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ABSTRACT

As machine learning algorithms take on more important roles in various areas of big data

analysis, more accurate research is needed. Although machine learning techniques have been

applied in network intrusion detection, encoding IP addresses as a feature of network intrusion

detection has not been discussed. Since the IP address is strongly relevant to network intrusion

detection, it cannot be ignored when predicting a network attack. Therefore, three machine

learning algorithms - random forest, support vector machine (SVM), and decision tree have been

applied for the present study to examine three IP address encoding methods for NetFlow data:

converting into four individual numbers, converting into binary integers, and one hot encoding.

The pivot of the study was to analyze the F-1, precision, recall, and accuracy scores of the

machine learning algorithms and determine the best method of encoding IP addresses for network

intrusion detection. In addition, 21 features of the data set related to the destination port, packets,

destination IP, source port, flow duration, source IP, flags, and labels were also considered, as well

as speed. The study shows that the best method of encoding an IP address was splitting the IP

address into four numbers and the decision tree, random forest, and SVM accuracy scores for this

method were 0.9562, 0.9631, and 0.9296, respectively.
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CHAPTER 1. INTRODUCTION

This chapter reviewed the current study on encoding internet protocol (IP) addresses as a

feature of machine learning algorithms. It firstly presented the statement of the problem, followed

by introducing the research assumptions, significance, limitations, and delimitation, culminating

in the research question regarding the best method of encoding IP addresses for network intrusion

detection.

1.1 Statement of the Problem

An IP address is displayed as a numerical label, which is assigned to devices connected to

a network. Although the IP address is a numerical label, it cannot be learned directly by machine

learning algorithms. IP addresses have not been considered in the application of machine learning

algorithms because they are not quantitative variables (Sharafaldin, Habibi Lashkari, & Ghorbani,

2018) and determining how to convert it has been difficult. However, the IP address is quite

relevant in a network attack, and it must be considered in network intrusion detection. For

example, IP packets are usually sent from a spoofed address so that attackers can disguise

themselves. In fact, IP address spoofing is one of the most frequent ways to attack a network.

Network attacks are usually considered as unauthorized actions against private, corporate,

or government information technology (IT) assets. The present research of network attack

synthesis focused on an analysis of a NetFlow database. To evaluate the accuracy of predicting a

network attack, IP addresses were encoded in three different ways. After that, SVM, random

forest and decision tree were implemented to determine the best way of converting IP addresses.

8



1.2 Scope

The data sets used in the present study were collected by one of the most important

defense tools against the ever-growing number of sophisticated network attacks: the Intrusion

Detection Systems (IDS) from the Canadian Institute for Cybersecurity (CIC). The CIC works

across disciplines to cultivate and create a national network of research talent from the user sector,

industry, government, academia to address and examine internet privacy, security, and trust. The

CICs program on the science of cybersecurity focused on enabling the network security solutions

and development of information for the evolving data-intensive cyber domain by focusing on the

meaning and value of security data (Sharafaldin et al., 2018). Moreover, the CIC data sets were

well-labeled, which saved a great deal of time during the data pre-processing phase of the present

study.

According to the CIC team (Sharafaldin et al., 2018), the process of data capture lasted

for a week. On the first day of the capture period, the system collected benign traffic data and

stored it in a file. During the rest of the week, the system tried to collect attack traffic data. The

network attacks included bruteforce attacks, DoS attacks, web attacks, infiltration attacks, botnet

attacks, DDoS attacks, and PortScan attacks. The data for each attack was stored in one file, with

every file containing hundreds of thousands of rows (Sharafaldin et al., 2018).

1.3 Research Question

To encode the IP addresses, three methods were applied: (1) converting the IP addresses

into binary integers, (2) splitting the IP addresses into four numbers (since the IP addresses were

collected as IPv4 addresses) and (3) one hot encoding. One hot encoding was used to convert the

host (32-bit IP addresses) and subnets of 24-bit and 16-bit IP addresses, because it is a good

method of converting categorical variables into a binary-like form for better machine learning

algorithm predictions. After encoding the IP addresses, accuracy scores for predicting network

attacks were compared.

• Which method of encoding IP address is the best for network intrusion detection among

split IP, binary IP, and one hot encoding?
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1.4 Significance of the Problem

While machine learning algorithms had been applied for the prediction of network attacks,

the IP address had typically been ignored because it was a categorical value (Sharafaldin et al.,

2018). In contrast, the present study aimed to apply three methods of encoding IP addresses,

namely, one hot encoding, converting IP addresses into binary numbers, and splitting IP addresses

into four numbers, to determine which method is the best one for network intrusion detection.

Since an IP address would be normally converted into four numbers or a binary integer, the

novelty of this study is that compares one hot encoding with the other two methods. In fact, few

studies have applied supervised learning in using one hot encoding for IP addresses for intrusion

detection.

1.5 Assumptions

• The original data sets were considered to be clean and well-labeled.

• Data was considered to resemble real-world situations.

• One-hot encoding typical offers best results for categorical data.

• The IP address in the data sets could be spoofed.

1.6 Limitations

• The work only considered the device including at least 16GB RAM.

• Only seven kinds of network attack traffic were collected in the original data sets.

• Too much benign network traffic was collected than network attacks from original

resources.

• All data were collected in a week in 2017 and each day had been assigned for one malicious

task.
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1.7 Delimitation

• Not all of the features were considered for machine learning algorithms.

• Not all the data were considered for the method of one hot encoding.

• The IP address was not considered as the public IP or private IP.

1.8 Summary

The statement of the problem and the research question of this thesis were contained in

this chapter, and the chapter also covered the study’s scope, limitations, and delimitation.

Relevant works from the literature are discussed in the next chapter.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter included an overview of machine learning, ensemble learning, and feature

selection for malicious network traffic detection. It also discussed studies on the performance of

machine learning algorithms and ensemble learning methods, as well as algorithms and features

that were relevant to the present research.

2.1 Overview of Machine Learning for Network Attack Detection

Analyzing flow data related to network security and machine learning algorithms are

typical areas of focus for most researchers. The research group from Aalborg University

(Stevanovic & Pedersen, 2014) explored how botnet detection could be achieved by using

supervised machine learning. To figure out this problem, a novel flow-based detection system

based on supervised machine learning was built to identify botnet network traffic. The system,

which consisted of two main elements, the classifier entity and the pre-processing entity,

classified network traffic as non-malicious or malicious using algorithms. Eight algorithms were

considered, and the best one was indicated. Moreover, the classifier entity implemented

supervised machine learning algorithms to categorize traffic flows as non-malicious or malicious,

and the network traffic on flow level was analyzed by the pre-processing entity (Stevanovic &

Pedersen, 2014, p. 798). The results demonstrated that a novel flow-based detection system could

detect the botnet, and random tree classifiers and simple flow features were proven to accurately

detect botnet traffic (Stevanovic & Pedersen, 2014).
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The research group from Chongqing University of Posts and Telecommunications (Deng,

Luo, Liu, Wang, & Yang, 2014) considered that machine learning was a feasible approach to

address P2P traffic identification, which was an important problem in internet traffic analysis. In

their study, feature weighted Naive Bayes and random forest were integrated into P2P traffic

identification, and the Hadoop pseudo-distributed test platform was used to test the effectiveness

and stability of the models. The prediction for each model was processed by calculating the

scores, and the weighted majority voting was applied to achieve the final output. The results

showed that these models performed better than other methods, and P2P traffic could be solved in

an alternative way. However, the performance of the ensemble learning model should be

enhanced by studying other combination and classification methods and analyzing useful features

(Deng et al., 2014).

The research group from the Internet Work Research Department of BBN Technologies

(Livadas, Walsh, Lapsley, & Strayer, 2008, p. 970) tried to identify IRC-based botnets and

command and control (C2) traffic. Their research was split by distinguishing real IRC traffic and

botnet and distinguishing non-IRC traffic and IRC. In part one, the effectiveness of machine

learning-based classification was used to identify chat traffic in three dimensions: the subset of

characteristics, the classification scheme, and features used to describe the size of the training set

and the flows. In part two, real IRC flows were applied for training, and and more testbed

experiments were run and collected testbed botnet. Finally, an evaluation of whether machine

learning-based classifiers were applied to distinguish between real IRC flows and botnet was

described.
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According to (Miller & Busby-Earle, 2016), machine learning algorithms played an

important role in botnet detection. Real-time online detection approaches of both effectiveness

and efficiency have been developed from robust models. Their research focused on how different

approaches based on machine learning used various machine learning methods to detect botnet

activity. The combination of machine learning method features and the best technique for

addressing the botnet detection problem were determined. As a result, supervised learning was

observed to be a command trend for detection. Given specific malicious traffic, supervised

learning was more effective and accurate against bot traffic that sought to camouflage itself

among legitimate traffic. In contrast, unsupervised learning was used to capture group activity by

bots in a botnet and was not unique to any type of bot (Miller & Busby-Earle, 2016).

2.2 Overview of Machine Learning in Different Areas

The choice of machine learning area is an important one and is directly to the results of

any research. Thus, it is necessary to review the implementation of machine learning algorithms

in other areas. For example, text categorization is important for many organizations and for

information management. Besides feature coding, classifier design is one of the major problems

for text categorization. Multiple statistical classification and machine learning methods, such as

probabilistic Bayesian models, multivariate regression models and nearest neighbor classifiers

have been applied in text categorization. In addition, (Yang & Liu, 1999) reported k-nearest

neighbor as one of the top-performing methods for text categorization. K-nearest neighbor

(KNN) is a classification method contingent on statistic theory (Mitchell & Schaefer, 2001), and

it was usually implemented in the data mining classification algorithm. The research group from

Hebei University (Zhan, Chen, Zhang, & Zheng, 2009) used a KNN algorithm based on feature

weight learning via text categorization, proving the validity of these algorithms. Moreover, the

traditional neighbor algorithm was improved by feature weight learning.
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Many studies have tried to classify student attentiveness; however, a large amount of the

researches focused on qualitative analysis and lacked quantitative analysis. A research group

from North Carolina A&T State University (Ross, Graves, Campbell, & Kim, 2013) used

machine learning algorithms to classify student attentiveness. Within machine learning, there are

two main tasks: supervised and unsupervised learning. (Ross et al., 2013) used SVM, which is a

supervised learning method. In addition, a consumer RGB-D sensor collected data from students,

who were classified as attentive or inattentive. The results illustrated the final classification by

SVM and successfully determined a particular student’s learning style.

Many insurance companies use SVM in the underwriting process (Tan & Zhang, 2005) to

classify applicants. Before SVM, the data mining association rule algorithm (Oyama & Ishida,

2003) was used to mine insurance company databases. The results gave the idea of the

improvement of this algorithm. SVM demonstrated good performance in the experiment and

made sense in lowering the premium and reducing the risk of the insured pool as the application

of the algorithm went (Tan & Zhang, 2005).

Statistical machine learning concerns the framework of machine learning related to

statistics. The application of statistical machine learning had been used in an integrated anti-spam

system (Zhang, Su, & Wang, 2007) to filter spam in an flexible, intelligent, self-adaptive and

precise way. The algorithms included k-means clustering, linear regression on optimal separating

hyperplane, and the improved Naive Bayes. The improved Naive Bayes was used in content

analysis layer, and k-means clustering and linear classification were used in the action recognition

layer. The applications of these algorithms helped advance the performance of the integrated

anti-spam system (Zhang et al., 2007).

When the data was collected, a data analytics platform was necessary to implement the

algorithm. A research team from the University of Georgia (Assefi, Behravesh, Liu, & Tafti,

2017) implemented five algorithms to compare Apache Spark machine learning library (MLlib)

and Weka. Six data sets (Zhan et al., 2009) were used for the platform test experiment. Two of

the data sets were less than 100 megabytes, while the others were 3 gigabytes on average. Each of

them were analyzed using the five algorithms, and the running times between the two platforms

were recorded for comparison. As a result, Apache Spark MLlib showed better performance and

lower processing times (Assefi et al., 2017).
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The machine learning methodology was not only used in the field of technology but also

in financial analysis. Financial data mining was an key research topic in the field of data mining.

Two popular techniques, SVM and ensemble learning, were applied to classify financial data (Lei,

Xinming, Lei, & Xiaohong, 2010). The researchers from this paper used two data sets in their

experiment: German credit and credit approval data sets. First, accuracy was adopted to analyze

classification performance. Then, after SVM and ensemble learning algorithms were

implemented, the predictions of different techniques in terms of the accuracy values of the

German credit and the credit approval data sets were calculated , and the results showed an

obvious improvement in performance (Lei et al., 2010).

2.3 Overview of Ensemble Learning for Big Data Analysis

The use of ensemble methods is expected to enhance the accuracy and reduce the

variances of algorithms. However, when comparing ensemble learning and normal machine

learning algorithms, several parameter changes sometimes do not affect the results. According to

research from Oregon State University (Dietterich, 2000), there were three types of ensemble

learningvoting, bagging, and boostingas described below:

• Voting: Voting is the easiest way to create an ensemble, and there are multiple types of

voting classifiers. In the training step, all models were trained separately with whole

training data, and average posterior probabilities were calculated by each model in the

recognition step (Dietterich, 2000, p. 5).

• Bagging: Bagging, also known as bootstrap aggregation, manipulates which training data is

used to generate multiple models. It was not necessary to train the model for the whole

training data set. Instead, bagging randomly samples the training set from the total training

data to make sub-models (Dietterich, 2000, p. 6).

• Boosting: Boosting samples training data like bagging does; however, it maintains a set of

weights on the data, especially AdaBoost, which uses the weighted errors of each model

update weight on the training data to place more weight on data with lower accuracy levels

and less weight on data with higher accuracy levels (Dietterich, 2000, p. 7).
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The research group from Hebei University (Li & Hao, 2009) considered the stability of

Naive Bayes algorithm by evaluating an ensemble learning algorithm for Naive Bayesian

classifiers based on oracle selection and the truth of the limitation of the attributes independence

assumption. Naive Bayes classifiers, which generate ensemble methods based on the oracle

selection strategy, were presented, and both the selection of the better classifier and the double

random process were applied in the algorithm. The experiment showed that generating the

ensemble method resulted in better performance than normal Naive Bayes learning and better

classification accuracy than AdaBoost and bagging (Li & Hao, 2009).

The research group from (Liu & Wang, 2010) indicated a new class of learning

algorithms for a single hidden layer feedforward neural network (SLFN), which was named an

extreme learning machine (ELM). Training error was reduced by implementing ELM to achieve

good generalization performance. However, neural network classifiers could suffer from

overtraining, which might affect the generalization performance. Therefore, an ensemble method

based on ELM (EN-ELM) algorithm was proposed, including cross-validation and ensemble

learning, and the predictive stability was enhanced and the overtraining problem was alleviated.

The experimental results of several benchmark databases indicated that EN-ELM was efficient,

although it took more time to train EN-ELM than ELM (Liu & Wang, 2010).

The research group from (Ting & Zheng, 2003) investigated the boosting Naive Bayesian

classification to determine whether the boosting method could improve accuracy. The

experiments included 25 domains from the UCI machine learning repository (Newman & Merz,

1998). In addition, each domain used 10 threefold cross-validations. Leveled Naive Bayesian

Tree (LNBT) and Boosting Leveled Naive Bayesian Trees (BLNBT) were tested in the

experiment. The error rate of each algorithm was the main concern in order to evaluate the

accuracy of the learning algorithms. According to the results, although boosting improved the

accuracy of the Naive Bayesian classifier in 14 out of the 25 domains, accuracy decreased in the

other 11 domains. Moreover, the mean relative error reduction of boosting over 25 domains was

only 4 percent, which indicated only a slight improvement for boosting. As a result, boosting did

not perform very well for Naive Bayesian classification, although it achieved great success with

decision trees (Ting & Zheng, 2003).
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The faculty from the Department of Bioresource Engineering at McGill University

(Belayneh, Adamowski, Khalil, & Quilty, 2015) predicted drought conditions in the Awash River

Basin of Ethiopia through reliable artificial neural network (ANN), SVR models with wavelet

transform, and the boosting and bootstrap ensemble methods. The models were compared using

coefficient of determination (R2), and root mean squared error (RMSE), and mean absolute error

(MAE). The performance of wavelet analysis improved drought predictions, and the boosting

ensemble method was shown to improve the correlation between predicted and observed

parameters. As a result, the wavelet boosting SVR (WBS-SVR) and wavelet boosting ANN

(WBS-ANN) models showed better performance in terms of predictions than the other models

(Belayneh et al., 2015).

2.4 Overview of Feature Selection

According to (Ryu & Yang, 2018), botnet could be detected by IDS and various machine

learning could be applied by IDS. However, ensemble learning for botnet detection had not yet

been resolved. Thus, not only were decision tree, Naive Bayes, and neural network evaluated in

their study, but ensemble learning based on bagging, voting and boosting were also tested. Based

on (Garca, Grill, Stiborek, & Zunino, 2014), the following features were configured in the study:

start time, end time, destination port, protocol, number of packets, destination IP, duration, flags,

type of services, source port, number of flows, direction, source IP, number of bytes, and label.

The confusion matrix was run for the accuracy of classifiers, and Matthews Correlation

Coefficient (MCC) and F1 score were evaluated. Precision or recall were used to measure

accuracy by MCC and F1 score was used for the imbalanced data. As a result, random tree, an

ensemble of multiple decision trees, was determined to be the most reliable approach.

F1 = 2× precision× recall
precision+ recall

(2.1)

MCC =
T P×T N +FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.2)
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The paper which was written by (Sharafaldin et al., 2018) described different kinds of

intrusion detection data sets, and each data set included around 80 features. The data was

generated by IDSs and Intrusion Prevention Systems (IPSs) and well-labeled by pre-processing.

However, not all of the features were related to each kind of intrusion detection. Thus, the

RandomForestRegressor class of the Scikit-Learn library (Abraham et al., 2014) was configured

to find the most related feature set to detect each attack, and the features related to each attack

were mentioned in this paper. For example, subflow forward bytes, backward packet length, total

length of forward packets, and forward packet length mean were related to botnet detection,

which is relevant to the present research.

2.5 Summary

This chapter summarized related studies on machine learning algorithms in different

areas, including intrusion detection. It also demonstrated that ensemble learning methods enhance

predictions. However, the unexpected results still existed where the accuracy would be better if

ensemble methods were not used. Furthermore, research on feature selection for network

intrusion detection was mentioned. Based on relevant literature, machine learning had achieved

great success in big data, and ensemble learning had enhanced predictions in some situations.

However, the IP address was usually ignored in network intrusion detection. Therefore, encoding

IP address as a feature has not been fully studied. The main focused on my research would be the

accuracy scores when encoding IP addresses as a feature of machine learning algorithms for

network intrusion detection.
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CHAPTER 3. RESEARCH METHODOLOGY

The purpose of this paper was to determine the best method of encoding IP addresses as a

feature while predicting different kinds of network attacks by applying machine learning

algorithms. The methodology for encoding IP addresses and applying machine learning

algorithms were described in this chapter.

3.1 Framework

• Since the databases were collected separately for each attack, they were combined using the

concat function because the results focused on detecting different kinds of attacks instead of

a unique attack.

• All IP addresses would be converted in three ways and multiple different data sets should

be created.

• Three different machine learning algorithms including random forest, SVM, and decision

tree were implemented to analyze for the research.

• Python 3.7 would be used throughout the whole research. Additionally, Pandas was

imported in the code and mainly used for handling the databases and implementing

machine learning algorithms.

• The following specifications were used: hardware environment: an Intel Core i7 CPU,

16GB of RAM, and the macOS operating system.
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3.2 Data Pre-processing

3.2.1 Loading and Merging Databases

Each network attack traffic was detected and recorded in separate comma-separated values

(CSV) files. Each file contained hundreds of thousands of rows. The CSV files were loaded one at

a time using the read csv function. There were seven CSV files, representing different kinds of

network attack traffic, so seven individual databases were created.

The structure of each database was the same because the feature numbers and names were

exactly the same among all of the databases. To predict different kinds of network attack traffic,

the databases had to be combined. Since the structure of each CSV file was the same, the concat

function could be used to combine the databases. In the end, a large data set was created with 86

features and more than 2 million rows. The features included destination IP, source port, flow

duration, source IP, destination port, etc

3.2.2 Converting Attack Label to Numbers

Seven types of attacks were recorded in the databases: DDoS attack, brute force,

infiltration, botnet attack, web attack, DoS attack, and PortScan attack. Since the attack type was

recorded in the text as a label, the original labels were transformed into numbers. Table 3.1 shows

the process of converting the labels.
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Table 3.1. Label
Label

Attack Name Number

Benign Network 0

Brute Force 1

Web Attack 2

DoS 3

Infiltration 4

Botnet Attack 5

DDoS 6

PortScan 7

Unknown -1

3.3 Imbalanced Data Set

After the data sets were combined according to attack and non-attack data, it was evident

that the amounts of attack and non-attack data were not balanced. Additionally, too much benign

network traffic data had been collected from the original database. The amount of the attack and

non-attack data were equated to balance the data set. First, the total attack and non-attack data

amounts were calculated separately. The sample function was used to randomly select non-attack

data, and the parameter of this function was set to be equal to the total amount of the attack data.

Finally, the selected non-attack data was combined with the attack data set.
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3.4 Handling the IP Address

The IP address information was one of the most important features in the databases; it is

strongly related to network attacks and is collected as an IPv4 address. An IPv4 address is a

32-bit number that uniquely identifies a network interface on a machine, and it is displayed as

four numbers and split by three dots. The IPv4 address is one of the core protocols of

standards-based internetworking methods in the Internet and other packet-switched networks.

Even though it is displayed as numbers split by three dots, an IPv4 address cannot be

easily operated by machine learning algorithms. Therefore, three ways of encoding IP addresses

were introduced. Each IP address was split into four numbers and converted into one binary

number. Most importantly, one hot encoding of the IP address was applied.

This research involved two kinds of IP addresses: source IPs and destination IPs. When a

device initiates communication with servers or other devices, its IP address is called a source IP,

which also sends IP packets. The device’s IP address that receives the packets is called a

destination IP.

3.4.1 Converting the IP Addresses to Binary Numbers

IPv4 uses 32-bit addresses, which consist of four 8-bit addresses displayed separately by

dots. The first method used to convert the IP addresses was to split the 32-bit address into four

8-bit binary numbers and then directly combine them as one feature in the data set. Both the

destination and source IP and were converted. Figure 3.1 shows the process of converting IP

addresses to binary integers.
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Figure 3.1. IP Address to Binary Numbers

3.4.2 Splitting an IP Address to Four Numbers

The second method used to convert the IP addresses was to split the 32-bit address into

four separate numbers. These four numbers were considered as four individual features. After

converting the source IP and the destination IP, these IP address became eight different features in

the database. Figure 3.2 shows the process of splitting an IP address.
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Figure 3.2. Split IP Address to 4 Numbers

3.4.3 One Hot Encoding for IP Addresses

One hot encoding is a method of converting categorical variables into a binary matrix

format, which can provide better predictions for machine learning algorithms. In digital circuits

and machine learning, one hot encoding consists of legal combinations of a single high bit and all

other low bits. High bits and low bits are binary-like numbers, which are 0 and 1. Table 3.2 gives

an example of the results of one hot encoding.

Both source IPs and destination IPs were considered as categorical values for which one

hot encoding was applied separately. IP addresses were created using 32-bit numbers; the first

16-bit number was a network address and the second was a host address. One hot encoding was

applied for three IP address sizes (16-bit, 24-bit, and 32-bit).

There were many ways to apply one hot encoding. In this research, the function of

LabelBinarizer from Scikit-Learn library was applied.
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Table 3.2. One Hot Encoding

One Hot Encoding

Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 Value 8 ...

1 0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 0 ...

0 0 1 0 0 0 0 0 ...

0 0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 0 ...

0 0 0 0 0 1 0 0 ...

0 0 0 0 0 0 1 0 ...

0 0 0 0 0 0 0 1 ...

... ... ... ... ... ... ... ... ...

3.4.3.1 Encoding a 32-bit IP Address

When applying one hot encoding to a 32-bit IP address, the entire IP address was

encoded. The 32-bit IP address was considered as a categorical value representing the numerical

value in the database. The representation of the 32-bit IP address began from 1 to N-1 categories.

Finally, the binary matrix was created by applying the LabelBinarizer function. Figure 3.3

gives an explanation of how to use one hot encode for a 32-bit IP address.

Figure 3.3. Encoding 32-bit IP address
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3.4.3.2 Encoding a 24-bit IP Address

As each IP address was collected as an IPv4 address, it consisted of four 8-bit numbers.

The last 8-bit number was ignored, leaving a 24-bit address, which indicated the network and the

subnet. The process for encoding the 24-bit IP address was similar to the 32-bit IP address except

for the encoding object. Figure 3.4 explains what the 24-bit IP address looks like and figure 3.5

explains the process for encoding 24-bit IP addresses.

Figure 3.4. 24-bit IP Address

Figure 3.5. Encoding 24-bit IP address

3.4.3.3 Encoding a 16-bit IP Address

As noted above, an IP address consists of four 8-bit numbers, which also represent the

host and the network address. For the 16-bit IP address encoding, the first two 8-bit numbers,

which represent the network address, were considered for one hot encoding, and the process was

the same as those described above. Figure 3.6 explains what 16-bit IP addresses look like and

figure 3.7 shows the process of encoding 16-bit IP addresses.
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Figure 3.6. 16-bit IP Address

Figure 3.7. Encoding 16-bit IP address

3.5 Selecting Necessary Feature and Implementing Machine Learning Algorithms

The data set was made up of more than 2 million rows and 86 features, and not all of the

features were necessary for predicting network attack traffic (Sharafaldin et al., 2018). Since the

IP addresses had already been considered for encoding, source ports and destination ports

associated with the source IPs and destination IPs were selected. Ports are communication

endpoints of the identified protocol and address, commonly represented by port numbers. Port

numbers can also identify network service or specific processes. In total, 21 features were chosen

for predicting network attacks, including all features related to destination port, flow duration,

flags, source port, destination IP, flow duration, flags, source IP, and packets. (Sharafaldin et al.,

2018)
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Before implementing the classification machine learning algorithm (SVM, decision tree,

and random forest), the data set was split into training and testing data sets using stratified

sampling. Specifically, 80 percent of the data set was selected as the training data set and 20

percent was selected as the testing data set. The Scikit-Learn library was utilized to implement

the machine learning algorithms, and the package of the algorithm was called for predicting

network attack traffic.

3.5.1 SVM

SVM is a classification algorithm, and it is mainly used for binary classification. The data

is usually separated into two classes of data points and then considered geometrically to find the

classifier. Figure 3.8 shows a simple example of finding the classification. The two classes of data

were black and red points and the blue line was the classifier.

Figure 3.8. SVM Classifiers

After finding the classifiers, many hyperplanes could be chosen. The objective of SVM is

to define a hyperplane that could uniquely classify the data. The hyperplane should have the

maximum margin, which is the maximum distance between both classes of data points. In

general, an optimal hyperplane that categorized new examples was found based on the training

data. Figure 3.9 shows what the maximum margin hyperplane would look like after finding

classifiers.
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In the present study, the SVM model was called from the Scikit-Learn library for

implementation. Since a classification task was performed, the support vector classifier (SVC)

class was imported into the program. The fit method from the SVC class was called to train the

data set, and the predict method was used to make predictions.

Figure 3.9. SVM Hyperplane

3.5.2 Decision Tree

A decision tree, also known as classification tree, is a tree-based algorithm, and it is

considered one of the most popular supervised learning methods. The concept of the decision tree

model is very simple, and it has three main components: the model of decisions, a tree-like graph,

and possible consequences using if-then and yes-no logic. Figure 3.10 represents a decision tree

model. The tree structure brakes the data set into different subsets. The root node is the first

decision node and represents the entire sample. The decision node partitions the data, and it is

split sub-node by sub-node. Eventually, predictions of the problem are given by leaf nodes, and

the leaf nodes cannot be further split.
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Figure 3.10. Decision Tree

The default classifier model of the decision tree was used in the present thesis. The tree

package was imported from Scikit-Learn, the fit method from the DecisionTreeClassifier class

was called to train the data, and the predict method was used to make predictions. There were

many parameters in the function, some of which were set manually to make the process more

efficient.

3.5.3 Random Forest

Random Forest is operated by building a large number of unique decision trees, and it is

an ensemble learning method of decision tree algorithms. There are three main types of ensemble

learning: bagging, boosting and stacking. The random forest training process normally applies

bagging to the decision tree. Bagging is another name for bootstrap aggregating and is often used

to reduce variances.

Random forests mainly consist of four steps. First, the algorithms randomly select

samples from a data set. Second, a decision tree is created for each sample, and a prediction is

generated from each decision tree. After that, voting occurs for each prediction result. The

prediction of the random forest is the class with most votes based on the class prediction, which is

split from each decision tree created in the random forest. Figure 3.11 gives an example of how

random forest is used for a prediction.
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Figure 3.11. Random Forest

To implement classification random forest in the present study, the

RandomForestClassifier function was imported from the Scikit-Learn library, and most

parameters of random forest were the same as the decision tree. The fit method from

RandomForestClassifier class was called to train the data, and the predict method was used to

make predictions.

3.6 Summary

As described in this chapter, the present study integrated three machine learning

algorithms and converted the IP addresses into binary numbers. In addition, the methods of

encoding IP addresses were evaluated by the three machine learning algorithms. The results of

the different methods will be discussed and compared in the next chapter.
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CHAPTER 4. RESULTS

As described above, three different ways for converting IPv4 addresses and one hot

encoding, converting to binary numbers, and splitting into four numbers were used in the present

study. Moreover, the IP addresses should include both benign traffic’s IP addresses and malicious

IP addresses because some malicious IP addresses indicated benign traffic when malicious tasks

were not assigned. This chapter describes the results of these conversion methods, as evaluated by

SVM, the decision tree and the random forest. In addition, comparisons of the results were

conducted to determine the optimal method for predicting network attack traffic.

It is important to note that, when one hot encoding was applied for both source IPs and

destination IPs, a huge binary matrix was created. Due to RAM limitations, there would have

been memory errors if the entire data set was trained with one hot encoded IPs. Therefore, to fit

the system environment, part of the data set was randomly chosen.

4.1 One Hot Encoding vs. Binary IP vs. Split IP

In this section, the results for the binary, split, and one hot encoded IPs are compared, with

the precision, recall, F-1 score, and accuracy scores shown in the accompanying tables. The

accuracy scores were mainly evaluated through the three machine learning algorithms, and the

goal was to determine which method of encoding IP addresses was the best for network intrusion

detection.

4.1.1 32-bit IP Addresses

Both source and destination IPs were collected as 32-bit addresses for one hot encoding,

but not all data was read by the machine learning algorithms. Due to the RAM limitations, only

10 percent of the data was used. To gather this 10 percent, the entire data set could not be

randomly selected because the amount of data from each type of attack was not the same. In other

words, the data set would have become imbalanced again if stratified sampling was used for the

entire data set.
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As a result, the 10 percent needed to be collected separately from each attack type.

Therefore, 10 percent was randomly selected from the DDoS attack traffic data, as well as from

the other attacks. After 10 percent of each attack data set had been collected, they were combined,

and the new data set contained about 10 percent of the entire original data set. Then, the machine

learning algorithms were applied to that data set.

All three methods of encoding IP addresses were applied, and the three machine learning

algorithms were used to evaluate each method of encoding the IP addresses. The results are

shown in the next nine tables.

Table 4.1. Results of Decision Tree for One Hot Encoding (32-bit)

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 1.00 1.00

Brute Force 1.00 0.71 0.83

Web Attack 0.78 0.88 0.85

DoS 0.37 0.10 0.16

Infiltration 1.00 1.00 1.00

Botnet Attack 0.99 1.00 0.99

DDoS 0.46 0.46 0.46

PortScan 0.87 1.00 0.93

Unknown Traffic 0.42 1.00 0.59

Weighted Average 0.88 0.88 0.87

Accuracy 0.8759
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Table 4.2. Results of Random Forest for One Hot Encoding (32-bit)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.93 0.96

Brute Force 0.99 1.00 1.00

Web Attack 0.93 0.96 0.95

DoS 0.77 0.96 0.86

Infiltration 0.11 1.00 0.19

Botnet Attack 0.35 0.99 0.51

DDoS 0.97 0.86 0.91

PortScan 1.00 0.99 1.00

Unknown Traffic 0.26 1.00 0.42

Weighted Average 0.97 0.95 0.95

Accuracy 0.9455

Table 4.3. Results of SVM for One Hot Encoding (32-bit)

SVM

Precision Recall F-1 Score

Benign Network 1.00 0.94 0.97

Brute Force 0.96 1.00 0.98

Web Attack 0.98 0.67 0.80

DoS 0.15 0.07 0.09

Infiltration 1.00 0.75 0.86

Botnet Attack 0.91 1.00 0.95

DDoS 0.71 1.00 0.83

PortScan 0.93 0.98 0.95

Unknown Traffic 1.00 1.00 1.00

Weighted Average 0.92 0.90 0.90

Accuracy 0.9038
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Table 4.4. Results of Decision Tree for Binary IP (10 %)

Decision Tree

Precision Recall F-1 Score

Benign Network 0.99 0.84 0.91

Brute Force 0.97 1.00 0.98

Web Attack 0.85 0.76 0.80

DoS 0.22 0.99 0.36

Infiltration 0.03 0.40 0.05

Botnet Attack 0.96 1.00 0.98

DDoS 0.63 0.53 0.57

PortScan 0.82 0.98 0.90

Unknown Traffic 0.42 1.00 0.59

Weighted Average 0.89 0.84 0.85

Accuracy 0.8363

Table 4.5. Results of Random Forest for Binary IP (10 %)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.85 0.92

Brute Force 0.99 1.00 1.00

Web Attack 0.89 0.86 0.87

DoS 0.72 0.87 0.79

Infiltration 0.07 0.50 0.12

Botnet Attack 0.62 0.99 0.76

DDoS 0.69 1.00 0.82

PortScan 0.92 0.99 0.95

Unknown Traffic 0.83 1.00 0.91

Weighted Average 0.93 0.90 0.91

Accuracy 0.9049
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Table 4.6. Results of SVM for Binary IP (10 %)

SVM

Precision Recall F-1 Score

Benign Network 0.87 0.87 0.87

Brute Force 0.90 1.00 0.95

Web Attack 0.69 0.78 0.73

DoS 0.00 0.00 0.00

Infiltration 0.00 0.00 0.00

Botnet Attack 0.30 0.03 0.05

DDoS 0.57 0.44 0.50

PortScan 0.89 0.99 0.94

Unknown Traffic 0.00 0.00 0.00

Weighted Average 0.79 0.81 0.80

Accuracy 0.8132

Table 4.7. Results of Decision Tree for Split IP (10 %)

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 0.92 0.96

Brute Force 1.00 0.99 1.00

Web Attack 0.99 0.98 0.99

DoS 0.89 0.98 0.99

Infiltration 0.03 0.75 0.06

Botnet Attack 0.36 0.98 0.52

DDoS 0.99 0.99 0.99

PortScan 1.00 1.00 1.00

Unknown Traffic 0.00 1.00 0.00

Weighted Average 0.99 0.96 0.97

Accuracy 0.9645

37



Table 4.8. Results of Random Forest for Split IP (10 %)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.98 0.99

Brute Force 0.99 1.00 0.99

Web Attack 0.83 0.95 0.88

DoS 0.63 0.90 0.74

Infiltration 0.37 0.88 0.52

Botnet Attack 0.72 0.98 0.83

DDoS 0.99 0.81 0.89

PortScan 1.00 1.00 1.00

Unknown Traffic 0.50 1.00 0.67

Weighted Average 0.96 0.95 0.95

Accuracy 0.9501

Table 4.9. Results of SVM for Split IP (10 %)

SVM

Precision Recall F-1 Score

Benign Network 0.97 0.99 0.98

Brute Force 0.94 1.00 0.97

Web Attack 1.00 0.67 0.80

DoS 0.21 0.04 0.07

Infiltration 1.00 0.12 0.22

Botnet Attack 0.73 0.13 0.23

DDoS 0.73 1.00 0.85

PortScan 0.99 0.99 0.99

Unknown Traffic 0.05 0.50 0.08

Weighted Average 0.92 0.91 0.90

Accuracy 0.9140
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The accuracy scores of the three methods of encoding 32-bit IP addresses were compared,

and Figure 4.1 shows the accuracy of each algorithm. Although the method of one hot encoding

had better results than binary IP, the method of splitting an IP address into four numbers was even

better. Therefore, splitting IP addresses into four numbers achieved the highest accuracy scores.

Figure 4.1. One Hot Encoding (32-bit) vs Binary IP vs Split IP

4.1.2 24-bit IP Addresses

This section covers the 24-bit IP address collected for one hot encoding. As described

above, only the first three numbers of the IP address were used. As with the 32-bit IP addresses,

due to the RAM limitations, not all of the data was used to avoid memory errors. In this case, 20

percent of the data was taken from each attack type. The reason why more data was taken was

that the dimensions of one hot encoding for 24-bit IP addresses were lower than for 32-bit IP

addresses. Therefore, to make the results more accurate, more data was collected.

Eventually, the machine learning algorithms were used to evaluate all three methods of

encoding IP addresses. The following nine tables represent the results.

39



Table 4.10. Results of Decision Tree for One Hot Encoding (24-bit)

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 0.91 0.95

Brute Force 1.00 0.99 1.00

Web Attack 1.00 0.99 1.00

DoS 0.99 0.90 0.95

Infiltration 0.61 0.99 0.75

Botnet Attack 0.00 0.57 0.00

DDoS 0.69 1.00 0.82

PortScan 0.87 0.98 0.92

Unknown Traffic 0.05 1.00 0.10

Weighted Average 0.98 0.93 0.95

Accuracy 0.9317

Table 4.11. Results of Random Forest for One Hot Encoding (24-bit)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.92 0.96

Brute Force 1.00 1.00 1.00

Web Attack 1.00 0.98 0.99

DoS 0.71 0.99 0.83

Infiltration 0.01 0.71 0.03

Botnet Attack 0.25 0.98 0.40

DDoS 1.00 1.00 1.00

PortScan 1.00 1.00 1.00

Unknown Traffic 1.00 1.00 1.00

Weighted Average 0.99 0.96 0.97

Accuracy 0.9594
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Table 4.12. Results of SVM for One Hot Encoding (24-bit)

SVM

Precision Recall F-1 Score

Benign Network 0.99 0.99 0.99

Brute Force 0.90 0.99 0.95

Web Attack 0.78 0.96 0.86

DoS 0.50 0.04 0.07

Infiltration 1.00 0.14 0.25

Botnet Attack 1.00 0.40 0.57

DDoS 0.75 0.45 0.56

PortScan 0.98 0.98 0.98

Unknown Traffic 0.67 1.00 0.80

Weighted Average 0.91 0.91 0.90

Accuracy 0.9113

Table 4.13. Results of Decision Tree for Binary IP (20 %)

Decision Tree

Precision Recall F-1 Score

Benign Network 0.99 0.91 0.95

Brute Force 0.97 0.99 0.98

Web Attack 0.87 0.89 0.88

DoS 0.52 0.91 0.66

Infiltration 0.02 0.71 0.04

Botnet Attack 0.58 1.00 0.73

DDoS 0.81 0.94 0.87

PortScan 0.98 0.99 0.98

Unknown Traffic 0.20 1.00 0.33

Weighted Average 0.94 0.92 0.93

Accuracy 0.9218
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Table 4.14. Results of Random Forest for Binary IP (20 %)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.91 0.95

Brute Force 0.98 1.00 0.99

Web Attack 0.90 0.84 0.87

DoS 0.57 0.87 0.69

Infiltration 0.50 0.86 0.63

Botnet Attack 0.35 1.00 0.51

DDoS 0.70 0.92 0.79

PortScan 1.00 0.99 1.00

Unknown Traffic 0.50 0.91 0.67

Weighted Average 0.94 0.91 0.92

Accuracy 0.9135

Table 4.15. Results of SVM for Binary IP (20 %)

SVM

Precision Recall F-1 Score

Benign Network 0.88 0.87 0.88

Brute Force 0.88 0.98 0.93

Web Attack 0.67 0.76 0.71

DoS 0.00 0.00 0.00

Infiltration 0.00 0.00 0.00

Botnet Attack 0.41 0.03 0.05

DDoS 0.67 0.46 0.54

PortScan 0.87 1.00 0.93

Unknown Traffic 0.00 0.00 0.00

Weighted Average 0.80 0.81 0.80

Accuracy 0.8135
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Table 4.16. Results of Decision Tree for Split IP (20 %)

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 0.91 0.95

Brute Force 1.00 0.99 1.00

Web Attack 1.00 0.99 0.99

DoS 0.75 0.99 0.85

Infiltration 0.03 0.57 0.06

Botnet Attack 0.19 1.00 0.31

DDoS 1.00 1.00 1.00

PortScan 1.00 1.00 1.00

Unknown Traffic 0.15 1.00 0.27

Weighted Average 0.99 0.95 0.97

Accuracy 0.9516

Table 4.17. Results of Random Forest for Split IP (20 %)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.99 0.99

Brute Force 1.00 1.00 1.00

Web Attack 1.00 0.86 0.92

DoS 0.66 0.95 0.78

Infiltration 0.67 0.86 0.75

Botnet Attack 0.61 1.00 0.76

DDoS 0.79 1.00 0.88

PortScan 1.00 0.99 1.00

Unknown Traffic 1.00 1.00 1.00

Weighted Average 0.97 0.96 0.96

Accuracy 0.9614
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Table 4.18. Results of SVM for Split IP (20 %)

SVM

Precision Recall F-1 Score

Benign Network 0.98 1.00 0.16

Brute Force 0.95 0.99 0.97

Web Attack 0.79 0.97 0.87

DoS 0.40 0.04 0.07

Infiltration 1.00 0.14 0.25

Botnet Attack 0.36 0.02 0.03

DDoS 0.79 0.46 0.58

PortScan 0.99 0.99 0.99

Unknown Traffic 0.09 1.00 0.16

Weighted Average 0.96 0.95 0.95

Accuracy 0.9501

Figure 4.2 depicts a comparison chart of the accuracy of the three methods of encoding

the 24-bit IP addresses. Splitting the IP address into four numbers achieved the highest accuracy

scores, while binary IP resulted in the lowest accuracy. Although, the random forest accuracy

scores for the one hot encoding and split IP methods were very close, there was still a slight

improvement for the split IP method. As a result, splitting an IP address was again considered the

best method for encoding IP addresses.
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Figure 4.2. One Hot Encoding (24-bit) vs Binary IP vs Split IP

4.1.3 16-bit IP Address

As described above, an IPv4 address is a 32-bit number that uniquely identifies the

network and the host. The first two 16-bit numbers, which represent the network portion, were

encoded. Although the size of the IP address was smaller in this case, the entire data still could

not fit the memory limitations; therefore 50 percent of the data was selected for a new database.

The process of selecting the data by attack type was the same as the method described in the

previous sections. After collecting data from each data type, they were combined. Then, the

random forest, SVM, decision tree, evaluations were conducted. The evaluation results and

comparisons are shown in below.
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Table 4.19. Results of Decision Tree for One Hot Encoding (16-bit)

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 0.88 0.94

Brute Force 1.00 1.00 1.00

Web Attack 1.00 0.91 0.95

DoS 0.19 1.00 0.32

Infiltration 0.01 0.67 0.01

Botnet Attack 0.07 1.00 0.13

DDoS 0.86 1.00 0.92

PortScan 1.00 0.90 0.94

Unknown Traffic 0.15 1.00 0.26

Weighted Average 0.98 0.91 0.94

Accuracy 0.9081

Table 4.20. Results of Random Forest for One Hot Encoding (16-bit)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.93 0.96

Brute Force 1.00 1.00 1.00

Web Attack 0.97 1.00 0.99

DoS 0.99 0.90 0.94

Infiltration 0.34 0.96 0.50

Botnet Attack 0.01 1.00 0.01

DDoS 0.14 0.98 0.24

PortScan 0.98 0.98 0.92

Unknown Traffic 0.99 1.00 1.00

Weighted Average 0.98 0.94 0.96

Accuracy 0.9393
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Table 4.21. Results of SVM for One Hot Encoding (16-bit)

SVM

Precision Recall F-1 Score

Benign Network 1.00 0.99 0.99

Brute Force 1.00 1.00 1.00

Web Attack 0.89 0.99 0.94

DoS 0.79 0.97 0.87

Infiltration 0.89 0.03 0.07

Botnet Attack 0.00 0.00 0.00

DDoS 1.00 0.38 0.55

PortScan 0.87 0.45 0.60

Unknown Traffic 0.98 1.00 0.99

Weighted Average 0.93 0.93 0.92

Accuracy 0.9255

Table 4.22. Results of Decision Tree for Binary IP (50 %)

Decision Tree

Precision Recall F-1 Score

Benign Network 0.99 0.88 0.93

Brute Force 0.69 0.99 0.81

Web Attack 0.87 0.85 0.86

DoS 0.55 0.93 0.69

Infiltration 0.01 0.67 0.01

Botnet Attack 0.86 0.98 0.92

DDoS 0.84 0.97 0.90

PortScan 0.94 1.00 0.97

Unknown Traffic 0.00 1.00 0.00

Weighted Average 0.93 0.90 0.91

Accuracy 0.9027
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Table 4.23. Results of Random Forest for Binary IP (50 %)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.81 0.89

Brute Force 0.94 1.00 0.97

Web Attack 0.97 0.91 0.94

DoS 0.14 0.93 0.24

Infiltration 0.01 1.00 0.03

Botnet Attack 0.07 0.89 0.12

DDoS 0.77 1.00 0.87

PortScan 0.98 0.99 0.99

Unknown Traffic 0.43 1.00 0.60

Weighted Average 0.96 0.88 0.91

Accuracy 0.8834

Table 4.24. Results of SVM for Binary IP (50 %)

SVM

Precision Recall F-1 Score

Benign Network 0.90 0.91 0.90

Brute Force 0.96 0.51 0.67

Web Attack 0.73 0.85 0.79

DoS 0.00 0.00 0.00

Infiltration 0.00 0.00 0.00

Botnet Attack 0.29 0.04 0.06

DDoS 0.70 0.45 0.55

PortScan 0.88 0.99 0.93

Unknown Traffic 0.40 0.67 0.50

Weighted Average 0.83 0.84 0.83

Accuracy 0.8402
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Table 4.25. Results of Decision Tree for Split IP (50 %)

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 0.98 0.99

Brute Force 1.00 0.99 1.00

Web Attack 0.98 0.93 0.95

DoS 0.82 0.99 0.90

Infiltration 0.01 1.00 0.02

Botnet Attack 0.50 1.00 0.02

DDoS 0.87 0.96 0.91

PortScan 0.99 1.00 1.00

Unknown Traffic 0.05 1.00 1.00

Weighted Average 0.98 0.97 0.97

Accuracy 0.9678

Table 4.26. Results of Random Forest for Split IP (50 %)

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.98 0.99

Brute Force 0.90 1.00 0.95

Web Attack 1.00 0.95 0.78

DoS 0.42 0.92 0.58

Infiltration 0.28 1.00 0.44

Botnet Attack 0.30 1.00 0.46

DDoS 0.91 1.00 0.95

PortScan 1.00 0.99 1.00

Unknown Traffic 1.00 1.00 1.00

Weighted Average 0.98 0.97 0.98

Accuracy 0.9719
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Table 4.27. Results of SVM for Split IP (50 %)

SVM

Precision Recall F-1 Score

Benign Network 0.99 1.00 1.00

Brute Force 0.92 0.99 0.95

Web Attack 0.79 0.97 0.87

DoS 0.12 0.0. 0.05

Infiltration 0.00 0.00 0.00

Botnet Attack 0.21 0.01 0.02

DDoS 0.87 0.45 0.59

PortScan 0.99 1.00 0.99

Unknown Traffic 0.09 1.00 0.16

Weighted Average 0.92 0.93 0.92

Accuracy 0.9251

Figure 4.3 shows the comparison of the accuracy scores among all three machine learning

algorithms. Notwithstanding the fact that the accuracy score of the one hot encoding of SVM was

a little bit higher than that of split IP, the difference was only 0.04 percent, and the method of

splitting an IP address into four numbers had higher accuracy scores than the other two machine

learning algorithms. As a result, the method of splitting an IP address into four numbers mostly

received the highest accuracy scores again.
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Figure 4.3. One Hot Encoding (16-bit) vs Binary IP vs Split

4.1.4 Summary

In this section, all three methods of encoding IP addresses were evaluated using decision

tree, random forest, and SVM, and the split IP method mostly achieved the highest accuracy

scores. Therefore, it can be determined that the best method of encoding an IP address is to split

an IP address into four numbers.

4.2 Binary IP vs. Split IP

In the previous section, one hot encoded IPs were compared with the other two methods.

Although the one hot encoded IPs had better results than those of the binary IPs, the split IPs had

better accuracy scores than the one hot encoded IPs. To confirm the best method of encoding IP

addresses among these methods, the accuracy of the binary IPs and split IPs were evaluated.

Since the dimensions of the data set were not very high for these two methods, the entire data set

was considered. The following six tables show the results of this analysis.
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Table 4.28. Results of Decision Tree for Binary IP

Decision Tree

Precision Recall F-1 Score

Benign Network 0.99 0.88 0.94

Brute Force 0.89 1.00 0.94

Web Attack 0.81 0.87 0.84

DoS 0.08 0.99 0.16

Infiltration 0.00 0.60 0.10

Botnet Attack 0.13 0.98 0.23

DDoS 0.65 0.72 0.28

PortScan 0.97 0.87 0.92

Unknown Traffic 0.20 1.00 0.33

Weighted Average 0.91 0.86 0.88

Accuracy 0.8632

Table 4.29. Results of Random Forest for Binary IP

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.90 0.95

Brute Force 0.58 1.00 0.74

Web Attack 0.87 0.89 0.88

DoS 0.19 0.87 0.31

Infiltration 0.02 0.80 0.05

Botnet Attack 0.64 0.98 0.77

DDoS 0.81 1.00 0.90

PortScan 1.00 0.99 1.00

Unknown Traffic 0.50 1.00 0.67

Weighted Average 0.94 0.92 0.93

Accuracy 0.9247
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Table 4.30. Results of SVM for Binary IP

SVM

Precision Recall F-1 Score

Benign Network 0.91 0.90 0.90

Brute Force 1.00 0.29 0.45

Web Attack 0.72 0.82 0.77

DoS 0.00 0.00 0.00

Infiltration 0.00 0.00 0.00

Botnet Attack 0.00 0.00 0.00

DDoS 0.69 0.45 0.55

PortScan 0.88 1.00 0.93

Unknown Traffic 0.00 0.00 0.00

Weighted Average 0.83 0.84 0.83

Accuracy 0.8377

Table 4.31. Results of Decision Tree for Split IP

Decision Tree

Precision Recall F-1 Score

Benign Network 1.00 0.91 0.96

Brute Force 0.99 1.00 0.99

Web Attack 1.00 1.00 1.00

DoS 0.83 0.92 0.87

Infiltration 0.00 0.70 0.00

Botnet Attack 0.07 0.99 0.13

DDoS 1.00 1.00 1.00

PortScan 1.00 1.00 1.00

Unknown Traffic 0.43 1.00 1.00

Weighted Average 1.00 0.96 0.97

Accuracy 0.9562
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Table 4.32. Results of Random Forest for Split IP

Random Forest

Precision Recall F-1 Score

Benign Network 1.00 0.97 0.99

Brute Force 0.90 1.00 0.95

Web Attack 1.00 0.91 0.95

DoS 0.25 0.87 0.39

Infiltration 0.04 0.70 0.07

Botnet Attack 0.14 1.00 0.24

DDoS 0.87 1.00 0.93

PortScan 1.00 0.99 0.99

Unknown Traffic 0.75 1.00 0.86

Weighted Average 0.98 0.96 0.97

Accuracy 0.9631

Table 4.33. Results of SVM for Split IP

SVM

Precision Recall F-1 Score

Benign Network 1.00 1.00 1.00

Brute Force 0.89 1.00 0.94

Web Attack 0.79 0.97 0.87

DoS 0.28 0.03 0.06

Infiltration 0.00 0.00 0.00

Botnet Attack 0.25 0.00 0.01

DDoS 0.93 0.45 0.61

PortScan 0.98 1.00 0.99

Unknown Traffic 0.14 1.00 0.24

Weighted Average 0.93 0.92 0.92

Accuracy 0.9296
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Figures 4.4 indicates the results of the binary and split IPs. The accuracy scores of the

split IPs among the three machine learning algorithms were higher than those of the binary IPs.

Figure 4.4. Binary IP vs Split IP

4.3 Attack Column

In this section, the F-1 scores of each attack by applying decision tree, random forest and

SVM were evaluated based on the tables in section 4.2. The goal was to determine how each

machine learning algorithm was performed for each kind of attack.

The chart for F-1 scores by each attack type was displayed in the following and each bar

of the graph represented the F-1 scores of each method of encoding IP addresses by applying the

machine learning algorithm.

Figure 4.5 showed the F-1 scores for detecting the brute force attack. It was determined

that most F-1 scores were above 80 percent. Moreover, the F-1 scores of random forest were all

above 90 percent and random forest might be a great machine learning algorithm for detecting the

brute force attack.
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Figure 4.5. F-1 Scores for Brute Force

Figure 4.6 showed the F-1 scores for detecting the web attack. The F-1 scores of decision

tree and random forest relatively higher than SVM. Some F-1 scores of SVM were even lower

than 80 percent. Therefore, both decision tree and random forest could probably be good machine

learning algorithms for detecting the web attack.

Figure 4.6. F-1 Scores for Web Attack

Figure 4.7 represented the F-1 scores for detecting the DoS attack. The F-1 scores of

SVM were mostly very low. Based on the chart, the F-1 scores of random forest would relatively

be higher than the other two. Therefore, random forest would possibly a good machine learning

algorithm for detecting the DoS attack.
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Figure 4.7. F-1 Scores for DoS Attack

Figure 4.8 represented the F-1 scores for detecting the infiltration attack. It was difficult to

decide which algorithm was better for detecting infiltration attack because most of the F-1 scores

were very low.

Figure 4.8. F-1 Scores for Infiltration Attack

Figure 4.9 represented the F-1 scores for detecting the botnet attack. It was also difficult to

determine a better machine learning algorithm for detecting the botnet attack. The discrete of all

F-1 scores for each machine learning was high.

57



Figure 4.9. F-1 Scores for Botnet Attack

Figure 4.10 displayed the F-1 scores for detecting the DDoS attack. The F-1 scores of

random forest and decision tree were mostly higher than 80 percent, and most F-1 scores of SVM

were lower than 60 percent. As a result, decision tree and random forest would be better for

detecting the DDoS attack.

Figure 4.10. F-1 Scores for DDoS Attack

Figure 4.11 displayed the F-1 scores for detecting the PortScan attack. Most F-1 scores

were higher than 90 percent and the lower F-1 score still existed for SVM. Thus, both decision

tree and random forest could possibly be fit for detecting the PortScan attack.
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Figure 4.11. F-1 Scores for PortScan Attack

4.4 Summary

According to charts and tables from section 4.1 to 4.2, the method of split IPs gave the

best results among decision tree, random forest, and SVM. As a result, it was determined that the

method of splitting IP addresses to 4 numbers was the best way to encode IP addresses. In section

4.3, F-1 scores of each kind of attack by applying the machine learning algorithms were

compared and the goal was to determine the relatively better machine learning algorithms for

each kind of attack.
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CHAPTER 5. SUMMARY, CONCLUSION, AND FUTURE WORK

5.1 Summary and conclusion

The goal of this thesis was to find the best method of encoding IP addresses for predicting

network intrusion detection. Three methods of encoding IP addresses were applied to predict

network attack traffic: converting IP addresses to binary numbers, splitting IP addresses into four

numbers and one hot encoding. Moreover, different IP address sizes were considered and one hot

encoding was applied to each size individually. All of the methods of encoding IP addresses were

evaluated using random forest, decision tree, and SVM. The recall, precision, F-1, and accuracy

scores were provided in the previous chapter, and the accuracy scores were compared.

In terms of processing speed, decision tree was the quickest and the duration was about

five minutes at most. It took a little bit more time for random forest because multiple trees were

created. The total time for processing by random forest was 20 minutes at most. SVM was the

slowest, especially for one hot encoding and it took almost 48 hours to process the data.

As shown in chapter 4, one hot encoding had better results than binary IPs; however, the

method of one hot encoding was not excellent. The results of split IP addresses were better than

those of one hot encoding, and the accuracy scores of split IPs were mostly higher than those of

one hot encoding. One hot encoding was supposed to be better for pre-processing data for

machine learning; one possible reason why one hot encoding did not give the best result was the

high dimensions of the data set. Since the amount of data was in the millions, the dimensions of

the data set were extremely high after encoding and this affected the results of the predictions.

According to the results of the present study, the split IP method was the best way to encode the

IP addresses. To further prove this, the binary IP and split IP methods were compared in section

4.3, and the results show that splitting IP into four numbers was still the best method for encoding

IP addresses for network intrusion detection.
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5.2 Future Work

Due to the limitations of the system environment and existing problems in the methods,

the approaches could be improved using the following recommendations:

• Deep learning could be used for predicting network intrusion detection.

• All data could be considered for one hot encoding if there was sufficient RAM.
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