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ABSTRACT

Tiamiyu, Asimiyu A. M.S., Purdue University, December 2019. Simulation of Me-
chanical, Thermodynamic, and Magnetic Properties of Magnesia with Substitutional
Elements for Improved Magnetic Core Coating Applications. Major Professor: Jing
Zhang, Professor.

In transformers used in the electrical industry, a coating, such as magnesium oxide

or magnesia (MgO), is needed to coat the magnetic ferrite core, such as silicon steel.

The coating is to provide electrical insulation of the layers of the ferrite core material,

in order to reduce its heat dissipation loss. The coating also separate the layers of the

coiled materials to prevent their sticking or welding during high temperature uses.

The goal of this thesis is to perform a modeling study to understand the me-

chanical, thermodynamic, magnetic and thermal properties of pure and M-doped (M

stands for Mn, Co, or Ni) magnesia, thus providing a theoretical understanding of

the application of this group of coating materials for transformer applications.

The study has the following sections. The first section is focused on the me-

chanical properties of pure magnesia. Using density functional theory (DFT) based

calculations, the computed Youngs modulus, Poissons ratio, bulk modulus, and com-

pressibility are 228.80 GPa, 0.2397, 146.52 GPa, and 0.00682, respectively, which are

in good agreement with the literature data. Using molecular dynamics (MD) sim-

ulations, the computed Youngs modulus is 229 GPa. Using discrete element model

(DEM) approach, the bending deformation of magnesia is simulated. Finally, using

finite element model (FEM), micro-hardness indentation of magnesia is simulated,

and the computed Brinell hardness is 16.1 HB, and Vickers hardness is 16 GPa.

The second section is on the thermodynamic and physical properties of pure and

doped magnesia. Using DFT based simulations, the temperature-dependent thermo-

dynamic properties, such as free energy, enthalpy, entropy, heat capacity at constant
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volume, and Debye temperature of magnesia, are computed. The X-ray powder

diffraction (XRD) spectra of M-doped magnesia are simulated, at the doping level of

1.5%, 3%, 6% and 12%, respectively. The simulated XRD data show that peaks shift

to higher angles as the doping level increases.

The third section is on the magnetic properties of pure and doped magnesia. Using

DFT based simulations, the calculated magnetic moments increase with the doping

level, with Mn as the highest, followed by Co and Ni. This is due to the fact that Mn

has more unpaired electrons than Co and Ni.

The fourth section is on the thermal properties of the pure magnesia. Using

the Reverse Non-Equilibrium Molecular Dynamics (RNEMD) method, the computed

thermal conductivity of magnesia is 34.63 W/m/K, which is in agreement with the

literature data of 33.0 W/m/K at 400 K.
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1. INTRODUCTION

1.1 Background

In 1882, Lucien Gaulard and John Dixon Gibbs first built and patented a sec-

ondary generator, which they designed with an open iron core consisting of a ma-

hogany base and top with four steel rods enclosing a stack of copper disks separated

by waxed paper, a linear shape which did not work efficiently as shown in figure

1.1 [1].It was first used in a public exhibition in Italy in 1884 where the transformer

stepped down high voltage for use with incandescent light bulbs. In Budapest, Hun-

gary, where Abraham Ganz had emigrated to establish his own steel works factory,

designed and built the first wound-core transformer, as shown in figure 1.2 [1]. In

1922 the Shanghai Watson Electric Factory designed and manufactured the first 1.5

kVA power transformer in China [2]. If we were to ask who invented the transformer,

we would obtain different answers from different countries [3]. Almost simultaneously,

patent applications were submitted by the Hungarians Zipemowsky, Deri and Blthy

in 1885, and by William Stanley in 1886, figure 1.3.

George Westinghouse and William Stanley created a transformer that was prac-

tical to produce: easy to machine and wind in a square shape, making a core of E

shaped plates, and came in both step up and step-down constructions. Although the

merit of discovering mutual magnetic induction between two coupled circuits, in 1831,

belongs to the great English physicist and chemist Michael Faraday. However, Fara-

day missed a fundamental feature of transformer, namely, the capacity to transform

the generator’s voltage and current to adapt them to the load requirements [3, 4].

Since then, there have been series of improvement on transformer’s efficiency,

particularly toward increasing magnetic flux and minimizing heat loss or core losses.
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Fig. 1.1. First patented open core transformer by Gaulard and Gibbs, 1882 [1]

1.1.1 Transformer core losses

The major components in electromagnetic induction applications today are wind-

ing and core through which current generates magnetic flux and vice versa. The core

is primarily tasked with creation of huge magnetic flux whenever primary winding

receives alternating current from the voltage source. However, there are two major

losses in transformer core which reduce its efficiency during operation due to eddy

current and hysteresis effects as shown in figure 1.5.

Having connected the primary winding to voltage source, the primary current Ip

passes through the coil and magnetic field establishes around the coil due to the nature
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Fig. 1.2. First closed wound core transformer built by the GANZ
company in 1884 [1]

Fig. 1.3. Modern E-core transformer based on Stanley’s design [1]

of alternating current. The flux density B(t) is produced in the transformer core and

thus resultant magnetic flux φ(t) varies with time as described in the equation 1.3 [6]

The exciting current

i(t) = Imax sinωt (1.1)
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Fig. 1.4. William Stanley’s patent. In 1900, W. Stanley founded
his own company Stanley Electric Manufacturing Co., Pittsfield MA,
which was taken over by General Electric in 1903 [1]

Fig. 1.5. Electromagnetic induction components and core losses [5]

Flux density

B(t) = Bmax sinωt (1.2)
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Magnetic flux crossing area A

Φ(t) = B(t)A

Φ(t) = BmaxAsinωt

Φ(t) = Φmax sinωt (1.3)

Since magnetic flux is not steady but changes with time, an electromotive force (emf)

is induced in the coils which produces eddy current in the transformer core in a certain

direction.

1.1.2 Eddy current via solid core

The induced voltage in the coils generates sinusoidal current in the core due to

the presence of magnetic flux. Therefore, a circulating current ieddy will result and

the direction of ieddy is shown at the instant when B(t) is increasing with time. It

is important to note here that to calculate induced voltage in the path, the value of

flux to be taken is the flux enclosed by the path of the loop. The magnitude of the

eddy current will be limited by the path resistance, Rpath neglecting other reactance

effect. Eddy current will consequently cause power loss in Rpath and heating of the

core [6]. These currents are generated simply because the core is considered a single

loop of wire by the magnetic flux as shown in figure 1.6. Since the iron core is a

good conductor, the eddy currents induced by a solid iron core will be large. The

total eddy current loss in the material will be the power losses of different eddy paths

covering the whole cross section.

Induced voltage in the coils, according to faraday’s law [7]

e(t) = −N dΦ(t)

d(t)

e(t) = NΦmaxω cosωt

e(t) = NEmax cosωt (1.4)



6

Fig. 1.6. Eddy current path [6]

For N (number of turns) = 1 Root mean square RMS

e =
φmaxω√

2

e =
√

2π tΦmax (1.5)

where

ω = 2πf

Also according to Ohm’s law, the eddy current loss is

Peddy = i2eddyRpath (1.6)

1.1.3 Eddy current via thin plates or laminations for core

It is important to minimize the power loss due to eddy current so that heating

of the core is reduced and efficiency of the machine or the apparatus is increased. It

is obvious if the cross-sectional area of the eddy path is reduced then eddy voltage

induced will be minimized since eddy voltage is proportional to area (Eeddy ∝ area).

This can be achieved by replacing solid core with several thin electrically insulated

plates (called laminations) stacked together. The idea is shown in the Figure 1.7 while

assembling the core, the laminations are kept closely pact. Since current is directly

proportional to the material conductivity and resistance is inversely proportional to
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the material conductivity (σ). Therefore, we can express power loss due to eddy

current as follows

Peddy = σ2
cd ×

1

σcd
(1.7)

Therefore, it can be deduced from equation 1.7 that

Peddy ∝ σcd

Hence, we need to reduce the conductivity of the core material in order to minimize

eddy current loss. Consequently, silicon is added to steel to reduce it conductivity

however, silicon is a weak material and it has 3 to 5% addition limitation to ensure

the core strength requirement. Therefore, lamination is the second option to reduce

eddy current loss since cross sectional area (A) will be greatly reduced. Resistance

is inversely proportional to the cross-sectional area and if resistance is high, the

conductivity of material is low and thus eddy power loss

R = ρ
l

A
(1.8)

Fig. 1.7. Laminated core to reduce eddy loss [6]

Let area of the loop ABCD = 2hx; and volume of the plate Vplate = hLτ according

to figure 1.8 Therefore, It follows, from Faraday’s law [7], that the magnetic flux

crossing the loop is,

Bloop = Bmax 2hx sinωt (1.9)
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RMS voltage E =
√

2πfBmax 2hx (1.10)

Hence, Resistance of the path through which eddy current flows,

Rpath =
ρ(2h+ 4x)

Ldx
(1.11)

The expression for the eddy current loss in the plate shall be determined from the

power loss in the elemental strip and then integrate suitably to for total loss. Power

loss in the loop dP is given by [6]:

dP =
E2

Rpath

(1.12)

dP =
(E2 Ldx)

ρ (2h+ 4x)
(1.13)

dP =
(E2 Ldx)

ρ (2h)
(1.14)

since thickness

τ � h

Therefore, total eddy current loss

Peddy =
4π2B2

maxτ
2

ρ

∫ x= τ
2

x=0

x2 dx

Eddy loss per unit volume

Peddy/volume =
π2 f 2B2

max τ
2

6 ρ
Peddy ≈ ke f

2B2
max τ

2 (1.15)

The eddy current loss per unit volume of the material directly proportional to

the square of the frequency, flux density and thickness of the plate and inversely

proportional to the resistivity of the material. However, the core thickness of the

material is the only design variable in core manufacturing and thus, constructed

using thin plates called laminations which must be insulated to minimize energy loss

due to heating effect. Therefore, the transformer core must be constructed from thin

plates closely packed together with refractory materials insulating one from another
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Fig. 1.8. Eddy current path in thin plate [6]

to create separation on each thin limited sheet. This work conducts verification and

improvement of mechanical and thermodynamic properties of MgO used in coating

process and, as refractory insulating material in transformer core or other electrical

devices, the first function of the coating is to provide separation of the various layers

as interlamination insulation to give low eddy-current losses and prevent their welding

together during high temperature anneals. The second function is the aiding in the

chemical purification of the ferrous material to develop the desired optimum magnetic

characteristics of such material. The third function of the coating is to form on the

surface of the ferrous material a refractory-type coating which will provide electrical

insulation between each layer as well as withstand thermal and mechanical stresses

developed in the laminations during its use as a core in a transformer or in other

electrical apparatus [8, 9].

1.1.4 Hysteresis loss

Due to the nature of alternating current and the magnetic flux set up in the

magnetic core of the transformer, the core undergoes a cycle of magnetization and

demagnetization through which friction of the molecules against the flow of the mag-

netic lines of force generated and constantly changing in value and direction due to

the influence of the sinusoidal supply voltage. Silicon steel grains oriented in a specific
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direction and lost its grain orientation simultaneously. The process generates certain

energy loss that leads to lagging of resultant magnetic flux density with increasing

magnetic field strength as shown in the hysteresis cycle below and thus reducing

transformer efficiency [10]. It can be minimize by using soft iron core or material

having least hysteresis loss.

Hysteresis loss per unit volume

Ph = Khf B
n
max (1.16)

Fig. 1.9. Hysteresis loop [10]

1.2 Literature review

Silicon steel is undoubtedly the most important soft magnetic material in today

applications varying from few relays to tons used in generators, motors, and trans-

formers [11]. The economic growth in electrical power generation and high demand of

electricity has required development of better steels to decrease wasteful dissipation

of energy (as heat) in electrical apparatus and to minimize the physical dimensions

of the increasingly powerful equipment [11,12]. Prior to 1970, the development work

was concentrated in the orientation of the (110) [001] direction, toward minimizing

the impurity, such as the carbon content and adding silicon up to 3.2%, and in the
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gauge reduction to minimize the eddy current loss [13]. Silicon grain-oriented electri-

cal steel was developed in 1945 as a material with a great magnetic property which

is used for transformer core of electric devices and machines [13]. Over the few years,

there has been increasing demand for electric vehicles (EV) due to global trend of

reducing greenhouse gases emissions from fossil fuels, and low-electricity consuming

transformers, such as distribution transformer and power transformer, as a result of

power efficiency [14]. The role of electrical steel became so important that its con-

tribution to the improvement in the efficiency of the electric motor of EV and other

transformer appliances [15]. Therefore, reduction of losses, risk of high operating tem-

perature, energy and costs of transformers cannot be overlooked [16]. A transformer

failure ranges from electrical, mechanical or thermal factors which could possibly af-

fect magnetic circuit (Core, yoke and clamp structures), electrical circuit (windings

and insulation), or the major components such as core, windings, bushing, solid in-

sulation, tank and so on. The rate of failure of distribution transformers vary in the

world, for instance failure rate in India is as higher (12-17%) as compared to devel-

oped countries (2-3%) [17]. In Kenya for instance, the failure rate is approximately

10-12% per annum which is far above the failure rate of 2% in the developed countries

per annum (as per Kenya Power reported cases of failed transformers) [18]. In the

course of building transformers with high electrical efficiency, the laminations of the

core need to be electrically insulated, to provide the surface of the magnetic sheet film

which functions as interlamination insulation to give low eddy-current losses from one

another to ensure the finished core iron losses no higher than measured by an Epstein

test.

Furthermore, the design and manufacturing considerations of transformers neces-

sitate the high performance and efficiency as well as reduction of transformer failure

rate, by incorporating enabling factors such as grain-oriented approach (figure 1.10)

This concept provides optimum electrical and magnetic properties and loss prevention

measures by laminating and insulating magnetic cores essentially to provide separa-

tion of the various layers and prevent their sticking or welding together during high
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temperature anneals. The refractory-type coating which will provide electrical in-

sulation of one layer of ferrous material from the next during its use as a core in a

transformer is equally important. Magnesium oxide (MgO) is used extensively as a

highly heat resistant separator medium and protective coating in the manufacture of

silicon grain-oriented steel by reacting with the silicon steel to form a glass-like film

during the high temperature anneal, which acts as an electrical insulator between

core laminations in the transformer core [19]. The electrical insulating coating is

understood to be derived from coating magnesium oxide on steel, particularly as a

protective coating for silicon steel which then forms a film or coating containing Mg

SiO yielding an effective electrical insulator when annealed [19]. The core consists of

almost half of the total mass of power transformer however, it is not given as much

attention - perhaps it accounts for only a small part of the losses - as other com-

ponents such as winding, bushings, or tap-changers, that make up the transformer.

Consequently, the core has only seen little improvements since the first transformers.

Nevertheless, the transformer core performs other major functions such as creating

magnetic flux circuit between primary winding and secondary winding, support to

ensure structural integrity of the whole equipment and therefore it is the heart of

the transformer, which would not perform to its full potential if the core is not in

perfect condition [20]. In the present technology of the electrical apparatus, the most

widely used coating for the ferrous material which is used as the magnetic core is a

coating of magnesium oxide and/or magnesium hydroxide by applying it in form of

a suspension of magnesium oxide and magnesium hydroxide in water. The insulation

thickness on magnetic core can be varied, in order to meet the specific requirement

of a given application such as good insulation is required to minimize eddy-current

in high frequency applications while insulation is less concerned at low frequency,

however required to minimize the effect of eddy-currents during magnetization [21].

The effect of eddy-current creates incomplete magnetization and thus increasing core

losses which greatly reduce transformer efficiency.
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Fig. 1.10. Grain-oriented electrical steel with coating analysis

For an alternating current (AC) magnetic induction applications, ferromagnetic

materials must be insulated from each other to create subdivided components that

reduce the induction of eddy -currents. Two main factors are the cause of the mag-

netic deterioration, namely the induced mechanical stress as well as increasing eddy

currents due to a damage of the insulation layer between the sheets [22]. MgO is one

of the major refractory insulation materials used in the transformer core. The goal of

this work is to improve mechanical and thermodynamic properties of MgO through

atomistic simulation to ensure effective coating of thin laminated plates of magnetic

core. For designing reliable power transformer insulation, electrical stresses, stress

duration, stressed volumes, surface stress or creep condition and geometry tolerance

must be taken into consideration [1].

1.2.1 Development of electrical steels

The development of electrical steels began when Hadfield published work showing

the introduction of silicon or aluminum to steels reduced energy losses by up to four

times [23]. Grain oriented steels were invented by Norman P. Goss in 1934 and

the process was commercialized by ARMCO, with the first strips being produced in

1939 [23, 24]. Grain oriented electrical steels were produced by many crystal grains

oriented in the [001] direction and the (110) planes close to the sheet plane as shown in
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figure 1.11, through a series of hot and cold rolling. Thereafter, the strip is heated to

around 1200 C, stimulating the secondary recrystallisation of these [001] (110) grains,

while additive manganese sulphide prevents the growth of other grains to ensure

orientated grains and magnetic properties of the steel are improved [23]. Therefore,

energy losses are reduced, and steel developed through this process is often referred

to as conventional grain oriented (CGO) steel. In 1965 Nippon Steel introduced the

production of high permeability (HiB) steels and this process removed one of the

cold-rolling stages used in the Goss method with the addition of aluminum nitride

as a growth inhibitor [23]. Although, the grains were much larger than those in

CGO steels, the hysteresis loss in these steels reduced up to 30-40 %. The phosphate

coating applied to the steel was studied in the 1970’s with early work indicating that

magnetostriction effect was reduced by the coating holding the steel under tension

[25].

Fig. 1.11. Grain-oriented electrical steel and non-oriented electrical steel [23]

The process diagram of grain-oriented electrical steel at Cogent Power as large coils

weighing 20 tons, with a sheet thickness of around 2.5 mm trimmed, passed through

the annealing and de-scaling line, where acid and process known as shot-blasting’

removes dirt and scale from the surface is shown in Figure 1.12. Then, the steel
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undergoes a final cold reduction, where the steel is reduced to its final thickness 0.23-

0.3 mm based on customer requirement. After this final reduction, the steel passes

through the decarburizing anneal mainly to reduce the amount of carbon within the

steel to less than 0.003 % by heating in a mixture of hydrogen, nitrogen and water

vapor, as well as other contaminants present to the lower concentrations (such as

Sulphur) to ensure less brittleness of the resulting product [23]. At the end of the

anneal, the steel is coated in a magnesium oxide slurry, then passes through to the

high temperature anneal (HTCA) at 1100 C in hydrogen for five days. This yields

the grains grow’ to give the typical magnetic properties observed for grain-oriented

steels.

Fig. 1.12. Manufacturing process of grain-oriented electrical steel at
Cogent Power Ltd [23]

During this anneal the magnesium slurry reacts with fayalitic (Fe2SiO4) on the

steel surface to form forsterite (Mg2SiO4) and is referred to as base coating. There-
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after, the steel sheets pass to the Thermal Flattening line where the final phosphate

coating called insulation coating is applied and the steel is heated to 850 C. The

flattening effect on the steel and holding it under tension improve its magnetic prop-

erties. After the coating has been applied and cured, the steel may be scribed by a

laser in order to further improve the magnetic properties by reducing domain size.

After this the steels are trimmed to specification and is ready for customer use.

Fig. 1.13. The coatings formed on grain oriented steel during process-
ing a Cogent Power Ltd [23]

1.2.2 Experimental procedures for synthesized MgO

The synthesized MgO comes from chemical reaction of magnesium chloride -

MgCl2 and doping element chloride - MnCl2; CoCl2; NiCl2 in the presence of

deionized water and respective catalyst [26]. The process is stirred to facilitates re-
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Fig. 1.14. Scanning electron microstructure (SEM) [26]

action for an hour, then passes through aging and washing stage where the product

is established. It is therefore filtered, dried, and heat treated up to 12000C as illus-

trated in figure 1.15 and equation 1.17. Different catalysts such as NaOH; KOH; and

NH4OH were applied during this process and each respective product’s microstruc-

ture was investigated using scanning electron microstructure (SEM) as shown in figure

1.14

Fig. 1.15. Experimental Procedures for synthesized MgO [26]
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MgCl2 +MCl2 +H2O −→MgXM1−XOH +H2O +HCl (1.17)

1.3 Goal and objectives

The economic growth in electrical power generation and high demand of electric-

ity require the development of better magnetic core to decrease wasteful dissipation

of energy and to ensure transformer’s structural integrity. The refractory coating is

widely used to provide electrical insulation without much attention on its magnetic

and mechanical properties; leading to transformer’s failure incidents in the society.

The previous studies have specifically based on density functional theory with little

contribution from atomic and particulate perspectives. The goal of this thesis is to

simulate magnesium oxide (MgO) single crystal on electronic, atomic, and particulate

levels with doping effects of transition elements such as nickel, cobalt, and manganese,

in order to establish an improved magnetic and thermomechanical properties of core

coating materials, which would increase the overall transformer’s efficiency and pro-

vide adequate support, and stability for economic growth in electrical generation. To

this end, it is critical to understand the fundamental properties and potential failure

mechanisms of magnesium oxide. The specific objectives of this work are:

(1) ab initio calculations of mechanical, magnetic, and thermodynamic properties

of doped-MgO based on density functional theory.

(2) Atomistic simulation of mechanical properties of magnesia based on molecular

dynamics (MD) and finite element method (FEM); and

(3) Particles to particles interaction simulation of mechanical properties of MgO

based on discrete element method (DEM).

Achieving the above objectives will help understand the mechanical, magnetic

and thermodynamic behaviors of refractory coating materials, thus the failure mech-

anisms, and improve coating performances.



19

1.4 Thesis outline

The structure of the thesis is as follows. Chapter 1 provides an introduction to

The invention of transformer, basic transformer components, losses in transformer and

refractory coating on transformer core. Literature related to the refractory coating

materials were also discussed in chapter 1. In chapter 2, the study is mainly focused on

the simulation of mechanical properties of magnesium oxide (MgO) through molecu-

lar dynamic (MD) simulation, finite element method (FEM), discrete element method

(DEM). Chapter 3 aims to develop and compare thermodynamic and physical prop-

erties of MgO and doped-MgO. Chapter 4 discusses magnetic properties of MgO and

doped-MgO structures using DFT approach. And in chapter 5, the study focuses on

thermal properties of MgO. Thereafter, followed by Summary and Recommendations.
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2. MECHANICAL PROPERTIES OF MAGNESIUM

OXIDE

The mechanical properties of Magnesium oxide (MgO) is studied through molecular

dynamic (MD) simulation, finite element method (FEM) using ANSYS, discrete el-

ement method (DEM) based on Newton’s second law and density functional theory

(DFT). The periodic model which allows constant number of atoms, was created with

magnesium and oxygen atom interactions of Coulomb-Buckingham potential (during

MD simulation) with cut off range 10 under the tensile condition after energy mini-

mization. Bond strength test and thermodynamic properties were investigated based

on discrete element method and energy-strain approach through DFT under different

small strain patterns. Atomistic interaction of 20% strain at an average temperature

of 300 K was also investigated in MD simulation. Hardness test was as well performed

based on FEM using Brinell, and Vickers approaches.

2.1 MD computational details

This work was performed by molecular dynamics simulation package. The in-

teratomic potential for MgO atoms is based on the modified embedded atom model

(MEAM) using the combination of three terms: (1) the long-range Coulomb poten-

tial, where q values are charges for each atom; (2) the Buckingham represents the

interaction (a typical electronic repulsion to avoid electron overlapping due to Pauli

exclusion principle and an attraction - Van dar Waals energy from dipole-dipole mu-

tually interaction) of two atoms that are not directly bonded as a function of the

interatomic distance, where r is the instantaneous position of each atom, while A,

ρ and C are constants as given in the table 2.1 and the graphical representation of

Coulomb-Buckingham potential used in this simulation is shown in figure 2.1 [27].
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E =
(Cqiqj)

r
+ Ae

−r
ρ − C

r6
(2.1)

where r < rc

rc = cut off range = 10.0

Table 2.1.
Pair coefficient parameters used in this work [27]

Atomic

interaction

Element

type

Element

type
A(eV) ρ(Å−1) C(eV Å−1)

Mg1.4 −O−1.4 1 2 9892.357 0.20199 0

Mg1.4 −Mg1.4 2 2 1309362 0.104 0

O−1.4 −O−1.4 1 1 2145.735 0.3 30.2222

Molecular dynamics simulation consists of the numerical, step-by-step, solution of

the classical equations of motion, which for a simple atomic system may be written

[28].

fi = mir̈i (2.2)

fi = − ∂

∂x
Ui (2.3)

The atomistic simulations are based on a classical Born description of the lattice

with pair potentials acting between atomic species. The ionic interactions consist

of two components: a long-range Coulombic interaction which are evaluated both in

real and in reciprocal space according to the Ewald’s method [30] and a short-range

interaction, which accounts for the effect of electron cloud overlap and Van der Waals

energies. In this study short-range terms are approximated using parameterized pair

potentials of the Buckingham form where A, and C are the potential parameters

as stated in table 2.1. Table 2.2 shows lattice parameters of unrelaxed crystal while

table 2.3 shows the comparison of experimental and computational values.
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Fig. 2.1. The Coulomb-Buckingham potential curve used in this work [27,29]

Table 2.2.
Lattice parameters of the original unrelaxed crystal [31]

Temp (K) a(Å) b(Å) c(Å) α(◦) β(◦) γ(◦)

298 4.21154 4.21154 4.21154 90 90 90

0 4.20565 4.20565 4.20565 90 90 90

2.1.1 Simulation procedure

The simulation was done using the molecular dynamics package with 16.8448 ×

4.2112 × 4.2112 Å3 atomistic model. The atomistic model was created in MD envi-

ronment as a periodic simulation box. The interaction among atoms was defined by

the combined Coulomb-Buckingham long-range potential, with a cut off distance of

10 Ȧ. The original box was first subjected to energy minimization at a room tempera-

ture of (298 K) for 100 ps, and strain steps based on energy-strain approach was then
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Table 2.3.
Lattice constants comparison with experimental and computational
results in literature [32]

Lattice constant This work Calculation [32] Experimental [32] Angle

a(Å) 4.2112 4.2170 4.2394 α(◦) = 90

b(Å) 4.2112 4.2170 4.2394 β(◦) = 90

c(Å) 4.2112 4.2170 4.2394 γ(◦) = 90

Fig. 2.2. Initial molecular dynamics model for uniaxial tensile test simulation

applied along horizontal direction until strain of 0.2 with the temperature maintained

at 300 K based on NPT ensemble. The time step was set to 0.001 ps. During the

simulation, the average energy, including total energy, potential energy, and kinetic

energy and the average stress were calculated for each 100-time step. The initial and
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.

Fig. 2.3. Final molecular dynamics model for uniaxial tensile test simulation

final molecular dynamic models based on stress-strain approach are shown in figure

2.2 and figure 2.3

2.2 Density functional theory and simulation detail

Density functional theory (DFT) method was used to investigate thermodynamic

properties and elastic constants of MgO using DFT code based on Schrodinger equa-

tion (energy level of the wave function of electron). The local density approximation

was applied from exchange correlation setting and norm-conserving pseudopotential

was applied in the reciprocal space with k-point mesh of 6 × 6 × 6. Energy cutoff

was set to 340 eV with fine self-consistent field (SCF) tolerance, and calculation was

based on density functional theory with Generalized Gradient Approximation (GGA)

in the scheme of Perdew-Burke-Eruzer (PBE). GGA functionals are selected because

they are more reliable than LDA functionals for predicting transition metal systems.

The initial structure was first optimized to minimize the energy and ensure more

accurate results; thus, the phonon calculation was conducted based on 29 phonon

vectors generated and thermodynamic properties and elastic constants were calcu-
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lated using the optimized model by applying 6 strain steps based on energy-strain

approach according to Schrödinger equation

The Schrödinger equation

Eψ(x) = − h̄2

2m

d2ψ(x)

dx2
+ V ψ(x) (2.4)

2.3 Model and simulation of Vicker’s indentation via FEM

According to Vicker, the hardness Hv of a material is the ratio between the load

applied to the indenter, F, and the indentation surface area A [33].

Hv =
2F sin θ/2

d2
(2.5)

d = 2a
√

2 (2.6)

Fig. 2.4. Squared diamond pyramid indenter illustration. The red
framework highlights one of four triangular based pyramid indenters
[33]

where d and θ are mean diagonal of impression and angle between opposite faces of

the diamond squared pyramid indenter, respectively as shown in figure 2.4. In order
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to derive our model, we assume that the diamond squared pyramid indenter can be

divided into four triangular based pyramid indenters and that the Vicker’s hardness

is measured within the elastic scale [33]. Also, shear modulus G which specifies the

ratio between shear stress and the shear stain can be defined as

G =
F

4A tan∝
(2.7)

With the assumption of shear elastic deformation, the shear area klO’ as shown in

figure 2.4 can be approximated as follows [33]

A =
1

8
d2 tan∝ (2.8)

Therefore,

G =
2F

d2 tan2∝
(2.9)

Combining equations 2.5 and equation 2.9, the Vicker’s hardness becomes

Hv = G tan2∝ sin θ/2 (2.10)

For Vicker squared based pyramid indenter, the followings conditions are assumed,

θ = 1360

∝=
π − θ

2

Hence,

Hv = 0.151G (2.11)

Equation 2.11 describes a theoretical evidence of the linear correlation behavior ob-

served by Teter [13], as reflected by the data shown in figure 2.5

2.3.1 Simulation procedures

There are three material properties in this work to build the models. 2-D 8-

node planar element PLANE183 is used to model all the areas of indenter, substrate,



27

Fig. 2.5. Correlation of experimental Vickers hardness (Hv)with
(a) bulk modulus (B) and with (b) shear modulus (G) for 39 com-
pounds [34,35]. The solid line denotes empirical Teeter’s fitting values,
whereas dashed lines correspond to the value derived from Eq. 2.11
Simulation procedures

and bulk materials. This element type is chosen due to its axisymmetric modeling

function, linear isotropic and bilinear isotropic material properties were defined in

substrate material to ensure large deflection and large strain. The 2-D Vicker’s in-

denter was formed from AO’O” triangular shape from figure 2.4 and the relationship

to establish mean diagonal diameter is shown in equation 16. A contact pair con-

sists of CONTACT123 and TARGET123 elements was defined with contact element

TARGET123 employed at the indenter surface while contact element CONTACT123

is used at the upper surface of substrate. The bottom indenter surface and the thin

film top surface of substrate formed a contact pair. The boundary conditions are met

by applying all nodes on the y axis to only have the displacement in y direction while

the x direction displacement is set to zero and the bulk material base is constrained
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by fixed boundary conditions. All the nodes on the base cannot move in any direction

and the material properties for MgO used in simulation is shown in table 2.4.

Table 2.4.
Material properties used in FEM simulation

Property Value

Young’s modulus 250 GPa

Density 3.58 g/cm3

Poisson’s ratio 0.231

Bulk modulus 280 GPa

Fig. 2.6. Meshing density illustration

There are 4 different meshing density zones present with contact area has the

finest mesh as shown figure 2.6. All the nodes on the upper surface of the indenter

are coupled together to ensure that those nodes have the same y displacement. There
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Fig. 2.7. Boundary condition illustration

Fig. 2.8. The von Mises stress (Pa) distribution in model

are 72 load steps used in the models which consists of loading and unloading. The

loading ranges from 1 to 36 load steps and unloading were from 37 to 72 load steps.
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Fig. 2.9. Elastic strain distribution in model

The indentation behavior is simulated by increasing the indenter displacement in

small increments in negative y - direction up to the maximum indentation depth.

During the unloading step, the indenter returns to its original position incrementally

from 37 to 72 load steps.

2.4 Model and simulation of Brinell indentation via FEM

Another hardness test simulated in this work is Brinell’s test. The Brinell hardness

number (HB) is proportional to the test force divided by the surface area of the

indentation [36]. Hardness, as applied to most materials, has been in use for many

years to evaluate material property by revealing its values and importance which

cannot be overlooked. The information from the test can complement other tests

such as tensile test, compressive test, fracture test or impact test to provide critical

performance information.

Ideally, Brinell indenters are ball-based modeled with an angle of 3600 which is

assumed to be isotropic. Due to experimental purpose, the computational analysis
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would be performed on the whole geometry and due to pair contact effect, the tip of

the modeled indenter is thus assumed to initially contact with substrate. The MgO

sample block is 13 mm by 13 mm and 12 mm in thickness while indenter is modeled

as ball with radius of 2.5 mm.

Fig. 2.10. Geometry of the Brinell indentation meshed model

2.4.1 Brinell’s hardness test procedures

BHN’ is Brinell Hardness Number is calculated as thus [37]

BHN =
2P

πD(D −
√
D2 − d2

(2.12)

where

P’ is applied load in kg,

D’ is diameter of ball in mm,

d’ is diameter of indentation in mm,

t’ is depth of the impression in mm,

During the experiment, the full load was applied for 10 to 15 seconds and the two

perpendicular diameters of the indentation left in the surface of the material after

removal of the load were measured and the average was calculated. The surface area
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of the indentation was calculated. The force condition is assumed distributed load

over a surface boundary and thus calculating the stress as following [37]. Loading

σ =
Fload
A

(2.13)

holding

σ =
Fmax
A

(2.14)

unloading

σ =
Fload
A

(2.15)

Where:

A is the surface area of the indentation and Fload and Funload are defined as

Fload = F × t (2.16)

Fmax = F × tload (2.17)

Funload = F × ∗(ttot − t) (2.18)

ttot = tload + tunload + thold (2.19)

Fig. 2.11. Load - diameter constant ratio illustration
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L1

D1

=
L2

D2

= Constant (2.20)

Ḟ is the loading rate and ttot is the total time of the whole period. In general, one

should not attempt to determine a Brinell hardness number if the diameter of the

indentation is smaller than 2.4 mm (24%) or larger than 6 mm (60% of a 10 mm

diameter ball). One of the most useful features of Brinell hardness test derives from

the observation is that if the ratio of Force F (in kg) to the square of Ball Diameter D

(in mm) is kept constant, one can obtain an approximation of the same BHN (Brinell

Hardness Number) as measured with the standard parameters [38].

2.4.2 Domain discretization and simulation details

To make the Brinells indentation model computationally feasible, a relatively

medium mesh is defined for both indenter and the substrate with adaptive mesh

option selected. Then, body mesh was created between the slave and master bodies,

as shown in figure 2.10, to establish a more refined mesh in order to ensure more ac-

curacy during the indentation process. The concept was that the indenter is pressed

into the test sample under the assumption of both minor load (when the equilibrium

has been reached) and the major load (force which is applied additionally to the mi-

nor load) are converted, in the form of equation 2.21 to initial velocity (vin) which

drives indenter into the substrate resulting to the increase in penetration. After the

equilibrium has been reached again, the major load is removed while the minor load

is kept. In this study, velocity (10 m/s) was applied to the indenter and the reaction

force generated between the indenter and substrate yields the stress - strain curve.

Force to velocity conversion equation, assumed air resistance is negligible

F × d = m× g × d =
1

2
m× v2

in (2.21)

Where d is the falling height distance, g is acceleration due to gravity, vin is initial

velocity, F is the load. The deformation distribution and equivalent stress distribution

are shown in figure 2.12 and 2.13 accordingly.
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Fig. 2.12. Deformation distribution (Indentation)

Fig. 2.13. Equivalent stress distribution (Indentation)

2.5 Discrete element method (DEM) model and simulation detail

The Discrete element method (DEM) which was first proposed by Cundall and

Strack (1979) has become a standard numerical simulation methodology for model-

ers dealing with all kinds of particulates and this method (DEM) has proved to be

an effective method in modelling rock-like materials [39, 40]. The nature of DEM

makes it suitable for dealing with optimization’ in uniaxial compression simulation,

with consideration of friction coefficient as a factor governing the shear strength and

dilation angle, and to calculate an optimum set of microparameters used in generat-
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ing models to be tested [41, 42]. Numerical modelling generates a new approach to

better understand material property relations by systematically changing individual

input parameters while keeping all other parameters constant. Many tests have been

conducted through the discrete element method such as shear test, heat transfer test,

stress - strain test, or energy - based test [43]. The mechanical behavior of the model

material is not predefined, as in continuum approaches during the simulation, but

emerges from the interaction of particles [44].

2.5.1 Simulation detail

The simulation was performed by discrete element modeling software (DEM).

The bulk material as magnesium oxide (MgO) in the DEM creator tree and mate-

rial interactions based on bond formation principles with contact radius was defined

accordingly. The equipment material was stated as steel with material interaction

properties set to default in term of coefficient of restitution, coefficient of static fric-

tion, and coefficient of rolling friction. Then, box geometry with (0 0 50) and (200

50 100) in x y z coordinates and loading plane with a linear translation kinematic

in z-direction at 0.13 m/s and factory particle, set to static mode of 1E-12 seconds

start time and maximum attempts to place particles, were created. The particle to

particle bonding physics interaction with critical normal stress, critical shear stress,

normal stiffness per unit area, and shear stiffness per unit area are predefined in the

creator tree before the beginning of simulation.

The simulation is analogous to compressive spring with two ends represent the

centers of atoms being simulated. The contact particles are bonded together by

the bonds, which can resist normal force, shear force and bending moment between

particle p and particle q that are in contact with each other. The Xp and Xq are

their coordinates of the two atoms respectively and dirpq and dirqp are the vectors

pointing from their centers to the contact point A respectively. Also, the vector dirpq

and vector dirqp rotate within θp and θq respectively at a specific time. The contact
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Fig. 2.14. Random particle to particle interactions of MgO illustration

forces and moment applied to particle p from particle q through the bond are normal

force F nr
pq , shear force F tn

pq and moment Mpq as shown in figure 2.15 and particle to

particle interaction model is shown in figure 2.14.

The constitutive equations of force according to newton’s second law and moment

on bond strength govern the simulation are [45]

miẍi = mig +
∑

j
Fij (2.22)

Iiθ̈ =
∑

j
(rij ∗ Fij) (2.23)

Hence, it can be redefined as following since gravity effect is assumed negligible

during the simulation

F tn
pq = −ksεspq (2.24)

Mpq = −km(θp − θq) (2.25)

Where ks and km are shear stiffness and bending stiffness accordingly, dispq is the

original distance between p and q, while εpq is shear strain of the bond between p

and q which is the ratio of deformation in tangential direction to dispq. A nonlinear
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stiffness model to describe the relationship between normal force and normal strain

undergoing tension and the force in normal direction is expressed as [45]

Fig. 2.15. Bonded particle model [45]

if εnpq > 0

F nr
pq = knε

n
0 (1− exp (−εnpq/bεn0 ) (2.26)

but if εnpq ≤ 0

F nr
pq = knε

n
pq (2.27)

where b is shape coefficient of the nonlinear elastic model and εn0 is the ultimate

normal tensile strain and εnpq is expressed as [45]

εnpq =
distpq − dis0

pq

dis0
pq

(2.28)

If the bond is broken or no bond exists between particles p and q which are in

Table 2.5.
Bond category of MgO through DEM simulation

DEM Bond simulation categorization Force range (KN)

Low Category 0 - 54.8

Medium Category 54.8 - 218

High Category 218 - 275

contact with each other, then only normal force and shear force exist between them.
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Fig. 2.16. Bond stress analysis of MgO through DEM simulation

The normal force F nr
pq is calculated by equations (2.26), (2.27) and (2.28), dis0

pq in

equation (2.28) should be replaced by the sum of the radii of p and q. The shear

force is determined from [45]

F tn
pq = µF nr

pq (2.29)

and compressive force Fc and compressive strength σc are defined as follow

Fc = −F nr
pq (2.30)

σc = −
F nr
pq

A
(2.31)

U =

∫ x2

x1

F nr
pq x dx (2.32)

The intact and broken bonds of MgO as shown in figure 2.16 experience certain

magnitude of stress at every time step during the simulation. The maximum and

minimum applied loads are 0 KN and 274 KN which is large enough to create bond

reaction categorized into low, medium and high reactive bonds as summarized in

the table 2.5 within 1s period. However, the applied force proves agreement with

literature result of compressive strength: 2200 - 2600 MPa [46,47]
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2.6 Results and discussion

2.6.1 Atomistic result of MD simulation

Figure 2.2 and figure 2.3 shows initial molecular dynamics model and the final

molecular dynamics model configurations of MD uniaxial tensile test simulation.

Figure 2.3 shows the 20% strained model in X-direction and the periodic bound-

ary condition allows the replacement of outgoing atoms directly from opposite sides

as this is required to maintain constant number of atoms in the simulation box. The

stress - strain curve was plotted from atomistic perspective and young’s modulus was

calculated based on line fitting technique from figure 2.17. Although, the accuracy of

atomistic simulation largely depends on the potential, however, young’s modulus (E

≈ 229 GPa)and poisson’s ratio (νxy = 0.2397 )were relatively in good agreement with

our simulation from DFT results and literature as shown in table 2.6.

Fig. 2.17. MgO - atomistic tensile test curve
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Table 2.6.
Young’s modulus, poisson’s ratio, bulk modulus, compressibility and
comparison with reference data

Properties This work Ref. [48] Ref. [49]

Young’s modulus (GPa) 228.80 (X, Y and Z-axes) 227.58 249

Poisson’s ratio

νxy = 0.2397 νxz = 0.2397

νzx = 0.2397 νyx = 0.2397

νyz = 0.2397 νzy = 0.2397

0.23414 0.18

Bulk modulus (GPa) 146.52 +/- 0.436 142.67 155

Compressibility (1/GPa) 0.00682 n/a n/a

2.6.2 DFT result and discussion

With energy - strain approach, elastic constants can be obtained by analyzing en-

ergies under different small strain patterns DFT. A finite strain amplitude is specified

for each strain pattern. Once elastic constants are determined, young’s modulus and

poisson’s ratio can be deduced [50]. Elastic constants were calculated by applying 6

strain steps with each step of 0.003. The calculated elastic stiffness constants, elastic

compliance constant as well as the bulk modulus, young’s modulus and poisson’s ratio

were calculated based on optimized model with our results relatively agree with the

literature data as shown in table 2.6 and table 2.7 [48,49,51,52]

By using molecular dynamics to calculate the Gibbs free energy G, the elastic

constant matrix Cij at a finite temperature can be derived from the Equation 2.33

by double deriving G with respect to strain components εij. The value x, in this case

is the temperature T, which is at room temperature [53].

Cij =
1

V
(
∂2G

∂εiεj
)x (2.33)
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Table 2.7.
Elastic stiffness constants (GPa) of this work and comparison with literature

Properties This work
Ref. [51]

at 300K
Ref. [49]

Ref. [52]

at 298K

Ref. [52]

at 293K

C11 269 295.9 294 297.08 298.5

C12 85 95.40 93 95.36 97.5

C13 85 n/a n/a n/a n/a

C21 85 n/a n/a n/a n/a

C22 269 n/a n/a n/a n/a

C23 85 n/a n/a n/a n/a

C31 85 n/a n/a n/a n/a

C32 85 n/a n/a n/a n/a

C33 269 n/a n/a n/a n/a

C44 133 153.9 155 156.13 156.7

C55 133 n/a n/a n/a n/a

C66 133 n/a n/a n/a n/a

2.6.3 Vickers indentation result

The downward displacement of indenter into the substrate simulates the loading

steps of indentation and upward displacement in positive y - direction represents

unloading steps. The corresponding load value is achieved by summing the reaction

forces of all the nodes along the base line of bulk materials or the substrate. The

load versus displacement curves obtained from the FEM models is plotted in Fig.2.18

von-Mises stress distribution and elastic strain distribution are shown in figure 2.8

and figure 2.9 above. The stress was concentrated at the bottom of the indenter

tip as a result of compressive pressure generated by the applied displacement and

the deformation was relatively distributed over the indentation mark, because of the
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compression relief during unloading. The stress - strain data through this period was

plotted as shown in figure 2.19 and young’s modulus (E ≈ 295 GPa) was calculated

based on line-fitting technique while means diagonal diameter was found d ≈ 3.3m

and Hv ≈ 16.58GPa. The result agrees relatively with the value estimated through

other simulations such as DFT and literature data of 245 GPa [54] and range of 270

to 330 GPa [55].

Fig. 2.18. Load vs. displacement curve for Vickers hardness model

Fig. 2.19. Vickers simulation stress - strain curve
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2.6.4 Brinell indentation result

von-Mises stress distribution and deformation distribution are shown in figure 2.12

and figure 2.13 above. Under loading, the stress was concentrated at the bottom of the

indenter tip as a result of compressive pressure generated by the applied velocity and

after unloading, the deformation was relatively distributed over the indentation mark,

because of the compression relief during unloading process. The stress - strain data

through the entire period was plotted as shown in figure 2.20 and young’s modulus

was calculated based on line - fitting technique. The result, as shown in table 2.8,

agrees relatively with the value estimated through other simulations such as DFT and

literature data of 227.58 GPa [48].

Fig. 2.20. Brinell’s simulation stress - strain curve

Also, MgO hardness property was investigated based on force (1225 N) application

on indenter and Brinell hardness number was determined approximately (16.1 HB
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Table 2.8.
Experimental and literature data comparison

Data source
Young’s

modulus

Poisson’s

ratio

Hardness

value

Ref [49] 249 (GPa) 0.18 N/A

This work ( DFT ) 228.803 (GPa) 0.2397 N/A

This work (FEM) Brinell’s 226 (GPa) N/A (16.1 HB (5/125))

This work (FEM) Vicker’s 295 (GPa) N/A 16.58 GPa

Table 2.9.
Comparison between Brinell conversion table and our work using 5
mm indenter [56]

Indentation

(mm)

Load 750

(Kg)

Load 250

(Kg)

Load 125

(Kg)

Load 62.5

(Kg)

2.96 98.4 32.8 16.4 8.2

2.97 97.7 32.6 16.3 8.1

2.98 96.9 32.3 16.2 8.1

2.99 96.2 32.1 16 8

3 95.5 31.8 15.9 8

3.01 94.8 31.6 15.8 7.9

This work ≈ 3.0 N/A N/A 16.1 N/A

(5/125)) according to the equation (2.12) , compared with literature data of 16.0 HB

(5/125) [56] as shown in table 2.9
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2.6.5 Discrete element method results and discussion

The Compressive force (N), total energy (J), and angular velocity (rpm) of simu-

lated particle to particle interaction is plotted in figure 2.21 within the same period on

X- axis and other variables mentioned (Compressive force, total energy, and angular

velocity) in Y - axis. It is clearly observed that each of these variables creates almost

the same pattern up to 0.5s of simulated period, where relative variance begins as

shown on the graph. However, at exactly 0.5s during DEM simulation, compressive

force between the MgO particles reaches its maximum which creates maximum bond

stress during particle to particle interactions. Also, angular velocity reaches its max-

imum which leads to maximum total energy as expected due to direct relationship

between velocity and energy. The angular velocity can be found as 109013.1 rpm, and

compressive force as 311 KN yields approximately 3000 MPa bond stress with prede-

fined bounded radius of 5.8mm. The compressive strength of MgO - hydromagnesite

(HY) system as 2200 - 2800 MPa [46,47] is well below the simulated bond stress and

therefore our model cannot withstand the stress the maximum bond stress during the

simulation but failed .

Also, the coordination number and compressive force(N) during the DEM simu-

lation of MgO reaches their maximum at approximately 0.5s as shown in figure 2.22

which agrees with the maximum number of immediate atoms surrounding a central

atom at each position. This coordination number creates maximum compressive force

as each atom contributes to the total compressive force at every time step during the

simulation. Moreover, the average distance between each atom and the coordination

number relatively remains constant through the rest of simulation period but the bond

strength drops as it gradually breaks off from the surrounding atoms as compressive

force reaches 274 KN and increases. Also, from the beginning of simulation to 0.45s,

the compressive force is relatively zero as each atom experiences long distance from

one another, but their coordination number gradually increases until 0.5s where the

coordination number and distance between each atom attain relative steady state.
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Fig. 2.21. Compressive force (N), total energy (J), and angular veloc-
ity (rpm) graph of simulated particle to particle interaction

The bond stress is determined from compressive force at each time step during the

MgO simulation based on contact area between two atoms. The contact radius of 5.8

mm was defined, and it was used to calculate the bond stress as shown in table 2.11

which is plotted accordingly as shown in figure 2.23

Table 2.10.
MgO mechanical property simulation data

Simulation approach
Young’s

modulus

Hardness

value

Poisson’s

ratio

MD 223 GPa N/A N/A

FEM (Vicker’s) 295 GPa 16.58 GPa N/A

FEM (Brinell’s) 226 GPa (16.1 HB (5/125)) N/A

DFT 228.8 GPa N/A 0.2397
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Fig. 2.22. Compressive force (N), coordination number, and distance
(mm) graph of simulated particle to particle interaction

2.7 Conclusion

We have successfully established a robust simulation methodology to calculate

the mechanical of MgO crystal using the molecular dynamic method, density func-

tional theory through DFT code, finite element method using ANSYS, particle-based

method through DEM. Most of the simulation results are summarized in table 2.10

and compared with experimental and modeling data in literature. The maximum

bond stress of approximately 2960 MPa, and compressive force of 274 KN were ob-

tained from this simulation, it can be induced that MgO bond strength is well below

the maximum bond stress and after this stage, the bond gradually breaks off while the

bond stress decreases accordingly. The sudden change in bond stress at 0.5s shows

the reaction and quantity of bond strength present during the particle dislocation

which steadily grows for the rest of simulation period. The stress - strain curve and
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Fig. 2.23. Bond stress graph of simulated particle to particle interaction

young’s modulus value, during atomistic simulation, shows that MgO may be a brittle

material by experiencing permanent deformation during the 1st quarter of the tensile

test and perhaps ceramic material. However, young’s modulus values range from 223

GPa to 295 GPa from different simulation approach as shown in table 2.10.
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Table 2.11.
DEM simulation data of MgO

Time (s)
Compressive Force

(N)

Bond Stress

(Pa)

Total Energy

(J)

0 0 0 0

0.05 0.021818933 277.8072863 0.000665337

0.1 0.135390695 1723.84787 0.000452349

0.150001 0.142640018 1816.149113 0.000398718

0.2 0.13888774 1768.373626 0.000387764

0.250001 0.711794257 9062.845953 0.000385782

0.3 3.346436474 42608.15252 0.000383045

0.35 7.299826265 92944.2747 0.000361672

0.4 47.91512801 610074.3578 0.000435367

0.45 23503.33811 299253795.2 0.000392558

0.500001 311402.5767 3964900749 1.587564673

0.55 239572.3373 3050329736 0.610941914

0.61 221196.3416 2816359293 0.542507769

0.65 209842.3686 2671796019 0.446579079

0.7 204473.4686 2603437061 0.451142374

0.750001 201315.7726 2563232027 0.428732776

0.8 198302.4743 2524865520 0.383384299

0.850001 195567.053 2490037055 0.329142625

0.9 192491.7409 2450880965 0.307750887

0.95 190048.3059 2419770185 0.277530551

1 188043.0327 2394238254 0.274283399
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3. THERMODYNAMIC AND PHYSICAL PROPERTIES

OF MAGNESIUM OXIDE AND DOPED-MAGNESIUM

OXIDE

3.1 DFT computational detail of MgO thermodynamic properties

Due to the development in density functional theory during the last two decades, it

can now be used to calculate many properties of crystal structures. The Cambridge

Serial Total Energy Package code is a sophisticated implementation of the density

functional theory with pseudo potential using Generalized gradient approximation to

obtain better results [57, 58]. GGA functionals are selected because they are more

reliable than LDA functionals for predicting transition metal systems and it was used

to calculate electronic properties of periodic systems, such as band structures and

density of states (DOS). DFT Reflex code simulates X-ray, neutron, and electron

powder diffraction patterns based on models of crystalline materials.

A computer program for the application of the method with X-ray data, or with

neutron nuclear scattering data, has been written ab initio in an effort to make it

versatile, and largely self-contained yet reasonably comprehensive result [59]. Ther-

modynamic properties were investigated from phonon calculation method through

linear response with maximum number of phonon cycles (29 phonon vectors) were

generated and energy for the crystal with each phonon vector was calculated. The De-

bye temperature can be extracted from the result and several temperature-dependent

thermodynamic properties, including enthalpy, free energy, entropy, and specific heat

capacity at constant volume, were calculated as shown in figure 3.1 and figure 3.2.

Thermodynamic properties are directly related with phonon structures and when

calculating thermal properties of MgO, phonon calculation was performed with pre-

defined displaced super cells and the forces on atoms of the set of supercells were
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Fig. 3.1. Free energy, enthalpy and entropy of MgO

computed directly. Thus, entropy, enthalpy, free energy and heat capacity at con-

stant volume were derived from phonon calculation which validates Gibbs free energy

equation [60].

∆G◦ = ∆H◦ − T∆S◦ (3.1)

G = U + PV − TS (3.2)

where

Fz = U − TS

From the 1st law of thermodynamics

dU = dQ+ dW = TdS − pdV (3.3)

From

dU = d(ST )− SdT − pdV
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Fig. 3.2. Heat capacity at constant volume of MgO

Therefore,

dFz = d(U − ST ) = −SdT − pdV (3.4)

Fz =
1

2
Σ(q,s)hω(q, s) + kBTΣ(q,s)In[1− exp (−hω(q, s)/kBT )] (3.5)

S = −kBTΣ(q,s)In[1− exp (−hω(q, s)/(kBT ))]− 1

T
Σ(q,s)

hω(q, s)

exp hω(q,s)
kBT

− 1
(3.6)

The change in Helmholtz free energy F, and entropy S are first calculated before

Gibbs free energy. Also, the Debye temperature TD is the temperature of a crystal’s

highest normal mode of vibration and at low temperatures, the heat capacity at

constant volume is proportional to the cube of temperature satisfying the following

equation [60].

Cv = 9Nk(
T

TD
)3

∫ T/TD

0

x4ex

(ex − 1)2
dx (3.7)

Cv = Σ(q, s)kB[
hω(q, s)

kBT
]2

exp [hω(q,s)
kBT

]

[exp hω(q,s)
kBT

− 1]2
(3.8)



53

where F is the Holmholtz free energy, S is entropy, Cv is heat capacity at con-

stant volume, ω is natural frequencies of phonons, h is the Plank constant, kB is the

Boltzman constant and T is absolute temperature.

3.2 DFT computational detail of MgO physical properties

X-Ray Diffraction (XRD) is a method for characterization of microcrystalline sam-

ples to determine the crystallite size and identifying crystalline phases by processing

the X-rays scattering from the crystalline solid, constructively interfere, and produc-

ing a diffracted pattern. This is based on the theory that crystalline substances act

as 3-dimensional diffraction gratings for X-ray wavelengths similar to the spacing of

planes in a crystal lattice as shown in figure 3.3 [61]. The X-ray diffraction simula-

tion was performed on magnesium oxide and doped magnesium oxide structures, with

doping effect of manganese, cobalt, nickel at 1.5%, 3%, 6%, and 12%. The diffraction

patterns of relative intensity against angle of diffraction showing shift relationship

between intensity and diffracted angle accordingly as explained by Bragg’s law were

investigated.

Bragg‘s law:

nλ = 2dsin

where n = 1, 2, 3, ...............

λ = 2d sin θ (3.9)

Hence,

d ∝ 1

θ

Bragg angle is just the half of the total angle by which the incident beam is deflected.

Bragg’s law, as stated above, can be used to obtain the lattice spacing of a particular

cubic system through the following relation

d =
a√

h2 + k2 + l2
(3.10)
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Fig. 3.3. Bragg’s law illustration [62]

Fig. 3.4. Bragg’s angle and 2θ illustration [62]

where λ is the wavelength of the radiation used, d is the inter-planar spacing involved

and θ is the angle between the incident (or diffracted) ray and the relevant crystal

planes; n is an integer, referred to as the order of diffraction, and is often unity, and

h, k, and l are the Miller indices of the Bragg plane.

The electronic optimization of 2 x 2 x 2 supercell structure of MgO was first per-

formed from the principle of strain-energy approach, with DFT code. Fast Fourier

transformation, GGA and Perdew Burke Ernzerhof type of gradient exchange-correlation

were selected in the calculations [63]. The Pseudo atomic calculation was then per-

formed for Mg 2p6 3s2 and O 2s2 2p4. After geometry optimization, X-ray diffraction

was calculated. Then, each composition of 1.5%, 3%, 6%, and 12% for each doping
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element, manganese, cobalt, and nickel were compared with one another to establish

phase shift relationship.

Fig. 3.5. XRD illustration of manganese doped - MgO

Fig. 3.6. XRD illustration of cobalt doped - MgO
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Fig. 3.7. XRD illustration of nickel doped- MgO

The X-ray diffraction simulation of manganese-doped magnesium oxide structures

at 1.5%, 3%, 6%, and 12% were performed and the diffraction patterns of relative in-

tensity against angle of diffraction showing peak backward shift between intensity and

diffracted angle, as well as increased intensity in the doped structures accordingly as

shown in figure 3.5. The cobalt-doped magnesium oxide structures at 1.5%, 3%, 6%,

and 12% were also performed. The diffraction patterns of relative intensity against

angle of diffraction showing peak backward shift between intensity and diffracted an-

gle, as well as increased intensity in the doped structures accordingly but a lesser

degree compared with manganese-doped structures as shown in figure 3.6. However,

magnesium oxide and nickel-doped magnesium oxide structures at 1.5%, 3%, 6%,

and 12% predicts diffraction patterns of relative intensity against angle of diffraction

as peak forward shift between intensity and diffracted angle, as well as increased

intensity in the doped structures accordingly.
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3.3 Results and discussion of thermodynamic properties

Thermodynamic properties of MgO were carried out by DFT simulation package.

At the beginning, in order to get accurate results, a geometry optimization was cau-

tiously conducted. DFT module was used to calculate the lattice parameters based on

energy minimization. Debye temperature, entropy, enthalpy, free energy and specific

heat capacity under constant volume as temperature dependent variables were also

determined.

Fig. 3.8. Debye temperature of MgO from 0 to 1000K

Debye temperature of MgO from 0 to 1000 K was obtained as shown in figure 3.8

which predicts the highest mode of vibration of crystal during phonon vibration. With

this data, specific heat at a constant volume can be calculated by differentiation with

respect to temperature. With the Debye temperature, the thermodynamic properties

of MgO were also obtained as shown in figure 3.1 - the enthalpy, entropy, free energy

- and specific heat capacity at constant volume as dependent of temperature from

0 to 1000K are as well shown in figure 3.2. The specific heat at constant volume

result from Debye temperature of 48.53 J/mol/K agree with literature data of 49.5

J/mol/K [64,65].
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3.4 Results and discussion of X - ray diffraction

X - ray diffraction patterns of MgO and doped - MgO structures were carried out

by DFT simulation package. At the beginning, in order to get an accurate results,

a geometry optimization was also conducted and DFT module was employed to cal-

culate the lattice parameters based on energy minimization and reflex was then used

to generate X - ray diffraction patterns accordingly. Relative intensity, in arbitrary

unit, of different doped structures were plotted against reffracted angle 2θ and the

results are shown in figure 3.5, figure 3.6 and figure 3.7. The relative intensity of

manganese - doped structures against angle of diffraction showing peak backward

shift while relative intensity of cobalt - doped structures against angle of diffraction

also shows peak backward shift to a lesser degree between intensity and diffracted

angle. However, while the relative intensity of nickel - doped structures against angle

of diffraction predicts peak forward shift between intensity and diffracted angle, as

well as increased intensity in the doped structures accordingly.

3.5 Conclusion

In this chapter, the first principles PBE-GGA calculations were performed to

optimize the structure of MgO and doped - MgO crystal structures and investigate

it’s the crystallite size and identifying crystalline phases. The peak backward shift

between intensity and diffracted angle of manganese - doped structures and cobalt

- doped structures could be attributed to the ionic radius of doping manganese and

cobalt which is greater than that of nickel accordingly, while the peak forward shift

between intensity and diffracted angle of nickel - doped structures could also be

attributed to the ionic radius. Also, the Gibbs energy, free enthalpy, and entropy up

to 1000K shows good result and the specific heat capacity at constant volume of MgO

as shown in figure 3.2 predicts about 11.6 Cal/cell/K ( 48.53 J/mol/K) in comparison

with literature data of 49.5 J/mol/K. [64,65].
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4. MAGNETIC PROPERTIES OF MAGNESIUM OXIDE

AND DOPED-MAGNESIUM OXIDE

In the present work, the magnetic properties of magnesium oxide crystal structure as

refractory coating or non conductive material was studied. The relative comparison

of substitutional doped-MgO in the form of Mg(1-x)M(x)O was as well investigated

based on DFT approach. This is to improve the separation of the various turns

or layers of the core material and prevent their sticking or welding together during

high temperature anneals, aiding in the chemical purification of the ferrous material.

Consequently, leading to develop the desired optimum magnetic characteristics of

such material and forming a refractory-type coating which will provide insulation of

one layer of ferrous material from the next. The transition metal doping elements

M (Mn, Ni, or Co) in MgO were synthesized in various percentages and calculations

were done through density functional theory. The magnetoelectric reactions of 2 by 2

by 2 doped supercells at x = 1.5 %, 3%, 6% and 12% were analyzed and compared.

Figure 4.1 shows the relationship between these behaviors.

4.1 Computational method of magnetic properties of magnesium oxide

The basis cut-off energy was set to 340 eV. The structural, electronic, and mag-

netic properties of 2 x 2 x 2 supercells MgO, with k-points sampling grid in the

first Brillouin Zone, were calculated based on density functional theory using the

DFT code with the GGA in the scheme of Perdew-Burke-Eruzer (PBE) [66–68]. The

electron-ion interactions were described by the Vanderbilt ultrasoft pseudopotential

(USPP) and electronic configurations of 2p6 3s2 for magnesium and 2s2 2p4 for oxy-

gen were used. The Pulay-type density mixing scheme was used for the electronic

minimization and Monkhorst-Pack Scheme was used to sample the Brillouin zone.
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Fig. 4.1. Piezoelectric and piezomagnetic behavior

Geometry optimization was performed before the calculation of magnetic properties

with consideration of spin polarization in all calculations. The convergence criterion

for the optimization was based on maximum displacement, forces and stresses, with

the forces per atom were reduced to 0.01 ev/A, and the maximum stress was below

0.02 GPa, and the displacement of atoms smaller than 0.05× 10−2Ȧ, respectively.

Fig. 4.2. 2 x 2 x 2 supercell structure of MgO. Green balls are mag-
nesium while red balls are oxygen
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A single electron rotating with an angular frequency ω0 yields a current as follows

[69]

i =
eω0

2π
(4.1)

Orbital magnetic moment

And from elementary magnetism, a current i passing in a loop of area A will

produce an orbital magnetic moment µorb as follows [69]

µorb = iA (4.2)

Since electron moves in a circular pattern, therefore

µorb =
eω0r

2

2
(4.3)

But orbital angular moment Π0 = meω0r
2;

Hence

µorb =
eΠ0

2me

(4.4)

Simplify the equation by multiply both numerator and denominator by 2πh

µorb =
eh

4πme

2πΠ0

h
(4.5)

µorb = µorbl (4.6)

Where eh/(4me) is known as Bohr magneton µB as the value of the orbital angular

momentum of a single electron spinning around the Bohr atom.

Spin magnetic moment, µs

Electrons spin around themselves and produce spin magnetic moment as follows

[69]

µs =
eΠs

ms

(4.7)
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Both orbital angular moment Π0 and spin angular moment Πs must be an integer

multiple of h
2π

and thus,

µs = 2µBs (4.8)

where s is the spin quantum number; s = ±1
2

and quantum mechanically

µs = 2µB
√
s(s+ 1) (4.9)

Total magnetic moment, µtot

µtot = µs + µorb (4.10)

µtot =
eΠs

me

+
eΠ0

2me

(4.11)

Tracthe total angular momentum J of the atom is the vector sum of the two noninteing

momenta L and Sn, hence

J = L+ Sn (4.12)

However, the orbital angular momentum of the transition-metal ions of the 3d series

that are responsible for most of the magnetic properties exhibited by ceramic materials

is totally quenched and as a result [69].

J = Sn

µtot = 2µB
√
Sn(Sn + 1) (4.13)

where Sn =
∑
s

4.2 Computational method of magnetic properties of doped systems

The substitutional doped 2 x 2 x 2 supercells of MgO with doping elements as

Mn, Ni, or Co at various percentages of x = 1.5%, 3%, 6% and 12% in the form of

Mg(1-x)M(x)O were investigated. The electron-ion interactions were also described

by the Vanderbilt ultrasoft pseudopotential (USPP) and electronic configurations of
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2p6 3s2 for magnesium, 2s2 2p4 for oxygen, 3d7 4s2 for cobalt, 3d8 4s2 for nickel

and 3d5 4s2 for manganese were used respectively. The electronic and magnetic

properties using DFT code with GGA in the scheme of Perdew-Burke-Eruzer (PBE),

with k-points sampling grid in the first Brillouin Zone, were calculated based on

density functional theory. Self-Consistent Formulism (SCF) was used in electronic

minimization by treating the system as metallic with density mixing treatment of

electrons. Pulay type of density-mixing scheme was employed and Ultra-soft pseudo

potential was used in the calculations. The supercell originally consists 125 atoms

in total (65 atoms of magnesium and 60 atoms of oxygen). Each dopant replaced

each magnesium atom to create doping effects on the system. The manganese doped

structures for various x-percentages are shown below accordingly.

Fig. 4.3. Atomic structures of manganese-doped magnesium oxide.
(a) 1.5%, (b) 3%, (c) 6%, (d) 12%. Green balls are magnesium, red
balls are oxygen, purple are doping element, e.g., manganese
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Fig. 4.4. Band structure and density of states of MgO

4.3 Models for the B-H relation of doped magnesium oxide via finite

element method

The core of the single-phase E-core transformer was considered in this simulation,

which form a closed magnetic flux path. The coils in the transformer was made

of copper alloy, consists of 400 turns, placed around the central leg of the core as

shown in figure 4.5. The model consists of backbar, keeper, poles which were made

up of doped magnesium oxide properties in the form of Mg(1-x)M(x)O - where M

is the doping element and coils through which input voltage was supplied in anti-

clockwise direction. The enclosure box was made uniform by 50 mm which represents

surrounding air and relatively medium mesh was selected and adaptive mesh option

was chosen to improve accuracy. Then, the simulation was run in respect of the

connection law in magnetic field and relative permeability of each doped magnesium

oxide.

B = µo(H +Mc) (4.14)

where

M =
µion
V
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Fig. 4.5. B -H magnetization model

4.4 Results and discussion of magnesium oxide system

The mechanical and magnetic properties of 2 x 2 x 2 supercell structure of MgO

were calculated first as the basis for further studies.

Table 4.1.
Mechanical and magnetic properties of MgO from DFT simulation

Property Value

Final magnetic moment (B) 0.00

Band gap 4.019 eV

Bulk modulus 188.74 GPa

Energy cut off 340 eV

K point 0.04 Ȧ−1

Monkhorst Pack grids 8 x 8 x 8

k points in Berillouin Zone 60

Energy -1413.658 eV
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The properties were based on the first principles, calculated with the DFT sim-

ulation program. Basis sets and fast Fourier transformation and GGA and Perdew

Burke Ernzerhof type of gradient Exchange-Correlation were selected in the calcu-

lations. The Pseudo atomic calculation was performed for Mg as 2p6 3s2 and O as

2s2 2p4 with geometry optimization. After geometry optimization, band structures,

density of states, electronic and magnetic properties were calculated as shown in ta-

ble 4.1. The conditions of interaction length distribution, the Hirshfeld analysis and

atomic populations (Mulliken) are shown in table 4.3

Table 4.2.
Atomic populations (Mulliken) of MgO

Species Ion s p d f Total Charge (e)

O 1 1.94 5.25 0.00 0.00 7.20 -1.20

Mg 1 0.59 6.22 0.00 0.00 6.80 1.20

Table 4.3.
Hirshfeld analysis and interaction length distribution of MgO

Species Ion
Hirshfeld Charge

(e)

Spin

(hbar/2)

O 1 -0.34 0.00

Mg 1 0.34 0.00

Bond Population Length (A)

O 1 – Mg 1 -2.38 2.16556
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4.5 Results and discussion of doped magnesium oxide systems

4.5.1 Doped system of Mg(1-x)Mn(x)O structure

The cutoff energy of 340 eV for computing charge density was based on fine crite-

rion and 3 x 3 x 3 k-points sampling grid in the first Brillouin Zone of Mg(1-x)Mn(x)O

structure was used in this calculation. The electronic, and magnetic properties of 2 x

2 x 2 supercell were calculated based on DFT code with GGA in the scheme of PBE.

The electron-ion interactions were described by the Vanderbilt USPP with electronic

configurations taken to be 2p6 3s2 for magnesium, 2s2 2p4 for oxygen, and 3d5 4s2

for manganese respectively [70]. The Monkhorst-Pack Scheme was used to sample the

Brillouin zone and the Pulay-type density mixing scheme was used for the electronic

minimization with consideration of spin polarization. Geometry optimization was

initially performed before the calculation of doped Mg(1-x)Mn(x)O properties. Self-

consistent field calculations were conducted with convergence criteria of the energy

tolerance of 2 x 10−5eV/atom. The geometry optimization was carried out until the

forces acting on all atoms become lower than 0.03 eV/ Ȧ and the maximum displace-

ment was 0.001 Ȧ. The dopant percentage was chosen as 1.5%, 3%, 6% and 12% and

each result is compared with one another as shown in table 4.4 .

The spin of each unpaired electrons from manganese ion Mn2+ yields about 4.4

hbar/2 atomic spin in comparison with the calculated magnetic moment of 5.92 [70].

The electronic configuration of Mn2+ has 3d5 in its orbital with 5 unpaired electrons

having the spin quantum number (spin orientation). The final magnetic moment,

band gap, and bulk modulus of each manganese-doped structures at 1.5%, 3%, 6%,

and 12% are shown in table and its Hirshfeld analysis of Mg(0.94)Mn(0.06)O in table

4.5.

The calculated moment

µcal =
√

(n(n+ 2))

where n is the unpaired electrons.
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Table 4.4.
DFT simulation result of Mg(1-x)Mn(x)O

Property (Mg(1-x)Mn(x)O) x=1.5% x=3% x=6% x=12%

Final magnetic moment [B] 5.05912 6.05296 9.81991 20.0298

Band gap [eV] 1.089 0.029 0.791 1.131

Bulk modulus [GPa] 643.823 158.783 143.93017 138

Energy cut off [eV] 340 340 340 340

K point [A-1] 0.04 0.04 0.04 0.04

Monkhorst Pack grids 8 x 8 x 8 8 x 8 x 8 8 x 8 x 8 8 x 8 x 8

k points in Berillouin Zone 60 60 60 60

Energy [eV] -44913.59 -22296.19 -10985.935 -21325.39

Table 4.5.
Hirshfeld analysis of Mg(0.94)Mn(0.06)O

Species Ion Hirshfeld Charge (e) Spin (hbar/2)

O 1, 2 -0.33 -0.08

O 3, 4,5, 6 -0.34 -0.00

O 7, 8 -0.31 -0.15

Mg 1 0.35 -0.00

Mg 2,3,4, 5 0.34 -0.03

Mg 6 0.33 -0.01

Mg 7 0.34 -0.06

Mn 1, 2 0.28 -5.34

4.5.2 Doped system of Mg(1-x)Co(x)O structure

The doped structure of MgO by cobalt element for computing charge density was

also based on cutoff energy of 340 eV with fine criterion, and 3 x 3 x 3 k-points sam-
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pling grid in the first Brillouin Zone of Mg(1-x)Co(x)O structure. The electronic and

magnetic properties of 2 x 2 x 2 supercell were calculated based on DFT code with

the GGA in the scheme of PBE. The electron-ion interactions were described by the

Vanderbilt USPP with electronic configurations taken to be 2p6 3s2 for magnesium,

2s2 2p4 for oxygen, and 3d7 4s2 for cobalt respectively [70]. The Monkhorst-Pack

Scheme was used to sample the Brillouin zone and the Pulay-type density mixing

scheme was used for the electronic minimization with consideration of spin polariza-

tion. Geometry optimization was initially performed before the calculation of doped

Mg(1-x)Co(x)O properties. SCF calculations were conducted with convergence cri-

teria of the energy tolerance of 2 x 10−5eV/atom. The geometry optimization was

carried out until the forces acting on all atoms become lower than 0.03 eV/ Ȧ and

the maximum displacement was 0.001 Ȧ. The dopant percentage was chosen as 1.5%,

3%, 6% and 12% and each result is compared with one another as shown in table 4.6.

Table 4.6.
DFT simulation result of Mg(1-x)Co(x)O

Property Mg(1-x)Co(x)O x=1.5% x=3% x=6% x=12%

Final magnetic moment [B] 2.0899 3.25039 6.982 12.6559

Band gap [eV] 0.372 0.096 0.861 1.231

Bulk modulus [GPa] 405.91 235.0796 222.04949 181.84

Energy cut off [eV] 340 340 340 340

K point [A-1] 0.04 0.04 0.04 0.04

Monkhorst Pack grids 8 x 8 x 8 8 x 8 x 8 8 x 8 x 8 8 x 8 x 8

k points in Berillouin Zone 60 60 60 60

Energy [eV] -45301.376 -22683.814 -11373.88 -22877.112

The spin of each unpaired electrons from cobalt ion Co2+ yields about 3.25 hbar/2

atomic spin in comparison with the calculated magnetic moment of 3.87 [70]. The
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electronic configuration of Co2+ has 3d7 in its orbital with 3 unpaired electrons having

the same spin quantum number (spin orientation). The final magnetic moment, band

gap, and bulk modulus of each cobalt-doped structures at 1.5%, 3%, 6%, and 12%

are shown in table 4.6 and Hirshfeld analysis of Mg(0.88)Co(0.12)O is shown in table

4.7 .

Table 4.7.
Hirshfeld analysis of Mg(0.88)Co(0.12)O

Species Ion Hirshfeld Charge (e) Spin (hbar/2)

O 1,2,3,4 -0.29 -0.14

O 5,6,7,8 -0.33 -0.00

O 9 -0.33 -0.01

O 10,11,12,13,14,15 -0.28 -0.08

Mg 1 0.33 -0.00

Mg 2,3,4,5 0.31 -0.02

Mg 6,7,8, 9 0.31 -0.01

Mg 10,11 0.32 -0.01

Mg 12 0.30 -0.02

Co 1,2,3,4 0.23 -3.25

4.5.3 Doped system of Mg(1-x)Ni(x)O structure

The doped structure of MgO by nickel element for computing the charge den-

sity was also based on cutoff energy of 340 eV with fine criterion, and 3 x 3 x 3

k-points sampling grid in the first Brillouin Zone of Mg(1-x)Ni(x)O structure. The

electronic, and magnetic properties of 2 x 2 x 2 supercell were as well calculated based

on DFT code with the GGA in the scheme of PBE. The electron-ion interactions were

described by the Vanderbilt USPP with electronic configurations chosen to be 2p6
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3s2 for magnesium, 2s2 2p4 for oxygen, and 3d8 4s2 for nickel respectively. The

Monkhorst-Pack Scheme was used to sample the Brillouin zone and the Pulay-type

density mixing scheme was also used for the electronic minimization with considera-

tion of spin polarization. Geometry optimization was initially performed before the

calculation of doped Mg(1-x)Ni(x)O properties. SCF calculations were conducted

with convergence criteria of the energy tolerance of 2 x 10−5eV/atom. The geometry

optimization was carried out until the forces acting on all atoms become lower than

0.03 eV/ Ȧ and the maximum displacement was 0.001 Ȧ. The dopant percentage was

also chosen as 1.5%, 3%, 6% and 12% and each result is compared with one another

as shown in table 4.8.

Table 4.8.
DFT simulation result of Mg(1-x)Ni(x)O

Property Mg(1-x)Co(x)O x=1.5% x=3% x=6% x=12%

Final magnetic moment [B] 2.20452 3.06388 4.78266 9.69509

Band gap [eV] 1.607 1.325 1.179 1.831

Bulk modulus [GPa] 313.964 159.8164 167.11802 155.213

Energy cut off [eV] 340 340 340 340

K point [A-1] 0.04 0.04 0.04 0.04

Monkhorst Pack grids 8 x 8 x 8 8 x 8 x 8 8 x 8 x 8 8 x 8 x 8

k points in Berillouin Zone 60 60 60 60

Energy [eV] -45613.138 -22995.73 -11685.367 -24122.6395

The spin of each unpaired electrons from nickel ion Ni2+ yields about 2.27 hbar/2

atomic spin in comparison with the calculated magnetic moment of 2.83 [70]. The

electronic configuration of Ni2+ has 3d5 in its orbital with 2 unpaired electrons having

the same spin quantum number (spin orientation). The final magnetic moment, band

gap, and bulk modulus of each nickel-doped structures at 1.5%, 3%, 6%, and 12% are

shown table 4.8 Hirshfeld analysis of Mg(0.88)Ni(0.12)O shown in table 4.9.
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Table 4.9.
Hirshfeld analysis of Mg(0.88)Ni(0.12)O

Species Ion Hirshfeld Charge (e) Spin (hbar/2)

O 1,2,3, 4 -0.28 -0.14

O 5,6,7, 8 -0.34 -0.00

O 9 -0.33 -0.01

O 10, 11 -0.27 -0.09

O 12,13,14,15 -0.28 -0.06

O 16 -0.22 -0.16

Mg 1,2,3,4,5 0.32 -0.01

Mg 6,7,8,9,10,11 0.31 -0.01

Mg 12 0.30 -0.01

Ni 1,2,3,4 0.22 -2.27

Fig. 4.6. Total magnetic properties of MgO - doped structures
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Table 4.10.
Total magnetic moment [B ] - doped MgO

Composition 1.5% 3% 6% 12%

Mg(1-x)Mn(x)O 5.05912 6.05296 9.81991 20.0298

Mg(1-x)Co(x)O 2.0899 3.25039 6.982 12.6559

(Mg(1-x)Ni(x)O 2.20452 3.06388 4.78266 9.69509

4.6 Results and discussion - B-H relation

The input voltage of 25 V in the copper alloy induced magnetic field intensity

around the coils, which subsequently generates magnetic flux into the doped refractory

material. The total magnetic flux density and corresponding field intensity is shown

in figure 4.7 and table 4.11 as recorded after the simulation.

Table 4.11.
B -H comparison of doped magnesium oxide

Species
Total magnetic field

intensity (A/mm)

Total magnetic flux

density (mT)

Mg(0.88)Mn(0.12)O 178.43 1423.7

Mg(0.88)Co(0.12)O 175.37 1401.7

Mg(0.88)Ni(0.12)O 171.97 1377.2

4.7 Conclusion

We have successfully investigated mechanical, magnetic properties of doped mag-

nesia crystal using DFT software. The properties were based on density functional

theory using the DFT code with the GGA and results predicted from this method
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(a) (Mg(0.88)Mn(0.12)O) Magnetic flux

density illustration

(b) (Mg(0.88)Co(0.12)O) Magnetic flux

density illustration

(c) (Mg(0.88)Ni(0.12)O) Magnetic flux

density illustration.

(d) (Mg(0.88)Mn(0.12)O) Magnetic

field intensity illustration

Fig. 4.7. B -H comparison of doped magnesium oxide

agrees relatively with literature data as shown in table 4.4, table 4.6, and table 4.8 [70].

The magnetic property increases gradually as doping percentage increases with man-

ganese doped structure found highest followed by cobalt doped structure, and nickel

doped structure was found least both in DFT and continuum approach simulation

using finite element method as shown in figure 4.6 and 4.7, while the bulk modu-

lus of cobalt doped structure was found to be highest, followed by nickel doped and

manganese doped structures respectively.
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5. THERMAL PROPERTIES OF MAGNESIUM OXIDE

The study of temperature dependence of MgO properties is very important in un-

derstanding the temperature variation of other properties such as thermal conduc-

tivity, elastic constants, diffusion coefficients, and other heat transfer dimensionless

numbers [71]. The thermal expansion of solids is of technical importance as it deter-

mines the thermal stability and thermal shock resistance of a material. According

to Fourier’s law, heat conduction JQ = −κ∇T , determines the conducting heat flow

density (JQ) in the presence of a temperature gradient ∇T.κ [72]. In this chapter, we

investigated the first-principles study of lattice thermal conductivity of MgO using

the first principles imposed-flux method in DFT Forcite code.

5.1 DFT computational detail of thermal properties

The initial structure was first optimized with forcefield assignment as charges

to minimize the energy and ensure more accurate results. Then, the thermal con-

ductivity was calculated based on the Reverse Non-Equilibrium Molecular Dynamics

(RNEMD) method. This method works on the basis of velocity exchanges between

two molecules in different parts of the simulation cell and thus, the velocity of the

fastest atom (or molecule) in one region is replaced by the velocity of the slowest

atom in another region, at a set interval, and vice versa. Consequently, the first re-

gion becomes colder, whereas the second region increases in temperature. The system

reacts by flowing energy from the hot to the cold region. Eventually a steady state

was established when the energy exchanged offsets the energy flowing back with a

temperature gradient over the space between the two regions. The thermal conduc-

tivity follows as the energy flux divided by the temperature gradient. Consequently,

energy flows between the layers and system responds by creating a temperature gra-
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dient. There are 40 layers of atoms in z-direction using variable exchange method to

transfer energy. The simulation follows the Fourier’s law [73] as stated in equation

5.1 and the parameters used were stated in table 5.1.

Table 5.1.
Parameters for MgO thermal conductivity calculation

Parameter Value

Type of exchange method Variable

Type of velocity to exchange Atoms

Energy to exchange in the method FIXED 1.0 (in kcal/mol)

Number of exchanges performed for equilibration 500

Number of exchanges performed for production 1000

Number of exchanges between two field updates 10

Number of time steps between two exchanges 100

Timestep 1 (in fs)

∆Q

∆t
= −KthA

∆T

∆x
(5.1)

where ∆Q
∆t

(GW) is the heat transferred rate; A (m2) is the cross section area; Kth

( W(mK) )is the thermal conductivity; x (m) is distance between two ends; and ∆T
∆x

(K/m) temperature gradient along x axis.

5.2 Results and discussion of thermal properties

The thermal conductivity of MgO was calculated using the imposed-flux method

[74]. Kinetic energy is exchanged between one or more particles in a hot layer (red)

and a cold layer (blue), imposing an energy flux through the system as shown in figure

5.1 and temperature distribution in z - direction as shown in figure 5.2. The layers

are repeated due to periodic boundary conditions
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Fig. 5.1. Temperature distribution (unit: K)

Fig. 5.2. Temperature distribution along z-axis

The energy flux curve became flat after 200 ps, which means the entire system is

stable. Thus, temperature distribution along the z - direction of MgO super cell is

plotted in Fig 5.2 and the curve shows the heat flux is in relative linear relationship

with position from high temperature to low temperature, and support temperature
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gradient in the Fourier’s law. The calculated temperature gradient was 5.1 GK/m,

the energy flux was 177 GW/m2. So thermal conductivity was the ratio of energy

flux to temperature gradient, which was 34.63 W/m/K.

Fig. 5.3. Energy flux time history

5.3 Conclusion

The Reverse Non-Equilibrium Molecular Dynamics (RNEMD) method was suc-

cessfully established as a robust simulation methodology to calculate thermal prop-

erties of MgO crystal using DFT software through Forcite code. The methodology

allows us to simulate temperature gradient and the energy flux of MgO crystal struc-

ture within a specific temperature range and the thermal conductivity was calculated

to be 34.63 W/m/K which in agreement with literature data [75].
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6. SUMMARY

In this thesis, a modeling study is conducted to understand the mechanical, thermo-

dynamic, magnetic and thermal properties of pure and M-doped (M stands for Mn,

Co, or Ni) magnesia. The work can be used to design improved coatings for electrical

transformers in the future. The major conclusions are summarized below.

1. For the mechanical properties of pure magnesia, using density functional the-

ory (DFT) based calculations, the computed Youngs modulus, Poissons ratio, bulk

modulus, and compressibility are 228.80 GPa, 0.2397, 146.52 GPa, and 0.00682, re-

spectively, which are in good agreement with the literature data. Using molecular dy-

namics (MD) simulations, the computed Youngs modulus is 229 GPa. Using discrete

element model (DEM) approach, the bending deformation of magnesia is simulated.

Finally, using finite element model (FEM), micro-hardness indentation of magnesia

is simulated, and the computed Brinell hardness is 16.1 HB, and Vickers hardness is

16 GPa.

2. For the thermodynamic and physical properties of pure and doped magnesia,

using DFT based simulations, the temperature-dependent thermodynamic properties,

such as free energy, enthalpy, entropy, heat capacity at constant volume, and Debye

temperature of magnesia, are computed. The X-ray powder diffraction (XRD) spectra

of M-doped magnesia are simulated, at the doping level of 1.5%, 3%, 6% and 12%,

respectively. The simulated XRD data show that peaks shift to higher angles as the

doping level increases.

3. For the magnetic properties of pure and doped magnesia, using DFT based

simulations, the calculated magnetic moments increase with the doping level, with

Mn as the highest, followed by Co and Ni. This is due to the fact that Mn has more

unpaired electrons than Co and Ni.
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4. For the thermal properties of the pure magnesia, using the Reverse Non-

Equilibrium Molecular Dynamics (RNEMD) method, the computed thermal conduc-

tivity of magnesia is 34.63 W/m/K, which is in agreement with the literature data of

33.0 W/m/K at 400 K.
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7. RECOMMENDATIONS

We have successfully investigated mechanical and magnetic properties of doped mag-

nesia crystal using DFT and continuum approach. The properties were based on den-

sity functional theory with the GGA and results predicted from this method agrees

with literature data as shown in table 4.10 [70]. The magnetic property increases grad-

ually as doping percentage increases with manganese doped structure found highest

followed by cobalt doped structure, and nickel doped structure was found least both

in DFT and continuum approach simulation while the bulk modulus of cobalt doped

structure was found to be highest, followed by nickel doped and manganese doped

structures respectively. Manganese doped structure was concluded to generate more

magnetic flux as refractory coatings on transformer core. However, other factors such

as electrical insulation according to band gap, and mechanical properties could make

cobalt doped structure and nickel doped structure more reliable to manganese doped

structure depending on the prime factor.

It is therefore recommended to perform future research on electrical insulation of

transformer core from continuum approach in supporting the DFT conclusion accord-

ing to the present work.
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[64] O. Madelung, U. Rössler, M. Schulz et al., “Ii-vi and i-vii compounds; semimag-
netic compounds,” Berlin Heidelberg: Springer-Verlag, vol. 41, pp. 1–5, 1999.
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