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ABSTRACT

Xiao, Yingying PhD, Purdue University, December 2019. Distributed Solutions to
Coupled Convex Feasibility and Optimization Problems on Agent Networks. Major
Professor: Jianghai Hu.

This thesis studies the distributed solutions to the coupled convex feasibility and

optimization problems on agent networks, with the aim of reducing the storage and

communication requirements for individual agents by exploiting the potential coupling

sparsity across agents. We first focus on the convex feasibility problems. Four iterative

solutions are proposed, where each agent only maintains its own variable together with

its desired values for those neighboring agents whose valuations help determining its

feasibility; within each iteration, projection and consensus operations are carried

out by agents in parallel based on information from only the relevant neighbors.

Then the approach is extended to solve convex optimization problems for a group

of agents whose constraints as well as objective functions may depend on neighbors’

variables. Similar solution algorithms are developed by replacing the projection with

the proximal operator. Finally, we consider the optimization problems subject to

global constraints that involve every agent on the network in addition to the local

couplings. Distributed algorithms (with or without a coordinator) following the same

approach are proposed. Convergence analysis and numerical examples are provided

to demonstrate the effectiveness of the proposed algorithms.
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1. INTRODUCTION

1.1 Background and Motivations

Multi-agent systems with the agents on a network cooperating (actively or pas-

sively) to achieve a common goal arise in many applications, especially for tasks that

are impossible for a single agent to complete due to its limited power, computation

ability, sensing range, etc. Examples include mobile sensing networks [1–6], robot

teams [7–11], microsatellite formation in space missions [12,13], opinion in social net-

works [14–16], electricity grids [17–19], data centers [20, 21], to name a few. Besides

the above areas where the multi-agent formulation naturally arises, some applications

can be easily transformed to multi-agent systems due to the need to tackle high com-

putation complexity, such as image recovery [22–24], model predictive control [25,26]

and so on.

Depending on the common goal of multi-agent systems, many problems on agent-

networks can be formulated as a convex optimization problem, or its special case,

a convex feasibility problem (CFP), also called the convex intersection problem or

constrained consensus problem [27,28], which is to find a common point that belongs

to a family of nonempty closed convex sets.

There has been a tremendous amount of existing literature on the solutions of

networked optimization problems (or CFP). A majority of existing approaches, espe-

cially the earlier ones, are centralized in that a central solver updates a guess of the

solution iteratively to approach an optimal point (or satisfy the convex constraints

in the case of CFP). A particular popular class of such approaches is the alternative

projection method and its variants (e.g. [29–31]). Centralized solution algorithms

have the advantages of easy implementation and guaranteed convergence. On the

other hand, they often scale poorly as the network’s size increases.
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For problems on large-scale networks, a natural idea is to distribute the computa-

tion among agents, where each agent completes a (relatively) small task and exchanges

information with its neighbors (possibly multi-hop away) to cooperatively achieve the

common goal. This leads to the distributed approaches on agent networks. In many

applications, the distributed solutions are naturally desired since the aggregation of

information at a single place is almost impossible, e.g., the machine learning problems

involving massive data from multiple data centers. Furthermore, in many cases, the

constraints and objective functions relevant to an agent often involve the private in-

formation of the agent and its neighbors. Without the need to pass these information

to the central solver, distributed solutions can better maintain privacy.

A class of distributed optimization problems that receives the most attention is

the consensus optimization problem, where a group of m agents with local variables

x1, . . . , xm tries to minimize the (separable) objective function f1(x1) + · · ·+ fm(xm)

while simultaneously achieving consensus x1 = · · · = xm through local informa-

tion exchanges. Representative algorithms developed for their solutions include, e.g.,

subgradient-based methods [27, 32], proximal gradient descent methods [34], dual-

decomposition methods [33], and general first order algorithms [35–37], to name a

few. Many of the methods developed for consensus optimization problems, e.g.,

subgradient-based methods, require variable step sizes to be carefully tuned to achieve

the best convergence, which is not practical in many applications. For CFP, some

noteworthy effort toward this direction includes the distributed algorithms to solve lin-

ear equations proposed in [38–43], which are subsequently extended to solve nonlinear

equations [44–46], e.g., paracontractions and strongly quasi-nonexpansive maps, and

the projected consensus algorithms for constrained consensus problems [27,28,47–50]

and approximate projections [51]. Some of the earlier works on general CFP along

this direction can be found in [29,52–54].

In these distributed algorithms, each agent maintains a local guess of the solution.

These local guesses are updated by individual agents to optimize their local objective
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functions as well as satisfy local constraints, and are exchanged between neighboring

agents to reach consensus via averaging.

On the other hand, some practical distributed optimization problems arising in

agent networks, e.g., the formation control problem [55] and the network localiza-

tion problem [10], often have locally coupled objective functions and constraints for

individual agents. In theory these problems can still be formulated as a consensus op-

timization problem with each agent maintaining copies of all other agents’ variables.

However, doing so may result in excessive memory and communication overhead, es-

pecially when the number of agents is large. For example, Fig. 1.1 shows a planar

network localization problem using relative orientation measurements, which consists

of two anchors with known locations and 28 free agents whose locations need to be

identified. Using the existing algorithms above, each agent will need to maintain

and at each round broadcast 56 variables. However, take the agent labeled by 0 as

an instance. Its localization constraint only relates to the five neighbors within its

measurement range, i.e., only 12 out of the 56 variables are relevant to the location

feasibility of the agent 0. With a larger problem size, this disadvantage of the existing

algorithms becomes even more serious.

Fig. 1.1. Network localization with 2 anchors (solid dots) and 28 free
agents (small circles).
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One way to mitigate this issue is to partition not only the objective functions

or constraints but also the solution vector into different parts and assign them to

individual agents. Along this direction, one approach [56] to solve linear algebraic

equations is that each agent still holds a copy of the solution but partitions it into

multiple blocks and then broadcasts periodically or randomly only one of them to

its neighbors. This approach reduces the communication load at the sacrifice of con-

vergence rate that heavily depends on how frequently the local copies are broadcast.

Another method toward this direction for solving linear equations Ax = b is proposed

in [57] , which also intends to exploit the sparsity of matrix A. Given the partition

of solution x, each agent keeps and broadcasts only the blocks relevant to its own

constraints, which often has a much reduced dimension than x. However, in this

proposed algorithm, the mappings from the indices of local blocks held by one agent

into the index of the global variable x are required to be known not only to this agent

but also to its neighbors whose constraints involve all or some of these local blocks.

That could lead to a large setup overload. This algorithm is also not applicable to

those applications where these mappings are private information that agents do not

want to share.

1.2 Preview of Main Contributions

Motivated by the discussions in previous section, we study the convex feasibility

and optimization problems on agent networks with local and/or global couplings. The

local couplings across agents are modeled by a directed dependency graph while the

global couplings involving every agent on networks will be dealt with by a coordina-

tor or implicitly by a consensus graph. Our goal is to develop distributed solution

algorithms which are able to reduce the storage and communication requirements for

individual agents by exploiting the potential sparsity of local couplings. At the same

time, the algorithms are expected to have the following properties: constant step

size, general convex objectives and constraints, general dependency graph, guaran-
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teed convergence to optimality, capability of dealing with asynchrony due to network

uncertainty and inhomogeneity, and ability to preserve privacy when necessary. To-

wards this goal, the focuses of three main chapters are listed in Fig. 1.2 and Chapter 2

summarizes the techniques to be utilized for establishing the convergence proofs of

the proposed algorithms.

Fig. 1.2. Main chapters’ organization

Chapter 3 focuses on the convex feasibility problems with locally coupled con-

straints. In the proposed algorithms, each agent only maintains its own variable

together with its desired values for those neighboring agents whose valuations help

determining its feasibility; within each iteration, projection and consensus operations

are carried out by agents in parallel based on information from only the relevant

neighbors. Such an approach significantly reduces the amount of storage and com-

munication required for individual agents in the case of sparse local couplings. Four

algorithms in this framework are proposed. Algorithm 1 is synchronous in the way

that at each round one of the two operations, projection and consensus, must be

completed by all agents before carrying out the other one, which converges expo-

nentially fast under some further assumptions. Algorithm 2 extends Algorithm 1

to be asynchronous by allowing agents to independently choose their operations in

each iteration. The convergence proofs of Algorithms 1 and 2 are established on the

basis of paracontractions. Algorithm 3 generalizes Algorithm 1 by utilizing general,

time-varying consensus operations and allowing individual agents to decide if they

would like to perform the projection at each round. Algorithm 4, the most general

version, combines the relaxations of Algorithms 2 and 3. Algorithms 3 and 4 accom-

modate the practical situation of temporary communication blackout and accelerate
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the consensus process by weighting the desired values from different neighbors, whose

convergences, however, are established by utilizing the strongly quasi-non-expansive

maps since the weighted consensus operation is not paracontractions.

Chapter 4 studies the locally coupled optimization problems on agent networks

where the local constraints as well as objective functions may depend on neighbors’

variables. By adopting the same concept of desired values for neighbors’ variables in

Chapter 3, the overall constrained optimization problem can be transformed to finding

a point x∗ ∈ zer(T1 + T2) with T1 and T2 being two maximal monotone operators.

Then the Douglas-Rachford operator splitting method [58,59] is utilized to derive the

synchronous distributed algorithm (Algorithm 5), as well as its randomized version

(Algorithm 8) via the random coordinate descent method [60–62]. When the same

idea is applied to the corresponding dual problem, Algorithms 6 and 9 are obtained.

Algorithm 7 shows the distributed solution of applying ADMM. At any round of

our proposed algorithms, an agent communicates only with those neighbors whose

variables affect its objective and constraints as in CFP, and expensive operations

(e.g., solving local optimization problems) are carried out only once by each agent

with the rest being simple linear vector operations.

Asynchronous algorithms have been proposed for solving the special class of con-

sensus optimization problem [60, 63, 64], with the algorithm in [60] requiring the

activation of at least two agents in each round and the algorithms in [62,65] requiring

the knowledge of activation probabilities. The AD-ADMM algorithm in [66] is appli-

cable only to the star topology (albeit with possible network delays). Our proposed

asynchronous algorithms in Chapter 4 have no such limitations.

In Chapter 5, we consider the optimization problems subject to global constraints

that involve every agent on the network in addition to the local couplings. By in-

troducing at each agent a local copy of the dual variable corresponding to the global

constraints, the problem can be decomposed in the same way as that in Chapters 3

and 4 with the addition of the consensus requirement on dual variables. When the

consensus task is dealt with by an extra agent (coordinator), similar approach (Al-
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gorithm (5.6)) to that of Chapter 4 is developed, which, however, suffers the vulner-

ability to single-point failures. Instead, when the task is distributed among agents

through a consensus graph (which can be constructed from the dependency graph

by adding edges between strongly connected groups if such groups exist), a fully dis-

tributed solution (Algorithm 10) is proposed based on the preconditioned Douglas-

Rachford splitting in [67], which preserves the properties of efficient communication,

privacy protection, constant step size, etc., as the other algorithms in Chapters 3

and 4.

Chapter 6 shows the simulation results of applying Algorithms 1, 3, 5 and 8

to solving the linear programs/equations and the network localization problems as

well as the comparison with ADMM and the well known projection consensus based

algorithm in [28].



8

2. PRELIMINARIES

In this chapter, we will introduce some techniques that will be used later to establish

the convergence proofs and analyze the properties of the algorithms proposed in

Chapters 3, 4 and 5.

2.1 Maximal Monotone Operators

An (set-valued) operator T on Rn, also called a multi-valued function or relation,

is defined to be a subset of Rn × Rn: {(x, y) | y ∈ T (x)}. When T (x) is singleton for

each x, the operator T becomes a (single-valued) function. A well-known example

is the subdifferential operator ∂f of a function f : Rn → R ∪ {∞} defined as ∂f =

{(x, g) |x ∈ dom f, f(y) ≥ f(x) + g>(y − x),∀y ∈ dom f}. Some useful notions for

operators are listed as follows.

a. domT = {x |T (x) 6= ∅}.

b. For two operators T and S on Rn, their composition T ◦ S = {(x, z) | ∃y ∈

Rn, (x, y) ∈ S, (y, z) ∈ T} and sum T+S = {(x, y+z) | (x, y) ∈ S, (y, z) ∈ T}.

Other simple operations such as scalar multiplication are defined similarly to

functions.

c. The inverse of T is T−1 = {(y, x) | (x, y) ∈ T}, which always exists. Note that

in general R−1 ◦R 6= I with I being the identity operator.

d. The zero set of T is zerT = {x | 0 ∈ T (x)}, which equals to T−1(0).

e. The set of fixed points of T is FixT = {x |x ∈ T (x)}.
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Definition 2.1.1 An operator T is monotone if it satisfies

(q − p)>(y − x) ≥ 0, ∀p ∈ T (x), ∀q ∈ T (y), ∀x, y.

The monotone operator is the generalization of monotonicity for functions.

Definition 2.1.2 An operator T is maximal monotone if T is monotone and its

graph is not properly contained in the graph of another monotone operator.

In other words, for a maximal monotone operator T , there exists no (x, y) ∈

Rn × Rn such that the operator {(x, y)} ∪ T is monotone.

The subdifferential operator ∂f defined above is monotone for any f : Rn → R,

and is maximal monotone when f is closed convex proper (CCP), i.e., f is lower semi-

continuous, convex and f(x) 6≡ +∞. Later in this section, we will define the resolvent

and the Cayley operator associated with each monotone operator which, when applied

to the subdifferential operator, are very useful in deriving the distributed algorithms

on networks.

Following are two instances of maximal monotone operators.

a. An affine function f(x) = Ax+b is maximal monotone if and only if the matrix

A satisfies A+ A> < 0.

b. For a set A ⊂ Rn, its indicator function ıA is defined as

ıA(x) =

0, if x ∈ A,

+∞, otherwise.

When the set A is closed convex, its subdifferential ∂ıA can be obtained through

the normal cone operator NA defined as follows

∂ıA(x) = NA(x) :=

{q | q
>(y − x) ≤ 0, ∀y ∈ A}, if x ∈ A,

∅, otherwise.
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Obviously, if x ∈ intA (an interior point of the set A), then we have NA(x) =

{0}. When A is additionally nonempty, i.e., ıA is a CCP function, the op-

erator NA is maximal monotone. As we will see later, the resolvent of nor-

mal cone operator is the projection operator ΠA(x) defined later in (2.2), i.e.,

(I + ρNA)−1 = ΠA(x) for some constant ρ > 0.

c. The saddle subdifferential operator to be defined later in Section 2.5 is maximal

monotone if its saddle function is closed and proper (see Theorem 2.5.1).

2.2 Non-Expansive Mappings

If an operator T satisfies

‖q − p‖ ≤ L‖y − x‖, ∀p ∈ T (x), ∀q ∈ T (y), ∀x, y,

for some constant L ≥ 0, L is called a Lipschitz constant of T . Obviously, p =

q whenever y = x, implying that such an operator T degrades to a single-valued

function.

Definition 2.2.1 For any x, y ∈ domT , the operator T with Lipschitz constant L

is

a. non-expansive if L ≤ 1, or equivalently ‖T (y)− T (x)‖ ≤ ‖y − x‖;

b. contractive if L < 1.

According to the definitions above, contractive implies non-expansive but not vice

versa. For two operators T and T̃ with Lipschitz constants L and L̃ respectively, some

properties of function operations on T and T̃ are listed as follows:

a. The composition T ◦ T̃ has a Lipschitz constant LL̃. This implies that the

composition operation preserves the non-expansive (resp. contractive) property

when its two operands are non-expansive (resp. contractive).
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b. The weighted average (1−α)T +αT̃ with α ∈ [0, 1] has a Lipschitz constant

(1 − α)L + αL̃, thus preserving the non-expansive/contractive property. In

addition, if one of T and T̃ is contractive and α ∈ (0, 1), the weighted average

is contractive.

For a contractive operator T , there are two important properties below:

a. its fixed point is unique if there exists one, i.e., FixT is singleton,

b. the iteration xt+1 = T (xt) will converge to the unique fixed point as t→∞.

For a non-expansive mapping T , the set of its fixed points FixT can be shown to be

closed and convex (see [59] for proof details), however, its iteration xt+1 = T (xt) in

general does not converge even though FixT is nonempty. This issue can be avoided

by adopting the following notion of averaged operators (mappings).

Definition 2.2.2 An mapping T is α-averaged if T = (1−α)I+αS, for α ∈ (0, 1)

and some non-expansive function S.

The fact that an averaged operator is non-expansive directly follows from the

property of weighted average operation above. The two useful results about averaged

operators (or mappings) are listed below without proof:

a. The set of fixed points FixT = FixS.

b. The iteration xt+1 = T (xt) will converge to a point x∗ ∈ FixT as t → ∞ if

FixT is nonempty.

These conclusions will be used heavily later on to establish the convergence of the

proposed algorithms. An equivalent characterization of α-averaged function [68] is

‖T (y)− T (x)‖2 ≤ ‖y − x‖2 − 1− α
α
‖(T (y)− y)− (T (x)− x)‖2, ∀x, y, α ∈ (0, 1).

(2.1)

As shown in [68], averaged operators are closed under relaxations, convex combina-

tions, and compositions.
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Theorem 2.2.1 ( [68] Lemma 2.2) For i ∈ Im, let αi ∈ (0, 1), Ti be an αi-

averaged operator and wi ∈ (0, 1] such that
∑

i∈Im wi = 1. Then the following holds:

a. ∀i ∈ Im, ∀λ ∈ (0, 1/αi), the relaxation I+λ(Ti−I) is a (λαi)-averaged operator;

b. the convex combination
∑

i∈Im wiTi is α-averaged, with α := maxi∈Im αi;

c. T1 ◦ · · · ◦ Tm is α-averaged with α := m
m−1+1/maxi∈Im αi

.

The following result, a special case of [61, Thm. 3], will be used later in Chapter 4

for the asynchronous design of distributed algorithms.

Theorem 2.2.2 Let T : Rn → Rn be an α-averaged operator with Fix(T ) 6= ∅.

Partition x into (x1, . . . , xm) and Tx into (T1x, . . . , Tmx) where xi, Tix ∈ Rni for

i ∈ Im. Consider the following iteration. At each step t = 0, 1, . . ., first an index

it ∈ Im is chosen randomly and independently with the probabilities P (it = j) = pj ≥

ε, j ∈ Im, for some positive ε; then xt is updated to xt+1 where xt+1
it = Titx

t and

xt+1
` = xt` for ` 6= it. Then, xt converges almost surely to some x∗ ∈ Fix(T ) as

t→∞.

Here are two examples of non-expansive mappings.

Example 2.2.1 (Differentiable functions) For a differentiable function T : Rn →

Rn, its Lipschitz constant is L = supx ‖DT (x)‖ with DT (x) being the Jacobian ma-

trix of T at point x and ‖ · ‖ being the l2 induced matrix norm defined as ‖A‖ :=

supx∈Rn,x 6=0 ‖Ax‖/‖x‖ for A ∈ Rn×n. The function T is non-expansive and contrac-

tive when L ≤ 1 and L < 1, respectively.

Example 2.2.2 (Projection) For a point x ∈ Rn, denote by ΠF(x) the (unique)

orthogonal projection of x onto the nonempty closed convex set F ⊂ Rn, i.e.

ΠF(x) = argminy∈F ‖y − x‖, (2.2)

with ‖·‖ being the l2-norm. The orthogonal projection operator ΠF enjoys the following

properties with proof omitted: ∀x, y ∈ Rn,
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a. x ∈ F ⇐⇒ x = ΠF(x), i.e., F = Fix ΠF ;

b. 〈x− ΠF(x), y − ΠF(x)〉 ≤ 0;

c. ‖x− ΠF(x)‖2 + ‖y − ΠF(x)‖2 ≤ ‖x− y‖2;

d. ΠF is non-expansive (see proof from [59]).

In the rest of this section, we will introduce several concepts related to non-

expansive mappings: firmly non-expansive mappings, paracontractions, strongly quasi-

non-expansive maps.

2.2.1 Firmly Non-Expansive Mappings

Definition 2.2.3 A mapping T is firmly non-expansive if ∀x, y ∈ domT ,

‖T (y)− T (x)‖2 ≤ 〈y − x, T (y)− T (x)〉, (2.3)

or equivalently,

‖T (y)− T (x)‖2 ≤ ‖y − x‖2 − ‖(T (y)− y)− (T (x)− x)‖2. (2.4)

By definition, firmly non-expansive implies non-expansive but not vice versa.

Comparing (2.4) with the equivalent form (2.1) of the α-averaged function, firmly

non-expansive mappings are special cases of averaged operators with α = 1/2. An

interesting result about the relationship between firmly non-expansive mappings and

monotone operators from [58] is stated below.

Theorem 2.2.3 ( [58] Propositions 23.8 and 23.9) Let T : Rn → Rn. Then T

is firmly non-expansive if and only if there is a maximal monotone operator A : such

that T is the resolvent (to be defined later in Section 2.3) of A, i.e., T = (I + A)−1.
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2.2.2 Paracontractions

Definition 2.2.4 ( [69]) A continuous mapping T : Rn → Rn is called a paracon-

traction w.r.t. a norm |||·||| on Rn if |||T (x)− y||| < |||x− y||| for any x 6∈ FixT and

y ∈ FixT .

As shown in [69–73], many well-known operators are paracontracions. Here are

several important examples of paracontractions w.r.t. the l2-norm:

a. the orthogonal projection ΠF onto a nonempty closed convex set F ;

b. for a nonempty closed convex set F , the α-relaxed projection T onto F given

by

T = (1− α) · Id + α · ΠF , α ∈ (0, 2); (2.5)

c. the gradient descent map g(x) = x − α∇f(x), where f(x) is a convex and

differentiable function, its gradient∇f is Lipschitz continuous with the constant

L and α ∈ (0, 2/L);

d. the proximal operator proxf : Rn → Rn associated with the CCP function

f : Rn → Rn
to be defined later on in (2.6);

e. the α-averaged operator T = (1−α)I+αS when the operator S is non-expansive.

A key result proved in [69] is restated in the following theorem, which will be the

fundamental tool to establish the convergence of the algorithms in Chapter 3.

Theorem 2.2.4 Suppose Ti : Rn → Rn, i = 1, . . . , `, are paracontractions w.r.t. the

same norm |||·||| and ∩`i=1 FixTi 6= ∅. Starting from any x0 ∈ Rn and for any sequence

σ0, σ1, . . . ∈ {1, . . . , `} so that each index i appears infinitely often, the iteration

xt+1 = Tσt(x
t), ∀t = 0, 1, . . . ,

will converge to a point x∗ = limt→∞ x
t ∈ ∩`i=1 FixTi.

Now we present two useful results for the convergence proofs in Chapter 3.
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Lemma 2.2.1 Suppose Ti : Rni → Rni is a paracontractions w.r.t. the norm |||·|||i
for i = 1, . . . ,m. Then T = T1 × · · · × Tm : Rn → Rn where n =

∑m
i=1 ni is a

paracontraction w.r.t. the norm |||x||| := (
∑m

i=1 |||xi|||
p
i )

1/p for x = (x1, . . . , xm) ∈ Rn

and p ≥ 1.

Proof For arbitrary x, y ∈ Rn, suppose y is a fixed point of T , i.e., Ti(yi) = yi for

all i; while x is not. As a result, for i in a nonempty subset of {1, . . . ,m} we have

Ti(xi) 6= xi and, therefore |||Ti(xi)− yi|||i < |||xi − yi|||i; while for all other i, equality

holds. This implies that |||T (x)− y||| < |||x− y|||.

Lemma 2.2.2 Suppose T̃ : Rn → Rn is a paracontractions w.r.t. the l2-, l1-norm

or any norm that is invariant under permutations, denoted by ‖ · ‖, and T̃ has the

fixed point set Ã. Then the operator T : Rn → Rn defined by T = P>T̃P , where P is

a permutation matrix, is still a paracontraction w.r.t. the same norm with the fixed

point set A = {P>ỹ|ỹ ∈ Ã}.

Proof Let y ∈ Rn be a fixed point of T . Then by definition there exist ỹ ∈ Ã such

that y = P>ỹ. Therefore for any x ∈ Rn and x /∈ A,

‖T (x)− y‖ = ‖P>T̃Px− P>ỹ‖ = ‖T̃Px− ỹ‖ < ‖Px− ỹ‖ = ‖Px− Py‖ = ‖x− y‖,

where the second and last equalities follow from the property that permutation does

not change the norm of a vector. This completes the proof.

2.2.3 Stongly Quasi-Non-Expansive Maps

Definition 2.2.5 ( [74]) Let β > 0. A mapping P : Rn → Rn is β-strongly quasi-

non-expansive w.r.t. a norm |||·||| on Rn if

|||P (x)− y|||2 ≤ |||x− y|||2 − β|||P (x)− x|||2

for any x ∈ Rn and y ∈ FixP .
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By the definitions above, a β-strongly quasi-non-expansive map must be a para-

contraction. In other words, the class of β-strongly quasi-non-expansive maps is a

subclass of paracontractions. However, the converse is not true.

Lemma 2.2.3 For a nonempty closed convex set F and constant α ∈ (0, 2), the

α-relaxed projection T defined in (2.5) and ΠF have the same set of fixed points.

Proof Suppose x is a fixed point of ΠF , i.e. x = ΠF(x). It follows that

T (x) = (1− α)x+ αΠF(x) = (1− α)x+ αx = x,

i.e. x is also a fixed point of T .

On the other hand, suppose x is a fixed point of T , i.e.

x = T (x) = (1− α)x+ αΠF(x)

which directly leads to x = ΠF(x).

Proposition 2.2.1 ( [74]) 1 For a nonempty closed convex set F and α ∈ (0, 2),

the α-relaxation map T defined in (2.5) is 2−α
α

-strongly quasi-non-expansive.

Proof Let x ∈ Rn be arbitrary and y ∈ Rn be a fixed point of T . Then,

‖T (x)− y‖2 = ‖(1− α)x+ αΠF(x)− y‖2

= ‖x− y‖2 + α2‖ΠF(x)− x‖2 + 2α〈x− y,ΠF(x)− x〉

= ‖x− y‖2 − 2− α
α
‖T (x)− x‖2

+
2− α
α
‖T (x)− x‖2 + α2‖ΠF(x)− x‖2 + 2α〈x− y,ΠF(x)− x〉

1This proof is based on private communication with Professor Ji Liu from Stony Brook University.
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By plugging the definition of T (x) in (2.5), into the last line and combining similar

terms, we have

‖T (x)− y‖2

= ‖x− y‖2 − 2− α
α
‖T (x)− x‖2 + 2α‖ΠF(x)− x‖2 + 2α〈x− y,ΠF(x)− x〉

= ‖x− y‖2 − 2− α
α
‖T (x)− x‖2 + 2α〈ΠF(x)− y,ΠF(x)− x〉

≤ ‖x− y‖2 − 2− α
α
‖T (x)− x‖2,

where the last inequality follows from the property (c.) of the orthogonal projection.

2.3 Resolvent and Cayley Operators

In this section, we introduce the resolvent and reflected resolvent (i.e., Cayley

operator) associated with monotone operators.

Definition 2.3.1 For a monotone operator T and a constant ρ > 0, its resolvent

JρT and reflected resolvent (Cayley operator) RρT are

JρT = (I + ρT )−1, RρT = 2JρT − I.

As shown in Chapter 6 of [59] and Chapter 23 of [58], the resolvent and reflected

solvent enjoy the following properties.

Theorem 2.3.1 ( [59], [58]) For an operator T and constant ρ > 0, the following

holds:

a. 0 ∈ T (x) if and only if x = JρT (x) = RρT (x).

b. If T is monotone, RρT is non-expansive and thus JρT is 1/2-averaged;

c. If T is maximal monotone, dom JρT = domRρT = Rn.
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When the function f(x) on Rn is CCP, its subdifferential ∂f(x) is a maximal

monotone operator, whose resolvent turns out to be its proximal operator given as

follows:

Jρ∂f (x) = proxρ∂f (x) := argmin
z

(
f(z) +

1

2ρ
‖z − x‖2

)
, ∀x ∈ dom f. (2.6)

As a special case, when f(x) = ıA(x) for a nonempty convex closed set A ∈ Rn,

the resolvent of its subdifferential ∂ıA (i.e., the normal cone NA) is the projection

operator, specifically,

Jρ∂ıA(x) = ΠA(x), ∀x ∈ Rn.

Note that the evaluation of Jρ∂ıA(x) does not depend on the parameter ρ.

Next we introduce the generalized (or preconditioned) resolvent from [58, 67],

whose properties are summarized in the following Theorem 2.3.2, an analogue of

Theorem 2.3.1.

Definition 2.3.2 For a monotone operator T and constant matrix P � 0, the gen-

eralized resolvent JPT and reflected resolvent RP
T (preconditioned by P ) are defined

as

JPT = (I + P−1T )−1, RP
T = 2JPT − I. (2.7)

Theorem 2.3.2 ( [58,67]) For a monotone operator T and a matrix P � 0, the

following holds:

a. 0 ∈ T (x) if and only if x = JPT (x) = RP
T (x);

b. If T is monotone, RP
T is non-expansive and thus JPT is 1/2-averaged function

w.r.t. the P -norm defined as ‖x‖P =
√
x>Px.

The P -preconditioned resolvent enjoys the following nice property.
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Lemma 2.3.1 Suppose the CCP function f(x) : Rn → R is block separable as f(x) =∑
i∈Im fi(xi), where for each i ∈ Im, fi(xi) : Rni → R is CCP, and

∑
i∈Im ni = n.

Then for the preconditioned matrix

P = diag {P1, . . . , Pm} , Pi � 0, i ∈ Im,

the P-preconditioned resolvent of ∂f can be evaluated as

JP∂f (x) =
(
JPi∂fi(xi)

)
i∈Im

.

Proof The P-preconditioned resolvent x′ = JP∂f (x) is equivalent to x ∈ x′+P−1∂f(x′).

Combined with the fact that ∂f(x′) =
(
∂fi(x

′
i)
)
i∈Im

resulted from the assumption

f(x) =
∑

i∈Im fi(xi), we have ∀i ∈ Im, xi ∈ x′i + P−1
i ∂f(x′i), i.e., x′i = JPi∂fi(xi). This

completes the proof.

Remark 2.3.1 Here are two special cases of Lemma 2.3.1: (a) when P = (1/ρ)In,

the P -preconditioned resolvent degrades to the canonical case Jρ∂f and Jρ∂f (x) =

(Jρ∂fi(xi))i∈Im (or proxρf (x) =
(
proxρfi(xi)

)
i∈Im

); (b) for the indicator function

ıC(x) =
∑

i∈Im ıCi(xi) and Pi = (1/ρi)Ini , ρi > 0,∀i ∈ Im, we have JP∂ıC (x) = ΠC(x)

for any x ∈ Rn.

2.4 Douglas-Rachford Splitting

As will be seen later in Chapters 4 and 5, many optimization problems can be

eventually formulated as finding a point x such that

0 ∈ T (x)

for some maximal monotone operator T , which is equivalent to finding a fixed point

of its resolvent JρT for some constant ρ > 0. Then a solution can be obtained by

adopting the well known fixed point iteration

xt+1 = JρT (xt),
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when JρT is averaged with its fixed point set being the same as the zero set of T .

However, as the complexity of the operator T increases, it becomes difficult or even

impossible to evaluate its resolvent JρT (x) directly.

In many practical problems, the maximal monotone operator T can be written as

the sum of (relatively) simpler operators in the following form:

T = T1 + T2, or T = T1 + T2 + T3,

where the computations of JρT1 , JρT2 , JρT3 are much cheaper than the direct compu-

tation of JρT . In this section, we introduce the two-operator splitting methods which

utilize the cheaper JρT1 , JρT2 to compute JρT . For the three-operator splitting method,

interested readers can refer to [75] for details.

Suppose a maximal monotone operator T admits the splitting T = T1 + T2 for

some maximal monotone operators T1 and T2. Then, for ρ > 0 and α ∈ (0, 1), the

following holds [76–78]

0 ∈ (T1 + T2)(x) ⇐⇒ x = JρT2(z), z = (2JρT1 − I)(2JρT2 − I)(z)

⇐⇒ x = JρT2(z), z =
(

(1− α)I + α(2JρT1 − I)(2JρT2 − I)
)

(z),

where the latter equivalence results from the property of α-averaged operators. When

the last splitting setup is used for the fixed point iteration, the convergence result is

stated in the following Theorem 2.4.1.

Theorem 2.4.1 (Douglas-Rachford splitting) Let T1, T2 be maximal monotone

operators and constant scalars α ∈ (0, 1) and ρ > 0. Then starting from any initial

points z0, with the iterations being

xt+1 = JρT2(z
t), (2.8a)

zt+1 = zt + 2α
(
JρT1(2x

t+1 − zt)− xt+1
)
, (2.8b)

the sequence {xt} generated by (2.8) will converge to a point x∗ ∈ zer(T1 + T2).

As shown in Proposition 4.2.1 in [67], when JρT1 and JρT2 are replaced by their

generalized resolvents JPT1 and JPT2 , respectively, the convergence result stays valid, as

restated in the following Theorem 2.4.2.
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Theorem 2.4.2 (Preconditioned Douglas-Rachford splitting) Let T1, T2 be max-

imal monotone operators, constant scalar α ∈ (0, 1) and matrix P � 0. Then starting

from any initial points z0, with the iterations being

xt+1 = JPT2(z
t), (2.9a)

zt+1 = zt + 2α
(
JPT1(2x

t+1 − zt)− xt+1
)
, (2.9b)

the sequence {xt} generated by (2.9) will converge to some x∗ ∈ zer(T1 + T2).

The Douglas-Rachford splitting method and its preconditioned version will be

used in Chapters 4 and 5 to derive the distributed solutions to coupled optimization

problems on agent networks.

2.5 Saddle Functions and Saddle Points

For the constrained optimization problems to be studied in Chapters 4 and 5,

when strong duality holds, the minimizer set has a one-to-one correspondence with

the saddle point set of their corresponding Lagrange functions, which are instances of

saddle functions. In this section, we review some basic concepts and properties about

saddle functions and saddle points.

2.5.1 Saddle Functions

Let K : X × Y → R be an extended-real-valued function defined on the product

of two Euclidean spaces X and Y .

Definition 2.5.1 ( [79]) K is called a saddle function on X × Y if K(x, y) is a

convex function of x for each fixed y and a concave function of y for each fixed x. The

saddle function K is closed if K(x, y) is lower semicontinuous in x for each fixed y

and upper semicontinuous in y for each fixed x. The effective domain of K is defined

as

domK := {(x, y) ∈ X × Y |K(x, y′) < +∞, ∀y′ ∈ Y and K(x′, y) > −∞, ∀x′ ∈ X},
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and K is called proper if domK 6= ∅.

Followed are several common instances of saddle functions.

a. K(x, y) = f(x) − g(y) + xTAy is a saddle function where f ∈ R and g ∈ R

are convex functions and xTAy is bilinear for some matrix A. K is closed and

proper if both f and g are CCP functions.

b. For the optimization problem minx∈Rn{f(x) | g(x) ≤ 0} where f ∈ R and g ∈

Rm are convex functions, the Lagrange function L(x, y) = f(x) + 〈y, g(x)〉 −

ıR+(y) with the set R+ = {y | y ≥ 0} is a saddle function. It is closed and proper

if both f and g are CCP functions.

c. Let C ⊂ X and D ⊂ Y be convex subsets. Define

µC×D(x, y) := ıC(x)− ı(C×Dc)c(x, y) =


0 if x ∈ C and y ∈ D

−∞ if x ∈ C and y 6∈ D

+∞ if x 6∈ C,

(2.10)

where (C×Dc)c = (X×Y )\ (C× (Y \D)). Then µC×D is a saddle function on

X × Y with domain C ×D. It is closed and proper if both C and D are closed

and nonempty.

2.5.2 Saddle Points

Definition 2.5.2 For the saddle function K, a point (x∗, y∗) ∈ X × Y is called a

saddle point if

K(x∗, y) ≤ K(x∗, y∗) ≤ K(x, y∗), ∀x ∈ X, y ∈ Y. (2.11)

In other words, x∗ is a minimizer of K(·, y∗) and y∗ is a maximizer of K(x∗, ·). In

this case, we must have supy infxK(x, y) = infx supyK(x, y) = K(x∗, y∗). If K is the

payoff function of a zero-sum two-player game, then its saddle points are exactly the

Nash equilibria.
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General saddle functions may have no saddle points. A sufficient condition for the

existence of saddle points based on the Sion’s Minimax Theorem [80] is given below.

Proposition 2.5.1 ( [80]) Suppose K is a real-valued closed saddle function on

X × Y . Let C ⊂ X and D ⊂ Y be two nonempty compact convex subsets. Then

minx∈C maxy∈DK(x, y) = maxy∈D minx∈C K(x, y). Moreover, (x∗, y∗) with x∗ =

argmin
x∈C

max
y∈D

K(x, y) and y∗ = argmax
y∈D

min
x∈C

K(x, y) is a saddle point of K + µC×D

with µC×D defined in (2.10).

2.5.3 Saddle Subdifferential Operators

For the saddle function K on X × Y , a set-valued operator TK : X × Y → 2X×Y

can be defined by

TK(x, y) =

 ∂xK(x, y)

∂y(−K)(x, y)

 , ∀(x, y) ∈ X × Y. (2.12)

Here, ∂xK(x, y) denotes the subdifferentials (set of subgradients) of the convex func-

tion K(·, y) at the point x; similarly for ∂y(−K)(x, y). In [59], TK is referred to

as the saddle subdifferential operator of K. The domain of TK is domTK :=

{(x, y) |TK(x, y) 6= ∅}. The zero set of TK is zer(TK) := {(x, y) | 0 ∈ TK(x, y)}.

The condition (2.11) for a point (x∗, y∗) to be a saddle point of K is equivalent to

0 ∈ ∂xK(x∗, y∗) and 0 ∈ ∂y(−K)(x∗, y∗), i.e., 0 ∈ TK(x∗, y∗). We thus have the

following results.

Proposition 2.5.2 ( [86]) The set of saddle points of K is zer(TK).

Theorem 2.5.1 ( [79]) Let K be a saddle function on X × Y . If K is proper, then

TK is a monotone operator with the domain domTK ⊂ domK. If K is proper and

closed, then TK is a maximally monotone operator.

By the result in Theorem 2.5.1 above, TK is maximally monotone for a closed

proper saddle function K. Its resolvent with ρ > 0, denoted by JρTK , is an averaged
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operator with the fixed point set Fix(JρTK ) = zer(TK) being exactly the set of saddle

points of K. The iteration (xk+1, yk+1) = JρTK (xk, yk), being the iteration of an

averaged operator, will converge to a point in Fix(JρTK ) and hence a saddle point of

K.

Next we characterize how JρTK can be computed. For any (x, y) ∈ X×Y , (p, q) =

JρTK (x, y) if and only if

(x, y) ∈ (I + ρTK)(p, q)

⇔ (x, y) ∈ (p+ ρ∂pK(p, q), q + ρ∂q(−K)(p, q))

⇔

0 ∈ ∂pK(p, q) + (p− x)/ρ

0 ∈ ∂q(−K)(p, q) + (q − y)/ρ

(2.13a)

⇔

p = argminp∈X K(p, q) + 1
2ρ
‖p− x‖2

q = argmaxq∈Y K(p, q)− 1
2ρ
‖q − y‖2

(2.13b)

⇔ (p, q) is a saddle point of K(p, q) +
1

2ρ

(
‖p− x‖2 − ‖q − y‖2

)
. (2.13c)

The above equivalent conditions can be used to compute JρTK for certain families

of saddle functions.

a. Suppose K(x, y) = f(x)+ 〈y, Ax− b〉 is the Lagrange function for the optimiza-

tion problem of minimizing f(x) subject to Ax = b. The corresponding TK is

called the KKT operator [59]. In particular, (2.13a) becomes

0 ∈ (p− x)/ρ+ ∂f(p) + AT q, (q − y)/ρ = Ap− b.

The second equation implies q = y + ρ(Ap − b), which when plugged into the

first one yields 0 ∈ ∂f(p) + (p− x)/ρ+ ATy + ρAT (Ap− b). In other words,p = argminz Lρ(z) + 1
2ρ
‖z − x‖2

q = y + ρ(Ap− b).

Here, Lρ(z) := f(z) + 〈y, Az − b〉 + ρ
2
‖Az − b‖2 is the augmented Lagrange

function.
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b. Consider the saddle function

K(x, y) =
1

2

x
y

T Σ1 Σ2

ΣT
2 −Σ3

x
y

+

b1

b2

T x
y


where Σ1,Σ3 � 0. Then (2.13a) leads to

JρTK (x, y) = (I + ρΣ)−1

x− ρb1

y + ρb2

 (2.14)

where Σ =

 Σ1 Σ2

−ΣT
2 Σ3

. If Σ is nonsingular, there is a unique saddle point

Σ−1
[
−bT1 bT2

]T
. In the special case of Σ1 = 0 and Σ3 = 0, the result becomes:p =

(
I + ρ2Σ2ΣT

2

)−1
(x− ρb1 − ρΣ2y − ρ2Σ2b2)

q = y + ρb2 + ρΣT
2 p.

(2.15)

c. For the saddle function µ in Example 2.5.1 (iii), its resolvent is JρTµ = ΠC×ΠD,

i.e., JρTµ(x, y) = (ΠC(x),ΠD(y)).

The following result will be useful later on. Its proof is straightforward and hence

omitted.

Proposition 2.5.3 (Separable K) Suppose K(x, y) = K1(x1, y1)+· · ·+Km(xm, ym)

is separable. Here, x = (x1, . . . , xm) ∈ X = X1 × · · · ×Xm, y = (y1, . . . , ym) ∈ Y =

Y1× · · · × Ym, and Ki(xi, yi) is a closed proper saddle function on Xi× Yi for each i.

Then, (p, q) = JρTK (x, y) is given by p = (p1, . . . , pm) and q = (q1, . . . , qm) where

(pi, qi) = JρTKi (xi, yi) for each i.

2.6 Some Useful Notions

For a stochastic matrix A ∈ Rm×m, its associated graph G is defined to have the

vertex set Im and a directed edge (j, i) from vertices j to i whenever the entry in i-th

row and j-th column is positive, i.e., [A]ij > 0.



26

A finite sequence of graphs G1, . . . ,GT with the same vertex set Im is jointly

strongly connected if their union G1 ∪ · · · ∪ GT is strongly connected. Here the

union G1∪ · · · ∪GT is the directed graph with the same vertex set Im and an edge set

that is the union of individual graph’s edge set. An infinite sequence of graphs {Gt}

is repeatedly jointly strongly connected if there exists a length T > 0 such that

every T successive graphs from {Gt} is jointly strongly connected.

A vector is stochastic if all entries are nonnegative and sum to one and a

matrix is stochastic when all of its row vectors are stochastic.

A matrix A ∈ Rn×n is an M-matrix [81] if: a) each off-diagonal entry is non-

positive; and b) A is invertible and and its inverse A−1 has no negative entries.

For n ≥ m, suppose the rows and columns of a square matrix A ∈ Rn×n can be

partitioned in the same way into m×m non-empty blocks and denote by Aij the block

in the i-th row and j-th column. Then the matrix A is block diagonally dominant

if

‖A−1
ii ‖−1 ≥

∑
j∈Im,j 6=i

‖Aij‖, ∀i ∈ Im,

and is block strictly diagonally dominant if every strict inequality holds in the

expression above.

Theorem 2.6.1 ( [82] Theorem 9) If a matrix A is block strictly diagonally dominant

and each diagonal block of A is an M-matrix, then all eigenvalues of A has positive

real part.
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3. CONVEX FEASIBILITY PROBLEMS WITH LOCALLY

COUPLED CONSTRAINTS

In this chapter, we consider the convex feasibility problems on agent networks where

each agent’s constraint depends on its neighbors’ variables in addition to its own

variable. The dependence relation is depicted by a directed graph. When the cou-

plings across agents are sparse, implying that the dependence graph is (relatively)

simple, the algorithms proposed in this chapter could take advantage of this sparsity

to significantly reduce the storage and communication amount required for individual

agent.

3.1 Problem Formulation

Consider a set of m agents indexed by Im. Assume each agent i ∈ Im maintains a

(local) variable xi ∈ Rni of its own, which needs to satisfy a constraint of the following

form:

xi ∈ Di
(

(xj)j∈N+
i

)
. (3.1)

Here, N+
i ⊂ Im \ {i} is a set of agents whose variables are needed to determine the

feasible set of xi; (xj)j∈N+
i

is the stacked vector of all the variables of agents in N+
i ;

and Di
(

(xj)j∈N+
i

)
is a subset of Rni which may vary with (xj)j∈N+

i
. Equivalently,

the constraint (3.1) can be written as(
xi, (xj)j∈N+

i

)
∈ Fi, (3.2)

where Fi is a suitably chosen subset of the product space of xi and (xj)j∈N+
i

.

The constraint (3.1) on the variable of agent i is in general non-local as it depends

on the variables of other agents in N+
i . In the case of N+

i = ∅, the feasible set Di
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becomes a fixed subset of Rni and the constraint on xi becomes local. Due to privacy

concern, the constraint Fi (thus Di) is assumed to be private to each agent i ∈ Im
while the local variable xi is shared with other neighboring agents.

Example 3.1.1 Consider the example shown in Fig. 3.1. There are four agents with

the local variables xi and the local constraints Fi, i ∈ I4. In Fig. 3.1, the local

variables are labeled on the right; the local constraints are labeled on the left; the solid

lines represent the constraint couplings across agents. Except for agent 1, the local

constraint of every other agent is non-local.

Fig. 3.1. Dependence Illustration of Example 3.1.1.

A directed graph Gd, called the (constraint) dependency graph, can be constructed

to represent the interdependency of the agents’ feasibility: Gd has the vertex set Im
and a directed edge from j to i, denoted as (j, i), whenever the feasible set of xi

depends on xj. Note that there is no self-loop in Gd. See the left of Fig. 3.2 for Gd of

Example 3.1.1. The aforementioned set N+
i is exactly the in-neighborhood of vertex

i in Gd; thus we call agents indexed by N+
i the in-neighbors of agent i. Similarly,

the out-neighborhood of vertex i in Gd, denoted by N−i ⊂ Im \ {i}, indexes the

out-neighbors of agent i, namely, agents whose variables’ feasibility depends (at least
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partially) on the value of xi. The two neighborhoods N+
i and N−i may overlap or

even be identical (see Example 3.1.3 below). Denote by Ni := N+
i ∪N−i the neighbors

of agent i.

Since the agents’ constraints are coupled, to ensure feasibility they need to com-

municate with each other to share their local variables (but not their local constraints

due to privacy consideration). The allowable communication among agents is repre-

sented by the communication graph Gc, which is a directed graph with the vertex set

Im and the edge set such that a directed edge from j to i exists whenever agent i can

receive information from agent j via direct communication.

Assumption 3.1.1 (Communicability) The communication graph Gc contains the

union of Gd and its transpose G>d 1.

Assumption 3.1.1 implies that each agent can have two-way communications (i.e.

send information to and receive information from) with any of its in-neighbors and

out-neighbors. In other words, the communication is bi-directional between two

agents whenever one’s feasibility depends on the other’s variable. See the right of

Fig. 3.2 for Gc of Example 3.1.1. The following Example 3.1.2 demonstrates why the

bidirectional communication is necessary.

Fig. 3.2. Dependence graph (left) and communication graph (right) of
Example 3.1.1.

1The transpose graph GTd is obtained by reversing the direction of every edge of Gd.
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Example 3.1.2 Consider two agents with local variables x1, x2 ∈ R and local con-

straints

F1 : x1 = x2, x1 ≤ 5 and F2 : 4 ≤ x2 ≤ 7,

respectively. The dependence graph Gd has only one edge (2, 1). Assume x1(0) = 5,

x2(0) = 6. If agent 2 can not obtain information from agent 1, it will stick to its

initial value and never reach consensus with agent 1 on the value of x2.

Example 3.1.3 The linear equation Ax = b with

A =


1 0 −1

1 1 1

0 1 1

 and b =


0

0

−1

 (3.3)

has a unique solution x∗ = A−1b = (1,−2, 1). Partition x ∈ R3 into x = (x1, x2)

where x1 ∈ R2 and x2 ∈ R are the variables of agents 1 and 2, respectively. With the

row (constraint) partitions of A and b in (3.3), the private constraint of agent 1 is

underdetermined for x1:
[
1 0

]
x1− x2 = 0, while the private constraint of agent 2 is

overdetermined for x2: 1 1

0 1

x1 +

1

1

x2 =

 0

−1

 .
The neighbor sets of the two agents are given by N+

1 = N−1 = {2} and N+
2 =

N−2 = {1}, resulting in the corresponding dependence graph Gd with the edge set

{(1, 2), (2, 1)}.

Finally we formulate the problem to be studied in this chapter as bellow.

Problem 3.1 (Distributed Feasibility Problem) Design distributed algorithms

consistent with the communication graph and maintaining the privacy of individual

agents’ constraints so that a value of (xi)i∈Im can be (asymptotically) obtained that

satisfies the private constraints of all agents.
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Denote x := (xi)i∈Im ∈ Rn where n =
∑

i∈Im ni. The following assumptions are

imposed throughout this chapter.

Assumption 3.1.2 (Feasibility) There exists at least one x that satisfies all m

constraints in (3.2).

Assumption 3.1.3 (Convexity) The feasible set Fi in (3.2) is nonempty, closed

and convex for each i ∈ Im.

As a consequence of Assumption 3.1.3, the feasible set Di
(

(xj)j∈N+
i

)
in (3.1) is

also convex.

For the non-feasible problems where Assumption 2 does not hold, there is no

x = (xi)i∈Im satisfying all private constraints. In this case, we will seek the secondary

goal of finding x̃ that is ”closest” to the value that satisfies all the private constraints.

More specifically, x is called δ-feasible if the distance of (xi, (xj)j∈N+
i

) to the feasible

set Fi is at most δ ≥ 0 for each i ∈ Im. We will look for x̃ such that it is δ-feasible

for the smallest possible δ (which we denote by δmin). This secondary problem can

be solved via Problem 3.1 by enlarging all the private feasible sets, i.e., by replacing

the private constraints with(
xi, (xj)j∈N+

i

)
∈ F̃i = Fi + δBi, i ∈ Im, (3.4)

where Bi is the unit ball with dimension ni and δ ≥ 0. Note that the enlargement

size δ is identical for all feasible sets. See Fig. 3.3 for illustration.

The desired x̃ and δmin can be computed via solving a series of Problem 1: first

solve Problem 3.1 with private constraints (3.4) with a large enough δ0, and then

gradually decrease δ and solve the corresponding feasibility problem until it becomes

infeasible. The obtained sequence of feasible solution x∗ and δ will converge to x̃ and

δmin, respectively.

3.2 Application Examples

Three instances of Problem 3.1 are presented below.
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Fig. 3.3. Enlarge private feasible sets F̃1 :=
{
x
∣∣∣ (x1, (xj)j∈N+

1

)
∈ F2

}
and

F̃2 :=
{
x
∣∣∣ (x2, (xj)j∈N+

2

)
∈ F2

}
by size δmin to get the common feasible

point y.

3.2.1 Distributed Solution of Linear Programs/Equations

Let A ∈ R`×n, b ∈ R` be such that the linear program Ax ≤ b has at least

one feasible solution x∗. Suppose that different portions of the variable x and the

inequalities are held separately by a group of agents indexed by Im, i.e., there exist

the block partitions x = (x1, · · · , xm),

[
A B

]
=


A11 · · · A1m b1

...
. . .

...
...

Am1 · · · Amm bm


so that agent i ∈ Im has ni variables, xi ∈ Rni , and `i private linear inequality

constraints, Ai1x1+· · ·+Aimxm ≤ bi ∈ R`i . Here, we assume ni, `i ≥ 0 with
∑

i ni = n

and
∑

i `i = `; and “≤” denotes entry-wise comparison. Agent i has the neighbor

sets N+
i = {j ∈ I |Aij 6= 0} and N−i = {j ∈ I |Aji 6= 0} and its constraint can be

recast as Aiixi +
∑

j∈N+
i
Aijxj ≤ bi. Distributed solution of the above linear program

(and as a special case, the linear equation Ax = b) is an instance of Problem 3.1.

Example 3.1.3 is one such instance.
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Example 3.2.1 Consider the linear program −ε1 ≤ Ax−b ≤ ε1 with x = (x1, x2, x3) ∈

R3,

A =


1 0 −1

0 0 1

0 1 1

 , b =


1

−1

1

 , 1 =


1

1

1

 . (3.5)

There are three agents with the variables x1, x2, x3 ∈ R and the following private

constraints, respectively: |x1 − x3 − 1| ≤ ε for agent 1; |x3 + 1| ≤ ε for agent 2;

and |x2 + x3 − 1| ≤ ε for agent 3. Their neighbor sets are N+
1 = {3}, N−1 = ∅;

N+
2 = N−2 = {3}; N+

3 = {2} and N−3 = {1, 2}. Note that the constraint of agent

2 does not involve its own variable x2, which is allowed in our problem formulation.

Further, x∗ = A−1b = (0, 2,−1) is a feasible solution for any ε ≥ 0.

3.2.2 Network Localization

Consider a group of agents (sensors, robots, vehicles) deployed on R2 with un-

known locations xi ∈ R2, i ∈ I. Suppose each agent i ∈ I is equipped with sensors

that can measure its relative distance and/or orientation w.r.t. some other agents

j ∈ N+
i within its sensing range.

(i) Relative orientation (Angle-of-Arrival) measurement: the direction of the vector

xj − xi is measured against a compass onboard agent i. This imposes a constraint

as ∠(xj − xi) ∈ Θij, where ∠ denotes the phase angle and Θij is a singleton {θij}

if the measurement is precise and an interval [θij − δ, θij + δ] if the measurement is

imprecise.

(ii) Relative distance measurement: the distance ‖xj − xi‖ is measured using, e.g.,

the strength of signal received by agent i from agent j. This incurs a constraint as

r1 ≤ ‖xi − xj‖ ≤ r2.

The private constraint of agent i consists of all the above constraints for j ∈ N+
i .

The network localization problem is to find the locations of all agents consistent with

the measurement data. This is an instance of Problem 3.1 if r1 = 0.
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3.2.3 Comfort Assurance in Multi-Zone Buildings

Consider a building with multiple thermal zones indexed by Im. The thermal

dynamics of zone i is

xi(k + 1) = Aiixi(k) +
∑

j∈Ni Aijxj(k) +Biui(k) + Fiwi(k), k = 0, 1, . . . , (3.6)

where xi is the state variable, ui the local cooling/heating control input, and wi the

(predicted) external perturbations, of zone i. Ni consists of all those zones with

thermal exchanges with zone i. Given the time horizon k = 0, 1, . . . , N , the objective

is to determine if there exist control sequences ui(k), k = 0, . . . , N − 1, for all zones

i ∈ Im satisfying the following constraints:

(a) Comfort constraint: xi(k) ∈ Xi for some compact convex sets Xi, ∀k, i ∈ Im;

(b) Peak demand constraint:
∑

i∈Im φi(ui(k)) ≤ φmax, ∀k, where φi(·) are convex

functions.

(c) Dynamics constraints as given by (3.6).

The above problem can be cast as a distributed feasibility problem. Each zone i

can be identified as an agent with the variable (xi(k+1), ui(k))0≤k≤N−1. Alternatively,

one can assign the variable yik = (xi(k + 1), ui(k)) to an agent (ik) for the zone i at

time k. The latter will result in a larger but more sparsely connected dependency

graph Gd. For illustration, consider the example of three offices with the simple layout

in Fig. 3.4, where only adjacent rooms have thermal exchanges. Given the prediction

horizon N = 3, the constraint couplings across agents are shown in Fig.3.5.

Fig. 3.4. Layout of three offices

In Fig. 3.5, a blue box associated with each time k indicates the coupling induced

by the peak demand constraint at this moment; the ’L’ or ’T’ shaped dashed line boxes
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(a) Agents at k = 0

(b) Agents at k = 1 (c) Agents at k = 2

Fig. 3.5. Three offices: constraint couplings across agents. In three fig-
ures, the blue solid line boxes represent the couplings at each time step
induced by peak demand constraints while the dashed line boxes show
the couplings induced by dynamics constraints where figure (a) is for the
three agents at time k = 0, (b) for agents at k = 1, and (c) for agents at
time k = 2 and the orange, gray, and green dashed lines are for agents
1, 2, 3, respectively.

show the spatial and temporal dynamics couplings among agents, e.g., the orange

’L’ shaped dashed line box in the figure (b) means that, for the local variable y11 of

agent 11, the local constraint induced by dynamics also involves the other two agents’

variables, y10 and y20, induced by the temporal and spatial couplings, respectively;

since the comfort constraints are always local, the corresponding couplings are not

shown in the figure. Note that the couplings exist only ’locally’ between one agent

and its ’close’ neighbors, which consist of spatially and temporally adjacent agents.
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3.3 Problem Reformulation

We first present an equivalent formulation of Problem 3.1. Suppose besides its

own variable xi, agent i maintains an additional set of variables, (xji)j∈N+
i

, where

xji represents the value of agent j’s variable as desired by agent i (which could differ

from the actual value of xj). Define

xi :=
(
xi, (xji)j∈N+

i

)
to be the augmented variable of agent i with the dimension Ni = ni+

∑
j∈N+

i
nj. Then

the totality of all xi’s, denoted by x := (xi)i∈Im , has dimension N =
∑

i∈Im Ni. For

sparse dependency graph Gd, N � mn. With xi’s, Problem 3.1 can be reformulated

as follows.

Problem 3.2 Design distributed algorithms consistent with the communication graph

Gc so that a value of x is asymptotically obtained that satisfies,

xi ∈ Fi, ∀i ∈ Im, (3.7)

xi = xik, ∀i ∈ Im, ∀k ∈ N−i . (3.8)

The constraint (3.7) is from (3.2) with xj replaced by xji, which is local as it

only involves agent i’s augmented variable xi. The consensus constraint (3.8) ensures

agent i’s variable xi to be the same as that desired by its out-neighbors, inducing the

non-local consensus set

Ci := {(xi, (xik)k∈N−i ) |xi = xik, ∀k ∈ N−i }. (3.9)

Define

A1 = F1 × · · · × Fm, A2 = M> (C1 × · · · × Cm) (3.10)

to be the feasible set and consensus subspace of x, respectively, where M ∈ RN×N is

a permutation matrix so that each variable xi and its desired values by out-neighbors,

xik, k ∈ N−i , are put consecutively in a block in the order of i = 1, . . . ,m. Clearly,

A1 ∩ A2 is the solution set of Problem 3.2.



37

It is easy to see that the solutions to Problems 3.1 and 3.2 have a one-to-one

correspondence; hence they are equivalent. By Assumption 3.1.2, Problem 3.2 has a

feasible solution x∗ = (x∗i )i∈Im . Next we present four algorithms to solve Problem 3.2

(and thus Problem 3.1).

3.4 Distribued Synchronous/Asynchronous Algorithms

This section summarizes the four algorithms we proposed to solve Problem 3.1,

which include the synchronous/asynchronous algorithms and the synchronous algo-

rithm with general weights algorithm.

3.4.1 Synchronous Algorithm

The first algorithm iteratively solves Problem 3.2 with all agents updating syn-

chronously in each iteration. The update at round t consists of two stages: first each

agent i updates its augmented variable from xti to zti via the (relaxed) projection

operator Pi onto its local feasible set Fi as in (3.11); then, each agent i simultane-

ously collects from its out-neighbors their updated desired values of xi, (ztik)k∈N−i , to

obtain xt+1
i via the consensus operation (3.12), and broadcasts xt+1

i back to all of

its out-neighbors as their updated values xt+1
ik as in (3.13). The iterations above are

detailed below and summarized in Algorithm 1.

(i) (Relaxed projection)

Agent i computes zti := (zi, (zji)j∈N+
i

) from xti via the relaxed projection oper-

ation

zti = Pi(x
t
i) := (1− αi)xti + αi · PFi (xti) . (3.11)

Here, PFi denotes the orthogonal projection operator onto the local feasible set

Fi and αi ∈ (0, 2) is a constant.

(ii) (Consensus)
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Agent i collects (ztik)k∈N−i from its out-neighbors to update its variable according

to

xt+1
i = Qi(z

t
i , (z

t
ik)k∈N−i ) := 1

|N−i |+1

(
zti +

∑
k∈N−i

ztik

)
, (3.12)

and then sends back xt+1
i to out-neighbors for updating

xt+1
ik = xt+1

i , k ∈ N−i . (3.13)

If agent i has no out-neighbors, i.e., N−i = ∅, the update (3.12) will be trivial:

xt+1
i = zti .

Algorithm 1 Synchronous Algorithm

1: Initialize x0 and let t← 0;

2: repeat

3: for all i ∈ Im do {Relaxed projection}

4: Agent i computes zti according to (3.11);

5: end for

6: for all i ∈ Im do {Consensus}

7: Agent i receives ztik from all out-neighbors k;

8: Agent i computes xt+1
i according to (3.12);

9: Agent i sends back xt+1
i to all out-neighbors for updating xt+1

ik as in (3.13);

10: end for

11: t← t+ 1;

12: until certain convergence criteria are met

13: Return xt.

In Algorithm 1, all agents update their augmented variables in parallel at each

round. Intuitively the relaxed projection (3.11) helps to improve the satisfaction of

the local feasibility constraint (3.7) while the consensus step (3.12) together with the

broadcast step (3.13) helps to reach consensus on the value of xi among agent i and

its out-neighbors.
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Note that in Algorithm 1, each agent only communicates with its out-neighbors

in the consensus step and this communication is bidirectional, which is allowed by

Assumption 3.1.1.

The convergence properties of the synchronous algorithm are characterized by the

following two theorems whose proofs will be provided in Section 3.5.1.

Theorem 3.4.1 Starting from any initial guess x0, the sequence {xt} generated by

Algorithm 1 will converge asymptotically to a feasible solution to Problem 3.2.

Theorem 3.4.2 Suppose that there exists a feasible solution xo ∈ Rn to Problem 3.1

such that for each i ∈ Im,
(
xo
i , (x

o
j)j∈N+

i

)
∈ Fo

i , i.e., an interior point of Fi. Then

Algorithm 1 with αi = 1 for all i ∈ Im converges exponentially fast to a feasible

solution of Problem 3.2 starting from any initial point.

Remark 3.4.1 The well-known projected consensus algorithm in [27,28], denoted as

Pro-Con, has been proved that the distance of each iteration to the feasible solution

set decays exponentially fast. This is weaker than the conclusion of Theorem 3.4.2

that the iterations themselves converge exponentially to one feasible solution. Without

taking account of the differences in implementation details, the main reason is that the

relaxed projection and consensus operations are paracontractions (see Definition 2.2.4

in Section 3.5) while the general weight consensus operation adopted in Pro-Con is

not.

3.4.2 Asynchronous Algorithm

The synchronous operations in Algorithm 1 can be difficult to ensure in prac-

tice, which is extended to be asynchronous in this section. At round t, each agent i

independently determines whether it will update or not and, if so, chooses one of

the following two operations to perform: carrying out the relaxed projection oper-

ation (3.11) to satisfy its local feasibility constraint; reaching consensus on its own
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variable xi with a subset of its out-neighbors, denoted by N−i,t ⊆ N−i , through the

averaging step

xt+1
i = Qt

i

(
xti, (x

t
ik)k∈N−i,t

)
:= 1
|N−i,t|+1

(
xti +

∑
k∈N−i,t

xtik

)
(3.14)

followed by the broadcast step (3.13) with N−i replaced by N−i,t. In other words,

depending on agent i’s update choice at round t, it will belong to one of the three

sets, the idle, projection, and consensus sets, denoted by Itidle, ItP , ItQ, respectively,

and then perform the corresponding operation. Note that Itidle, ItP and ItQ constitutes

a partition of Im. The Algorithm 2 bellow describes this asynchronous version.

Algorithm 2 Asynchronous Algorithm

1: Initialize x0 and set t← 0;

2: repeat

3: for all i ∈ Im do

4: Agent i idles

5: or

6: {Relaxed projection}

7: Agent i updates xt+1
i according to (3.11) with zti replaced by xti ;

8: or

9: {Partial consensus}

10: Agent i receives xtik from the out-neighbor k belonging to the subset N−i,t ⊆

N−i ;

11: Agent i computes xt+1
i according to (3.14);

12: Agent i sends xt+1
i back to its out-neighbors k ∈ N−i,t as their updated values

xt+1
ik ;

13: end for

14: t← t+ 1;

15: until certain convergence criteria are met

16: Return xt.
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Remark 3.4.2 (Algorithm 2b) A special case of Algorithm 2 is |N−i,t| = 1 in (3.14),

i.e., agent i ∈ ItQ performs its consensus operation with only one out-neighbor k ∈ N−i
that is either randomly picked or resulted from some extreme situations. In this case,

the equally weighted average (3.14) can be relaxed toxt+1
i

xt+1
ik

 = (Wik ⊗ Ini)

 xti
xtik

 . (3.15)

Here Wik ∈ R2×2 is a constant doubly stochastic matrix with strictly positive entires.

To carry out the update (3.15), agent i first collects xtik from agent k, then computes

the update values for both itself and agent k, and finally sends the latter xt+1
ik back

to agent k. With this relaxation, agent i may not reach consensus with any out-

neighbors, i.e., xt+1
i 6= xt+1

ik ,∀k ∈ N−i . We will refer to this relaxed algorithm as

Algorithm 2b and show its convergence in Theorem 3.4.4.

To establish the convergences of Algorithms 2 and 2b, we impose two assumptions.

Assumption 3.4.1 (Semaphore) At round t, for any agent i carrying out the par-

tial consensus operation (3.14), none of (active) its out-neighbors N−i,t in (3.14) will

be performing the relaxed projection operation, i.e., N−i,t ∩ ItP = ∅, ∀i ∈ ItQ.

This assumption implies that at each round, each variable either does not change

or changes only once resulted from the relaxed projection or partial consensus. This

is critical to establish the convergences later.

Assumption 3.4.2 (Infinite Appearances) (a) For each i ∈ Im, i ∈ ItP for in-

finitely many t ∈ {0, 1, . . .}; (b) Any pair of neighboring agents is involved in the

(partial) consensus operation (3.14) for an infinite number of times.

Assumption 3.4.2 is less restrictive than both periodic and uniformly repeated

appearances which require that the two operations in Assumption 3.4.2 are involved

once and at least once every T rounds, respectively, for a positive integer T . Note that

Assumption 3.4.2(b) imposes constraints on both ItQ andN−i,t, ∀i ∈ ItQ, such that their
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combinations will guarantee that any neighboring agents have enough communication

on their variables to reach consensus.

The following two theorems establish the convergences of Algorithms 2 and 2b,

respectively. Their proofs will be given later on in Section 3.5.3.

Theorem 3.4.3 Suppose Assumptions 3.4.1 and 3.4.2 hold. Starting from any initial

guess x0, the sequence {xt} generated by Algorithm 2 converges asymptotically to a

feasible solution to Problem 3.2.

Theorem 3.4.4 Suppose Assumptions 3.4.1 and 3.4.2 hold. Starting from any initial

guess x0, the sequence {xt} returned by Algorithm 2b will converge asymptotically to

a feasible solution to Problem 3.2.

3.4.3 Generalized Synchronous Algorithm

In this section, we generalize Algorithm 1 in two perspectives: (i) along the spirit of

Algorithm 2, each agent independently determines in each round if it will be activated

to perform updates and, if so, the type of updates to be carried out, (ii) time-varying

general weights are adopted in the consensus operation.

For the perspective (i), at round t only agents in the two subsets of Im, denoted by

ItP and ItQ, are assumed to perform the relaxed projection and consensus operations

of Algorithm 1, respectively. Note that this algorithm remains synchronous in a way

that all agents must finish the relaxed projection step before moving to the consen-

sus operation, which is different from the parallel implementation in Algorithm 2.

Therefore, ItP ∩ ItQ can be non-empty, i.e., an agent can participate in both the pro-

jection and the consensus operations. This extension accommodates the practical

situation that some agents may be unable to update due to temporary breakdown or

communication blackouts.



43

For the perspective (ii), the most straightforward generalization is replacing step

(3.12) of agent i ∈ ItQ by the following:

xt+1
i = wtiiz

t
i +

∑
k∈N−i

wtikz
t
ik, (3.16)

where wtii ∈ R and wtik ∈ R, k ∈ N−i are time-varying weights assigned by agent i

and satisfy that every weight is bounded from below by w > 0 and their sum is one.

Unfortunately, this generalization does not work in general, even in the simplest case

where the weights are constant and ItP = ItQ = Im, i.e., the extension (i) above is

removed. This is shown by Example 3.4.1.

Example 3.4.1 Consider the linear equation Ax = b where

A =


1 1 1

1 1 0

1 0 1

 , b =


0

0

0

 ,
which has a unique solution x = (x1, x2, x3) = 0. Suppose it is solved by three agents

each in charge of one component of x and one row constraint. Then the augmented

variables are x1 = (x1, x21, x31), x2 = (x2, x12), and x3 = (x3, x13). Suppose the

stochastic matrices in (3.16) are given by wt11 = 0.9, wt12 = 0.05, wt13 = 0.05, wt21 =

0.2, wt22 = 0.8, wt31 = 0.1, wt33 = 0.9. Assuming that ITP = ItQ = Im, the iteration

of Algorithm 3 can be written as xk+1 = Fxk for some matrix F ∈ R7×7. It can be

verified numerically that F has an eigenvalue 1.1246. Therefore, Algorithm 3 does not

converge to the solution 0 starting from some (indeed, almost all) initial guesses x0.

Instead of (3.16), the following operation is adopted to replace the consensus

step (3.12) and the broadcast step (3.13) in Algorithm 1:(
xt+1
i , (xt+1

ik )k∈N−i

)
= W t

i ⊗ Ini
(
zti , (z

t
ik)k∈N−i

)
. (3.17)

Here, W t
i ∈ R(|N−i |+1)×(|N−i |+1) is a time-varying weight matrix specified by agent i

that satisifies Assumption 3.4.3 to be defined below. In the case where agent i at
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round t receives desired values ztik from only a subset of out-neighbors, N−i,t ⊂ N−i ,

the rows and columns of W t
i corresponding to the other (silent) out-neighbors, i.e.,

N−i \N−i,t, are set to proper unit vectors as their desired values of xi remain unchanged

at this round. With this generalized weight matrix W t
i , the updated values for out-

neighbors, xt+1
ik , k ∈ N−i , will be different from xt+1

i in general, i.e., agent i does

not reach consensus with its out-neighbors on its variable xi at each round, which is

the main difference between (3.17) and the consensus step in (3.12). The potential

benefits of adopting W t
i include 1). speeding up the convergence by properly assigning

weights, especially when the desired values from some out-neighbors are known to be

more accurate/important than others, and 2). accommodating the practical situation

that agent i loses communication with some out-neighbors occasionally.

Assumption 3.4.3 (Weights Rule) For matrix W t
i , ∀t ≥ 0 and ∀i ∈ ItQ,

(a) W t
i is doubly stochastic;

(b) there is a scalar w > 0 such that entries of W t
i corresponding to all agents in

{i} ∪N−i,t are bounded from below by w, i.e., [W t
i ]kl ≥ w for all k, l ∈ {i} ∪N−i,t;

(c) for agent k ∈ N−i \N−i,t, the diagonal entries [W t
i ]kk = 1 while the other elements

in the row and column related to agent k are set to 0.

Assumption 3.4.3(b) guarantees that once agent i obtains an out-neighbor’s de-

sired value ztik, this value will make significant contributions to the consensus outcome.

Although Assumption 3.4.3(a) requires W t
i to be doubly stochastic, such a matrix is

chosen by agent i alone without any coordination with other agents and will in gen-

eral be different from those chosen by other agents. In comparison, the traditional

double stochasticity assumption (e.g., [83] and Assumption 3 in [27]) needs all of the

agents to coordinate to choose a single doubly stochastic matrix.

The generalized synchronous algorithm with the above two extensions is summa-

rized in Algorithm 3. In order to establish its convergence, the following Assump-

tion 3.4.4 is imposed.
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Algorithm 3 Generalized Synchronous Algorithm

1: Initialize x0, and let t← 0;

2: repeat

3: for all i ∈ ItP do {Relaxed projection}

4: Agent i computes zti according to (3.11);

5: end for

6: for all i ∈ ItQ do {Generalized partial consensus}

7: Agent i receives ztik from out-neighbors k ∈ N−i,t;

8: Agent i computes xt+1
i , xt+1

ik according to (3.17);

9: Agent i sends back xt+1
ik to out-neighbors in N−i,t as their updated values;

10: end for

11: t← t+ 1;

12: until certain convergence criteria are met

13: Return xt.

Assumption 3.4.4 (Uniform Appearances) (a) For each i ∈ Im, i ∈ ItP for

infinitely many t ∈ {0, 1, . . .}; (b) There exists a finite integer T > 0 such that, for

any agent i ∈ Im, each of its out-neighbor appears at least once in ∪t0+T
t=t0 N

−
i,t for any

integer t0 ≥ 0.

Obviously, Assumption 3.4.4 is stronger than Assumption 3.4.2 in part(b) by

requiring more frequent consensus operations between neighboring agents. Now we

state the convergence result of Algorithm 3 in Theorem 3.4.5 below with its proof

provided in Section 3.5.4. As will be seen, the convergence analysis of Algorithm 3

is much more challenging than that of Algorithm 1 since the operation (3.17) is no

longer a projection onto the consensus set.

Theorem 3.4.5 Suppose that Assumptions 3.4.3 and 3.4.4 hold. Starting from any

initial guess x0, the sequence {xt} generated by Algorithm 3 will asymptotically con-

verge to a feasible solution to Problem 3.2.
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3.4.4 Generalized Asynchronous Algorithm

The following Algorithm 4 is the asynchronous version of Algorithm 3 in a way

that the relaxed projection and the generalized partial consensus operations can be

carried out simultaneously rather than consecutively. Its convergence is shown in

Theorem 3.4.6 below with proof given in Section 3.5.5.

Algorithm 4 Generalized Asynchronous Algorithm

1: Initialize x0 and set t← 0;

2: repeat

3: for all i ∈ Im do

4: Agent i idles

5: or

6: {Relaxed projection}

7: Agent i updates xt+1
i according to (3.11) with zti replaced by xti ;

8: or

9: {Generalized partial consensus}

10: Agent i receives xtik from out-neighbors k belonging to the subset N−i,t ⊆ N−i ;

11: Agent i computes xt+1
i , xt+1

ik according to (3.17);

12: Agent i sends xt+1
ik back to its out-neighbors k ∈ N−i,t as their updated values;

13: end for

14: t← t+ 1;

15: until certain convergence criteria are met

16: Return xt.

Theorem 3.4.6 Suppose Assumptions 3.4.1, 3.4.3, and 3.4.4 hold. Starting at any

initial guess x0, the sequence {xt} generated by Algorithm 4 converges asymptotically

to a feasible solution to Problem 3.2.
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3.5 Convergence Proofs

3.5.1 Convergence Proof of Synchronous Algorithm

This section aims to establish the convergence and convergence rate of the syn-

chronous Algorithm 1.

At round t of Algorithm 1, each agent i ∈ Im first computes zti = Pi(x
t
i), where

Pi is a 2−αi
αi

-strongly quasi-nonexpansive map with the fixed point set Fi according

to Proposition 2.2.1. Denoting by z the stacked vector of all zi, we have

zt = P
(
xt
)

(3.18)

where P := P1 × · · · × Pm is a paracontraction with FixP = A1 defined in (3.10).

The second step, consisting of the consensus operation (3.12) followed by the

broadcast (3.13), can be expressed as

xt+1
ik = xt+1

i = Qi(z
t
i , (z

t
ik)k∈N−i ), k ∈ N−i ,

or in a compact form

(xt+1
i , (xt+1

ik )k∈N−i ) = Q̃i(z
t
i , (z

t
ik)k∈N−i )

where Q̃i(·) := [Qi, . . . , Qi] (·) is the column concatenation of Qi’s and, with some

abuse of notation, Qi is the matrix 1
|N−i |+1

1> ⊗ Ini corresponding to the consensus

operation in (3.12). It can be easily seen that, for any i ∈ Im, Q̃i is exactly the

projection operation onto the consensus set Ci in (3.9). For simplicity, we reorder the

variables of x as x̃ = Mx, whereM is the permutation matrix used in (3.10). Similarly

z̃ = Mz. Then by Lemma 2.2.1 the operator Q̃ : z̃t 7→ x̃t+1, being Q̃1 × · · · × Q̃m, is

a paracontraction w.r.t. the Euclidean norm with the fixed point set C1 × · · · × Cm.

For the original xt, it follows that

xt+1 = M>x̃t+1 = M>Q̃
(
z̃t
)

= M>Q̃M
(
zt
)

= Q
(
zt
)
,

with Q := M>Q̃M . By Lemma 2.2.2, the operator Q is a paracontraction w.r.t. the

Euclidean norm with the fixed point set A2 in (3.10).
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Fig. 3.6. Proof of Lemma 3.5.1.

Proof [Theorem 3.4.1]

As discussed above, the sequence xt generated by Algorithm 1 is obtained from

the iteration

xt+1 = Q ◦ P (xt), t = 0, 1, . . . ,

where P and Q are two paracontractions w.r.t. the Euclidean norm whose sets of

fixed points are specified by A1 and A2 in (3.10), respectively. By Theorem 2.2.4, xt

will converge to some x∗ ∈ A1 ∩ A2, namely, a solution to Problem 3.2.

3.5.2 Convergence Rate of Synchronous Algorithm

To study the convergence rate of Algorithm 1, we need the following result.

Lemma 3.5.1 Suppose that E1 and E2 are two closed convex subsets of Rd whose

intersection E1 ∩ E2 contains an interior point xo of E1, i.e., there exists r > 0 such

that the closed ball B(xo, r) centered at xo with the radius r is contained in E1. Let

PE1 and PE2 be the projection operators onto these two sets, respectively. Then, for

any x ∈ E2 \ E1, we have

(a) dE1∩E2(x) ≤ ‖x−xo‖
r
· dE1(x),

(b) dE1 (PE2(PE1(x))) ≤ γ · dE1(x),

with the constant γ :=

√
‖x−xo‖2−r2
‖x−xo‖ ∈ [0, 1).



49

Proof Let x ∈ E2 \ E1 be arbitrary and denote x′ = PE1(x) and x′′ = PE2(x
′) (see

Fig. 3.6). Without loss of generality assume x′ 6∈ E2 (otherwise x′ = x′′ resulting zero

in the left-hand side and both conclusions are trivial), which implies that x 6∈ B(xo, r).

Hence x 6= x′ and x′ 6= x′′. Since x′,xo ∈ E1, the line segment x′xo between x′ and

xo is contained entirely in E1.

The fact x′ = PE1(x) implies that 1) there is a supporting hyperplane W of E1

that passes through x′ and is orthogonal to xx′, 2) the angle that x′xo and x′x make

at x′ is obtuse and thus ‖x′−xo‖ < ‖x−xo‖, and 3) the points x, x′, xo constitute a

plane W o that is orthogonal to W . Note that x is on one side of W while the convex

hull C ⊂ E1 of the point x′ and the ball B(xo, r) is on the other side.

As shown in Fig. 3.6, let x′z ⊂ W o be the line segment that is tangential to the

sphere ∂B(xo, r) at the point z and intersects xxo at a point y, and let x̃′′ be a point on

the line segment xxo ⊂ E2 such that x′x̃′′⊥xxo. Then dE1(x
′′) ≤ ‖x′′−x′‖ ≤ ‖x′−x̃′′‖,

with the two inequalities following from the fact that x′ ∈ E1 and x̃′′ ∈ E2 are not

necessarily the projection points of x′′ onto E1 and x′ onto E2, respectively.

The angles between the line segments x′y and x′xo, x′x̃′′ and x′y, xx′ and xx̃′′, yx′

and yx̃′′, are denoted by ηo, η′′, ηx, ηy, respectively. Obviously, sin(ηo) = r/‖x′−xo‖,

η′′ ≤ 90◦ − ηo and ηy ≥ ηo.

By the geometric relationship in the plane W o, we have

dE1∩E2(x)

≤ ‖x− y‖ = ‖x− x̃′′‖+ ‖x̃′′ − y‖ = ‖x− x′‖ cos(ηx) + ‖x− x′‖ sin(ηx) tan(η′′)

≤ ‖x− x′‖ cos(ηx) + ‖x− x′‖ sin(ηx) tan(90◦ − ηo) = ‖x− x′‖sin(ηx + ηo)

sin(ηo)

≤ ‖x− x′‖/ sin(ηo) = dE1(x)
‖x′ − xo‖

r
≤ dE1(x)

‖x− xo‖
r

,

which is the desired conclusion (a).
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Since the angle that x′xo and x′x make at x′ can not be acute, ηx+ηy ≤ 90◦ holds,

implying that 0 ≤ ηx ≤ 90◦ − ηy ≤ 90◦ − ηo ≤ 90◦. Then sin(ηx) ≤ sin(90◦ − ηo) =

cos(ηo) =
√
‖x′ − xo‖2 − r2/‖x′ − xo‖. Therefore,

dE1(x
′′)

dE1(x)
≤ ‖x

′ − x̃′′‖
‖x′ − x‖

= sin(ηx) ≤
√
‖x′ − xo‖2 − r2

‖x′ − xo‖
≤
√
‖x− xo‖2 − r2

‖x− xo‖
= γ.

Combined with the trivial case that x′ = x′′ when x ∈ B(xo, r), the conclusion (b) is

proved.

Using Lemma 3.5.1, we are ready to prove the exponential convergence rate of

Algorithm 1.

Proof [Theorem 3.4.2]

As shown in the proof of Theorem 3.4.1, given αi = 1,∀i ∈ Im, the sequence

{xt} generated by Algorithm 1 satisfies the condition that xt ∈ A2 and xt+1 =

PA2(PA1(x
t)), ∀t = 0, 1, . . ., with A1 and A2 defined in (3.10), and that lim

t→∞
xt =

x∗ ∈ A1 ∩ A2 as a consequence.

By our assumption on xo and setting xo
ik = xo

i ,∀k ∈ N−i , the corresponding xo has

the properties that xo ∈ A2 by construction, and each xo
i ∈ Fo

i which leads to the fact

that xo is an interior point of A1. Thus by combining two conclusions in Lemma 3.5.1

and the fact that ‖xt − xo‖ is nonincreasing and hence bounded, dA1∩A2(x
t) decays

to zero exponentially fast.

Let t ≥ 0 be arbitrary and denote yt := PA1∩A2(x
t). Since yt ∈ A1∩A2, ‖xt+s−yt‖

is nonincreasing in s for s ≥ 0, resulted from the facts that xt+s+1 = PA2(PA1(x
t+s))

and that both PA1 and PA2 are paracontractions with yt being one of their fixed

points. Thus ‖xt − yt‖ ≥ lims→∞ ‖xt+s − yt‖ = ‖x∗ − yt‖, which leads to

‖xt − x∗‖ ≤ ‖xt − yt‖+ ‖x∗ − yt‖ ≤ 2‖xt − yt‖ = 2dA1∩A2(x
t).

Therefore, xt converges to x∗ exponentially fast.
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3.5.3 Convergence Proof of Asynchronous Algorithm

Similarly to Algorithm 1, we will show in the following that the augmented variable

xt is updated at each round of Algorithm 2 by the composition of two paracontrac-

tions.

Proof [Theorem 3.4.3]

Under Assumption 3.4.1, the update at round t can be written as

xt+1 = Qt ◦ P t
(
xt
)
.

Here, the operator P t is defined as

P t = P t
1 × · · · × P t

m, (3.19)

where P t
i : RNi → RNi is the Pi defined in (3.11) if agent i performs the relaxed

projection at this round, and the identity map if otherwise. The operator Qt is

defined as

Qt = M>Q̃tM

where M is the same permutation matrix defined in (3.10) and

Q̃t = Q̃t
1 × · · · × Q̃t

m

with each Q̃t
i : Rni(1+|N−i |) → Rni(1+|N−i |) being

Q̃t
i = (M t

i )
>
[
Qt
i, · · · , Qt

i, Ini , · · · , Ini
]
M t

i , (3.20)

if agent i performs the partial consensus, and the identity map if otherwise. In (3.20),

M t
i is a permutation matrix that puts the agents in {i} ∪ N−i,t at the front of the

group {i} ∪ N−i ; with a little abuse of notation, Qt
i being the matrix 1

|N−i,t|+1
1> ⊗ Ini

corresponding to the operation (3.14) appears |N−i,t|+1 times. By repeatedly applying

Lemmas 2.2.1 and 2.2.2, we know P t and Qt are paracontractions w.r.t. the Euclidean

norm.
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It is easy to see that the number of possible operators P t and Qt for t = 0, 1, . . . , is

finite. Moreover, P t’s and Qt’s have the common fixed point sets A1 and A2 defined

in (3.10), respectively. Hence, under Assumption 3.4.2, xt will converge to some

x∗ ∈ A1 ∩ A2 as a consequence of Theorem 2.2.4.

The convergence of Algorithm 2b can be proven similarly.

Proof [Theorem 3.4.4]

Since the matrix Wik ∈ R2×2 used in the update (3.15) is doubly stochastic, it can

be explicitly expressed as

Wik =

1− βik βik

βik 1− βik


with βik ∈ (0, 1). The corresponding update isxt+1

i

xt+1
ik

 = (1− 2βik)

 xti
xtik

+ 2βik

(xti + xtik)/2

(xti + xtik)/2

 ,
which is a (2βik)-relaxed projection onto the consensus set {(xi, xik)|xi = xik}, and

therefore a paracontraction w.r.t. the Euclidean norm. The remaining proof is exactly

the same as that of Theorem 3.4.3.

In general, the convergence of Algorithms 2 and 2b is not exponential.

3.5.4 Convergence Proof of Generalized Synchronous Algorithm

The convergence analysis of Algorithm 3 is more challenging than Algorithms 1

and 2 because the operation in (3.17) is no longer a paracontraction. Instead, our

proof will utilize the property of strongly quasi-nonexpansive maps.

For any agent i ∈ Im, its augmented variable xi’s update at round t of Algorithm 3

can be summarized as

zti = P t
i (x

t
i) (3.21)

xt+1
i =

∑
k∈Im

(
Qt
)
ik

ztk, (3.22)



53

where

P t
i =

Pi, if i ∈ ItP ,

Id, otherwise;

(3.23)

and Qt is a doubly stochastic matrix whose block in the i-th row and k-th column,

denoted as (Qt)ik , ∀i, k ∈ Im, will be defined shortly. In sum, the dynamics are

zt = P t(xt) (3.24)

xt+1 = Qtzt. (3.25)

To define Qt, we first reorder x and z as x̃ = Mx and z̃ = Mz, respectively, using

the same permutation matrix M in (3.10). Then the consensus step (3.17) will result

in

x̃t+1 = W tz̃t, (3.26)

with W t := diag (W t
1 ⊗ In1 ,W

t
2 ⊗ In2 , · · · ,W t

m ⊗ Inm). If i /∈ ItQ, i.e., agent i is not

activated to perform the consensus update (3.17) at round t, W t
i is set to be the

identity map Id. For x, the following holds

xt+1 = M>x̃t+1 = M>W tz̃t = M>W tMzt = Qtzt,

under the definition Qt := M>W tM . As a consequence of Assumption 3.4.3(a), W t,

and hence Qt, is doubly stochastic.

With the dynamics (3.24) and (3.25), we next establish the convergence by showing

first the intermediate values zt will converge to a point in A1 ∩A2, i.e., a solution to

Problem 3.2.

To proceed, define agent i’s displacement vector as

eti := P t
i (x

t
i)− xti = zti − xti, (3.27)

with P t
i in (3.23). Note that if P t

i = Pi, then

‖eti‖ = ‖(1− αi)xti + αiPFi
(
xti
)
− xti‖ = αi‖PFi

(
xti
)
− xti‖ = αi dFi

(
xti
)
.

The following lemma shows that eti will converge to zero.
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Lemma 3.5.2 Suppose Assumption 3.4.3 holds. As the iteration index t → ∞, the

displacement vector et := (eti)i∈Im → 0.

Proof Let y ∈ A1 ∩ A2 be a solution of Problem 3.2. Then for all t = 0, 1, . . . ,

y = Qty because the matrix Qt is stochastic. As discussed at the beginning of this

section, Pi defined in (3.11) is a βi-strongly quasi-nonexpansive map with βi := 2−αi
αi

,

i.e.,

‖Pi(xti)− yi‖2 ≤ ‖xti − yi‖2 − βi‖Pi(xti)− xti‖2.

When replacing Pi by the identity map Id, the above inequality still holds for the

same βi. It then follows that

‖zti − yi‖2 ≤ ‖xti − yi‖2 − β‖eti‖2,

with β := min
i∈Im

βi = min
i∈Im

{
2−αi
αi

}
. Combining with (3.22) we have

β‖eti‖2 ≤

∥∥∥∥∥∑
k∈Im

(Qt−1)ikz
t−1
k − yi

∥∥∥∥∥
2

−
∥∥zti − yi

∥∥2
. (3.28)

Define an element-wise convex map Γ : RN → RN such that Γ(x)l = x2
l , l ∈ IN .

Then (3.28) will lead to

β‖et‖2 =
∑
i∈Im

β‖eti‖2 ≤ 1>
{

Γ
(
Qt−1zt−1 − y

)
− Γ

(
zt − y

)}
= 1>

{
Γ
(
Qt−1

(
zt−1 − y

))
− Γ

(
zt − y

)}
≤ 1>

{
Qt−1Γ

(
zt−1 − y

)
− Γ

(
zt − y

)}
= 1>Γ

(
zt−1 − y

)
− 1>Γ

(
zt − y

)
= ‖zt−1 − y‖2 − ‖zt − y‖2, (3.29)

where the second inequality and the third equality follow from the convexity of Γ and

the doubly stochasticity of Qt−1, respectively. For any time instant t̄ > 0, summing

the above inequalities for t = 1, . . . , t̄ will result in

t̄∑
t=1

β‖et‖2 ≤ ‖z0 − y‖2 − ‖zt̄ − y‖2 ≤ ‖z0 − y‖2.
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Since the inequality holds for arbitrarily large t̄, we have

∞∑
t=1

β‖et‖2 ≤ ‖z0 − y‖2 <∞.

With β > 0, this directly leads to limt→∞ et = 0.

With Lemma 3.5.2, we next show that zt will asymptotically satisfy the consensus

constraint in (3.8) as t→∞.

Lemma 3.5.3 Suppose Assumptions 3.4.3 and 3.4.4 hold. Then ∀i ∈ Im and ∀k ∈

N−i , limt→∞ ‖zti − ztik‖ = 0.

Proof In this proof we focus on the reordered variables x̃i =
(
xi, (xik)k∈N−i

)
and

z̃i =
(
zi, (zik)k∈N−i

)
for an arbitrary i ∈ Im, whose dynamics according to (3.17) can

be written as x̃t+1
i = (W t

i ⊗ Ini) z̃ti. Combined with the fact z̃t+1
i = x̃t+1

i + ẽt+1
i , it

follows that

z̃t+1
i =

(
W t
i ⊗ Ini

)
z̃ti + ẽt+1

i .

For s ≤ t, repeatedly applying the above equation yields

z̃t+1
i =

(
Φt,s
i ⊗ Ini

)
z̃si +

t∑
r=s+1

(
Φt,r
i ⊗ Ini

)
ẽri + ẽt+1

i , (3.30)

where Φt,s
i := W t

iW
t−1
i · · ·W s+1

i W s
i and Φt,s

i = W t
i when s = t. Obviously, Φt,s

i is

doubly stochastic under Assumption 3.4.3(a).

Under Assumption 3.4.4(b), the sequence of graphs {Gti} associated with the ma-

trix sequence {W t
i } is repeatedly jointly strongly connected (see Section 2.6 for the

definitions). Together with Assumption 3.4.3 on W t
i , this implies that, for any fixed

s, every entry of Φt,s
h will converge to 1/

(
1 + |N−i |

)
exponentially fast as t → ∞ as

shown by [27, Prop. 1]. More precisely,∣∣∣∣[Φt,s
i ]kl −

1

1 + |N−i |

∣∣∣∣ ≤ cλt−s

for all k, l ∈ I1+|N−i |
. Here, the constants c > 0 and λ ∈ [0, 1) are determined by

the cardinality of N−i , w in Assumption 3.4.3(b) and T from Assumption 3.4.4(b)

(see [27, Prop. 1]).
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Following (3.30), for k ∈ I1+|N−i |
, the k-th subvector in z̃t+1

i (namely, zt+1
i and its

desired values by its out-neighbors) is given by

[z̃t+1
i ]k =

1+|N−i |∑
l=1

[Φt,s
i ]kl[z̃

s
i ]l +

t∑
r=s+1

1+|N−i |∑
l=1

[Φt,r
i ]kl[ẽ

r
i ]l + [ẽt+1

i ]l.

Define yt+1
i to be the average of zt+1

i and its desired values from out-neighbors. Then

yt+1
i =

1

1 + |N−i |
(
1> ⊗ Ini

)
z̃t+1
i

=
1

1 + |N−i |

{(
1> ⊗ Ini

)
z̃si +

t∑
r=s+1

(
1> ⊗ Ini

)
ẽri +

(
1> ⊗ Ini

)
ẽt+1
i

}

=
1

1 + |N−i |

{ 1+|N−i |∑
l=1

[z̃si ]l +
t∑

r=s+1

1+|N−i |∑
l=1

[ẽri ]l +

1+|N−i |∑
l=1

[ẽt+1
i ]l

}
.

Note that the second equality follows from (3.30) and the fact that Φt,s
i is doubly

stochastic. Then for k ∈ I1+|N−i |
, we have∥∥[z̃t+1

i ]k − yt+1
i

∥∥
1

=

∥∥∥∥ 1+|N−i |∑
l=1

(
[Φt,s

i ]kl −
1

1 + |N−i |

)
[z̃si ]l +

t∑
r=s+1

1+|N−i |∑
l=1

(
[Φt,r

i ]kl −
1

1 + |N−i |

)
[ẽri ]l

+ [ẽt+1
i ]k −

1

1 + |N−i |

1+|N−i |∑
l=1

[ẽt+1
i ]l

∥∥∥∥
1

≤ cλt−s‖z̃si‖1 +
t∑

r=s+1

cλt−r‖ẽri‖1 + ‖ẽt+1
i ‖1

≤ cc1λ
t−s‖z̃si‖2 +

t∑
r=s+1

cc1λ
t−r‖ẽri‖2 + c1‖ẽt+1

i ‖2

where c1 =
√

1 + |N−i |, following from the fact ‖x‖1 ≤
√
n‖x‖2, x ∈ Rn. By

Lemma 3.5.2, ∀ε > 0, there exists an s such that for all t ≥ s, ‖ẽti‖ < ε. This

leads to ∥∥[z̃t+1
i ]k − yt+1

i

∥∥
1
≤ cc1λ

t−s‖z̃si‖2 + cc1ε
1− λt−s

1− λ
+ c1ε.

Since ε can be arbitrarily small, the following holds

lim
t→∞

∥∥[z̃t+1
i ]k − yt+1

i

∥∥
1

= 0,
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i.e., zti and ztik for k ∈ N−i reach consensus asymptotically.

Finally, we establish the convergence of the generalized synchronous algorithm

stated in Theorem 3.4.5.

Proof [Theorem 3.4.5]

From (3.29) we have

‖zt − y‖2 ≤ ‖zt−1 − y‖2. (3.31)

Thus the sequence
{
‖zt − y‖2

}
is non-increasing for any y ∈ A1 ∩A2. In particular,

this implies that the sequence {zt} is bounded and has accumulation points.

Next we are going to prove the accumulation point is unique. Let z∗ be a point that

zt converges to along the time subsequence {ts}. As a consequence of Lemma 3.5.3,

z∗ ∈ A2.

In the first case, assume z∗ ∈ A1, implying that z∗ ∈ A1 ∩ A2. Let ẑ∗ 6= z∗ be a

distinct accumulation point that {zt} converges to along the time subsequence {t̂s}.

Without loss of generality, assume t̂s > ts for all s. Then by replacing y in (3.31)

with z∗, we have ‖zt̂s − z∗‖2 ≤ ‖zts − z∗‖2. As s→∞, we have ‖ẑ∗− z∗‖2 ≤ 0, which

contradicts the assumption that ẑ∗ 6= z∗. Therefore there is only one accumulation

point.

In the second case, assume z∗ /∈ A1. Then there exists an integer r ∈ Im such

that z∗ violates a total of r out of the m feasibility constraints in (3.7). Without loss

of generality, the first r constraints are assumed to be violated, i.e., dFi(z
∗
i ) > 0 for

all i ∈ Ir. Pick any δ such that 0 < δ ≤ mini∈Ir dFi(z
∗
i ). Then as a consequence

of Lemma 3.5.2, there exists a large enough integer K > 0 such that for all t ≥ K,

‖et‖ ≤ δα/8 with α := mini∈Im αi. Suppose at time t1 ≥ K, zt1 ∈ B(z∗, δ/4). This

implies that for all i ∈ Ir,

dFi(z
t1
i ) ≥ dFi(z

∗
i )− ‖z

t1
i − z∗i ‖ ≥ δ − δ

4
=

3δ

4
.
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At the same time, the next iteration value xt1+1 satisfies

‖xt1+1 − zt1‖ = ‖Qt1zt1 −Qt1z∗ + z∗ − zt1‖ ≤ ‖Qt1 − I‖‖zt1 − z∗‖

≤ (‖Qt1‖+ 1)‖zt1 − z∗‖ = 2‖zt1 − z∗‖ ≤ δ/2.

Here, we use the fact that ‖Qt1‖ = 1 for the doubly stochastic matrix Qt1 . Combining

the two results above, we obtain ∀i ∈ Ir,

dFi
(
xt1+1
i

)
≥ dFi

(
zt1i
)
− ‖xt1+1

i − zt1i ‖ ≥
3δ

4
− δ

2
=
δ

4
.

In the next relaxed projection update, if i ∈ Ir ∩ It1+1
P , i.e., agent i ∈ Ir is activated

to carry out projection at round t1 +1, the resulted displacement vector et1+1 satisfies

‖et1+1‖ ≥ ‖et1+1
i ‖ = αidFi

(
xt1+1
i

)
≥ αδ

4
, i ∈ Ir,

which contradicts the previous assumption that ‖et‖ ≤ δα/8 for any t ≥ K. There-

fore, we must have Ir ∩ It1+1
P = ∅. This implies that the iteration from zt1 to zt1+1

is through the operator P t1+1 ◦ Qt1 where P t1+1 satisfies that P t1+1
i = Id for i ∈ Ir.

Equivalently, we can view this step as one iteration of Algorithm 3 applied to a new

problem, which is the same as Problem 3.2 except that the feasible sets F1, . . . ,Fr
are relaxed to be the entire spaces of proper dimensions while Fr+1, . . . ,Fm remain

unchanged. Since z∗ is in the consensus subspace A2 and satisfies the constraints

Fr+1, . . . ,Fm, it is a solution to the relaxed problem. By following the same argu-

ments we used previously to derive (3.29), we can show that

‖zt1+1 − z∗‖ ≤ ‖zt1 − z∗‖ ≤ δ/4.

In other words, zt1+1 ∈ B(z∗, δ/4). By repeating the above steps and induction, we

conclude that the sequence {zt} will stay inside the closed ball B(z∗, δ/4) for all t ≥ t1.

Since the choice of δ > 0 can be arbitrarily small, there will be no other accumulation

points besides z∗.

In summary, the accumulation point of {zt} is unique, i.e., limt→∞ zt = z∗. Also

lim
t→∞

xt = z∗ holds based on the facts that xt = zt − et from (3.27) and lim
t→∞

et = 0 in

Lemma 3.5.2.
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Now we show that z∗ ∈ A1. With P t
i defined in (3.23), under Assumption 3.4.4(a),

let {τ} be the subsequence of {t} that P τ
i = Pi. Then {xτi } and {eτi } are subsequences

of {xti} and {eti}, respectively. Since lim
t→∞

xti = z∗i , ∀i ∈ Im, we have

dFi (z∗i ) = lim
τ→∞

dFi (xτi ) = (1/αi) lim
τ→∞
‖eτi ‖ = 0,

where the second equality follows from the argument after (3.27). Therefore, z∗i ∈ Fi,

∀i ∈ Im, or equivalently, z∗ ∈ A1. This completes the proof.

3.5.5 Convergence Proof of Generalized Asynchronous Algorithm

Under Assumption 3.4.1, the relaxed projection and generalized partial consensus

operations operate on two disjoint sets of variables. Therefore the operation at round

t can be split into two steps:

zt = P t(xt),

xt+1 = Qtzt,

where zt denotes the intermediate value resulted from all the relaxed projections of

this round, P t = P t
1 × · · · × P t

m with P t
i = Pi defined in (3.11) if agent i performs

the relaxed projection at this round and P t
i = Id if otherwise, and Qt is the same

stochastic matrix defined in (3.22).

Obviously, the augmented variable xt’s dynamics is identical to that of Algo-

rithm 3. Under Assumptions 3.4.3 and 3.4.4, the convergence proof of Algorithm 4 is

the same as that of Algorithm 3 and therefore omitted here.
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4. CONVEX OPTIMIZATION PROBLEMS WITH LOCAL

COUPLINGS

In Chapter 3, we focus on the convex feasibility problems with locally coupled con-

straints and four distributed algorithms requiring only information from intermediate

neighbors are proposed. In this chapter, these distributed solutions are extended to

solve convex optimization problems with the local couplings resulted from not only

constraints but also objective functions. To incorporate this difference, the depen-

dency graph is redefined and the algorithms are modified by replacing the projection

step with the proximal operator while, however, the convergence proofs are estab-

lished through operator splitting methods rather than paracontractions.

4.1 Problem Formulation

Consider a group of m agents indexed by i ∈ Im. Each agent i has a local vari-

able xi ∈ Rni (which could be null) as well as a local objective function1 fi (which

could also be null) that depends on not only xi but also its neighboring agents’ vari-

ables. This dependency of local objective functions (with local constraints included

through indicator functions) is modeled by a directed graph called the dependency

graph (Im, E) with the vertex set Im and the edge set E ⊂ Im × Im so that an edge

(j, i) ∈ E indicates that the objective function fi of agent i depends on the variable

xj of agent j. Denote by N+
i := {j ∈ Im | (j, i) ∈ E} and N−i := {j ∈ Im | (i, j) ∈ E}

the sets of in-neighbors and out-neighbors, respectively, and by Ni = N+
i ∪ N−i the

set of neighbors, all of agent i. Then, the objective function of agent i is fi(x̌i), where

x̌i :=
(
xi, (xj)j∈N+

i

)
has the dimension Ni = ni +

∑
j∈N+

i
nj.

1We assume that all the local constraints of agent i have been incorporated into fi using convex
indicator functions.
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Assumption 4.1.1 Each fi : RNi → R is an extended-real-valued closed convex

proper (CCP) function, i.e., fi is lower semi-continuous, convex, and fi 6≡ +∞.

Denote by x := (xi)i∈Im the concatenated vector of all xi’s. Then x ∈ Rn where

n =
∑

i∈Im ni. Our objective is to solve the following problem:

minimize f(x) :=
∑
i∈Im

fi(x̌i). (4.1)

Assumption 4.1.2 The set of minimizers of f , C := {x | f(x) < ∞, f(x) ≤

f(x′), ∀x′}, is nonempty.

The following Example 4.1.1 will be used later to illustrate the proposed algo-

rithms.

Example 4.1.1 Consider two agents with variables x1, x2 ∈ R and local objective

functions f1(x1, x2) = (x2
1 + x2

2)/2 and f2(x2) = −x2. The dependency graph has only

one edge (2, 1). Note that f = f1 + f2 has a unique minimizer x∗1 = 0 and x∗2 = 1,

even though no minimizer exists for f2.

Our goal is to design distributed iterative algorithms xt+1 = T (xt) for solving

Problem (4.1) so that, at any iteration, each agent updates its variable by using only

the variables of its neighbors and itself, and that the iteration result xt converges to

a solution x∗ ∈ C for all initial x0.

Towards this goal, we first reformulate Problem (4.1). For each neighboring agent

pair (j, i) ∈ E , suppose agent i maintains an extra variable xji ∈ Rnj representing

its desired value for the variable xj of its in-neighboring agent j (it is possible that

xji 6= xj). Denote by xi =
(
xi, (xji)j∈N+

)
∈ RNi the augmented variable of agent i,

and let x := (xi)i∈Im ∈ RN where N =
∑

i∈Im Ni. Then, Problem (4.1) is equivalent

to the following optimization problem:

minimize F (x) :=
∑
i∈Im

fi(xi) subject to x ∈ A. (4.2)
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Here, A is the consensus subspace defined by

A = {x |xji = xj, ∀(j, i) ∈ E} ⊂ RN . (4.3)

Problem (4.2) is further equivalent to

minimize F (x) + ıA(x). (4.4)

As can be seen later that all algorithms proposed in this chapter require bidirec-

tional communication between neighboring agents in the dependency graph (Im, E),

we impose the following Assumption 4.1.3.

Assumption 4.1.3 The communication in the dependency graph (Im, E) is bidirec-

tional, i.e., the communication graph is the union of (Im, E) and its transpose (Im, E>).

4.2 Application Examples

We list several examples of Problem (4.1) below.

Example 4.2.1 (L1-regularized least square problem) To find sparse approxi-

mate solutions to the linear equation Ax = b, one can solve the optimization problem

min (‖Ax− b‖2 + λ‖x‖1) for given λ > 0. Here, ‖ · ‖ and ‖ · ‖1 denote the l2 and

l1 norms, respectively. By decomposing x into (xi)i∈Im and A into block matrices

(Aij)i,j∈Im, this is equivalent to Problem (4.1) with fi = ‖
∑

j∈N+
i
Aijxj−bi‖2+λ‖xi‖1.

Note that N+
i = {j |Aij 6= 0} and N−i = {j |Aji 6= 0}.

Example 4.2.2 (Convex feasibility problem) Let fi(x̌i) = ıFi(x̌i) be the convex

indicator function of some convex set Fi ⊂ RNi. Then Problem (4.1) is equivalent to

finding a point x in the intersection of the sets {x | x̌i ∈ Fi} for i ∈ Im.

Example 4.2.3 (Consensus optimization) Suppose for each i, xi ∈ Rn, fi(x̌i) =

gi(xi) + ı{xi=xj ,∀j∈N+
i }

, and the dependency graph is weakly connected. Then Prob-

lem (4.1) is equivalent to the problem of minimizing g1(x) + · · ·+ gm(x).
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Example 4.2.4 (Min-max coordinated optimization) Suppose each agent i ∈

{2, . . . ,m} has a local variable xi and a local objective function fi(xi), while agent 1

is a coordinator with no local variables and a non-separable objective function in the

form of f1 = maxi=2,...,m |||xi|||, where |||·||| denotes the general norm, which can l1-, l2-

or l∞-norm. In this case, the dependency graph has the edges (2, 1), (3, 1), . . . , (m, 1).

4.3 Synchronous Algorithms

In this section, several distributed algorithms for solving Problem (4.2) are pro-

posed. Recall that x = (xi)i∈Im ∈ RN , where xi =
(
xi, (xji)j∈N+

i

)
is the local

augmented variable kept by agent i. Denote by x̄ := ΠA(x) the orthogonal projection

of x onto the consensus subspace A defined in (4.3). Then, x̄ = (x̄i)i∈Im is given by

x̄ji = x̄j = 1
|N−j |+1

(
xj +

∑
k∈N−j

xjk

)
, ∀(j, i) ∈ E . (4.5)

The projection of x onto the orthogonal complementary subspace A⊥ is given by

ΠA⊥(x) = x− x̄.

4.3.1 Synchronous Douglas-Rachford Algorithm

We now apply the D-R algorithm to Problem (4.4). Choose T1 = ∂F and T2 = ∂ıA.

Then, JρT1 = proxρF and JρT2 = ΠA. The Douglas-Rachford algorithm for α ∈ (0, 1)

becomes

xt+1
i = z̄ti, i ∈ Im; (4.6a)

zt+1
i = zti + 2α

(
proxρfi(2xt+1

i −zti)− xt+1
i

)
, i ∈ Im. (4.6b)

Note that step (4.6a) is carried out in two fully synchronous stages: first each agent i

gathers variables ztij from all of its out-neighbors j and computes the average of zti and

the gathered variables as xt+1
i ; then, after the first stage is completed for all agents,

each agent i gathers the variables xt+1
j from all of its in-neighbors j and updates xt+1

ji

to xt+1
j . Step (4.6b) requires no inter-agent communication. The whole algorithm is

summarized in Algorithm 5.
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Algorithm 5 Synchronous Douglas-Rachford Algorithm

1: Initialize z0, and let t← 0

2: repeat

3: for i = 1, . . . ,m do

4: xt+1
i ← z̄ti

5: end for

6: for i = 1, . . . ,m do

7: zt+1
i ← zti + 2α

(
proxρfi(2xt+1

i − zti)− xt+1
i

)
8: end for

9: t← t+ 1

10: until |zt − zt−1| is sufficiently small

11: return xt
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As the iteration from zt to zt+1 is given by an α-averaged map in (2.8), the

sequence zt obtained by Algorithm 5 converges to some z∗ for which x∗ := z̄∗ yields

a solution to Problem (4.4). Note that in general x∗ 6= z∗, i.e., it is possible that

z∗ji 6= z∗j for some (j, i) ∈ E .

Remark 4.3.1 Another version of the Douglas-Rachford algorithm is obtained by

letting T1 = ∂ıA and T2 = ∂F :

xt+1
i = proxρfi(z

t
i), i ∈ Im; (4.7a)

zt+1
i = zti + 2α

(
2x̄t+1

i − z̄ti − xt+1
i

)
, i ∈ Im, (4.7b)

for t = 0, 1, . . .. The sequence zt converges to some z∗ so that proxρF (z∗) yields a

solution to Problem (4.4). Generally, proxρfi(z
∗
i ) 6= z∗i , i.e., z∗i is not a minimizer of

fi.

Example 4.3.1 In Example 4.1.1, let z = (z1, z2) ∈ R3 where z1 = (z1, z21) ∈ R2 and

z2 = z2 ∈ R. Then proxρf1(z1) = z1/(1 + ρ) and proxρf2(z2) = z2 + ρ. Algorithm 5

becomes

zt+1
1 = (1− 2αρ/(1 + ρ))zt1,

zt+1
21 = (1− α)zt21 + α(1− ρ)/(1 + ρ)zt2,

zt+1
2 = (1− α)zt2 + αzt21 + 2αρ.

It is easily verified that zt converges to z∗ = (0, 1 − ρ, 1 + ρ). From this, x∗ =

z̄∗ = (0, 1, 1) is a solution to Problem (4.4) and thus x∗ = (0, 1) is a solution to

Problem (4.1). In comparison, the sequence zt generated by Algorithm (4.7) con-

verges to a different z∗ = (0, 1 + ρ, 1 − ρ), while resulting in the same solution

x∗ = proxρF (z∗) = (0, 1, 1).

Douglas-Rachford algorithms are compatible with the agent network topology and

can be implemented distributively. However, each of its iteration requires two syn-

chronized rounds of communications and one synchronized round of proximal operator
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computation for all the agents. This can slow down its execution due to heterogenous

agent computing power and communication delays. We will look for its asynchronous

implementation in the next section.

4.3.2 Douglas-Rachford Algorithm for the Dual Problem

Let Si ∈ RNi×n be the selection matrix consisting of rows of the n-by-n identify

matrix such that x̌i = Six, i ∈ Im. In other words, Si selects from x = (xi)i∈Im

those variables that fi depends on and arranges them as x̌i =
(
xi, (xj)j∈N+

i

)
. Let

S =
[
S>1 · · · S>m

]>
. Then z = Sx satisfies z = (zi)i∈Im where zji = zj = xj for all

(j, i) ∈ E , i.e., z ∈ A. Thus, the range space of S is the consensus subspace A and

the null space of S> is A⊥.

Problem (4.2) can be reformulated as follows:

minimize
∑
i∈Im

fi(zi) subject to z = Sx. (4.8)

Introduce the dual variable p ∈ RN and define the Lagrangian

L(x, z,p) =
∑
i∈Im

(fi(zi)− p>i (zi − Six)).

Then the dual problem of (4.8) is

minimize F ∗(p) :=
∑
i∈Im

f ∗i (pi) subject to p ∈ A⊥, (4.9)

where f ∗i (pi) := supzi

(
p>i zi − fi(zi)

)
is the convex conjugate of fi. We assume that

the dual problem has an optimal solution p∗ with the same optimal value as that of

the problem (4.2). This is the case, e.g., if L has a saddle point.

By applying the Douglas-Rachford algorithm in (2.8) to problem (4.9) with T1 =

∂F ∗, T2 = ∂ıA⊥ , α ∈ (0, 1), and with ρ−1 in place of ρ, we have, for t = 0, 1, . . .,

pt+1 = ΠA⊥(wt) = wt − w̄t,

wt+1
i = wt

i + 2α
(
proxf∗i /ρ(2pt+1

i −wt
i)− pt+1

i

)
.
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By the Moreau’s decomposition proxf∗i /ρ + ρ−1 proxρfi ◦ ρI = I, the above iteration

can be rewritten as

ut+1
i = w̄t

i, ∀i ∈ Im; (4.10a)

wt+1
i = wt

i − 2αut+1
i − 2αρ−1proxρfi(ρw

t
i − 2ρut+1

i ), ∀i ∈ Im. (4.10b)

which is carried out by Algorithm 6 below. Starting from any w0, the sequence wt

converges to some w∗ for which p∗ = w∗ − w̄∗ is an optimal solution to the dual

problem (4.9).

Algorithm 6 Synchronous Dual D-R Algorithm

1: Initialize w0, and let t← 0

2: repeat

3: for i = 1, . . . ,m do

4: ut+1
i ← w̄t

i

5: end for

6: for i = 1, . . . ,m do

7: vt+1
i ← proxρfi(ρw

t
i − 2ρut+1

i )

8: wt+1
i ← wt

i − 2αut+1
i − 2αρ−1vt+1

i

9: end for

10: t← t+ 1

11: until |wt −wt−1| is sufficiently small

12: return wt − w̄t

Remark 4.3.2 Switching the order of the two operators when applying the Douglas-

Rachford algorithm to problem (4.8) by choosing T1 = ∂ıA⊥ and T2 = ∂F ∗, we obtain:

pti = proxf∗i /ρ(w
t
i) = wt

i − ρ−1proxρfi(ρw
t
i), ∀i ∈ Im;

wt+1 = wt + 2α
(
ΠA⊥(2pt+1 −wt)− pt+1

)
.

Although convergence of pt to the dual optimal solution p∗ still holds, this version is

generally more computationally costly for asynchronous implementation.
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Example 4.3.2 For the problem in Example 4.1.1, the dual variables are p = (p1,p2)

with p1 = (p1, p12) and p2 = p2. The convex conjugate functions are f ∗1 (p1) = 1
2
‖p1‖2

and f ∗2 (p2) = ı{p2=−1}. The dual problem (4.9) is to minimize (p2
1 + p2

12)/2 subject

to p2 = −1 and p ∈ A⊥ (i.e., p12 + p2 = 0). Thus, the dual problem has a unique

solution p∗ = (0, 1,−1). Algorithm 6 becomes the iteration

wt+1
1 = (1− 2αρ/(1 + ρ))wt1

wt+1
12 = (1− α)wt12 + α(1− ρ)/(1 + ρ)wt2

wt+1
2 = (1− α)wt2 + αwt12 − 2α,

which converges to w∗1 = 0, w∗12 = 1 − ρ−1, and w∗2 = −1 − ρ−1. As expected,

w∗ − w̄∗ = (0, 1,−1) yields the solution p∗ to the dual problem.

4.3.3 ADMM Algorithm

For problem (4.8) we define the augmented Lagrangian

Lρ(x, z,y) =
∑
i∈Im

fi(zi) + y>i (Six− zi) +
1

2ρ
‖Six− zi‖2.

The ADMM algorithm [49] first minimizes Lρ w.r.t. the primal variables x and z in

a Gauss-Seidel pass, then updates the dual variable y using the primal residue:

xt+1 = argmin
x

Lρ(x, z
t,yt) = (S>S)−1S>(zt − ρyt)

zt+1
i = argmin

zi

Lρ(x
t, z,yt) = proxρfi

(
Six

t+1 + ρyti
)

yt+1
i = yti + (Six

t+1 − zt+1
i )/ρ, i ∈ Im.

Since (S>S)−1S> = S† is the pseudo inverse of S, S(S>S)−1S> is the projection onto

A. By replacing xt+1 with xt+1 = Sxt+1, the above algorithm becomes

xt+1 = z̄t − ρȳt, (4.12a)

zt+1
i = proxρfi(x

t+1
i + ρyti) = proxρfi

(
z̄ti + ρ(yti − ȳti)

)
, i ∈ Im (4.12b)

yt+1 = yt + (xt+1 − zt+1)/ρ = yt − ȳt − (zt+1 − z̄t)/ρ, (4.12c)
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which is summarized in Algorithm 7. If the Lagrangian (Lρ with ρ =∞) has a saddle

point (x∗, z∗,y∗), then for any (z0,y0) the ADMM algorithm satisfies that xt − zt

converges to zero, yt converges to an optimal dual solution y∗, and
∑

i fi(z
t
i) converges

to the optimal value of problem (4.8) (see [49]). In general, further assumptions are

needed for xt (or zt) to converge to an optimal primal solution of the problem (4.8).

Algorithm 7 Synchronous ADMM Algorithm

1: Initialize z0, y0, and let t← 0

2: repeat

3: for i = 1, . . . ,m do

4: xt+1
i ← z̄ti − ρȳti

5: zt+1
i ← proxρfi (z̄ti + ρ(yti − ȳti))

6: end for

7: for i = 1, . . . ,m do

8: yt+1
i ← yti − ȳti − (zt+1

i − z̄ti)/ρ

9: end for

10: t← t+ 1

11: until |yt − yk−1| and |xt − zt| are sufficiently small

12: return xt (or zt)

Remark 4.3.3 It is well known [84] that the ADMM algorithm can be derived by

applying the Douglas-Rachford algorithm to the dual problem. To see this explicitly

in our case, let α = 1/2 in Algorithm 6. The iteration on wt then becomes:

zt+1
i = proxρfi(ρw

t
i − 2ρw̄t

i), i ∈ Im;

wt+1 = wt − w̄t − zt+1/ρ. (4.13)

For k = 1, 2, . . ., define the variables

xt+1 := −ρw̄t + z̄t − z̄k−1, (4.14)

yt := wt − w̄t − (z̄t − z̄k−1)/ρ. (4.15)
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Then we have

zt+1
i = proxρfi(x

t+1
i + ρyti), i ∈ Im. (4.16)

Applying ΠA to (4.13) and (4.15), we obtain w̄t+1 = −z̄t+1/ρ and ȳt = −(z̄t−z̄k−1)/ρ.

Applying ΠA⊥ to (4.15), we have yt − ȳt = wt − w̄t. Thus, for k = 1, 2, . . .,

yt+1 = ȳt+1 + (yt+1 − ȳt+1) = −(z̄t+1 − z̄t)/ρ+ (wt+1 − w̄t+1)

= −(z̄t+1 − z̄t)/ρ+
(
wt − w̄t − (zt+1 − z̄t+1)/ρ

)
= −(z̄t+1 − z̄t)/ρ+

(
yt − ȳt − (zt+1 − z̄t+1)/ρ

)
= yt − ȳt − (zt+1 − z̄t)/ρ,

and

xk+2 = −ρw̄t+1 + (z̄t+1 − z̄k) = z̄t+1 − ρȳt+1.

These two equations together with (4.16) are exactly the same with ADMM algo-

rithm (4.12).

4.4 Asynchronous Algorithms

Each of the synchronous algorithms in Section 4.3 can be turned into an asyn-

chronous one by utilizing Theorem 2.2.2. When doing so, some algorithms will have

“better” asynchronous implementations compared to others. Here, the criteria for

comparing different asynchronous implementations are in terms of the computation

and communication overheads incurred in each iteration.

4.4.1 Asynchronous Douglas-Rachford Algorithm

By applying Theorem 2.2.2 to the Douglas-Rachford algorithm (4.7), we obtain

the following asynchronous algorithm:

For k = 0, 1, . . ., pick i ∈ Im with i.i.d. probability pi > 0

xt+1
j = proxρfj

(
ztj
)
, ∀j ∈ Ni ∪ (∪`∈N+

i
N−` );

zt+1
i = zti + 2α

(
2x̄t+1

i − z̄ti − xt+1
i

)
for the chosen i.
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Even though at each round only one agent i is activiated to carry out the update,

its updated variable zt+1
i relies on x̄t+1

i whose evaluation requires each agent in an

extended (2-hop) neighborhood Ni ∪ (∪`∈N+
i
N−` ) to evaluate its proximal operator

and send out its local information. This may result in large computation and com-

munication overheads. For instance, for the coordinated optimization problem in

Example 4.2.4, regardless of which agent is chosen to do the update, all the agents

need to evaluate their proximal operators and communicate the results to their neigh-

bors.

A better option is to apply Theorem 2.2.2 to Algorithm 5 to obtain:

For t = 0, 1, . . ., pick i ∈ Im with i.i.d. probability pi > 0

xt+1
i = z̄ti; (4.18a)

zt+1
i = zti + 2α

(
proxρfi(2xt+1

i − zti)− xt+1
i

)
. (4.18b)

In each round, only the activated agent i needs to evaluate its proximal operator once.

By Theorem 2.2.2, starting from any z0, the sequence zt generated by Algorithm (4.18)

converges almost surely to some z∗ for which z̄∗ is a solution to Problem (4.4).

Example 4.4.1 By applying Algorithm (4.18) to Example 4.1.1 where f1(x̂1) = (x2
1+

x2
2)/2 and f(x̂2) = −x2, we arrive at the following iteration:

zt+1
1 = (1− 2αρ/(1 + ρ))zt1,

zt+1
12 = (1− α)zt12 + α(1− ρ)/(1 + ρ)zt2,

zt+1
2 = zt2,

if agent 1 is activated, and

zt+1
1 = zt1, z

t+1
12 = zt12, z

t+1
2 = (1− α)zt2 + αzt12 + 2αρ

if agent 2 is activated. For p1, p2 > 0, with probability one zt converges to z∗ =

(0, 1− ρ, 1 + ρ) and xt converges to the solution z̄∗ = (0, 1, 1).
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In Algorithm (4.18), to compute z̄ti in step (4.18a), agent i needs to collect zt`i

from its out-neighbors ` and z̄tj from its in-neighbors j. The latter requires agents

j to gather data from their respective out-neighbors. To avoid this, we can let each

agent i ∈ Im maintain an extra variable z̄i ∈ Rni that always has the averaged value

of xi and x` for ` ∈ N−i . If agent i does not have a local variable, then z̄i is null.

Then Algorithm (4.18) is equivalent to Algorithm 8 below.

Algorithm 8 Asynchronous Douglas-Rachford Algorithm

1: Choose any z0, and let t← 0

2: for i = 1, . . . ,m do

3: z̄0
i ← (z0

i +
∑

`∈N−i
z0
`i)/(|N−i |+ 1)

4: end for

5: repeat

6: Pick i ∈ Im with i.i.d. probability pi > 0

7: xt+1
i ← z̄ti

8: for j ∈ N+
i do

9: xt+1
ij ← z̄tj

10: end for

11: zt+1
i ← zti + 2α

(
proxρfi(2xt+1

i − zti)− xt+1
i

)
12: z̄t+1

i ← z̄ti + (zt+1
i − zti)/(|N−i |+ 1)

13: for j ∈ N+
i do

14: z̄t+1
j ← z̄tj + (zt+1

ij − ztij)/(|N−j |+ 1)

15: end for

16: t← t+ 1

17: until t is sufficiently large

18: return xt

In each round of Algorithm 8, the activated agent i only needs to communicate

with its in-neighbors by collecting information in step 8 and sending information in

step 12; its in-neighbors perform simple updates (step 12); while all other agents (even
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if they are out-neighbors of agent i) can remain idle. For the coordinated optimization

problem in Example 4.2.4, if the activated agent i ∈ {2, . . . ,m}, then agent i carries

out steps 9 and 10 by itself, while all other agents including agent 1 remain idle.

Algorithm 8 has low communication and computation complexity. Specifically, in

each round, the expected number of one-way transmission is
∑

i 2pi|N
+
i | ≤ maxi 2|N+

i |;

the expected number of scalar variables transmitted is
∑

i 2pi(Ni−ni) ≤ maxi 2(Ni−

ni); and only one proximal operator is evaluated.

Remark 4.4.1 With the initialization step for z̄0
i and the error-free iterations of

Algorithm 8, the variables z̄ti at the beginning (or end) of each iteration satisfy the

consistency condition z̄ti = (zti +
∑

`∈N−i
zt`i)/(|N−i |+ 1) for all i ∈ Im. This may not

be the case if there are numerical errors in the initialization step or the algorithm

iterations. To account for this, re-initializations of zti may be warranted from time to

time.

Corollary 4.4.1 Suppose α ∈ (0, 1), ρ > 0, and pi > 0 for i ∈ Im. Starting from

any z0, with probability one the sequence xt generated by Algorithm 8 converges to a

solution to Problem (4.2).

Proof Algorithm 8, or equivalently, Algorithm (4.18), is obtained by applying the

randomly activated coordinate descent method in Theorem 2.2.2 to the synchronous

iteration in (4.6). As the discussions preceding (4.6) show, the update of zt to zt+1

in (4.6) is via the α-averaged operator (1− α)I + α(2proxρF − I)(2ΠA − I). There-

fore, Theorem 2.2.2 applies. This implies that, with probability one, the sequence zt

obtained by Algorithm 8 converges to a fixed point z∗ of the α-averaged operator,

and hence xt = z̄t converges to z̄∗, a solution to Problem (4.2).

4.4.2 Asynchronous Dual Douglas-Rachford Algorithm

Let each agent i maintain the variables wi,ui,vi ∈ RNi and w̄i ∈ Rni . The

asynchronous version of Algorithm (4.10) obtained using Theorem 2.2.2 is given by
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Algorithm 9 below. In each round, with the agent i activated, the proximal operator

is evaluated only once (step 9). Agent i communicates only with its out-neighbors

(collect in step 8 and send in step 13). The expected numbers of one-way commu-

nications and the expected number of scalar variables transmitted in each round are

the same as those of Algorithm 8.

Algorithm 9 Asynchronous Dual D-R Algorithm

1: Choose any w0, and let t← 0

2: for i = 1, . . . ,m do

3: w̄0
i ← (w0

i +
∑

`∈N−i
w0
`i)/(|N−i |+ 1)

4: end for

5: repeat

6: Pick i ∈ Im with i.i.d. probability pi > 0

7: ut+1
i ← w̄ti

8: for j ∈ N+
i do

9: ut+1
ij ← w̄tj

10: end for

11: vt+1
i ← proxηfi(ηw

t
i − 2ηut+1

i )

12: wt+1
i ← wt

i − 2αut+1
i − 2αη−1vt+1

i

13: w̄t+1
i ← w̄ti + (wt+1

i − wti)/(|N−i |+ 1)

14: for j ∈ N+
i do

15: w̄t+1
j ← w̄tj + (wt+1

ij − wtij)/(|N−j |+ 1)

16: end for

17: t← t+ 1

18: until t is sufficiently large

19: return wt − w̄t

Corollary 4.4.2 Suppose α ∈ (0, 1), ρ > 0, and pi > 0 for i ∈ Im. Starting from any

initial w0, the sequence wt − w̄t obtained by Algorithm 9 converges with probability

one to a solution to the dual problem (4.9).
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Proof Similar to the proof of Corollary 4.4.1, this follows directly by applying The-

orem 2.2.2 to the iteration (4.10).
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5. CONVEX OPTIMIZATION PROBLEMS WITH LOCAL

AND GLOBAL COUPLINGS

The problem formulated in Chapter 4 and its corresponding distributed solutions

focus on the coupling involving neighboring agents. However, the coupling in some

practical problems may involve all (or at least most of) agents on networks (see, e.g.,

Examples 5.2.1 and 5.2.2). In this chapter, we incorporate this extra coupling and

propose distributed solutions with and without a coordinator.

5.1 Problem Formulation

With the same f(x) from Problem (4.1), the problem to be studied in this section

is defined as follows:

minimize f(x) =
∑
i∈Im

fi(x̌i) (5.1a)

subject to
∑
i∈Im

hi(xi) ≤ c0, (5.1b)

where hi : Rni → R`
represents the local contribution of agent i to the global con-

straint, e.g., the local consumption function in the resource allocation problem, and

c0 ∈ R` is a constant vector. In the above optimization problem, each agent’s local

objective function fi(x̌i) is only coupled with its immediate neighbors while the global

constraint (5.1b) depends on the local variables from all agents. Note that (5.1b) con-

sists of ` scalar inequality constraints, each of which represents the total availability

of a global resource (or commodity, capacity) being shared among all of the agents.

Remark 5.1.1 In the case where hi in (5.1b) also depends on the variables xj from

in-neighboring agents j ∈ N+
i , the constraint can be modified as

∑
i∈Im ȟi(x̌j) ≤ c0.
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The method to be developed in this section can be extended to deal with this more

general case as well.

In addition to the Assumption 4.1.1, the following assumptions are made on Prob-

lem (5.1).

Assumption 5.1.1 For each i ∈ Im, it is assumed that hi = (hi1, . . . , hi`) : Rni → R`

where each entry hij, j ∈ Il, is an extended-real-valued, CCP function.

Assumption 5.1.2 A solution to Problem (5.1) exists.

Explicitly, Assumption 5.1.2 implies that the optimal value of Problem (5.1) can be

exactly attained by some x∗ = (x∗1, . . . , x
∗
m) that satisfies the global constraints (5.1b).

To simplify the solution of Problem (5.1), we introduce a local auxiliary variable

bi at each agent i and let zi = (xi, bi) be the augmented local variable. Write b =

(b1, . . . , bm). Then Problem (5.1) can be reformulated as:

minimizex,b f(x) =
∑
i∈Im

fi(x̌i) (5.2a)

subject to hi(xi) ≤ bi, ∀i ∈ Im (5.2b)

and
∑
i∈Im

bi ≤ c0. (5.2c)

Note that the local constraints in (5.2b) can be incorporated into the local objective

function fi via the convex indicator functions ıZi(zi) of the closed convex sets Zi :=

{zi |hi(xi) ≤ bi}; whereas the global constraint (5.2c) is a linear inequality constraint

of the form
∑

i∈Im Fizi ≤ c0 for some properly defined matrices Fi, i ∈ Im.

Remark 5.1.2 When the global constraint (5.2c) is replaced by a linear equality con-

straint
∑

i∈Im bi = c0, the recast problem is also equivalent to Problem (5.2) (or (5.1)).

We choose to adopt Problem (5.2) here as it will lead to a reformulation (5.3) below

of Problem (5.1) that can capture many practical problems in its given form without

the need of introducing auxiliary variables. When removing the orthogonal projections

ΠR`+ and ΠR`m+ , the algorithms (5.6) and (5.19) (or Algorithm 10) to be proposed later

on can be directly used to solve this recast problem.
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As a result of the above observation, in the rest of this section we can focus without

loss of generality on the following simplified yet equivalent version of Problem (5.1):

minimize f(x) =
∑
i∈Im

fi(x̌i) (5.3a)

subject to
∑
i∈Im

Fixi ≤ c0, (5.3b)

where Fi ∈ R`×ni , ∀i ∈ Im, and c0 ∈ R`. With F =
[
F1 · · · Fm

]
∈ R`×n, the global

constraint (5.3b) can be simplified to Fx ≤ c0.

A straightforward distributed solution to problem (5.3) is to introduce a coor-

dinator agent indexed by 0 to hold the global constraint. This coordinator has no

local variables and is an out-neighbor of all the other agents. Thus, by denoting

F := {x |Fx ≤ c0}, the problem can be reduced to Problem (4.1) with f0 = ıF(x)

and proxρf0(x0) = ΠF(x0) = x0 − F †(Fx0 − c0). The computation of F † requires the

coordinator to have Fi from each agent, which is difficult to implement when Fi is

private to agent i in some practical situations, as stated in Assumption 5.1.3.

Suppose c0 can be decomposed as c0 = c1 + . . . + cm with ci, i ∈ Im, maintained

by agent i. Then the global constraint can be rewritten as
∑

i∈Im(Fixi− ci) ≤ 0. For

example, in the commodity exchange problem, ci may represent the initial commodity

owned by agent i.

Assumption 5.1.3 For each i ∈ Im, the pair (Fi, ci) is private to agent i and will

not be shared with other agents.

The goal of this section is to design distributed solution algorithms for Prob-

lem (5.3) consistent with the privacy requirement in Assumption 5.1.3.

5.2 Application Examples

Followed are several instances of Problem (5.3).
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Example 5.2.1 Suppose each agent i ∈ Im has a local variable xi and a local objec-

tive function fi(xi), while the global objective function f0(x1, . . . , xm) = ‖
∑m

i=1 xi‖2

is non-separable. By letting x0 =
∑m

i=1 xi, the problem can be transformed to an

instance of Problem (5.3):

minimizex0,x1,...,xm
∑

i=0,1,...,m

fi(xi), subject to x0 −
m∑
i=1

xi = 0

Example 5.2.2 (Optimal resource allocation) Suppose ` types of resources are

being allocated among m agents. Denote by xi ∈ R` the (stacked) amounts of resources

allocated to agent i ∈ Im and by ui(xi) ∈ R the resulting utility attained by agent i,

where ui : R` → R is a concave and upper semicontinuous function. The optimal

resource allocation that maximizes the total utilities of all agents can be found via

solving the following problem:

max
∑
i∈Im

ui(xi)− ıR`+(xi) such that and
∑
i∈Im

xi ≤ c0.

This problem is a special instance of Problem (5.3) with the decoupled local objective

function fi = −ui + ıR`+.

Example 5.2.3 (Building optimal control) In the problem of comfort assurance

in multi-zone buildings from Section 3.2.3, if the goal is to find the optimal control

inputs to minimize the overall energy utility cost
∑m

i=1

∑N−1
k=0 gi(xi(k), ui(k)) besides

assuring comfort for some convex functions gi. With
(
xi(k + 1), ui(k)

)
k∈{0,...,N−1}

being the local variable held by zone i, the building optimal control problem can be

formulated as an instance of Problem (5.3).

Example 5.2.4 (Distributed model fitting) Many model fitting problems arising

in statistics and machine learning can be formulated as the following problem:

minimize g(Cx− d) + r(x),

where x ∈ Rn is the model parameter (or features) to be estimated; C ∈ R`×n is the

feature matrix that contains all training examples as row vectors; d ∈ R` is the output
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vector; g : R` → R is a convex loss function; and r : Rn → R is a convex regularization

function. Two common examples of regularization functions are r(x) = β‖x‖1 and

r(x) = β‖x‖2, both of which are separable in x.

In many cases, the number of model parameters far exceeds the number of training

data, i.e., n � `, and it is impractical for x to be stored in a single unit. In such

cases, by adopting the partition C =
[
C1 · · · Cm

]
and x = (x1, . . . , xm), the data

and parameter (Ci, xi), i ∈ Im can be stored in m separate processing units. Let

x0 ∈ R` be an auxiliary variable held at another unit. The above problem can then be

equivalent formulated as

minimize g(x0 − d) +
∑
i∈Im

ri(xi)

subject to x0 −
∑
i∈Im

Cixi = 0,

which is an instance of Problem (5.3).

5.3 Synchronous Algorithm with a Coordinator

A key difficulty is the presence of the global constraint (5.3b): it involves the

local variables of all agents and hence cannot be enforced by any agent individually

given its limited neighborhood. Such a difficulty can be alleviated by designating

(or creating) a coordinator agent that can communicate with all the other agents

and is specifically tasked with enforcing the global constraint. To be consistent with

Assumption 5.1.3, we present a distributed algorithm with a coordinator holding

the dual variable corresponding to the global constraint. Using the decomposition

c0 = c1 + . . .+ cm, the Lagrange function of problem (5.3) is

La(x, λ0) =
∑
i∈Im

(
fi(x̌i) + λ>0 (Fixi − ci)

)
− ıR`+(λ0), (5.4)

Obviously, L(x, λ0) is a saddle function that is convex in x and concave in the dual

variable λ0.

The following assumption is made in the rest of this chapter.
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Assumption 5.3.1 La(x, λ0) has a saddle point (x∗, λ∗0).

Assumption 5.3.1 is in general stronger than Assumption 5.1.2 as it implies strong

duality, i.e., the primal problem (5.3) and its dual problem

maximizeλ0∈R+ d(λ0) := min
x
La(x, λ0)

have the same optimal value (given by La(x
∗, λ∗0) in this case). Strong duality can be

ensured by, e.g., Slater’s conditions.

Therefore Problem (5.3) is equivalent to find a saddle point of La in (5.4), where

the dual variable λ0 indirectly enforces the global constraint. Since λ0 is engaged

globally, we let each agent i maintains a local copy λi of λ0 in addition to the aug-

mented variable xi defined in Section 4.1. Then Lagrange function (with λ0 ∈ R`
+) is

equivalent to

Lb(x, λ) =
∑
i∈Im

Li + µAx×Aλ(x, λ)

:=
∑
i∈Im

(
fi(xi) + λ>i (Fixi − ci)− ıR`+(λi)

)
+ µAx×Aλ(x, λ) (5.5)

with λ = (λi)i∈Im and Aλ = {λ | λ1 = · · · = λm}. We designate the coordinator

(indexed by 0) to reach consensus on variable λ0, which has no local objective function.

it will be a in-neighbor of every other agent. With T1 = ∂
∑
Li and T2 = ΠAx ×ΠAλ ,

applying the D-R algorithm (2.8) will result in

x̄t = ΠAx(x
t), λ̄t = ΠAλ(λt), (5.6a)(

xt+1
i , λt+1

i

)
=
(
xti − 2αx̄ti, λ

t
i − 2αλ̄ti

)
+ 2αJρLi

(
2x̄ti − xti, 2λ̄

t
i − λti

)
, i ∈ Im, (5.6b)

where λ̄t = ΠAλ(λt) has the explicit form

λ̄t1 = · · · = λ̄tm =
1

m

∑
i∈Im

λti

and (x′i, λ
′
i) = JρLi(xi, λi) can be evaluated as

x′i = argmin
x′i

(
fi(x

′
i) +

1

2ρ
‖ρ(FiS̃ix

′
i − ci) + λi‖2 +

1

2ρ
‖x′i − xi‖2

)
, (5.7a)

λ′i = ΠR`+

(
λi + ρ(FiS̃ix

′
i − ci)

)
. (5.7b)



82

Here, the matrix S̃i ∈ Rni×Ni selects agent i’s own variable xi from xi: xi = S̃ixi

and denote S̃ := diag{S̃1, . . . , S̃m}. Compared with the selection matrices Si and S

defined in Section 4.3.2, we have x = S̃x = S̃Sx with x ∈ Ax and therefore S̃S = In.

However, the reverse S>S̃ in general does not equal to IN . The orthogonal projection

operator ΠR`+ in (5.7b) can be evaluated entry-wise where for each entry z ∈ R,

ΠR+(z) = max{0, z}.

The following Theorem establishes the convergence of Algorithm (5.6), which di-

rectly follows from (2.8).

Theorem 5.3.1 Suppose Assumptions 4.1.1, 5.1.1, and 5.3.1 hold and the coordina-

tor can communicate bidirectionally with every other agent i ∈ Im. With α ∈ (0, 1)

and ρ > 0, the (x̄t, λ̄t) generated by Algorithm (5.6) will converge to one saddle point

(x∗, λ∗) of (5.5) and the corresponding x∗ is a minimizer of Problem (5.3).

To carry out the consensus operation (5.6a), in addition to the communication

between each agent i ∈ Im and its out-neighbors to reach consensus on xi, same

as in (5), the coordinator exchanges information with every other agent to get the

consensus value of the dual variable λ0. However, in many practical problems, having

a coordinator agent may not be feasible given the network structure and could increase

the agent network’s risk of failures or vulnerability to attacks at a single point. Thus,

our focus in next section will be to develop fully distributed solution algorithms where

all agents play equal role and no super agents such as coordinator agents are needed.

5.4 Synchronous Algorithm without Coordinators

In Algorithm (5.6), the only role the coordinator plays is to ensure consensus on

the dual variables. In the coordinator-free algorithm to be proposed in this section,

this task will be distributed among agents where each agent exchanges its own copy

of the dual variable with its neighbors on a directed graph (Im, Ec) named consensus

graph. The consensus graph has the vertex set Im and the edge set Ec such that

(j, i) ∈ Ec if agent i can receive the dual variable’s copy λj held by agent j and
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there are no self loops. For agent i ∈ Im, its in-neighbor set N+
ci := {j | (j, i) ∈ Ec}

consists of all agents who can send their dual variable copies to agent i while the

out-neighbor set N−ci := {k | (i, k) ∈ Ec} consists of agents that can receive λi from

agent i. Obviously, if j ∈ N+
ci , then i ∈ N−cj .

Assumption 5.4.1 The consensus graph (Im, Ec) is strongly connected.

Associate each edge (j, i) ∈ Ec with a constant weight wij > 0 and define the

corresponding graph Laplacian matrix W as: for i 6= j, Wij = −wij if (j, i) ∈ Ec
and Wij = 0 if otherwise; and for i ∈ Im, Wii =

∑
j∈N+

ci
wij. By Assumption 5.4.1,

W has a simple eigenvalue at 0 with the eigenvector 1m ∈ Rm and the null space

N (W ) = {w1m |w ∈ R}. For agent i ∈ Im, its (generalized) in-degree d+
ci and

out-degree d−ci are defined as follows:

d+
ci :=

∑
j∈N+

ci

wij = Wii, d−ci :=
∑
k∈N−ci

wki, (5.8)

which will be used later in Lemma 5.4.4 to estimate the parameters of the coordinator-

free algorithm.

Let λi be the copy of dual variable held by agent i and, with a little abuse of

notation, their concatenation be λ := (λi)i∈Im . With W defined above, the equivalent

condition to guarantee consensus of λis’ is (W ⊗ I`)λ = 0. With ξ ∈ R`m being the

dual variable, incorporating this constraint into the Lagrange function (5.4) leads to

Lc(x, ξ, λ) = f(x) + λ>(F̃ x− c)− ıR`m+ (λ) + ξ>(W ⊗ I`)λ

=
∑
i∈Im

(
fi(x̌i) + λ>i (Fixi − ci)− ıR`+(λi) +

∑
j∈N+

ci

wijξ
>
i (λi − λj)

)
(5.9)

with F̃ := diag{F1, . . . , Fm} and c := [c1, . . . , cm]>. Obviously, Lc is a saddle function

that is convex of (x, ξ) and concave of λ.

For the indicator function ıR`+ , its subdifferential set is given by ∂ıR`+(λ0) =

{q | q>(z − λ0) ≤ 0, ∀z ∈ R`
+} if λ0 ∈ R`

+ and ∂ıR`+(λ0) = ∅ if otherwise. Note

that the set ∂ıR`+(λ0) is closed under positive scalar multiplication, i.e., βq ∈ ∂ıR`+(λ0)
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for any β ≥ 0, q ∈ ∂ıR`+(λ0), as it is a cone. The following property on ∂ıR`+ will be

used later.

Lemma 5.4.1 For the positive integers m and `, the vectors λ0, q0 ∈ R`, denote

λ := 1m ⊗ λ0 and q := 1m ⊗ q0. Then the following statements are equivalent:

(1). q0 ∈ ∂ıR`+(λ0),

(2). q ∈ ıR`m+ (λ),

(3). q0 ∈ (1>m ⊗ I`)∂ıR`m+ (λ) := {(1>m ⊗ I`)y, y ∈ ∂ıR`m+ (λ)}.

Proof Suppose q0 ∈ ∂ıR`+(λ0), i.e., ∀z0 ∈ R`
+, q>0 (z0 − λ0) ≤ 0. Thus ∀z ∈ R`m

+ ,

q>(z−λ) =
∑

i∈Im q
>
0 (zi−λ0) ≤ 0 as each addend is nonnegative, which is exactly the

conclusion (2). From the definition of q, q0 = (1>m ⊗ I`)(1/m)q for (1/m)q ∈ ıR`m+ (λ),

the conclusion (3) follows.

Suppose q0 ∈ (1>m⊗I`)∂ıR`m+ (λ), i.e., there exists y ∈ R`m such that q0 = (1>m⊗I`)y

and y>(z − λ) ≤ 0, ∀z ∈ R`m
+ . As a special case of z, y>(1m ⊗ z0 − λ) ≤ 0 always

holds for every z0 ∈ R`
+. Thus ∀z0 ∈ R`

+, q>0 (z0 − λ0) = y> (1m ⊗ (z0 − λ0)) =

y>(1m ⊗ z0 − λ) ≤ 0, that is the conclusion (1).

Suppose q ∈ ıR`m+ (λ). Thus for z = 1m ⊗ z0, ∀z0 ∈ R`
+, by definition of ∂ıR`m+ (λ),

there holds (1m⊗q0)>(z−λ) = mq>0 (z0−λ0) ≤ 0, which leads to that q>0 (z0−λ0) ≤ 0

holds for any z0 ∈ R`
+, that is the conclusion (1).

The following Lemma 5.4.2 establishes the one-to-one correspondence between the

original Lagrange function (5.4) and the new formulation with the consensus graph

introduced.

Lemma 5.4.2 The pair (x∗, λ∗0) is saddle point of La in (5.4) if and only if (x∗, ξ∗, λ∗)

is saddle point of Lc in (5.9) with λ∗ = 1m ⊗ λ∗0 for some ξ∗.

Proof The saddle differentials corresponding to La in (5.4) and Lc in (5.9) are:

TLa(x, λ0) =

 ∂f(x) + F̃>(1m ⊗ λ0)

(1>m ⊗ I`)(c− F̃ x) + ∂ıR`+(λ0)

 ,
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TLc(x, ξ, λ) =


∂f(x) + F̃>λ

(W ⊗ I`)λ

c− F̃ x+ ∂ıR`m+ (λ)− (W> ⊗ I`)ξ

 .
Thus the conclusion becomes 0 ∈ TLa(x∗, λ∗0) if and only if 0 ∈ TLc(x∗, ξ∗, λ∗).

Suppose 0 ∈ TLc(x∗, ξ∗, λ∗). From its second row (W ⊗ I`)λ∗ = 0, we have λ∗ =

1m ⊗ λ∗0 for some λ∗0 and thus the first row of 0 ∈ TLc directly implies 0 ∈ ∂f(x∗) +

F̃>(1m ⊗ λ∗0), which is the first row of 0 ∈ TLa . With 1>m ⊗ I` multiplied on the left

by the third row of 0 ∈ TLc , we have

(1>m ⊗ I`)(c− F̃ x∗) + (1>m ⊗ I`)∂ıR`m+ (1m ⊗ λ∗0)

3 (1>m ⊗ I`)(W> ⊗ I`)ξ∗ = (W1m ⊗ I`)>ξ∗ = 0

by using the fact that W ’s null space N (W ) = {w1m |w ∈ R}. Together with the

equivalence of (1) and (3) in Lemma 5.4.1, the second row of 0 ∈ TLa directly follows

from the expression above.

Suppose 0 ∈ TLa(x
∗, λ∗0). By letting λ∗ = 1m ⊗ λ∗0, the second row of 0 ∈ TLc

trivially holds and the first row is resulted from the first row of 0 ∈ TLa . From the

second row of 0 ∈ TLa , we have q∗0 := (1>m ⊗ I`)(−c + F̃ x∗) ∈ ∂ıR`+(λ∗0). Combined

with the equivalence of (1) and (2) in Lemma 5.4.1, it leads to q∗ ∈ ∂ıR`m+ (λ∗) with

q∗ := (1/m)1m ⊗ q∗0. Then

(1>m ⊗ I`)(c− F̃ x∗ + q∗) = (1>m ⊗ I`)(c− F̃ x∗) + q∗0 = 0. (5.10)

On the other hand, because of N (W ⊗ I`) = {w1m ⊗ I` |w ∈ R} and the space

relationship R(A>) ⊥ N (A) for any matrix A, the range space R
(
W> ⊗ I`

)
= {y ∈

R`m | (1>m⊗ I`)y = 0}, implying that c− F̃ x∗+ q∗ ∈ R
(
W> ⊗ I`

)
according to (5.10).

Therefore, there exists ξ∗ such that c − F̃ x∗ + q∗ − (W> ⊗ I`)ξ∗ = 0, which implies

the third row of 0 ∈ TLc .
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With the same xi and x defined in Section 4.1, the Lc(x, ξ, λ) in (5.9) can be

transformed to the following equivalent form

Lc(x, ξ, λ) = f(x) + λ>(F̃ S̃x− c)− ıR`m+ (λ) + ξ>(W ⊗ I`)λ+ ıAx(x)

=
∑
i∈Im

(
fi(xi) + λ>i (FiS̃ixi − ci)− ıR`+(λi) +

∑
j∈Ni

wijξ
>
i (λi − λj)

)
+ ıAx(x) (5.11)

whose saddle differential operator is

TLc(x, ξ, λ) =


∂f(x) + (F̃ S̃)>λ+ ∂ıAx(x)

(W ⊗ I`)λ

−F̃ S̃x + c+ ∂ıR`m+ (λ)− (W> ⊗ I`)ξ

 .
The set of saddle points of Lc(x, ξ, λ) is the same as the zero set of TLc scaled by 2,

which can be split as follows:

2TLc = T 1
Lc + T 2

Lc (5.12)

:=


2∂f(x) + (F̃ S̃)>λ

(W ⊗ I`)λ

−F̃ S̃x + c+ ∂ıR`m+ (λ)− (W> ⊗ I`)ξ

+


2∂ıAx(x) + (F̃ S̃)>λ

(W ⊗ I`)λ

−F̃ S̃x + c+ ∂ıR`m+ (λ)− (W> ⊗ I`)ξ

 .
Note that except for the subdifferential term in their first rows, the terms T 1

Lc
and T 2

Lc

are the same. This feature to be shown later will help to reduce the communication

requirements when distributing the computation burden among agents.

Lemma 5.4.3 The operators T 1
Lc

and T 2
Lc

are maximal monotone. So is TLc.

Proof The operator T 1
Lc

can be split as

T 1
Lc = T∂ + A

[
x> ξ> λ>

]>
:=


2∂f(x)

0

c+ ∂ıR`m+ (λ)

+


0 0 (F̃ S̃)>

0 0 W ⊗ I`
−F̃ S̃ −W> ⊗ I` 0




x

ξ

λ

 .
Since both f(x) and ıR`m+ (λ) are convex, closed and proper (CCP) functions, the

operator T∂ is maximal monotone. As the matrix A is skew-symmetric A + A> = 0,
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the second term is also maximal monotone. Therefore their sum T 1
Lc

is maximal

monotone.

The same reasoning applies to T 2
Lc

with ∂f(x) replaced by ∂ıAx(x). Thus, TLc as

their sum is maximal monotone, too.

Although T 1
Lc

and T 2
Lc

look mush simpler than TLc , each term could not be eval-

uated easily. Next we define the positive definite matrix P = P> � 0 to make the

computation doable:

P =


P1 0 (F̃ S̃)>

0 P2 W ⊗ I`
F̃ S̃ W> ⊗ I` P3

 , (5.13)

where the diagonal blocks are defined as

P1 := diag

{
1

ρ1

IN1 , . . . ,
1

ρm
INm

}
,

P2 := diag{1/ε̌1, . . . , 1/ε̌m} ⊗ I`,

P3 := diag{1/ε̂1, . . . , 1/ε̂m} ⊗ I`,

with positive constant scalars ρi, ε̌i, ε̂i, i ∈ Im. The following Lemma 5.4.4 presents a

sufficient but relatively conservative condition to guarantee a positive define P , where

only the local information from each agent and its neighbors in the consensus graph

is used.

Lemma 5.4.4 Suppose for each i ∈ Im, the parameters ρi, ε̌i, and ε̂i satisfy the

following conditions:

0 < ρi < 1
/
‖Fi‖, (5.14a)

0 < ε̌i < 1
/(

2d+
ci

)
, (5.14b)

0 < ε̂i < 1
/(
‖Fi‖+ d+

ci + d−ci

)
. (5.14c)

Then the symmetric matrix P defined in (5.13) is positive definite.
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Proof The rows and columns of matrix P can be partitioned in the same way

conforming to the variables x1, . . . ,xm, ξ1, . . . , ξm, λ1, . . . , λm into 3m × 3m blocks,

and denote by Pij the block in the i-th row and j-th column. Then the diagonal

blocks are of the form (1/τ)I with proper dimensions for τ ∈ {ρi, ε̌i, ε̂i, i ∈ Im} and

thus are M-matrices (defined in Chapter 2).

With S̃i defined after (5.7), we have ‖Fi‖ = ‖FiS̃i‖ = ‖(FiS̃i)>‖. Therefore the

first condition (5.14a) results in

‖ 1

ρi
I‖ > ‖(FiS̃i)>‖, i = 1, . . . ,m;

the second condition (5.14b) leads to

‖ 1

ε̌i
I‖ > 2d+

ci = Wii +
∑
j∈N+

i

‖|Wij|I‖, i = m+ 1, . . . , 2m;

and the last one (5.14c) implies

‖ 1

ε̂i
I‖ > ‖Fi‖+ d+

ci + d−ci = ‖FiS̃i‖+Wii +
∑
k∈N−i

‖|Wki|I‖, i = 2m+ 1, . . . , 3m.

The three inequalities above together guarantee each row of blocks satisfying

‖P−1
ii ‖−1 >

∑
j∈I3m,j 6=i

‖Pij‖, i ∈ I3m,

implying that the matrix P is block strictly diagonally dominant (see definition in

Appendix). By Theorem 2.6.1 in Appendix, the matrix P = P> is positive definite.

Next we show how to use P to evaluate the generalized resolvents of T 1
Lc

and T 2
Lc

.

Lemma 5.4.5 With T 1
Lc

and P defined in (5.12) and (5.13), respectively, the gener-

alized resolvent (x′, ξ′, λ′) = JP
T 1
Lc

(x, ξ, λ) can be evaluated as

λ′ = ΠR`m+

(
λ+ P−1

3

(
(F̃ S̃x− c+ (W> ⊗ I`)ξ

))
, (5.15a)

x′ = J
P1/2
∂f

(
x− P−1

1 (F̃ S̃)>Λ
)
, (5.15b)

ξ′ = ξ − P−1
2 (W ⊗ I`)Λ, (5.15c)
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with Λi := 2λ′i − λi and Λ := (Λ1, . . . ,Λm). Equivalently, the distributed implementa-

tion is: for i ∈ Im,

λ′i = gλi
(
λi, xi, ξi, (ξk)k∈N−ci

)
:= ΠR`+

(
λi + ε̂i

(
Fixi − ci +Wiiξi −

∑
k∈N−ci

wkiξk
))
,

(5.16a)

x′i = J2ρi∂fi

(
xi − ρi(FiS̃i)>Λi

)
, (5.16b)

ξ′i = ξi − ε̌i
∑
j∈N+

ci

wij (Λi − Λj) . (5.16c)

For T 2
Lc

in (5.12) and the same P , JP
T 2
Lc

can be computed in the same way but

with (5.15b) and (5.16b) replaced by the following (5.17) and (5.18), respectively,

x′ = J
P1/2
∂ıAx

(
x− P−1

1 (F̃ S̃)>Λ
)
, (5.17)

x′ik = x′i =
(xi − ρiF>i Λi)/ρi +

∑
k∈N−i

xik/ρk

1/ρi +
∑

k∈N−i
1/ρk

, ∀k ∈ N−i , (5.18)

Proof By definition of the preconditioned resolvent JPT in (2.7), we have P (x, ξ, λ) ∈

P (x′, ξ′, λ′) + T 1
Lc

(x′, ξ′, λ′), which can be simplified as
x− P−1

1 (F̃ S̃)>(2λ′ − λ)

ξ − P−1
2 (W ⊗ I`)(2λ′ − λ)

λ+ P−1
3

(
F̃ S̃x− c+ (W> ⊗ I`)ξ

)
 ∈


x′ + (P1/2)−1∂f(x′)

ξ′

λ′ + P−1
3 ∂ıR`m+ (λ′)

 .
According to the definition of preconditioned resolvent, the third row results in

λ′ = JP3
∂ıR`m+

(
λ+ P−1

3

(
F̃ S̃x− c+ (W> ⊗ I`)ξ

))
.

Since ıRn+(x) =
∑

i∈In ıR+(xi), the expression (5.15a) follows from Remark 2.3.1(b).

Using the definition of preconditioned resolvent, the first row leads to the conclu-

sion (5.15b). And (5.15c) can be derived from the second row. The distributed

implementations (5.16) and (5.18) follow from Lemma 2.3.1.

From the distributed implementation (5.16) and (5.18) in Lemma 5.4.5, the resol-

vents JP
T 1
Lc

and JP
T 2
Lc

can be computed using only information from neighboring agents
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in the dependency graph (Im, E) as well as the consensus graph (Im, Ec). Particularly,

to compute ξi in (5.16c), agent i receives the information Λj = 2λ′j − λj from every

in-neighbor j ∈ N+
ci in the consensus graph. However, for its in-neighbor j ∈ N+

ci to

update its own λj in (5.16a), agent i as one of agent j’s out-neighbor needs to send

back ξi to agent j. Therefore, in addition to the bidirectional communication As-

sumption 4.1.3 on (Im, E), we impose the following Assumption 5.4.2 about (Im, Ec).

Assumption 5.4.2 The communication in the consensus graph (Im, Ec) is bidirec-

tional, i.e., the communication graph is the union of (Im, Ec) and its transpose (Im, E>c ).

With Assumption 5.4.2, we are able to adopt the generalized Douglas-Rachford

algorithm (2.8) to obtain our distributed implementation (in a compact form) as

follows:

z̄t = JPT 2
Lc

(zt), (5.19a)

zt+1 = zt + 2α
(
JPT 1

Lc
(2z̄t − zt)− z̄t

)
, (5.19b)

with the constant α ∈ (0, 1), zt = (xt, ξt, λt) and z̄t = (x̄t, ξ̄t, λ̄t) for t ≥ 0. Using the

distributed computation of JP
T 1
Lc

and JP
T 2
Lc

in Lemma 5.4.5, the detailed implementation

of (5.19) is summarized in the following Algorithm 10, where ¯̄zt = (¯̄xt, ¯̄ξt, ¯̄λt) :=

2z̄t − zt and z̃t = (x̃t, ξ̃t, λ̃t) := JP
T 1
Lc

(¯̄zt) denote the intermediate values.

In Algorithm 10, the first two for loops carry out the computation (5.19a) plus

the step ¯̄zt = 2z̄t − zt and the left two loops implement the rest of (5.19b). These

four loops must be executed in sequence while within each loop, the computation is

completed by each agent in parallel. The information is exchanged: a) in steps 6, 8

between each agent and its out-neighbors in the dependency graph (Im, E), same as

that in Algorithm 5; b) in steps 4, 12 between each agent and its out-neighbors in the

consensus graph (Im, Ec), and in steps 9, 17 between each agent and its in-neighbors

also in (Im, Ec). Therefore the first two for loops are relatively communication-

extensive.

The convergence of Algorithm 10 is established in the following Theorem 5.4.1.
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Algorithm 10 Synchronous Coordinate-Free Algorithm

1: Initialize x0, ξ0, λ0, and let t← 0.

2: repeat

3: for i = 1, . . . ,m do

4: λ̄ti ← gλi
(
λti, x

t
i, ξ

t
i , (ξ

t
k)k∈N−ci

)
5: ¯̄λti = Λ̄t

i ← 2λ̄ti − λti
6: x̄ti ←

(xi−ρiF>i Λi)/ρi+
∑
k∈N−

i
xik/ρk

1/ρi+
∑
k∈N−

i
1/ρk

7: end for

8: for i = 1, . . . ,m do

9: x̄tik ← x̄ti, ∀k ∈ N−i
10: ξ̄ti ← ξti − ε̌i

∑
j∈N+

ci
wij
(
Λ̄t
i − Λ̄t

j

)
11: (¯̄xti,

¯̄ξti)← 2(x̄ti, ξ̄
t
i)− (xti, ξ

t
i)

12: end for

13: for i = 1, . . . ,m do

14: λ̃ti ← gλi
(¯̄λti, ¯̄xti,

¯̄ξti , (
¯̄ξtk)k∈N−ci

)
15: Λ̃t

i ← 2λ̃ti − ¯̄λti

16: x̃ti ← J2ρi∂fi

(
¯̄xi − ρi(FiS̃i)>Λ̃i

)
17: (xt+1

i , λt+1
i )← (xti, λ

t
i) + 2α

(
(x̃ti, λ̃

t
i)− (x̄ti, λ̄

t
i)
)

18: end for

19: for i = 1, . . . ,m do

20: ξ̃ti ← ¯̄ξti − ε̌i
∑

j∈N+
ci
wij

(
Λ̃t
i − Λ̃t

j

)
21: ξt+1

i ← ξti + 2α(ξ̃ti − ξ̄ti)

22: end for

23: t← t+ 1

24: until ‖(x̄t, ξ̄t, λ̄t)− (x̄t−1, ξ̄t−1, λ̄t−1)‖ is sufficiently small

25: return x̄t
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Theorem 5.4.1 Suppose Assumptions 4.1.1, 5.1.1, 5.3.1 and 5.4.1 hold, and the

positive constant scalars ρi, ε̌i, ε̂i, i ∈ Im, are chosen such that the matrix P defined

in (5.13) is positive definite. The sequence {(x̄t, ξ̄t, λ̄t)} generated by Algorithm 10

(or (5.19)) will converge to a saddle point (x̄∗, ξ̄∗, λ̄∗) of Lc in (5.9) and the corre-

sponding x∗ is a solution to Problem (5.3).

Proof The Algorithm (5.19) is derived by applying the Douglas-Rachford splitting

method. As stated after (2.8), for P � 0, the generated sequence will converge to

one saddle point of Lc(x, ξ, λ). Following from Lemma 5.4.2, the corresponding x∗ is

a minimizer of Problem (5.3).
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6. NUMERICAL EXAMPLES

This chapter summarizes the simulation results of the proposed algorithms applied

to the linear equations/programs and network localization problems. In all these

examples, the initial value x0
ij are set to be x0

i for all i ∈ Im and j ∈ N−i .

6.1 Linear Programs/Equations

We firstly apply Algorithms 1 and 3 to solve Example 3.2.1 with ε = 0, 0.01, 0.5,

respectively, which is a linear equation when ε = 0 and linear programs otherwise.

For comparison, in Algorithm 3 all agents are assumed to take part in both the

projection and consensus operations for all rounds. The parameter αi in the relaxed

projection (3.11) is αi = 1.5, i ∈ {1, 2, 3} in both Algorithms 1 and 3 and the weight

matrices in (3.17) of Algorithm 3 are, for all t = 1, 2, . . .

W t
1 =

[
1
]
, W t

2 =

0.1 0.9

0.9 0.1

 , W t
3 =


0.04 0.48 0.48

0.48 0.04 0.48

0.48 0.48 0.04

 .
The results are shown in Fig. 6.1, where x∗ is the augmented variable correspond-

ing to the unique solution x∗ = (0, 2,−1) when ε = 0, and the converged feasible

solution when ε 6= 0. As can be seen, Algorithm 3 with proper assigned weights

converges significantly faster than Algorithm 1 in all cases.

When ε increases, it generates a larger feasible set for each agent and also a

larger set of common feasible points. As can be seen in Fig. 6.1, when ε is larger,

the convergence is slightly faster since it gets easier for agents to satisfy their local

constraints. This feature is more obvious in Fig. 6.7 for network localization problem.
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Fig. 6.1. Results of Example 3.2.1: plots of ‖xt − x∗‖ vs iterations t for
Algorithms 1 and 3.

6.2 Network Localization Using Accurate AOA Information

In this section we consider the network localization problem using AOA informa-

tion introduced in Section 3.2.2. A number of agents are randomly placed inside a

planar region. Among them, some are anchors indexed by Ia who know their exact

locations (x∗i )i∈Ia , while the other are free agents indexed by If who need to estimate

their positions (x∗i )i∈If based on the relative orientation measurements between pairs

of agents within a certain measurement range. This is an instance of the convex feasi-

bility problem and therefore a special case of convex optimization problems. If there

are at least two anchors and the whole network has an infinitesimally rigid graph,

then the network is localizable, i.e., there is a unique solution (x∗i )i∈If satisfying all

the relative orientation constraints [10, Thm. 15].

When the AOA information is accurate, i.e. δ = 0, the whole network is infinites-

imally rigid and therefore the solution is unique, which is named as the ground truth

in the sequel.
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In this case study, there are 30 agents with two anchors (the minimum number

of necessary anchors). The initial guesses randomly generated for the free agents

are shown in Fig. 6.2 (a) while the ground truth is depicted in sub-figure (i). In

each sub-figure, edges represent the constraints couplings resulting from the relative

orientation measurements and solids dots and small circles are anchors and free agents,

respectively. In the rest of this section, Algorithms 1, 5 and 8 are applied to solve

this problem and the iterative results will be compared with that of the well known

algorithm Pro-Con from [27,28] and ADMM.

Fig. 6.2 shows the iterative result of Algorithm 1. As can be seen, the algorithms

converges after about 50 iterations to the ground truth.

Fig. 6.3 plots the convergence rates of Algorithm 1 with three different settings

of αi: αi ≡ 0.5, αi ≡ 1, αi ≡ 1.9 and Pro-Con algorithm in [27, 28]. For a fair

comparison, the Pro-Con algorithm adopts equal weights as that in the consensus

operation of Algorithm 1. At least for this example, regardless of αi being used,

Algorithm 1 converges much faster than the Pro-Con algorithm despite the fact that

the later one demands each agent to store and exchange with neighbors a whole

copy of the variable x, resulting in more information storage and communication

for all agents. An intuitive explanation of the performance difference is as follows.

In the Pro-Con algorithm, agent i maintains a copy of x. However, in the copy,

only the part involved in the local constraint Fi will be updated/improved via the

local projection step, while the other part remains unchanged but still gets delivered

to neighboring agents for their consensus step, potentially hindering the algorithm.

Regarding to Algorithm 1, at least in this case study, a larger value of αi leads to a

faster convergence rate. It is unclear whether this observation holds true for general

problems. Our experience seems to suggest that using αi ∈ (1, 2) generally induces

faster convergence than using αi ∈ (0, 1).

In Fig. 6.4, we compare the convergence rates of three synchronous algorithms,

Algorithms 1, 5 and the ADMM algorithm (4.12). For Algorithm 5, the parameter

α is set to 0.5, 0.7, 0.9, 0.98, respectively, while the parameter ρ has no effect on the
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(a) Initial guess (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 30 iterations (f) 50 iterations

(g) 80 iterations (h) 100 iterations (i) Ground truth

Fig. 6.2. Results of applying Algorithm 1 to the network localization
problem with 2 anchors among 30 agents.

algorithm as each fi is an indicator function. For the ADMM algorithm (4.12), ρ =

0.01, 0.1, 1, 10, 1000 are tested and the best result (ρ = 0.1) is plotted in Fig. 6.4. For

Algorithm 1, the result with the best parameter value αi ≡ 1.9 based on experiments

is included here. For this example, the Algorithm 5 converges at a similar rate

as the ADMM algorithm (4.12) with less performance oscillations, but faster than

Algorithm 1.
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Fig. 6.3. Comparison of the convergence rates of Algorithm 1 with differ-
ent αi and the Pro-Con algorithm for the network localization problem.
The value

∑
i∈If ‖x

t
i − x∗i ‖2 versus iteration number t is plotted.

Fig. 6.5 shows representative random outcomes of applying Algorithm 8 to the

same localization problem with α = 0.5 and two different sets of probabilities:

pi = 1/30, and pi = Di/
∑
Di where Di is the degree of node i in the dependency

graph. It is observed that the iterative results indeed converge to the optimal solution.

Further, updating highly connected nodes more frequently does not seem to speed

up convergence in this example. Note that, compared to Algorithm 5, the number of

iterations needed for achieving the same convergence performance is much larger due

to the fact that at each round only one agent is performing computation as opposed

to 28 agents in Algorithm 5.
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Fig. 6.4. Comparison of the convergence rates of Algorithm 5 with differ-
ent αi, ADMM algorithm (4.12) and Algorithm 1 (PCon in figure) for the
network localization problem.

6.3 Network Localization Using Inaccurate AOA Information

In this section, consider the same setting as last section but the relative orien-

tation measurements are not accurate (δ 6= 0). With setting of δ = 0°, 2.5°, 4°, 8°,

respectively, Fig. 6.7 provides the convergence rate of applying Algorithm 1 by plot-

ting the sum of constraint violations d{∠(xj(k)−xi(k)),Θij} vs. iteration number k,

where d{·, ·} denotes the angle difference between the estimation and its feasible sets

(see Fig. 6.6). As can be seen in Fig. 6.7, with a larger error range δ and hence a

larger feasible set, the algorithm converges faster to a feasible solution.

However, the converged feasible solution above is not the ground truth in general.

When δ = 8°, the evolvement of network localization results is shown in Fig. 6.8.

With about 50 iterations, the localization results have converged to a common feasible

point, which, however, is not the one that represents the ground truth.
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Fig. 6.5. Random outcomes of Algorithm 8 with α = 0.5 and two different
sets of probabilities pi’s.

Fig. 6.6. Angle difference between the intermediate estimation and its
feasible set. With accurate measurement, the constraint is a singleton
(dashed line) which will expand to a cone (shading area) if the measure-
ment has errors.
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(a) Initial guess (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 30 iterations (f) 50 iterations

(g) 80 iterations (h) 100 iterations (i) Ground truth

Fig. 6.8. Results of applying Algorithm 1 to the network localization prob-
lem using inaccurate AOA information with 2 anchors among 30 agents.
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7. CONCLUSIONS

7.1 Main Results

This thesis studies the convex feasibility and optimization problems on agent

networks. A series of distributed synchronous or asynchronous solution algorithms are

developed based on paracontractions and operator splitting methods. The proposed

algorithms have the following desired features:

a. Except for Algorithm (5.6) (the synchronous algorithm with a coordinator for

optimization problems with local and global couplings), all the other algorithms

are iterative and distributed in that all agents play an equal tole and no super

nodes are needed. Compared to centralized algorithms, distributed solutions

have better scalability as the size of networks grows and better resilience to

single-point failures and attacks.

b. All of the algorithms adopt fixed step sizes. Therefore there is no need to

tune step sizes or choose the proper scheme for diminishing step sizes.

c. As stated multiple times in this thesis, the variables maintained by each agent

and the information exchanged between each agent and its in-neighbors (resp.

out-neighbors) only include this agent’s own variable and its desired values for

in-neighboring agents (reps. the desired values on its own variable from out-

neighboring agents). When the couplings across agents are sparse (i.e., each

agent is coupled with only a few of agents), the storage and communication

requirements for individual agents will be significantly reduced compared to the

common setting where each agent holds and exchanges with neighbors a copy

of the whole variable. This is the key feature of the algorithms developed in

this thesis.
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d. Following from the feature c. above, for agent i ∈ Im, each of its out-neighbors

has only access to agent i’s own variable xi. Compared to the case where each

agent exchanges the local copy of the whole variable x with neighbors, it will be

relatively difficult for the out-neighbors to infer agent i’s private information,

e.g., the local constraints and objective functions. On the other hand, as each

of its in-neighbor j ∈ N+
i can only obtain the desired value xji from agent i, the

in-neighbors will also have difficulty to reconstruct agent i’s private information

unless all of the in-neighbors cooperate as a group. This helps to protect the

privacy of each agent, should such needs arise.

7.2 Future Works

The approach proposed in this thesis can be extended in multiple directions. Fol-

lowing are a few of important ones.

� Networked convex-concave games with coupling constraints

Since the Lagrange functions of the constrained optimization problems studied

in Chapters 4 and 5 are special cases of saddle functions, the proposed dis-

tributed solutions can be modified to solve the networked convex-concave games

with coupling constraints where the coupling relations between agents are mod-

eled by the dependency graph. Interested readers can refer to our work [85,86]

for details.

� Asynchronous algorithms with bounded delay

The synchronous solutions discussed in this thesis require multiple rounds of

synchronization within each iteration where each agent waits until all agents

complete their computation for that round. This may lead to a large amount

of computation resource waste when some of the agents are slow. In the case of

asynchronous algorithms based on randomized implementation, only one agent

is allowed to carry out its update at each iteration, resulting in each iteration
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being relatively efficient. However, much more iterations are needed. Asyn-

chronous algorithms taking bounded delay into account could be a good candi-

date to remedy the situation, where each agent can update utilizing the latest

available information whenever it is ready.

� Robustness to the absence of agents

In the synchronous algorithms, it is assumed that all agents remain functional

all the time to carry out updates while the asynchronous algorithms are able

to accommodate the temporary absence of some agents. The study on the

algorithms’ convergence behaviors when one or some agents are permanently

lost (due to communication or breakdown) will be helpful to explore algorithms’

robustness to the absence of agents.

� Convergence rate

With the convergence analysis established so far, the algorithms can converge

asymptotically to a solution. However, it remains to be established how fast the

convergence can be. Especially, we would like to quantify the convergence rate

of the proposed algorithms in terms of the convexity of the local constraints and

objective functions as well as the connectivity of the dependency and consensus

graphs.
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[56] X. Gao, J. Liu, and T. Başar, “Stochastic communication-efficient distributed
algorithms for solving linear algebraic equations,” in 2016 IEEE Conference on
Control Applications (CCA). IEEE, 2016, pp. 380–385.

[57] S. Mou, Z. Lin, L. Wang, D. Fullmer, and A. S. Morse, “A distributed algorithm
for efficiently solving linear equations and its applications (special issue jcw),”
Systems & Control Letters, vol. 91, pp. 21–27, 2016.

[58] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator
theory in Hilbert Spaces, 2nd ed. Springer, 2017.

[59] E. K. Ryu and S. Boyd, “A primer on monotone operator methods,” Appl.
Comput. Math, vol. 15, no. 1, pp. 3–43, 2016.

[60] E. Wei and A. Ozdaglar, “On the O(1/k)convergence of asynchronous distributed
alternating direction method of multipliers,” in 2013 IEEE Global Conference on
Signal and Information Processing. IEEE, 2013, pp. 551–554.

[61] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-dual algo-
rithm and application to distributed asynchronous optimization,” IEEE Trans.
Automatic Control, vol. 61, no. 10, pp. 2947–2957, 2016.

[62] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin, “Coordinate friendly structures,
algorithms and applications,” arXiv Preprint 1601.00863, 2016.

[63] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous distributed
optimization using a randomized alternating direction method of multipliers,” in
IEEE Int. Conf. Decision and Control. IEEE, 2013, pp. 3671–3676.

[64] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized consen-
sus optimization with asynchrony and delays,” in 50th Asilomar Conf. Signals,
Systems and Computers. IEEE, 2016, pp. 992–996.

[65] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: an algorithmic framework for
asynchronous parallel coordinate updates,” SIAM Journal on Scientific Comput-
ing, vol. 38, no. 5, pp. A2851–A2879, 2016.

[66] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous distributed
ADMM for large-scale optimization – Part I: algorithm and convergence analy-
sis,” IEEE Trans. Signal Processing, vol. 64, no. 12, pp. 3118–3130, 2016.

[67] X. Hou, “Distributed solution for a class of multi-agent optimization problems,”
Ph.D. dissertation, Purdue University, May 2019.

[68] P. L. Combettes*, “Solving monotone inclusions via compositions of nonexpan-
sive averaged operators,” Optimization, vol. 53, no. 5-6, pp. 475–504, 2004.

[69] L. Elsner, I. Koltracht, and M. Neumann, “Convergence of sequential and asyn-
chronous nonlinear paracontractions,” Numerische Mathematik, vol. 62, no. 1,
pp. 305–319, 1992.

[70] C. L. Byrne, Applied iterative methods. AK Peters Wellesley, 2008.



110

[71] L. Fang and P. J. Antsaklis, “Asynchronous consensus protocols using nonlin-
ear paracontractions theory,” IEEE Transactions on Automatic Control, vol. 53,
no. 10, pp. 2351–2355, 2008.

[72] C. W. Wu, Synchronization in complex networks of nonlinear dynamical systems.
World Scientific, 2007.

[73] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-varying
metropolis weights,” Automatica, 2006.

[74] A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces.
Springer, 2012, vol. 2057.

[75] D. Davis and W. Yin, “A three-operator splitting scheme and its optimization
applications,” Set-valued and variational analysis, vol. 25, no. 4, pp. 829–858,
2017.

[76] D. W. Peaceman and H. H. Rachford, Jr, “The numerical solution of parabolic
and elliptic differential equations,” Journal of the Society for industrial and Ap-
plied Mathematics, vol. 3, no. 1, pp. 28–41, 1955.

[77] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear
operators,” SIAM Journal on Numerical Analysis, vol. 16, no. 6, pp. 964–979,
1979.

[78] J. Douglas and H. H. Rachford, “On the numerical solution of heat conduc-
tion problems in two and three space variables,” Transactions of the American
mathematical Society, vol. 82, no. 2, pp. 421–439, 1956.

[79] R. T. Rockafellar, “Monotone operators associated with saddle-functions and
minimax problems,” Nonlinear functional analysis, vol. 18, no. Part 1, pp. 397–
407, 1970.

[80] M. Sion et al., “On general minimax theorems.” Pacific Journal of mathematics,
vol. 8, no. 1, pp. 171–176, 1958.
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