋4 =

𝐸2

𝐸1
,  determine how the F-d relationship of PXCMs undergo the phase 

transformation at different temperatures (see Appendix A). Here, t is the thickness of the sinusoidal  

beam, 𝑡𝑠 is the width of a stiff wall, and ka and ks represent the axial stiffnesses of the sinusoidal 

beam and stiff walls, respectively19,38,39. Here, stiffness is approximated as 𝑘𝑎 =
𝐸1𝑏𝑡

𝜆
 and 𝑘𝑠 =

𝐸2𝑏𝑡

2𝑡𝑠
 where 𝐸1 and 𝐸2 are the elastic moduli of m1 and m2, and b is the out of plane thickness of the 

building block (Figure A1). The variable c describes the level of the stiffness the stiff walls provide 

to a building block. The bistability of PXCMs is governed by the nondimensional parameters 

c=
1

2𝜋3/𝜋4+1
=

1

𝑘𝑎/𝑘𝑠+1
 and Q= 𝜋2/𝜋1 = 𝐴/𝑡. If the geometry and base materials of a building 

block are known, the value of c depends only on the temperature. The variable c ranges from 0 to 

1, where larger values correspond to higher transitional constraints from the two stiff walls, and 

thus higher bistability. When 𝑘𝑠 ≫ 𝑘𝑎⁡, c→ 1, and the building block is equivalent to a sinusoidal 

beam under the clamped-clamped boundary condition. As 𝑘𝑠 ≪ 𝑘𝑎 and c→0, the building block 

is equivalent to a free sinusoidal beam with no constraint (Figure A2).   

 

 

Figure 2.6: A 3D printed PXCM sample. 
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Figure 2.7: PXCM building block can be simplified into a sinusoidal beam-spring model.  

 

If a PXCM is made of a single homogeneous isotropic material, the parameter Q governs 

bistability19,38,39. Although PXCMs typically comprise two materials, at Tl they behave as a 

homogeneous isotropic material because the elastic modulus of m1 and m2 are similar (Figure 2.5). 

As a result, the bistability of PXCMs at Tl is still governed by the parameter Q.  At the transition 

temperature, Tt, the elastic modulus of m2 becomes much lower than the elastic modulus of m1.  

Accordingly, c decreases to a point where the stiff walls (material m2) can no longer provide 

enough constraint to keep the sinusoidal beam bistable (Figure 2.5). This makes the unit cell 

transition from being bistable at Tl<< Tt to being metastable at Th>>Tt. 

 

To capture this variation, an analytical model was derived by simplifying a PXCM building block 

as a sinusoidal beam connected to a translational spring (Figure 2.7). The normalized force-

displacement (f-𝛿) relationship of a building block undergoing single phase transformation is 

derived by using superposition buckling mode method. This relationship is described by Eq. 2.1-

Eq. 2.3, where 𝑝 is the axial force in a sinusoidal beam. During the phase transformation, the 

building block goes through three primary buckling modes, mode 1, mode 2, and mode 3 (Figure 

A3). At the beginning and end of phase transformation, the axial force p is small, and the building 

block transforms through mode 1. Once p increases to the threshold of mode 2 or mode 3, the 

building block then switches to mode 2 or mode 3 which depends on whether the rotational motion 

in the middle of the building block is constrained. Toward the end of phase transformation, p 

reduces to the threshold of mode 1. As a result, the building block switches back to mode 1.  The 

f-𝛿 relationship of a sinusoidal beam going through these three modes is denoted by f1-𝛿, f2-𝛿 and 

f3-𝛿. Here, f1 intersects with f2 and f3 twice. The intersection between f1-⁡𝛿,⁡ f2-⁡𝛿 and f3-⁡𝛿 is where 
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the sinusoidal beam switches from mode 1 to mode 2 or mode 3. The f-⁡𝛿 relation is the combination 

of f1-d outside two points of intersection and f2-⁡𝛿 or f3-⁡𝛿 between the two points of intersection. 

The Appendix A contain additional details about the derivation of the equations governing this 

response. These analytical equations are essential tools to design PXCMs achieving SME.       

       

𝑓1 = ∑
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Figure 2.8 illustrates how the 𝜎 − 𝜀 relation and bistability (rb) of a building block (Q=A/t=3.5) is 

influenced by c from FE simulations (details in section A3). Here, 𝜎 is F divided by gross cross-

section area and 𝜀  is d divided by the original height of the building block. The bistability of a 

building block is described by rb =-Fv/ Fp= −𝜎v/⁡𝜎p. Figure 2.8 indicates that the bistability of this 

building block decreases with c, which depends on temperature (Figures A6-8). Hotter 

temperatures decrease c and rb (Figures A6 &7), therefore decreasing bistability. When the 

temperature has decreased such that c=0.14, the building block switches from bistable to 

metastable (𝜎v≥0 and rb≤ 0). Subsequently, without any external mechanical loading, the building 

block can transform from BP2 to MP1 simply by heating to Th such that c>0.14.  

There is a limitation on Th. If temperature continues to increase, eventually 𝜎v ≈ 𝜎p and rb →-1. 

As a result, the negative stiffness regime 2 starts to disappear along with distinct phases. Figure 

2.9, a phase diagram, illustrates this phenomenon. Each point represents 𝜎v or 𝜎p of the building 

block shown in Figure 2.9 at the corresponding temperatures. At low temperatures, the building 

block is bistable and it can transform from BP1 to BP2 via an external force which causes stress to 

exceed 𝜎p. The building block can also return to BP2 when the external force causes stress reach to 
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𝜎v. At high temperatures, the building block is metastable. When stress reaches 𝜎p, it transforms 

from MP1 to MP2. Once the stress decreases below 𝜎v, the block can return to metastable state MP1. 

If the temperature is too high, 𝜎p and 𝜎v become too close to distinguish. As a result, phase 

transformation cannot occur.  

 

Figure 2.8: 𝝈-𝜺 relation of a PXCM building block corresponding to different c. 

 
Figure 2.9: Phase transformation of a PXCM building block through temperature and stress. 
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Figure 2.10 shows how bistability in a PXCM varies with Q and c (see details in secssion A4 in 

Appendix A). In this figure, blue denotes a bistable region and pink denotes a metastable region. 

The red curve and black dots represent the critical value of c from analytical equations and FE 

simulations when a PXCM building block switches between metastable and bistable. Regardless 

of the geometry or base materials of a building block, there is a unique ccr that depends only on Q. 

Different geometries or material combinations of PXCMs with the same Q would have the same 

ccr (Figure A9). A building block is bistable when c is larger than ccr, and metastable when c is 

smaller than ccr. To program PXCMs to transform between phases, the geometry of the building 

block and base materials need to be selected to ensure c=ccr at the desired Tt.  

 

 
Figure 2.10: c determines the bistability of PXCMs. 

In Appendix A4, the method to create design maps for PXCMs is provided. Figure 2.11 shows an 

example of a design map of a PXCM made of DM_8530 as m1, and DM_9895 as m2 (see Figure 

A5). In this design map  𝜋3 = 0.02 is fixed and 𝜆=60 mm has been selected because they are the 

major factors determining the size of PXCMs. Each curve illustrates the transition temperature, Tt, 

of building blocks with a constant 𝜋2 =
𝐴

𝜆
 but different Q. For smaller values of 𝜋2 , higher 

temperatures are required to achieve phase transformation. When  𝜋2 is constant and Q is large, 

the PXCM becomes more bistable, and higher temperatures are required to transform it from BP2 

to MP1. More design maps in which other parameters are fixed are shown in Appendix A4. 
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Figure 2.11: Design diagram illustrates the Tt of different PXCM building blocks with different 

geometry parameters. 

 

To show how to design PXCMs to exhibit the shape-memory effect (SME), a PXCM sample was 

designed and fabricated for experimental testing. This sample consists of three building blocks 

made of DM_8530 (m1) and DM_9895(m2), designed to transform from BP2 to MP1 at Tt=18 °C 

(Figure 2.6 & Figure 2.12a). The demonstration procedure was as follows:  

The specimen is placed on an aluminum 8020 frame. Two aluminum L shape angles were fixed 

on both sides of the sample to eliminate the move in X direction. 

(1) At T=Tl=8°C, an applied force compressed the sample such that it transformed from 

BP1 to BP2 and unloaded (Figure 2.12 b),  

(2) The sample kept in BP2 at Tl for 10 minutes. 

(3) The temperature increased gradually to Th=22°C and Tt was recorded.  

Figure 2.12 b-f shows the SEM process from both the experiment and FE simulation. As expected, 

the sample remained in state BP2 for 10 minutes at 8°C. As the temperature increased, there was 

no observable change until the temperature reached 18°C (Figure 2.12 b-e). At 18°C, the PXCM 

began to transform to MP1. The transformation was complete by 19°C. The transition temperature 

Tt, obtained from both FE simulation and experiment, were close to the design value derived by 

the analytical equations (Eq.2.1-2.3). The building blocks made of m1 exhibited SME. The glass 

transition temperature of DM_8530 (m1) is around 48°C, indicating the shape-memory properties 
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of the base materials did not interfere with the phase transformation. That the sample remained in 

BP2 for 10 minutes and did not transform until 20 minutes had passed and T=Tt =18 °C indicates 

the design method is able to predict the recovery temperature.  

 

 

Figure 2.12: Recovery process of the sample from experiments and FEA at different temperature. 

 Work and Actuation  

The study has demonstrated how PXCMs exhibit SEM and SE like SMAs via FE simulation and 

experiment. Next, how PXCMs can be used for free recovery (deployable structures) or 

constrained (prestressed fittings, valves, or actuators) applications like SMAs are investigated. 

Figure 2.13 shows the F-d relation of a PXCM building block at 10, 20, and 28 °C. The valley 

force, Fv, increases with temperature, and becomes zero when T=20 °C (for Tt=20 °C and Fv=0). 

This building block can be transformed from BP1 to BP2 at 10 °C by applying stress. Under the 

same temperature, it would remain at BP2 even after the stress is released. Under the stress-free 

condition, if temperature increases, the building block can transform from BP2 to MP1 at 20 °C. If 
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a weight w is set atop this building block, the Tt  is required to transform the building block from 

BP2 to MP1 with the weight will become the temperature corresponding to Fv= w. Therefore, a 

higher temperature is required to achieve phase transformation if a building block has a load 

applied on top. A number of simulations were created following this test procedure and are shown 

in Figure 2.14. Each red dot represents Fv of the same building block under different temperatures. 

Each black dot represents Tt when this building block transforms from BP2 to MP1 with the 

corresponding weight on top of it. The two curves nearly overlap, indicating this methodology is 

correct for determining the required temperature Tt to trigger PXCMs to lift a weight.  

 

Figure 2.13: A PXCM building block can lift a weight w=Fv at the recovery temperatures. 

 

 

Figure 2.14: Fv of the building block at various temperatures and the weight this building block 

can lift at different temperatures. 
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Figure 2.15: A 6 by 3 building blocks sample for FE simulation. 

 

 

Figure 2.16: F, d, and T vary with t during the work process.  

To prove this concept, a FE simulation of a 6x3 building block PXCMs model subjected to a stress 

and temperature cycle was conducted (Figure 2.15). At 10°C, this model was compressed to 

transform from BP1 to BP2. The model remained at BP2 after the external force is released. Then 

a weight w=21 N was applied on top of this model as it remained at BP2. Gradually, the temperature 
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was increased until the weight was raised, and the model recovered to MP1. Figure 2.16 presents 

how the reaction force (F), temperature (T), and displacement (d) of the building block model vary 

with time.  From t=0 to 55 sec, the temperature was held at 10°C and the model was compressed 

from BP1 to BP2 at a constant rate. The F-t curve exhibited a seesaw shape, where the six peaks 

represent the six rows of building blocks transforming progressively.  From t=55 to 60 sec, the 

model stayed at BP2 without external loads (F→0). From t=60 to 65 sec, the temperature was kept 

constant and a 21 N weight was applied on top of the sample. The model remained at BP2. From 

t=65 to 110 sec., the temperature was increased from 10°C to 30°C. As expected, the model 

transformed from BP2 to MP1 at 28 °C. The phase transformation process was observed by a 

sudden change in displacement when the temperature reached 28 °C. 

 PXCMs Designs 

Here, three types of PXCM designs are created. In this chapter has detailed Type I. The other two 

types of PXCMs are also able to mimic the SE and SEM of SMAs. The phase transformations of 

the three designs are presented in Figure 2.17a-c. Type I design has the stiff walls made of material 

m2 and the remainder made of material m1. The phase and bistability of Type I PXCMs depends on 

the level of constraint that stiff walls provide to the building block. This constraint is tuned by 

temperature (Figure 2.18). In Type II PXCMs, the center stiff wall is made of m2 and the remainder 

is made of m1. When temperature increases, the center bar softens and allows the sinusoidal beam 

to transform back to its original configuration through an asymmetric rotational mode (Figure 2.18 

a & c). In Type III PXCMs, a small portion of the sinusoidal beams around their inflection points 

is made of m2 and the remainder is made of m1. Under low temperatures, each unit cell is similar 

to a single isotropic, homogeneous material 1D PXCM building block. When Q=A/t is sufficiently 

high, the building block can remain at BP2 under stress-free condition.  Under high temperatures, 

the building block performs like a sinusoidal beam missing two parts which is metastable. 

Therefore, it can transform from BP2 to MP1 via temperature control (Figure 2.18 a & d).  All these 

designs were evaluated and shown to be feasible alternatives using FE simulations, the details of 

which can be found in the Appendix A.   
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Figure 2.17: PXCMs family. (a)-(c) Demonstrate the building blocks of Type I, II, and III PXCM 

having temperature-induced phase transformation.  

 

Figure 2.18: (a) Schematically plot 𝜎-𝜀 relation of PXCMs varies with temperature. (b)-(d) FE 

simulations of three designs transform from BP2 to MP1 via increasing temperature. 
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 Conclusions 

A family of smart programmable phase transforming cellular materials (PXCMs) which can mimic 

the shape-memory effect and superelasticity of Shape Memory Alloys are created. This work have 

shown how to design the phase transformation of PXCM by controlling the thermomechanical 

relationship between the stiff walls and the sinusoidal beam. In addition, it demonstrates how to 

program PXCMs to produce work via temperature change. PXCMs significantly increased the 

actuation strain capacity to 200% compared with the strain capacity of SMAs, which usually is 

less than 10%.  The transformation stress and temperature of PXCMs can be tailored to suit various 

applications using the design guide we provided. Temperature is only one method to tune the 

stiffness and compliance of a bistable/metastable building block to achieve phase transformation. 

Other physical stimuli such as magnetic fields, moisture contents, or electrical fields can be used 

to trigger similar effects. 
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3. BIOINSPIRED PXCMS SHAPE RECOVERY SYSTEM 

The work in this chapter was done in collaboration with Tarah N. Sullivan and Prof. Marc Meyers 

from University of California San Diego. A version of this chapter has been previously published 

in Advanced Functional Materials https://doi.org/10.1002/adfm.201801250 

 Overview 

As necessary appendages to the bird wing for flight, feathers have evolved to address the 

requirements of aerial locomotion. One of the recently discovered, fascinating aspects of this is 

their ability to recover shape and strength with hydration. This feature significantly enhances the 

effectiveness of a bird’s flying capability as it allows for the natural restoration of feathers 

damaged by predators or other external forces.  

 

Imperative for bird flight, feathers are an evolutionary marvel designed to be 

lightweight yet able to endure the intense loads of flight40. Flying feathers of birds consist 

of a main shaft (rachis and calamus) and a vane that branches from the rachis. The rachis 

is foam-filled and rectangular (Figure 3.1a) while the calamus is hollow and elliptical, 

embedded under the skin (Figure 3.1b). Although the vane captures the majority of air in 

flight, it transfers loading to the shaft, which possesses higher rigidity and strength. 

Integrity of the shaft is therefore essential to a bird’s survival, especially since feathers are 

usually only replaced once a year41. Feathers are composed entirely of β-keratin, a “dead tissue” 

formed by keratinous cells. This biopolymer can be considered a hierarchical fiber-reinforced 

composite (Figure 3.1 c,d): at the sub-nanoscale crystalline β-keratin filaments (~3 nm in diameter) 

are embedded within amorphous matrix proteins. This filament-matrix composite forms 

macrofibrils (~200 nm in diameter) which are surrounded by amorphous intermacrofibrillar 

material. Macrofibrils then bundle to form fibers (3-5 μm in diameter) and these in turn form 

ordered lamellae within the dense exterior of the feather shaft41–43 The fiber direction within these 

lamellae varies depending on the side and location along the feather shaft as well as the species of 

bird44.  
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Figure 3.1: The hierarchical structure of the feather. The flight feather of the Cape Vulture (Gyps 

coprotheres) is divided into the (a) rachis and (b) calamus. Optical microscope images of both 

sections are shown in the leftmost images (scale bar is 0.5mm). Fiber models of the feather sections 

illustrate that fibers run longitudinally along the shaft (purple), and circumferentially (gray) within 

the calamus and dorsal side of the rachis, while fibers alternate at 45 angles (green) in the lateral 

walls of the rachis. On the right, SEM images of the dorsal rachis and calamus confirm the 

orientations of fibers in the corresponding sections of fiber models. (c) TEM images reveal a 

filament and matrix structure that forms macrofibrils which in turn form fibers, (d) a schematic of 

this is drawn to clarify this structure.* 

 
* The figure was made by in Tarah N. Sullivan from University of California San Diego 
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Previous studies on feathers provided the experimental characterization of the fibers and matrix of 

the feather shaft. It showed that the fibers can remain approximately elastic under the large 

deformation and the mechanical properties are insensitive to the hydration process. On the contrary, 

the matrix can develop plastic deformation and during the hydration process, and the cortex shows 

approximately 20% expansion in cross-section. This part of the study is attending to explain the 

phenomenon of both shape and strength of the feather shaft cortex recover during the hydration 

process. Furthermore, a bioinspired PXCMs-spring system is created to mimic the shape recovery 

behavior of feathers.  

 Analytical model to capture the shape recovery effect 

The feather cortex is composed of matrix and fibers with different lengths and orientation angles 

(Figure 3.1). While the architecture of the cortex is complex, the recovery process of cortex can 

be explained by a simple model based on the previous experimental characterization of the fibers 

and matrix. Hydration significantly affects the flow stress and Young’s Modulus of the matrix only 

as schematized in Figure 3.2 and induces hydrostatic swelling in the material. For the 

computational model, the matrix is modeled as an initially elastic-perfectly plastic material and 

the fibers as linearly elastic. Hydration is added as a hydrostatic strain, 𝜀 sw, to the total strain as 

follows:𝜀 =
𝜎

𝐸
+ 𝜀𝑝𝑙 +⁡𝜀𝑠𝑤. 
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Figure 3.2: Schematic representation of composite (fiber and matrix) response in hydrated and dry 

conditions. (a) Crystalline fibers in amorphous matrix; (b,c) fiber and matrix responses; fibers are 

not affected by hydration whereas the matrix softens. (d) Composite response showing a 

significant difference between dry and hydrated conditions.  
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  Simulations of shape recovery in the feather  

 

Figure 3.3: Model description: (a) Step 2 and 3 indicate the initial loading and unloading in the dry 

configuration. Step 4 describes the hydration process where the elastic modulus and flow stress of 

the matrix drop significantly and swelling occurs, allowing the relaxation of the elastic fibers. Step 

5 is the final drying post hydration process, where the matrix shrinks and some minor gain in strain 

is observed. (b) The stress-strain behavior in the matrix and fiber is plotted. Note that the positive 

axes denote compression stress and strain. 
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A simple illustration of this model is shown in Figure 3.3a for a representative 

volume element of a composite sample under compression. The dark blue and light blue 

stripes represent fibers and matrix. The matrix and fibers are perfectly bonded together. One end 

of the sample is constrained in X direction. Displacement of the other end of the sample is used to 

calculate the strain. At Step 1, the composite sample is under the stress and strain-free conditions 

where, 

𝜀1 = 0 

𝜎𝑓 = 𝜎𝑚 = 0 

The displacement 𝛿𝑎 is applied to in Step 2 causes matrix undergoing plastic deformation.  

𝜀2 = 𝛿𝑎/𝑙𝑜 = 𝜀𝑐 + 𝜎𝑚𝑑
𝑦
/𝐸𝑚𝑑 Eq. 3.1 

𝜎𝑚
2 = 𝜎𝑚𝑑

𝑦
 Eq. 3.2 

𝜎𝑓
2 = 𝜎𝑚𝑑

𝑦
𝐴𝑚/𝐴𝑓  Eq. 3.3 

The load is released in Step 3, inducing permanent deformation and residual stress (e.g., fibers are 

in compression and the matrix is in tension under equilibrium and free of external loads). To 

simplify the expression, the parameter 𝜀𝑐 is defined as below.  

𝜀𝑐 = 𝛿𝑎/𝑙𝑜 − 𝜎𝑚𝑑
𝑦
/𝐸𝑚𝑑 Eq. 3.4 

The strain and stress at Step 3 are shown as below.     

𝜀3 =
𝐴𝑚𝐸𝑚𝑑𝜀𝑐

𝐸𝑚𝑑𝐴𝑚 + 𝐸𝑓𝐴𝑓
 

Eq. 3.5 

𝜎𝑚
3 = −

𝐴𝑓𝐸𝑓𝐸𝑚𝑑𝜀𝑐

𝐸𝑚𝑑𝐴𝑚 + 𝐸𝑓𝐴𝑓
 

Eq. 3.6 

𝜎𝑓
3 =

𝐸𝑓𝐴𝑚𝐸𝑚𝑑𝜀𝑐

𝐸𝑚𝑑𝐴𝑚 + 𝐸𝑓𝐴𝑓
 

Eq. 3.7 

It should be noted that the plastic deformation only takes place in the matrix while the fibers 

remain elastic and in compression.𝜎𝑚
3 = −𝜎𝑚𝑑

𝑦
 

𝜀3 =
𝐴𝑚𝜎𝑚𝑑

𝑦

𝐴𝑓𝐸𝑓
   

Eq. 3.8 

𝜎𝑓
3 =

𝐴𝑚𝜎𝑚𝑑
𝑦

𝐴𝑓
 

 Eq. 3.9 
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Figure 3.3b shows the stress vs. strain behavior for the matrix and fiber (for 

convenience, the compressive stress and strain are plotted as positive along the ordinate 

and abscissa, respectively). The sample is then hydrated to 100% during Step 4. At this point the 

both, flow stress and Young’ Modulus of the matrix drop significantly allowing the fibers that are 

in compression to stretch and reduce their stress. The matrix also undergoes hydrostatic swelling 

which helps straighten out the fibers if bending and buckling occurs. As a result, the stress values 

in the fibers and matrix significantly decrease to values very close to zero (as schematized in Figure 

3.2). This process removes some of the permanent plastic deformation induced by the initial load 

(Step 2). This means that the elastic energy stored in the fibers is sufficient to induce reverse plastic 

deformation in the matrix. The strain and stress are shown as below.  

𝜀𝑐
′ = 𝜀𝑐 − 𝜀𝑠𝑤  Eq. 3.10 

𝜀4 =
𝐸𝑚ℎ𝐴𝑚𝜀𝑐′

𝐸𝑚ℎ𝐴𝑚+𝐸𝑓𝐴𝑓
  Eq. 3.11 

𝜎𝑚
4 = −

𝐸𝑓𝐸𝑚ℎ𝐴𝑓𝜀𝑐′

𝐸𝑚ℎ𝐴𝑚+𝐸𝑓𝐴𝑓
   Eq. 3.12 

𝜎𝑓
4 =

𝐸𝑓𝐸𝑚ℎ𝐴𝑚𝜀𝑐′

𝐸𝑚ℎ𝐴𝑚+𝐸𝑓𝐴𝑓
  Eq. 3.13 

Finally, the sample is dehydrated back to 0% at Step 5, and the material recovers 

its original Young’s Modulus and Yield stress. While the swelling strain goes back to zero 

(i.e., sw =0), the permanent deformation due to the initial loading step gets significantly 

reduced during the hydration step. Dehydration leads to a very small amount of loss in the 

recovery strain, but significantly small than the actual recovery strain gained in the 

hydration step. The strain and stress are presented as below.  

𝜀5 =
𝜀𝑐
′𝐸𝑚𝑑𝐴𝑚

𝐸𝑚𝑑𝐴𝑚 + 𝐸𝑓𝐴𝑓
 

Eq. 3.14 

𝜎𝑓
5 =

𝜀𝑐
′𝐸𝑚𝑑𝐴𝑚𝐸𝑓

𝐸𝑚𝑑𝐴𝑚+𝐸𝑓𝐴𝑓
   

 Eq. 3.15 

𝜎𝑚
5 = −

𝜀𝑐
′𝐸𝑚𝑑𝐴𝑓𝐸𝑓

𝐸𝑚𝑑𝐴𝑚+𝐸𝑓𝐴𝑓
  

Eq. 3.16 

Figure 3.3b shows the rest of the steps in terms of the stress-strain behavior 

in the matrix and fiber. As it can be observed, the hydration process in Step 4 almost fully 
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recovered the stress in both fiber and matrix. The hydration process reduces the elastic 

modulus and flow stress of the matrix enabling the fibers to stretch and further lower their 

compressive stress. Furthermore, swelling in matrix creates a hydrostatic stress that push 

the fibers to recover their original length. It surmises that, if buckling is present, this 

swelling and push mechanisms allow further strain recovery by straightening out the fibers. 

The post hydration process in Step 5 is illustrated by a minor increase in strain and stress 

in Figure 3.3b. Here, the recovery ratio rate 𝑟 at the end of Step 5 is defined to quantify the level 

of the recovery.  Smaller 𝜀𝑐
′ , large the recovery rate.  

𝑟 = 1 −
𝜀𝑐
′

𝜀𝑐
= 1 −

𝜎
𝑚ℎ
𝑦

𝐸𝑚ℎ
+(

𝐴𝑚𝜎
𝑚ℎ
𝑦

𝐸𝑓𝐴𝑓
+𝜀𝑠𝑤)

𝛿𝑎/𝑙𝑜−𝜎𝑚𝑑
𝑦

/𝐸𝑚𝑑
  

 

 Eq. 3.17 

 FE simulations 

To verify the hypothesis that the geometry and strength of the feather cortex recovers with 

hydration, a finite element analysis (FEA) model was developed based on the individual responses 

of the matrix and fibers. A representative volume element consisting of six fibers embedded in a 

matrix composite beam (Figure 3.4a) is created to represent a section of the feather shaft cortex. 

The FEA model considers a plane strain condition, and mechanical properties of the fiber and 

matrix were obtained from hydrated and dehydrated feather cortex properties. The fibers were 

assumed to be unaffected by water content and considered to behave linearly elastically, while the 

matrix was assumed to be an elastic-perfect plastic material. With an increase in water content, the 

elastic modulus and yield stress of the matrix decreases and the matrix swells. Firstly, a prescribed 

curvature, ap, was applied to the composite by imparting an external bending moment at the ends 

of the composite. This causes the matrix to plastically deform leading to a permanent curvature, 

pl, shown in Figure 3.4b. While the composite is plastically deformed, 100% water content was 

gradually applied to the composite through a hydrostatic strain (Figure 3.4c). Concomitant with 

the hydration, the flow stress of the matrix is decreased. The stress in both the fibers and matrix, 

and therefore the elastic energy stored in the fibers, significantly drop, leading to a much lower 

curvature, h, of the composite. After complete hydration, a post hydration process was applied to 

the composite to decrease the water content from 100% to 0% (Figure 3.4d). This dehydration 

process leads to a curvature, d, slightly larger than the hydrated curvature. The shape recovery for 
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the hydration,  rh, and post hydration step, rd,  can be defined by 𝑟𝑖 = |
𝜅𝑖−𝜅𝑝𝑙

𝜅𝑝𝑙
| × 100%, where 𝜅𝑖 =

𝜅ℎ is the curvature of composite beam under 100% hydration, and 𝜅𝑖 = 𝜅𝑑 is  the curvature of 

composite post hydration. Figure 3.4e shows the shape recovery attained with hydration (rh), and 

post hydration (rd) as a function of the applied curvature, ap. While the hydrated sample recovers 

to a greater extent (99.5%) than the post hydrated sample 

 

Figure 3.4: FE simulations of the shape recovery process. (a) Schematic of the representative 

volume element where an applied curvature is prescribed along the composite to induce plastic 

deformation in the matrix. (b) The deformed composite with residual stress after unloading. (c) 

After hydration, the residual stress drops significantly, and the section regains its shape. (d) The 

composite retains much of the shape recovery at post hydration. (e) The recovery rate after 

hydration and post hydration as a function of the applied curvature yields high values of recovery. 
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 Bioinspired PXCMs-spring system  

Inspired by the shape recovery effects of feathers, a new PXCM-spring system was developed. As 

introduced in Chapters 2 through 4, a PXCM building block is either bistable or metastable. A 

building block has two phases – phase 1 and phase 2 – which correspond to two stable geometric 

configurations. When a PXCM sample, which comprises a number of building blocks, undergoes 

displacement-controlled cyclic loading it exhibits the Force-displacement (F-d) relationship 

shown in Figure 3.5. The F-d relationship is linear until the force reaches a maximum force 𝐹𝑚𝑎𝑥, 

the first row of unit cells transforms to the second stable configuration. Due to material 

imperfections, each row of cells collapses progressively, resulting in a serrated F-d curve. Each 

serration represents a row of PXCM building blocks undergoing a phase transformation.  Here, the 

average plateau forces 𝐹𝑝𝑙
𝑙  and 𝐹𝑝𝑙

𝑢  describe the loading and unloading paths. With relatively 

smooth plateau force – that is, when the amplitude of the serrations is much smaller than 𝐹𝑝𝑙
𝑙 ⁡– the  

𝜎 − 𝜀  relationship of a PXCM sample can be approximated as elastic-perfectly plastic. This 

relationship is similar to the matrix of a feather cortex. Increasing the temperature of the PXCM 

sample, 𝐹𝑝𝑙
𝑙  decreases and 𝐹𝑝𝑙

𝑢  increases as shown in Figure 3.5b. Using the concept of hydration-

induced shape recovery effect on feathers, a system consisting of 1D PXCMs and elastic springs 

can be designed to exhibit shape recovery effect via temperature changes.  

 

This system was modeled using PXCMs with materials whose elastic moduli decrease when 

temperature increases, and springs with stiffnesses that are insensitive to temperature changes. The 

PXCMs act as the matrix in a feather cortex, and the springs act as the fibers. In contrast to shape 

recover of feathers which is induced by hydration, the shape recovery effect in this PXCM-spring 

system is triggered by increasing temperature.  
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Figure 3.5: (a) A 1D PXCMs sample. (b) Schematically mechanical response of the 1D PXCMs 

sample. 

 

The system is modeled consists of 20 PXCM building blocks connected in series and 3 PXCM 

building blocks connected in parallel. The geometric details of a unit cell are presented in Table 

3.1 and Figure 3.6. Material properties for the PXCMs are based on Shore 95 material which has 

an elastic modulus that reduces with temperature as shown in Figure 3.7. The PXCMs are 

connected to n elastic springs (here n=2) with stiffness 𝑘𝑠𝑝 which does not vary with temperature. 
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Implicit dynamic finite element (FE) analyses were conducted in Abaqus 6.18. These FE 

simulations used a two-node, shear flexible beam element discretization of the PXCM samples.  

 

 

Figure 3.6: Geometry of the PXCM sample and the building block.  

 

Figure 3.7: Elastic modulus of shore 95 varies with temperature. 
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Figure 3.8: F-d relationship of the PXCMs sample at the low temperature T=-10℃ and the low 

temperature T=-10℃ 

 

Table 3.1: Geometric parameters of a PXCM building block in the system studied. 

Parameter Dimension, mm. 

t 1.25 

A 5 

𝜆 60 

b 25 
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Figure 3.9: The FE simulation shows the PXCMs-spring system exhibits shape recovery effects 

by tuning temperature. 

 

The recovery process of the PXCM-spring system is shown in Figure 3.9. In Step 1, at low 

temperatures (T=-10 ℃), a displacement was applied to the system at a rate of 1mm/sec. for 200 

seconds. This load caused all unit cells to transform from phase 1 to phase 2. Both the springs and 

the PXCMs were under compression in this step.  

 

In Step 2, the load was removed, and the system was kept at the same temperature for 100 seconds. 

After the external force was released, the system began to seek a new equilibrium with the spring 

in compression and the PXCMs in tension. The system can reach a new equilibrium position with 

PXCMs in phase 2 if 𝐹𝑚𝑖𝑛⁡along the unloading path of the F-d curve (Figure 3.8) at the low 

temperature provides sufficient tension to balance the compression in the spring. In other words, 

the system can reach a new equilibrium position with PXCMs in phase 2 if the following equation 

is satisfied: 
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𝑛𝑘𝑠𝑝𝑑2 ≤ 𝐹𝑚𝑖𝑛
𝑙  Eq. 3.18 

In Step 3, the temperature was increased to a higher value of T=10 ℃, which led both the 

magnitude of the unloading plateau force 𝐹𝑝𝑙
𝑢  and the corresponding minimum force 𝐹𝑚𝑖𝑛

ℎ ⁡ to 

decrease as shown in Figure 3.8. Recovery is triggered once the 𝐹𝑚𝑖𝑛
𝑙  is lower than the compressive 

force in the spring (Eq. 3.19).  

𝑛𝑘𝑠𝑝𝑑3 = 𝐹𝑚𝑖𝑛
ℎ  Eq. 3.19 

Here, the stiffness of the spring is set to 𝑘𝑠𝑝 =0.055 N/mm to ensure that during Step 2 shape 

recovery can take place around T=10 ℃.  

 

Finally, in Step 3, the temperature is decreased to the original temperature T=-10 ℃. The recovery 

rate r is measured as follows: 

𝑟 = (1 −
𝑑4

𝑙𝑜
) ×%  Eq. 3.20 

The F-d relationship at each step is shown in Figure 3.10(a) and the values at the end of each step 

are summarized in Table 3.2. The PXCMs exhibited superelasticity which allowed them to show 

pseudo elastic-plastic behavior without permanent deformations. Therefore, unlike the matrix in 

feathers that can never recover completely due to plastic deformations, PXCMs can recover 

completely.  

 

The time, displacement, and reaction force from these analyses are summarized in Table 3.2 and 

Figure 3.10 (b). As shown in Table 3.2 there is no residual displacement. Therefore, this new 

PXCMs-spring system can achieve shape recovery effects via tuning temperature.  

 

The preliminary results show the feasibility to create this new PXCMs-spring system to achieve 

shape recovery. In the future, the system will be fabricated via additive manufacturing and tested 

via experiments.  
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Figure 3.10: FE simulation results. (a) F-d relationship of the system at each step. (b) Displacement, 

force, and temperature vary with time.  

 

Table 3.2: Force and displacement of the system at end of each step. 

Step  
Time, t 

(sec.) 

Displacement, 

d (mm) 

Force, 

F (N) 

1 210 209.90 203.16 

2 187 187.36 0 

3 0 -0.04 0 

4 0 0.00 0 
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4. RESPONSE OF A SDOF PXCM SYSTEM UNDER DYNAMIC 

LOADING CONDITIONS 

The work in this chapter was done in collaboration with Prateek Shah and William Pollalis, and 

Prof. Santiago Pujol from Purdue University and Nilesh Mankame from General Motors. 

 Overview 

Buildings exposed to earthquakes are designed for life safety. They exhibit nonlinear behavior and 

plastic deformation in structural components in the form of yielding of steel and cracking or 

crushing of concrete. This nonlinear deformation results in damage, even in buildings which 

perform as expected. And although buildings that survive earthquakes may be safe to use, they 

may still be demolished because repairs are too expensive or because of public perception of 

damage. Buildings that can undergo nonlinear deformation without damage would be ideal, 

because there would be no need to repair or demolish them after a major event. Existing materials 

are not capable of this behavior, but a new class of materials called phase transforming cellular 

materials (PXCMs) are capable of it. PXCMs can undergo large deformations without permanent 

damage, making them an ideal candidate for installation in buildings. Here, results are presented 

from a series of dynamic tests on an earthquake simulator of a single degree of freedom (SDOF) 

PXCMs system, and from accompanying FE simulation.  

 Design PXCMs 

Phase transforming cellular materials (PXCMs) are periodic architected materials with bistable or 

metastable building blocks. In particular, a metastable building block exhibits one stable and one 

metastable configuration. The transitions between these configurations are defined as phase 

transformations19,45,46. If designed correctly, a metastable building block can transform between 

phases and return to the original stable configuration after unloading. The limited forces (plateau 

force/stress), accurate estimation of force-displacement (F-d) relation, and revisable large 

deformation of PXCMs make them suitable for seismic building design.   
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PXCMs consist of numerous metastable motifs connected in series and parallel. Each motif 

comprises two metastable elementary building blocks and each building block is composed of one 

sinusoidal beam and stiff walls as supports (Figure 4.1 a-c). The mechanical response for an 

elementary building block is shown schematically in Figure 4.1d. The F-d relationship (solid blue 

line) has two positive stiffness regimes (R1 and R3) that are separated by a negative stiffness 

regime (R2). The total internal energy U (red dashed line) has one stable and one metastable 

position. Tabel 4.1e schematically shows a stress-strain (𝜎 − 𝜀) relation of a PXCMs sample under 

a displacement controlled loading-unloading cycle. When there is sufficient number of building 

blocks connected in series, the snap-through instability can be observed as shown in grey dash 

line. Under displacement control, no reversal displacement can occur. Once a row of building 

blocks reach a limit stress point (𝜎𝑚𝑎𝑥  or ⁡𝜎𝑚𝑖𝑛) , it will snap to the other stable/metastable 

configuration via the solid vertical blue or red lines. Smaller the stiffness in R2 leads the instability 

path less stiff, therefore smoother the loading and unloading path PXCMs can exhibit.  

 

The sinusoidal beam of a building block is shaped as the first buckling mode of a straight prismatic 

beam under axial loading, which is represented by 𝑌 = ⁡ (𝐴/2)[1⁡ − ⁡𝑐𝑜𝑠(2𝜋𝑋/𝜆)], where A is the 

amplitude and 𝜆 is the wavelength (Figure 4.1c). A dimensionless parameter Q=A/t is defined as 

the mechanism of the PXCM building block which can be used to design the building blocks such 

that they are metastable. The F-d relation of a mechanism undergoes phase transformation is 

shown as equation below  

𝐹 = (
𝑑𝑏𝐸𝜋4𝑡3

24𝜆3
) [6𝑄2 + 4 + 3𝑄2 (

𝑑

𝐴
)
2

− 9(
𝑑

𝐴
)𝑄2]  Eq. 4.1 

 

The analytical equation indicates that a PXCM building block is metastable when Q<2.31. But the 

equation is derived under the assumption that each building block is under the clamped-clamped 

boundary condition. In the interval Qϵ [2.3,2.41], the behavior of the mechanism is sensitive to the 

boundary conditions and small variations in the geometry parameters, therefore cannot be 

characterized in a robust manner. To ensure that the PXCMs exhibit metastable behavior, remain 

elastic, and plateau force is smooth, an iterative design process that requires computational 
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simulations, fabrication, and experiments of PXCMs under a uniaxial loading-unloading cycle was 

required.  

 

Figure 4.1: The hierarchy structure and mechanical response of PXCMs. (a) A PXCMs building 

block with corresponding geometric parameters. (b) A PXCMs motif. (c) A PXCMs sample. (d) 

Schematically mechanical response for an elementary building block. (e) Schematically 

mechanical response for a PXCMs sample.  

 Design and Fabrication 

The PXCMs sample was made of aluminum Alloy 6061 and was machined on an OMAX 2652 

waterjet with a Tilt-a-Jet cutting head using a garnet abrasive (no. 80) operating at 55k psi. The 

geometries parameters of the sample (Table 4.1) were chosen to ensure that each building block is 

metastable and PXCMs can remain elastic under the large deformation. The out-of-plane width of 
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the sample was chosen to be sufficiently high (b=1 in.) to prevent the sample to buckle out of the 

plane.  

 

Before conducting dynamic tests on the SDOF PXCMs system, the PXCM sample was tested in 

cyclic uniaxial compression in a universal test machine (MTS Insight 10). The sample was 

subjected to three compressive loading-unloading cycles to check for repeatability and any 

evidence of irreversible deformation. The integral area enclosed by the loading and unloading 

branches of the F-d response corresponds to the energy dissipated by the sample in that cycle 

(Figure 4.2). The ignorable variation of F-d relation of the sample among different cycles indicates 

PXCMs remain elastic during the phase transformation.  

 

Figure 4.2: Cyclic loading test results indicate PXCMs undergo the reversible deformation.  
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 FE simulations setup  

FE simulations were created to study the response of SDOF PXCM system under several ground 

motions (Table 4.2 & Figure 4.3). Implicit dynamic finite element analyses in a finite element 

analysis software Abaqus 6.15 was used to simulate the complex behavior of the system.  The FE 

simulations in this work used a two-node, shear flexible beam element discretization of the PXCM 

samples. Results from 2D, 3D solid and beam element discretizations were compared for accuracy 

of the solution as well as its computational cost. The element sizes were determined through a 

convergence study.  

 

 

Figure 4.3: FE simulation set up for SDOF PXCMs system. 
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 Experiments setup 

The Single Degree of Freedom (SDOF) PXCMs system was assembled and tested on a 

unidirectional earthquake simulator*.  The aluminum PXCMs sample described from the previous 

section was split into two samples which and installed to the system. This SDOF system requires 

two aluminum PXCMs samples, because this aluminum PXCMs sample were designed to resist 

compressive forces only. The two small samples were placed on either side of a mass and were 

allowed to separate from the mass to prevent tensile forces in the aluminum PXCMs sample. The 

aluminum PXCMs sample were attached to the simulator platform using 6”× 6”⁡×x3/4” steel 

angles (Figure 4.4). The mass was constructed of a C8×11.5 steel channel. Additional steel plates 

were attached to the channel to vary its mass.  The channel was attached to the simulator platform 

using four linear motion guide carriages to reduce frictional forces as the mass moved along the 

surface of the earthquake simulator. The carriages allowed for ±3.5 inches of relative displacement 

and produced a total of approximately 3 lbf of frictional force as the mass moved, regardless of 

the amount of mass*. Elevation and plan views of the experimental setup are shown in Figure 4.5 

and Figure 4.6.  

 

Figure 4.4: Schematic of the experimental setup. 

 

 

 
* All the experiments in this section were conducted by William G Pollalis and Prateek P Shah from Santiago 

Pujol’s research group 
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Figure 4.5: Elevation view of the experimental setup*. 

 

 

Figure 4.6: Plan view of the experimental setup*. 

 
* All the experiments in this section were conducted by William G Pollalis and Prateek P Shah from Santiago 

Pujol’s research group 
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Figure 4.7: Plot of spectral displacement versus period for ground motions used in the 

experimental program. 

 

Displacement history of the earthquake simulator platform, mass, and angles were measured using 

OptiTrack, an image-based displacement tracking sensor. A total of 12 optical targets were used. 

Four targets were attached to the simulator platform, two targets were attached to the flanges of 

the channel, and two targets were attached on the angles at the same height as the PXCMs samples 

to measure their slip relative to the simulator platform if any. The remaining four targets were used 

as reference targets to determine the orientation of the targets. Acceleration history of the 

earthquake simulator platform and mass were measured using unidirectional accelerometers 

oriented in the direction of motion of the simulator platform. A total of four accelerometers were 

used. Two accelerometers were mounted on two diagonally opposite corners of the simulator 

platform and two accelerometers were attached on the bottom edges of the channel used for the 

mass*. 

 
* All the experiments in this section were conducted by William G Pollalis and Prateek P Shah from Santiago 

Pujol’s research group 
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Twelve representative experimental tests with five different ground motion records and five 

different masses are presented here (Table 4.2). Ground motions were selected such that the SDOF 

system would be subjected to a wide range of displacement demands for each value of mass. 

Displacement spectra of the ground motions used are shown in Figure 4.7. Measured values of 

Peak Displacement for each experimental run are listed in Table 4.2. 

 

 

Figure 4.8: FE simulations overall overestimate the maximum relative displacement of the mass 

from the experiments. 

 

Table 4.1: Geometry parameters of PXCMs building block. 

Parameter Dimension, in. 

t 0.08 

A 0.2 

𝜆 11 

b 1 
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Table 4.2: Summary of the maximum displacement of each case. 

Ground 

Motion 

Scale Mass Peak Displacement (in) 
FEA 

Avg 
(%) (lbf) 

FEA 
Experiment 

    Run 1 Run 2 Avg 

El Centro NS 100 25.3 0.8 0.9 0.8 0.9 0.9 

El Centro NS 100 55.1 1 1.3 1.2 1.3 0.8 

El Centro NS 100 79.1 1.4 1.7 1.6 1.7 0.8 

Managua EW 100 25.3 0.4 0.2 0.2 0.2 2.0 

Managua EW 100 55.1 1.1 0.7 0.7 0.7 1.6 

Managua EW 100 105.5 1.45 1.2 1.3 1.3 1.2 

Managua EW 109 105.5 2 1.6 2 1.8 1.1 

Victoria NS 100 25.3 0.35 0.3 0.3 0.3 1.2 

Victoria NS 100 55.1 0.57 0.5 0.5 0.5 1.1 

Victoria NS 100 105.5 1.98 2.4 2.2 2.3 0.9 

Parkfield NS 100 199.9 1.3 1.3 1.2 1.2 1.1 

L`Aquila EW 100 199.9 2 1.4 1.6 1.5 1.4 

Overall average = 1.17 

 

 Discussion and Conclusions 

Dynamic tests of a SDOF with PXCMs system were conducted with five different ground motion 

records and eight different masses. It was observed that the SDOF with PXCMs system exhibited 

non-linear behavior without permanent deformation under seismic demands. Comparisons of the 

maximum displacement of the system from FE simulations with measured displacements from 

experiments are shown in Figure 4.8. FE simulations tended to overestimate the maximum 

displacement of the system, particularly for the 1940 El Centro ground motion. On average, the 

ratio of estimated peak displacement to measured peak displacement was 1.17 with a coefficient 

of variation (CoV) of 22%, indicating that FEA provides reasonable estimates of displacement 

demand for SDOF-PXCM systems. In summary, PXCMs are a suitable alternatives or supplements 

to traditional materials because they can undergo global nonlinearity and hence limit forces in 

buildings, without experiencing permanent deformations.  
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The work in this chapter was done in collaboration with Prateek Shah and William Pollalis from 
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Motors. All the experiments in this section were conducted by Prateek P. Shah and William G. 

Pollalis from Prof. Santiago Pujol’s research group. Yunlan Zhang helped to design the 

experiments and conducted numerical analysis.  
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5. ENERGY DISSIPATION IN FUNCTIONALLY TWO-DIMENSIONAL 

PHASE TRANSFORMING CELLULAR MATERIALS 

The work in this chapter was done in collaboration with Nilesh D. Mankame from General Motors, 

David Restrepo from The University of Texas at San Antonio, and Mirian Velay-Lizancos from 

Purdue University. A version of this chapter has been previously published in Scientific Reports 

https://doi.org/10.1038/s41598-019-48581-8 

 Overview 

Plastic deformation of cellular materials such as metal foams and honeycombs is commonly used 

for absorbing and dissipating energy because these materials can absorb large amounts of energy 

per unit mass47. However, the deformation in these cases is irreversible and hence, the material 

can only be used for a single energy absorption event. Phase Transforming Cellular Materials 

(PXCMs) are a class of periodic cellular materials that exhibit reversible, solid state energy 

absorption and dissipation19 and are comparable to honeycombs, especially at low plateau stresses. 

Moreover, PXCMs can be used multiple times as they do not rely on irreversible deformation of 

their base material for energy dissipation. The elementary building blocks of PXCMs exhibit 

multiple stable or meta-stable configurations19,35,48. Each stable or metastable configuration 

defines a phase at the building blocks level, and the transitions between these building block 

configurations can be interpreted as phase transformations. The ability of these materials to exhibit 

reversible solid state energy dissipation arises from the storage and subsequent non-equilibrium 

release of strain energy accompanying the limit point traversals underlying these transitions. The 

mechanical response of an ensemble of building blocks shows separate loading and unloading 

plateaus that are characteristic of solid state phase transformations in NiTi alloys49 and 

configurational changes in biological shock absorbers like the protein titin in sarcomeres50,51.  

 

PXCMs have been proposed for applications such reusable, solid state energy absorption19–21, 

shock or impact isolation22,23, and reconfigurable structures24,25. PXCMs have also been used to 

create metamaterials whose mechanical properties (e.g. compressive modulus, wave propagation 

behavior) can be altered after the material has been fabricated20,22,26. Many of the PXCMs cited 
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above are structurally two or three-dimensional materials because they can resist loads applied 

along with arbitrary directions in the plane and space respectively. However, they are functionally 

one-dimensional materials because they exhibit significant solid state energy dissipation only for 

loads applied along a preferred loading direction.  Some recent work addresses materials that 

exhibit solid state energy dissipation for loads applied along multiple directions.  Straightforward 

extensions of the functionally one-dimensional PXCM design to two and three dimensions have 

been proposed by Shan et al. and Ren et al. 27,28. Topology optimization based automatic synthesis 

techniques have been used to generate functionally two-dimensional PXCM unit cells29. A two-

dimensional PXCM unit cell featuring a 5-bar planar truss and a three-dimensional tetrahedral 

PXCM unit cell have been proposed recently30. Some of the material designs proposed for auxetic 

materials31 and shape reconfigurable materials 25 have the potential to be functionally two and 

three-dimensional PXCMs. The Miura-ori pattern based metamaterials32, three-dimensional arrays 

of spherical shells with patterned holes or Bucklicrystals33 and the tape based three dimensional 

multistable structures34 are other examples of materials that might function as two or three-

dimensional PXCMs.  However, in most of the above works the emphasis has either been on the 

one-dimensional variant of the design or on the response of the higher dimensional material 

designs to uniaxial loads applied along one direction. In this paper, two designs for functionally 

two-dimensional PXCMs are studied. The first design is based on a square motif and exhibits four 

axes of reflectional symmetry (similar to 27–29). The second design is based on a triangular motif 

and has six axes of symmetry.  

 Design considerations 

This chapter first describes how multiple instances of the elementary bistable beam mechanism, 

considered as the basic building block, can be arranged to create several functionally two-

dimensional PXCMs.  The shape of the elementary beam is that of the first buckling mode of a 

straight prismatic beam under axial loading (Figure 5.1), represented by  𝑌 =⁡ (𝐴/2)[1⁡ −

⁡𝑐𝑜𝑠(2𝜋𝑋/𝜆)], where A is the peak to valley amplitude and  is the wavelength. A concentrated 

load F is applied to the beam at its apex, orthogonal to the line OP that joins the two ends of the 

beam, and the resulting displacement d at the apex of the beam is noted. 
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Figure 5.1: Hierarchical construction of functionally two-dimensional PXCMs. (a) The geometry 

of the elementary sinusoidal beam. (b) Schematic representation of the force-displacement (F-d) 

and energy-displacement (U-d) response of a bistable sinusoidal beam. (c – e) Levels 0 – 2 of the 

hierarchical structure of the 2D PXCMs studied in this work.  

 

The mechanical response for this beam is shown schematically in Figure 5.1b. The total internal 

energy U (red dashed line) has three extremal points: 1) a stable global minimum in the 

undeformed configuration (d=0, F=0), 2) an unstable maximum at (d=A, F=0), and 3) a stable 

local minimum at (d>A, F=0). The force-displacement response (solid blue line) has two positive 

stiffness branches that are separated by a negative stiffness branch. Two elastic limit points (Ll for 

increasing loads and Lu for decreasing loads) mark the ends of the negative stiffness branch. They 
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also divide the F-d response into three regions as shown in Figure 5.1b.  Strain energy is stored in 

the structure during the deformation from the undeformed configuration to Ll.  If the structure is 

loaded beyond this point, it 'snaps-through' under force-control to the point on the second positive 

stiffness branch that can support the same load. This snap-through is associated with the non-

equilibrium release of some of the stored strain energy which gives PXCMs their ability to 

dissipate energy without undergoing irreversible deformation. A similar behavior is observed 

during unloading when the structure snaps-through under force control from Lu to the point on the 

first positive stiffness branch that can support the same load. 

 

The dimensionless parameter Q=A/t governs the number of stable configurations for this structure 

as follows 38,39: 

1) Metastable: If Q<2.31, the mechanism has only one stable configuration at (d=0, F=0) as the 

configuration corresponding to the third extremal point (d > A) does not persist when the applied 

load is removed.  

2) Bistable: If Q≥2.31, the mechanism has two stable configurations as discussed earlier. The 

mechanism can persist indefinitely in either of the stable configurations when the external load is 

removed. 

In the interval Qϵ[2.3,2.41], the behavior of the mechanism is sensitive to small variations in the 

geometry parameters, and hence cannot be characterized in a robust manner 19. 

 

Qiu et al. proposed an alternative design that uses two parallel sinusoidal beams (see Figure 5.1c) 

that can improve the range over which the sinusoidal beam mechanism exhibits bistable behavior 

38,39. The stiffer connection between the two beams at their apexes mitigates the tendency of the 

single beam to rotate at that location in the absence of an external rotational constraint. This 

suppresses an asymmetric mode that allows the single beam mechanism to revert back to its 

undeformed configuration when the external load is removed. This design adds two more geometry 

parameters: the thickness t' of the top sinusoidal beam and the spacing s between the two beams 

(see Figure B1; in Appendix B).  The parallel sinusoidal beam mechanism can be used instead of, 

or in conjunction with the single sinusoidal beam mechanism discussed earlier.  
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Figure 5.1c-e show how 1D and 2D PXCMs can be constructed in a hierarchical manner beginning 

with the elementary beam structures shown in Figure 5.1a. At the zeroth level of hierarchy (Figure 

5.1c), these building blocks comprising one or more elementary sinusoidal beam structures 

constitute the first level of hierarchy (Figure 5.1d).   In addition to these sinusoidal beam structures, 

the building blocks also include supports which are much stiffer than the sinusoidal beams. These 

structural supports need to be sufficiently stiff so that the elementary beam structures can exhibit 

the limit point traversal behavior that is essential for energy dissipation, without adding too much 

mass into the system. Triangular and square motifs are natural candidates for building the first 

hieratical level of  2D PXCMs because of they can be tessellated to cover a plane52,53.  However, 

the choice of the support structures for these building blocks is not straightforward. Two alternative 

support structure topologies are shown in Figure 5.1d (Figure B2).  The bulk 2D PXCM material 

constitutes the second level of the hierarchy.  The square motif can be tiled only in one way as 

shown in Figure 5.1e 29. However, the triangular motif can be arranged in two different ways as 

shown in Figure 5.1e. The regular tiling (𝑇𝐼) does not lead to a functionally two-dimensional 

PXCM (see Figure B3). The arrangement shown in (𝑇𝐼𝐼) with triangular motifs located at the nodes 

of a regular hexagon is not a tiling as it includes some empty space at the center of the hexagon. 

However, this arrangement yields a functionally 2D PXCM. The third level of this hierarchy would 

comprise a structural member that is made of the 2D PXCM, but is not shown in Figure 5.1. 

 

While several combinations of the above design choices are possible, only some of these lead to 

robust functionally two-dimensional PXCMs.  If the rotation at the apex of the single sinusoidal 

beam mechanisms is not restrained, ensembles of such mechanisms may exhibit local 'wobble' 

modes that give rise to unpredictable and disorderly transformation behavior (see Figure B1). On 

the other hand, the 2D PXCMs with the parallel sinusoidal beam mechanisms do not suffer from 

this drawback. They exhibit higher energy dissipation and a more stable deformation behavior than 

the corresponding 2D PXCM comprising single sinusoidal beam mechanisms. For the same mass 

of the support structures, the designs with just spokes are much less stiff than the designs with a 

central frame and spoke construction (see Figure B2).  The latter support topology also gives rise 

to higher energy dissipation and repeatable material behavior for the reasons discussed above. 

Hence, the frame and spoke support topology are used for the designs in this work (See Video 8). 

When every sinusoidal beam in an ensemble of sinusoidal beam mechanisms transition from the 
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first stable configuration (regime 1 of the mechanical response as shown in Figure 5.1b) to the 

second stable (or metastable) configuration (regime 3), the topology of the building blocks remains 

unchanged but there is a cooperative rearrangement of the elements of the block. This is 

reminiscent of the non-diffusive rearrangement of atoms in a solid state displacive phase 

transformations.  Many phase changes in physical systems are associated with a discontinuous 

change in the first derivative of a state variable.  In PXCMs, there is a step change in the specific 

volume of the ensemble because the beams are packed more closely together in the second 

(meta-)stable configuration than in the first stable configuration. This analogy leads to the 

following interpretation for PXCMs.  When all sinusoidal beams in a part of a PXCM sample are 

in regimes 1 or 3, that part of the PXCM is said to be in phases 1 or 2 respectively (Figure 5.1b). 

Any intermediate stage when some beams in a part of a PXCM are in phase 1 and others are in 

phase 2, the part of the PXCM is deemed to be a mixture of phases. The transformation from phase 

1 to phase 2 is referred to as the forward phase transformation, while that from phase 2 to phase 

1 is called the reverse phase transformation. 

 

The geometries of the two motifs – the square-shaped S-type and the triangular-shaped T-type – 

are shown in Figure 5.2.  The values assigned to the various design parameters are summarized in 

Table B1. These parameter values are selected such that the base material remains in the elastic 

regime while undergoing phase transition over multiple loading cycles 38,39.  The axes of 

reflectional symmetry for the materials are overlaid in red dashed lines in Figure 5.2. In this paper, 

axes of symmetry refer to planes of symmetry in a three-dimensional setting.   The T-type motif 

has three axes of symmetry, the 2D PXCMs unit cell comprising these motifs have six axes of 

symmetry (see Figure 5.2d). Three of these are derived from those of the motifs and the other three 

arise from the hexagonal arrangement of the motifs to form the PXCMs. The S-type PXCM and 

its motifs both have four axes of symmetry (see Figure 5.2e).  
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Figure 5.2: Geometry of the (a) T-type and (b) S-type PXCMs motifs. (c) 1D PXCM has two axes 

of symmetry at {0˚, 90˚}, (d) the T-type 2D PXCM have six axes of symmetry at {0˚, 30˚, 60˚, 90˚, 

120˚, 150˚}, and (e) the S-type 2D PXCM has four axes of symmetry at {0˚, 45˚, 90˚, 135˚}. 

 Results 

Uniaxial, quasi-static, compressive load-unload tests are used to characterize the response of the 

S-  and T-  type PXCMs along the various axes of symmetry for the materials. These load cases 

are then recreated using nonlinear finite element analyses. More complex two-dimensional load 

cases such as bi-axial loading, bending and indentation are outside the scope of this paper and will 

be addressed in a future publication. In the figures that follow, the coordinate system {a1,a2} is 

embedded in the material sample. This rotates relative to the fixed global coordinate system {X, 

Y} as the samples are loaded along different axes.  Material symmetries render loading along some 

of the axes of symmetry to be equivalent to loading along other axes. This reduces the number of 

load cases that need to be considered in this study. 
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Figure 5.3 summarizes the mechanical response of a functionally two-dimensional S-type PXCM. 

The schematic for this load case is shown in Figure 5.3a where the a1 axis is aligned with (loading 

at 0°) or orthogonal to (loading at 90°) the X-axis. Figure 5.3b showed three characteristic states 

during the phase transformation process corresponding to three labeled points in Figure 5.3c. The 

F-d responses from the finite element simulation (solid red line) and the experiment (solid black 

line) are overlaid in Figure 5.3c. The experimental F-d curves for three cycles are presented in 

Figure B5 (a). The initial (undeformed) and final configurations from the experiment are shown in 

Figure 5.3d.   

 

 

Figure 5.3: Performance of a S-type PXCM sample under one compressive load-unload cycle at 

{0°, 90°}. (a) The sample is under uniaxial loading condition and supported by rollers at bottom. 

(b) Phase transformation sequence of the three characteristic states from FE simulation. (c). F-d 

relation of the sample from FE simulation and Experiment. (d) The states of the sample at initial 

and final deformed configurations. 



73 

 

The F-d response obtained from the finite element simulations agrees qualitatively with the 

experimentally recorded one. The finite element and experimental responses show serrated loading 

and unloading plateaus as expected and shown in 1D PXCM 19. There are 12 peaks in both 

branches which correspond to the number of sinusoidal beam elements in any column of motifs in 

the sample. Each peak marks the transformation of a sinusoidal beam element from phase 1 to 

phase 2. All cells in this sample exhibit bistable behavior as indicated by the negative compressive 

(i.e. tensile) force needed to revert the sample back to phase 1. The key quantitative differences 

between the FE simulations and experimental results are a) the experimental loading and unloading 

branches lie below the corresponding ones from the finite element simulations and b) one peak in 

the loading branch of the experimental response is lower than the others. Figure 5.3b shows the 

deformed configurations of the sample at three salient points during its compression as obtained 

from the finite element simulations. The corresponding points are labeled on the F-d response in 

Figure 5.3c. The sinusoidal beams are color coded according to their status at that point in the 

deformation. The beams rendered in gray are still in phase 1, those shaded green have already 

transformed into phase 2, and the red ones are undergoing phase transformation. Identification of 

the beams that are either in phase 1 or 2 is straightforward. However, determining which beams 

are in the process of phase transformation is challenging because the limit point traversal (or snap-

through) is a non-equilibrium event that occurs quickly, and the finite element solution is unable 

to follow it consistently.  This difficulty is circumvented by inspecting the states of the sample at 

the solution points just before and just after the salient point under consideration. Any beams that 

have changed phases between these two neighboring points are deemed to be undergoing phase 

transformation at this salient point, and are shaded red in Figure 5.3b.  

 

The locations and distribution of the red beams in Figure 5.3b serve as indicators for the nucleation 

and propagation of the phase transformations. Note that the beams undergoing phase 

transformation at these salient points lie along a (horizontal) row in the sample.  This indicates that 

even though the different rows may transform at different levels of global compressive strain, an 

entire row transforms together. This ensures that the loss of stability is restricted to one row of 

beams and the rest of the sample remains stable.  In turn, this leads to an orderly progressive 

collapse of the different sinusoidal beam rows as is evident from the regular shapes of the serrations 

in the F-d response. It is observed that only the sinusoidal beams that are approximately parallel 
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to the a1 (a2 for the 90° loading case) axis of the material have undergone phase transformation at 

the end of the deformation process. Those that are approximately parallel to a2 (a1 for the 90° 

loading case) axis remain in phase 1. Thus, a fairly significant fraction of the sinusoidal beams in 

the PXCM did not contribute to the energy dissipation in this case. 

 

Figure 5.4 summarizes the response of a S-type PXCM with the square-shaped motifs when the 𝑎1 

axis of the material is inclined at 45° or 135° to the global X-axis.  The various sub-figures for 

Figure 5.4 are similar to those for Figure 5.3. Figure 5.4c shows qualitative agreement between 

the experimental and simulated responses. Both responses show loading and unloading plateaus 

that are separated from each other.  However, neither of these responses show a serrated pattern 

that as distinct as in the previous ({0°, 90°}) case.  Also, it is noted that the simulated response in 

Figure 5.4c shows a PXCM with some mechanisms exhibiting bistable behavior especially near 

the beginning of the load and unload branches. However, the experimental response is that of a 

metastable PXCM except at the end of the unloading branch. Recall that the same material behaved 

like a bistable PXCM for the {0°, 90°} load case. Both observations relate to the fact that the 

𝑎1axis of the material is now inclined to the applied displacement. As it will be discussed later, the 

resulting asymmetry reduces the snapping action of the mechanisms changing the nature of the 

individual transitions, leading to smoother serration in the F-d response. Unlike the previous case, 

all of the sinusoidal beams have transformed into phase 2 by the end of the deformation process. 

Thus, all of the sinusoidal beams in the PXCM sample contribute to the energy dissipation. Despite 

this, the energy dissipation capacity of this PXCM is slightly lower (approximately 12% for Wv 

and 18% for Wm) for the {45°, 135°} loading case than the {0°, 90°} loading case (see Table B4-

S6). This is also due to the lower energy dissipation associated with the transition of each 

sinusoidal beam when the a1 axis of the material is inclined to the applied displacement. The 

experimental F-d curves for three cycles are presented in Figure B5(b). 
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Figure 5.4: Performance of a S-type PXCM sample under one compressive load-unload cycle at 

{45°, 135°}. (a) The sample is under uniaxial loading condition and supported by rollers at bottom. 

(b) Phase transformation sequence of the three characteristic states from FE simulation. (c). F-d 

relation of the sample from FE simulation and Experiment. (d) The states of the sample at initial 

and final deformed configurations. 

 

Figure 5.4 c also shows two somewhat different regions in the F-d responses. The material seems 

to respond differently in the applied displacement range of 0-90 mm than for displacements greater 

than 90 mm. In the experimental response, there is a lower force plateau that extends over the 

displacement range of 0-90 mm and a higher force plateau that spans the rest of the displacement 

range. The simulated response shows a smaller difference in the plateau force levels across these 

two displacement ranges, but it shows more prominent serrations in the higher displacement range 

than in the lower one.  It is also observed that the phase nucleation regions and transformation 

fronts (see red colored beams in Figure 5.4b) no longer neatly follow motif rows or columns. 

Instead, zig-zag patterns is observed all the way until densification. Both of these observations 

suggest the existence of preferred phase transformation propagation bands. The lower energy 

transformation fronts seem to take the form of long wavelength triangular waves aligned with the 
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edges of motifs. The higher energy fronts also have the shape of a triangular wave, but these have 

a shorter wavelength. In a sample of relatively small size, as is the case here, the sinusoidal beams 

along the lower energy transformation propagation paths get exhausted when the sample is 

compressed through a displacement equal to 90 mm (60% of maximum displacement), and the 

material changes over to the sinusoidal beams along the less preferred transformation propagation 

paths for higher displacements. The small differences between various beams in a fabricated 

sample lead to an elevated plateau force level for displacements greater than 90 mm in the 

experimental case. However, as all of the sinusoidal beams are nominally identical in the FE 

simulations, groups of these beams transform together. This gives rise to the larger oscillations in 

stress in the simulated response for displacement above 90 mm. 

 

 

Figure 5.5: Performance of a T-type PXCM sample under one compressive load-unload cycle at 

{0°, 60°, 120°}. (a) The sample is under uniaxial loading condition and supported by rollers at 

bottom. (b) Phase transformation sequence of the three characteristic states from FE simulation. 

(c). F-d relation of the sample from FE simulation and Experiment. (d) Three states of the sample 

from initial to final deformed configurations. 

 

The mechanical response (see Figure 5.5) of the T-type PXCM under uniaxial loads applied along 

{0°, 60°, 120°} shares features of the mechanical responses seen in the S-type PXCMs under both 



77 

 

{0°,90°} and {45°, 135°} loadings, but is more similar to the latter case. The simulated and 

experimental F-d responses are qualitatively similar. Both responses show some common features 

but the serrations in the experimental response are much less distinct than those in the simulated 

response. Both responses show two distinct regions. The experimental and simulated F-d 

responses show serrated loading and unloading plateaus over the displacement range 0-170mm. 

There is a jump in the plateau force levels associated with both branches for displacements above 

170mm. The latter region is also characterized by barely discernable serrations. It is observed that 

the material behaves like a metastable PXCM for displacement above 170 mm and as a bistable 

PXCM for lower displacements.  The experimental F-d curves for three cycles are presented in 

Figure B5 (c). 

 

As in the case of the PXCM with square-shaped motifs when it is loaded along {45°, 135°} degrees, 

this dichotomy in the responses can be traced back to the inclination of the applied displacement 

to the 𝑎1⁡axis of the material.  Approximately a third of the sinusoidal beams in this case are 

orthogonal to the loading direction. These sinusoidal beams require lower transformation force 

and transform first and in an orderly progressive manner as suggested by the phase transformation 

front shown in Figure 5.5b. The loading direction makes a fairly steep angle (60°) with the axis of 

symmetry of the remaining two- thirds of the sinusoidal beams in the sample (Figure 5.5b). This 

reduces the tendency of the mechanisms to snap-through, but they still need a sizable displacement 

component that is normal to line joining the ends of the beams to complete the forward 

transformation.  This results in less distinct serrations as well as a higher plateau force for the 

transformations in these cells. The compression in simulation and experiment of this sample was 

stopped before it reached the theoretically determined maximum displacement because of the 

extreme distortion of the motifs that is seen in the last pane of Figure 5.5d. 

 

The mechanical response of the T-type PXCM under uniaxial loads applied along {30°, 90°, 150°} 

degrees (see Figure 5.6a) shares features of the mechanical responses seen in the S-type PXCMs 

under both {0°,90°} and {45°, 135°} loadings, but is more similar to the former loading case 

(shown in Figure 5.6b-c). The F-d response in Figure 5.6c shows a qualitative agreement between 

the simulated and experimental responses. Both show serrated loading and unloading plateaus that 

are sufficiently separated for the material to exhibit energy dissipation. The serrations are not as 
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regular or distinct as in the {0°, 90°} loading case for the S-type PXCM, but they are sufficiently 

regular and distinct to allow us to identify individual peaks in the loading (or unloading) branches 

with the forward (or reverse) transformation of one sinusoidal beam structure in a column of motifs.  

This can be explained by the larger inclination angle (30°) between the loading direction and axis 

of symmetry of two-thirds of the sinusoidal beam mechanisms in the sample (Figure 5.6b). The 

phase transforming band fronts in Figure 5.6b follows a slight zig-zag path that mostly hews to 

horizontal rows of motifs. Thus, it is observed that a mostly orderly progressive transformation of 

rows of sinusoidal beams until the sample is fully compressed. This is also reflected in the 

uniformity of the serrations in the F-d response. 

 

 

Figure 5.6: Performance of a T-type PXCM sample under one compressive load-unload cycle at 

{30°, 90°, 150°}. (a) The sample is under uniaxial loading condition and supported by rollers at 

bottom. (b) Phase transformation sequence of the three characteristic states from FE simulation. 

(c). F-d relation of the sample from FE simulation and Experiment. (d) The states of the sample at 

initial and final deformed configurations. 
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The experimental response indicates a PXCM whose behavior is right at the boundary between 

bistable and metastable (Figure 5.6c). The experimental F-d curves for three cycles are presented 

in Figure B5d. The material behaves mostly like a metastable PXCM during the compression of 

the sample (loading branch), but the sample retains the compacted configuration reached at the 

end of the loading branch without the need for an external force to hold that configuration. A small 

tensile force is needed to initiate and subsequently nudge the reverse transformation to completion. 

The simulated response is similar to the previous two loading cases showing more pronounced 

serrations in the unloading branch than those observed in the experiments. It is also noted that 

approximately two-thirds of all sinusoidal beam mechanisms in this PXCM sample undergo phase 

transformation in this case (see Figure 5.6d). The remaining mechanisms that are approximately 

parallel to loading direction remain in phase 1 at the end of the compression process (b, d). Recall 

that almost all the mechanisms in the T-type PXCM loaded along {0°, 60°, 120°} underwent phase 

transformation. As in the case of the S-type PXCM, we observe that, because there are more 

sinusoidal beams in a T-type PXCM that undergo phase transformation in for loading along {0°, 

60°, 120°} than for loading along {30°, 90°, 150°}, the energy dissipation associated with each of 

the transitions is lower in the latter case. The results indicate that the S-type and T-type PXCMs 

are similar in terms of energy dissipation performance (approximately 12% difference for both 

load cases).  

 Materials and Methods 

A Fortus 450MC fused deposition modeling machine from Stratasys is used to fabricate the PXCM 

samples using an ABS-based proprietary material called ABS-M30 (E=2.28 GPa, 𝜎𝑦=45 MPa). 

The thickness of a sinusoidal beam is a critical dimension that drives the size of the sample. Very 

thin beams lead to small overall sample sizes but these designs are susceptible to significant 

variations in beam thicknesses across the sample. Here, t= 0.7 mm is selected to balance the need 

to keep the overall sample size small with the desire to ensure fairly consistent beam thicknesses 

across the sample.  Each sample is made by assembling multiple 3D printed parts, because the 

complete samples have a bigger footprint than the building envelope of the 3D printer. These parts 

are then adhesively bonded to create the test samples. The samples are conditioned at room 

temperature and humidity for at least 48 hours before testing them. Further examination revealed 

that the adhesive and assembly method does not affect the mechanical response of the specimen.  
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The samples are tested in uniaxial compression in a universal test machine (MTS Insight 10). 

Horizontal bars comprising cruciform Aluminum extrusions are used to secure the test samples in 

the test frame. The test samples are designed such that their top and bottom ends have 'T' shaped 

features that slide in the T-slots of the horizontal bars. The ends of the sample cannot move 

vertically nor can they rotate about any axes relative to the horizontal bars. A thin coating of a 

lubricant is applied to the slots to reduce friction between the samples and the horizontal bars, so 

that the sample ends can slide freely in the horizontal direction.  The out-of-plane width of the 

sample is chosen to be sufficiently high (25 mm) to mitigate the tendency of the sample to buckle 

out of plane. However, as a precaution, diagonal bars spanning the entire sample (see Figure B4a) 

are mounted behind the sample to brace it against deforming out of the plane of the sample.  The 

edges of the samples are free from any boundary conditions.  

 

Four samples that represent the two 2D PXCMs designs, each in two different material orientations, 

are compressed under displacement control at the quasi-static rate of 1 mm/min. The displacement 

is applied to ensure the maximum amount of mechanisms collapse (see Figure B4 c). The total 

force acting on the sample is measured by a load cell (MTS 661.19F-02, 10 kN capacity) and the 

cross-head travel is recorded as the displacement of the top end of the sample. Each sample is 

subjected to three back-to-back load-unload cycles to check for repeatability and any evidence of 

irreversible deformation (see Figure B5). The area enclosed by the loading and unloading branches 

of the F-d response is the energy dissipated by the sample in that cycle. The average energy 

dissipation from the second and third cycles is used to represent the energy dissipation capacity of 

the material for that load case.  

 

Although the PXCM samples are loaded in displacement controlled at a quasi-static global 

deformation rate of 1 mm/min, the limit point traversals in the various beams are dynamic events 

with fairly short characteristic times (Q(1 ms)).  Moreover, contact between adjacent structural 

elements in the PXCM and the non-equilibrium jumps associated with the snap-throughs introduce 

significant nonlinearity in the response of the PXCM. Displacement controlled, direct integration, 

implicit dynamic finite element analyses in a finite element analysis software Abaqus 6.15 

provides a robust way to simulate the complex behavior of these materials.  The FE simulations in 
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this work use a two-node, shear flexible beam element discretization of the PXCM samples. 

Results from beam, 2D and 3D solid element discretizations were compared for accuracy of the 

solution as well as its computational cost (Figure B13). The element sizes were determined through 

a convergence study (Figure B14).  

 

The mechanical properties employed in the FE simulations are those corresponding to ABS-M30 

(which are reported in Section B4.4, Tables B9 & B10). Considering the experimental and material 

variability (i.e., lower and upper bound of these properties) the simulated F-d curves are reported 

in Figure B17.  In order to properly simulate the experimental boundary conditions shown in 

Figures 5.3-5.6a, the corresponding FE simulations had a frictionless roller boundary at the 

interface with the ground, the sides were free from any displacement constraints or tractions and a 

uniform velocity of 1 mm/min was applied to all nodes on the top edge of the sample. Contact 

between adjacent beams was modeled using the small sliding formulation in Abaqus. Coulomb 

friction with a friction coefficient of 𝜇 = 0.1 was assumed to be active at all contact interfaces 

(See discussion in section B4.3 and Figure B15).  

 Discussion 

The variation in the energy dissipation performance of the two 2D PXCMs with the axis of loading 

is an important functional attribute of the 2D PXCMs. In this section we compare the performance 

of the two 2D PXCM designs based on two metrics: Wm (energy dissipated per unit mass) and 𝑊𝑣 

(energy dissipated per unit volume) for loads applied along various axes of symmetry of the 

materials.  We also estimate the fraction of the total dissipated energy that is dissipated via 

pathways other than the snapping action of the beams in the samples.  Panes (a) and (b) in Figure 

5.7 summarize respectively the volume-specific (𝑊𝑣) and mass-specific (𝑊𝑚) energy dissipation 

capacity as a function of the loading angle for the two 2D PXCM designs presented earlier.  The 

average energy dissipated by a sample in cycles 2 and 3 in the experiments and the FE simulation 

can either be normalized by the volume of the undeformed bounding box that encloses the sample 

(see Figure 5.2 and Table B2) or by the mass of the sample to get its 𝑊𝑣 and 𝑊𝑚⁡performance 

respectively. Energy dissipation in PXCMs occurs in a discontinuous way through discrete steps 

corresponding to snap-through transitions in individual building blocks. Therefore, energy 

dissipation per unit displacement cannot be defined in the traditional way involving ratios of 
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infinitesimal changes in energy dissipation and displacements. However, an average energy 

dissipation rate can be defined in the following way: the material is loaded up to a snap-through at 

a displacement d1, and then unload it completely. As such the average energy dissipation rate at d1 

can be defined as the ratio between the energy dissipated in this complete load-unload cycle, Wm 

(d1) and the applied displacement d1. This is repeated for all snap-through events to get the average 

energy dissipation, Wm(d), for different displacement values through its loading history. Figure 

5.7(c) shows Wm a function of d calculated from the FE models. With the exception of the S-type 

PXCM for {0°, 90°}, that exhibits a higher energy dissipation rate, the rest of the samples show 

similar performance. More discussion can be found in Appendix B Section B5 (Table B12). 

 

Figure 5.7: (a) Wv – energy dissipation per unit volume, (b) Wm – energy dissipation per unit mass, 

as a function of the loading angle for the two 2D PXCMs presented here. Gold triangular and blue 

square symbols represent experimental results of T-type and S-type PXCMs. Gray triangular and 

square symbols represent simulation results of T-type and S-type PXCMs. (c) Energy dissipation 

Wm varies with applied displacement.  

 

A couple of observations are noteworthy: (1) 𝑊𝑣 and 𝑊𝑚 for both 2D PXCM designs do not vary 

significantly with the loading direction for loads applied along the various axes of symmetry for 

the materials. (2) The T-type PXCM has a small performance advantage over the S-type PXCM in 

terms of both -  𝑊𝑣 and 𝑊𝑚. These observations are not readily apparent when we recall (see 

Figures 5.3-5.6) that the mechanical responses of the two 2D PXCM designs were quite different 

under loads applied along the various axes of symmetry for the materials (shown in Figure B6). 

Furthermore, those results do not shed any light on how the material might respond when it is 

subjected to loads that are applied along a more general direction in the plane i.e. not along an axis 



83 

 

of symmetry for the material.   We carried out ancillary analysis done on a single mechanism 

comprising two parallel sinusoidal beams to understand the role of the loading directions on its 

bistable behavior (see Section B3.2). We found that the ability of this mechanism to exhibit 

bistability decreases with the angle between the loading direction and the axis of symmetry of the 

sinusoidal beam to the extent that the mechanisms ceases to exhibit negative stiffness when the 

such angle is higher than 15o (see Figure 5.7).   In principle, this effect would degrade the capability 

of the material to dissipate energy. However, a closer examination at the PXCMs analyzed in Figs. 

5.4-6 reveals that the individual cells in a larger ensemble reorient themselves during the 

deformation of the material, such that they reduce the inclination of the force deforming a 

mechanism with respect to the axis of symmetry of the mechanism undergoing transformation 

improving their bistability and therefore their capability to energy dissipation (see Figs. B8-10 in 

Section B3.2).  

 

The variation in energy dissipation across successive cycles for all four load cases is less than 8% 

(Table B3). The highest variations for the different load cases occur at the transition from cycle 1 

to cycle 2 and are likely due to initial inelastic behavior of the sample and stress concertation. 

There is a very little variation from cycle to cycle across subsequent cycles (Table B4).  The overall 

highest variation is reported for the S-type PXCM sample with the square-based motif when it is 

loaded at {0°, 90°}. In addition to the snapping action of the mechanisms, other energy dissipation 

pathways may also contribute to the observed energy dissipation in the experiments e.g. a) plastic 

dissipation within the polymeric base material, b) viscous dissipation within the base material, c) 

frictional dissipation due to rubbing between the sample and its boundaries, d) friction between 

the sample and the guards that limit out of plane deformation, e) friction between adjacent beams 

that come into contact during the deformation of individual mechanisms in the sample, and f). 

internal friction between the various layers that are deposited by the rapid prototyping process. 

The energy dissipation due to the snapping action of the beams is considered to be the primary 

dissipation pathway for PXCMs.  The total energy dissipated by PXCM sample can be attributed 

to the primary and secondary pathways is estimated (see B3.3, Table B7-8).  

 

In conclusion, this chapter presents the study of functionally 2D S- and T-type PXCMs that exhibit 

significant energy dissipation when they are loaded along multiple directions.  Experiments on 3D 
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printed prototypes, together with nonlinear finite element simulations, were employed to examine 

and understand the mechanical behavior of these materials.  The experimental results show that 

the energy dissipation capacity of both PXCM designs did not vary substantially with the direction 

of loading. It is also noted that the results reported in this work are for samples with a relatively 

small number of motifs. Replicating these experiments for samples with a significantly larger 

number of motifs is critical for understanding the true material response. The analysis of their 

response to more complex load cases such as bi-axial, bending and indentation is the focus of 

ongoing work that will be reported in the future. However, these materials offer a myriad of 

opportunities for developing applications such as those mentioned in the introduction. Moreover, 

it is also observed that both designs exhibited auxetic behavior. S-type samples exhibited a 

Poisson’s ratio in the range of -1 to 0, whereas T-type samples exhibited Poisson’s ratio in the 

range -1.1 to -0.29 (See Figure B12). Having these auxetic behavior indicates that 2D PXCMs 

might have additional mechanical advantages, such as high indentation resistance, shear modulus, 

fracture toughness, and synclasticity 54,55 , which extend the application of  2D PXCMs into 

medical stent 56, and self-adaptive attire 57. 

 Future works  

5.6.1 Response of PXCMs under concentrated loading conditions 

Chapters 5.1-5.5 discussed PXCMs subjected to uniform distributed loading conditions during 

which a tradeoff between localized deformation in the material and the energy dissipation capacity 

of the material was observed in 2D PXCMs. To further investigate this tradeoff, a study of both 

1D PXCMs and 2D PXCMs under a concentrated cyclic loading condition will be conducted. 

Understanding the response of PXCMs under  concentrated loading conditions can also allow us 

to access the feasibility of more applications of PXCMs such as Non-pneumatic tires, armors, and 

protection gear, such as football helmets and car bumpers.  

5.6.2 FE simulations 

To evaluate the performance of PXCMs under concentrated loading conditions, the mechanical 

response of 1D and 2D PXCMs undergo the indentation will be studied. FE simulations were 

created to evaluate the performance of 1D PXCM and 2D PXCMs. As Figure 5.8-Figure 5.10 

show below, the coordinate system {a1, a2} is embedded in the material sample, which rotates 
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relative to the fixed global coordinate system {X, Y} as the samples are loaded along different axes.  

Material symmetries render loading along some of the material axes of symmetry to be equivalent 

to loading along other axes. This reduces the number of load cases that need to be considered in 

this study. Here only 1D PXCMs loaded along 0°, S-type PXCMs loaded along 0° and 45°, S-type 

PXCMs loaded along 0° and 90° are studied. All the samples were modeled using implicit dynamic 

finite element analysis in a commercial software, Abaqus 6.18.  Two-node, shear flexible beam 

element, B21, were used to create the models. In each model, a sample was loaded by a rigid 

cylindrical indenter with a constant radius 326 mm.  A same sized indentator was applied on each 

sample under the same loading rate of 1mm/sec. The boundary conditions are consistent among 

models, which is rollers applied on the bottom of each sample to prevent the displacement in Y 

direction, and one point along the middle line was constrained in X direction (Figure 5.8-Figure 

5.10). The samples share similar dimensions and mass as that which was presented in Table 5.1.  

 

 

Figure 5.8: Deformed of S-type PXCMs samples indented along 0° and 45°.  
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Figure 5.9: Deformed of T-type PXCMs samples indented along 0° and 90°.  

 

 

Figure 5.10: Deformed 1D PXCMs sample indented along 0°. 
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Under concentrated loading test, the 2D PXCMs samples exhibit asymmetric phase transformation 

regions. On the contrary, the building blocks composing the 1D PXCMs exhibit phase 

transformation which are symmetric to the loading direction (see Figure 5.8 and Figure 5.10). 

When the 1D PXCMs, S-type and T-type 2D PXCMs samples undergo the load along 0° (parallel 

to a2), the sinusoidal beams that are approximately parallel to the a1 (a2 for the 90° loading case) 

axis of the material have undergone phase transformation. The sinusoidal beams that are 

approximately parallel to a2 (a1 for the 90° loading case) axis remain in phase 1. The phase 

transformation band spread widely in X direction (perpendicular to the loading direction) and 

spread to a shallow depth in Y direction (parallel to the loading direction). When the S-type and T-

type 2D PXCMs samples underwent the concentrated loading along 45° and 90° respectively, the 

phase transformation occurred in the sinusoidal beams are inclined to the loading direction. When 

the T-type 2D PXCMs sample underwent the concentrated loading along 90°, those sinusoidal 

beams that were approximately parallel to the a2 hardly exhibited phase transformation. In contrast 

to these S-type and T-type 2D PXCMs samples undergo concentrated loading along 0° exhibit 

phase transformation band spread widely in the Y direction (parallel to the loading direction) and 

spread to a shallow depth in the X direction (perpendicular to the loading direction). The spreading 

distance was measured by the distance between the edges of the region -lX and lY - as shown in 

Figure 5.8 and Figure 5.10. The length of the phase transformation band caused by the indenter 

(spreading distance in Y by X direction) are normalized by the corresponding dimensions and are 

summarized in Table 5.2. Poisson’s effects were also studied to capture the auxetic behavior of 

each PXCM simulation. The average deformation along the four edges (W and H) were used to 

approximate the Poisson’s ratio and the results are also displayed in Table 5.2. To show the 

correlation between auxetics and phase transformation path, the normalized phase transformation 

range are plotted against the approximated Poisson’s ratio as shown in Figure 5.17. The figure 

shows, larger magnitude of the negative Poisson’s ratio corresponds to a larger spread of phase 

transformation in composing building blocks along the loading direction, whilst less spread is 

occurred in the direction perpendicular to the loading direction.  
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Figure 5.11: Phase transformation spread in x and y direction.  

 

The energy dissipation caused by concentrated load is also studied. The F-d relationship of five 

samples which have undergone the indentation are presented in Figure 5.12-Figure 5.15. In these 

figures, the applied force increases progressively with the applied displacement because the width 

of the transformation band increases proportionally. S-type 2D PXCMs exhibit higher reaction 

force compared with T-type 2D PXCMs and 1D PXCMs.  Energy dissipation is quantified by the 

area between the hysteresis curve. The energy dissipation per unit volume and per unit mass by 

these PXCM models under concentrated loading are plotted in Figure 5.16. Similar to the 

observation from the study of 2D PXCMs undergoing the uniform loading condition, S-type 2D 

PXCMs exhibit more uniform energy dissipation capacity when the indentation loading angles 

vary. It was observed that the energy dissipation capacity of the S-type 2D PXCMs was higher 

than the T-type 2D PXCMs. Compare with the energy dissipation capacity of 1D PXCMs, under 

the indentation loading condition, 2D PXCMs show much higher energy dissipation capacity 

(Table 5.3). This observation is in coherence with the auxetic behavior of PXCMs. To demonstrate 

this correlation, the energy dissipation per unit volume and per unit mass were plotted against the 

approximated Poisson’s ratio in Figure 5.17. It shows increasing the magnitude of negative 

Poisson’s ratio leads to decreasing energy dissipation. This phenomenon can be explained by 

quantifying the number of building blocks which achieve phase transformation through a rotational 

mode.  
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Further study will be conducted in the future to understand this phenomenon. Understanding the 

advantages and disadvantages of the 1D and 2D PXCMs under different loading conditions can 

help discover further fields of application for these materials. Eventually, the advantages of both 

the 1D and 2D PXCMs could be considered for the design of new materials that could potentially 

harness the unique properties exhibited by both of these PXCMs. 

 

Figure 5.12: F-d relationship of 1D PXCM sample undergo indentation load along 0°. 

 

Figure 5.13: F-d relationship of S-type 2D PXCM samples undergo indentation load along 0° and 

45°. 
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Figure 5.14: F-d relationship of T-type 2D PXCM samples undergo indentation load along 0° and 

90°. 

 

 

Figure 5.15: F-d relationship of 5 PXCM samples undergo the indentation.  
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Figure 5.16: Energy dissipation per unit volume (Wv) and per unit mass (Wm) of 1D and 2D PXCMs 

undergo the concentrated and uniform loading conditions. (a) Wv under concentrated loading 

conditions. (b) Wm under concentrated loading conditions. (c) Wv under uniform loading conditions. 

(d)  Wm per unit mass under uniform loading conditions. 

 

Table 5.1: Specimen size for the indentation models. 

Specimen Name W H b V (mm3) m (kg) 

1D PXCM 2414 2386 25 143970960 22 

S-type 0° 2376 2376 25 141134400 21 

S-type 45° 2444 2444 25 149299073 20 

T-type 0° 2296 2340 25 134329131 21 

T-type 90° 2340 2296 25 134329131 21 
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Table 5.2: Phase transformation band spread in X and Y direction. 

Specimen  v lx/W ly/H  ly/lx 

1D PXCM -0.02 0.88 0.12 0.13 

S-type 0° -0.01 0.81 0.32 0.39 

S-type 45° -0.8 0.50 0.52 1.03 

T-type 0° -0.17 0.70 0.30 0.43 

T-type 90° -0.28 0.54 0.31 0.57 

 

Table 5.3: Energy dissipation per unit volume and per unit mass of each sample.  

Specimen Name Wv (J/m3) Wm (J/kg) 

1D PXCM 19.2 0.13 

S-type 0° 65.8 0.43 

S-type 45° 43.9 0.41 

T-type 0° 65.1 0.34 

T-type 90° 54.3 0.33 

 

 

Figure 5.17: Energy dissipation varies with approximated Poisson’s ratio.  
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6. SUMMARY AND CONCLUSIONS 

This study presents a family of architected, phase-transforming cellular materials that can enable 

the properties of active and natural materials. The special properties of the materials were 

demonstrated using analytical, numerical, and experimental methods. The investigation began 

with 1D Phase Transforming Cellular Materials (PXCMs) and efforts to achieve shape-memory 

effect using temperature variation. A methodology was developed for controlling phase 

transformations by tailoring the geometry of a unit cell and by assigning multiple base materials 

with different thermomechanical properties to that cell. The next phase of the study involved 

coupling 1D PXCMs with linear elastic springs to create a system that can mimic shape- and 

strength-recovery similar to feathers. Having achieved shape-memory and shape-recovery effects, 

the next focus of this study was to use the superelasticity of 1D PXCMs to resist simulated seismic 

demands without sustaining damage. In collaboration with Prateek Shah and William Pollalis from 

Santiago Pujol’s research group, a single-degree-of-freedom (SDOF) 1D PXCM system was tested 

in a dynamic environment on a unidirectional earthquake simulator. Lastly, the concept was 

extended into two dimensions through the creation of two types of 2D PXCMs. 

  

The unit cells studied here consist of a sinusoidal beam with stiff walls at each end. The strain 

energy of a unit cell during the phase transformation is composed of the monotonic bending energy 

(SEb) and the nonmonotonic axial energy (SEa) due to the changing length of the sinusoidal beam. 

This combination of monotonic and nonmonotonic strain energy creates the second stable position 

of strain energy, resulting in a bistable unit cell. A bistable condition is one in which the unit cell 

remains in its second stable configuration after having undergone a phase transformation, whereas 

a metastable condition is one in which the unit cell snaps back to its original stable configuration. 

Here, the concepts of axial strain energy and bending energy were used to create a unit cell capable 

of transforming phases under temperature variations. This was done by increasing the compliance 

of a unit cell such that the impact of the nonmonotonic axial component, SEa, decreases to the 

extent that the second stable position of strain energy disappears and an otherwise bistable 

mechanism becomes metastable. By altering its compliance, a PXCM unit cell can transform from 

its second stable configuration to its first stable configuration, as a result exhibiting the shape-

memory effect. One way to tune the compliance of a unit cell is by inducing a temperature change. 
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To demonstrate this shape-memory effect, a procedure was developed which shows how to tune 

the phase transformation of 1D PXCMs by controlling the geometry and thermomechanical 

relationship between the stiff walls and the sinusoidal beams. By fabricating the sinusoidal beam 

with a material which is relatively insensitive to temperature change, and the stiff walls with a 

material which softens with increasing temperature, it was possible to achieve the shape-memory 

effect by temperature variation. Using this shape-memory effect, it was also shown that PXCMs 

can also be designed to do work through temperature variation. By increasing temperature, a 

PXCM unit cell can lift a weight which was applied at a colder temperature, provided the weight 

does not exceed the local minimum force (valley force) of its force-displacement relationship at 

the designed recovery temperature. To facilitate the creation of other PXCMs capable of these 

behaviors, a design guide was developed in Chapter 2 that demonstrates how to tailor the 

transformation stress and temperature of PXCMs. Most commercially-available additive materials 

used to fabricate PXCMs are polyjet materials. These materials show a decrease in elastic moduli 

with increasing temperature, a limitation which means the local minimum force a unit cell can 

exert at a high temperature cannot exceed the peak force at a low temperature. As a result of this 

limitation, PXCMs cannot conduct a complete working cycle like Shape Memory Alloys (SMAs). 

One proposed area of research in the future would be on eliminating this constraint using new 

materials.  

 

By controlling the geometry of unit cells, PXCMs can reproduce the superelasticity of SMAs. This 

property creates the opportunity to enable the shape and strength recovery behavior of feathers. A 

feather shaft exhibits shape and strength recovery effects though the interplay between 

approximately elastic fibers which are insensitive to the moisture content variation and an elastic-

plastic matrix which exhibits strength and stiffness reductions when the moisture content 

increases.  Inspired by this coupling in nature, 1D PXCMs made from materials that are sensitive 

to temperature changes were coupled with linear springs which are insensitive to temperature, 

mimicking the matrix and fibers in feathers. This new system reproduced shape- and strength-

recovery effects via changing temperature using finite element simulations.  

 

Typical structures are designed to undergo material nonlinearity and to sustain damage during 

earthquakes. The superelasticity of PXCMs means that they have high potential for resisting 
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seismic demands without sustaining damage. Towards that, the behavior of PXCMs in a dynamic 

environment was studied through dynamic testing of a single-degree-of-freedom (SDOF) system 

with 1D PXCMs as the source of stiffness. This SDOF system was tested under five different 

ground motion records with eight different masses. The system exhibited global non-linear 

behavior without permanent deformation under seismic demands. Finite element simulations were 

also made for the most extreme cases (e.g., weakest and strongest ground motions for each mass). 

On average, the ratio of estimated peak displacement using finite element simulations to measured 

peak displacement was 1.17 with a coefficient of variation (CoV) of 22%. These values indicate 

that finite element analysis (FEA) can provide reasonable and conservative estimates of 

displacement demand for SDOF-PXCM systems. In summary, a PXCM is a suitable alternative or 

supplement to traditional materials because they can undergo global nonlinearity without 

experiencing permanent deformations. 

 

The concept of a 1D PXCM was next extended to two-dimensions through the creation of square 

and triangular 2D PXCMs (S- and T-type). In contrast to 1D PXCMs, 2D PXCMs transformed 

phases under two or more loading directions. When loaded along multiple axes of symmetry, 2D 

PXCMs exhibited superelasticity, dissipating energy while remaining elastic. Experiments on 3D-

printed prototypes, together with nonlinear finite element simulations, were used to examine and 

understand the mechanical behavior of these PXCMs.  The results from experiments and finite 

element simulations showed that the energy dissipation capacity of both 2D PXCM designs did 

not vary by more than 12% with the direction of loading, even though the energy dissipation of a 

single bistable mechanism typically reduces rapidly when the loading angle moves away from its 

axis of symmetry. This behavior can be attributed to the unit cells reorientating to align their 

primary axes of symmetry with the loading directions. This new class of PXCM offers a myriad 

of opportunities for developing applications such as reusable solid state energy absorption, shock 

or impact isolation, and reconfigurable structures. Finite element simulations and experiments on 

these 2D PXCMs revealed that both designs exhibited auxetic behavior (i.e., a negative Poisson’s 

ratio in which the material contracts under compression). S-type samples had a Poisson’s ratio in 

the range of -1 to 0, whereas T-type samples had Poisson’s ratio in the range -1.1 to -0.29. This 

auxetic behavior indicates that 2D PXCMs may have additional mechanical advantages, such as 

high indentation resistance, shear modulus, fracture toughness, and synclasticity. The analysis of 
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the response of this new class of PXCMs to more complex loading conditions such as bi-axial 

loading, bending, and indentation is the focus of ongoing work. 

 

This investigation shows how architected materials with PXCMs as the unit cell can be tailored to 

achieve the advantageous properties of active and natural materials, including superelasticity, 

shape-memory, and shape recovery. The underlying approach for mimicking the constitutive 

response of active materials by controlling the geometry, topology, and constituent materials at 

smaller-scale is demonstrated via two cases. In the first case, the complex thermo-mechanical 

response of a type of active materials – metallic alloy (Ni-Ti) – is reproduced. In the second case, 

an organic material with a complex chemo-mechanical response is studied and then mimicked 

using a system including architected materials. These cases demonstrate the usefulness of PXCMs 

in achieving special behavior, as well as the potential for coupling them with conventional 

materials to realize a broader range of special and useful behaviors.  These examples also 

demonstrate that it is possible to engineer an architected material that can mimic a natural material, 

and by extension, improve on these materials based on specific applications. 
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APPENDIX A 

A1. Analytical model for Type I PXCM 

PXCMs consist of numerous periodically arranged bistable or metastable building blocks. Each 

building block comprises a sinusoidal beam and stiff walls as supports. PXCMs made of a single 

material (1D PXCMs), have adjacent building blocks provide each other translational and 

rotational constraints. As a result, the bistability of a building block is controlled by the geometry 

of the sinusoidal beams19,38,39. With sufficient constraints, each building block can be modeled as 

a sinusoidal beam under the clamped-clamped boundary condition and with a load applied to its 

apex (Figure A1). For the PXCMs made of two materials, the bistability not only depends on the 

geometry of the building blocks but also the material combination. When T>Tt, the stiff walls 

cannot provide sufficient constraint to keep a building block bistable, even if the geometry of a 

sinusoidal beam satisfies the condition (Q>2.31). Here, we develop Type I PXCMs can exhibit 

phase transformation by changing the stiffness of the stiff walls. The current analytical models can 

predict the force-displacement relationship of the PXCMs made of a single material but not the 

Type I PXCMs made of dual materials.  

 

A1.1 PXCMs-Spring model 

Analytical models are the critical tools to design P- PXCMs to achieve shape recovery effect at a 

certain temperature. The analytical models Qiu’s derived38,39 describes the snap-through behavior 

of a sinusoidal beam under the clamped-clamped boundary condition (Figure A1) has been widely 

used to predict the mechanical behaviors of snapping metamaterials19,58,59. But this model cannot 

capture the mechanical response of Type I PXCMs, because the boundary conditions of a building 

block vary with temperature. In a PXCMs building block, the stiffness of stiff walls reduces when 

the temperature increases, but the stiffness of the sinusoidal beam does not change as much. Here, 

a new analytical model is created to predict the mechanical behavior of PXCMs. This new model 

simplifies a building block into a sinusoidal beam series connected to a spring under the clamped-

clamped boundary conditions as shown in Figure A1b.  
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Figure A1:PXCMs building block 

 

The sinusoidal beam is designed in shape of the first buckling mode shape as A.1 shown below. 

The wavelength of the sinusoidal beam is ,  the thickness of the beam is t, the out of the plane 

thickness of bam is b, and the amplitude is A.  

𝑤(𝑥) =
𝐴

2
[1 − 𝑐𝑜𝑠( 2𝜋

𝑥

𝜆
)] (A. 1) 

 

A critical nondimensional parameter Q is defined as below to describe the bistability of the 

building block.  

𝑄 = 𝐴/𝑡 
(A. 2) 

When a force F applies to the midpoint of the sinusoidal beam, the deflection at loading point 

(X=/2) can be described as, 

𝑑 = 𝑤(
𝜆

2
) − 𝑤(

𝜆

2
) (A. 3) 

 

During the process of a building block transforms from phase 1 (P1) into phase 2 (P2), three 

types of energy, bending energy 𝑢𝑏, compression energy 𝑢𝑠, and actuation energy 𝑢𝑓 involve in 

the system.  The variation of the bending energy inside the sinusoidal beam is shown below.  

𝜕(𝑢𝑏) = 𝜕[
𝐸𝐼

2
∫ (

𝑑2𝑤̄

𝑑𝑥2

𝜆

0

−
𝑑2𝑤

𝑑𝑥2
)2𝑑𝑥] (A. 4) 

 

The variation of the compression energy which comes from beam and spring is shown in A.3, 

where p represents the axial force caused by the deformation of both sinusoidal beam and spring 
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along the axial of the beam, 𝑠𝑜 and 𝑠 represent the initial and final length of the beam. Here ⁡𝑘𝑎 

and 𝑘𝑠 represent the axial stiffness provided by sinusoidal beam and spring correspondingly. 

𝜕(𝑢𝑠) = −𝑝𝜕(𝑠) 
(A. 5) 

𝑝 = (
𝑘𝑎𝑘𝑠
𝑘𝑎 + 𝑘𝑠

) (𝑠𝑜 − 𝑠) = (
𝑘𝑎

𝑘𝑎
𝑘𝑠
+ 1

) (𝑠𝑜 − 𝑠)

= 𝑐𝑘𝑎(𝑠𝑜 − 𝑠) 

Where 

𝑠 = ∫ √1 + (
𝑑𝑤

𝑑𝑥
)2

𝜆

0

𝑑 ≈ ∫ [1 +
1

2

𝜆

0

(
𝑑𝑤

𝑑𝑥
)2]𝑑𝑥 

𝑘𝑎 =
𝐸𝑏𝑡

𝜆
 

𝑐 =
1

𝑘𝑎/𝑘𝑠 + 1
 

(A. 6) 

 

A dimensionless parameter c is defined to describe the stiffness of spring relative to the stiffness 

of the sinusoidal beam. Stiffer the spring, larger the value of 𝑘𝑠. When  𝑘𝑠 → ∞, 𝑐 → 1, and the 

system is equivalent to a sinusoidal beam under the clamped-clamped boundary condition. When  

𝑘𝑠 → 0, 𝑐 → 0, the system equivalent to the sinusoidal beam under the free boundary condition 

(Figure A2). The value c of a PXCM unit cell varies with the stiffness of stiff walls is shown in 

section A6. 
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Figure A2: c→1 when ks increases.  

The variation of actuation energy is shown in where F and d represent actuation force and 

displacement.  

𝜕(𝑢𝑓) = −𝐹𝜕(𝑑) 
(A. 7) 

 

During the phase transformation, the deflection of a sinusoidal beam can be assumed as a 

superposition result of the buckling modes. We normalize the parameters as follow: 

𝑋 =
𝑥

𝜆
 (A. 8) 

𝑊(𝑋) =
𝑤(𝑋𝜆)

𝐴
=∑𝐴𝑗𝑊𝑗(𝑋)

∞

𝑗=1

 
 

(A. 9) 

Where,  

𝑊𝑗(𝑋) = 1 − 𝑐𝑜𝑠(𝑁𝑗𝑋) 

𝑁𝑗 = (𝑗 + 1)𝜋 

𝑗 = 1,3,5 

 

(A. 10) 
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𝑊𝑗(𝑥) = 1 − 2𝑋 − 𝑐𝑜𝑠(𝑁𝑗𝑋) +
2 𝑠𝑖𝑛(𝑁𝑗𝑋)

𝑁𝑗
] 

𝑁𝑗 = 2.86𝜋, 4.92𝜋. . . 

𝑗 = 2,4,6 

 

(A. 11) 

 

The normalized beam shape is 

𝑊(𝑋) =
1

2
𝑊1(𝑋) (A. 12) 

Normalize other parameters as A.13 shown below. 

𝑓 =
𝐹𝜆3

𝐸𝐼𝐴
, 𝛿 =

𝑑

𝐴
, 𝑆 =

𝑠𝜆

𝐴2
, 𝑁2 =

𝑝𝑙2

𝐸𝐼
 

𝑈𝑏 =
𝑢𝑏𝜆

3

𝐸𝐼𝐴2
, 𝑈𝑠 =

𝑢𝑠𝜆
3

𝐸𝐼𝐴2
, 𝑈𝑓 =

𝑢𝑓𝜆
3

𝐸𝐼𝐴2
 

 

(A. 13) 

Express all the parameters through these dimensionless parameters, Equations A3-A7 can be 

expressed as below:  

𝛿 = 1 − 2 ∑ 𝐴𝑗

𝑛

𝑗=1,5,9,13...

 
(A. 14) 

 

𝑆 = 1 + 2 ∑
𝐴𝑗

2𝑁𝑗
2

4

𝑛

𝑗=1,5,9,13...

 
(A. 15) 

 

𝑁2

12𝑄2𝑐
= (𝑆)𝑤=𝑤̄ − 𝑆 =

𝑁1
2

16
−∑

𝐴𝑗
2𝑁𝑗

4

4

∞

𝑗=1

 
(A. 16) 

 

𝜕(𝑈𝑏) = 𝜕[
(
1
2 − 𝐴1)

2𝑁1
4

4
+∑

𝐴𝑗
2𝑁𝑗

4

4

∞

𝑗=2

] 
(A. 17) 

 

𝜕(𝑈𝑠) = −𝑁2𝜕[∑
𝐴𝑗

2𝑁𝑗
4

4

∞

𝑗=2

] 
(A. 18) 

𝜕(𝑈𝑓) = 2𝐹 ∑ 𝐴𝑗

∞

𝑗=1,5,9,`3

 
(A. 19) 
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𝜕(𝑈𝑡) = 𝜕[(
𝑁1
4(𝐴1

2 − 𝐴1)

4
−
𝑐𝑁2𝐴1

2𝑁1
2

4
+ 2𝐹𝐴1) 

+(∑
𝐴𝑗
2𝑁𝑗

4

4

∞

𝑗=2

−∑
𝑐𝑁2𝐴𝑗

2𝑁𝑗
4

4

∞

𝑗=2

+ 2𝐹 ∑ 𝐴𝑗

∞

𝑗=5,9,13...

)] 

 

(A. 20) 

 

To satisfy the condition 𝜕(𝑈𝑡) ≥ 0 , eventually there are three types of solutions of the applied 

force can induce phase transformation which are expressed as below.  

𝑓1 = ∑
4(𝑁2 − 𝑁1

2)

𝑁𝑗
2(𝑁2 − 𝑁𝑗

2)2

∞

𝑗=1,5,9,13…

𝐹1
2 − 𝑁1

2𝐹1 

+
𝑁2(𝑁2 − 𝑁1

2)2

12𝑄2𝑐
−
𝑁1
2𝑁2(𝑁2 − 2𝑁1

2)

16
= 0 

𝑓2 =
1

∑
8

𝑁𝑗
2(𝑁2

2 − 𝑁𝑗
2)2

∞
𝑗=1,5,9,13...

(
𝑁2
2

𝑁2
2 − 𝑁1

2 − 𝛿) 

𝑓3 =
1

∑
8

𝑁𝑗
2(𝑁3

2 − 𝑁𝑗
2)2

∞
𝑗=1,5,9,13...

(
𝑁3
2

𝑁3
2 − 𝑁1

2 − 𝛿) 

 

 

 

 

(A. 21) 

 

 

f1, f2, and f3 represent the normalized applied force while a building block going through the three 

primary modes, mode 1, mode 2, and mode 3 (Figure A3).  

 

Here, we illustrate the analytical model on a building block with the geometry details:  t=0.7mm, 

A=7 mm, Q=7, and 𝐸 = 2⁡𝐺𝑃𝑎 . The relationship of F1, F2, and F3-⁡𝛿  of this building block 

transforms from P1 to P2 are plotted in Figure A3. During the phase transformation, this building 

block goes through three primary buckling modes, mode 1, mode 2, and mode 3 (Figure A3). At 

the beginning and end of phase transformation, the axial force p is small, and the building block 

transforms through mode 1. Once p increases to the threshold of mode 2 or mode 3, the building 

block switches to mode 2 or mode 3 which depends on whether the rotational motion at the middle 

of the sinusoidal beam is constrained. Toward the end of phase transformation, p reduces to the 

threshold of mode 1 again. As a result, the building block switches back to mode 1.  The F-𝛿 

relationship of this sinusoidal beam going through these three modes is denoted by F1-𝛿, F2-𝛿 and 

F3-𝛿. Here, F1 intersects with F2 and F3 twice. The intersection between F1-⁡𝛿,⁡ F2-⁡𝛿 and F3-⁡𝛿 is 
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where the sinusoidal beam switches from mode 1 to mode 2 or mode 3. The F-⁡𝛿 relationship is the 

combination of f1-d outside two points of intersection and F2-⁡𝛿 or F3-⁡𝛿 between the two points of 

intersection. 

 

Figure A3: F-d relation of three primary modes. 

 

A1.2 Results and Conclusions of Analytical Equations  

To evaluate the accuracy of the analytical equations, the FE simulations of a PXCMs building 

block and its simplified sinusoidal beam and spring model undergo the stress-induced phase 

transformation are created for comparison. The spring of this simplified model has equivalent 

stiffness of the stiff walls from the building block provide to the sinusoidal beam. This study was 

conducted on various building blocks which have 𝜆=0.7mm, A=7 mm, but different geometric 

parameter Q, where Q=2,3,7, and 8.  All of the FE simulations were created in Abaqus 6.15, using 

Timoshenko beam elements with linear interpolation, B21. The base material properties assigned 

to the simulations come from a polymer material known as ABS-M30 (𝐸 ≈ 2⁡𝐺𝑃𝑎 , 𝜎𝑦 ≈

40⁡𝑀𝑃𝑎).  

 

The comparison of F-d relationships obtained from FE and analytical models (Figure A4). The 

minor differences between the results obtained from FE-simulations and analytical models are 
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observed. It indicates that the analytical equations are reasonable tools to predict the mechanical 

response of the 1D PXCM building block.  

 

Figure A4: Comparison between analytical equation and simulation. 

 

A2. Dimensional analysis 

For the PXCMs, we assume two base materials -m1 and m2-, temperature, and geometry of an 

elementary building block determining the bistability of the PXCMs. Dimensional analysis was 

conducted to find the choice of appropriate dimensional groups.  

Firstly, we are looking at the input variables, and then defining the output variables that can capture 

the overall response of a PXCMs building block.  
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The input variables were selected from the variables in A 21. Then, the geometrical variables of 

interest are: { 𝑡, 𝐴, 𝜆, 𝑏, 𝑡, 𝐸1, 𝐸2 }. They all have dimensions of length [l]. The material properties 

variables of interest are: { 𝐸1, 𝐸2 }. They all have dimensions of force per length square [Fl-2].  

The model is of the form 

𝑓(𝐿, 𝐹) = 0 
(A. 22) 

In this analysis, there two fundamental physical units (k =2): Force [F], and length [l], and there 

are 7 dimensional variables { 𝑡, 𝐴, 𝜆, 𝑏, 𝑡𝑠, 𝐸1, 𝐸2 }. Therefore, the equation relates to all the 

variables which have 7-2=5 dimensionless parameter denoted 𝜋.  

𝑓(𝜋) = 0 
(A. 23) 

Where 𝜋 is given by 

𝜋 = 𝑡𝑚1, 𝐴𝑚2, ⁡𝜆𝑚3, 𝑏𝑚4, ⁡𝑡𝑠
𝑚5, 𝐸1

𝑚6, 𝐸2
𝑚7  (A. 24) 

𝜋 = [𝐿𝑚1][𝐿𝑚2][⁡𝐿𝑚3][𝐿𝑚4]⁡[𝐿𝑚5]⁡[𝐹𝑚6]⁡[𝐿−2𝑚6][⁡𝐹𝑚7][⁡𝐿−2𝑚7] (A. 25) 

To ensure 𝜋 to be dimensionless, then the following should be satisfied. 

[𝐿]𝑚1+𝑚2+𝑚3+𝑚4+𝑚5−2𝑚6−2𝑚7 = 1   (A. 26) 

[𝐹]𝑚6+𝑚7 = 1   
(A. 27) 

Or  

𝑚1+𝑚2 +𝑚3 +𝑚4 +𝑚5 − 2𝑚6 − 2𝑚7 = 0  
(A. 28) 

𝑚7+𝑚8 = 0 
(A. 29) 

The dimensional matrix is  

[
1 1 1
0 0 0

⁡⁡⁡⁡
1 1
0 0

⁡⁡⁡
−2 −2
1 1

]   (A. 30) 

The nondimensional 𝜋 groups presented as shown below. These 𝜋 groups are independent to each 

other and no group is the combination of the other groups.  

𝜋1 =
𝑡

𝜆
= [1⁡0 − 1⁡0⁡0⁡0⁡0]  
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𝜋2 =
𝐴

𝜆
= [0⁡1 − 1⁡0⁡0⁡0⁡0] 

𝜋3 =
𝑡𝑠
𝜆
= [0⁡0 − 1⁡0⁡1⁡0⁡0] 

𝜋4 =
𝐸2
𝐸1
⁡= [0⁡0⁡0⁡0⁡0 − 1⁡1] 

𝜋5 =
𝑏

𝑡
= [−1⁡0⁡0⁡1⁡0⁡0⁡0]         

 

 

 

(A. 31) 

 

In this study, b always set up to be 25 mm, therefore, only four nondimensional parameters, 

𝜋1, 𝜋2, 𝜋3, 𝑎𝑛𝑑⁡𝜋4 are studied for the design process. In summary, 𝜋1 =
𝑡

𝜆
, 𝜋2 =

𝐴

𝜆
, 𝜋3 =

𝑡𝑠

𝜆
, and 

𝜋4 =
𝐸2

𝐸1
 are considered as the non-dimensional design parameters to tailor the bistability of the 

materials.  

A3. Phase Transformation Diagram  

In this section, we use FE simulations to demonstrate how to trigger the temperature-induced phase 

transformation on a building block.  The geometry of this building block is shown in Table A.1. 

Here m1 is DM_8530, which is assigned on the sinusoidal beam and m2 is DM_9895, which is 

assigned on the stiff walls. Figure A5 shows how Elastic modulus of m1 and m2 varies with 

temperature. The building block was modeled using nonlinear finite element analysis in 

commercial finite element package ABAQUS 6.18. It was modeled by four-node bilinear 

quadrilateral plane-strain element with reduced integration (CPE4R). This building block 

underwent the stress-induced phase transformation at different temperatures. Rollers were used to 

constrain the bottom of the stiff wall to prevent the displacement in Y direction. The two sides of 

the stiff walls were constrained to move in X direction. A force F applies on top of the building 

block. It transformed the building block from phase 1 (P1) to phase 2 (P2) at different temperatures. 

The stress and strain (𝜎 − 𝜀) relationship were obtained to study the bistability of the building 

block at different temperatures (see Figure 2a). Here, 𝜎 is F divided by gross cross-section area 

and 𝜀  is d divided by the original height of the building block. The bistability of a building block 
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is described by rb =-Fv/ Fp= −𝜎v/⁡𝜎p. Knowing these relationships, 𝜎v, 𝜎p, and rb can be obtained.  

The parameter c corresponding to different temperatures was calculated through Equation A.6. 

𝜎v, 𝜎p, rb, and c varies with temperature and are summarized in Table A 2 and plotted in Figure A6 

and Figure A7. 

 

In a PXCMs building block, the stiffness that stiff walls provide to the sinusoidal beam is 

determined by the parameter c. A bistable building block can become metastable if c decreases 

below a critical value. As A.6 shown, for a PXCMs building block with known geometry, c 

depends on the materials combination which is controlled by the nondimensional parameter 𝜋4 =

𝐸2

𝐸1
. Bistability of this building block decreases with c, which depends on temperature. Hotter 

temperatures decrease c and rb, therefore decreasing bistability (see Figure A6 -Figure A7). When 

the temperature decreases to 25℃, c=0.14 and rb<0, the building block switches from bistable to 

metastable (𝜎v≥0 and rb≤ 0). Therefore, the transition temperature Tt of the building block is 25℃ 

and ccr is 0.14. Subsequently, without any external mechanical loading, the building block can 

transform from BP2 to MP1 simply by heating to Th such that c>0.14.  

 
Figure A5: Elastic modulus of m1 and m2 varies with temperature. 
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Table A 1: Geometry details of the building blocks 

Parameter Dimension (mm) 

t 0.7 

A 4.5 

𝜆 60 

b 25 

ts 22 

 

Table A 2: Peak stress, valley stress, the elastic modulus of m1 and m2, c, and rb varies with 

temperature.  

Temperature 5 ºC 10 ºC 15 ºC 20 ºC 25 ºC 30 ºC 35 ºC 40 ºC 45 ºC 

σp (MPa) 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.001 0.001 

σv (MPa) 0.0018 0.0011 0.0005 0.00014 0.00058 0.00085 0.00089 0.00078 0.00059 

E1 (MPa) 2002 1859 1710 1538 1358 1174 983 769 350 

E2 (MPa) 526 378 264 171 105 60 35 20 6 

c 0.24 0.19 0.15 0.12 0.08 0.06 0.04 0.03 0.02 

rb 0.25 0.18 0.10 -0.04 -0.23 -0.47 -0.66 -0.73 -0.76 

 

 

Figure A6: When the temperature increases, the stiffness provided by stiff walls decreases, 

therefore c decreases.  
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Figure A7: Bistability (rb) of the building block decreases when the temperature increases. 

 

 

Figure A8: Bistability rb varies with c. 
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There is a limitation on Th. If temperature continues to increase, eventually 𝜎v ≈ 𝜎p and rb →-1. 

As a result, the negative stiffness regime 2 starts to disappear along with distinct phases. Figure 

2.2b, a phase diagram, illustrates this phenomenon. Each point represents 𝜎v or 𝜎p of the building 

block shown in Figure 2.2b and Table A 2 at the corresponding temperatures. At low temperatures, 

the building block is bistable and it can transform from BP1 to BP2 via an external force which 

causes stress to exceed 𝜎p (Figure A9). The building block can also return to BP2 when the external 

force causes stress lower than 𝜎v. At high temperatures, the building block is metastable. When 

stress reaches 𝜎p, it transforms from MP1 to MP2. Once the stress decreases below 𝜎v, the block 

can return to metastable state MP1 (Figure A10). If the temperature is too high, 𝜎p and 𝜎v become 

too close to distinguish. As a result, phase transformation cannot occur.  

 

Figure A9: Phase transformation of a bistable building block. 
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Figure A10: Phase transformation of a metastable building block. 

 

A4. Design Concept  

The bistability of a PXCM building block is determined by the nondimensional parameters Q and 

c. When T≪Tt , c→1, therefore, Q is the parameter determining the bistability of the building block. 

When the temperature is not low enough, c becomes the key factor to determine the bistability of 

the building block. In this scenario, a bistable building block can switch from bistable into 

metastable when c reaches a critical value. Here we define this critical value of c as the parameter 

ccr.  When a building block with the geometry and material conditions satisfy c= ccr, the F-d 

relationship of this building block also satisfies the condition Fv=0. When c> ccr, Fv <0, a building 

block is bistable, when c< ccr, Fv >0, a building block is metastable.   

 

Regardless of the geometry or base materials of a building block, once the parameter Q of a 

building block is determined, there is a unique ccr correspondingly. Any PXCMs building blocks 

with the same Q has the same ccr value which captures the transition from bistable to metastable. 

There are infinite types of combination of materials and geometry can share the same ccr 
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corresponding to the same Q.  The ccr  corresponding to different Q is calculated based on A.21. 

Using this equation, c value corresponding to the F-d relationship shows Fv =0 can be found and 

defined as ccr. A series of FEA models were created to support this concept. Figure A11 illustrates 

the F-d relationships of PXCMs building blocks have Q=4 and ccr=0.33 but different wavelength 

and amplitude combinations.  It’s observed that the Fv values of all the curves are approximately 

zero. It indicates that although these building blocks have these different geometric parameters 

combination if parameters Q are identical, ccr are also identical.  

 

 

Figure A11: F-d relationships of PXCMs building block with same Q and ccr. (a) Q=4, 𝝀=69.3mm, 

and A varies form 4.5 mm to 5 mm. (b) Q=4,⁡𝑨=4.5 mm, and 𝝀 varies form 50 mm to 70 mm.  

 

To evaluate the analytical equations for ccr, A series of FE models were also created to evaluate 

the analytical models. FEA and analytical models are used to obtain the ccr corresponding to 

different Q. They are plotted together in Figure A12 and show agreement. The comparison 

between FE simulations and analytical equations are summarized in Figure A12 and Table A3. ccr 

obtained from two methods exhibit minor differences.  
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` 

Figure A12: ccr corresponding to various Q obtained by analytical equations and FE models. 

 

Table A 3: ccr corresponding to different Q. 

Q cAnalytical cfea Error 

4 0.3334 0.3302 0.9% 

5 0.2134 0.2109 1.1% 

6 0.1482 0.1463 1.2% 

7 0.1089 0.1074 1.3% 

8 0.0834 0.0822 1.4% 

9 0.0659 0.0640 1.4% 

10 0.0534 0.0526 1.5% 

Design a building block with the geometric combination satisfies c=ccr at a certain temperature is 

the key to trigger the phase transformation of PXCMs at the desired temperature. Here, we provide 

methods to create design maps for PXCMs. In this design map, all the building blocks are made 

of DM_8530 as m1, and DM_9895 as m2, whose elastic modulus varies with temperature as shown 

in Figure A5. The design map is shown in Figure A13, where  𝜋3 = 0.02 is fixed and 𝐴=3 mm 

has been selected because they are the important factors determining the size of PXCMs. Each 

curve illustrates the transition temperature, Tt, of building blocks with a constant 𝜋𝟐 =
𝑨

𝝀
 but 

different Q. For smaller values of 𝜋2 , higher temperatures are required to achieve phase 
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transformation. When  𝜋2 is constant and Q is large, the PXCM becomes more bistable, and higher 

temperatures are required to transform it from BP2 to MP1. Compare with the design map where 

𝝅𝟐 varies via fixing 𝝀 and changing A, Tt is more sensitive to the to 𝝅𝟐 via changing A and fixing 

𝝀.   

 

 

Figure A13: Design diagram illustrates the Tt of different PXCM building block with different 

geometry parameters. 

 

A5. FEA validation  

To show how to design PXCMs to exhibit shape-memory effect (SME), a PXCM sample is 

designed and tested in FE simulation. This sample consists of three building blocks made of 

DM_8530 (m1) and DM_9895 (m2), programmed to transform from BP2  to MP1  at Tt=18 °C. FE 

model is shown in Figure 2f. We design the recovery temperature of this specimen is 18 °C. The 

thickness of the stiff walls is designed to ensure c= ccr at this recovery temperature 18 °C. The 

analysis was performed in ABAQUS 6.18, and four-node plane strain elements (CPE4R) was used 

to discretize the model. The test procedure was as follows:  
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(1) From t=0 to 10 seconds, T=Tl=8°C, the sample was compressed to transform from BP1 

to BP2. 

(2) The sample kept in BP2 at Tl for 5 seconds. 

(3) From t=15 to 25 seconds, the temperature gradually increases to Th=22°C and recorded 

the Tt.  

 

 

 

Figure A14: Reaction force, displacement, and temperature of the PXCMs sample vary with time 

during the recovery process. 

 

Figure A14 shows how the reaction force, displacement on top of the sample, and temperature 

changes with time. As expected, the sample remains in state BP2 for 10 minutes at 8°C. As the 

temperature increased, there was no observable change until the temperature reached 18°C. At 

18°C, the PXCM began to transform to MP1. The transformation was completed by 19°C. The 

transition temperature Tt, obtained from both FE simulation was close to the design value.  
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A6. PXCMs Design 

To evaluate and show to the feasibility of Type II and Type III PXCMs, FE simulations, are created 

to here. All the simulations in this section were modeled using nonlinear finite element analysis in 

the finite element commercial package Abaqus 6.15. Element CPE4R, 4-node bilinear, reduced 

integration with hourglass control, are used to model the building blocks.  

   

In Type II PXCMs, the center stiff wall is made of m2 and the remainder is made of m1. When 

temperature increases, the center bar softens and allows the sinusoidal beam to transform back to 

its original configuration through an asymmetric rotational mode. Figure A15 shows the shape-

memory effect of a Type II PXCMs building block. At Tl=1℃  the building block transformed 

from BP1 to BP2 at via an applied force. The force released at t=9 sec. and the temperature remains 

the same. The temperature started to increase at t=10 second. The building block transformed from 

BP2 to MP2 through a rotational mode.  

 

 

Figure A15: Recovery process of the Type II design. Force, displacement, and  
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In Type III PXCMs, a small portion of the sinusoidal beams around their inflection points is made 

of m2 and the remainder is made of m1. Under low temperatures, each unit cell is similar to a single 

isotropic, homogeneous material 1D PXCM building block. When Q=A/t is sufficiently high, the 

building block can remain at BP2 under stress-free condition.  Under high temperatures, the 

building block performs like a sinusoidal beam missing two parts which is metastable. To 

demonstrate this design, the FE simulation of this design FE simulations of a Type III PXCMs 

building block and a building blocks missing the same portion of the sinusoidal beams around their 

inflection points were created to demonstrate the design concept. The Type III PXCMs building 

block underwent the phase transformation at Tl=1℃ and Th=40℃ are shown in Figure A16 a and 

b respectively. The building block missing the part of materials at where Type III PXCMs building 

block assigned with m2 perform the phase transformation at Th=40℃ are presented in Figure A16 

c. The F-d relationships of these three cases are plotted in Figure A17. As expected, Type III 

PXCMs building block underwent the phase transformation at Tl=1℃ exhibit bistable behavior. 

At Th=40℃, Type III PXCMs building block and the building block missing two parts show the 

similar metastable behavior. Under high temperatures, the building block performs like a 

sinusoidal beam missing two parts which is metastable. Therefore, it can transform from BP2 to 

MP1 via temperature control.  All these designs were evaluated and shown to be feasible 

alternatives using FE simulations, the details of which can be found in the supplementary materials.   
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Figure A16: Load Type III PXCMs at low and high temperature. 

 

Figure A17: F-d relationship of the building block corresponding to Figure 16. 
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Figure A18 shows the shape-memory effect of a Type III PXCMs building block. At Tl=1℃  the 

building block transformed from BP1 to BP2 at via an applied force. The force released at t=9 sec. 

and the temperature remains the same. The temperature started to increase at t=10 second. The 

building block transformed from BP2 to MP2.  

 

 

Figure A18: Recovery process of the Type III design. Force, displacement, and t 
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APPENDIX B. 

B1. Design of 2D PXCMs 

In this paper, we present a systematic study to design and study the mechanical performance of 

functional two-dimensional phase transforming cellular materials (PXCMs) that are capable of 

dissipating energy along various axes of symmetry. We created a series of designs and then we 

evaluated them through FE simulations (Figure B1 and Figure B2).  While the extension to 2D 

PXCMs may seem easy by follow the schematics shown in Figure B1, the process requires a 

careful examination of the performance of the different types of designs. As mentioned in section 

2.2, 2D PXCMs have three levels of hierarchy structures from level zero to level two. The zeroth 

level of the hierarchy structure is the elementary building block of the PXCMs which are composed 

of either single (Figure B1 a) or a pair of parallel-connected sinusoidal beams (Figure B1 b). To 

evaluate both designs, the FE simulations of two S-type PXCMs samples with these two types of 

building blocks under a uniaxial load-unload cycle are created.  

 

We observe that the sample with single sinusoidal beams as elementary building blocks shows 

local wobbling behavior (Figure B1 a), which causes unpredictable and disorderly transformation 

behavior of materials. This local “wobble” mode is caused by the rotation at the apex of the single 

sinusoidal beam mechanisms. On the other hand, when the elementary building blocks are parallel-

connected sinusoidal beams, materials transform steadily and progressively (Figure B1 b). This is 

mainly caused by the fact that rotation at the apex is restricted with parallel beams.  
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Figure B1: Performance of S-type 2D PXCMs with the zeroth level hierarchy structure are 

comprised of (a) single and (b) parallel connected sinusoidal beams under a compressive load-

unload cycle. (a) Unit cells with single sinusoidal beam exhibited strong rotation. (b) Unit cells 

with parallel-connected sinusoidal beams did not rotate. (c) F-d relation of two samples indicates 

that S-type 2D PXCM with parallel-connected sinusoidal beams as elementary building blocks 

dissipates more energy.  (d) S-type 2D PXCM motif under a uniaxial load. (e) Motif exhibits higher 

bistability but lower peak and valley forces when the top sinusoidal beam thinner.  

 

Figure B1 c shows the result of the simulations (Load-Displacement, F-d curves) of the both cases 

(single beam and pair of parallel-connected beams). These results indicate that materials with 

parallel-connected sinusoidal beams as zeroth level of the hierarchy structure can have higher 
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better bistability behavior (e.g., larger peak to valley force ratios)  which leads to better energy 

dissipation capacity. Additionally, the thickness of each individual beam in the two parallel-

connected sinusoidal beams can be tailored independently to influence the performance of the 

material. To understand the effect of having different values of thickness in the top and the bottom 

sinusoidal beams, we performed FE simulations of a group of S-type 2D PXCMs under the 

displacement-controlled uniaxial compression. For each building block, the amplitude A and 

wavelength λ of both sinusoidal beams, the thickness t of the bottom sinusoidal beam, and supports 

thickness tstiffer are identical among the simulations.  The only variation among different 

simulations is the thickness t’ of the top sinusoidal beam (Figure B1 d). We define a parameter Q’ 

=A/t’ as an indicator of the value t’ (since A remained constant). The parameter Q’ varies from 10 

to 15 among our simulations (Figure B1 e). The rest of the dimensions follow those indicated in 

Table S1. The relation between force and normalized displacement (d/A) of all the simulations are 

displayed in Figure B1e. These F-d curves indicate that, when all the other geometry parameters 

remain constant, the thinner the top sinusoidal beam is, the lower the peak and valley forces are, 

and the mechanism is said to become “more bistable”. This means that the bottom part of the force-

displacement curve crosses the F = 0 line (e.g., the valleys remain negative while the peaks are 

positive), and the distance between peaks and valleys increases. Another interesting observation is 

that, during phase transformation, the top sinusoidal beam transforms first  because the only lateral 

constraints are provided by the vertical stiffening walls. However, these top beams push the 

stiffening walls apart, reducing the constraints on the bottom sinusoidal beam. This competing 

mechanism can be tailored with additional analysis by finding the right combination of Q’ and Q. 

However, to maintain the focus of the paper, most of PXCMs considered in this work have parallel 

sinusoidal beams with the same in thickness (Q=Q’=10, t=t’; see Table B1).  

 

After analyzing these two design options at zeroth level of hierarchy structure, we studied two 

potential design options in the first level of the hierarchy structure of 2D PXCMs. Triangular and 

square motifs are natural candidates for building the first hieratical level of 2D PXCMs because 

they can be tessellated in a 2D plane. The building blocks are assembled by combining the 

sinusoidal beams together into first level motif. The first type of frame connects the sinusoidal 

beams from their ends with spokes that converge at the center of a motif (Figure B1 d). The second 

type also connects all the sinusoidal beams via the ends, but form a polygon frame inside a motif. 



123 

 

To evaluate both design choices, we perform FE simulations of S-type 2D PXCMs with these two 

types of frames as it is shown in Figure B2 a and b. Under a displacement-controlled compressive 

load-unload cycle, both specimens collapsed steadily. However, the F-d curves ( Figure B2c) 

indicate that the specimen with spokes (Figure B2 a) exhibits almost no hysteresis compared with 

the specimen with the center frame (Figure B2 b). Therefore, with adopt the center frame as the 

choice for first level of hierarchy (see Figure B2 b) 

 

Figure B2: Performance of S-type 2D PXCMs with the two types of frames inside their motifs 

under a compressive load-unload cycle. (a) FEA model of S-type 2D PXCM with cross structures 

inside their motifs. (b) FEA model of square 2D PXCM with polygon frames inside their motifs. 

(c) F-d curves of two designs indicate that with polygon frame inside a motif, S-type 2D PXCM 

can dissipate more energy.  

 

The determination of the second level of hierarchy follows a similar analysis through FEM analysis. 

The square motifs can be tiled easily as shown in Figure 5.1 e. Choosing the support structures for 

these triangular shape motifs is not straightforward. Two alternative support structure topologies 

𝑇𝐼 and 𝑇𝐼𝐼 are shown in Figure 5.1 e. To evaluate the support structure topology 𝑇𝐼, a corresponding 

prototype is fabricated by an Object Connex500 3D printer with a photo-cured polymer (RGD 

8530, 𝐸 = 1𝐺𝑃𝑎 and 𝜎𝑦 = 19⁡𝑀𝑃𝑎). The sinusoidal beams are designed to remain elastic during 

the phase transformation.  Ten compressive load-unload cycles were applied on the specimen using 

a universal testing machine (MTS Insight 10 equipped with a 10 kN load cell MTS 661.19F-02) 

(Figure B3 a and b). We observe that the supports and frames of the PXCM deform just enough to 
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eliminate any constrain to the sinusoidal beams to obtain bistability. The hysteresis curves indicate 

that the energy dissipation is mostly plastic deformation rather than phase transformation. 

Therefore, regular tiling (𝑇𝐼 ) does not lead to a functionally two-dimensional PXCM. The 

arrangement shown in (𝑇𝐼𝐼) with triangular motifs located at the nodes of a regular hexagon is not 

a tiling as it includes some empty space at the center of the hexagon. As it is shown in the main 

paper, this arrangement leads to a functionally 2D PXCM. Optimization could be performed to 

improve the performance of 2D PXCMs in terms of energy dissipation, strength, or initial stiffness.  

 

Figure B3: Example of an unsuccessful design. T-type 2D PXCM with TI arrangement show 

plastic deformation under ten compressive load-unload cycles. 

B2. Characterization 2D PXCMs 

Uniaxial, quasi-static, compressive load-unload tests were performed to characterize the response 

of the S-type and T-type PXCMs along the various axes of symmetry of the materials.  These tests 

were carried out under displacement control. Four specimens corresponding to four tests are 

fabricated (Figure 5.3-Figure 5.6). The volumes of samples are displayed in Table B2. These load 

cases are tested using nonlinear finite element analysis. This analysis helps us understand whether 

or not there is phase transformation, acknowledging that the applied displacement in the beams is 

a function of θ, where θ is the angle between the loading direction and axis of symmetry of a 

sinusoidal beam (see Figure B4 c). The applied displacement on each sample follows Eq. B1: 

     𝑑 = 2𝐴∑ 𝑐𝑜𝑠⁡(𝜃𝑖)
𝑛
𝑖=1       (B 1) 
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where A is the amplitude of a sinusoidal beam, 𝜃𝑖 is the angle between the axis of symmetry of the 

𝑖𝑡ℎ sinusoidal beam structure and the loading direction, and n is the total number of such sinusoidal 

beam structures along any column of motifs in the material sample. All the specimens are tested 

with three compressive load-unload cycles with the loading rate of 1 mm/min.  

 

Figure B4: Experimental set up for the uniaxial loading tests on four samples. (a) undeformed and 

(b) deformed T-type at loading {0°, 60°, 120°} under uniaxial loading condition. Two acrylic bars 

are employed to laterally constrain the specimen at front and back to eliminate out of plane 

buckling. (c) FEM results showing how the cells undergo complete phase transformation, even 

when the applied displacement is a function of the angle θ.  
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B3. Results and Discussions 

Figure B5 shows the F-d curves of each sample under three compressive load-unload cycles from 

experiments. Table B3 displays the energy dissipation of all the specimens among three back-to-

back load-unload cycle. The variation among different cycles is between 1% and 8%. With the 

exception of the S-type 2D PXCMs loaded at {45°, 135°}, all the samples exhibit energy 

dissipation reduction after the first loading cycle. After the first loading cycle, the energy 

dissipation variation between second and third cycles decreases (Table B3-B4).  

 

Figure B5: Experimental F-d curves for three compressive load-unload cycles.  
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B3.1 Phase Transformation Path 

The observation from the tests confirm that most of the mechanisms under phase transformation 

through different level of asymmetry configurations.  For instance, when the S-type 2D PXCM 

sample is loaded at {0°, 90°}, half of the sinusoidal beams happen to have their axes of symmetry 

overlapped with the loading direction. These sinusoidal beams transformed through the symmetric 

configurations, which is defined as the mechanisms go through the primary pathway (Figure B6a). 

The other half of the sinusoidal beams do not go through phase transformation because the loading 

direction is perpendicular to their axes of symmetry. The F-d relation (Figure B5 a) of this 

specimen indicates that S-type 2D PXCM under loading angle {0°, 90°} show bistable behavior 

and energy dissipation. The materials perform differently when the loading direction for the 

sample is not aligned with axes of symmetry for a subset of the constituent mechanisms (Figure 

B5 b -d).When S-type 2D PXCM is loaded at {45°, 135°} loading angles (Figure B5 b), every 

sinusoidal beam has its axis of symmetry 45° rotated from the loading direction (θ=45°). This 

larger angle θ causes all the sinusoidal beams transform though more asymmetric configurations 

(Figure B6 b) compared with the previous case. As a result, the specimen exhibits mostly 

metastable behavior and lower energy dissipation capacity. In such cases, when a mechanism 

transforms via such an asymmetric configuration, we say that those mechanisms go through a 

secondary pathway.  When the T-type 2D PXCM is loaded at {0°, 60°, 120°}, one third of 

sinusoidal beams with their axes of symmetry align with the loading direction. These sinusoidal 

beams go through the primary pathway; similar to half of the sinusoidal beams in the S-type 2D 

PXCM at loading angles {0°, 90°}. The rest of sinusoidal beams, which have their axes of 

symmetry 60° rotated from the loading direction, transform through the asymmetric configurations 

and exhibit metastable behavior (Figure B6 c). The T-type 2D PXCM at {30°, 90°, 150°} has one 

third of sinusoidal beams parallel to the loading direction. These sinusoidal beams clearly do not 

exhibit phase transformation. The rest of sinusoidal beams have their axes of symmetry 30° rotated 

from the loading direction (θ=30°). These sinusoidal beams transform through the noticeable 

asymmetric configurations, therefore we define the mechanisms go through secondary pathway as 

well. Since the angle θ is relatively small compared with the previous two cases, the sample shows 

bistability and relatively high energy dissipation (Figure B6d) 
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Figure B6: The simulations (left) and experiments (right) show that the sinusoidal beams have 

phase transformation through more asymmetry configurations when the angle θ between the 

loading direction and their axes of symmetry increase. 
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B3.2. Phase Transformation in a Single Mechanism 

The experiments and FE simulations discussed in this paper show that the angles between loading 

directions and axes of symmetry of sinusoidal beams affect the performance of materials in terms 

of bistability and energy dissipation capacity. In order to better understand this influence, we 

perform ancillary FE simulations of a single mechanism under loads applied at various angles, θ 

(see Figure B7 a). Figure B7 b shows the F-d responses as a function of the angle θ. We note that 

the mechanism response is clearly bistable for 𝜃 =0 with a well defined second stable configuration 

and a long region with negative stiffness. However, the mechanisms become metastable as 𝜃 

increases, and the negative stiffness region in the response shrinks rapidly as 𝜃 increases from 0° 

to 15°.  The negative stiffness region disappears completely for 𝜃 > 15° (see Figure B7 b) 

 

As discussed, energy dissipation in PXCMs arises from the non-equilibrium release of energy 

accompanying the traversal of the limit points during the loading and unloading of these materials.  

Specifically, the energy dissipation in a material with a 'sufficiently' large number of motifs is 

proportional to the area bounded by the envelope curve shown by a dashed line in Figure B7 c-f 

19,60. Figure B7 g shows a plot of this area as a function of θ. We note that the area appears to 

decrease exponentially with increasing θ and becomes nearly zero for 𝜃 =15°. This shows that the 

energy dissipation capacity of the single mechanism degrades quickly as the inclination of the 

applied load with respect to its axis of symmetry increases, and it disappears completely for 

inclinations as small as 15 degrees. Based on the observations, we conclude that the larger the 

angle between loading direction and the axes of symmetry of a sinusoidal beam, the lower their 

ability to produce bistable behavior. This eventually adversely affects the capability of the material 

to dissipate energy. However, the observations from the tests on 2D PXCMs show that when the 

angle 𝜃  is larger than 15°, the material still exhibit bistable behavior and energy dissipation 

capacity (Figure B5).  This is due to the collective behavior of all the cells, which produce enough 

lateral constraint even for those sinusoidal beams that have higher values of 𝜃. This is discussed 

in the next subsection.  
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Figure B7: Performance of a single mechanism under the different loading direction. (a) A 

mechanism from S-type 2D PXCM is subtracted to study. (b) F-d relations of the mechanism when 

the angle between loading direction and axes of symmetry increases from 0° to 60°. (c)-(f) F-d 

relations of the mechanism when θ=0°,5°,10°, and 15°. Highlight area is proportional to the energy 

dissipation in materials is composed of a large number of mechanisms.  (g) This area decreases 

exponentially with increasing θ. 
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B3.3. Phase Transformation in a 2D PXCMs  

The S-type 2D PXCM has four axes of symmetry, but only two of these are aligned with axes of 

symmetry for its constituent single mechanisms. When a loading direction for these PXCMs is 

aligned with an axis of symmetry of the material that also happens to be an axis of symmetry for 

a subset of its constituent mechanisms, this subset of mechanisms contributes the most to the total 

energy dissipation of the specimen.  Half of the mechanisms in the S-type PXCM are aligned with 

their axis of symmetry lying along the 0 degree direction, and the other half have their axis of 

symmetry along the 90 degree direction (see Figure 5.3). The mechanisms aligned at 0 degrees are 

not deformed significantly, and hence do not contribute to the total energy dissipation of the sample 

when the mechanism is loaded along 90 degrees. Similarly, the mechanisms aligned with 90 

degrees do not contribute to energy dissipation when the sample is loaded along 0 degrees.  

Moreover, as the same number of mechanisms are active contributors to the total energy 

dissipation when the material sample is loaded along 0 and 90 degrees, we expect the total energy 

dissipation to be similar in these two cases.   

 

The situation is different when the loading direction for the sample is not aligned with axes of 

symmetry for a subset of the constituent mechanisms (Figure 5.4 -Figure 5.6). Based on the prior 

discussion, we expect any mechanisms oriented in a direction such that their axis of symmetry is 

inclined 15 degrees or more with respect to the load direction to have a very small contribution to 

the overall energy dissipation (see Figure B7). However, an ensemble of mechanisms behaves 

somewhat differently than the single mechanism due to the internal degrees of freedom possessed 

by the individual motifs and its interaction with their neighbors. We notice that the individual cells 

in an ensemble reorient themselves during the deformation of the material such that they reduce 

the inclination of the force deforming a mechanism with respect to the axis of symmetry of the 

mechanism undergoing transformation (see Figure B8-Figure B10). This reorientation happens via 

rotation of the individual motifs based on which subset of its constituent mechanisms is 

transforming. Thus, we can observe the same motif rotating clockwise and counter-clockwise at 

different points in the loading history (Figure B9 & Figure B10).  This behavior results in some 

energy dissipation contribution even from mechanisms that were oriented such that the direction 

of their axis of symmetry was inclined by 15 degrees or more with respect to the external force in 

the undeformed configuration. Moreover, the percentage of sinusoidal beams that undergo 
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transformation in S-type 2D PXCM significantly increases from 50%, when it is loaded at 0°/ 90°, 

to 100% when a is loaded at 45°.  

 

Figure B8: S-type 2D PXCM at {45°, 135°} loading angle show the rotation in the individual motif. 

 

 

Figure B9: For T-type 2D PXCM at {0°, 60°, 120°} loading angle, the same motif rotating 

clockwise and counter-clockwise at different points in the loading history 

 

Thus the relative small difference of the energy dissipation behavior of the S-type 2D PXCM to 

the direction of the in-plane loading can be explained by two counteracting trends: 1) a decrease 

in the energy dissipation contribution of an individual mechanism with an increase in the 

inclination of the applied load with respect to its axis of symmetry and 2) an increase in the number 

of mechanisms contributing to the energy dissipation of the sample as a whole with an increase in 
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the inclination of the applied load with respect to the axis of symmetry of any one subset of 

mechanisms. The behavior of both T-type 2D PXCMs can be explained in a similar manner. 

 

We observe that the T-type material, which has more axes of reflectional symmetry then the S-type, 

exhibits slightly lower variation in energy dissipation with changes in the loading direction than 

the S-type material. This suggests that further increases in the number of axes of reflectional 

symmetry for the unit cell are likely to reduce the variation in energy dissipation with the changes 

in loading direction, with the advantage that the relative density of the material does not change 

significantly while increasing the symmetry of the unit cell. 

 

 

Figure B10: For T-type 2D PXCM at {30°, 90°, 150°}, the same motif rotating clockwise and 

counter-clockwise at different points in the loading history. 

 

To verify the energy dissipation presented above is still produced by the PXCM when its base 

material remains in the elastic regime, we carefully analyze other type of sources for potential 

energy dissipation sources. This will allow us to examine and estimate how much of the total 

energy dissipated by a PXCM sample can be attributed to the primary and secondary pathways. 

Figure B5 show respectively the F-d responses of the S- and T- type PXCM samples when they 

are loaded at 0 degrees, for three back-to-back load-unload cycles. Irreversible (e.g. plastic) 

deformation across the successive cycles is negligibly small after the first cycle for all four load 

cases considered in this study (Table B4). This is confirmed not only by the F-d response (Figure 

B5), but also by a posteriori examination of the specimens that showed no sign of permanent 
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deformation. This is to be expected, as we designed the mechanisms such that it remained in the 

elastic strain regime over the complete load-unload cycle.  

 

Estimation of the energy dissipation via the other secondary pathways listed above is not 

straightforward. The mechanisms are designed to have a bistable mechanical response. They 

exhibit snap-through behavior under force control, but not under displacement control. If we 

subject a single mechanism to the same range of deformation under force and displacement 

controlled conditions, it will dissipate energy via all available dissipation pathways in the former 

case. However, under displacement control, it does not undergo a snap-through and, hence, it does 

not exhibit dissipation due to the snapping action of the mechanism. We can estimate the energy 

dissipated by a mechanism via all dissipation pathways except the snapping action by subtracting 

the energy dissipated by the mechanism under displacement control from that under force control.  

Since the S-type PXCM loaded at {0°, 90°} showed the most irreversible deformation in 

successive load-unload tests, we choose that load case to estimate energy dissipation through 

pathways other than the snapping action of the beams. The average energy dissipated by the entire 

sample in cycles 2 - 3 is 6594 mJ (see Table B5).  We subject a single mechanism from this sample 

to four successive load-unload cycles under displacement control with a cross head travel rate of 

1mm /min (See Figure B11).  The energy dissipated during a complete load-unload cycle is 

obtained by measuring the area between the loading and unloading curve (See Table B7 & Table 

B8). The average energy dissipated by a single mechanism over cycles 2 - 4 is 17.5 mJ (see Table 

B8).  Since, 36 such mechanisms undergo a complete load-unload cycle during a complete load-

unload cycle on the entire PXCM sample (see Figure 5.3), we estimate the total energy dissipated 

by the entire sample due to pathways other than the snapping action of the beams to be 630 mJ. 

Thus, assuming that all 36 of these mechanisms exhibit identical energy dissipation behavior we 

estimate that all secondary dissipation pathways other than plastic deformation dissipate 

approximately 10% of the total energy dissipated by the S-type PXCM sample when it is loaded at 

0° and 90°. 
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Figure B11: A single mechanism under displacement control with a crosshead travel rate of 1mm 

per minute.  

B.3.4. Auxetic behavior 

Under the uniaxial loading conditions along different axes of symmetry, both S-type and T-type 

samples exhibit auxetic behavior from FE simulations and experiments (See Figure 5.3-Figure 5.7, 

and Figure B12). These samples undergo contraction in the X direction when they are compressed 

in Y direction. To illustrate this effect, the Poisson’s ratio ( 𝑣 = −
𝜀𝑌

𝜀𝑋
 ) of S-type loaded at {45°,135°} 

and T-type at {30°,90°,120°} is plotted vs time in Figure B12 b and d. 

 

The strain in Y direction is calculated by dividing average displacement of all the nodes on top of 

the sample by the original sample width w: 𝜀𝑌 =
𝑢𝑌̅̅ ̅̅ ⁡

𝑤
. The strain in X direction is calculated by the 

subtracting the average displacement in X direction of all the nodes on left side to right side and 

dividing the original length of the sample L: 𝜀𝑥 =
𝑢𝑥
𝑟̅̅ ̅̅ ⁡

𝐿
−

𝑢𝑥
𝑙̅̅ ̅̅ ⁡

𝐿
. Based on the geometry and typology 

of two samples, when mechanisms fully collapsed (Equation B1), the Poisson’s ratio of S-type at 

{45°, 135°} is expected to be around -1, and T-type at {30°,90°,120°} should be around -0.28. This 

analytical value and FE simulations results are plotted together at Figure B12 b and d. It shows the 

good agreement between the Poisson’s ratio from FE simulation and analytical results.  By having 

these auxetic behaviors, 2D PXCMs gain more benefits such as high indentation resistance, shear 
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modulus, fracture toughness, and synclasticity 55 . These benefits extend the application of  2D 

PXCMs into medical stent, adaptive clothing, and medical cast 54,56,57.  

 

Figure B12: Poisson’s ratio variation over time obtained from the numerical simulations and 

compared with the analytical prediction.   

B4 Finite Element Simulations  

Finite element models are created to quickly capture the essential mechanical response of 2D 

PXCMs under different loading angles. Element type, element size, contact condition, and base 

material properties were first studied to determine the most effective simulation set up and assess 

potential source of error and uncertainties. 

B4.1. Element Type 

To select a type of computational effective element, we create FE models of a 2D PXCM 

elementary mechanism (i.e. sinusoidal beam) with clamped-clamped boundary conditions and 
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under displacement control  with different elements types (Figure B13 a). The geometry of the 

sinusoidal beam is identical to the sinusoidal beams employed in the T and S-type 2D PXCMs.  

(a) 

 

 

(b) 

 

Figure B13: FE models of the elementary mechanism. (a) FE model is an elementary mechanism 

under the clamped-clamped boundary condition. (b) There is no significant difference can be 

observed by using different types of element.   

 

The elements selected are: two-node linear beam element (B21), four-node bilinear, reduced 

integration with hourglass control (CPE4R) and eight-node brick element with reduced integration 

(C3D8R). For 2D and 3D models, 7 elements are assigned throughout the beam thickness (element 

size = 0.1 mm). Additionally, to check convergence for the 3D model, a model with sinusoidal 

beam with 12 C3D8R elements throughout the sinusoidal beam thickness is created.  The F-d 

relations of four models are plotted in Figure B13b. As it can be observed in the figure, there is no 

significant difference between the models with B21, CPE4R, and C3D8R elements. We choose 

B21 for all the simulations as it is the most computationally efficient and it enables us to create 

larger models with multiple motifs.   

B4.2. Convergence study 

Once the element type is chosen, a convergence study is conducted on the sinusoidal beam model 

with B21 elements. The element size varies from 4 mm to 2 mm. The F-d relation curves of five 

models with these various elements size are shown in Figure B14 a. Since only minor variation 

can be observed from the F-d curves, the peak force Fp of each curve is used to quantify the 



138 

 

difference. We plot Fp against element size as shown in Figure B14 b. The peak load converges 

when the element size reduced to 2.5 mm. We chose the element size 2.17 mm which is smaller 

than the threshold of convergence (this is shown as red dot shown in Figure B14 b. 

                    (a) 

 
 

                    (b) 

 
 

Figure B14: Convergence study of FE models. (a) F-d relations of FE models with element size 

varies from 2-4 do not show noticeable difference. (b) Peak load of sinusoidal beam starts to 

converge at 2.5 mm. 
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B4.3. Friction coefficient 

Contact between adjacent beams was modeled using the small sliding formulation in Abaqus 6.14. 

Coulomb friction with a friction coefficient of 𝜇 = 0.1 is assumed to be active at all contact 

interfaces. This value is selected based on the Typical Properties of Generic Acrylonitrile 

Butadiene Styrene (ABS)61.  For generic ABS materials, the coefficient of friction varies from 0.1-

0.5. To check the sensitivity of the friction coefficient in our models, we build FE models of the 

S-type PXCM loaded under {0°, 90°} (with 𝜇 varying from 0.1 to 0.5). The F-d relations of these 

models are shown in Figure B15. The model with 𝜇 = 0.1 exhibits slightly lower valley force 

when the 11th mechanism buckles at the very end of the loading cycle. This is an indication that 

contact (and friction) only plays a role when most of the motifs are already transformed/collapsed. 

Overall, as it is evident in Figure B15, friction seems to play a minor role in full compression and 

𝜇 = 0.1 is reasonable assumption to made for FE simulation.  

 

Figure B15: F-d relationship of a S-type PXCM sample under the loading angle {0°, 90°} with 

different friction coefficient.  

 

B4.4. Base material properties 

Three-point bending tests are conducted to determine mechanical properties of the base material. 

Test setup is shown in Figure B16 a. Four increasing load-unload cycles are applied on three 
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samples as shown in Figure B16 b. Sample B1 and B2 have identical cross section areas (i.e., 0.7 

mm × 25 mm) compared with the elementary mechanism of 2D PXCMs. Sample S1 also has the 

same thickness 0.7 mm, but half of the width (i.e. 13 mm) compared with 2D PXCMs (Table B9) 

Figure B16 b shows the F-d relation of sample B2 under four increasing displacement load-unload 

cycles.  

 

During the first two load-unload cycles, the sample exhibits approximately linear elastic behavior. 

A plateau is reached when the strain increases to 0.9% and 1.2% at cycle 3 and 4 which indicates 

that the base material exhibits nonlinear behavior under the large strain. However, for simplicity, 

we assume a linear elastic material model for the FE simulations, where the modulus is derived 

from the zero-strain tangent to the F-d curves obtained from a 3-point bending test (Table B10). 

This simplification allows us to capture the essential mechanics of the material behavior in a 

computationally efficient manner, but it sacrifices the accuracy of the force prediction. This factor 

could cause the FE models to overestimate the mechanical response of the PXCMs compared with 

the experiments.   To assess the uncertainties introduced by this approach we develop FE models 

of all four 2D PXCMs samples where we assign a minimum, average and maximum elastic 

modulus. Such analysis can provide lower and upper bounds on the F-d curves are displayed in 

Figure B17. The energy dissipation calculated in each sample is summarized in Table B11. Due to 

the uncertainty of elastic modulus of base material, assuming all the 2D PXCM samples have a 

constant elastic modulus can cause the energy dissipation capacity of these materials varies from 

-6% to 7%. 

 
Figure B16: Three-point bending test to determine material properties of the base materials. (a) 

Experiment setup. (b) Applied displacement and reaction force vary with time. (c)-(f) F-d relation 

of sample under different load-unload cycles.  
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Figure B17: F-d relation of 2D PXCMs with minimum, average, and maximum base materials 

properties. (a) A S-type PXCM sample under three compressive load-unload cycle at {0°, 90°}. (b) 

A S-type PXCM sample under three compressive load-unload cycle at {45°, 135°}. (c) A T-type 

PXCM sample under three compressive load-unload cycle at {0°, 60°, 120°}. (d) A T-type PXCM 

sample under three compressive load-unload cycle at {30°, 90°, 150°}. 

B5. Energy dissipation rate 

Energy dissipation rate is another important factor for engineering applications.  To understand 

the how loading angle influence the energy dissipation rate in 2D PXCMs, we plot the energy 

dissipation for four samples as a function of the applied displacement. Energy dissipation in 

PXCMs occurs in a discontinuous way through discrete steps corresponding to snap-through 
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transitions in individual building blocks. However, we can define an average energy dissipation 

rate in the following way: we load the material up to a snap-through at a displacement and then 

unload it completely. As such the average energy dissipation rate, at that given displacement, can 

be defined as the ratio between the energy dissipated in this complete load-unload cycle and the 

applied displacement. This is repeated for all snap-through events to get the average energy 

dissipation rate for different displacement values through its loading history. For this we use all 

the data from Figure 5.3 to Figure 5.6. These F-d curves can be discretized into cycles. Each cycle 

starts form the initial state, loads to a snap back point and then unloads back to the initial state 

(Figure B18a). The initial stiffness is used to extrapolate the unloading path after snap back 

happens. Figure B18 a demonstrates the first loading and loading cycle as an example. S0 

represents S-type PXCM under loading angle {0°, 90°}, S45 represents S-type PXCM under 

loading angle {45°, 135°}, T0 represents T-type PXCM under loading angle {0°, 60°, 120°}, and 

T90 T0 represents T-type PXCM under loading angle {30°, 90°, 150°}. T0 exhibits two 

distinguished regions therefore named by T0-1 and T0-2. Energy dissipation rate per unit volume 

and unit mass are used to evaluate the performance of 2D PXCMs under different loading 

directions (Figure 5.7 c and Figure B18b). Both plots show S-type PXCM loaded at {45°, 135°}, 

T-type PXCM loaded at {30°, 90°, 150°}, and the first region for T-type PXCM loaded at {0°, 60°, 

120°} show the similar energy dissipation rate. S-type PXCM under loading angle {0°, 90°} shows 

higher energy dissipation rate.  T-type PXCM is not sensitive to the loading direction compared 

with S-type PXCM. To have explicit comparison, liner interpolation is used to quantify the energy 

dissipation per unit value and mass varies with applied displacement. Linearized curves are shown 

in Figure B18c-d and the slope of each sample is displayed in Table B12. It shows that before T-

type PXCM loaded from {0°, 60°, 120°} enter the second region, T-type PXCM has identical 

energy dissipation rate per unit volume and mass under a load comes from any the reflectional 

axes of symmetry. The energy dissipation rate for T-type PXCM is about two third of the one 

calculated for the S-type PXCM under at {0°, 90°}. The S-type at {45°, 135°}, shows 23% higher 

energy dissipation rate compared with the T-type PXCM. Once loading T-type PXCM along {0°, 

60°, 120°} to the second region, the energy dissipation rate reduces to half. Overall, S-type PXCM 

loaded under {0°, 90°} shows highest energy dissipation rate compared to the other cases. The S-

type at {45°, 135°} and T-type PXCM under all the loading angles show similar energy dissipation 

rate until T-type PXCM enters the second region under the loading direction {0°, 60°, 120°}.  
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Figure B18: Energy dissipation rate of T-type PXCM is not sensitive to loading direction. S-type 

PXCM shows higher energy dissipation rate when load comes along the 0° compared with 45°. (a) 

Demonstrate energy dissipation of cycle 1 and cycle 12. (b) Energy dissipation per unit volume of 

four samples varies with time. (c)-(d) Energy dissipation per unit mass and per unit volume of four 

samples varies with time after linear curve fitting. 
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B6. Biaxail loading condition 

 

Figure B19: Performance of a T-type PXCM sample under one biaxial compressive load-unload 

cycle. (a) The sample is under uniaxial loading condition and supported by rollers at bottom. (b) 

Phase transformation sequence of the three characteristic states from FE simulation. (c). F-d 

relation of the sample from FE simulation and Experiment. (d) Two states of the sample 

corresponding to initial and final deformed configurations.  

  

We created FE simulations to investigate the response of a T-type PXCM under biaxial loading 

condition. The schematic for this load case is shown in Figure B19a where the a1 axis is aligned 

with the X-axis and a2 axis is aligned with the Y-axis. To ensure all the building blocks achieve 

phase transformation at the same time, the loading rate in the X direction is 0.39 mm/min and in Y 

direction is 1 mm/min. Figure B19b shows the undeformed and deformed configurations of the 

sample at three salient points during its compression as obtained from the finite element 

simulations. The corresponding points are labelled on the F-d response in Figure B19c. The 

sinusoidal beams are color coded according to their status at any point during the deformation 

process. The beams rendered in gray are still in phase 1 (according to the definition in Design 

Considerations section Figure 5.1b) , those shaded green have already transformed to phase 2, and 

the red ones are undergoing phase transformation.  
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Unlike the response of T-type PXCM under the uniaxial loading condition, all the building blocks 

undergo phase transformation under the biaxial loading condition. Expect at loading-unloading 

transition point, T-type PXCM exhibits higher serrated loading and unloading plateau force in the  

X direction than in the Y direction. The peak force is reduced to around 50% in both X and Y 

directions after the first building block transformed (See Figure B19c). The ratio of energy 

dissipation capacity of in X to Y direction is 1.3 (Table B13 and video 6). 
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B7. Tables 

Table B1: Values assigned to various design parameters in Figure 5.2 

Parameters Dimension (mm) 

t 0.7 

t' 0.7 

𝑡𝑠𝑡𝑖𝑓𝑓 4.2 

𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙 2.1 

s 3.5 

A 7 

𝜆 71 

 

Table B2: The volume of the undeformed the samples. 

Specimen Name Size (mm3) 

S-type 0° 6125000 

S-type 45° 10400625 

T-type 0° 11041875 

T-type 90° 11041875 

 

Table B3: Summary of energy dissipation of four samples under the three compressive load-unload 

cycles. 

Specimen Cycle  Dissipated Energy (Nmm) Variation (%) 

T-type 0° 

1 15017 5% 

2 14043 -2% 

3 13894 -3% 

Average 14318   

T-type 90° 

1 13426 5% 

2 12689 -1% 

3 12265 -4% 

Average 12793   

S-type 0° 

1 7189 6% 

2 6366 -6% 

3 6823 0.5% 

Average 6792   

S-type 45° 

1 11016 8% 

2 10218 0.1% 

3 9402 -8% 

Average 10212   
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Table B4: Energy dissipation varies slightly among cycle 2 and 3. 

Sample Cycle Dissipated Energy (Nmm) Variation (%) 

T-type 0° 2 12689 1.7% 

 3 12265 -1.7% 

Avg. cycle 2&3 12477 

T-type 90° 2 14043 0.5% 

 3 13894 -0.5% 

Avg. cycle 2&3 13969 

S-type 0° 2 6366 -3.5% 

 3 6823 3.5% 

Avg. cycle 2&3 6595 

S-type 45° 2 10218 4.2% 

 3 9402 -4.2% 

Avg. cycle 2&3 9810 

 

Table B5: Energy dissipation per unit volume of 2D PXCMs and 1D PXCMs along different 

loading angles corresponding to their axes of symmetry. 

T-type PXCM S-type PXCM 1D PXCM 

Experiment FEA Experiment FEA FEA 

Angle Wv Angle  Wv Angle Wv Angle Wv Angle Wv 

° kJ/m3 ° kJ/m3 ° kJ/m3 ° kJ/m3 ° kJ/m3 

0 1.27 0 1.28 0 1.08 0 1.39 0 3.32 

30 1.11 30 1.12 45 0.94 45 1.15 180 3.32 

60 1.27 60 1.28 90 1.08 90 1.39     

90 1.11 90 1.12 135 0.94 135 1.15     

120 1.27 120 1.28 180 1.08 180 1.39     

150 1.11 150 1.12 225 0.94 225 1.15     

180 1.27 180 1.28 270 1.08 270 1.39     

210 1.11 210 1.12 315 0.94 315 1.15     

240 1.27 240 1.28 360 1.08 360 1.39     

270 1.11 270 1.12          

300 1.27 300 1.28             

330 1.11 330 1.12             

360 1.27 360 1.28           

 



148 

 

Table B6: Energy dissipation per unit mass of 2D PXCMs and 1D PXCMs along different loading 

angles corresponding to their axes of symmetry. 

T-type PXCM S-type PXCM 1D PXCM 

Experiment FEA Experiment FEA FEA 

Angle Wm Angle Wm Angle Wm  Angle Wm Angle Wm 

° J/kg ° J/kg ° J/kg  °  J/kg J/kg J/kg 

0 10.49 0 9.21 0 9.49 0 10.42 0 21.60 

30 9.26 30 8.07 45 7.82 45 8.34 180 21.60 

60 10.49 60 9.21 90 9.49 90 10.42     

90 9.26 90 8.07 135 7.82 135 8.34     

120 10.49 120 9.21 180 9.49 180 10.42     

150 9.26 150 8.07 225 7.82 225 8.34     

180 10.49 180 9.21 270 9.49 270 10.42     

210 9.26 210 8.07 315 7.82 315 8.34     

240 10.49 240 9.21 360 9.49 360 10.42     

270 9.26 270 8.07          

300 10.49 300 9.21             

330 9.26 330 8.07             

360 10.49 360 9.21             

 

Table B7: The energy dissipated by the entire sample in cycles 2 – 3. 

Sample 1 

Cycle Ed (mJ) Ea (mJ) Ed/Ea 

2 50.5 164.1 31% 

3 21.1 130.2 16% 

 

Table B8: The energy dissipated by the entire sample in cycles 2 – 4. 

Sample 2 

Cycle Ed (mJ) Ea (mJ) Ed/Ea 

2 17.91 119.68 15% 

3 17.45 117.66 15% 

4 17.26 116.15 15% 
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Table B9: Dimension of three-point bending test samples. 

Sample 
L t w 

(mm) (mm) (mm) 

S1 24 0.7 13 

B1 72 0.7 25 

B2 73 0.7 25 

 

Table B10: Summary of three-point bending tests. 

  Cycle 𝑑𝑚𝑎𝑥 (mm) m 𝜀𝑚𝑎𝑥 E0 (MPa) 

S1 

1 1.2 3.12 0.9% 2303 

2 2.4 3.16 1.8% 2333 

3 3.7 3.01 2.7% 2222 

4 4.9 3.00 3.6% 2212 

B1 

1 3.6 0.23 0.3% 2220 

2 7.2 0.23 0.6% 2224 

3 10.9 0.23 0.9% 2228 

4 14.5 0.23 1.2% 2228 

B2 

1 3.7 0.22 0.3% 2266 

2 7.3 0.22 0.6% 2316 

3 11.0 0.22 0.9% 2325 

4 14.6 0.22 1.2% 2330 

Min 1.224 0.219 0.003 2212 

Average 7.076 1.174 0.012 2267 

Max 14.601 3.160 0.036 2333 
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Table B11: Energy dissipation of four 2D PXCM samples with base material has minimum, 

average, and maximum elastic modulus. 

Sample 
Elastic 

Modulus 

Dissipated 

Energy (Nmm) 
Variation (%) 

T-type 0° 

 𝐸𝑚𝑖𝑛 13434 -1% 

 𝐸𝑚𝑒𝑎𝑛 13729 1% 

 𝐸𝑚𝑎𝑥 13461 -1% 

Average 13541   

T-type 90° 

 𝐸𝑚𝑖𝑛 11067 -6% 

 𝐸𝑚𝑒𝑎𝑛 12029 2% 

 𝐸𝑚𝑎𝑥 12379 5% 

Average 11825   

S-type 0° 

 𝐸𝑚𝑖𝑛 8134 -2% 

 𝐸𝑚𝑒𝑎𝑛 8260 -1% 

 𝐸𝑚𝑎𝑥 8582 2% 

Average 8325   

S-type 45° 

 𝐸𝑚𝑖𝑛 13530 7% 

 𝐸𝑚𝑒𝑎𝑛 11940 -6% 

 𝐸𝑚𝑎𝑥 12524 -1% 

Average 12665   

 

Table B12: Energy dissipation rate S- and T-type 2D PXCMs.  

Sample 
Energy dissipation rate 

per unit mass per unit volume 

S0 0.071 0.0094 

S45 0.052 0.0071 

T0-1 0.042 0.0058 

T0-2 0.019 0.0027 

T-90 0.043 0.0060 

 

Table B 13: Energy dissipation capacity of T-type PXCM under biaxial loading condition. 

Direction  

W 

(Nmm) Wv (kJ/m3) Wm (J/kg) 

X 6892.2 0.727 6.335 

Y 5191.3 0.547 4.772 
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B8. List of Videos 

Video 1: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- S-Type at 0 degrees 

Performance of a S-type PXCM sample under one compressive load-unload cycle at {0°, 90°}. (a) 

The sample is under uniaxial loading condition and supported by rollers at bottom. (b) Phase 

transformation sequence of the three characteristic states from FE simulation. (c). F-d relation of 

sample from FE simulation and Experiment. (d) The states of the sample at initial and final 

deformed configurations. 

 

https://youtu.be/7SSe4m_OH_w  

 

Video 2: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- S-Type loaded at 45 

degree 

Performance of a S-type PXCM sample under one compressive load-unload cycle at {45°, 

135°}.The sample is under uniaxial loading condition and supported by rollers at bottom. Phase 

transformation sequence of the three characteristic states from FE simulation vs. experiments. F-

d relation of sample from FE simulation and Experiment.  

https://youtu.be/jm_lTxPArf0  

 

Video 3: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- T-Type loaded at 0 

degree 

Performance of a T-type PXCM sample under one compressive load-unload cycle at {0°, 60°, 

120°}.   The sample is under uniaxial loading condition and supported by rollers at bottom. Phase 

transformation sequence of the three characteristic states from FE simulation vs. Experiments.  F-

d relation of sample from FE simulation and Experiment.   

https://youtu.be/LZagL31YR3g 

  

https://youtu.be/7SSe4m_OH_w
https://youtu.be/jm_lTxPArf0
https://youtu.be/LZagL31YR3g
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Video 4: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- T-Type loaded at 90 

degree 

Performance of a T-type PXCM sample under one compressive load-unload cycle at {0°, 60°, 

120°}.   The sinusoidal beams are color coded according to their status at that point in the 

deformation. The beams rendered in gray are still in phase 1, those shaded green have already 

transformed to phase 2, and the red ones are undergoing phase transformation. 

https://youtu.be/m2gCBAmHu0Q  

 

Video 5: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- T-Type loaded at 90 

degree 

Performance of a T-type PXCM sample under one compressive load-unload cycle at {30°, 60°, 

120°}. The sample is under uniaxial loading condition and supported by rollers at bottom. Phase 

transformation sequence of the three characteristic states from FE simulation vs. experiments.  F-

d relation of sample from FE simulation and Experiment. 

https://youtu.be/ENMFlFrS88E  

 

Video 6: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- T-Type under biaxial 

conditions 

Performance of a T-type PXCM sample under biaxial conditions 

https://youtu.be/uZlHEX4vsOI 

 

Video 7: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- S-Type loaded at 0, 

90, 45, and 135 degrees 

Performance of a S-type PXCM sample under one compressive load-unload cycle at {0°, 90°} and 

{45°, 135°}. The sample is under uniaxial loading condition and supported by rollers at bottom. 

Phase transformation sequence of the three characteristic states from FE simulation vs. 

experiments. F-d relation of sample from FE simulation and Experiment. 

https://youtu.be/m2gCBAmHu0Q
https://youtu.be/ENMFlFrS88E
https://youtu.be/uZlHEX4vsOI
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https://youtu.be/TnrUo72rxkk  

 

Video 8: Functionally 2D Phase Transforming Cellular Materials (PXCMs)- T-Type PXCM with 

single sinusoidal beam as building block and spokes inside motifs loaded at 0, 30, 60, 90, 120, and 

150  degrees 

Performance of a T-type PXCM sample under one compressive load-unload cycle at {0°, 60°, 120°} 

and {30°, 90°, 150°}.   T-Type PXCM with single sinusoidal beam as building block and spokes 

inside motifs. 

https://youtu.be/czDJqA1Pfns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://youtu.be/TnrUo72rxkk
https://youtu.be/czDJqA1Pfns
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