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ABSTRACT 

Particle Image Velocimetry (PIV) is a non-invasive measurement technique which resolves 

the flow velocity by taking instantaneous snapshots of tracer particle motion in the flow and uses 

digital image cross-correlation to estimate the particle shift up to subpixel accuracy. The 

measurement chain incorporates numerous sets of parameters, such as the particle displacements, 

the particle image size, the flow shear rate, the out-of-plane motion for planar PIV and image noise 

to name a few, and these parameters are interrelated and influence the final velocity estimate in a 

complicated way. In the last few decades, PIV has become widely popular by virtue of 

developments in both the hardware capabilities and correlation algorithms, especially with the 

scope of 3-component (3C) and 3-dimensional (3D) velocity measurements using stereo-PIV and 

tomographic-PIV techniques, respectively. The velocity field measurement not only leads to other 

quantities of interest such as Pressure, Reynold stresses, vorticity or even diffusion coefficient, but 

also provides a reference field for validating numerical simulations of complex flows. However, 

such a comparison with CFD or applicability of the measurement to industrial design requires one 

to quantify the uncertainty in the PIV estimated velocity field. Even though the PIV community 

had a strong impetus in minimizing the measurement error over the years, the problem of 

uncertainty estimation in local instantaneous PIV velocity vectors have been rather unnoticed. A 

typical norm had been to assign an uncertainty of  0.1 pixels for the whole field irrespective of 

local flow features and any variation in measurement noise. The first article on this subject was 

published in 2012 and since then there has been a concentrated effort to address this gap. The 

current dissertation is motivated by such a requirement and aims to compare the existing 2D PIV 

uncertainty methods, propose a new method to directly estimate the planar PIV uncertainty from 

the correlation plane and subsequently propose the first comprehensive methods to quantify the 

measurement uncertainty in stereo-PIV and 3D Particle Tracking Velocimetry (PTV) 

measurements. 

The uncertainty quantification in a PIV measurement is, however, non-trivial due to the 

presence of multitude of error sources and their non-linear coupling through the measurement 

chain transfer function. In addition, the advanced algorithms apply iterative correction process to 

minimize the residual which increases the complexity of the process and hence, a simple data-

reduction equation for uncertainty propagation does not exist. Furthermore, the calibration or a 
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reconstruction process in a stereo or volumetric measurement makes the uncertainty estimation 

more challenging. Thus, current uncertainty quantification methods develop a-posterior models 

utilizing the evaluated displacement information and combine it with either image information, 

correlation plane information or even calibration “disparity map” information to find the desired 

uncertainties in the velocity estimates. 

The first chapter evaluates the existing 2D PIV uncertainty models prior to the ones 

developed in this dissertation work. The performance of four different methods (Peak to Peak 

Ratio (PPR), Mutual Information (MI), Image Matching (IM) and Correlation Statistics (CS)) were 

evaluated for two experimental cases of a cylinder wake and a free jet flow and the prescribed 

uncertainty was compared against the expected uncertainty or RMS error. The ground truth was 

established by a high magnification PIV measurement, which in turn was validated against a high 

frequency LDV measurement. The results indicated that the PPR and MI methods were less 

sensitive to the RMS error while the IM and CS methods, although had a better response to the 

variation in RMS error, underpredicted the uncertainty level. This work highlighted the need for 

further development in the field of planar PIV uncertainty estimation. 

The second chapter proposes a novel method to estimate the 2D PIV uncertainty directly 

from the cross-correlation plane. PIV being a statistical estimate, the evaluated displacement from 

the cross-correlation peak represents the most probable displacement for the interrogation window. 

However, individual particles contributing to the correlation peak do not shift by the exact same 

amount, due to measurement noise and thus the PDF of displacement can be obtained by extracting 

the phase information from the correlation plane. This idea is used to estimate the standard 

deviation of the PDF or the standard uncertainty. This method, namely Moment of Correlation 

(MC), showed a strong sensitivity to the primary error sources in PIV, as well as an improved 

uncertainty coverage, especially for window resolution of 64 pixels and above, for a wide range 

of flow fields. However, for synthetic images with very low image noise and for smaller 

interrogation windows the predicted uncertainty incurred a bias, of the order of 0.02 pixels, due to 

the resolution limit in estimating the PDF standard deviation. 

The next chapter develops the first method to quantify the uncertainty in a stereo-PIV 

measurement. The uncertainty propagation through the measurement chain involves combining 

the individual camera planar uncertainty estimates with the uncertainty in the camera angles or 

rather uncertainty in the camera calibration function. A methodology was developed to estimate 
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the calibration coefficient uncertainty from the uncertainty in stereo-camera registration or 

“disparity” and subsequently its propagation through the self-calibration process chain. The results 

for the 3-component uncertainty showed a strong dependence on the individual camera 2D 

uncertainty estimates. However, a higher disparity can lead to a higher contribution from the 

uncertainty in the stereo angles. The sensitivity of the coefficients for the uncertainty propagation 

equation were also analyzed as a function of the camera angles. Finally, the results were 

successfully validated for synthetic images as well as for an experimental vortex ring case. 

The fourth chapter shifts the focus to volumetric PTV measurements, as such measurements 

have become increasingly popular over the last few years, especially with the development of 

highly accurate Shake-The-Box (STB) method. The 3D PTV, although relies on tracking, has some 

commonalities with stereo-PIV measurement in terms of the calibration process. Here, the 

experience with stereo-calibration uncertainty was utilized to estimate the error propagation 

through the calibration mapping function for the 3D reconstruction process.  The proposed 

reconstruction uncertainty model showed a one-to-one correspondence with the reconstructed 3D 

particle position RMS error for a range of seeding densities. The reconstruction uncertainty 

directly influenced the uncertainty in the tracked velocity vector. A synthetic vortex-ring case and 

an experimental laminar pipe flow case were tested using the proposed framework and the results 

showed a reliable uncertainty prediction for the 3D PTV velocity fields in both cases. 

The final chapter is a new experimental method demonstration for PIV in the rotor stage of 

a multistage axial compressor. This chapter is not related to the uncertainty quantification 

methodology, the primary topic of this dissertation. In this analysis, instead of using traditional 

probe traversing techniques and using a periscopic probe for illumination, a new 3D PIV method 

was proposed with line-of-sight illumination. The time-averaged measurements revealed a region 

of negative radial velocities which matched with the static-pressure unsteadiness region, indicating 

tip-leakage vortex region. However, this analysis highlights the necessity of uncertainty bounds in 

a PIV measurement for precise comparison with measurements using other modalities.  

Hence, this dissertation establishes a comprehensive analysis of Particle Image Velocimetry 

measurement uncertainty spanning across planar PIV, stereo-PIV and 3D PTV. 
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Abstract 

Uncertainty quantification in planar Particle Image Velocimetry (PIV) measurement is critical for 

proper assessment of the quality and significance of reported results. New uncertainty estimation 

methods have been recently introduced generating interest about their applicability and utility. The 

present study compares and contrasts current methods, across two separate experiments and three 

software packages in order to provide a diversified assessment of the methods. We evaluated the 

performance of four uncertainty estimation methods, Primary Peak Ratio (PPR), Mutual 

Information (MI), Image Matching (IM) and Correlation Statistics (CS). The PPR method was 

implemented and tested in two processing codes, using in-house open source PIV processing 

software (PRANA, Purdue University) and Insight4G (TSI, Inc).  The MI method was evaluated 

in PRANA, as was the IM method.  The CS method was evaluated using DaVis (LaVision, GmbH). 

Utilizing two PIV systems for high and low-resolution measurements and a Laser Doppler 

Velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder 

in cross flow at two Reynolds numbers.  LDV measurements were used to establish a point 

validation against which the high-resolution PIV measurements were validated. Subsequently, the 

high-resolution PIV measurements were used as a reference against which the low-resolution PIV 
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data were assessed for error and uncertainty. We compared error and uncertainty distributions, 

spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We 

observed that qualitatively, each method responded to spatially varying error (i.e., higher error 

regions resulted in higher uncertainty predictions in that region). However, the PPR and MI 

methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS 

methods showed better response, but under-predicted the uncertainty ranges. The standard 

coverages (68% confidence interval) ranged from approximately 65%-77% for PPR and MI 

methods, 40%-50% for IM and near 50% for CS. These observations illustrate some of the 

strengths and weaknesses of the methods considered herein and identify future directions for 

development and improvement. 

1.1 Introduction  

Although the sources of PIV measurement error are well characterized [1], [2], quantifying their 

corresponding uncertainty bounds continues to be a challenge.  This is, in part, due to the high 

number of sources of error and their interactions.  Measurement errors include calibration error, 

background noise, particle response, non-uniform illumination, strong velocity gradients within 

windows, peak detection scheme, peak locking, just to name a few.  Each of these sources of error 

can manifest itself as a random or systematic error. 

There have been a number of PIV uncertainty quantification methods published, including 

Uncertainty Surface (US) [3], Primary Peak Ratio (PPR) [4], [5], Mutual Information (MI) [6], 

Image Matching (IM) [7], and Correlation Statistics (CS) [8]. These methods can be classified into 

two categories: direct and indirect.  Direct methods estimate uncertainty by matching particle 

images through window shifting.  Indirect methods estimate uncertainty through a software-

specific calibration of a correlation between the measurement error and either an uncertainty 

source or a property of the correlation plane.  Below, we briefly describe each approach. 

1.1.1 Direct Uncertainty Quantification Methods 

Image matching (IM) [7] is a direct method that calculates PIV measurement uncertainties by 

matching individual particle images from a given interrogation window of the correlating image 

pairs. Particle matching is achieved by continuously shifting the window by the local calculated 
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displacement vector. For particles that are matched, any spatial disparity between them is recorded 

as a vector.  Using the statistics of the ensemble of the matched particle disparity vectors the 

uncertainty can be calculated.  The correlation statistics (CS) [8] extends the particle matching by 

matching all the pixel intensities in the correlating image pairs. This method relates the covariance 

of the intensity difference in a matching image pair to the asymmetry in the cross-correlation plane 

peak. This covariance term is propagated via three-point Gaussian sub-pixel fit equation to yield 

the displacement uncertainty. The primary difference between the IM and CS is that the CS method 

accounts for all the pixels within an interrogation window, not just the matched particles.  

1.1.2 Indirect Uncertainty Quantification Methods 

Within the indirect classification, there are two approaches: uncertainty surface and correlation 

plane methods.  Uncertainty surface methods [3] utilize a priori knowledge about an error source 

and its corresponding measurement error (i.e., the response to some error source) to predict 

uncertainty.  This type of uncertainty method is, similar to the works of Kahler et al. [9] and 

Fincham & Delerce [10].  Using this approach, one selects a number of error sources and creates 

synthetic images from a defined velocity field while systematically varying the error source.  Then, 

after processing the images, errors can be defined for each velocity vector.  In this way, one can 

isolate error and the error source, and in turn, create an uncertainty response surface for the selected 

error sources. The primary limitation of this method is that a calibration for individual sources of 

error is needed, of which there are numerous (see [1]). Timmins et al. [3] have investigated particle 

image size, seeding density, shear rate, and particle displacement as potential error sources.  

Correlation plane methods were developed by Charonko et al. [4] and solely utilize the 

correlation plane. In Charonko et al. [4], the authors observed that the magnitude of the 

displacement error is inversely proportional to the Primary Peak Ratio (PPR), or the ratio between 

primary and secondary correlation peaks. The authors argued that the PPR is the natural choice for 

uncertainty analysis because the Signal-to-Noise Ratio (SNR) encompasses all possible sources of 

error.  As such, the authors formulated a relation between the PPR and the error, with software-

specific fitting coefficients calculated from synthetic data.  Later, Xue et al. [5] furthered this work 

by relating not only the PPR and RMS error, but also other measures of the SNR, such as peak-to-

root mean square ratio, peak-to-correlation energy, and cross-correlation entropy. Xue et al. [5] 
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also formulated a new relation between the SNR and displacement error that does not assume a 

normal distribution of measurement error. 

Xue et al. [6] also proposed uncertainty quantification using a new metric, Mutual 

Information (MI).  The MI is the ratio of the cross-correlation peak to the auto-correlation of an 

ideal Gaussian particle and denotes the effective amount of correlating information. A higher MI 

suggests a higher number of particles correlating within the interrogation windows and thus the 

displacement can be measured with a lower uncertainty. 

Sciacchitano et al. [11] compared the following uncertainty estimation methods: US, PPR 

(from [4]), IM and CS, in a jet flow, for regions with varying shear rate, particle image size, seeding 

density and out of plane motion. In their comparative analysis, CS uncertainty predictions matched 

the RMS error and yielded good coverage. IM showed a satisfactory dynamic response and 

overestimated the RMS error in the jet inviscid core, whereas US and PPR showed low sensitivity 

to error and predicted significantly lower and higher uncertainty coverage, respectively. In the 

present work, we build upon Sciacchitano et al. [11] by assessing the performances of new metrics 

MI and modified PPR [5], along with existing IM and CS algorithms, using PRANA1 (Purdue 

University), Insight4G (TSI, Inc) and DaVis (LaVision, GmbH) processing to provide a software-

independent generalized comparison of these uncertainty estimation methods. In addition, the 

present study provides an assessment of the uncertainty estimation methods across two 

experimental cases: a wake downstream of a cylinder in a water tank, and air jet flow. The 

following sections describe the experimental configuration, establish the validity of the reference 

data, evaluate the measurement error and uncertainty and discuss the performance of the 

uncertainty estimation methods.  

1.2 Experimental Test Cases, Procedures and Methodologies 

In order to assess the performance of each uncertainty method the measurement error must be 

known. But in practice the true solution of an experimentally measured flow is unknown. To 

overcome this challenge we follow the approach of Sciacchitano et al. [11] and utilize two 

synchronized PIV systems: a low resolution (measurement) and high resolution (reference) PIV 

                                                 
1 http://sourceforge.net/projects/qi-tools/ 
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system.  For all experiments the two PIV systems were synchronized with a TSI model# 610036 

synchronizer with timing resolution of 250 ps.  

To ensure that the high resolution (HR) PIV system has a lower error than the low 

resolution (LR) system, and thus more closely approximates the true solution, we compared its 

results with Laser Doppler Velocimetry (LDV) measurements taken at a single point. Neal et al. 

[12] used hot-wire anemometry to establish a reference solution. However, in the present case 

LDV is used, primarily because of its non-invasive nature, which also allows for simultaneous PIV 

and LDV measurement at any grid point within the field of view. The LDV and HR were compared 

at a single location within the jet and cylinder flows so as to take simultaneous data between all 

measurement systems, rather than compare statistical quantities.  Furthermore, the LDV is utilized 

to confirm that the HR has a lower error and uncertainty than the LR system.  The primary 

objective is to compare the LR measurements to a ground truth measurement, which is the HR 

measurements, rather than the LDV measurements. 

Each measurement system, whether LDV, LR PIV, or HR PIV will have greatly different 

spatial resolutions.  This is inherently due in part to the difference in technique (i.e., the LDV probe 

volume size is determined independently from the PIV window size). But it is primarily due to 

PIV signal strength and the need to create a relatively large difference in magnification for the LR 

and HR systems. The HR should have as high spatial resolution as possible to compare well with 

the LDV measurements, but still acquire adequate signal strength. Additionally, the resolution of 

the LR measurements should be high enough to compare well with the HR measurements, but still 

maintain a significant magnification ratio. It is with these considerations in mind that led us to 

select the magnifications and spatial resolutions for each measurement technique and experiment. 

For all experiments the LDV measurement volume was aligned in the plane of the PIV laser sheet. 

A 250mm focal distance lens was used, and the LDV measurement volume size was an ellipsoid 

with dimensions of 88 microns in the PIV streamwise and out-of-plane directions, and 929 microns 

in the spanwise direction. The LDV measurement was considered to be the ground truth. Appendix 

A details the process used to validate the reference PIV systems for each experiment.  

1.2.1 Cylinder in Cross Flow 

The low and high resolution PIV systems each utilized a high-speed camera with a digital 

resolution of 800 × 1280 pixels, a pixel pitch of 20 microns and operating at 1,000 frames/sec (500 
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velocity fields/sec). The cameras were mounted on opposite sides of the test flow, as shown in 

Figure 1.1a. The magnifications ratio of the two cameras was approximately five. Relevant 

parameters for each of the PIV systems can be seen in Table 1.1. 

Table 1.1. Cylinder in cross flow experimental apparatus parameters. 

Measurement 
System Lens f# 

Field of View 
(mm) 

Calibration Factor 
(m/pix) 

Low Resolution 28 mm 22 155 x 97 121.26 
High Resolution 105 mm 11 30 x 19 23.81 

 

Figure 1.1. a) Experimental setup for the cylinder in cross flow cases. b) Side view photo with 
reference PIV system in the background. c) Time averaged contours and vectors of particle 

displacement for both low and high resolution PIV systems for the cylinder in cross flow (𝑹𝒆𝒅 =
𝟒𝟖𝟎) case. Measurements within the black box are those from the high resolution system. The 

LDV measurement location is at X/d=0, Y/d=0. 

 

The flow consisted of a cylinder (diameter D = 5mm) in cross flow mounted in a channel 

with a width of 15.24 cm and half-channel height of 7.62 cm. The channel was filled with water 
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at room temperature and circulated by a centrifugal pump.  During the experiment, the pump was 

operated at two different speeds, corresponding to Reynolds numbers 𝑅𝑒ௗ ≈ 480 and 𝑅𝑒ௗ ≈ 730 

based on cylinder diameter and the bulk velocity. The flow was seeded with 12𝜇𝑚 silver-coated 

hollow glass spheres with a density of 1.65 g/cc. The Continuum Terra PIV laser (15 mJ/pulse) 

shown in Figure 1.1a was a dual-head Nd:YLF laser with light-sheet forming optics mounted at 

the beam exit, consisting of a -25mm cylindrical lens and an adjustable combination of spherical 

lenses.  This enabled us to locate the ~1mm thick beam waist at the center of the measurement 

volume. The pulse separation time between the laser pulses was 1ms. 

In order to verify the accuracy of the high resolution (reference) PIV system, we compared 

processed reference vectors with measurements from an LDV reference system.  The LDV was 

considered the ground truth measurement and acquired by a TSI Powersight LDV system coupled 

into a fiber optic transceiver probe mounted above the channel.  LDV beams were delivered from 

the top of the channel through a Plexiglas window and the water level was such that the beams 

were not projecting through a free surface.  The LDV measured the streamwise component of 

velocity at a location 6.5 diameters downstream of the center of the cylinder. The seeding density 

was chosen such that it optimized the data acquisition for the PIV measurements.  Since the LDV 

probe volume is smaller than the PIV interrogation window size and because the water channel 

speed was relatively slow, the resulting data rate for the LDV was approximately 300 Hz. Figure 

1.1b shows a photo of the test flow, laser sheet, and LDV measurement volume. See Appendix A 

for more detailed information regarding the LDV measurement system. Figure 1.1c shows the 

relative field of view of the low and high resolution measurement system (cylinder case 𝑅𝑒ௗ =

730 is not shown for the sake of brevity). The vectors and contours of mean streamwise velocity 

depict a wake profile symmetric about X/d=0. In Figure 1.1c every other vector is plotted in both 

x and y direction for the LR mean velocity field while all the vectors are shown for the HR case. 

1.2.2 Circular Jet in Quiescent Flow 

This experiment also utilized a low and high-resolution PIV system, each with the same high-

speed camera as mentioned in section 1.2.1, operating at 3,200 frames/sec. In this case, 1,600 

velocity fields per second was obtained with a laser pulse separation of 0.3125 ms. The cameras 

were mounted on either sides of the test flow. Relevant parameters for each of the PIV systems are 

shown in Table 1.2. The magnification ratio for the two cameras was approximately four. 
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Table 1.2. Jet flow experimental apparatus parameters. 

Measurement 
System Lens f# 

Field of View 
(mm) 

Calibration Factor 
(um/pix) 

Low Resolution 60 mm 5.6 114 x 71  88.41 
High Resolution 105 mm 2.8 27 x 17 21.48 

 

Figure 1.2. a) Experimental apparatus of the velocity measurement systems. b) Side view photo 
with the measurement system camera in the background. c) Time averaged contours and vectors 

of particle displacement for both low and high resolution PIV systems for the jet flow case. 
Measurements within the black box are those from the high resolution system. The LDV 

measurement location is at x/d=0, y/d=0. 

 

The experimental test flow was a three-dimensional (circular orifice) jet in quiescent flow. 

The air jet was generated using a TSI model# 1128B hotwire calibrator consisting of an upstream 

nozzle, pressurized settling chamber, flow conditioning screens, and an exit nozzle with a diameter 

of 10mm. The calibrator was designed to give a highly repeatable and steady flow near the nozzle 

exit. The exit speed of the jet was such that 𝑅𝑒௝ ≈ 2,500 (based on the diameter of the jet).  The 

seed particles were olive oil (𝜌 ≈ 900 𝑘𝑔/𝑚ଷ) droplets (with a nominal mean diameter of 1 
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micron) generated by a TSI model #9302 atomizer and introduced into the settling chamber. The 

ambient fluid was not seeded and thus, near the edges of the measurement volume (i.e., shear 

layers), velocity vector outliers are possible. As such, we have not considered any outliers in the 

present study. 

An illustration of the experimental apparatus is shown in Figure 1.2a. The same Continuum 

Terra PIV laser was used with a -25mm cylindrical lens and adjustable spherical light sheet optics 

which produced a light sheet thickness of approximately 1.2mm at the center of the measurement 

volume.  

In order to verify the accuracy of the reference PIV system we again compared processed 

reference vectors with measurements from TSI Powersight LDV system.  The LDV measurement 

volume was aligned to measure the streamwise velocity component of the jet at a location 3.2 jet 

diameters downstream of the orifice.  The typical LDV data rate was greater than 5 kHz. See 

Appendix A for more detailed information regarding the LDV measurement system. The LDV 

beams crossed along the axis of the circular jet as shown in Figure 1.2b.  Importantly, Figure 1.2b 

does not show the LDV measurement location used in the current study. Its actual location is 

defined as the origin in Figure 1.2c. Figure 1.2c compares the low resolution PIV fields with the 

high resolution measurement and shows the relative sizes of the respective field of views. Here, 

three vectors are skipped in each direction for both the LR and the HR mean velocity fields. The 

mean velocity profile for the jet exhibited a slight asymmetry. This however does not affect the 

comparisons since both PIV systems are subject to the same effect. 

1.2.3 PIV Processing Algorithms 

The PIV processing software used in this study include: PRANA (Purdue University), Insight4G 

(TSI Inc.), and DaVis (LaVision, GmbH). Each was used to process the low and high resolution 

PIV data sets and throughout this study, we present results from each.  Each code utilized a 

standard cross-correlation (SCC) with multi-pass iterative window deformation, except for the 

high resolution processing by PRANA, which utilized the Robust Phase Correlation (RPC) method 

[13], [14], [15] also with iterative window deformation [16]. Validation, universal outlier detection 

median filtering [17] and smoothing occurred between passes to achieve a converged velocity field. 

The last pass results were used without any vector validation such that a replaced vector, for which 

the uncertainty estimate is not valid, is not accounted for in the statistics. To filter out bad 
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measurements in the last pass, measurement points with absolute error greater than 1 pixel were 

discarded from the analysis. See Table 1.3 for additional processing details. 

 

The four uncertainty estimation methods assessed in this paper are: 1) PPR uncertainty 

method of Xue et al. [5] as implemented in both PRANA and Insight4G. 2) Mutual information 

uncertainty method of Xue et al. [6], implemented in PRANA. 3) Particle disparity method of 

Sciacchitano et al. [7], implemented in PRANA. 4) Correlation statistics method of Weineke [8], 

implemented in DaVis. 

In the present evaluation (Table 1.3) the final pass window sizes are same across the 

software but window overlap is varied. For LR case, the overlap was same for PRANA and DaVis 

while it was lesser for Insight4G (in the jet case) due to software limitation. The window overlap 

in LR case is varied from 50% (for the cylinder case) to 75% (for the jet case) to obtain sufficient 

vectors for good statistics (Sciacchitano et al. [7] also used 75% overlap in their jet study). 

However, for HR processing a higher overlap of about 83% is used. Since the HR measurements 

are interpolated onto the LR system grid points for comparison, a higher overlap for HR yields 

smoother vector fields which aids in interpolation. To further analyze if increasing overlap and 

dependent statistics affect the error and uncertainty estimates, final pass velocity vectors are 

skipped in each direction and resulting error and uncertainty distributions are compared across the 

software’s in Appendix B. The results clearly show that varying the overlap has insignificant effect 

on the RMS error and uncertainties for both flow cases in all three software. 

Table 1.3. Processing parameters (number of passes, window sizes, and overlap) for each 
processing code. 

 PRANA Insight4G DaVis 

Experiment 
No. of 
Passes 

Window Size 
& Overlap 

No. of 
Passes 

Window Size 
& Overlap 

No. of 
Passes 

Window Size & 
Overlap 

Jet Low 
Resolution 

2 
3 

64x64 (50%) 
32x32 (75%) 

5 
3 

64x64 (50%) 
32x32 (50%) 

2 
3 

64x64 (50%) 
32x32 (75%) 

Jet High 
Resolution 

2 
4 

64x64 (50%) 
48x48 (83.3%) 

5 
3 

64x64 (50%) 
48x48 (50%) 

2 
4 

64x64 (50%) 
48x48 (83%) 

Cylinder 
Low 

Resolution 
5 
3 

32x32 (75%) 
16x16 (50%) 

5 
3 

32x32 (50%) 
16x16 (50%) 

5 
3 

32x32 (75%) 
16x16 (50%) 

Cylinder 
High 

Resolution 
5 
3 

128x128 
(75%) 

64x64 (87.5%) 
5 
3 

128x128 
(50%) 

64x64 (50%) 
5 
3 

128x128 (75%) 
64x64 (87%) 
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1.2.4 Uncertainty Propagation from Reference Solution 

The primary assumption in treating the high resolution measurement as the reference is based on 

resolving the same flow field and displacements over a larger number of pixels, compared to the 

low resolution recordings. Thus, in spite of similar uncertainty levels on sub-pixel displacements 

for both systems, the high resolution system yields a much lower uncertainty (in physical units) 

when scaled down by the higher magnification factor [11]. This is further verified by comparing 

both the measurements to an independent point measurement using LDV system, which has lesser 

uncertainty.  

Figure 1.3. Instantaneous measurements (from Insight4G) of streamwise velocity from high and 
low resolution PIV systems and an LDV system. a) Jet experiment. b) Cylinder wake 𝑹𝒆𝒅 =

𝟒𝟖𝟎. c) Cylinder wake 𝑹𝒆𝒅 = 𝟕𝟑𝟎. 

 

Figure 1.3 plots a representative streamwise velocity time series from each experiment for 

the LDV, reference, and measurement systems. The high resolution signal clearly shows better 

agreement with the LDV signal compared to the low resolution system. However, any errors in 



 
 

28 

the high resolution measurement, 𝜖ுோ, makes the error between the measurement and reference 

solution, 𝜖௅ோ, deviate from the true error, 𝜖௧௥௨௘, as given by equation (1) [11].  

 𝜖௧௥௨௘ = 𝜖௅ோ − 𝜖ுோ  (1) 

 𝜎ఢ೟ೝೠ೐
ଶ = 𝜎ఢಽೃ

ଶ + 𝜎ఢಹೃ
ଶ − 2𝜌(𝜎ఢಽೃ

𝜎ఢಹೃ
) (2) 

 

Following Sciacchitano et al. [11], for zero bias errors, knowing the magnification ratio 

and the cross correlation coefficient (  ) between the measurement (LR) and reference (HR) 

system errors (each calculated with respect  to the LDV measurement), one can approximate the 

deviation from the true RMS error using equation (2). Here 𝜎 represents the RMS of the true, LR, 

or HR error. In this study 0.15jet  and 0.177wake  (  𝑅𝑒ௗ = 730) ). Thus, 
true

underestimates 
LR by 1% for the jet case and by 2% for the wake case. 

1.2.5 Error Distributions for Low Resolution Measurements 

To compare the reference and measurement systems, at first the LDV point is taken as the origin 

and the common field of view between the cameras are determined using the respective 

magnifications. The reference velocity fields are then linearly interpolated using a two-

dimensional scheme onto the measurement grid points in the overlapping fields of view. The 

overlapping field of view between LR and HR systems is 27mm by 16 mm for the jet case and 30 

mm by 18.5 mm for the cylinder cases in x and y directions respectively. The domain of 

comparison is chosen as 12 mm by 5 mm for the jet case and 24 mm by 15 mm for the cylinder 

cases. All the error and uncertainty analysis presented herein is evaluated in this subdomain. Figure 

1.4 shows the error magnitude histogram normalized by the total number of vectors for all three 

experiments. For all cases and processing codes the error distributions matched closely. The RMS 

values of the error magnitude distributions for each case are presented in Table 1.4. 

Table 1.4. RMS of the magnitude error (pix) for each case and processing code comparing the 
HR and LR measurements. 

Case PRANA Insight4G DaVis 
Cylinder, 𝑅𝑒ௗ = 480 0.19 0.19 0.21 
Cylinder, 𝑅𝑒ௗ = 730 0.19 0.18 0.20 

Jet 0.30 0.31 0.29 
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Figure 1.4. Error magnitude distributions for low resolution measurements.  
a) Jet experiment. b) Cylinder wake 𝑹𝒆𝒅 = 𝟒𝟖𝟎. c) Cylinder wake 𝑹𝒆𝒅 = 𝟕𝟑𝟎.  

1.3 Results & Discussion 

We assess four uncertainty methods, PPR [5], MI [6], IM [7], and CS [8].  The IM and CS methods 

return independent values of uncertainty for each velocity component, 𝑒௫ and 𝑒௬, whereas the PPR 

and MI methods return uncertainty values for the error magnitude, |𝑒| = ඥ𝑒௫
ଶ + 𝑒௬

ଶ. The PPR and 

MI methods both predict an Upper and Lower uncertainty Bound (UB and LB) on the error 

magnitude, but IM and CS return a single value that is assumed to be symmetric about the 

measurand. In Sciacchitano et al. [11], the PPR uncertainty on error magnitude was equally 

distributed between X and Y components. Here, for comparative assessment, the RMS of the PPR 

and MI uncertainty predictions (UB and LB) are directly compared with the 84.25% and 15.75% 

quantiles of the error magnitude distribution, following [5]. For IM and CS methods, the RMS of 

uncertainty is compared with RMS of error for X and Y components, following Sciacchitano et al. 

[11].  

The four uncertainty estimation methods are compared using several metrics. Section 

1.3.1.1 compares spatial variations of error and uncertainty over the field of view.  Section 1.3.1.2 

investigates error and uncertainty distributions. Section 1.3.1.3 examines expected and predicted 

uncertainty profiles across a plane and Section 1.3.1.4 compares standard coverages. 
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1.3.1 Low Resolution PIV Uncertainty Quantification 

1.3.1.1 Contours of Expected and Predicted Uncertainty  

For PPR and MI uncertainty estimates, the RMS of uncertainty UB is compared with the 84.25% 

quantile of error magnitude (denoted by |e|0.84).  For CS and IM, the RMS error and RMS 

uncertainty for the streamwise component are compared. The spatial distributions of expected and 

predicted uncertainties are plotted in Figure 1.5a (jet flow) and Figure 1.5b (wake flow at 𝑅𝑒ௗ =

730). In each figure, the left column of plots indicates the expected distributions (either |e|0.84 or 

RMS error) and the right column shows the predicted uncertainty maps. 

In Figure 1.5a, the jet error distribution has its minimum within the core region, −0.3 <

𝑥/𝑑 < 0.3. In the shear layer, 𝑥/𝑑 < 0.3 and  𝑥/𝑑 > −0.3, the RMS error increases significantly.  

Qualitatively, a comparable trend is observed for the predicted uncertainties, but quantitatively, 

each method under predicts the expected uncertainty in the shear region. In the jet core, PPR 

method for both PRANA and Insight4G predicts about 0.2 pixels uncertainty which matches |e|0.84. 

In the shear layer, PPR methods predict a maximum of about 0.4 pixels uncertainty compared to 

0.55 pixels value for the error magnitude UB.  The MI method predicts the same uncertainty range 

as PPR, with about 0.22 pixels uncertainty in  −0.4 < 𝑥/𝑑 < 0.4  range but showing a flatter 

response to the error. Figure 1.5a also shows a better response by CS to error in the shear region 

when compared with IM. The RMS error varies from 0.15 to 0.35 pixels from the core to the shear 

region, whereas the predicted IM and CS uncertainties vary from 0.07 to 0.18 and 0.1 to 0.25 pixels, 

respectively. Thus, CS and IM under predict the RMS error in both the shear layer and jet core 

region. 

The spatial distributions of error and uncertainty are plotted in Figure 1.5b, for the cylinder 

case with 𝑅𝑒ௗ = 730. For the sake of brevity, the spatial distributions for the case 𝑅𝑒ௗ = 480 are 

not shown but are similar. For each processing code, the maximum value of error is observed 

directly downstream of the cylinder in the region of velocity deficit.  We note that for all 

uncertainty quantification methods, the error and uncertainty maps show a spike in predicted 

values at the LDV beam location (𝑋/𝑑 = 0), which is attributed to the interference of the LDV 

beam with the PIV signal.  

Contours for the RMS of uncertainty UB estimates using the PPR method vary from about 

0.33 pixels in the wake center to about 0.26 pixels near the free stream, for both PRANA and 
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Insight4G. The error upper bound quantitatively matches the uncertainty upper bound at 𝑋/𝑑 =

−3.5 , 𝑌/𝑑 = 0, but attains a value of 0.2 pixels near the free stream. The MI upper bound 

uncertainty prediction also responds well to the error, but predicts values of about 0.42 pixels in 

the wake center to 0.33 pixels near the free stream, overestimating the |e|0.84 contours. IM and CS 

uncertainty estimates show a sharper decay of uncertainty towards the free stream velocity. For 

both the methods the estimated uncertainty varies from 0.15 pixels to about 0.1 pixels from the 

center towards the free stream, whereas the RMS error varies from 0.2 pixels to 0.12 pixels in the 

same domain. Thus, the magnitudes of the contours indicate an under prediction of uncertainty for 

both IM and CS, especially in the center of the wake.  

 

Figure 1.5. Error and uncertainty spatial contours for each method for the a) jet and b) wake flow 
experiment (𝑹𝒆𝒅 = 𝟕𝟑𝟎). 

1.3.1.2 Error Uncertainty Histograms 

The uncertainty estimates are further analyzed by comparing the error and uncertainty histograms 

in Figure 1.6 and Figure 1.7. As an example, Figure 1.6 shows the count of the error and 

uncertainty values falling within the same bin intervals. The top two plots (Figure 1.6, a and b) 
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display error magnitude, PPR, and MI uncertainty predictions for PRANA and Insight4G. The 

bottom two graphs (Figure 1.6, c and d) plot the X and Y velocity component errors and uncertainty 

estimates using the IM and CS methods. The PPR and MI uncertainty predictions have a lower 

and upper uncertainty bound, as described in Xue et al. [6], which bounds the error magnitude 

such that 68.5% of measurement error falls within this bound. For the IM and CS uncertainties a 

single distribution is plotted, assuming that the upper and the lower uncertainty bounds are 

symmetric about zero. 

Error and uncertainty distribution histograms for the jet experiment are shown in Figure 

1.6. We observe that the error distributions for both PRANA and Insight4G are in agreement. In 

regards to uncertainty, PRANA and Insight4G PPR uncertainties satisfactorily bound the error 

magnitude with the LB distributed between 0.02 to 0.1 pixels, the UB between 0.15 to 0.6 pixels, 

and the error magnitude mode is near 0.1 pixels.  The MI uncertainty distribution is similar to the 

PPR uncertainty UB, but the mode of the distribution is at about 0.15 pixels which is closer to the 

error magnitude peak (0.1 pixels), compared to PPR distribution peak location (0.21 pixels). 

Figure 1.6. Error and uncertainty distributions for each uncertainty method for the jet 
experiment. a) PPR and MI distributions from PRANA. b) PPR distributions from Insight4G. c) 

IM distributions from PRANA. d) CS distributions from DaVis. 

 

Referring to Figure 1.6c and d, we observe that the X and Y component error distributions 

for PRANA and DaVis overlay each other with a slight positive bias in the streamwise (Y) 
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direction. The IM uncertainty distributions, in both X and Y components, is sharply centered near 

0.1 pixels, with the RMS of the distributions at 0.097 and 0.114 pixels, respectively. For the CS 

method, the corresponding RMS of the uncertainty predictions are 0.13 and 0.16 pixels, which are 

closer than IM to the RMS values of the error (0.17 pixels and 0.21 pixels) for both components. 

As was observed in Figure 1.5a, both the IM and CS uncertainty estimates under predict the RMS 

error. 

Figure 1.7 plots the uncertainty and error histograms for the cylinder in cross flow 

experiments. The 𝑅𝑒ௗ = 480 case is shown in Figure 1.7 (a, b, c and d) and the 𝑅𝑒ௗ = 730 is 

shown in Figure 1.7 (e, f, g and h). The PPR uncertainty bounds for PRANA and Insight4G have 

a similar distribution with the lower and upper bound modal values placed on either side of the  

 

peak of the error magnitude (in these plots, the LB is plotted with a different bin size to scale the 

number of counts for ease of visualization). The uncertainty LB is sharply centered on 0.05 pixels. 

The PPR uncertainty UB distribution has a lesser spread for PRANA compared to Insight4G, 

which is consistent with the error magnitude histograms in each case Figure 1.7 (a, b, e and f). The 

MI uncertainty prediction indicates a higher uncertainty with a longer tail, especially for the 𝑅𝑒ௗ =

480 case, compared to the PPR uncertainty estimate. 

 

Figure 1.7. Error and uncertainty distributions for each uncertainty method for the both 
cylinder in cross flow experiments (a-d for 𝑹𝒆𝒅 = 𝟒𝟖𝟎 and e-h for 𝑹𝒆𝒅 = 𝟕𝟑𝟎). 
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In Figure 1.7 (c, d, g and h), the black dots represent the error distribution obtained from 

DaVis which closely matches the PRANA error distribution. We observe that the spanwise (Y) 

component error distribution appears to be symmetric about zero while the streamwise component 

error distribution for 𝑅𝑒ௗ = 480 case is skewed towards the negative values and has a slight 

positive bias for the 𝑅𝑒ௗ = 730 case. The main source of systematic error in Figure 1.7c is not 

known. However, the error distributions were evaluated for both the Reynolds number cases in an 

identical way and thus, we would expect that if the bias was a cause of comparison procedure that 

each Reynolds number case would incur a similar bias, but in fact, the bias for each was much 

different. We therefore conclude that the presence of the higher bias error in Figure 1.7c is certainly 

not an artifact of the LR versus HR comparison procedure. The IM and CS uncertainty estimates 

(𝑢ூெ  , 𝑢஼ௌ ) are distributed between 0 and 0.2 pixels and are nearly identical in the spanwise 

direction.  In contrast, in the streamwise direction the CS distribution for 𝑅𝑒ௗ = 480 is wider than 

the IM distribution and thus predicts a higher RMS value for the X component uncertainty. The 

RMS uncertainty predictions are within 16% to 20% of the RMS errors for both Reynolds numbers 

except for 𝑢ூெ in the streamwise direction, for 𝑅𝑒ௗ = 480 , which varies by about 25%.  

To assess the contribution of the bias term in the estimated RMS of the error distributions, 

the statistics of the x and y error distributions for all three experiments are presented in Table 1.5. 

We first note that in the case of a zero bias error, the error standard deviation will be equal to the 

Table 1.5. Comparing the mean, standard deviation and RMS of the error distributions for 
both X and Y components to the RMS of IM and CS uncertainty estimates. The values for all 

three experiments are mentioned in the table. All units are in pixels. 

IM Method / PRANA 

Case Error Bias Error Std. dev. Error RMS Uncertainty RMS 

 x y x y x y x y 

Jet 0.0129 0.0051 0.1631 0.2091 0.1636 0.2091 0.0968 0.1140 
Re=480 -0.0362 -0.0060 0.1593 0.0918 0.1633 0.0920 0.1231 0.0731 
Re=730 0.0181 -0.0105 0.1281 0.1177 0.1293 0.1181 0.1048 0.0943 

 
CS Method / DaVis 

Case Error Bias Error Std. dev. Error RMS Uncertainty RMS 

 x y x y x y x y 

Jet 0.0116 0.0038 0.1676 0.2105 0.1680 0.2106 0.1301 0.1570 
Re=480 -0.0356 -0.0055 0.1541 0.0893 0.1581 0.0894 0.1328 0.0747 
Re=730 0.0161 -0.0103 0.1257 0.1155 0.1267 0.1159 0.1039 0.0985 
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RMS error. And second, if the uncertainty estimates completely account for the random 

uncertainty in the measurement then the RMS uncertainty should match the error standard 

deviation. Here, error and uncertainty in both x and y components are separately reported and thus, 

RMS uncertainty only for IM and CS methods are compared with the respective error standard 

deviations. Table 1.5 shows that the bias is maximum in the x-direction for the 𝑅𝑒ௗ = 480 case, 

which leads to a 0.004 pixel difference between the error standard deviation and RMS. Thus in all 

cases, the systematic error does not make a significant difference (less than 0.004 pixels) between 

the RMS and the standard deviation of error. Also, the RMS of the predicted uncertainty does not 

match the standard deviation of error for both IM and CS evaluations which indicates that their 

under predictions of uncertainty is not solely due to the systematic error. 

1.3.1.3 Expected and Predicted Uncertainties Across a Plane 

The sensitivity of the uncertainty prediction to the variation in error is further analyzed using RMS 

uncertainty profiles taken spanwise across the jet. The RMS profiles for the jet case are shown in 

Figure 1.8. The top row (subplots a and b) of this figure graphs |e|0.84, |e|0.15, and the RMS of the 

PPR and MI uncertainty bounds for PRANA and Insight4G. The figure illustrates that |e|0.84 and 

|e|0.15 are similar for both PRANA and Insight4G. The predicted uncertainty LB shows a flat 

response to the variation in |e|0.15.  However, both the PPR and MI predicted uncertainty values 

(UB and LB) match the expected uncertainty values closely near the jet core region. In the shear 

layer, the predicted uncertainty UB shows good sensitivity to |e|0.84, but with an under prediction 

in magnitude.  

Plots c and d show a one-to-one comparison of IM and CS values of RMS uncertainty with 

the PRANA and DaVis values of RMS error respectively, for both velocity components. The RMS 

errors from PRANA and DaVis are in good agreement and show an increasing trend towards the 

shear layer. When comparing the CS and IM uncertainty predictions, we see that the CS method 

is slightly more sensitive to the error fluctuations in the shear region.  While both IM and CS 

uncertainty profiles show good response to the RMS error, each suffers from an offset, or bias, 

that causes the uncertainty profiles to under predict.  

Considering now the cylinder in cross flow experiments, we refer to Figure 1.9 (subplots 

a, b, c and d for  𝑅𝑒ௗ = 480 case and subplots e, f, g and h for 𝑅𝑒ௗ = 730 case). For the 𝑅𝑒ௗ =

480 case, across the wake, the error magnitude UB and LB essentially show a flat profile with a 
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slight increase at the center (𝑌/𝑑 = 0). The uncertainty LB estimated by MI matches the expected 

uncertainty line exactly, though the uncertainty UB is significantly higher than expected. The PPR 

uncertainty LB is slightly lower than |e|0.15, for both PRANA and Insight4G, while the uncertainty 

UB is much more sensitive to the variation in the |e|0.84 profile. We also observe that the PPR 

uncertainty UB calculated by Insight4G matches the error UB almost exactly whereas the PPR 

uncertainty UB from PRANA slightly over estimates the expected uncertainty. Subplots c and d 

show a comparison for IM and CS. The RMS errors for PRANA and DaVis are in good agreement 

for each component. Both methods predict similar RMS uncertainties, which show good sensitivity 

to the variation in RMS error, but under predicts in magnitude.  

Figure 1.8. RMS error and uncertainty profiles along the spanwise direction across the jet 

flow. 
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Figure 1.9. RMS error and uncertainty profiles across the wake of the cylinder in cross flow for 
𝑹𝒆𝒅 = 𝟒𝟖𝟎. 

 

For 𝑅𝑒ௗ = 730 case, the error profile in the streamwise (X) and spanwise (Y) directions 

are of similar magnitude, but in the spanwise direction, we observe a stronger sensitivity through 

the wake. PRANA and Insight4G UB and LB error magnitude are qualitatively similar. The PPR 

predictions match the expected uncertainty UB closely near 𝑋/𝑑 = 0, but show a lesser sensitivity 

towards the edges. Here, PRANA PPR prediction is quantitatively better near the center of the 

wake compared to Insight4G, although, both show similar response in the free stream region. The 

PPR uncertainty LB shows poor sensitivity and underestimates uncertainty LB for both PPR and 

MI metrics. In subplots g and h, the RMS error profiles from PRANA and DaVis match, and 

likewise the IM and CS RMS uncertainty profiles are almost identical. Both these methods show 

strong sensitivity to the RMS error across the whole profile. As was with the 𝑅𝑒ௗ = 480 case, the 

IM and CS methods underestimate the expected uncertainty, especially in the wake center. This is 

consistent with the observations made in the RMS uncertainty spatial contours (Figure 1.5) and 

the uncertainty histograms (Figure 1.7). 
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1.3.1.4 Standard Coverages 

A final metric to compare the effectiveness of different uncertainty methods is the standard 

uncertainty coverage. Coverage is defined as the percentage of measurement errors that fall within 

the uncertainty bound. The coverage should be equal to the level of confidence [18].  That means 

that at the standard level of confidence, 68.5% of error values should be within the standard 

coverage. A standard coverage value that is over or under 68.5% implies that either the uncertainty 

bounds were too large or too small, respectively.   

For the jet experiment, Figure 1.10a, the PPR methods produced coverages (~64%) closest 

to the ideal 68.5% coverage, followed by MI at 54%.  CS and IM under predicted the standard 

coverage in both spanwise and streamwise directions, but better in the spanwise (X) direction.  The 

CS method returned coverage values of 54% in X and 47% in Y, while the IM method produced 

lower coverages of 45% in X and 38% in Y. 

For the cylinder case with 𝑅𝑒ௗ = 480  plotted in Figure 1.10b, the PPR method 

implemented in Insight4G yielded a coverage of 70%, which was closest to the ideal value.  The 

PPR and MI methods in PRANA over predicted the standard coverage with equal values of 77%. 

CS and IM again under predicted the standard coverage in both spanwise and streamwise 

directions, but better in the spanwise (Y) direction.  The CS method returned coverage values of 

52% in X and 55% in Y, while the IM method produced lower coverages of 46% in X and 53% in 

Y. 

Lastly, for the cylinder case with 𝑅𝑒ௗ = 730 plotted in Figure 1.10c, the PPR method 

implemented in Insight4G yielded a coverage of 73%, which was closest among the methods to 

the ideal value, though over predicted.  The PPR and MI methods in PRANA over predicted the 

standard coverage with values of 79% and 75%, respectively. CS and IM under predicted the 

standard coverage in both spanwise and streamwise directions, but slightly better in the spanwise 

direction. The CS method returned coverage values of 50% in X and 54% in Y. The IM method 

produced similar coverages of 51% in X and 52% in Y. We note that since these uncertainty 

metrics cannot predict the true bias in the measurement, a non-zero mean in the error distribution 

may lead to under prediction of uncertainty coverage even when the uncertainty predictions 

reasonably predict the random uncertainty.  
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Figure 1.10. Standard coverages for each experiment, where the dashed  
line denotes the ideal standard coverage of 68.5%. 

1.4 Discussion and Conclusions 

The performance of four PIV uncertainty estimation methods were assessed in two canonical 

experiments: a jet in quiescent flow and a cylinder in cross flow (at two Reynolds numbers). Since 

the true solution is undetermined for an experiment, the measurement error was calculated by 

comparing two PIV systems: a high resolution (reference) and low resolution (measurement) 

system. The high resolution reference PIV system was validated by a LDV measurement, which 

were considered to be the ground truth measurement. Two calibration-based uncertainty metrics 

(PPR and MI) and two direct uncertainty methods (IM and CS) were evaluated using PRANA, 

Insight4G, and DaVis. In all cases, error distributions from different processing codes closely 

matched each other.  

While comparing RMS error and uncertainty along a plane, we observed that for the jet 

experiment, the PPR uncertainties showed to have good sensitivity to the measurement error, 

matching it in the jet core, but under predicting it in the shear layer. The PPR method obtained a 

standard uncertainty coverage of about 64% for both implementations in PRANA and Insight4G. 

The MI method was less responsive than PPR and yielded coverage of about 55%. CS and IM 

predictions also were responsive but under estimated the RMS error in both the jet core and the 

shear layer. As such, the CS and IM methods under predicted the standard uncertainty coverage, 

posting values near 50% and 40%, respectively.  

Similar observations were made for the cylinder in cross flow experiments.  The PPR and 

MI predicted uncertainties varied according to the error, matching (in the case of PPR) or nearly 

matching (for MI) the error directly downstream of the cylinder and over estimating the uncertainty 
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in the shear layer.  The PPR implementations in PRANA and Insight4G obtained standard 

coverages of about 77% and 72%, respectively. The MI method posted a standard coverage near 

75%. The uncertainty lower bounds for both the PPR and MI showed less sensitivity to |e|0.15 in all 

the experimental cases. The CS and IM methods responded well to the spatially varying error, with 

CS outperforming IM.  However, because both CS and IM under predicted the error throughout 

the field of view, each obtained standard coverage values near 52%.   

To compare the present work with Sciacchitano et al. [11], note that we must limit all 

comparisons to the section detailing the unsteady inviscid core, not including the effects of tilted 

light sheet or small particle images.  The most striking difference in results from the two studies 

is that the response of the PPR method to the error was significantly improved in the current study. 

This can be attributed to the improved PPR calibration model of Xue et al. [5] which accounted 

for any asymmetry in the error distribution and predicted an upper and lower uncertainty bound 

for 68.3% confidence interval.  Further improvement in sensitivity to measurement error may be 

obtained for PPR by utilizing the robust phase correlation [15], which generates a larger range of 

PPR values for a given error distribution, compared to SCC [4]. Also, fitting a different distribution 

between the PPR values and the error magnitude may yield higher sensitivity for this metric, 

however this is subject to future research. 

The IM and CS methods showed good sensitivity to error in the present study, but did not 

match the RMS error as closely as in Sciacchitano et al.[11]. This could be related to unmatched 

particle pairs due to out of plane motion for IM method, but the exact reason is unknown.  What 

is known is that the RMS of the uncertainty distributions did not match the standard deviations of 

the error for both IM and CS methods, indicating that the under predictions were not solely due to 

the systematic error. 

In summary, we observe overall acceptable uncertainty prediction among the different 

processing codes and methods for both experiments in this study. In conjunction with Sciacchitano 

et al. [11], this work supports the notion that planar two component PIV uncertainty estimation 

methods provide good performance and robustness. However, further development is needed to 

address current limitations and weaknesses.  
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Appendix A 

A.1 Simultaneous PIV and LDV Measurements. 

To ensure valid PIV measurements from the high resolution (reference) flow, we established the 

error using an LDV system at a certain location in the test flow.  The primary disadvantage of LDV 

is non-synchronized data sampling.  LDV measurements acquire a velocity data point every time 

a particle passes through the measurement volume. For this reason, LDV measurements are not 

evenly sampled and are inherently random, with the sampling rate dependent upon the seeding 

density and the local velocity.  To account for the differences in time between PIV and LDV signals 

we first ensured the highest possible LDV data sampling rate, then utilized a Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) interpolation scheme to synchronize the LDV and PIV 

measurements.  

In regard to spatial resolution of the LDV measurement, in each experiment, the LDV 

measurement consisted of a 50mm beam separation and a focusing lens with a 250mm focal 

distance which produced a measurement volume that was an ellipsoid with dimensions of 88 

microns in the PIV streamwise and out-of-plane directions, and 929 microns in the spanwise 

direction. For the jet case, the reference PIV measurement utilized a final-pass window size of 

48x48 pixels (1.03 x 1.03 mm). Therefore, in the streamwise direction, the LDV volume is 9% of 

the window size and 90% in the spanwise direction.  For the cylinder experiments, the final-pass 

window size is 64x64 pixels (1.52 x 1.52 mm).  In this case, the LDV volume is just 6% of the 

window size in the streamwise direction and 61% in the spanwise direction. 

LDV measurement statistics such as the mean can suffer from velocity bias due to the fixed 

measurement time and particles of different velocities entering the measurement volume. 

Inherently, faster moving particles will be over-sampled. This effect was mitigated through the use 

of transit time weighting (Gould and Loseke [19]). Each velocity data point was normalized 

(weighted) with its own gate time. Slower particles have longer gate times and, therefore, more 

weight. With this weighting, the calculated mean velocity is closer to the actual mean. The LDV 

accuracy on a single measurement basis was 0.5%. In order to verify this, a verification of the 

LDV accuracy was performed using a rotating disk. Details of the verification can be found in [20]. 

There are two critical advantages of LDV: 1) LDV is a non-intrusive technique, and 2) LDV is 

unaffected by the PIV laser light sheet. This is important because in Neal et al. [12], a hot-wire 

was used for reference validation.  Although very high frequency measurements are capable with 
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a hot-wire, they pose two problems in conjunction with simultaneous PIV measurements.  The 

first is that the seeding particles can have an adverse effect on the analog signal. Second, hot-wires 

rely on convective cooling for velocity measurement and as such, cannot be placed in a laser light 

sheet due to artificial heating.  Therefore, Neal et al. [12] placed the hot-wire near the high 

resolution reference flow. To account for this offset, the authors utilized Taylor’s frozen flow 

hypothesis to essentially translate turbulent flow in time.  The use of LDV enabled us to overcome 

both of these limitations and as such, we were able to measure velocities at any point within the 

light sheet, and so match any location of the high resolution measurements without the need for 

Taylor’s frozen flow hypothesis.   

 

A.2 Jet Flow Validation. 

The LDV system utilized a light wavelength of 561nm. This wavelength was chosen to be different 

from the PIV laser, so that laser light from the LDV beams could be fully filtered out of the PIV 

images using camera filters, as is demonstrated in Figure 1.11.  The LDV sampling rate was 

approximately 3.5 times the high resolution PIV data frequency.  A representative time history of 

the comparison between streamwise velocity from the LDV and high resolution PIV is shown in 

Figure 1.12.  

 

Figure 1.11. a) Inverted high resolution frame without filter showing LDV cross-beams.  b) 
Inverted high resolution frame with filter. 
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Figure 1.12. Representative time history comparison of streamwise velocity between the high 
resolution PIV and LDV systems for the jet experiment. 

 

Table 1.6.  Mean and RMS signal comparisons between the high resolution  
and LDV measurements as calculated by each processing code for the jet experiment. 

Code Mean Streamwise Velocity (m/s) RMS Streamwise Velocity (m/s) 

LDV 3.88 0.19 

PRANA 3.88 0.19 

Insight4G 3.88 0.19 

DaVis 3.88 0.19 

 

Table 1.7.  RMS absolute error, RMS relative error, and cross-correlation coefficient  
between high resolution and LDV measurements as calculated by each processing code for the 

jet experiment. 

 RMS Absolute Error (pix/frame) RMS Relative Error 
Cross correlation 

Coefficient 

PRANA 0.11 0.7% 98.7% 

Insight4G 0.12 0.8% 98.5% 

DaVis 0.12 0.8% 98.6% 

 

Table 1.7 details the absolute error, relative error, and cross-correlation coefficient between LDV 

and high resolution measurements for each processing code. Figure 1.13 shows the distribution of 

displacement error between the LDV and high resolution PIV measurements for all processing 
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codes.  The error was obtained by mapping the LDV signal onto the high resolution grid by using 

the uniform calibration specified in Table 1.2.  All processing codes returned remarkably similar 

error distributions and as seen in Table 1.7, the cross-correlation was high and the relative error 

was less than 1%.  Therefore, we considered the high resolution PIV system as a validated 

reference solution. 

 

Figure 1.13. Error distributions between the reference PIV and LDV. 

 

A.3. Cylinder in Cross Flow Validation. 

In the cylinder experiments, the LDV system again utilized a light wavelength of 561nm. Unlike 

the jet flow experiment though, this wavelength was not different than the wavelength of the PIV 

laser. As a result, the LDV beams were not filtered from the PIV images.  To remove the beams 

from the PIV images, an average intensity image was calculated and subtracted from the raw data 

images.  This technique eliminated most effects from the LDV beams—however, a remnant did 

remain.  This remnant manifested itself by occasionally illuminating individual seed particles that 

were capable of fouling the cross-correlation. Furthermore, in the cylinder in cross flow 

experiments, the seeding densities in water were lower than the densities in air (for the jet flow 

experiment), as were the mean velocities.  Therefore, the data rate of the LDV was approximately 

300Hz, which was lower than the PIV data rate of 500Hz.  To account for the differences in time, 

we again utilized a PCHIP interpolation scheme to synchronize the LDV and PIV measurements.  

For the present analysis, we interpolated the LDV measurements onto the uniform PIV capture 

times.  For completeness’ sake we also completed an analysis with PIV measurements down 
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sampled onto the random LDV measurement times, but saw a negligible difference between the 

two procedures. 

A representative time history of the comparison between streamwise velocity from the 

LDV and high resolution PIV is shown in Figure 1.14, and the error distribution shown in Figure 

1.15. In Figure 15, less than 0.2% vectors had an error greater than a pixel for the 𝑅𝑒ௗ = 480 case. 

About 5% vectors had an error greater than two pixels for the 𝑅𝑒ௗ = 730 case. 

 

Table 1.8 details the mean and Root-Mean Square (RMS) statistics between the high 

resolution and LDV measurements for each PIV processing code.  It’s apparent from Table 1.8 

that the discrepancies between the PIV and LDV are larger for the cylinder experiments than for 

the jet experiment.  We attribute this discrepancy to the low LDV sampling rate.  Even so, the 

cross correlations are reasonably high for all processing codes. It is to be noted that the errors 

indicated in Table 1.8 are calculated using high resolution system magnification whereas the low 

resolution system errors are reported in pixels using LR magnification in Table 1.4. Since the 

magnification ratio is about 5, the errors in HR system with respect to LDV measurement when 

calculated with low resolution magnification yields values in the range 0.3 / 5 = 0.06 𝑝𝑖𝑥  to 

0.8 / 5 =  0.16 𝑝𝑖𝑥. This error level is lower than the corresponding low resolution measurement 

error with respect to LDV, which establishes the high resolution PIV system to be a valid reference 

solution.  

 

Figure 1.14. Representative time history comparisons of streamwise velocity between the high 
resolution PIV and LDV systems for both cylinder in cross flow experiments. a)  𝑹𝒆𝒅 = 𝟒𝟖𝟎. b)  

𝑹𝒆𝒅 = 𝟕𝟑𝟎. 



 
 

49 

 

Figure 1.15. Error distributions between the reference PIV and LDV. 
 a)  𝑹𝒆𝒅 = 𝟒𝟖𝟎. b)  𝑹𝒆𝒅 = 𝟕𝟑𝟎. 

 

Table 1.8.  Mean displacement, RMS absolute error, and cross-correlation coefficient between 
high resolution and LDV measurements as calculated by each processing code for the cylinder in 

cross flow experiments. 

 𝑅𝑒ௗ = 480 𝑅𝑒ௗ = 730 

Measurement 

Mean 

Streamwise 

Velocity (m/s) 

RMS 

Absolute 

Error  

(pix/frame) 

Cross 

correlation 

coefficient 

Mean 

Streamwise 

Velocity 

(m/s) 

RMS 

Absolute 

Error  

(pix/frame) 

Cross 

correlation 

coefficient 

LDV 0.058 

Not 

Available - 0.11 

Not 

Available - 

PRANA 0.056 0.32 80% 0.11 0.81 70% 

Insight4G 0.055 0.33 81% 0.10 0.77 68% 

DaVis 0.056 0.31 82% 0.10 0.80 72% 
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Appendix B 

The effect of window overlap on the error and uncertainty statistics are tested by skipping the final 

pass velocity field vectors in each direction (X and Y) for the Jet case and the Cylinder case (for 

𝑅𝑒ௗ = 480). The results are presented for all three software. For an initial overlap of 75%, 

skipping 1 vector leads to 50% overlap and 2 vectors leads to 25% overlap. For 50% overlap 

processing, choosing alternate vectors leads to 0% overlap. RMS error and uncertainty values and 

the RMS of the error magnitudes indicate negligible variation with percentage window overlap in 

all cases. Thus, choice of window overlap in this document does not affect the results. 

Table 1.10. Variation of RMS error and uncertainties in the cylinder flow case (𝑹𝒆𝒅 = 𝟒𝟖𝟎) for 
PRANA and DaVis processing. 

PRANA 
(Cylinder 
Re=480) 

Number of 
valid vectors 
(%Overlap) 

RMS Error 
Magnitude 

RMS Error 
 

RMS Uncertainty (IM) 
 

X Y X Y 
Skip=0 1765488(50) 0.1925 0.1633 0.0920 0.1231 0.0731 
Skip=1 479590(0) 0.1915 0.1632 0.0906 0.1228 0.0722 

Table 1.9. Variation of RMS error and uncertainties in the jet flow case for PRANA and 
DaVis processing. 

PRANA 

(Jet) 

Number of 

valid 

vectors 

(%Overlap) 

RMS Error 

Magnitude 

RMS Error 

 

RMS Uncertainty (IM) 

 

X Y X Y 

Skip=0 496349 (75) 0.2997 0.1636 0.2091 0.0968 0.1140 

Skip=1 144204 (50) 0.3066 0.1676 0.2125 0.1005 0.1183 

Skip=2 59925 (25) 0.3106 0.1695 0.2155 0.1052 0.1243 

DaVis 

(Jet) 

Number of 

valid 

vectors 

(%Overlap) 

RMS Error 

Magnitude 

RMS Error 

 

RMS Uncertainty (CS) 

 

X Y X Y 

Skip=0 494775 (75) 0.3090 0.1680 0.2106 0.1301 0.1570 

Skip=1 143672 (50) 0.3183 0.1727 0.2147 0.1357 0.1627 

Skip=2 59685 (25) 0.3244 0.1749 0.2182 0.1426 0.1698 
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DaVis 
(Cylinder 
Re=480) 

Number of 
valid vectors 
(%Overlap) 

RMS Error 
Magnitude 

RMS Error 
 

RMS Uncertainty (CS) 
 

X Y X Y 
Skip=0 1673727 (50) 0.1859 0.1581 0.0894 0.1328 0.0747 
Skip=1 431929(0) 0.1857 0.1578 0.0895 0.1323 0.0744 

 

Table 1.11. Variation of RMS error and uncertainties in the jet and the cylinder flow case 
(𝑹𝒆𝒅 = 𝟒𝟖𝟎) for Insight4G processing. 

Insight4G 
(Jet) 

Number of 
valid vectors 
(%Overlap) 

RMS Error 
Magnitude 

Insight4G 
(Cylinder 
Re=480) 

Number of 
valid vectors 
(%Overlap) 

RMS Error 
Magnitude 

Skip=0 107315 (50) 0.2906 Skip=0 1168049 
(50) 

0.2056 

Skip=1 31541 (0) 0.2893 Skip=1 311556(0) 0.1988 
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Abstract 

We present a new uncertainty estimation method for Particle Image Velocimetry (PIV), that uses 

the correlation plane as a model for the probability density function (PDF) of displacements and 

calculates the second order moment of the correlation (MC). The cross-correlation between 

particle image patterns is the summation of all particle matches convolved with the apparent 

particle image diameter. MC uses this property to estimate the PIV uncertainty from the shape of 

the cross-correlation plane. In this new approach, the Generalized Cross-Correlation (GCC) plane 

corresponding to a PIV measurement is obtained by removing the particle image diameter 

contribution. The GCC primary peak represents a discretization of the displacement PDF, from 

which the standard uncertainty is obtained by convolving the GCC plane with a Gaussian function. 

Then a Gaussian least-squares-fit is applied to the peak region, accounting for the stretching and 

rotation of the peak, due to the local velocity gradients and the effect of the convolved Gaussian. 

The MC method was tested with simulated image sets and the predicted uncertainties show good 

sensitivity to the error sources and agreement with the expected RMS error. Subsequently, the 

method was demonstrated in three PIV challenge cases and two experimental datasets and was 

compared with the published image matching (IM) and correlation statistics (CS) techniques. 

Results show that the MC method has a better response to spatial variation in RMS error and the 

predicted uncertainty is in good agreement with the expected standard uncertainty. The uncertainty 
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prediction was also explored as a function of PIV interrogation window size. Overall, the MC 

method performance establish itself as a valid uncertainty estimation tool for planar PIV. 

 

Nomenclature 

±𝒰 : General uncertainty bounds 

𝜎 :   Standard deviation 

𝜎௫ : Standard uncertainty in variable 𝑥 

𝑉ሬ⃗  : Velocity vector 

𝑉௫: 𝑥 component of velocity 

𝑉௬: 𝑦 component of velocity 

𝑒 : Error in velocity evaluations 

< 𝑅 > : Ensemble averaged cross correlation plane 

F : Forward Fourier transform 

*R : Spectral cross-correlation 

IP : Particle image shape information 

𝐺(𝑥): Generalized Cross correlation (GCC) 

𝑝(𝑥): PDF of displacement. 

𝐼௑௑: Second order moment about x- axis 

𝐼௒௒: Second order moment about y-axis 

𝑅௖௢௡௩: Gaussian convolved PDF plane 

𝑁௘௙௙: Effective number of pixels contributing to correlation 

𝑒௉௥௔௡௔: Error in velocity measurements obtained using Prana processing 

𝑒஽௔௏௜௦: Error in velocity measurements obtained using DaVis processing 

𝜎௫
ெ஼ : Standard x uncertainty estimate using MC method  

𝜎௬
ெ஼ : Standard y uncertainty estimate using MC method  

𝜎ெ஼  : Standard uncertainty estimate using MC method 

𝜎ூெ: Standard uncertainty estimate using IM method  

𝜎஼ௌ: Standard uncertainty estimate using CS method  
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2.1 Introduction 

Particle Image Velocimetry (PIV) is a non-invasive quantitative fluid velocity measurement 

technique in which tracer particles are illuminated by a laser sheet, imaged by a high-speed camera, 

and the displacement of the particle patterns within an image sequence is estimated to resolve the 

velocity field.  An overview of the development of PIV over the past 20 years is given by Adrian 

[1], and a comprehensive history can be traced in recent publications [2], [3]. Currently, the term 

PIV is used to encompass the extensive family of methods that are based on evaluating the particle 

patterns displacement using statistical cross-correlation of consecutive images with high number 

density flow tracers [2]. 

However, despite detailed investigation of potential error sources, the development of PIV 

methods did not involve simultaneous rigorous quantification of uncertainty for a given 

measurement.  As a result, there is currently no widely accepted framework for reliable 

quantification of PIV measurement uncertainty.  The situation is exacerbated by the fact that PIV 

measurements involve instrument and algorithm chains with coupled uncertainty sources, 

rendering quantification of uncertainty far more complex than most measurement techniques.  Also, 

knowing the uncertainty bound on each PIV vector is crucial in comparing experimental results 

with numerical simulations. Therefore, developing a fundamental methodology for quantifying the 

uncertainty for PIV is an important and outstanding challenge. 

Recent developments in this field have led to several uncertainty estimation methods which 

can be broadly classified into indirect and direct uncertainty estimation algorithms. 

2.1.1 Indirect methods 

The indirect methods use pre-calculated calibration information to predict the measurement 

uncertainty. In the first such method published, Timmins et al. constructed an “Uncertainty Surface” 

(US) by mapping the effects of selected primary error sources such as shear, displacement, seeding 

density, and particle image diameter to the distribution of the true errors for a given measurement 

[4]. This approach is analogous to a traditional instrument calibration procedure for standard 

experimental instruments.  Ultimately, in order to comprehensively quantify the uncertainty, all 

possible combinations of displacements, shears, rotations, particle image diameters, and other 
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parameters must be exhaustively tested which can make this method computationally expensive.  

Moreover, many of the relevant parameters may not be easily obtained from a real experiment. 

Charonko and Vlachos proposed an uncertainty quantification method based on the ratio 

of the primary peak height to the second largest peak (PPR) [5] in the correlation plane. Using this 

method, the uncertainty of PIV measurement can be predicted without a priori knowledge of image 

quality and local flow conditions.  Reliable uncertainty estimation results using a phase-filtered 

correlation (RPC)[6] were shown, however for standard cross-correlation (SCC) techniques the 

uncertainty estimates were not as good.  Also, the approach depends, like the uncertainty surface 

method, on calibration of the peak ratio to the expected uncertainty. Xue et al.[7] used an analogous 

approach to calibrate the measurement uncertainty with various other correlation plane signal to 

noise ratio (SNR) metrics.  The uncertainty coverage, which denotes the probability of 

measurement errors falling between the uncertainty bounds is used as a metric to compare the 

different uncertainty predictions. The SNR based uncertainty methods developed by Xue et al. 

showed an improved uncertainty coverage for both RPC and SCC. In another effort, the effective 

information contributing to the cross correlation plane primary peak was named the “Mutual 

Information (MI)”[8] and used to predict the PIV measurement uncertainty. The MI between a 

correlated image pair is an estimate of the effective number of correlating particles and thus higher 

MI should correspond to a lower uncertainty on the measured velocity. Xue et al. successfully used 

MI as an indirect metric to predict the uncertainty in a PIV measurement. 

2.1.2 Direct methods 

The uncertainty in a measurement can also be extracted directly from the image plane using the 

estimated displacement as a prior information. Sciacchitano et al. proposed a method to quantify 

the uncertainty of PIV measurement based on particle image matching (IM) or particle disparity 

[9]. The uncertainty of measured displacement is calculated from the ensemble of disparity vectors, 

which are due to incomplete matching between particle pairs within the interrogation window.  

This method accounts for random and systematic error; however peak-locking errors and 

truncation errors cannot be detected.  In addition, the disparity can be calculated only for particles 

that are paired within the interrogation window, thus this method cannot account for the effects of 

in-plane and out-of-plane loss of particles.  Finally, particle image pair detection can introduce 
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additional sources of error and the method can be computationally expensive for high resolution 

images with higher seeding density. 

Wieneke in his “Correlation Statistics” (CS) method computed the measurement 

uncertainty by relating the asymmetry in the correlation peak to the covariance matrix of intensity 

difference between two almost matching interrogation windows [10]. This is a more generalized 

image matching technique where the random error is estimated by the variance of pixel wise 

intensity difference and linked to the correlation function shape using the uncertainty propagation 

for a 3-point Gaussian fit. Due to pixel-wise matching, any loss of correlation due to out of plane 

motion or other possible error sources are taken into account. However, the method is limited 

statistically in case of smaller window size and bigger particle image size. 

In a comparative assessment of the methods, Sciacchitano et al. [11] compared these four 

methods for an experimental jet case. Four different cases were tested, each one having a dominant 

primary error source (shear, out-of-plane motion, particle size and seeding density). The authors 

established that for zero bias the RMS of the error distribution should match the RMS of the 

predicted uncertainty distributions and this was used as the basis of comparison. The results 

indicated a better uncertainty prediction and sensitivity to RMS error variation for the direct 

methods (CS and IM) in all four cases. Both the calibration-based methods underperformed. The 

PPR method showed less sensitivity, especially in the shear region, while the US method exhibited 

a flat response for the case with out-of-plane motion. In another comparative study using jets and 

wakes, Boomsma et al. [12] showed that indirect methods can yield a better uncertainty prediction 

with a better calibration using a distinct upper and lower bound for prediction. The analysis also 

revealed higher sensitivity for direct methods, although, it was shown that IM and CS methods can 

under-predict the standard uncertainty even when the systematic error is negligible. 

Recently, Scharnowski et al. [13] proposed an uncertainty estimation method based on the 

loss-of-pairs due to out-of-plane motion. They quantified the loss-of-pairs as a ratio of the volume 

of the cross-correlation function to the volume of the autocorrelation function and proposed an 

uncertainty estimate based on the estimated loss-of-pairs. Optimizing this uncertainty prediction 

model for real experiments showed minimum error is achieved when loss of correlation due to out-

of-plane motion is less than one. 

In this work, we adopt an alternative approach and seek to quantify PIV measurement 

uncertainty directly from the information contained within the cross-correlation plane. The cross-
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correlation plane represents the distribution of probabilities of all possible particle image pattern 

displacements between consecutive frames, combined with the effect of the number of particles, 

mean particle image diameter and effects that contribute to loss of correlation.  In other words, the 

correlation plane is a surrogate of the combined effects of the various sources of error that govern 

the accurate estimation of a particle pattern displacement.  The primary peak or the highest peak 

in the cross-correlation plane denotes the most probable displacement for a given particle image 

pattern. For an ideal shift between the particle image patterns, a perfect cross-correlation peak can 

be represented by a convolution between a Dirac function (at the location of the shift) and the 

autocorrelation of particle image diameter. However, any deviation in the peak shape is a 

manifestation of the errors influencing the measurement. The particle image diameter information 

can be removed from the cross-correlation plane to obtain a Generalized Cross-Correlation (GCC) 

plane, which contains only the phase information of the correlation plane. The concept of GCC 

has been previously introduced by Wernet[14] and Thomas et al[15]. Here we show that the PDF 

(Probability Density Function) of displacements in a PIV interrogation window is directly related 

to the GCC plane. Since, the standard uncertainty is typically defined as the standard deviation of 

the PDF of all possible measurement values, we believe it is possible to directly estimate the 

uncertainty of each PIV measurement by the second order moment of the correlation plane.  Hence, 

in this work we introduce a new method, the Moment of Correlation (MC), and establish the 

appropriate processing steps to extract the standard uncertainty from the cross-correlation plane. 

We demonstrate the sensitivity of the MC method to elemental error sources and compare its 

performance with existing methods (CS and IM) for synthetic and experimental data.  This method 

has the benefit over those previously proposed in that limited additional pre- or post-processing is 

required, and it is not necessary to perform extensive processing-dependent calibration steps 

beforehand. 

2.2 Methodology 

The standard uncertainty is defined in section 2.2.1. We then derive the PDF of the displacement 

from the cross-correlation plane in section 2.2.2 and finally describe the methodology to extract 

the standard uncertainty from the PDF in section 2.2.3. 
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2.2.1 Definition of uncertainty 

Uncertainty (±𝒰) is the estimate of a range of values around the measurement that contain the true 

result and bounds the true error. Usually, the uncertainty is provided at a defined “confidence 

interval”, this means a certain percentage of data points will stay within the provided range.  For 

example, the confidence interval within one standard deviation (𝜎) range for a Gaussian error 

distribution is 68% and within ±2𝜎 range is 95%. Standard uncertainty (𝜎௫) is defined as the one 

standard deviation (𝜎) level for the parent population of the variable 𝑥 [16], which is not required 

to be a Gaussian distribution. Therefore, the equation to calculate standard uncertainty can be 

written as follows (equation (3)): 

      
222

x

x

E X x p x dx          (3) 

 

Where   is the mean or expected value for x, and p(x) is the probability distribution function 

(PDF).  

2.2.2 Statistics of PIV correlation plane and uncertainty 

Scharnowski et al. [17] showed that for an ensemble PIV correlation, the PDF of observed 

displacements in that ensemble, p(d), can be calculated by deconvolving the contribution of the 

average particle image, PI, from the ensemble averaged correlation (< 𝑅 >) [21] (equation (4)):  

 ( ) IR p d P   (4) 

 

We propose that for an instantaneous measurement, the PDF of possible displacement 

matches can be also computed by removing the particle image shape information (𝑃ூ). If image 𝑎ଶ 

is obtained by shifting image 𝑎ଵ  by displacement 𝑑, as shown in equation (5), then using the 

Fourier shift theorem, the Fourier Transform (FT) (ℱ) of image a2 can be written as shown in 

equation (6):  

    2 1a x a x d   (5) 

         2 2 1 1( ) expA r a a x d A ird    F F  (6) 
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In PIV, typically the displacement d is estimated using Standard Cross Correlation (SCC) 

technique ( 1 2R a a  ), which is evaluated in the Fourier domain using equation (7) as shown in 

Figure 2.1. Here, 𝑅∗ denotes the FT of the cross-correlation plane (𝑅). The average particle image 

information PI can be estimated from the magnitude part of the cross correlation, in the frequency 

domain (|𝑅∗|), as shown in equation (8), where 𝐴ଵ
തതത denotes the complex conjugate of the FT of the 

image 𝑎ଵ i.e. 𝐴ଵ = ℱ(𝑎ଵ). 

        *
1 2 1 1 expR R A r A r A A ird     F  (7) 

     1 * 1
1 2

- -
IP R A A  F F  (8) 

 

So, 𝑃ூ can be removed by dividing 𝑅∗ by its magnitude (|𝑅∗|) in the frequency domain and 

the Inverse Fourier Transform (IFT) of that ratio forms a Generalized Cross Correlation (GCC), 

plane, denoted by 𝐺(𝑥), as shown in equation (9).   

       
*

1 1 1
1 2 1 2*

exp- - -R
G x A A A A ird

R

 
      
 
 

F F F  (9) 

 

Since the FT is a linear operation, the remaining part is the summation of all possible 

matching shifts as described by equation (6), and therefore the GCC plane represents the PDF of 

candidate displacements.  However, we consider the location of the primary peak (highest peak) 

as the most probable displacement, and given the displacement, the spread of the primary peak 

region is considered as the PDF of interest for our case. Therefore, the primary peak region in 

𝐺(𝑥) (as shown in Figure 2.1) is the PDF (𝑝(𝑥)) of all possible matches in the correlated image 

pair that contribute to evaluation of the most likely displacement, multiplied by some constants 

having to do with the intensity level of the images correlated. It is to be noted that even though 

any distortion or warping in the particle image shape directly affects the cross-correlation peak 

shape, the underlying PDF is not influenced by that distortion as the particle image shape 

information is removed from the PDF as described in equation (9).   
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Figure 2.1. Extracting PDF of displacement from PIV image pair cross correlation. 

 

Once the PDF of possible displacements is obtained, the second order moment about the 

primary peak, 𝑋௣, can be calculated as: 

    2 2 2( ) ( )xx p pX X
I x X p x dx x X G x dx      (10) 

 

Comparing equation (10) and (3), it is obvious that the standard uncertainty for a given PIV 

correlation can be expressed as 𝜎௫ = ට∫൫𝑥 − 𝑋௣൯
ଶ

𝑝(𝑥)𝑑𝑥 = 𝐼௑௑ . Therefore, the expected 

relationship between 𝐼௑௑ and 𝜎௫ should be one-to-one. 

However, calculating 𝐼௑௑ directly is subject to large bias and random errors due to limited 

resolution in resolving the sharp primary peak in the normalized GCC plane. To compensate, we 

compute 𝐼௑௑  by performing a Gaussian least square fit on the GCC plane convolved with a 

Gaussian function. Convolution of the GCC plane with a Gaussian low-pass filter to estimate peak 

location with subpixel accuracy is an established practice in the PIV community[6][18]. The 

diameter of the convolving Gaussian is typically the diameter estimated from the primary peak of 

the cross-correlation plane. In case the particle image size is less than a pixel and the cross-

correlation peak subpixel estimate is subjected to peak locking, a diameter of 3 to 4 pixels, based 

on the autocorrelation width for an ideal PIV particle image size, can be used as the convolution 

kernel diameter. The algorithm to find the standard uncertainty is described in the following 

section. 
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2.2.3 Moment of Correlation (MC) Algorithm 

The Moment of Correlation algorithm, as described in Figure 2.2, extracts the standard PIV 

measurement uncertainty from the GCC plane. As a first step (Figure 2.2a) we convolve the GCC 

plane or the PDF with a 2d Gaussian function with a zero mean and an average diameter (𝐷ഥ), 

which is estimated from the SCC plane primary peak using a least squares elliptic Gaussian fit. 

Here, we define the diameter of a Gaussian to be 4 times its standard deviation. The convolved 

GCC plane 𝑅௖௢௡௩ is given by 

 
2 2

2 2( , ) exp 8conv

x y
R G x y

D D

  
     

  
, (11) 

 

where 𝐷ഥ = (𝐷௫ + 𝐷௬)/2 and 𝐷௫ , 𝐷௬  are the estimated least square fit diameters in the 𝑥 and 𝑦 

directions respectively. For a large number of particles in an interrogation window the PDF 

(𝐺(𝑥, 𝑦)) can be reasonably approximated by a Gaussian distribution. Consequently 𝑅௖௢௡௩ should 

also be a Gaussian. It is to be noted that an arbitrary non-Gaussian PDF will be a limitation for 

estimating the PDF standard deviation (equation (13). However, a Gaussian PDF is a common 

assumption and is also used directly in the IM method and indirectly in the CS method through 3-

point Gaussian fit uncertainty propagation equation. 

 

Figure 2.2. Algorithm to find standard uncertainty from PDF of displacements. 
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In the next step, Figure 2.2b, a Gaussian least squares fit is performed on the peak region 

of 𝑅௖௢௡௩ to estimate the peak location (𝑋௖ , 𝑌௖) and its spread (𝐶௫ᇲ , 𝐶௬ᇲ). The general possibility of 

the 𝑅௖௢௡௩ peak shape being elliptic Gaussian due to velocity gradients or the covariance of 𝜎௫  and 

𝜎௬ is considered and thus the major axis 𝐶௫ᇲ, minor axis 𝐶௬ᇲ and orientation α are estimated using 

the least squares fit (equation (12)). 
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  (12) 

 

In equation (12), 𝐶଴ and 𝐶ଵ are arbitrary constants accounting for the peak height and noise 

floor. Once 𝐶௫ᇲ and 𝐶௬ᇲ are known, equation (13) is used to evaluate the PDF major axis 𝑃௫ᇲ and 

minor axis 𝑃௬ᇲ (Figure 2.2c): 

 
/ /

/ /

22

22

x x

y y

P C D

P C D

 

 
 (13) 

 

This relation (equation (13)) follows from the definition of convolution between two 

Gaussian functions. For a bivariate Gaussian convolution, the resulting Gaussian covariance 

matrix can be expressed as a sum of the covariance matrix of the convolving Gaussian functions, 

which reduces to equation (13), if one of the convolving Gaussian functions is a circular Gaussian 

function (the Gaussian kernel in equation (11)). In the present analysis of the methodology and the 

results we have used  𝐷௫  and 𝐷௬  as different diameters in 𝑥  and 𝑦  directions. However, the 

diameters 𝐷௫  and 𝐷௬  are 𝑥 and 𝑦 axis projections of the cross-correlation peak width estimated 

using least square elliptic gaussian fit and are almost similar even if the cross-correlation peak is 

rotated. A further analysis with average diameter 𝐷ഥ = (𝐷௫ + 𝐷௬)/2 has shown negligible changes 

with respect to the present result. Hence in equations (11) and (13), we use 𝐷ഥ as the preferred 

diameter of the convolving Gaussian function. 
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In step d (Figure 2.2d), the estimated 𝑃௫ᇲ and 𝑃௬ᇲ are projected from 𝑥ᇱ, 𝑦ᇱ on to 𝑥 and 𝑦 

axis. The uncertainty or standard deviation (𝑃௫ , 𝑃௬) is obtained by dividing the pdf diameter by 4 

(equation (14)). 
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Westerweel [19] has shown that distribution of non-uniform displacements within a 

correlation window in a shear flow stretches the cross-correlation peak and adds a bias error. The 

stretch in the estimated standard deviation due to velocity gradient is corrected using equation (15) 

as mentioned in Scharnowski et al.[17] (Figure 2.2e): 
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  (15) 

 

Here 𝐷௣ represents an equivalent particle image diameter which is obtained by dividing 

the mean of the estimated cross-correlation peak diameter (𝐷ഥ) by √2 and is consistent with the 

formulation defined in Scharnowski et al[17]. The corrected standard uncertainty ( 𝑃௫
௖ , 𝑃௬

௖ ) 

estimate thus obtained is much higher than the true uncertainty and requires a scaling factor. 

Assuming a Gaussian distribution for the PDF of displacements, the mean of the distribution 

represents the estimated velocity for the correlating interrogation windows. Since we are trying to 

estimate the standard uncertainty of the mean statistic, it is expected to be scaled down by the 

square root of the number of samples contributing to the distribution, conforming with the 

definition of standard error of a statistic. In this case the uncertainty is found to be appropriately 

scaled by the effective number of pixels (𝑁௘௙௙) correlating to produce the primary peak (Figure 

2.2f). This factor is calculated by estimating the Mutual Information or MI [8] between the 

correlating windows. The MI is defined as the ratio of the cross correlation plane peak magnitude 

to the autocorrelation peak magnitude of one “average” particle and is equivalent to NIFIFONΔ 

(product of NI: number of particles in the window, FI: fraction of particles lost due to in plane 
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motion, FO: loss of correlation due to out of plane motion and NΔ: loss of correlation due to local 

velocity gradients), which is just the number of particles contributing to the correlation. The 

“average” particle is constructed as a 2D Gaussian with maximum intensity equal to the geometric 

mean of the maximum intensities in the correlating interrogation windows. Also, the diameter in 

𝑥 and 𝑦 direction for constructing the particle is taken as the geometric mean of the particle image 

diameter, in each of 𝑥 and 𝑦 direction, estimated using a 3-point Gaussian subpixel fit of the auto-

correlation of the first and second interrogation windows. Thus, once MI is estimated, assuming a 

circular particle with area of 
గ

ସ
𝐷௣

ଶ, we define 𝑁௘௙௙ = 𝑀𝐼 ∗
గ

ସ
𝐷௣

ଶ. Equation (16), then represents the 

standard uncertainty in 𝑥 direction. 
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The estimated 𝐷௣ can be influenced by the same error sources affecting the estimated PDF 

diameter 𝑃௫
௖. However, an uncertainty propagation of equation (16) shows an order of magnitude 

less influence of any variance in 𝐷௣  (𝜎஽೛

ଶ ), compared to the variance in 𝑃௫
௖  (𝜎௉ೣ೎

ଶ ). Hence, the 

normalization with 𝑁௘௙௙ is much less sensitive to any variation in 𝐷௣ and therefore this variation 

can be ignored in the scaling term. In the last step (Figure 2.2g), we add a bias correction term to 

the random uncertainty estimate to get the overall standard uncertainty. In a multi-pass converged 

PIV processing, the shift between the two images should ideally be zero, which implies the 

estimated PDF distribution should have a peak at zero. Thus, a non-zero peak location at 𝑋௖, 𝑌௖ is 

considered a bias in the uncertainty estimate and can be attributed any source of systematic error, 

namely velocity gradient, loss of pair etc. Hence, bias in 𝑥 direction is calculated as 𝜇௫ = 𝑋௖ and 

the final MC method standard uncertainty, 𝜎௫
ெ஼  is given by equation (17).  

 2 2MC
x x x     (17) 

 

Similarly, 𝜎௬
ெ஼ can be estimated. To incorporate a PDF that is non-Gaussian because of 

velocity gradients, further analysis of the convolution of a skew-normal distribution and a normal 

distribution can be performed to analytically estimate the bias. However, this is not included in the 

current methodology. It is important to note that the final uncertainty estimate of the velocity is in 
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turn a function of the gradient of the velocity field through equation (15). Thus, a higher order 

differencing scheme may be preferred if the gradient correction term makes a significant difference 

to the uncertainty evaluation. However, for the wide range of experimental and synthetic cases 

tested in here, the 4th order noise optimized compact Richardson scheme[20] did not show any 

difference compared to a second order central difference scheme. Hence the latter is used as a best 

compromise between simplicity and reduction in bias and random error. 

2.3 Results 

The methodology was first tested with synthetic images with varying magnitudes of several 

common error sources (section 2.3.1). The framework was also compared with IM and CS methods 

for more challenging flow cases in section 2.3.2. The details of the performance are given in the 

following sections.  

2.3.1 Variation with elemental error sources 

To evaluate sensitivity of the proposed algorithm to the primary PIV error sources, a set of artificial 

images were generated for a range of varying parameters. For the baseline conditions, images of 

1024 by 1024 pixels size were generated with a seeding density of 0.05 particles per pixel (ppp) 

and particle image size of 2.6±0.13 pixels. The particle images were rendered within a 30 pixels 

wide uniform light-sheet, with 1% background noise, zero out-of-plane motion and uniform 𝑥 and 

𝑦 displacements of 0.3 and 0.6 pixels respectively. For the individual cases, one parameter was 

varied at a time. The range of the parameters are as follows: displacement from 0 to 2 pixels in 

steps of 0.1 pixel, particle image diameter from 0.5 to 8 pixels in steps of 0.5 pixels, the y-shear 

rate was varied from 0 to 0.15 pixels/frame/pixel in steps of 0.025, background noise from 0.5 to 

15% of maximum intensity with an increment of 1%, seeding density in the range of 0.005 to 0.15 

ppp and the out-of-plane motion was varied from 0 to 40% of the light sheet thickness. For the 

shear case the image size was chosen as 256 by 4096 pixels to avoid large displacements at the 

edges in y-direction and to have same total number of vectors as in other cases. 

The images were processed using in-house open source code Prana [21], with three  

different window sizes of  48x48, 64x64, and 128x128 pixels. In each case the windows were 

masked by a 50% Gaussian filter [22], such that the effective window resolutions (WR) were 24, 
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32, and 64 pixels respectively. For processing multi-pass iterative window deformation was used 

with a Standard Cross-Correlation (SCC). For each case the RMS error was compared to the RMS 

of the standard uncertainty estimate, obtained using the MC method. For each value of the varying 

parameter a pair of images were correlated, and the velocity vectors obtained for each grid point 

were used as samples to generate the statistical comparison of error and uncertainty. Each RMS 

value was calculated over 4096 samples for WR 32 and WR 64 cases, and over 7225 samples for 

WR24 case to ensure a minimum of 50% window overlap. 

Figure 2.3. Sensitivity of MC method to primary PIV error sources for three different window 
resolutions (24, 32 and 64). 

 

Figure 2.3 shows the variation of the MC uncertainty estimate with primary PIV error 

sources. In each case the RMS error is denoted by the black line and the predicted uncertainty by 

the red line. The triangular, square, and circular symbols denote the WR24, WR32 and WR64 

cases respectively. For ideal prediction the RMS values of the error and predicted uncertainty 

should match perfectly. In this case, the MC method predicted uncertainty faithfully follows the 

RMS error trend and shows good sensitivity to the elemental PIV error sources. However, a bias 

of the order of 0.01 to 0.02 pixels is noticed in each case. For a given window resolution, the 

magnitude of the bias does not increase with an increase in the RMS error (even up to 0.1 pixels) 

as observed in the case of smaller particle image size or diameter, higher background noise and 
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out-of-plane motion. The bias remained about 0.02 pixels for each of the smaller window 

resolution cases (WR24 or WR32), while the degree of bias is slightly smaller for WR64. This can 

be attributed to some bias in the estimate of the normalization factor 𝑁௘௙௙ in the MC algorithm. 

Also, for bigger windows there are more effective correlating pixels, which statistically reduces 

the uncertainty on the sample mean. However, the level of overprediction in the MC uncertainty 

did not increase significantly between WS32 and WS24 cases. Although, previous studies with CS 

and IM methods have shown a similar trend of increasing bias with a smaller window resolution, 

the absolute magnitude of the bias for the MC method is relatively higher compared to the CS and 

IM predictions shown in the literature. The degree of bias is worse for the synthetic flow fields 

with small levels of RMS error compared to the various flow cases presented in section 2.3.2. 

Overall, the response of the predicted uncertainty to the different error sources and its close 

agreement with the RMS error validates the MC method as a planar PIV uncertainty measurement 

tool. 

2.3.2 Evaluation for complex flow fields (simulated and experimental test cases) 

The MC framework was further tested for complex flow cases and the uncertainty estimates were 

compared with IM and CS predictions for each case. A total of five datasets were used. Two 

synthetic datasets, namely the Turbulent boundary layer (TBL) images from 2nd PIV Challenge 

(2003, Case B) [23] and the Laminar Separation Bubble (LSB) flow images with varying signal to 

noise ratio from 3rd PIV Challenge (2005, Case B) [24], were evaluated. Also, three experimental 

datasets of canonical flows were used for this analysis (cases C to E in Table 2.1). The details 

about the Stagnation Flow (SF) data can be found in Charonko et al. [5]. The Vortex Ring (VR) 

data is the central camera images of the case E in fourth PIV challenge [25]. Finally, the Jet Flow 

(JF) image set is taken from the same experiment as described in the “unsteady inviscid core” case 

of the collaborative uncertainty framework by Sciacchitano et al. [11]. The details of the 

experiment can be found in the description of the experimental database by Neal et al.[26].In each 

case the error analysis was done using a true solution, the details of which can be found in 

respective publications. 

The images were processed using SCC with iterative window deformation for two different 

settings of window resolutions, WS1 and WS2, as described in Table 2.1. WS1 setting refers to a 

bigger final pass window resolution compared to WS2 setting. The PIV processing was done using 
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Prana and DaVis 8.2, with MC and IM methods implemented in Prana and CS estimates obtained 

through DaVis.  The number of passes and window overlap setting for each case are mentioned in 

Table 2.1. 

 

 

The final pass was processed without any validation or smoothing. Also, measurements 

with absolute error greater than 1 pixel were considered invalid and removed from any statistical 

analysis presented in the results. The following sections describe the overall error and uncertainty 

histogram, the agreement of the RMS error and uncertainty prediction, spatial variation of 

predicted uncertainties, and the uncertainty coverage obtained for each case in the test matrix using 

MC, IM and CS methods. 

2.3.2.1 Error and uncertainty histogram 

Figure 2.4 shows the error and uncertainty histogram analysis for all the test cases. The error (𝑒) 

is defined as the deviation of the velocity evaluations (𝑉 ሬሬሬ⃗ ௘௦௧) from the true solution (𝑉 ሬሬሬ⃗ ௧௥௨௘) as 

shown in equation (18), where 𝑖 goes from 1 to total number of measurements 𝑁்.  

Table 2.1: Description of test cases and processing parameters 
 

Case A Case B Case C Case D Case E 

 
Turbulent 

boundary 

layer 

(TBL) 

Laminar 

separation 

bubble 

(LSB) 

Stagnation 

flow 

(SF) 

Vortex ring 

(VR) 

Jet flow 

(JF) 

WS1 

(% Overlap,  

No. of passes) 

64x64 

(75%,2) 

(87.5%,2) 

64x64 

(75%,4) 

64x64 

(75%,4) 

64x64 

(75%,1 

(87.5%,3) 

32x32 

(87.5%,4) 

WS2 

(% Overlap,  

No. of passes) 

64x64 

(87.5%,1) 

32x32 

(75%,3) 

64x64  

(75%,1) 

32x32 

(50%,3) 

64x64  

(75%,1) 

32x32  

(50%,3) 

64x64 

(87.5%,1) 

32x32  

(75%,3) 

32x32 

(75%,1) 

16x16 

(75%,3) 
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For each case, all the 𝑥 and 𝑦 measurement error values are lumped into a single error 

vector of length 𝑁்.The total number of elements (𝑁்) in the error vector is the product of total 

number of grid points in 𝑥 and 𝑦 (𝑁௫ × 𝑁௬) times the number of frames (𝑁௙), which is again 

multiplied by 2 to account for 𝑥 and 𝑦 values i.e. 𝑁் = 2𝑁௫𝑁௬𝑁௙. The root mean squared (RMS) 

error is defined by equation (19) as: 
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Similarly, for each case, the standard uncertainty values (𝜎௜
ெ஼) evaluated using MC method 

is lumped into a vector of length 𝑁் and the RMS of the uncertainty vector is evaluated as 
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(20) 

 

Equation (20) can be written for IM and CS method in an analogous way. The error and 

uncertainty vectors are divided into 40 and 60 bins respectively, for each case, and the percentage 

of measurements falling within each bin is evaluated. The percentage count of measurements in 

each error bin is plotted as an error histogram in Figure 2.4a and similarly an uncertainty histogram 

is shown in Figure 2.4b.     

In Figure 2.4a, the error distribution is shown for cases A to E and for both WS1 and WS2 

processing. The solid and the dashed black lines denote the errors obtained using Prana (𝑒௉௥௔௡௔) 

and DaVis (𝑒஽௔௏௜௦) respectively. Figure 2.4b shows the uncertainty histogram for MC, IM and CS 

methods, overlaid on each other and are denoted by𝜎ெ஼ , 𝜎ூெ and 𝜎஼ௌ respectively. Uncertainty 

distributions are plotted only on the positive x-axis, assuming a symmetric uncertainty curve 

bounds the error histogram on the negative x-axis. This assumption is correct for these cases, as 

the error histogram is symmetric about zero with a maximum bias of -0.015 pixels observed for 

case D. Ideally, the predicted uncertainties should be a delta function at the RMS error value. 

However, because of the inherent uncertainty in the estimation process due to limited number of 

correlating pixels, and the variation of the underlying uncertainty distribution of the parent 

population for each new measurement, the estimated uncertainties show a distribution with its peak 
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near the RMS error value and its spread being inversely proportional to the number of pixels or 

window size. The uncertainty histogram for MC, IM and CS methods are plotted together with red, 

cyan and violet colors respectively. The CS uncertainty distribution for the laminar separation 

bubble (case B) shows multiple peaks, which may be an effect of the decreasing signal to noise 

ratio in those images. However, the error distribution does not show multiple peaks in its 

distribution and likewise the MC uncertainty prediction also shows a single peak in the histogram. 

For the stagnation flow case (case C), all three methods show two distinct peaks in their 

distribution, owing to the different x and y systematic uncertainty values plotted together. The 

systematic uncertainties in this case are introduced due to fitting the true solution to the 

measurement grid, as mentioned in Charonko et al.[5] 

Figure 2.4. Error and uncertainty histogram comparing MC, IM and CS performance for the five 
test cases. 
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The vertical lines show the RMS values of the error and uncertainty distributions. The basis 

of comparison is that, for an ideal prediction, the RMS of error and uncertainty distributions should 

match each other [11]. Thus, the RMS error lines in Figure 2.4a are repeated in Figure 2.4b for 

ease of comparison. The vertical RMS error lines for Prana and DaVis match each other nearly 

perfectly with a maximum difference of less than 0.01 pixels. The violet dashed line (RMS of 𝜎஼ௌ) 

should be compared to the black dashed line (RMS of 𝑒஽௔௏௜௦), while the solid red (MC) and the 

cyan (IM) vertical lines should be compared to the Prana RMS error (solid black). However, since 

the RMS errors are almost identical, the RMS uncertainties can be compared with respect to each 

other as well. For ease of comparison, Table 2.2 lists the RMS values of error and uncertainty 

distributions for all test cases. The predicted uncertainties reasonably match the RMS error with a 

maximum deviation of about 0.02 to 0.03 pixels for the experimental cases (SF, VR and JF). For 

the synthetic cases (TBL and LSB) the RMS uncertainties are within ±0.01 pixels of the RMS 

error values. The RMS of 𝑒௉௥௔௡௔ and 𝑒஽௔௏௜௦ are about 0.03 pixels for cases A and B, while it is 

higher (0.05 to 0.07 pixels) for the experimental cases (case C, D and E). For the vortex ring (case 

D), all the methods under predict the standard uncertainty while in other four cases, depending on 

the processing, the RMS uncertainties are seen to both underestimate and overestimate the RMS 

error (Table 2.2). Since the reference solution for the VR case was obtained using a multi-camera 

tomographic reconstruction, the planar (front on) camera image processing may incur some bias 

error with respect to the “true” solution. Such a systematic error can influence the consistent 

underprediction of the estimated uncertainties. 

The methods show differences in their predictions for the WS1 and WS2 settings (Figure 

2.4). With the WS1 setting, the RMS error and the RMS uncertainty predicted using MC method 

closely match each other for cases A, B, and C, but the RMS estimation under predicts the true 

errors for cases D and E. In contrast, for this window resolution the CS and IM methods under 

predict the RMS error in cases A and D and match the MC estimates in other cases. For the WS2 

setting, however, MC method over predicts the RMS error for cases A, B, and C but matches the 

RMS error closely for cases D and E. In this window resolution, the CS and the IM estimates 

match the RMS error closely for case A and E. Generally, the IM and CS distributions show a 

better agreement with each other compared to MC, however, if the basis of comparison is the 

agreement between RMS error and RMS of uncertainty values, the MC method successfully 

predicts the velocity uncertainty. Overall, all three methods closely predict the correct standard 
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uncertainty with MC method doing a better job in cases A, C, and D for the WS1 setting and cases 

D and E with the WS2 processing. 

Table 2.2. Comparing the RMS error and uncertainty values across different methods for the five 
test cases. 

 
RMS 

(Pixels) 

Case A: 

TBL 

Case B: 

LSB 

Case C: 

SF 

Case D: 

VR 

Case E: 

JF 

WS1 

𝑒௉௥௔௡௔ 0.027 0.024 0.053 0.054 0.064 

𝜎ெ஼  0.025 0.027 0.055 0.037 0.047 

𝜎ூெ 0.018 0.014 0.061 0.020 0.047 

𝑒஽௔௏௜௦ 0.028 0.025 0.053 0.053 0.065 

𝜎஼ௌ 0.017 0.022 0.061 0.026 0.048 

WS2 

𝑒௉௥௔௡௔ 0.029 0.025 0.062 0.065 0.064 

𝜎ெ஼  0.035 0.034 0.079 0.057 0.067 

𝜎ூெ 0.031 0.023 0.075 0.038 0.077 

𝑒஽௔௏௜௦ 0.030 0.026 0.062 0.065 0.060 

𝜎஼ௌ 0.028 0.030 0.075 0.049 0.056 

 

2.3.2.2 Predicted vs expected uncertainty 

The predicted uncertainties have a distribution and not a single value due to an inherent uncertainty 

in the PIV uncertainty estimation. This is attributed to the degree of overlap between correlating 

particles [10]. Thus, to analyze the distribution of uncertainty the uncertainty values are divided 

into 8 bins, and for measurements falling in each bin the RMS error and uncertainty values are 

plotted. Figure 2.5 shows a direct comparison between the RMS error or the expected uncertainty 
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versus the predicted uncertainty for each method. For an ideal prediction the graph should be a 

line with slope equal to 1. The deviation from black dashed line in the plots is indicative of the 

amount of failure in each prediction. Hence, when the predicted uncertainties lie below and to the 

right of the 1:1 reference line, the predicted uncertainty estimate is under-predicting the true error 

distribution, and when it is above and to the left the true errors are smaller than the prediction. For 

the WS1 processing, the MC method closely follows the dashed line, especially for cases A to C. 

However, the deviation increases for higher uncertainty bins. For the first two cases the 𝜎ூெ and 

𝜎஼ௌ  under predict the 1:1 line for the lower uncertainty values but do a better job for WS2 

processing. For case C, all three methods show perfect agreement in the lower uncertainty bins as 

opposed to the higher uncertainty bins, where 𝜎ெ஼  prediction is better compared to the other 

methods. In case D, all the methods under predict the true error distributions line. Thus, Figure 2.5 

shows that the predicted uncertainty distributions match the RMS error closely over the whole 

range, except for some deviation in the higher uncertainty bins.  Comparing these results to Figure 

2.4a, it can also be seen that the regions of greatest deviation between the predicted uncertainty 

and true errors lie in the tails of the error distribution where there are much fewer samples to draw 

from, and thus the statistical estimates are more sensitive to outliers. 

 

Figure 2.5. Comparing RMS error versus RMS of the predicted uncertainty for each method 
(MC, IM and CS) for the five test cases. 
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2.3.2.3 Spatial variation in RMS error and uncertainty 

The spatial variation in RMS error and RMS uncertainty for a specific location in the flow field is 

analyzed. A specific x or y grid coordinate value is used to select a vertical or horizontal line cutting 

across the flow field and then the RMS of the error and uncertainty values (for x-component of 

velocity) across the time series is plotted along that line as shown in Figure 2.6. In each RMS value 

calculation, any measurement with error greater than 1 pixel is considered as invalid and not taken 

into account. In Figure 2.6, the left column represents the spatial profiles for WS1 processing and 

the middle column shows the WS2 processing results for each of the five test cases. The rightmost 

column depicts the mean velocity magnitude contours, obtained using Prana WS2 processing, with 

an overlaid dashed line indicating the spatial slice location for the RMS profiles. The numbers (0,1) 

or (-1,1) correspond to the normalized spatial coordinates shown in the abscissa of the RMS 

profiles in the first two columns. For cases A to C, a vertical line (x value set equal to the mid-

point) along the middle of the grid of vectors is selected. Specifically, for case B, the lowest SNR 

case is not included as it increased the noise level in the RMS spatial profiles without adding any 

significant trend in the comparison.  

For case D, a horizontal line through the top vortex core is selected. For the jet flow case, 

a vertical line cutting across the horizontal jet and towards the right-hand edge (downstream of the 

jet at x=380 pixel of the true solution grid) is selected. For case A, higher error and uncertainty 

values are noted near the wall (normalized coordinate 0). In this case the MC method is seen to be 

more sensitive to the spatial variation in the RMS error. For the laminar separation bubble case 

(case B), the RMS is taken across the decreasing SNR cases. The MC method shows better 

sensitivity to the spatial variation but over predicts the standard uncertainty for the WS2 processing 

(smaller windows). For the stagnation flow (case C), due to 3D flow and high shear rates near the 

wall, at near wall normalized coordinate 1 the error and uncertainty values reach about 0.1 pixels. 

The vortex ring case (case D), shows high fluctuations in error values near the vortex core at 

location 0.5. For both cases C and D, all three methods show reasonable variation corresponding 

to the error curves, however, the MC method clearly shows higher sensitivity to the error peaks. 

Finally, for the case E, the uncertainty curves show poor response for all methods in the shear layer 

region for WS1 processing with larger final interrogation windows. For the smaller window 

resolution (WS2) the IM and the MC method matches the RMS error curve and shows good 

sensitivity to variation in spatial error, but CS method shows lesser response to the error peaks in  
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Figure 2.6. Comparing the spatial variation in RMS error and the RMS of the estimated 
uncertainties using MC, IM and CS methods for the different test cases. Column 1: WS1 

processing, Column 2: WS2 processing and Column 3: Mean velocity magnitude contours 
with a dashed line indicating the slice from which the spatial profile is extracted. 
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the shear-layer. Overall, the MC method shows better sensitivity to the spatial variation in the 

RMS error for all the cases. 

2.3.2.4 Uncertainty coverage 

Another measure of successful uncertainty prediction is the uncertainty coverage, which denotes 

the percentage of measurements for which the error lies within the uncertainty bound. For a 

Gaussian error distribution, this should be ideally 68.5%. However, the error distribution can 

deviate from a Gaussian distribution and since coverage by definition is the fraction of 

measurement errors falling within ±σ (standard deviation) of the error distribution, such a measure 

is independent of any specific type of distribution for the error. The target coverages are thus 

calculated from the true error distributions without the assumption of normality and are shown as 

small black squares in Figure 2.7. Figure 2.7a) demonstrates the coverage values for each method 

and for all the different flow cases separately, while Figure 2.7b) shows the expected and predicted 

coverage bars combined across all the different flow cases, for WS1 and WS2 processing. The 

expected or target coverage for all cases is between 69% and 81%, with the VR case expected 

coverage (square markers) being closest to the 68.5% mark. Expected values higher than 68.5% 

indicate that the true error distributions are less compact than Gaussian and have longer tails.  The 

WS2 processing is denoted by the hatched bars for each method. In general, the WS1 processing 

shows a lower coverage for all cases except for the case C, meaning the uncertainty is being 

underestimated. For the vortex ring case (case D), all the methods show a reduced coverage of 

about 26% to 55%, with MC performing better compared to IM and CS. This could indicate a 

failure of the uncertainty estimate or suggest a systematic bias in the reference solution which was 

derived from an auxiliary tomographic PIV measurement. For the cases A and B, the IM and CS 

methods under predict the coverage for WS1 processing, whereas MC method predicts a coverage 

of around 62% and 78%, respectively, the latter almost matching the true target coverage of 81%. 

For TBL and LSB cases with WS2 processing, MC method perfectly matches the expected 

coverage of 75% for the first case and over-predicts the expected coverage of 81% by about 9% 

for the second case. In contrast, IM and CS methods yield a coverage of 68% and 60% for case A 

(expected coverage 73%) and 73% and 63% for case B (expected coverage 81%), with WS2 

processing. For the jet case (case E) the, the predictions for WS2 show better coverage compared 

to the WS1 processing, with IM method predicting the closest coverage match (71%). For the 
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stagnation flow case, all the methods successfully predict a coverage of about 72% to 77%, which 

is at worst within 4% of the expected coverage (76%).  

Figure 2.7b) compares the uncertainty coverage over all the measurement points, 

irrespective of any particular flow characteristics, emphasizing on the statistical performance. The 

plot clearly brings out that for each window size processing, the MC method predicts the target 

coverage the closest as well as the fact that, WS2 processing in general yielded higher coverage 

compared to WS1 processing. It should be noted that the coverage does not capture the local 

variation in uncertainty prediction that was discussed earlier, however in an overall statistical sense 

better coverage usually indicates a better prediction and is a useful benchmark. 

2.4 Conclusion 

A framework to extract the PIV uncertainty directly from the cross-correlation plane is provided 

herein. The PDF of all possible displacements that influence the final velocity prediction is first 

extracted from the instantaneous PIV correlation plane; this PDF is then convolved with a suitable 

 

Figure 2.7. Grouped bar chart for standard uncertainty coverage using MC, IM and CS 
methods for WS1 and WS2 processing. a) for different flow test cases, b) for all cases 

combined. The target coverages calculated from the true error distributions are shown as 
black squares for each case. 
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Gaussian to reliably estimate the PDF diameter. The standard uncertainty is then determined using 

a least-squared Gaussian fit on the primary peak region of the convolved Gaussian plane 

accounting for any peak stretching or rotation. The final estimate is normalized by the effective 

number of pixels contributing to the cross-correlation peak. The present method shows strong 

agreement with the RMS error trends for each primary PIV error source. Further analysis with 

more complex flows revealed good agreement with the expected uncertainty distributions. For test 

cases A, B, C and D, with WS1 processing, the proposed method gave a better prediction of the 

RMS error compared to the existing IM and CS methods. However, for lower window sizes (WS2 

processing) the MC method over-predicted the standard uncertainty for the first two cases 

compared to the IM and CS estimates. The MC method showed better sensitivity to spatial 

variation in error compared to IM and CS methods for all cases. The standard uncertainty coverage 

predicted by the MC method was higher than the IM and CS method coverage, for most of the 

cases. A bias error of about 0.02 pixels was noticed for the MC method in the simulated cases. 

This bias error may be related to any bias in the estimated number of correlating pixels or in 

difficulty in sizing extremely small PDF peaks. Overall, after analyzing a wide range of test cases 

and the sensitivity of the predicted uncertainty to the variation in error sources, the MC method 

establishes itself as successful planar PIV uncertainty prediction tool and provides a framework to 

estimate cross-correlation uncertainty even in 3D cross-correlation. 
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Abstract 

Particle Image Velocimetry (PIV) measurements are subject to multiple elemental error sources 

and thus estimating overall measurement uncertainty is challenging. Recent advances have led to 

a posteriori uncertainty estimation method for planar two-component PIV. However, no complete 

methodology exists for uncertainty quantification in stereo PIV. In the current work, a 

comprehensive framework is presented to quantify the uncertainty stemming from stereo 

registration error and combine it with the underlying planar velocity uncertainties. The disparity 

in particle locations of the dewarped images is used to estimate the positional uncertainty of the 

world coordinate system, which is then propagated to the uncertainty in the calibration mapping 

function coefficients. Next, the calibration uncertainty is combined with the planar uncertainty 

fields of the individual cameras through an uncertainty propagation equation and uncertainty 

estimates are obtained for all three velocity components. The methodology was tested with 

synthetic stereo PIV data for different light sheet thicknesses, with and without registration error, 

and also validated with an experimental vortex ring case from 2014 PIV challenge. Thorough 

sensitivity analysis was performed to assess the relative impact of the various parameters to the 

overall uncertainty. The results suggest that in absence of any disparity, the stereo PIV uncertainty 

prediction method is more sensitive to the planar uncertainty estimates than to the angle 

uncertainty, although the latter is not negligible for non-zero disparity. Overall the presented 

uncertainty quantification framework showed excellent agreement between the error and 
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uncertainty RMS values for both the synthetic and the experimental data and demonstrated reliable 

uncertainty prediction coverage. This stereo PIV uncertainty quantification framework provides 

the first comprehensive treatment on the subject and potentially lays foundations applicable to 

volumetric PIV measurements. 

 

Nomenclature 

𝑥, 𝑦, 𝑧  Physical or world coordinates 

𝑋, 𝑌  Image coordinates 

𝐹𝑋, 𝐹𝑌  Camera calibration polynomial mapping function for 𝑋 and 𝑌 image coordinates 

𝑎௜  Calibration mapping function coefficients 

𝐹𝑋௫,௬,௭
ଵ,ଶ   Mapping function gradients with respect to 𝑥, 𝑦, 𝑧 for each camera (1 or 2) 

𝑈, 𝑉  Planar 2D velocity field for each camera 

𝑢, 𝑣, 𝑤  Stereo 2D-3C velocity components 

𝛼  Angle in 𝑥 − 𝑧 plane 

𝛽  Angle in 𝑦 − 𝑧 plane 

𝜎  Uncertainty in any variable 

𝑒  Error in any variable 

𝑑௫ , 𝑑௬  Disparity field between two stereo cameras 

𝛿௫ , 𝛿௬ Subpixel positional difference between matching particles in a PIV interrogation 

window. 

𝐴௝  New calibration 𝑧 plane fit coefficients 

𝑏  Standard bias uncertainty component in any variable 

𝑟  Standard random uncertainty component in any variable 

𝑆௖௜ Sensitivity coefficients for cth stereo component and multiplying ith elemental 

uncertainty 

RMS  Root Mean Square 
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3.1 Introduction 

Particle Image Velocimetry (PIV) [1], [2] is a non-invasive fluid velocity measurement technique 

based on cross-correlation of particle image patterns. Planar PIV velocity estimation is a complex 

function of several parameters like particle image size, seeding density, in-plane displacement, 

camera noise and out-of-plane motion. In addition to the planar PIV error sources, stereo-PIV also 

includes registration error, which contributes to the uncertainty in the velocity measurement. 

Developments in PIV over the last few decades have optimized the measurement accuracy and 

minimized the error from all these error sources. However, only recently has the community 

addressed uncertainty quantification in a planar PIV measurement. The uncertainty in stereoscopic 

PIV (stereo-PIV) is a combination of the planar PIV uncertainty for each camera and the 

uncertainty in the stereo calibration function. Although methods presently exist for quantifying 

planar two-component PIV uncertainty, no complete uncertainty quantification approach exists for 

planar three-component, stereo-PIV. The present work develops a framework for quantifying 

uncertainty in stereo-PIV measurements. 

A number of a posteriori methods have been recently developed for uncertainty estimation 

in planar PIV. As a first approach Timmins et al. [3] built an uncertainty mapping function or 

“Uncertainty Surface” by varying the primary PIV error sources over a wide range. In this method 

once the parameters like particle image size, seeding density, shear rate and displacement are 

evaluated for an image pair, the mapping function can be used to predict the measurement 

uncertainty. In parallel effort, Charonko et al. [4] showed that the uncertainty is inversely 

proportional to the correlation plane primary peak to secondary peak height ratio (PPR) and used 

the “PPR” metric for uncertainty prediction. Xue et al. [5], [6] also quantified PIV uncertainty as 

a function of other correlation plane signal to noise ratio (SNR) metrics. Since there is no analytical 

relationship between PIV uncertainty and its error sources or the SNR metrics, these methods are 

sensitive to the calibration fits used for prediction. Direct, calibration-free, methods have also been 

developed to quantify uncertainty using a multi-pass converged velocity field. Sciacchitano et al. 

[7] proposed “Image Matching” (IM) where the original images are deformed using the final pass 

velocity field to overlay on top of each other and the RMS of the positional mismatch of particle 

images in each interrogation window is used as a measure of standard uncertainty. Wieneke [8] in 

“Correlation Statistics” (CS) linked the covariance of the pixel by pixel intensity difference of the 

deformed particle images to the correlation function uncertainty, which when used in the 3-point 
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Gaussian fit uncertainty propagation equation, yields an estimate of the displacement uncertainty. 

The advantages and disadvantages of each of these methods have been compared in a jet flow case 

with varying error sources by Sciacchitano et al. [9], [10]. Also, in another comparative evaluation 

the planar uncertainty methods were compared for two experimental cases (a jet flow and a 

cylinder in cross flow) across different processing software[11]. Both the comparisons concluded 

that the direct methods are more sensitive to the variation in RMS error in presence of different 

error sources. However, Boomsma et al. [11]showed that direct methods can under predict the 

standard uncertainty, even when the systematic error is negligible. Overall, the direct methods 

show better response to the variation in random error. Thus, here we use the direct methods (IM 

& CS) to estimate the planar uncertainty. We then proceed to introduce a rigorous framework for 

including the effect of multi-camera calibrations and stereo reconstruction on the uncertainty, and 

finally assess the sensitivity of the overall uncertainty in the derived stereo velocity components 

to each of these sources of potential error. 

Stereoscopic PIV [12] was developed to resolve the out-of-plane velocity component using 

two angled views of the same flow field. The measurement chain includes the following 

procedures as shown in the block diagram in Figure 3.1. 

 

Figure 3.1. Stereo PIV measurement chain 

 
The first step, calibration, maps the measurement domain in physical coordinates (world 

coordinate system) onto the camera image coordinate system using calibration target images [13]. 

Once the mapping function is known, individual camera images of particle fields are back-

projected or dewarped onto the physical grid and cross-correlated to evaluate any mismatch or 

disparity between the two camera images at the same time instant. This process is known as self-

calibration [14]. For perfect calibration i.e. perfect camera correspondence and no misalignment 

between calibration target and laser sheet position, the disparity should be zero. Self-calibration 

attempts to correct for any disparity by modifying the calibration mapping function coefficients or 
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adding additional terms. Recent analysis by Beresh et al. [15] has shown that large stereoscopic 

angles and thick laser sheets can introduce significant bias errors even after a converged self-

calibration. The situation is worse for smaller particle image diameters and higher seeding density. 

Thus, any uncertainty in the evaluation of the disparity field can contribute to the uncertainty in 

the calibration mapping function. This corrected mapping function is then used to dewarp the 

individual camera images. Due to the viewing angle of the cameras the resulting images can have 

non-uniform magnifications. Depending on the camera overlap a common grid is selected in the 

physical space and the mapping function is used to determine the corresponding grid points in the 

image domain. The camera images are then interpolated on this new grid, which results in a 

constant magnification factor across the image. These dewarped images are cross-correlated for 

each camera, using standard planar PIV processing algorithms to yield the projected velocity 

components. The camera angles are estimated using mapping function gradients. Finally the 

projected velocity components are combined with the camera angles to yield the three velocity 

components (Willert et al. [16]) on the two dimensional physical grid. An alternative approach by 

Soloff et al. [17] does planar cross-correlation on the original camera images and then dewarps the 

2D vector fields and uses them for reconstructing the stereo field. However, false vectors 

calculated at different world coordinate positions can corrupt interpolation and lead to erroneous 

stereo reconstruction. This approach also leads to varying spatial resolution across the field of view 

as the vector fields are dewarped and not the images. This is more significant for cameras placed 

on two sides of the laser sheet, in which case, stereo reconstruction is performed with planar 

displacements having different spatial resolution and uncertainties. This method is not considered 

herein. 

The complexity of the measurement chain presents a challenge for quantifying the elemental 

uncertainties at each step of the process and determining how the uncertainty in the calibration 

step propagates into the uncertainty in the viewing angles and in turn in the stereo reconstruction. 

Although it has been shown that the out-of-plane velocity component RMS error is a strong 

function of the camera angle, such work has not considered any uncertainty in calibration or angle 

estimation [18], [19]. The present framework, for the first time, quantifies the uncertainty in each 

step of the measurement chain and propagates the elemental uncertainties into the reconstructed 

velocity components.  
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3.2 Methodology 

The first step in stereo-PIV requires aligning the two cameras with the measurement domain 

through calibration. sThe calibration mapping function is obtained by imaging a target with 

precisely positioned dots and then fitting a model function between the known world coordinates 

and the corresponding estimated image coordinates. Typically a pinhole model [20] or a 

polynomial mapping function [13] is used. Here we consider a polynomial mapping function with 

cubic order in 𝑥 and 𝑦 (in plane world coordinates) and quadratic order in 𝑧 (out of plane world 

coordinate) as shown in equation (21).  

 

2 2
5 71 2 3 4 6 8 9

2 3 2 2 3 2 2 2 2
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( , , , )iX FX a x y z a a x a y a z a x a xy a y a xz a yz
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          

        
 (21) 

 

There are four such functions mapping each camera 𝑋 and 𝑌 image coordinates to the 

world coordinates 𝑥 , 𝑦  and 𝑧  e.g. 𝐹𝑋ଵ, 𝐹𝑌ଵ, 𝐹𝑋ଶ, 𝐹𝑌ଶ  and a total of 4*19=68 coefficients 

determined from calibration. 

For stereo-PIV, a standard calibration process results in a small re-projection error. A more 

significant source of error is the “registration error” which refers to any mismatch between the 

dewarped camera images. Any error in the camera mapping function or misalignment between the 

laser sheet and the calibration plane lead to “registration error”, which results in a disparity 

between dewarped particle images and in turn reflects as a systematic error in the reconstructed 

stereo velocity field. The self-calibration process [14] corrects for the misalignment by 

triangulation of the disparity field to determine the world coordinate system which achieves the 

best correspondence between the cameras and the measurement plane. This transformed physical 

coordinate system is used to do another calibration fit, which results in modified mapping function 

coefficients. This process adjusts the camera mapping functions relative to each other and may not 

completely eliminate the true position error with respect to the original world coordinate system, 

without any further reference. Also, if only a single camera is misaligned, this process will adjust 

and modify both mapping functions to minimize the disparity and thus introducing error in both 

mapping functions. It has been shown that this self-calibration process is critical in improving the 

accuracy of a stereo-PIV measurement [21]. However, the uncertainty in the disparity vectors, 

resulting from 2D cross-correlation between the dewarped images, and its propagation to 
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uncertainty in the calibration coefficients as well as the world coordinate grid position have not 

yet been considered. 

Figure 3.2 shows the uncertainty propagation from the different uncertainty sources in a 

stereo-PIV process. Figure 3.2 (a, b, c) corresponds to how to estimate the uncertainty in physical 

coordinate system and is described in Section 3.2.1. Sections 3.2.2 and 3.2.3 discuss the 

uncertainty in triangulated 𝑧 location represented in Figure 3.2 d, e and the uncertainty in mapping 

function coefficients (Figure 3.2 f, g) respectively. Subsequently, the uncertainties in the angles 

(Figure 3.2 h) are estimated in 3.2.4. Section 3.2.5 discusses the planar uncertainty (Figure 3.2 i) 

for individual camera dewarped images. Finally, the planar uncertainties and angle uncertainties 

are combined to obtain the uncertainty of the three velocity components (Figure 3.2 j) in Section 

3.2.6. 

 

Figure 3.2. Uncertainty propagation flow chart for a stereo-PIV measurement process:  (a, b, and 
c) correspond to how to estimate the uncertainty in physical coordinate system (d and e refer to 

the uncertainty in triangulated 𝒛 location, and (f, g) correspond to the uncertainty in the mapping 
function coefficients respectively. (h, i) correspond to the uncertainties in the angles and the 

planar uncertainty for individual camera dewarped images. Finally, the planar uncertainties and 
angle uncertainties combined to obtain the uncertainty of all three velocity components (j). 
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3.2.1 Uncertainty in physical coordinate system 

We first estimate the uncertainty in the disparity vector field (𝑑௫ , 𝑑௬) by cross-correlating the 

individual camera dewarped images at the same time instant (Figure 3.2a, Figure 3.2b). Ideally, 

for a thin light sheet (about 1mm), small observation angles and a perfect calibration the back-

projected particle images should match each other and there should be zero disparity. Any 

misalignment or offset between the measurement plane and calibration plane leads to a disparity 

between the particle image locations, resulting in a biased estimate of final velocities. Moreover, 

due to out of plane motion the projected particle images appear at different locations on the 

dewarped images. This happens especially for thick laser sheets and towards the edge of the images 

and is also a strong function of camera working distance and the size of the field of view. To 

minimize this effect “ensemble correlation” is used which gives a robust estimate of the mean 

disparity field. In presence of any vibration, the transient disparity variation information from 

frame to frame is lost in the ensemble process. However, in the following method of uncertainty 

quantification, the variance in the instantaneous frame correlation is still captured in the random 

error distributions for each disparity vector. In addition, this method for estimating the uncertainty 

in the disparity field can work irrespective of the ensemble process. For estimating the random 

uncertainty associated with each disparity vector, the correlating windows are shifted towards each 

other by half of the estimated disparity vector (Discrete Window Offset) [22] and then for each 

matching particle pair the subpixel difference in their location (𝛿௫ , 𝛿௬) is considered. Previously, 

Sciacchitano et al. in their “ Image Matching” method [9] have shown that the uncertainty in a 2D 

PIV vector can be related to the difference in particle positions of two matching image pairs. Here 

we apply this concept to find the positional mismatch between the particles in the individual 

camera dewarped images. The matching of these particle image pairs can be challenging in case 

of noisy images, overlapping particle images or loss-of-pairs. Suitable image preprocessing and 

intensity thresholding can make the particle image detection more robust. The estimated positional 

differences (𝛿௫ , 𝛿௬) for all the particle image pairs in an interrogation window and for all the 

windows across the ensemble image pairs are combined in a histogram and the standard deviation 

of the Gaussian fit to this distribution gives the random uncertainty (𝑟௫ , 𝑟௬) at that grid point, as 

shown in Figure 3.2c. It is to be noted that, in principle, a pixel wise matching of the dewarped 

images (similar to CS method) can also be used for estimating the random uncertainty, such that 

out-of-plane losses are taken into account.  
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In addition, the disparity vector itself evaluated over all the image pairs is a measure of the 

bias uncertainty (𝑏௫ = 𝑑௫ , 𝑏௬ = 𝑑௬), and is the error source that the subsequent self-calibration 

procedure attempts to remove. It is important to mention that both the bias and random uncertainty 

when estimated with discrete window offset, inherently assumes that both cameras equally 

contributed to the disparity. If small shift in one camera is the only source of bias, then it is 

impossible to account for that without any additional reference system. Finally, the combined 

standard uncertainty (contribution from both random and bias component) in world coordinate 

position (𝜎௫ , 𝜎௬ and 𝜎௭) can be expressed as follows: 
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 (22) 
 

 

The combined standard uncertainty includes the systematic uncertainty which is defined as 

the standard deviation of bias error distribution. Since the bias distribution is unknown in this case, 

we assume that the estimated disparity (bias error) approximates the uncertainty bound for the 

possible bias distribution one expects to see. The uncertainty in 𝑧  location can be expressed 

through triangulation equation as a function of the stereo angles and the 𝑥  or 𝑦  standard 

uncertainty depending upon camera orientation. For the present case camera angles are considered 

only in 𝑥 − 𝑧 plane (i.e.𝛼ଵ, 𝛼ଶ are non-zero, Figure 3.1) and only significant disparity in x was 

assumed. Thus in equation (22), 𝜎௭ is expressed as a function of 𝜎௫. For non-zero y-z plane angle 

(𝛽ଵ, 𝛽ଶ) the 𝜎௬ uncertainty can also be propagated using the triangulation equation, in which case, 

both 𝜎௫ and 𝜎௬ will contribute to 𝜎௭. Here, 𝜎௕௭  and 𝜎௥௭ denote the bias and the random part of the 

𝑧 location uncertainty (Figure 3.2d). The corresponding equations for the general case when both 

cameras are at an angle 𝛽ଵ,ଶ ≫ 0 
 
in the 𝑦 − 𝑧 plane are provided in Appendix A. 

3.2.2  Uncertainty in triangulated 𝒛-plane location 

The projected 𝑧 coordinates obtained through triangulation are used to do a least squares plane fit 

(𝑧 = 𝐴ଵ𝑥 + 𝐴ଶ𝑦 + 𝐴ଷ) to find the modified world coordinate system. Equation (23) describes how 

the least squares fit equation is used to find the plane fit coefficients 𝐴௝ 
as a function of 𝑧 position. 

Here M denotes the left hand side matrix in equation (23), multiplying the plane fit coefficient 
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vector A and R is the right hand side column vector. Both M and R are functions of world 

coordinates. Also, B represents the inverse of M. 
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(23) 

 

The total random uncertainty in the 𝑧 coordinates for the least squares plane fit has a 

contribution from two sources. First, the random uncertainty on each 𝑧 point originating from the 

uncertainty in the evaluation of the disparity vector itself i.e. 𝜎௥௭೔

ଶ  from equation (22). Secondly, 

the uncertainty associated with the least square fit residual (𝑒௜) which is estimated by the standard 

error in the fit (𝜎௭௙௜௧
ଶ ), shown in equation (24). 

 
  2 2

1

1 N

izfit
i

e
N p





   

(24) 

 

Thus, using the propagation equation the uncertainty in the coefficients 𝜎஺ೕ

ଶ  can be 

evaluated using equation (25).  

 2 2 2 2( )
ij ji rzA zfit

i

C     (25) 

 

So we can write the corrected world coordinate plane location as 𝑧௕
௪௖ ± 𝑧௥

௪௖ =

൫𝐴ଵ ± 𝜎஺భ
൯𝑥 + ൫𝐴ଶ ± 𝜎஺మ

൯𝑦 + (𝐴ଷ ± 𝜎஺య
), as shown in Figure 3.2e, where the solid line (𝑧௕

௪௖) 

denotes the mean location of the world coordinate system and the dashed lines (𝑧௕
௪௖ ± 𝑧௥

௪௖ ) 

represent the possible shifted plane locations due to the inherent standard uncertainty.  

3.2.3 Uncertainty in mapping function coefficients 

To determine the uncertainty in the calibration coefficients a calibration fit is done between the 

new world coordinate plane and the image plane for each camera. Let 𝑎௜
௕

 be the mapping function 

coefficients determined by the non-linear least squares fit between 𝑧௕
௪௖and the image coordinates. 

Also, let 𝑎௜
௕±௥  be the coefficients obtained from calibration using 𝑧௕

௪௖ ± 𝑧௥
௪௖  as the world 
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coordinate planes (Figure 3.2f). Then we can define the bias and the random uncertainty in the 

coefficients using the following equations: 

  
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(26) 

 

Where, 𝑎௜
଴ are the existing calibration coefficients and 𝜎௔೑೔೟

ଶ  is the fit uncertainty obtained as a 

function of the Jacobian (J) of the residual at the solution and the variance of the fit residual error 

(𝜎௥௘௦
ଶ ). Thus the total uncertainty in the calibration coefficients 𝜎௔೔

, as shown in Figure 3.2g, can 

be expressed as: 

 2 2 2
i ii fita ra aba       

(27) 

 

Where 𝜎௥௔೔
 and 𝜎௔೑೔೟

 can vary in their relative contribution, depending on the error source and its 

variation across the image. In general, both are dependent on the distribution of positional 

mismatch between each camera particle images. Since it is difficult to quantify the correlation 

between these random errors, they are assumed to be independent in this analysis. Neglecting the 

correlation between these random errors accounts for the errors twice. Thus the true uncertainty 

should be lower making the estimated 𝜎௔೔
 an upper bound for the uncertainty. It is to be noted, that 

𝜎௥௔೔
 reflects the local variation in particle image positions while 𝜎௔೑೔೟

 accounts for the global 

variation in disparity magnitudes across the image. Equations (23) to (27) show how the 

uncertainty in the particle positions in the dewarped images propagate to the uncertainty in the 

mapping function coefficients. This method can be used to estimate the 𝜎௔೔
’s after calibration or 

self-calibration. Typically, a good calibration and converged self-calibration leads to very small 

value of 𝜎௔೔
. However, if the calibration fit residual RMS error is high or there is any remaining 

disparity, even after self-calibration, then 𝜎௔೔
 can be significant.  

It is to be noted that typically Scheimpflug adapters are present (as shown in Figure 3.2d) 

in a stereo PIV measurement to align the plane of focus with the measurement plane and thus 

increases the overlapping region between the cameras. Without these adapters the calibration 

accuracy may suffer and the self-calibration accuracy may also deteriorate because of the 

contribution from out-of-focus particles. This will also affect the planar correlation uncertainty. 
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However, the calibration and planar velocity field uncertainty is quantified in a generalized way 

to take into account any effect from the out-of-focus particles. A detailed analysis on uncertainty 

variation in absence of Scheimpflug adapters is not considered herein. 

3.2.4 Uncertainty in stereo angles 

The stereo angles can be calculated as a function of the mapping function gradients following 

Giordano et al. [23] (equation (28)): 

 
1 1 1 1 1 1 1 1

1 111 1 1 1 11 1

    
tan , tan

    
z y y z z x x z

y x x y x y xy

FY FX FY FX FY FX FY FX
FY FX FY FX FY FX FY FX

 
  
 

 (28) 

 

Consequently, the uncertainty in the stereo angles can be expressed as a function of the 

uncertainty in the mapping function gradients as shown in equation (29).  
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For the mapping function given in equation (21), the gradients can be analytically 

computed by equation (30). Similarly, the expressions for other gradients can also be evaluated. 

 2 2 2
52 6 8 11 12 13 15 16 182 3 2 2x

FX
FX a a x a y a z a x a xy a y a xz a yz a z

x
          


 (30) 

 

Since 𝐹𝑋௫  is a function of 𝑥 , 𝑦 , 𝑧  and 𝑎௜ ’s, the uncertainty in the mapping function 

gradients can be expressed as a function of the uncertainty in the calibration coefficients (𝜎௔೔
) and 

the uncertainty in the world coordinate grid position (𝜎௫ , 𝜎௬ , 𝜎௭), as shown in equation (31). 
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i
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                          
 (31) 

 

From equations (22) and (27) the values of 𝜎௫ , 𝜎௬ , 𝜎௭ and 𝜎௔೔
can be evaluated. Substituting 

these values into equation (31) and using the evaluated uncertainties in equation (29), the 

uncertainty in the stereo angles can be quantified (Figure 3.2h). 
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3.2.5 Uncertainty in dewarped camera image cross correlation 

The next step in a Stereo-PIV measurement involves dewarping the individual camera images to 

a common physical grid. The interpolation of the camera images is often performed using a higher 

order schemes such as sinc or bspline methods to ensure the reconstruction does not introduce 

biases into the cross correlation steps [24]. Here we have chosen to use an 8 point sinc function 

with Blackman apodization to balance accuracy with computational efficiency.  Given a 

sufficiently accurate scheme, the uncertainty in dewarping is mainly a function of the uncertainty 

in the mapping function coefficients, which leads to interpolation of particle images at the wrong 

world coordinate locations and biased displacement estimates. Dewarping involves inverting the 

non-linear polynomial mapping function and thus analytically propagating the uncertainty is not a 

feasible approach, however, this error is negligible after a successful self-calibration, and therefore 

it is not included in this framework. Nevertheless, further future analysis could ascertain the 

uncertainty contribution of this step in more detail. 

Cross-correlating the dewarped images yields the 2D velocity fields for each stereo camera. 

The uncertainty in the planar velocity fields can be evaluated using any existing planar uncertainty 

estimation algorithm. In this work, IM and CS methods have been used to calculate the planar 

uncertainties (step i) in Figure 3.2).  

3.2.6 Uncertainty propagation in stereo reconstruction 

Once the planar uncertainties are known and the angle uncertainties are estimated, both can be 

propagated through the velocity reconstruction equation to give the uncertainty in the three 

velocity components 𝑢, 𝑣 and 𝑤 (Figure 3.2j). For geometric reconstruction with cameras in the 

𝑥 − 𝑧 plane (Figure 3.1) the reconstructed velocity components are given by [16], [23]: 
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(32) 
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The uncertainty in the 𝑢 velocity component is obtained by a Taylor-series uncertainty 

propagation of the reconstruction equation, as shown in equation (33). The uncertainty 𝜎௨
ଶ  is 

expressed as a product of a row vector of sensitivity coefficients and a column vector of 

corresponding elemental uncertainties.  
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 
 (33) 

 

Similarly, equations (34) and (35) give the uncertainty in 𝑤  and 𝑣  components as a 

function of the uncertainty in the planar velocity components and the uncertainty in the angles. 
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4
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The sensitivity coefficients in equations (33) to (35) are denoted by 𝑆௖௜’s with subscript c 

indicating the respective stereo velocity components (𝑢, 𝑣, 𝑤). The subscript i represents the 

corresponding elemental planar or angle uncertainty variables (𝑈ଵ,ଶ, 𝑉ଵ,ଶ, 𝛼ଵ,ଶ and 𝛽ଵ,ଶ), whose 

uncertainty is weighted by 𝑆௖௜. The coefficients 𝑆௖௜’s are functions of the stereo angles and the 

terms are explicitly given in Table 3.1. For the angle uncertainty coefficients 𝑆௨ఈభ
, 𝑆௨ఈమ

, 𝑆௪ఈభ
 and 

𝑆௪ఈమ
, the overall sensitivity takes into account a factor of (𝑈ଵ − 𝑈ଶ)ଶ  Similarly, the 𝑤ଶ  term 

contributes to the scaling of the coefficients 𝑆௩ఉభ
 and 𝑆௩ఉమ

 in equation (35). Comparing the 

coefficients of 𝜎௎భ

ଶ  and 𝜎௎మ

ଶ  in equation (33) and (34), the presence of tan 𝛼ଵ, tan 𝛼ଶ terms in the 

numerator of 𝑆௨௎భ
 and 𝑆௨௎మ

 make them unequal for asymmetric stereo angles, unlike 𝑆௪௎భ
 and 

𝑆௪௎మ
, which are equal. The 𝜎௩

ଶ  uncertainty is mainly dominated by 𝜎௏భ

ଶ  and 𝜎௏మ

ଶ , but the 𝜎௪
ଶ  

uncertainty also affects the 𝜎௩
ଶ with a sensitivity coefficient 𝑆௩௪, which is proportional to the sum 

of the tangent of the 𝛽 angles. The contribution of the angle uncertainties 𝜎ఈభ
ଶ  and 𝜎ఈమ

ଶ  disappears 

if the projected velocities 𝑈ଵ and 𝑈ଶ are equal to each other. 
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Table 3.1. Expressions for Sensitivity coefficients as a function of stereo angles for stereo 
uncertainty propagation equations. 

 

3.3  Sensitivity Analysis 

To assess the variation and range of the coefficients weighting the elemental uncertainties in stereo 

uncertainty propagation (equations (33), (34) and (35)), contour maps of the coefficients 𝑆௖௜’s for 

a range of the stereo camera angles are shown in Figure 3.3. For a typical camera configuration in 

the 𝑥 − 𝑧 plane (as shown in Figure 3.1), stereo angles 𝛼ଵ and 𝛼ଶ are varied between 0° and 60° 

while angle 𝛽 is considered close to 0° (between -5° and +5°). The sensitivity coefficients are 

multiplied with the elemental uncertainties (via Monte Carlo approach) to ascertain the variation 

of 𝜎௨, 𝜎௩ and 𝜎௪ with the stereo angles. A uniform distribution of 0 to 0.5 pixels is assumed for 

the planar uncertainty components (𝜎௎భ
,𝜎௏భ

,𝜎௎మ
,𝜎௏మ

) and the angle uncertainties (𝜎ఈభ
, 𝜎ఉభ

, 𝜎ఈమ
, 𝜎ఉమ

) 

in the range of 0° to 1° are considered. For 𝑤 component, a typical range depends on the particular 

nature of the flow. Here we choose a uniform distribution in the range of 0 to 2 pixels for the out-

of-plane velocity component. The 𝑈ଵ − 𝑈ଶ term is obtained for each 𝛼ଵ, 𝛼ଶ combination using the 

geometric reconstruction equation(32). It is to be noted that the elemental uncertainties are 

randomly sampled from a uniform distribution to reflect a range of possible experimental 

conditions.  

Figure 3.3a shows the coefficients for the 𝑢 component. The coefficients 𝑆௨௎భ
 and 𝑆௨௎మ

 

increase with the angles 𝛼ଶ and 𝛼ଵ respectively, up to a maximum value of 1. For non-symmetric 

stereo angles, that is 𝛼ଵ equal to -55° and 𝛼ଶ equal to 5°, 𝜎௎మ

ଶ  uncertainty has a more significant 
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contribution than 𝜎௎భ

ଶ  as the coefficient 𝑆௨௎భ
 tends to 0. The angle uncertainty coefficients 𝑆௨ఈభ

 

and 𝑆௨ఈమ
 have values greater than 1 for smaller angles in the range 𝛼ଵ ≥ −10°, 𝛼ଶ ≤ 30° and 

𝛼ଵ ≥ −30°, 𝛼ଶ ≤ 10° respectively. However, since for typical values of angle and planar velocity 

errors the squared uncertainties are as much as three orders of magnitude higher for the velocities, 

unless the difference between 𝑈ଵ  and 𝑈ଶ  are large the uncertainty in the camera angles will 

contribute little to the total. Combining the coefficient maps with the planar and angle uncertainty 

distributions, the propagated uncertainty map for 𝜎௨ shows a minimum (about 0.23 pixels) along 

the diagonal, between 15° and 55°, which indicates that symmetric angles yield minimum 

uncertainty. Overall, though, the reconstruction process has only a small effect on the 𝑢 velocity, 

with uncertainties remaining less than 0.3 pixels as long as both angles are above 8°.  

For the out of plane velocity uncertainty, in Figure 3.3b shows that the planar uncertainty 

weights 𝑆௪௎భ
 and 𝑆௪௎మ

 are equal and scale 𝜎௎భ

ଶ  and 𝜎௎మ

ଶ  by a factor greater than 1 for 𝛼ଵ and 𝛼ଶ 

less than 25°. Coefficients 𝑆௪ఈభ
 and 𝑆௪ఈమ

 become less than 1 and go to minimum for 𝛼ଶ ≥ 45° 

and 𝛼ଵ ≥ 45° respectively, indicating a lower sensitivity to the angle uncertainty in that range. 

Similarly to 𝜎௨, in most cases the uncertainty due to the angles remains low because of the small 

magnitude of 𝜎ఈభ
 and 𝜎ఈమ

, leaving the geometry and the planar uncertainty as the major 

contributors. In contrast to the 𝑢  and (as will be seen) 𝑣  components, the larger sensitivity 

coefficients on the planar velocity uncertainties tend to dramatically amplify the final 𝑤 velocity 

uncertainties. This can be seen from the 𝜎௪ contour which varies from a minimum of 0.15 pixels 

for 𝛼ଵ + 𝛼ଶ =120° to 0.5 pixels at angle of 24°, about 1 pixel at an angle of 14° and approaches 

infinity at 0°.  

Finally, the sensitivity coefficients for the 𝑣 component are shown in Figure 3.3c. The 

planar uncertainty weights (𝑆௩௏భ
, 𝑆௩௏మ

) for 𝑉ଵ and 𝑉ଶ are constant at 1.0 and are thus not plotted. 

The coefficients 𝑆௩ఉభ
 and 𝑆௩ఉమ

 also have values close to 1 in the range of 𝛽 considered. This leads 

to a sensitivity of 0.25𝑤ଶ for the angle uncertainties 𝜎ఉభ

ଶ  and 𝜎ఉమ

ଶ , making the out-of-plane velocity 

the major driver of the sensitivity of 𝜎௩  to the angle uncertainties. The contribution of 𝜎௪
ଶ  

uncertainty is weighted by 𝑆௩௪, which varies in the range 0 to 0.04 and is zero for 𝛽ଵ = −𝛽ଶ and 

increases if both the cameras have any undiagnosed tilt in the same direction (in 𝑦 − 𝑧 plane of 

Figure 3.1). Thus, the uncertainty on 𝑤 has a negligible impact on 𝑣, and for reasonable values of 

the angle uncertainty (such as the < 1° values considered here), so does the out-of-plane velocity, 
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leaving only the contribution from the planar estimates of 𝑉 . The combined effect of these 

coefficients leads to practically a constant value of 0.2 pixels for 𝜎௩ with a slightly higher value of 

0.22 pixels at 𝛽ଵ = 𝛽ଶ = ±5°. It is to be noted that 𝜎௪ is a function of the angles 𝛼ଵ and 𝛼ଶ (Figure 

3.3b) and thus RMS of 𝜎௪ (about 0.5 pixels excluding the high values near 0° to 5° angle) is used 

in equation (35) to obtain the 𝜎௩ contour (Figure 3.3c). In summary, it is clear from Figure 3.3 that 

symmetric stereo angles in the range 45° to 60° will minimize the uncertainty in 𝑢  and 𝑤 

components. However, for scenarios with asymmetric angles and unequal range of planar 

uncertainties one can assess and minimize the individual uncertainty contributions based on their 

relative weights predicted by these contour maps. 

Figure 3.3. Contour maps of sensitivity coefficients and reconstructed velocity uncertainties as a 
function of stereo angles are shown for a) u, b) w and c) v components.   

 

The sensitivity coefficients for the mapping function gradient uncertainty can also be 

analyzed. Equation (31) can be written in a more explicit form as follows: 



 
 

98 

     
     
   

2 2 2

5 11 12 15 6 12 13 16 8 15 16 18

2 2 2

6 12 13 16 7 13 14 17 9 16 17 19

2 2

8 15 16 18 9 16 17 19 10 1

2

2

2

2 6 2 2 2 2 2 2

2 2 2 2 6 2 2 2

2 2 2 2 2 2

x

y

z

FX

FX

FX

a a x a y a z a a x a y a z a a x a y a z

a a x a y a z a a x a y a z a a x a y a z

a a x a y a z a a x a y a z a a






          
 
          
 

        



 

52 6 8 11 12 13 15 16 18

73 6 9 12 13 14

2

8 19

2

2

2

2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 4 2

2 2 2 2 2 2 2 4 2 2 2 2 2 2 2

2

(2 ) (3 ) (2 ) (2 ) ( )

(2 ) (2 ) (3 ) ( )

x

y

z

a a a a a a a a a a

a a a a a a a a

x a y

x y z x xy y xz yz z

x y z x xy y xz





         
       

                

        

       
16 17 19

4 8 9 10 15 16 17 18 19

2 2 2 4 2

2 2 2 2 2 2 2 4 2 2 2 4 2 2 2 2 2

(2 )

(2 ) ( ) (2 ) (2 )
a a

a a a a a a a a a

yz z

x y z x xy y xz yz

 
        

 
 
 
 
  

 

       

 
 

(36) 

 

The first part on the R.H.S. of equation (36) is the contribution of the world coordinate 

uncertainties and the second part denotes the contribution of the uncertainties in the mapping 

function coefficients. It is important to note here that coefficient 𝑎ଵ denotes the offset between 

world coordinate and pixel coordinate origin location and coefficients 𝑎ଶ, 𝑎ଷ and 𝑎ସ are related to 

the 𝑥, 𝑦 and 𝑧 magnifications respectively. The coefficients 𝑎ହ to 𝑎ଵଽ are typically very small and 

thus the sensitivity of the gradient uncertainty to the world coordinate position uncertainty is low. 

However, for calibration images with distortion, the higher order coefficients can become 

significant, consequently increasing the contribution of the world coordinate uncertainty. For the 

second part comprising of the 𝜎௔೔

ଶ  terms, the 𝜎௔మ
ଶ , 𝜎௔య

ଶ  and 𝜎௔ర
ଶ  have the dominant contribution to 

the angle uncertainty.  Thus, the uncertainty in the magnification will often be the dominant driver 

for the uncertainty in the gradients, and consequently, by propagation through equation (30) for 

the camera angles as well. 

3.4 Results 

The stereo-PIV uncertainty framework was verified using a synthetic uniform flow case and an 

experimental vortex ring case. The synthetic case was tested for results with and without self-

calibration, using only the IM [7] method for planar uncertainty estimation. The vortex ring case 

was tested with self-calibration for different camera orientations using both CS [8] and IM methods 

for estimating planar PIV uncertainty. The details of the two cases and the resulting uncertainty 

predictions are discussed in detail in the following sections. 

3.4.1 Uncertainty estimation for synthetic flow case 

For simulating stereo-PIV images a volume (150mmx150mmx15mm) of 3x105 particles was 

generated and only the particles falling within a Gaussian beam of certain thickness (either 1mm 
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or 3mm) were rendered in the images. The images were generated using an in-house lightfield ray-

tracing code. The code simulates 10000 light rays per particle, Mie-scattering of the light rays from 

the particles and its propagation through a lens system to form an image in a camera at any 

orientation. To calculate the pixel intensity a 1-pixel by 1-pixel square region was considered 

centered about the point at which the traced ray hits the sensor. The fractional area of the square 

belonging to each pixel in a four-pixel neighborhood was used to calculate a weighing factor. This 

factor was multiplied with the radiance of the light ray and the angle of incidence to compute the 

amount by which the intensities of each of the four pixels were incremented. Thus, in effect, 

intensity of each pixel is an integral of light rays falling across it, with a fill factor of 1.0. The 

world coordinate system was defined and cameras were placed at an angle of 300 in the 𝑥 − 𝑧 

plane. A 105 mm lens with f-number equal to 8 was used. A uniform flow with in-plane velocities 

𝑢 and 𝑣 equal to -2.5 and 3.72 pixels/frame respectively and out of plane motion 𝑤 varying from 

5% to 30% of laser sheet thickness was used to generate successive particle images. A second set 

of images used 𝑢 and 𝑣 of -6.55 and 6.23 pixels/frame respectively. The uniform flow with varying 

out-of-plane motion and laser sheet thickness was considered to see its effect on the random 

uncertainty in the disparity field. Flow gradients are not considered herein as the intent was to 

concentrate on the effect of the calibration and reconstruction, not the effect of challenging flow 

conditions on the uncertainty of the displacement estimates. The out-of-plane motion 𝑤  was 

changed for a particular light sheet thickness to assess the effect of loss-of-pairs in stereo 

uncertainty propagation. Also, for the same 𝑤, a thicker light sheet would include more particle 

images across the depth and introduce more uncertainties in evaluating the disparity field as well 

as the planar cross-correlation. The choices of the camera and calibration parameters were guided 

by the vortex ring experimental case, which will be discussed in the later section.  

The synthetic images were processed with “PRANA” stereo code [25], [26], [27]. A 

polynomial mapping function was obtained using calibration images at multiple 𝑧 locations of a 

single plane target. The calibration 𝑧 = 0 location was purposely offset by 3mm to check the 

uncertainty propagation results with and without self-calibration. The calibration uncertainty was 

estimated from the disparity map following the algorithm in Figure 3.2. The planar velocities were 

obtained using multi-pass processing with image deformation and the corresponding uncertainties 

were obtained using IM. Finally, the planar and the angle uncertainties were propagated using 

equations (33), (34), and (35). 
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Figure 3.4 shows the error and standard uncertainty histogram for 𝑢, 𝑣 and 𝑤 components 

in the uniform flow case with self-calibration. The results are shown for the 1mm thick light sheet 

case and the uncertainty distributions include the contribution of the angle uncertainties. The error 

distribution is nearly symmetric about zero for all three components, indicating minimal bias error 

in the measurement. The 𝑢 and 𝑣 component errors are contained within  0.2 pixels, while the 

𝑤 component error extends to  0.5 pixels. The uncertainty distributions shown here are only the 

positive bounds; the predicted negative bounds are assumed to be identical and symmetric about 

zero and are not shown here for clarity. The 𝜎௨, 𝜎௩ and 𝜎௪ distributions have a sharp rise and a 

gradual fall with a small increase near the tail of the distributions. The vertical dashed and dotted 

lines indicate the RMS values of the uncertainty and error distributions, respectively. Sciacchitano 

et al. [9] showed that for error distributions with zero bias, the RMS of the error and uncertainty 

distributions should match each other when correctly predicted. Figure 3.4 depicts nearly perfect 

agreement in the RMS values implying excellent uncertainty prediction. Another important metric 

for comparison is the coverage, which is defined as the percentage of measurement errors falling 

within the estimated uncertainty band [28]. The standard uncertainty coverage is ideally expected 

to be 68.5%.  

Figure 3.4. Error and uncertainty histograms for u, v and w components in synthetic uniform 
flow case with self-calibration. 

 
Table 3.2 shows the coverage values for this case. The coverage values were calculated 

based on 193548 samples. Coverage values of about 59% and 62% are obtained for this case with 

1 mm and 3mm light sheet thickness respectively, which is only slightly lower than expected. The 
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RMS uncertainty and the coverage values thus indicate successful prediction of stereo 

measurement uncertainty. The uncertainty propagation model was also tested for stereo 

reconstruction without self-calibration. Due to the initial disparity it is expected that the calibration 

error should lead to an additional bias error in the measured velocity field as noticed in the increase 

of RMS error values for this case, shown in Table 3.2, as the measured total error includes the 

effects of both systematic and random errors. The RMS values of error and uncertainty 

distributions reasonably match each other, within 0.01 pixels, for both light sheet thicknesses. 

However, the coverage is less than the expected value, in particular for the 𝑣 component it is about 

42%. This may be attributed to bias in the error distribution in which case even if the RMS error 

and uncertainty values match, a symmetric uncertainty bound about zero does not account for the 

bias and leads to under prediction of coverage.  

Table 3.2. RMS of the total error, uncertainty and standard coverage for uniform flow case, with 
and without self-calibration. 

 

 

To assess the contribution of the angle uncertainty, the stereo uncertainty propagation was 

also tested with and without the angle uncertainty terms. For zero disparity after converged self-

calibration, addition of angle uncertainty terms had a negligible contribution to the total 

uncertainty as evident from the RMS uncertainty and coverage values in Table 3.2 (top- half). 

Without self-calibration, the RMS uncertainty and the coverage slightly improved upon adding the 
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angle uncertainties for the 1 mm laser sheet case. However, for the 3mm light sheet case, the 

predicted uncertainty distributions show a significant increase in the RMS values when the 

uncertainties in the angles are accounted for. Since the 𝑤  velocity component was set as a 

percentage of the light sheet thickness in the simulated flow, the 3 mm thick sheet had higher out 

of plane motion. Consequently, the projected velocity component difference ( 𝑈ଵ − 𝑈ଶ ) was 

increased, which in turn increased the sensitivity of the angle uncertainties in this case (following 

equations (33) to (35)). Including the angle uncertainty also changed the coverage from 54%, 38% 

and 61% to 69%, 43% and 75%, for 𝑢, 𝑣 and 𝑤 components respectively. 

 

Figure 3.5. Contribution of planar and angle uncertainty to overall stereo field uncertainty for 
uniform flow case in presence of disparity. Subplots a), b) and c) show the uncertainty 

histograms for u, w and v components for 1mm laser sheet case. Subplots d) and e) show 
contribution fraction of different uncertainty components for 1mm and 3mm thick laser sheet 

cases respectively. 

 

Figure 3.5 shows the relative contribution of the planar and angle uncertainty in each 

velocity component for the uniform flow case (1 mm thick light sheet) without self-calibration. 

The black histograms represent the overall uncertainty in the stereo components (Figure 3.5a, b, 
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c). The sum of the planar uncertainty terms (ൣ𝑆௨௎భ
𝜎௎భ

ଶ + 𝑆௨௎మ
𝜎௎మ

ଶ ൧
଴.ହ

) is shown as 𝜎௨(𝑝𝑙𝑎𝑛𝑎𝑟) and 

the total angle uncertainty  (ൣ(𝑈ଵ − 𝑈ଶ)ଶ(𝑆௨ఈభ
𝜎ఈభ

ଶ + 𝑆௨ఈమ
𝜎ఈమ

ଶ )൧
଴.ହ

)  is plotted as 𝜎௨(𝑎𝑛𝑔𝑙𝑒) . 

Similar terms are plotted for 𝑤  and 𝑣  components (Figure 3.5b, c). The latter includes an 

additional histogram showing the contribution of 𝜎௪
ଶ  (equation (35)), denoted by 𝜎௩(௪). For the 𝑢 

component the planar and angle uncertainty distribution peaks are at 0.02 and 0.013 pixels 

respectively. The corresponding peaks for the 𝑤 component are at 0.03 and 0.02 pixels, whereas 

𝑣  component has both peaks at 0.014 pixels. The location of the peaks at small values of 

uncertainty indicates that in most cases the uncertainty is low from either source. However, the 

uncertainties distributions due to the planar velocity estimates have much longer tails, meaning 

that in many cases the contribution from the velocity estimates will dominate the angle 

contributions, which remain below about 0.02 for 𝑢 and 𝑣, and below 0.04 for 𝑤. This can be seen 

more clearly by the exact contribution fraction of planar and angle uncertainties in each uncertainty 

bin, which is shown for the 1mm and 3mm thick light sheets in Figure 3.5d and Figure 3.5e 

respectively. Each component is denoted by a different line style and the planar and angle 

uncertainty fractions are denoted by red and blue colors. The angle uncertainty contribution is 

about 20% up to total uncertainties of 0.05 pixels for the 1mm thick sheet. For the 3mm sheet it is 

about 50% for an uncertainty range up to 0.1 pixels. In the higher uncertainty bins the percentage 

contribution of planar uncertainty significantly increases and dominates the overall uncertainty 

distribution. The 𝜎௩(௪)
ଶ /𝜎௧௢௧௔௟

ଶ  term shown by the green dots remain almost zero throughout the 

uncertainty range indicating negligible contribution of 𝜎௪  to the 𝑣 component uncertainty. The 

angle uncertainty has higher contribution for 𝑢 and 𝑤 components compared to the 𝑣 velocity due 

to higher values of 𝜎ఈ  compared to 𝜎ఉ , which is consistent with the camera configuration and 

existing disparity map. In summary, the results make it clear that in most cases the planar velocity 

uncertainty and the choice of geometric configuration for the experiment are the dominant sources 

of uncertainty in the final reconstructed velocities. 

3.4.2 Uncertainty estimation for the experimental vortex ring flow case 

The stereo-PIV experimental vortex ring case from fourth PIV Challenge 2014, was also used for 

validating the stereo uncertainty propagation model. A vortex ring in water was formed using 

motor-controlled piston motion in a cylinder and viewed using five cameras in a cross orientation. 
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Figure 3.6 shows a schematic of the experimental set-up. Camera 1 is at the center, cameras 4 and 

2 are on the left and right side and cameras 3 and 5 are on top and bottom, respectively. A 2mm 

thick laser sheet was used and images were recorded at 1000 frames per second. The Reynolds 

number in this case was approximately 2300. Further details of the experimental set-up and results 

are presented in Kähler et al.[29]. To establish the ground truth, a five camera tomographic 

reconstruction [30] was performed using 10 iterations with MART algorithm. Prior to volumetric 

reconstruction the images were pre-processed with intensity normalization and background 

subtraction to enhance reconstruction quality. Volumetric self-calibration was also done to correct 

for any misalignment. The reconstructed intensity field was used to perform three dimensional 

cross correlation and 𝑢, 𝑣 and 𝑤 components were obtained in the volumetric grid. For calculating 

the velocity field pyramid correlation [31]was used. This technique computes the correlation 

between frames at different intervals and uses a homothetic transformation to combine them to 

yield an ensemble-averaged correlation plane with better precision and higher signal to noise ratio. 

Thus near the vortex core, a larger time separation between frames yields higher displacement, 

which leads to a better resolution. An optimal frame number of 4 was calculated taking into 

account the different sources for loss-of-correlation.  

 

Figure 3.6. Schematic of experimental vortex ring set-up. Cam1 is in center and hence shown in 
dotted line. Cam2 and Cam4 are in horizontal plane with Scheimpflug adapter. Cam3 and Cam5 

are in vertical plane without Scheimplflug adapter. 
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The tomo-PIV measurement at 𝑧 = 0 location is used as the ground truth. It is to be noted that the 

uncertainty in the tomographic solution should be less than the stereo solution for the tomo-PIV to 

act as a reference solution. An independent reference solution does not exist to ascertain the 

uncertainty in each system. However, a measure of divergence of the velocity field can be used to 

compare the two measurements, as for an ideal solution it should be zero following continuity. 

Here, we neglect the out-of-plane gradient as stereo solution is two-dimensional. The mean 

divergence of the in-plane velocity field over the entire time series is 0.002 𝑠ିଵ for both, but the 

RMS of the divergence of the instantaneous fields is 0.08 𝑠ିଵ for the tomo-PIV solution whereas, 

it is 0.2 𝑠ିଵ for the stereo-PIV measurement. The smaller RMS of divergence of the velocity field 

for tomo-PIV indicates that the estimated velocities closely approach the divergence free true 

solution. Thus if the true solution were known, this would yield smaller RMS error for the tomo-

PIV solution and the corresponding uncertainty bounds would be much lesser than the stereo 

uncertainty limits. This supports the notion that the volumetric results can serve as a ground truth 

for comparison.  

Figure 3.7. Vortex ring stereo velocity field error and uncertainty histogram for different camera 
orientation (Cam1Cam3: Top and Cam2Cam4: Bottom) using CS method for planar uncertainty 

estimation. 
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For the stereo processing of the vortex ring images, a polynomial mapping function was 

used for calibration. Self-calibration was performed using PRANA. The corrected mapping was 

used to dewarp the images onto the region of interest and the dewarped images were cross 

correlated with multi-pass iterative window deformation scheme. The planar uncertainty was 

estimated using the IM algorithm for PRANA processed velocity fields. The same dewarped 

images were also processed with similar settings using DaVis 8.2.1 to get the CS uncertainty 

estimates. Both the PRANA and DaVis planar velocity fields were reconstructed using the same 

geometric reconstruction code. The planar uncertainties and the angle uncertainties were 

propagated using equations (33), (34) and (35) and the uncertainty distributions for 𝜎௨, 𝜎௩ and 𝜎௪ 

were obtained.  

The stereo uncertainty was evaluated for two pairs of cameras, namely, camera 1 and 

camera 3 (vertical pair denoted by Cam1Cam3) and camera 2 and camera 4 (horizontal pair 

denoted by Cam2Cam4). Camera 1 is oriented front on (angle in 𝑥 − 𝑧 plane 𝛼 = 0, angle in 𝑦 −

𝑧 plane 𝛽 = 0) while camera 3 is at an angle 𝛽 equal to 250 and without Scheimpflug adapter. In 

contrast Camera 2 and 4 are at an angle 𝛼 = ±30°, and both with Scheimpflug adapters. Thus, 

each pair has different imaging parameters and magnifications and so both pairs are compared 

against the tomographic solution. 

Figure 3.7 shows the error and estimated uncertainty distributions for Cam1Cam3 (top) 

and Cam2Cam4 (bottom) configurations using CS method for planar uncertainties. The error 

distributions appear to be Gaussian and symmetric about zero. The 𝑒௨ and 𝑒௩ distributions vary in 

the range of  0.3 pixels while 𝑒௪ varies up to about  1 pixel. The 𝑣 component error has a 

slightly wider spread compared to 𝑒௨ for Cam1Cam3 case, but slightly smaller for Cam2Cam4. 

Table 3.3. RMS error, uncertainty and standard coverage for vortex ring case with IM and CS 
methods for planar uncertainty estimation. 
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For both cases, 𝑒௪ is larger than 𝑒௨ or 𝑒௩, but as expected the increase is larger for the Cam1Cam3 

data due to the less optimized experimental setup. The uncertainty distributions are shown on one-

sided as discussed in Figure 3.4 and are thus scaled down by a factor of 2 to match the heights of 

the error distributions. In this case the uncertainties are sharply distributed with the modal values 

 

Figure 3.8. Planar uncertainty RMS contours for each camera components are shown in a) for 
IM and b) for CS methods. The RMS error and uncertainty spatial contours for stereo 

components are shown in c) and d) for IM and CS methods respectively. 
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and RMS values close to each other. The dotted and dashed lines indicating the RMS values of the 

error and uncertainty distributions respectively, are in good agreement for both camera orientations, 

especially for Cam2Cam4. Also, the coverage for Cam1Cam3 is about 50% to 60% while 

Cam2Cam4 has a higher coverage of about 58% to 66%.  

A quantitative comparison of the estimated stereo uncertainties using two different planar 

uncertainty methods (IM and CS) is presented in Table 3.3. Both methods predicted RMS 

uncertainty values within 10% of the RMS error for 𝑢 and 𝑤 component velocities. However, the 

𝑣 component uncertainty using IM is under predicted by 0.05 pixels for Cam1Cam3 and over 

predicted by 0.035 pixels for Cam2Cam4 case. This is also reflected in the IM method standard 

coverage which is 81.5% for Cam2Cam4 and about 43% for Cam1Cam3. The difference in IM 

and CS results emphasize the contribution of the planar uncertainty estimates in stereo uncertainty 

propagation as only the planar uncertainty estimation method was changed, keeping all the other 

parameters the same. 

To probe the difference in results shown in Table 3.3, the spatial contour maps of the RMS 

error and uncertainty for Cam2Cam4 orientation using IM and CS methods are compared in Figure 

3.8. Figure 3.8a and Figure 3.8b show the planar uncertainty estimates for the IM and CS methods 

respectively. The CS planar uncertainty field shows sharper variation from about 0.35 pixels near 

the core to 0.05 pixels near the domain edges, while IM uncertainty prediction gives a smoother 

field which varies from 0.3 pixels in the core to about 0.13 pixels near the margins. This effect is 

directly propagated in the stereo solution uncertainty spatial maps shown in Figure 3.8c and d. The  

error distributions look essentially identical for both processing schemes, indicating that 

differences in the underlying velocity fields did not contribute to the final variation in the 

uncertainties. However, the IM method predicts a higher uncertainty over a wide range of the 

spatial domain compared to CS estimate, which only predicts higher uncertainty in the vortex core 

region. Thus the Figure 3.8d uncertainty contours are more consistent with the RMS error map 

compared to Figure 3.8c, which explains the over prediction of IM method coverage, mentioned 

in Table 3.3. In addition, it appears that using the IM estimates the uncertainties in the vortex core  

are under predicted.  

Figure 3.9 shows the RMS error (solid line) vs RMS uncertainty (dotted line) time series 

for 50 frames. Although the temporal variation in RMS error and uncertainty over the 50 frames 

are negligible, the figure shows the quantitative agreement between the expected and predicted 
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uncertainty values for both IM and CS methods and also compares the RMS errors across different 

camera configurations. The RMS of 𝜎௪ is around 0.45 pixels/frame for Cam1Cam3 case compared 

to 0.3 pixels/frame for Cam2Cam4 case and the resulting error ratio of out-of-plane to in-plane 

RMS errors is consistent with the stereo inclusive angles for each configuration. The lack of 

Scheimpflug adapter on camera 3 also contributes to the increased error in Cam1Cam3 solution. 

The RMS uncertainty line closely matches the RMS error line for CS case and the agreement is 

better for Cam2Cam4 configuration indicating that the estimation of stereo uncertainties is better 

for an optimized experiment. The under prediction and over prediction of IM predicted stereo 

uncertainties in the time series is consistent with previous observations.  

 

The results for both the synthetic uniform flow and the vortex ring case show successful 

stereo uncertainty prediction using the present methodology. The sensitivity coefficients for the 

stereo uncertainty propagation equations have been plotted as function of a range of stereo angles. 

For the synthetic case, the out-of-plane motion and light sheet thickness are varied to see their 

effect on the calibration and planar uncertainties. Also, the experimental case was tested for two 

 

Figure 3.9. Comparison of RMS error and uncertainty temporal distributions for the vortex 
ring case. The left column plots are for IM method and right column plots are for CS method. 

Top row and bottom row subplots correspond to Cam1Cam3 and Cam2Cam4 camera 
orientations respectively. 
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different magnifications and different stereo angles, with one camera pair having Scheimpflug 

adapter mounted. Thus the results are representative of the effect of variation in some of the 

significant parameters, which one optimizes in a practical application. However, a more detailed 

parametric study of the estimated stereo uncertainty with a range of planar and stereo-PIV error 

sources, needs to be further explored in future.   

3.5 Conclusion 

The present work establishes a framework for stereo-PIV uncertainty estimation. The individual 

camera image correlation uncertainty is quantified using existing 2D PIV uncertainty algorithms. 

The uncertainties in the stereo angles are also quantified. Positional disparity in the particle 

locations from ensemble correlation of dewarped camera images is considered as the origin of 

calibration uncertainty. This uncertainty in the disparity field is assigned as the world coordinate 

uncertainty, and using triangulation uncertainty and least squares fit uncertainty, the uncertainty 

in the calibration mapping function coefficient is determined. These elemental uncertainties are 

propagated through the mapping function gradient equation to find the angle uncertainty. 

Subsequently, the angle and the planar field uncertainties are combined to get the uncertainty in 

the three velocity components.  

The sensitivity analysis of the coefficients show a minimum uncertainty in the velocity 

components for symmetric stereo angles between 45° and 60°, and that in most cases the 

uncertainty in the planar velocity estimates controlled the uncertainty due to the calibration. The 

model has been tested with synthetic uniform flow images as well as an experimental vortex ring 

case. Both cases show reasonable agreement between the RMS of the standard uncertainty and the 

RMS of the error distribution. The estimated coverage varied between 58% and 63% for the 

synthetic flow with self-calibration, which is close to the ideal value of 68.5%. For the vortex ring 

the coverage values varied over a wider range, from 50% to 80%. An analysis of the synthetic case 

in presence of disparity showed up to 50% contribution from the angle uncertainty in the lower 

bins of the total uncertainty distribution. However, after self-calibration and in the absence of any 

bias error the planar uncertainty again was shown to dominate the total stereo uncertainty. In the 

experimental case, for the same calibration uncertainty and the same dewarped images, IM and CS 

methods predicted different stereo uncertainties implying a higher sensitivity of the planar velocity 
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field uncertainty to the overall uncertainty. Overall, both the cases showed that the estimated stereo 

uncertainty is strongly dependent on the in-plane velocity field uncertainty.  

Although the methodology successfully estimates the stereo component uncertainties, a 

detailed investigation of the calibration uncertainty for more challenging calibration scenarios 

(such as distortion in the calibration due to variation in the imaging medium density and refractive 

index) and more complex flows (such as homogeneous turbulence with high gradient of out-of-

plane velocity) will be considered as a future work. Furthermore, the proposed methods can be 

conceptually extended to volumetric PIV calibration uncertainty where uncertainty in the projected 

particle locations for all cameras in each sub-volume can quantify the tomographic PIV mapping 

function uncertainty, which can then be propagated to the final displacement estimates in a similar 

manner as done here. 
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Appendix A 

Stereo uncertainty propagation equations for large stereo angles (𝛼 and 𝛽) are given in this section. 

When the stereo cameras have an inclusive angle 𝛼ଵ + 𝛼ଶ in the 𝑥 − 𝑧 plane and also both cameras 

are at an angle 𝛽ଵ,ଶ ≫ 0 in the 𝑦 − 𝑧 plane (Figure 3.10), then the stereo geometric reconstruction 

(equation (32)) can be written as follows: 
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Figure 3.10. Schematic of stereo PIV camera set up for large camera angles. 

 

This equation is true even when the primary stereo angles are 𝛽ଵ and 𝛽ଶ as long as the 

condition 𝛼ଵ,ଶ ≫ 0  also holds. Equation (A1) is different from equation (32) only in the 𝑣 

component. For large 𝛽 angles the denominator is not small and the 𝑣 component can be expressed 

only as a function of planar components 𝑉ଵ, 𝑉ଶ and the angles 𝛽ଵ,  𝛽ଶ. The uncertainty propagation 

for 𝑣 in this case is similar to that of 𝑢 component (equation (33)) and is given by equation (A2). 

     T

vvV v V VvVv S V V S V VS S      
2 11 22 1 2 1

2 2 2 2 2 2
1 2 1 2

2         (A2) 

 

The sensitivity coefficients for 𝑣 component uncertainty is given in Table 3.4. 
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Table 3.4. Sensitivity coefficients for 𝒗 component uncertainty propagation for large stereo 
angles. 
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Abstract 

We introduce the first comprehensive approach to determine the uncertainty in volumetric Particle 

Tracking Velocimetry (PTV) measurements. Volumetric PTV is a state-of-the-art non-invasive 

flow measurement technique, which measures the velocity field by recording successive snapshots 

of the tracer particle motion using a multi-camera set-up. The measurement chain involves 

reconstructing the three-dimensional particle positions by a triangulation process using the 

calibrated camera mapping functions. The non-linear combination of the elemental error sources 

during the iterative self-calibration correction and particle reconstruction steps increases the 

complexity of the task. Here, we first estimate the uncertainty in the particle image location, which 

we model as a combination of the particle position estimation uncertainty and the reprojection 

error uncertainty. The latter is obtained by a gaussian fit to the histogram of disparity estimates 

within a sub-volume. Next, we determine the uncertainty in the camera calibration coefficients. 

As a final step the previous two uncertainties are combined using an uncertainty propagation 

through the volumetric reconstruction process. The uncertainty in the velocity vector is directly 

obtained as a function of the reconstructed particle position uncertainty. The framework is tested 

with synthetic vortex ring images. The results show good agreement between the predicted and 

the expected RMS uncertainty values. The prediction is consistent for seeding densities tested in 

the range of 0.01 to 0.1 particles per pixel. Finally, the methodology is also successfully validated 

for an experimental test case of laminar pipe flow velocity profile measurement where the 

predicted uncertainty is within 17% of the RMS error value. 
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Nomenclature 

𝑥௪, 𝑦௪, 𝑧௪: World coordinates or physical coordinates 

𝑋௖ , 𝑌௖: Camera image coordinates for camera c 

𝐹𝑋௖ , 𝐹𝑌௖: 𝑋 and 𝑌 calibration mapping function for camera c 

𝑎௜: camera mapping function coefficients 

𝑒: Error  

𝜎: Standard uncertainty  

Σ: Covariance matrix  

𝑑: Disparity vector estimated from ensemble of reprojection error. 

𝑢, 𝑣, 𝑤: Velocity components in 𝑥, 𝑦, 𝑧 directions respectively. 

Σୠ: Bias uncertainty  
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4.1 Introduction 

Volumetric PTV [1]–[4] is a fluid velocity measurement technique which resolves the three-

dimensional (3D) flow structures by tracking the motion of tracer particles introduced in the flow. 

The tracer particle motion is recorded with multiple cameras to obtain projected particle images. 

Each camera is also linked to the physical space using a calibration mapping function [5]. The 

particle images are then mapped back to the physical space using a triangulation process [1], [6]. 

Finally, a three-dimensional (3D) tracking of the reconstructed particles estimates the Lagrangian 

trajectories of the particles and subsequently resolves the volumetric velocity field.  PTV easily 

lends itself to calculation of particle acceleration from the tracked trajectories. Also, unlike 

Tomographic Particle Image Velocimetry (Tomo-PIV) [7], which involves spatial averaging over 

the interrogation window, 3D PTV has higher spatial resolution as it yields a vector for every 

tracked particle position. However, as the number of particles increases, identification of 

overlapping particles and its corresponding 3D reconstruction becomes challenging, which leads 

to a tradeoff between spatial resolution and reconstruction accuracy. Hence, the simple 

triangulation-based 3D PTV method introduced in 1993 [1] had limited applications compared to 

Tomo-PIV for highly seeded flows. Improvements in terms of particle identification [8] and 

tracking algorithms [9]–[14] have been proposed to minimize the error in the measurement.  

Recent advancements in terms of reconstruction algorithms, such as Iterative Particle 

Reconstruction (IPR) [15] and Shake-the-box (STB) [16] have significantly improved the accuracy 

of 3D PTV. IPR uses an initial triangulation based reconstructed field to construct a projected 

image and then minimizes the intensity residuals in the image plane by shaking the particles in 

world coordinate location. This process achieves a better positional accuracy, reduced fraction of 

ghost particles and the reconstruction accuracy is comparable to intensity based Multiplicative 

Algebraic Reconstruction Technique (MART) [7], for up to a seeding density of 0.05 particles per 

pixels (ppp). This concept has been further advanced in STB, which uses the temporal information, 

for a time-resolved measurement, to predict the particle location in the future frames and corrects 

the predicted position iteratively using IPR. Such measurements have successfully resolved flow 

structures for experiments with high particle concentrations (up to 0.125 ppp). With such 

capabilities, 3D PTV measurements have gained renewed attention and applicability in various 

experiments. 
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To analyze any experimental results with statistical significance, uncertainty quantification 

(UQ) is crucial, especially, where the measured data are used in a design process or to validate 

computational models [17]–[21]. Given the increasing applicability and relevance of 

PTV/IPR/STB volumetric measurements, providing uncertainty estimation for an individual 3D 

PTV measurement is now of paramount importance. 

 

Uncertainty estimation in PIV measurements has received interest only recently and several 

methods have been proposed for planar PIV uncertainty quantification. Broadly such methods can 

be categorized into direct and indirect methods. Indirect methods rely on a calibration function, 

which maps an estimated measurement metric (e.g. correlation plane signal to noise ratio metrics 

[22]–[24] or estimates of the fundamental sources of error [25]) to the desired uncertainty values. 

Such a calibration is developed from a simulated image database and may not be sensitive to a 

specific error source for a given experiment. Direct methods, on the other hand, rely directly on 

the measured displacements and use the image plane “disparity” [26], [27] information or 

correlation-plane PDF (probability density function) of displacement information [28] to estimate 

the a-posterior uncertainty values. Comparative assessments [29], [30] have shown that the direct 

methods are more sensitive to the random error sources. However, indirect methods can be 

potentially used to predict any bias uncertainty. A direct uncertainty estimation for stereo-PIV 

measurement [31] has also been proposed recently. A detailed review of such methods can be 

found in [32]. Thus, although the foundations have been laid for planar and stereo-PIV uncertainty 

quantification, applicability of such methods to 3D measurements remains untested and these 

methods train strictly to cross-correlation based measurements. As a result, 3D reconstruction and 

tracking process for 3D PTV measurements is not covered under these methods and currently a-

posterior uncertainty quantification methods for volumetric measurements (PTV/PIV) do not exist 

and new uncertainty model development is needed. 

A flowchart for the different steps in a 3D PTV measurement chain is shown in Figure 1. 

The first step establishes a mapping function between the camera image coordinates (𝑋, 𝑌) and the 

 

Figure 4.1. A volumetric PTV measurement chain showing the main steps in the process. 
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world coordinates (𝑥௪, 𝑦௪, 𝑧௪) in the physical space using a multi-camera calibration process. The 

calibration coefficients are then iteratively corrected using the mapping function and the recorded 

particle images to eliminate any misalignment between the assumed world coordinate system 

origin of the calibration plane and the actual origin location for the measurement volume. This 

process is called volumetric self-calibration [6] and is essential in minimizing the reconstruction 

error (due to existing offset or disparity between cameras) and improving the calibration accuracy. 

Using the modified calibration, for each particle in a given camera, the corresponding match in the 

second camera is searched along the epipolar line and the particle matches in all cameras are 

triangulated [1], [6] to a 3D world position. This reconstruction process can be done in an iterative 

sense for an IPR type algorithm. However, for the particle pairing process in each camera view, 

the matching ambiguity increases for higher particle concentrations, which leads to erroneous 

reconstructions and is considered one of the main sources of error in the process. Finally, the 

reconstructed 3D particle positions are tracked to find the velocity vectors using “nearest neighbor” 

or other advanced algorithms [14]. The tracking and reconstruction can be done in conjunction for 

STB type evaluations. From calibration fitting error, particle position estimation error, the disparity 

vector estimation error to the error in finding the 3D positions and its pairing, the errors in each 

step of the process are inter-linked in a complex non-linear way and affect the overall error 

propagation. The iterative corrections and the governing non-linear functions lead to several 

interdependent error sources making the definition of a data reduction equation intractable and the 

development of an uncertainty quantification model non-trivial.  

In the current framework, a model is developed to quantify the uncertainty in particle image 

position and the mapping function coefficient. These uncertainties are in turn combined with the 

uncertainty propagation through the reconstruction process. Finally, the uncertainty in the velocity 

vector is expressed directly as a combination of the position uncertainty in the matching pair of 

particles. The methodology is described in detail in the next section. 

4.2 Methodology 

The primary relation between the observed image coordinate(𝑋, 𝑌) and the expected particle world 

coordinate(𝑥௪, 𝑦௪, 𝑧௪) in physical space is given by the individual camera mapping function 𝐹𝑋௖ 

for each camera 𝑐, as given in equation (37).   
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𝑋௖ = 𝐹𝑋௖(𝑥௪,  𝑦௪,  𝑧௪,  𝑎௜) = 𝑎ଵ + 𝑎ଶ𝑥௪ + 𝑎ଷ𝑦 + 𝑎ସ𝑧 + 𝑎ହ𝑥௪

ଶ + 𝑎଺𝑥௪𝑦௪  + 𝑎଻𝑦௪
ଶ  

+𝑎଼𝑥௪𝑧௪ + 𝑎ଽ𝑦௪𝑧௪ + 𝑎ଵ଴𝑧௪
ଶ + 𝑎ଵଵ𝑥௪

ଷ + 𝑎ଵଶ𝑥௪
ଶ 𝑦௪ + 𝑎ଵଷ𝑥௪𝑦௪

ଶ  
+𝑎ଵସ𝑦௪

ଷ +  𝑎ଵହ𝑥௪
ଶ 𝑧௪ + 𝑎ଵ଺𝑥௪𝑦௪𝑧௪ + 𝑎ଵ଻𝑦௪

ଶ𝑧௪ + 𝑎ଵ଼𝑥௪𝑧௪
ଶ + 𝑎ଵଽ𝑦௪𝑧௪

ଶ  

 
(37) 

 

Typically, a polynomial mapping function is used following Soloff et al. [5] to have higher 

accuracies in the presence of optical distortion effects. Once a mapping function is established and 

iteratively corrected using self-calibration process, the reconstruction process involves finding an 

inverse of the mapping function for the matching particle image coordinates in different 

projections. Hence an error propagation through the mapping function is the starting point of the 

uncertainty quantification and is described in the next subsection. 

4.2.1 Error propagation through the mapping function 

An error propagation for equation (37) can be written as follows: 

 𝑒௑೎ =
𝜕𝐹𝑋௖

𝜕𝑥௪
𝑒௫ೢ

+
𝜕𝐹𝑋௖

𝜕𝑦௪
𝑒௬ೢ

+
𝜕𝐹𝑋௖

𝜕𝑧௪
𝑒௭ೢ

+
𝜕𝐹𝑋௖

𝜕𝑎௜
𝑒௔೔

 
(38) 

 
 

Equation (38) is obtained as a Taylor series expansion of equation (37), neglecting the 

higher order terms.  Thus, the error in image coordinate 𝑒௑೎  can be related to the error in world 

coordinate positions 𝑒௫ೢ
, 𝑒௬ೢ

, 𝑒௭ೢ
 and the error in calibration function coefficients 𝑒௔೔

 through the 

mapping function gradients ቀ
డி௑೎

డ௫ೢ
,

డி௑೎

డ௬ೢ
,

డி௑೎

డ௭ೢ
,

డி௑೎

డ௔೔
 ቁ . A similar propagation equation can be 

written for the error in 𝑌 (𝑒௒೎) image coordinate for each camera mapping function. It is important 

to note that the quantities of interest are 𝑒௫ೢ
, 𝑒௬ೢ

, 𝑒௭ೢ
 as we seek to estimate the unknown variance 

in the reconstructed world coordinate positions. Rearranging the unknown terms in the left-hand 

side and multiplying each side by its transpose yields the variance propagation equation as follows:  

 

The error in particle image position estimation (𝑒௑೎) is a function of particle image fitting 

error and can be assumed to be independent of the error in calibration function coefficients (𝑒௔೔
). 

However, the calibration error can influence the error in projected particle image location or the 

 
൬

𝜕𝐹𝑋௖

𝜕𝑥௪
𝑒௫ೢ

+
𝜕𝐹𝑋௖

𝜕𝑦௪
𝑒௬ೢ

+
𝜕𝐹𝑋௖

𝜕𝑧௪
𝑒௭ೢ

൰ ൬
𝜕𝐹𝑋௖

𝜕𝑥௪
𝑒௫ೢ

+
𝜕𝐹𝑋௖

𝜕𝑦௪
𝑒௬ೢ

+
𝜕𝐹𝑋௖

𝜕𝑧௪
𝑒௭ೢ

൰

்

= ൬𝑒௑೎ −
𝜕𝐹𝑋௖

𝜕𝑎௜
𝑒௔೔

൰ ൬𝑒௑೎ −
𝜕𝐹𝑋௖

𝜕𝑎௜
𝑒௔೔

൰

்

 

 
(39) 
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projection error and thus any covariance between 𝑒௑೎  and 𝑒௔೔
 is implicitly accounted in the 

projection error formulation, as discussed in section 4.2.2. With these considerations, a simplified 

version of equation (39) can be written as shown in equation (40). 

 ൤
𝜕𝐹𝑋௖

𝜕𝑥௪

𝜕𝐹𝑋௖

𝜕𝑦௪

𝜕𝐹𝑋௖

𝜕𝑧௪
൨ 𝛴௫⃗ೢ

൤
𝜕𝐹𝑋௖

𝜕𝑥௪

𝜕𝐹𝑋௖

𝜕𝑦௪

𝜕𝐹𝑋௖

𝜕𝑧௪
൨

்

= 𝜎௑೎
ଶ + 𝐶௔ሬ⃗ 𝛴௔ሬ⃗

௖𝐶௔ሬ⃗
் (40) 

 

Here, ቂ
డி௑೎

డ௫ೢ

డி௑೎

డ௬ೢ

డி௑೎

డ௭ೢ
ቃ is a row vector containing mapping function gradients for each 

camera 𝑐 with respect to 𝑥௪ሬሬሬሬሬ⃗ = {𝑥௪, 𝑦௪, 𝑧௪} and 𝛴௫⃗ೢ
 represents the unknown covariance matrix in 

world coordinates (𝛴௫⃗ೢ
= ൛𝑒௫ೢ

 𝑒௬ೢ
 𝑒௭ೢ

ൟ
்

൛𝑒௫ೢ
 𝑒௬ೢ

 𝑒௭ೢ
ൟ) . The uncertainty in particle image 

position 𝑋௖ is denoted by 𝜎௑೎.  The term 𝐶௔ሬ⃗ 𝛴௔ሬ⃗
௖𝐶௔ሬ⃗

் evaluates to a single numerical value, which 

accounts for the contribution from the uncertainty in the calibration coefficients 𝑎⃗ = {𝑎௜}ଵ௫ଵଽ, for 

the mapping function 𝐹𝑋௖ of camera 𝑐. 𝐶௔ሬ⃗ = ቂ
డி௑೎

డ௔೔
ቃ

ଵ௫ଵ
represents the mapping function gradients 

with respect to the calibration coefficients 𝑎⃗ and the covariance in mapping function coefficients 

is denoted by 𝛴௔ሬ⃗
௖ = ൛𝑒௔೔

ൟ൛𝑒௔೔
ൟ

ଵଽ௫ଵଽ

்
. For solving equation (40), it can be written as a stack of 8 rows 

of equations corresponding to 𝑋 and 𝑌 mapping functions for each of, for example, a four-camera 

set-up. The combined equation for all cameras is given by equation (41) and is solved for each 

reconstructed particle individually. 

 𝐶௫⃗ೢ
𝛴௫⃗ೢ

𝐶௫⃗ೢ

் = 𝛴௑ሬ⃗ + 𝛴௔ሬ⃗  (41) 

 

In equation (41), 𝐶௫⃗ೢ
 is an 8x3 coefficient matrix containing mapping function gradients 

for the 8 mapping functions. The combined variance matrix in particle image position 𝑋⃗ =

{𝑋௖ , 𝑌௖} is denoted by 𝛴௑ሬ⃗  and contains 𝜎௑೎
ଶ  and 𝜎௒೎

ଶ  as diagonal entries for each camera. The 

correlation in 𝑒௑೎ between different camera components is seen to be negligible and thus the off-

diagonal terms of 𝛴௑ሬ⃗  are set to zero. Lastly, the evaluated values of 𝐶௔ሬ⃗ 𝛴௔ሬ⃗
௖𝐶௔ሬ⃗

் for each mapping 

function in equation (40) are put as the diagonal terms in the 𝛴௔ሬ⃗  matrix ((𝛴௔ሬ⃗ )௜௜ = 𝐶௔ሬ⃗ 𝛴௔ሬ⃗
௖𝐶௔ሬ⃗

்), which 

represents the net calibration uncertainty contribution across all 4 cameras. Thus, equation (41) 

contains the unknown covariance matrix in world coordinates 𝛴௫⃗ೢ
 as a function of 𝛴௑ሬ⃗  and 𝛴௔ሬ⃗ . The 

following sections focus on estimating the 𝛴௑ሬ⃗  and 𝛴௔ሬ⃗  terms. 
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The overview of the uncertainty estimation and propagation process is depicted in Figure 

4.2. 

4.2.2 Estimating uncertainty in particle image location 

For a-posteriori uncertainty quantification, we start from a reconstructed 3D particle positions 

obtained either from a triangulation or IPR reconstruction method. For a given 3D particle position, 

 

Figure 4.2. A schematic showing different steps (a – e) for estimating elemental 
uncertainties in particle image location 𝑋 and calibration coefficients 𝑎௜ and its propagation 

to the uncertainty in the world coordinate 𝑥௪. 
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we want to find the corresponding projected particle image locations and its uncertainty for each 

camera. As shown in Figure 4.2a), the projected particle image positions are compared with the 

recorded image to find the error in particle image location. This can be expressed as a sum of the 

estimated projection error (𝑋⃗௣௥௢௝ − 𝑋⃗௘௦௧) and the 2D particle fit position estimation error (𝑋⃗௘௦௧ −

𝑋⃗௧௥௨௘), for all 𝑋⃗ = {𝑋௖ , 𝑌௖} and for each camera 𝑐, as shown in equation (42). 

 𝑒௑ሬ⃗ = 𝑋⃗௣௥௢௝ − 𝑋⃗௧௥௨௘ = 𝑋⃗௣௥௢௝ − 𝑋⃗௘௦௧ + 𝑋⃗௘௦௧ − 𝑋⃗௧௥௨௘ (42) 

 

Thus, the variance in particle image location, 𝛴௑ሬ⃗ , becomes a sum of the variance in the 

estimated projection error, denoted by  𝛴ௗ⃗, and variance of the error in particle image position 

estimation. 

 𝛴௑ሬ⃗ = 𝑒௑ሬ⃗ 𝑒
௑ሬ⃗
் = 𝛴ௗ⃗ + 𝛴௑ሬ⃗ ೐ೞ೟

 (43) 

 

As mentioned in section 4.2.1 equation (41), each of these variance matrices consider only 

the diagonal terms corresponding to 𝑋  and 𝑌  mapping functions for each camera. In order to 

estimate 𝛴ௗ⃗ the reconstruction domain is divided into sub-volumes and the estimated projection 

error for a group of particles belonging to the same sub-volume are stacked up into a histogram 

(this relates to the concept of disparity(𝑑) defined by Wieneke [6]). The sub-volume size can be 

varied or particles from other frames can be included to have a larger statistical sample. It is 

observed that a histogram consisting of 50 or more particles in the sub-volume yields a statistically 

consistent estimate, irrespective of the number of sub-volumes considered. Such a histogram of 

disparity(𝑑) estimates is shown in Figure 4.2b), where the variance in the estimated 𝑋 projection 

error is denoted by 𝜎ௗ೉
. For a perfectly converged self-calibration, the mean disparity (𝑑̅) should 

be zero. Typically, the disparity histogram approaches a Gaussian distribution and for the 

robustness of variance estimation a Gaussian fit is applied on this histogram. The estimated 

standard deviation from the fitted curve is used to evaluate the variance of the disparity distribution. 

However, for a lower seeding density the disparity distribution is observed to deviate from a 

Gaussian distribution. Consequently, if the area under the fitted Gaussian curve is different by 

more than 5% compared to the histogram area evaluated using trapezoidal integration rule, the 

standard deviation of the distribution is used as the standard uncertainty. In this framework, this 
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estimated variance is modeled as the desired 𝛴ௗ⃗ of equation (43). For the particles belonging to 

the same sub-volume, the same value of 𝛴ௗ⃗ is used. 

Each particle image within ±0.5 pixels of the projected 3D particle location is fitted with 

a Gaussian shape and thus the uncertainty in the fitted position parameter for the least square fit 

process is considered as 𝛴௑ሬ⃗ ೐ೞ೟
. Equation (44) denotes an expression for the position estimation 

variance which is shown to be a function of the variance in the fit residual error (𝜎௥௘௦
ଶ ) and the 

Jacobian(𝐽) of the residual at the solution point (I denotes an identity matrix). This is consistent 

with the Cramer-Rao lower bound (CRLB) determination for 2D particle image centroid, as 

highlighted by Rajendran et al. [33]. Hence, once 𝛴ௗ⃗  and 𝛴௑ሬ⃗ ೐ೞ೟
are estimated, the 𝛴௑ሬ⃗  is known 

(Figure 4.2c). 

4.2.3 Estimating the uncertainty in mapping function coefficients 

As seen from the flowchart in Figure 4.2, once the variance in particle image position(𝛴௑ሬ⃗ ) is 

estimated through the progression of steps shown on the right side, the next workflow is focused 

on estimating the variance in the calibration coefficients (𝛴௔ሬ⃗ ). The overall calibration uncertainty 

𝛴௔ሬ⃗  is a combination of 𝛴௔ሬ⃗
௖  for each camera 𝑐. The 𝛴௔ሬ⃗

௖  estimation process (Figure 4.2d) can be 

performed in conjunction with the volumetric self-calibration process. In absence of self-

calibration, the uncertainty in the coefficients 𝑎௜ is dictated by the uncertainty in calibration image 

dot fitting. However, the presence of disparity between estimated and projected points leads to a 

shift in the projected grid points (𝑋௖௔௟ , 𝑌௖௔௟) in the image domain, this correction leads to a new 

set of coefficients(𝑎௜) in the self-calibration process. Hence, the uncertainty in 𝑋௖௔௟ , 𝑌௖௔௟ positions, 

namely 𝛴௑೎ೌ೗ሬሬሬሬሬሬሬሬሬ⃗  , should directly affect the 𝛴௔ሬ⃗
௖ . If we consider the world coordinate positions 

(𝑥௖௔௟ , 𝑦௖௔௟ , 𝑧௖௔௟) where the disparity vectors are evaluated, then those grid points being specific 

locations in space, will have no uncertainty in their location. Consequently, the unknowns (𝑒௫ೢ
, 

𝑒௬ೢ
, 𝑒௭ೢ

) of equation (39) can be simplified to zero and the equation can be simplified to equation 

(45). 

 𝛴௑೎ೌ೗ሬሬሬሬሬሬሬሬሬ⃗ = ൬
𝜕𝐹𝑋

𝜕𝑎௜
𝑒௔൰ ൬

𝜕𝐹𝑋

𝜕𝑎
𝑒௔೔

൰
்

= 𝐶1௔ሬ⃗ 𝛴௔ሬ⃗
௖𝐶1௔ሬ⃗

்  (45) 

 𝛴௑ሬ⃗ ೐ೞ೟
= (𝐽்𝐽)ିଵ𝜎௥௘௦

ଶ 𝐼 (44) 
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In this equation, the 𝐶1௔ሬ⃗  represents the matrix of gradients of the mapping function with 

respect to the coefficients 𝑎௜, having number of rows corresponding to number of disparity grid 

points. The variance in the particle image position 𝛴௑೎ೌ೗ሬሬሬሬሬሬሬሬሬ⃗  can be evaluated in a similar way as 

mentioned in section 4.2.2. Here, the 𝛴௑೎ೌ೗ሬሬሬሬሬሬሬሬሬ⃗  can be evaluated for the initially triangulated particle 

positions and is used in equation(45) to solve for 𝛴௔ሬ⃗
௖ as a least squares problem for all disparity 

grid points. 

4.2.4 Uncertainty propagation in reconstructed positions 

The uncertainty in the reconstructed world coordinate position is finally obtained by solving for 

the world coordinate location covariance matrix 𝛴௫⃗ೢ
from equation (41), as shown in Figure 4.2e). 

This equation is evaluated for each world coordinate position combining mapping functions in 𝑋 

and 𝑌 for all four cameras.  The estimated covariance 𝛴௔ሬ⃗
௖ term in section 4.2.3 is used to evaluate 

𝐶௔ሬ⃗ 𝛴௔ሬ⃗
௖𝐶௔ሬ⃗

், where 𝐶௔ሬ⃗  represents 
డி௑೎

డ௔೔
 for each camera 𝑐, as mentioned in equation (40). The Σ௔ሬ⃗  term 

is then evaluated as a diagonal matrix as (𝛴௔ሬ⃗ )௜௜ = 𝐶௔ሬ⃗ 𝛴௔ሬ⃗
௖𝐶௔ሬ⃗

். The 𝛴௑ሬ⃗  has already been calculated 

using equation (43). Hence, we solve for 𝛴௫⃗ೢ
by inverting the 𝐶௫⃗ೢ

matrix as shown in equation (46). 

 𝛴௫⃗ೢ
= 𝐵 ൫𝛴௑ሬ⃗ + 𝛴௔ሬ⃗ ൯ 𝐵ିଵ (46) 

 

Where, 𝐵 is given by 𝐵 = ൫𝐶௫⃗ೢ

் 𝐶௫⃗ೢ
൯

ିଵ
𝐶௫⃗ೢ

் . It can be noted that for standard Gaussian 

particle images, the covariance between 𝑋  and 𝑌  particle image position estimation can be 

assumed to be negligible. However, in presence of optical distortion, such a covariance can be 

estimated from the 2D least square fit of an elliptical Gaussian function on the mean particle image 

shape. Thus, the term ൫𝛴௑ሬ⃗ + 𝛴௔ሬ⃗ ൯ is essentially an 8x8 diagonal matrix for 8 mapping function 

equations. From the covariance matrix 𝛴௫⃗ೢ
, the standard uncertainty in reconstructed positions 

(𝜎௫ೢ
, 𝜎௬ೢ

, 𝜎௭ೢ
) are obtained by taking the square root of the diagonal terms (ට൫𝛴௫⃗ೢ

൯
௜௜

). 

We also evaluate the bias uncertainty terms 𝜎௫್
, 𝜎௬್

, 𝜎௭್
based on the mean disparity value 

for each subvolume. Ideally, for a converged self-calibration the mean disparity is negligible. 

However, due to measurement noise, any residual mean disparity (𝑑̅) can lead to a bias in the 

reconstructed position measurement. We estimate 𝑑̅ from the disparity histogram and use that to 
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estimate 𝛴௑ሬ⃗ ್
, the bias uncertainty in particle image position and 𝛴௔ሬ⃗ ್

௖ , the bias uncertainty in 𝑎௜’s 

using the propagation equations (43) and (45). For 𝛴௑ሬ⃗ ್
, only 𝛴ௗ್⃗

is considered in equation (43). 

The final bias uncertainty estimates for reconstructed 𝑥, 𝑦, 𝑧  positions are obtained using the 

propagation equation (46) by substituting the values of 𝛴௑ሬ⃗ ್
and 𝛴௔ሬ⃗ ್

.  

4.2.5 Uncertainty in estimated velocity field           

The uncertainty in each tracked 3D velocity measurement is evaluated as a direct combination of 

the estimated 3D position uncertainties of each paired particle. Thus, if a particle in frame 1 

(𝜎௫ೢభ
, 𝜎௬ೢభ

, 𝜎௭ೢభ
)  is paired with a particle in frame 2, then the uncertainty in the tracked 

displacement 𝜎௨ is given by 

 𝜎௨
ଶ = σ௫ౘ

ଶ + 𝜎௫ೢభ
ଶ + 𝜎௫ೢమ

ଶ − 𝜌௫ೢభ௫ೢమ
𝜎௫ೢభ

𝜎௫ೢమ
 (47) 

 

In equation (47), 𝜎௫್
 is the bias uncertainty term as evaluated in section 4.2.4. The bias 

uncertainty depends on the mean disparity and the mapping function coefficients and is not 

expected to change from frame to frame. Hence it is accounted for only once in the tracking 

uncertainty estimation. It is also observed that the true position error in the estimated 3D particle 

position for a paired particle in frame 1 and frame 2 has a strong correlation. Thus, the covariance 

term 𝜌௫ೢభ௫ೢమ
𝜎௫ೢభ

𝜎௫ೢమ
 in equation (47) is significant. The correlation coefficient 𝜌௫ೢభ௫ೢమ

 varies 

from about 0.5 to 0.8, depending on the flow field and calibration and is estimated as an average 

of the correlation of the individual camera disparity error between paired particles. The 𝜌௫ೢభ௫ೢమ
 

term can be computed for each pair of frames and also for a statistically significant number of 

particles within the same sub-volume. However, if the spatio-temporal variations of 𝜌௫ೢభ௫ೢమ
 is 

within 5% of the mean value, then an average coefficient may be used to calculate the covariance 

term. The disparity error correlation is expected to have a similar magnitude compared to the true 

position error correlation between frames and is verified to be the case for synthetic test cases with 

true error quantification. The uncertainty in 𝑣 and 𝑤 components (𝜎௩, 𝜎௪) can be obtained in a 

similar way following equation (47). It is to be noted, that the uncertainty due to false matching in 

presence of ghost particles may need further analysis. However, for a valid measurement we expect 

equation (47) to account for the uncertainty in the tracked velocity measurement.  
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4.3 Results 

The proposed framework to estimate the uncertainty in the reconstructed particle positions is tested 

using synthetic vortex ring images. The particle field was generated and advected using 

incompressible axisymmetric vortex ring equations mentioned in [34]. The camera calibration and 

particle images (256x256 pixels) were generated using in-house code. The camera angles were 

selected as 35° and were positioned in a plus () configuration. The volume of interest was set to 

42mmx42mmx24mm and the seeding density was varied from 0.01ppp to 0.1ppp. The processing 

was also done using in-house calibration and IPR code for 100 image pairs. A polynomial model 

was used for the camera calibration and the initial estimate of the calibration was modified by 3 

iterations of volumetric self-calibration to eliminate any mean disparity. An allowable 

triangulation error of 1 pixel was used for initial triangulation with particle identification using  

dynamic particle segmentation method [8] to better resolve overlapping particle images. The 

particle image positions were estimated using least square Gaussian fit. The optical transfer 

function (OTF) [35] was calculated and used in IPR iterations. The number of inner loop and outer 

loop iterations for each frame was set to 4 with particle “shaking” of ±0.1 voxels. The 3D particle 

tracking was done using “nearest neighbor” algorithm. The uncertainty for each measurement was 

computed using the set of equations described in section 4.2.  

4.3.1 Comparing error and uncertainty histogram for reconstructed particle positions 

First, the uncertainty in reconstructed particle positions are analyzed. The reconstructed particle 

positions are compared with the true particle positions in space and if a particle is found within 1 

voxel radius of the true particle, then it is considered as a valid reconstruction. The error in 

reconstructed 𝑥௪ position is denoted by  𝑒௫ೢ
 and defined as: 

 𝑒௫ೢ
= 𝑥௪

௘௦௧௜௠௔௧௘ௗ − 𝑥௪
௧௥௨௘ (48) 

 

Similarly, 𝑒௬ೢ
 and 𝑒௭ೢ

 are defined. Figure 4.3 shows the histogram of error and uncertainty 

distributions 𝑥௪, 𝑦௪ and 𝑧௪ coordinates. Figure 4.3a and Figure 4.3b shows the distributions for 

the reconstructed particle positions obtained using triangulation and IPR methods respectively, for 

a particle concentration of  0.05ppp.The x-axis is divided into 60 equally spaced bins and the y-
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axis denotes the number of measurements falling within each bin as a fraction of total number of 

points. The root mean squared (RMS) error is defined as: 

 𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 = ඩ
1

𝑁
෍ 𝑒௜ೢ

ଶ

ே

௜ୀଵ

 
 

(49) 

   

 

 

The error distribution for the triangulated particle positions is wider with RMS error of 

about 0.17, 0.18 and 0.27 pixels in 𝑥௪, 𝑦௪ and 𝑧௪ positions compared to RMS error of 0.15, 0.15 

and 0.22 pixels for the IPR case. The predicted uncertainty distributions have significantly less 

spread and have a tight distribution around the RMS error. For a successful prediction, it is 

expected that the RMS value of the error distribution should match the RMS value of the estimated 

uncertainty distribution [29]. The RMS value for each distribution is indicated by the dashed 

vertical line. For Figure 4.3a, the RMS uncertainty values underpredict the RMS error by 0.03 

pixels in 𝑥௪  and 𝑦௪ and by 0.06 pixels in 𝑧௪ . For IPR case in Figure 4.3b, the predicted 

uncertainties are within 0.02 pixels of the RMS error values. Overall, the predicted uncertainties 

 

Figure 4.3. Histogram of error (𝑒) and uncertainty (𝜎) distributions for reconstructed particle 
positions (𝑥௪ , 𝑦௪, 𝑧௪) for the synthetic vortex ring case with 0.05ppp particle concentration for a) 

triangulation and b) IPR reconstructions. The vertical lines indicate the RMS value for each 
distribution. 
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are in close agreement with the expected value, indicating a successful prediction for position 

reconstruction uncertainty.  

4.3.2 Reconstructed position uncertainty for varying particle concentration 

The increase in particle concentration leads to a higher percentage of overlapping particles which 

increases the error in particle identification, and subsequently in 3D particle reconstruction. To test 

the sensitivity of the uncertainty predictions in such scenarios, the seeding density is varied from 

0.01ppp to 0.1ppp and the RMS error and uncertainty values are compared in each case, as shown 

in Figure 4a and Figure 4b. The results show a high sensitivity of the predicted uncertainty to the 

trend of the RMS error for both triangulation and IPR methods. The reconstructed position RMS 

error predicted by IPR is lesser than the triangulation error for lower seeding densities, whereas, 

for 0.1ppp the IPR error is higher, which may be related to the specifics of the in-house IPR 

implementation. However, the objective is to predict the correct RMS error level given the 

 

Figure 4.4. Comparison of triangulation and IPR reconstructed position error and uncertainty 
as a function of seeding density for the synthetic vortex ring case. Plot a) compares the RMS 

error and RMS of predicted uncertainties for seeding densities in the range of 0.01ppp to 
0.1ppp and plot b) compares the coverage in each case. 
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different reconstructed positions using different methodologies. For triangulation the RMS 

uncertainty follows the RMS error trend consistently, but underpredicts the magnitude by about 

0.04 pixels (23%) at 0.01ppp and by 0.07 pixels (20%) at 0.1ppp. For the IPR case, the predicted 

uncertainty matches the expected uncertainty value closely at 0.01ppp and 0.05ppp with a 

deviation of about 0.01 pixels (10%), but underpredicts the uncertainty by 0.08 pixels (30%) at 

0.1ppp. Overall the increasing trend agreement, between the predicted and the expected 

uncertainty validates the current framework for prediction of uncertainty for a wide range of 

particle concentrations and using both reconstruction methods. 

For a more specific comparison across seeding densities, the values of RMS errors and 

uncertainties in 𝑥௪, 𝑦௪ and 𝑧௪ positions for both methods have been presented in Table 4.1. The 

maximum underprediction of about 0.06 pixels occurs at 0.1ppp case for both methods. The best 

agreement is obtained for the IPR case for up to 0.05ppp and for the triangulation case upto 

0.025ppp. It is to be noted that the IPR reconstruction error is higher than exepected, which may 

be related to a lower convergence rate and in turn depends on the specifics of the implementation, 

however, given a reconstructed field the current method reasonably predicts the standard 

uncertainty in 3D particle based reconstruction. 

To compare the global prediction of uncertainty level for all particles the estimated 

coverage is plotted in Figure 4c and Figure 4d. The coverage is defined as the percentage of 

Table 4.1. Comparison of RMS error and RMS uncertainty values for the triangulation and 
IPR based reconstructed particle positions for a range of seeding densities. 

Particle 
Concentration 

(ppp) 

RMS 𝑒௫ೢ
 

(voxels) 
RMS 𝜎௫ೢ

 
(voxels) 

RMS 𝑒௬ೢ
 

(voxels) 
RMS 𝜎௬ೢ

 
(voxels) 

RMS 𝑒௭ೢ
 

(voxels) 
RMS 𝜎௭ೢ

 
(voxels) 

Triangulation Reconstruction 
0.010 0.08 0.07 0.09 0.07 0.13 0.10 
0.025 0.13 0.11 0.14 0.11 0.20 0.16 
0.050 0.17 0.14 0.18 0.15 0.27 0.21 
0.075 0.21 0.17 0.22 0.19 0.31 0.25 
0.100 0.23 0.19 0.24 0.22 0.34 0.28 

IPR Reconstruction 
0.010 0.09 0.08 0.09 0.09 0.11 0.13 
0.025 0.11 0.12 0.11 0.12 0.14 0.19 
0.050 0.15 0.16 0.15 0.16 0.22 0.24 
0.075 0.22 0.18 0.22 0.18 0.31 0.28 
0.100 0.26 0.21 0.26 0.21 0.36 0.32 
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measurement errors falling within the uncertainty bound (±𝜎) . For an ideal Gaussian error 

distribution, the standard uncertainty coverage is 68.3%. In Figure 4c, the coverage for all cases 

lies within 60% to 68%, except for 0.01 ppp for which case the coverage is about 74% for 

triangulation. The deviation for lower seeding density case may be related to the non-Gaussian 

nature of the error distributions at such particle concentrations. For IPR the coverage varies from 

60% to 87%, with maximum overprediction for the 0.025ppp case, as shown in Figure 4d. Thus, 

the uncertainty coverage metric is mostly in the range of 60% to 73% in the present analysis and 

agrees well with the ideal expected coverage of 68.3%. 

4.3.3 Uncertainty prediction for tracked velocity vectors 

As a final step, the uncertainty prediction in the tracked velocity field is assessed. The 

reconstructed 3D particle positions are tracked for a pair of frames for 100 pairs using nearest-

neighbor tracking. The true particle positions in 1 voxel vicinity of the reconstructed particle 

positions is found for the first frame and the corresponding true displacement is subtracted from 

the estimated displacement to compute the error (𝑒)  in 𝑢 , 𝑣  and 𝑤  velocity components. A 

measurement is considered valid if the computed error magnitude is within 1 voxel. The 

uncertainty(𝜎௨, 𝜎௩, 𝜎௪) in the velocity components are computed using equation (47). 

The RMS uncertainty values mentioned in Table 4.2 are in close agreement with the RMS 

error values with a maximum deviation of 0.04 pixels across all cases. The RMS error increases 

with the particle concentration due to higher probability of erroneous matches resulting from ghost 

particle reconstruction. The predicted uncertainty increases proportionally with RMS error, for 

both reconstruction methods, as observed in Table 4.2.  

The histogram of velocity error and uncertainty distribution is compared in Figure 4.5a for 

the triangulation case and Figure 4.5b for the IPR case, for 0.05ppp seeding density. The error 

distribution is sharper for the triangulation case. It is noticed that the 𝑤 component has higher error 

compared to 𝑢 and 𝑣 components. For all cases, the uncertainty distributions have a very narrow 

spread and predicts the RMS error magnitude perfectly. Further analysis for higher seeding 

densities with STB processing is required to validate the displacement uncertainty model proposed 

by equation (47), however, these results show reasonable agreements between predicted and 

expected uncertainty values for the estimated velocity components. 
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Figure 4.5. Error and uncertainty histogram comparison for tracked velocity vectors in the 
synthetic vortex ring case with seeding density of 0.05ppp for a) triangulation based 

reconstruction and for b) IPR based reconstruction. 

Table 4.2. Comparison of RMS error and RMS uncertainty values for the particle tracking 
displacement estimates using triangulation and IPR based reconstructed particle positions for 

a range of seeding densities. 

Particle 
Concentration 

(ppp) 

RMS 𝑒௨ 
(voxels 
/frame) 

RMS 𝜎௨ 
(voxels 
/frame) 

RMS 𝑒௩ 
(voxels 
/frame) 

RMS 𝜎௩ 
(voxels 
/frame) 

RMS 𝑒௪ 
(voxels 
/frame) 

RMS 𝜎௪ 
(voxels 
/frame) 

Triangulation Reconstruction 
0.010 0.06 0.05 0.07 0.05 0.10 0.07 
0.025 0.09 0.08 0.09 0.08 0.14 0.11 
0.050 0.11 0.11 0.12 0.12 0.18 0.16 
0.075 0.13 0.15 0.14 0.16 0.20 0.21 
0.100 0.14 0.17 0.15 0.19 0.22 0.25 

IPR Reconstruction 
0.010 0.12 0.08 0.12 0.09 0.13 0.13 
0.025 0.12 0.11 0.12 0.11 0.14 0.17 
0.050 0.16 0.14 0.16 0.14 0.22 0.22 
0.075 0.22 0.18 0.22 0.18 0.30 0.28 
0.100 0.25 0.21 0.25 0.22 0.34 0.33 
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4.3.4 Experimental Validation: Uncertainty prediction for laminar pipe flow  

The current framework is also validated for a canonical laminar pipe flow experiment for a 

Reynolds number of 630. The schematic of the experimental set up is shown in Figure 4.6. The 

flow loop consisted of a gear pump driving a steady flow rate of 0.17 L/min through a circular 

FEP tube of 0.25 inches diameter. The working fluid inside the pipe was chosen as distilled water-

urea (90:10) solution with a density of 1015 kg/m3 and dynamic viscosity of 0.915 mPas. The tube 

was fully immersed in an acrylic tank filled with water-glycerol solution such that it is refractive 

index matched. The volumetric PTV measurement was performed using four Phantom Miro M340 

cameras with three cameras at the same horizontal plane and one camera angled in the vertical 

plane, as shown in the sideview of Figure 4.6. The flow rate in the upstream and downstream of 

the pipe was measured using an ultrasonic flowmeter and the average flow rate was used to 

determine the true velocity profile. The measurement volume was 9x6.5x6.5 mm3 and was 

illuminated by a continuum Terra-PIV laser with appropriate optical setup. The time-resolved 

measurements were taken at 6 kHz, and the image size was 640x624 pixels with an average 

magnification of 17.8 microns/pixel. 24-micron fluorescent particles were used with a particle 

Stokes number St= 0.0005. The particle images were processed using in-house camera calibration, 

 

Figure 4.6. Schematic of laminar pipe flow set up showing the flow loop and camera 
arrangement. 
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particle reconstruction and tracking code. A polynomial mapping function [5] was used to establish 

a relation between image coordinates and physical coordinates. Three iterations of volumetric self-

calibration [6] were done to eliminate any disparity between the measurement volume and 

calibration target location or alignment. Both triangulation and IPR was used to reconstruct the 

particle positions in physical coordinate system and subsequently the 3D particle locations were 

tracked using a “nearest-neighbor” pairwise tracking algorithm. 500 pairs of images were 

processed with a particle concentration of 0.005ppp.  

 

The reconstructed particle positions across all images are summed up in the cross-sectional 

view of the tube and a least square circular fit is performed to fit a circle with size closest to the 

diameter of the tube. The fitted boundary is used to divide the cross-sectional area of the tube in 

20x20 bins and all measurements in streamwise direction as well as across 500 frames are averaged 

 

Figure 4.7. The mean streamwise velocity profile for a 3D PTV measurement of a 
laminar pipe flow is shown in a). The velocity profile is compared with the true 

solution in b). The error and estimated uncertainty histogram are shown for 
triangulation-based reconstruction in c) and for IPR based reconstruction in d).  
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per bin to obtain the mean velocity profile shown in Figure 4.7a. The mean velocity profile along 

the middle y-plane is compared with the true solution in Figure 4.7b. The expected true velocity 

profile 𝑈௧௥௨௘ for the measured flow rate is shown by the blue solid line. The flow meter has a 10% 

uncertainty and its corresponding standard uncertainty (±𝜎) is shown by the blue shaded region. 

The mean velocity profile obtained from particle tracks (for the triangulation case) is shown by 

the black solid line and the standard deviation of the velocity measurements in each bin is shown 

by the shaded grey region. The peak measured velocity reaches 94% of the true maximum velocity. 

The standard deviation of the measured velocity is observed to increase in the depth direction 

moving away from the camera. Overall, the mean velocity profile agreed with the expected 

parabolic profile of a laminar pipe flow.  

The measured streamwise component of velocity (𝑈) is compared with the true expected 

velocity (𝑈௧௥௨௘) and the distribution of velocity tracking error 𝑒௎ and the estimated corresponding 

uncertainty 𝜎௎ is shown in Figure 4.7c and Figure 4.7d for the triangulation and IPR reconstruction 

cases respectively. In both cases the error distribution is skewed with a higher bias error for the 

triangulation case of about 0.1 pixels/frame. The predicted uncertainty values are distributed 

closely about the RMS error value. The RMS error and RMS uncertainty values for Figure 4.7c 

are 0.17 pixels/frame and  0.14 pixels/frame and  for Figure 4.7d are 0.23 pixels/frame and 0.19 

pixels/frame respectively. Thus, the predicted uncertainty using the current framework shows 0.04 

pixels underprediction and reasonably predicts the appropriate measurement uncertainty level.  

4.4 Conclusion 

We proposed a comprehensive framework to predict the uncertainty in the reconstructed 3D 

particle positions in a volumetric PTV measurement and subsequently propagate the uncertainty 

in the tracked velocity estimates. The variance estimated from the histogram of the projection error 

provides the uncertainty bound on the particle image position and contributes to the uncertainty in 

the mapping function coefficients. The uncertainty on the reconstructed 3D position is obtained as 

a combination of the particle image position uncertainty and the mapping function coefficient 

uncertainty. The bias uncertainty on the reconstructed particle positions due to the residual mean 

disparity is also considered. For the tracked velocity uncertainty, the uncertainty in the 

reconstructed particle positions is directly combined for each matching particle pair. The 

covariance between particle position error for paired particles in frame 1 and frame 2 is estimated 
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using the correlation coefficient of the disparity error values for corresponding particles. Analysis 

with the synthetic vortex ring images showed good agreement between the RMS of the predicted 

uncertainties in 𝑥௪, 𝑦௪, 𝑧௪  positions and the RMS error. The estimated uncertainty in the 

displacement field was within 0.04 voxels/frame of the RMS error for both the vortex ring case 

and the experimental pipe flow case. Overall, the predicted uncertainties are sharply distributed 

close to the RMS error values and showed strong sensitivity to the variation in RMS error, across 

a range of seeding densities.  

The proposed methodology is applicable, in general, for any given set of 3D reconstructed 

particle positions, even when they are obtained using advanced tracking methods like STB. 

However, for STB, the uncertainty in particle trajectory fitting should also be quantified. The 

current methodology assumes negligible variance in laser pulse separation and thus ignores any 

temporal uncertainty in the particle tracking. The method also assumes that any covariance in 

particle image position and calibration coefficient is implicitly taken into account by the 

uncertainty in the projection error. Another key assumption in this process is the independence 

between 𝑋  and 𝑌  particle image position estimation errors. These limitations can be further 

explored and the covariance terms can be quantified in future. The distinction of uncertainty levels 

for true and false reconstructions should also be further analyzed to explore uncertainty predictions 

for ghost particle reconstructions. In conclusion, the proposed framework demonstrates accurate 

uncertainty predictions for both the vortex ring and the pipe flow test cases. These results establish 

the current methodology as the first successful predictor for uncertainty in a 3D PTV measurement. 
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Abstract 

Non-intrusive measurement techniques such as Particle Image Velocimetry (PIV) are growing in 

both capability and utility for turbomachinery applications. However, the restrictive optical access 

afforded by multistage research compressors typically requires the use of a periscope probe to 

introduce the laser sheet for measurements in a rotor passage. This paper demonstrates the 

capability to perform three-dimensional PIV in a multistage compressor without the need for 

intrusive optical probes and requiring only line-of-sight optical access. Results collected from the 

embedded second stage of a three-stage axial compressor highlight the rotor tip leakage flow and 

PIV measurements are qualitatively compared with high-frequency response piezoresistive 

pressure measurements to assess tip leakage flow identification. 

 

Nomenclature  

𝑐 Chord 

𝑑௣ Particle diameter 

𝑃 Pressure 

St Stokes number 
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𝑉௧ Blade tip velocity 

𝑊 Relative velocity 

𝜌௣ Particle density 

𝜇 Air dynamic viscosity 

 

Subscripts: 

𝑜-in,AA Inlet area-averaged total condition 

𝑟 Radial 

RMS Root mean square 
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5.1 Introduction 

Measuring the unsteady flow patterns in the rotor blade passage of a multistage compressor is a 

key step toward understanding the loss-inducing mechanisms in these environments. Traditional 

probe traversing measurement techniques are often used to study compressor performance, but 

their intrusive design alters the flow. Thus, a non-intrusive method capable of resolving the flow 

field is desired. To measure the flow inside the rotor blade passage, non-invasive measurement 

techniques, such as Laser Doppler Velocimetry (LDV), have been used in the past [1,2]. However, 

because LDV is a pointwise measurement, it can be a laborious and time-intensive process, and it 

can be difficult to resolve the spatial characteristics of the flow field. 

Since the emergence of Particle Image Velocimetry (PIV), researchers have begun turning 

to this method to investigate turbomachinery flows. Previous authors have performed PIV 

measurements in compressor applications [3,4], and other studies have specifically focused on tip 

leakage flows and measurements in the rotor tip clearance [5-7]. However, in all of these studies, 

periscopic optical probes were inserted into the flow for light sheet delivery, which renders the 

measurement invasive and limits the regions of the flow field which can be imaged. The presence 

of the probe alters the flow, and using a small probe introduces difficulties in achieving precise 

alignment of the laser beam. Furthermore, seeding can damage the probe or require a shutdown to 

clean the optics. 

These challenges caused by the physical and geometrical constraints imposed by rotating 

compressor facilities are further amplified when performing stereoscopic or volumetric 

measurements due to limited viewing angles and reduced overlapping field of view between 

multiple cameras. Thus, a viable solution is to perform PIV on the embedded stage of a multistage 

compressor by delivering the laser sheet through the same window used by the cameras to acquire 

the image. This work demonstrates, for the first time, the capability of performing three-

component, three-dimensional PIV in a multistage compressor, without the need for any invasive 

imaging or light delivery probes inside the compressor. 

5.2 Experimental Setup 

For the present study, PIV was performed in the second stage rotor passage (Rotor 2) of the three-

stage axial compressor at Purdue University. The compressor models the rear stages of a modern 
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high pressure compressor with engine-representative Mach numbers and Reynolds numbers. For 

the Rotor 2 conditions presented herein, the relative Mach number is on the order of 0.45 and the 

relative Reynolds number based on chord is approximately 7.7×105. With a design rotational speed 

of 5000 rpm, the tip speed is approximately 160 m/s. These PIV measurements were collected as 

part of an extensive tip clearance sensitivity study, and the data presented herein pertain to a 

nominal tip clearance height of 2.0 mm, representing 4% rotor tip clearance (based on an annulus 

height of 50.8 mm). Additional information about the facility is available in Ref. [8]. 

 

The experimental setup for the PIV measurements is shown in Figure 5.1(a). Optical access 

to the compressor was accomplished by a window extending approximately 20% axial chord 

upstream and downstream of the rotor blade and more than 2 blade pitches in the circumferential 

direction (69 mm by 127 mm field of view). This window was precision machined to match the 

curvature of the inner diameter for the compressor. A dual-plane LaVision Type 7 target was 

mounted between rotor blades during for calibration purposes. This calibration target has 

dimensions of 58 mm square by 5.8 mm thick, with 1 mm spacing between the two planes and 

5 mm spacing between marker dots on each plane. However, the rotor blades blocked portions of 

the calibration target, effectively reducing the measurement domain to 40 mm in the axial direction. 

Reflections from the incident laser light were a primary concern for this technique, so an MgF2 

 

(a) 

 

(b) 

 Figure 5.1. (a) Schematic of PIV setup with window, camera and laser positions, (b) Schematic 
showing flow direction, phase-locked measurement planes covering the blade passage and the 

expected tip leakage flow. 
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anti-reflective coating was applied to the window to minimize reflections at wavelengths larger 

than 425 nm. 

A Quantel Evergreen Nd-YAG laser (532 nm) was used as the illumination source, and 

four Imperx CCD cameras were used to acquire the image pairs using a frame-straddling approach. 

An optimized arrangement of these four cameras, combined with the use of a laser sheet with 4 

mm nominal thickness, provided the opportunity to utilize stereo or tomographic reconstruction 

techniques. Measurements were acquired at 20 phase-locked positions across one rotor blade pitch 

(based on overlap of the 4 mm laser sheet) to reconstruct a full measurement volume across an 

entire rotor pitch (Figure 5.1(b)). At the steep viewing angle required for this application, the image 

was out of focus from 60% span towards the hub and, as a result, meaningful measurements were 

only obtained between 65% span and the casing wall. The timing for the laser and the cameras was 

precisely controlled using a pulse generator with a once-per-revolution TTL tachometer signal to 

phase-lock measurements at different circumferential positions across one blade pitch. Based on 

the 10.5 Hz laser repetition rate and camera capabilities, one phase-locked position (comprising 

1000 image pairs) required approximately five minutes of steady compressor operation. 

The anti-reflective coating on the window prevented incident light reflections from this 

surface, but reflections from the blade surface and hub initially led to saturation of image pixels. 

To overcome this challenge, fluorescent dye with sufficiently separated absorption and emission 

wavelengths (Rhodamine B 610 chloride powder) was introduced with the seeding fluid. In 

addition, lens filters blocking wavelengths below 540 nm were used to filter laser reflections, 

ultimately yielding recorded images with very low background noise. 

Flow seeding was one of the primary challenges for this experiment. The use of fluorescent 

dye with traditional fog fluid led to significant particle deposition on the window, thereby 

preventing the use of a fogger for particle seeding. Instead, a TSI 9307-06 six-jet Laskin nozzle 

was used to atomize the fluorescent dye with propylene glycol as the base fluid. For these tests, 

the particle generation with the Laskin nozzle was very sensitive to the specific seeding fluid 

mixture concentration. An ideal mixture for these tests included 1.3% by volume of ethanol added 

to the glycol to reduce the surface tension of the seed fluid and improve atomization. Ultimately, 

usable micron-sized tracer particles were successfully attained when introduced through a 12.7 

mm tube into the center of the compressor inlet duct at a position 28 axial chords upstream of the 

IGV leading edge (Figure 5.2). 
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Seed fluid was injected at a volumetric flow rate of 0.21% with respect to the primary air 

flow. The compressor performance was assessed with and without seed injection to verify no 

performance changes were present when particles were introduced. The quality of these particles 

as flow tracers was evaluated by the Stokes number, St, defined by: 

 St =
𝜌௣𝑑௣

ଶ (18 𝜇)⁄

𝑐 𝑉௧⁄
 , (50) 

 

for particle density, 𝜌௣, particle diameter, 𝑑௣, air viscosity, 𝜇, blade chord, 𝑐, and blade tip velocity, 

𝑉௧. Using Eq. (50), the Stokes number for these particles represents 0.0087, which satisfies the 

St<<1 condition for particles to behave as flow tracers for PIV. 

 

Figure 5.2. Schematic of flow seeding method. 

5.3 PIV vector processing 

For the present analysis, only the top two camera images were used to reconstruct planar 3-

component velocity fields for each phase-locked measurement location. In-house PIV software 

“Prana”2 was used for all calibration, cross-correlation image processing, and three-component 

velocity reconstruction. A polynomial mapping function [9] was used to map the world coordinate 

system (x, y, z) in the measurement domain to the image coordinate system (X, Y) for each camera.  

Due to the very low seeding density, the use of traditional pair-wise image cross-correlation to 

obtain the planar velocity fields yielded high noise levels and many erroneous measurements. 

Alternatively, to increase the cross-correlation signal, the sum-of-correlation (or ensemble 

                                                 
2 http://sourceforge.net/projects/qi-tools/ 
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correlation) approach [10,11] was adopted. Image pairs were cross-correlated, and then the 

resulting correlation planes were averaged to yield the final estimate. The ensemble correlation 

delivered high correlation signal-to-noise ratio and robust velocity estimation, reducing the 

number of outliers from 15% to 4%. The cross correlation was performed using 128-pixel square 

windows with 50% Gaussian spatial filter [12] and a final pass grid resolution of 8 pixels. Robust 

Phase Cross-Correlation [13] was used to correlate the image pairs. The planar fields were 

validated using velocity threshold and Universal Outlier Detection (UOD) to remove erroneous 

vectors. Then, the estimated planar velocity fields from the two cameras were dewarped onto 

physical coordinate space and combined with the gradients of the mapping to obtain the three 

velocity components using a least squares fit [9]. 

The reconstructed fields were median filtered to remove noisy vectors along the blade edges. 

The three-component vector fields obtained by generalized stereo reconstruction at each 

circumferential location were analyzed. The recorded stereo image coordinate system was 

reoriented and scaled to express the data in terms of the coordinate system defined by axial chord, 

span, and blade pitch. The blade tip velocity was subtracted from the circumferential velocity 

component to present the measured absolute frame velocity in terms of the relative rotating 

reference frame velocity (𝑊). 

5.4 Results 

This note aims to demonstrate the feasibility of performing non-invasive three-component and 

three-dimensional measurements inside the embedded stage of a multistage compressor passage. 

Experiments were carried out at an operating condition near the peak efficiency point at the design 

speed, and the 20 measurement positions containing the three-component planar velocity fields 

were combined to reconstruct the volumetric vector field across one blade pitch. The effective 

domain was then 70% to 96% span, 15% to 90% axial chord, and 100% blade pitch. The velocity 

field was smoothed with a Gaussian kernel of two standard deviations and a window size of 7x7 

grid points to reduce the noise in the flow field. The volume of data was then sliced at constant 

spanwise locations for interpretation purposes.  

The alternating regions of positive and negative radial velocity in Figure 5.3 are indicative 

of the tip leakage flow and what has been identified as the tip leakage vortex [14]. Although the 

measurements were collected across one complete blade pitch, the domain was plotted with 
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periodic repetition in the pitchwise direction for more intuitive visualization. To further assess the 

viability of this PIV technique, the leakage flow trajectory identified in Figure 5.3 is qualitatively 

compared with a separate experimental method for tracking the tip leakage flow in Figure 5.4. 

 

Figure 5.3. Volume slices of normalized radial velocity at fixed spanwise locations for stereo 
reconstructed velocity field. 

 

In Figure 5.4(a), a slice of PIV data near the wall is presented as contours of normalized 

radial velocity with vectors shown as projections of the three-dimensional relative velocity vector 

onto the 𝑟 − 𝜃 plane. For comparison, Figure 5.4(b) shows contours of static pressure unsteadiness 

measured using high-frequency response piezoresistive pressure transducers in a flush-mounted 

configuration over the rotors, as described by Berdanier and Key [15]. Using this method, the tip 

leakage flow trajectory can be tracked by the locus of peak unsteadiness points across the passage 

emanating from near the leading edge of the blade. In Figure 5.4(c), the results from both 

techniques are superimposed with colored contours of radial velocity from PIV and line contours 

from the static pressure unsteadiness. In this combined figure, the region of high unsteadiness 

identified in Figure 5.4(b) is bounded by the regions of negative and positive radial velocity from 

the PIV results in Figure 5.4(a). Based on this comparison, the trajectory angle of a line bounding 
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the tip leakage flow identified by either technique (in this case, both are non-intrusive 

measurements) is similar to within one degree across the passage. 

 

Figure 5.4. Comparison of PIV results with over-rotor static pressures. Flow is from left to right. 
(a) Contours of normalized radial velocity near the wall; (b) Over-rotor static pressure contours; 
(c) Both methods superimposed with PIV normalized radial velocities as colored contours and 

static pressure contours represented as lines. 

5.5 Conclusion 

These results show three-dimensional PIV measurements in a multistage compressor are not only 

possible, but a viable option, even with one simple optical access window and without the need 

for inserting an optical probe into the flow field. The development of this technique unlocks 

previously unknown possibilities for future implementation of optical measurements in 

turbomachinery applications which traditionally offer poor accessibility. 

Several important steps were required for implementation of this technique, including: anti-

reflective coating on the window, fluorescent dye particles, and fluorescent lens filters on the 

cameras. Challenges with seeding density were resolved through the use of an ensemble 

correlation technique in the image processing steps, although future variations of particle 

generation strategies and seeding locations are expected to yield improved results. 

Slices of normalized radial velocity at fixed spanwise positions highlighted the 

development of the tip leakage flow across the rotor passage, and a qualitative comparison of PIV 

measurements near the wall showed exceptional similarity to a more mature tip leakage flow 
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tracking technique. Data collected from the entire four-camera system are under current refinement 

with the intent to obtain full tomographic PIV velocity fields using this method. 
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 CONCLUSION 

A detailed framework for uncertainty estimation in planar PIV, stereo-PIV and 3D PTV has been 

formulated in this dissertation. The principle idea behind the dissertation is justified by the 

practical need of uncertainty bounds for any PIV based design study, as well as the contemporary 

efforts to quantify the measurement uncertainty in the PIV community. The comparative analysis 

in the first chapter highlights the need for further development of new planar PIV uncertainty 

quantification methods. This work not only provides a reference for the existing methods but also 

a benchmark dataset for comparing the new developing methods. The second chapter propose a 

direct uncertainty estimation framework from the PIV correlation plane, namely the Moment of 

Correlation (MC). As a part of the framework, the PDF of displacement within an interrogation 

window is extracted using the phase of the correlation plane. This methodology predicts the correct 

uncertainty level and coverage for five different test flow cases, especially for a processing with 

higher interrogation window size. However, a bias error up to 0.02 pixels is observed for smaller 

windows due to limited number of particles contributing the correlation peak and thus reaching 

the resolution limit in estimating the standard deviation of the PDF. In general, the different 2D 

PIV uncertainty estimation methods find the uncertainty values utilizing the same information but 

through different modeling which leads to slightly different response for each method and 

overprediction or underprediction of RMS error. Hence, as a part of future work, a meta-

uncertainty model is being developed incorporating the variance in the estimated uncertainty 

models and combining the different predictions to yield a more robust uncertainty estimate.  

For stereo-PIV and for 3D PTV, the measurement chain requires quantifying the 

uncertainty in the calibration mapping function coefficients. For stereo-PIV, the uncertainty in the 

calibration mapping function relates to the uncertainty in the angles, which is combined with the 

individual camera 2D PIV uncertainty estimates through the propagation equation. For 3D PTV, 

the uncertainty in the mapping function and the uncertainty in the projected particle image location 

directly influence the reconstructed 3D position uncertainty and in turn the uncertainty in the 

tracked velocity estimate. The current results show a successful prediction of velocity uncertainty 

in each case. The contribution of the calibration uncertainty has been observed to be negligible for 

a well-designed stereo-PIV experiment. However, calibration uncertainty for a more challenging 

scenario, for example in presence of density gradients is yet to be analyzed. On the other hand, for 
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3D PTV, the contribution of “ghost” particles in 3D tracking uncertainty needs to be explored. The 

current model predicts the uncertainty for the matched particles between frames. However, for an 

experimental case, without the knowledge of true pairing, the false reconstructions contribute to 

the tracked velocity uncertainty. This aspect needs to be further explored for both pairwise tracking 

as well as for temporal particle trajectory predictions in methods like STB. 

Finally, as a natural extension of the knowledge presented in this dissertation, the 

uncertainty for a 3D PIV measurement should be quantified and is considered as a part of the future 

work. The uncertainty in the calibration process has already been quantified. For the intensity-

based MART reconstruction, an uncertainty model needs to be developed to estimate the 

uncertainty in the reconstructed voxel intensities. For the 3D PIV correlation step, the direct 

methods, such as IM, CS and MC can be directly extended to the volumetric correlation, however, 

the models need to be extensively tested for different cases to determine its performance and 

applicability. 

 


