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ABSTRACT 

Spherical agglomeration (SA) is a novel process intensification strategy for particulate 

manufacturing. In the context of pharmaceutical manufacturing, it has the potential to reduce the 

number of unit operations in downstream processing from seven to three, which significantly 

reduces the manufacturing cost. However, SA process development for a new API in the drug 

pipeline is still a challenging exercise, which has impeded its practical implementation. The major 

bottleneck lies in the lack of fundamental understanding of the mechanistic principles underlying 

agglomeration of primary crystals, which can enable rational process design. In addition, most SA 

processes reported in literature focus on only the API, which does not eliminate the blending and 

wet granulation unit operations. The major purposes of this thesis are to (i) develop a first principle 

mathematical framework which can identify the fundamental agglomeration mechanism (ii) 

develop a model based online optimization framework, which can control the process, even in the 

presence of model uncertainties (iii) develop a rational framework for co-agglomerating APIs and 

excipients, guided by process analytical technology tools. It is believed that the novel technology 

developed in this thesis will lay the groundwork for fast and robust process development of co-

agglomerating APIs and excipients in the future, thereby enabling one-step direct compression. 

The large-scale development and deployment of this technology will significantly reduce the time 

to market and the manufacturing costs for new APIs, thereby ensuring higher accessibility of life-

saving drugs. 
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1. INTRODUCTION 

 Motivation 

However, in-spite of the plethora of literature on SA starting from the 1980’s, design of a SA 

process for a new API largely remains a trial-and-error exercise. The lack to fundamental 

understanding of SA has impeded the development of novel technologies to enable co-

agglomeration of multiple APIs and/or excipients. 

 Research Aims 

The aim of this thesis is to understand the fundamental mechanism of agglomeration during SA 

which will enable rationale design of a SA process for a new API. A combination of experimental 

and modeling approach has been adopted in this work to fulfill this aim.  

A list of the major aims are summarized below: 

1. To develop a mathematical framework that can distinguish plausible modes of 

agglomeration in the crystallizer based on knowledge of underlying physics. 

2. To estimate parameters of the mathematical model by carrying out as less number of 

experiments as possible. This research thrust is focused to enable a paradigm shift in this 

field, where instead of exploring all corners of the design space via statistical DOE, the 

first principle mechanistic model is used to explore only those parts of the DS which 

provides maximum information about the mathematical model.  

3. To develop a framework which enables online control of SA, using the first principle 

mathematical model, even under the presence of model parametric uncertainties. The goal 

of this framework is to obtain the customer specified Particle Size Distribution (PSD). 

4. To develop and validate a novel particulate technology process which can co-agglomerate 

APIs and excipients with very different surface properties.  

5. To mathematically model the co-agglomeration process, in order to understand the 

multiscale evolution of particles within the crystallizer and within individual droplets.  

6. To develop a dynamic optimization technology which can minimize the amount of 

degradation inside the crystallizer and improve the process yield of SA.  
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 Research Contributions 

The overall aim of this thesis is to develop a deep fundamental understanding of SA to enable rapid 

design of this PI strategy for new API-excipient formulations, to enable direct compression. This 

aim has been achieved via a combined experimental and modeling study. A major emphasis in this 

work has been the use of computational modeling to accelerate the development of SA for new 

APIs, which is hitherto impossible following a completely experimental paradigm. Summarily the 

research contributions are 

a. Population balance models were used to mathematically model the SA process. A model 

discrimination study determined the fundamental mechanism to follow Golovin model, 

which indicated orthokinetic mechanism. 

b. The precise parameters of the agglomeration kernel were estimated by using MBED, which 

reduced the number of experiments necessary to 3. In contrast a traditional statistical DOE, 

needs at-least 64 experiments to even sparsely span the DS.  

c. A stochastic MPC controller was then designed which could generate the end-of-batch 

desired MPS, even under the presence of model parametric and process uncertainties. This 

was shown to be a major improvement over the open-loop control case, whose performance 

is shown to deteriorate under model parametric uncertainties. 

d. However, the previous SA technology, where the binder agglomerates particles, was then 

shown to be incapable to agglomerating APIs and excipients when their surface properties 

are widely different. A new Emulsion Solvent Diffusion Technology is then developed 

which can co-agglomerate APIs and excipients by confining them within micron sized 

droplets. In-situ Process Analytical Technology (PAT) tools were then used to understand 

the fundamental mechanisms underlying ESD.  

e. This novel ESD technology was then mathematically modeled using a multiscale 

Population Balance Modeling (PBM) framework. It was shown that the mathematical 

model can help elucidate the evolution of the crystal population within the droplets, as well 

as the global droplet population. This contribution also represents a paradigm shift in this 

area in using mathematical models to understand the fundamental mechanisms at play, 

which is hitherto impossible even using state-of-art PAT tools. 

f. A novel dynamical optimization framework was then developed which can maximize the 

mean crystal size and minimize the concentration of degradation product. This was shown 
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to significantly improve the process yield for an API undergoing thermal degradation while 

crystallizing out. Novel in-situ PAT tools were also developed to enable precise monitoring 

of the API and impurity concentrations during the process. 

A summary of all the major research thrusts of this thesis is shown in the research tree in  

Figure 1-1. A brief summary of the gaps in prior understanding associated with each topic, and 

the subsequent advancements in this thesis is given in Figure 1-2. Figure 1-2 also enumerates the 

limitations with each topic, which necessitated the development of the technologies associated 

with the subsequent topics.  

 

Figure 1-1. Overall summary of research aims of this thesis.  
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Figure 1-2. Major accomplishments of this thesis focusing on the gaps in prior understanding on 

each of the focus areas. The limitations associated with each topic necessitated the development 

of the successive topics.  

  



20 

 

2. THEORY 

 Crystallization 

Crystallization is one of the most widely used unit operations in process separations [1]. 

Crystallization is a non-equilibrium kinetic process where the fundamental driving force is the 

supersaturation [2] in the crystallizer. Any solvent has an inherent capacity to hold a solute at a 

given temperature. The maximum amount of solute per unit mass of solvent is referred to as the 

solubility, which is a thermodynamic quantity [3]. The solubility generally increases [4] with 

temperature and solvent ratio, using which the solubility curve in the phase diagram can be 

constructed (Figure 2-1).  

 

Figure 2-1. Phase diagram for generic cooling crystallization process. 

2.1.1  Primary nucleation 

If a saturated solution is heated, it enters the undersaturated zone (Figure 2-1) where the solvent 

has a higher capacity for the solute. Conversely, if the saturated solution is cooled, it becomes 

supersaturated viz. the solvent theoretically has less capacity for solute at the specified temperature. 

However, when cooled, immediate phase separation does not occur. The temperature at which the 

solute nucleates out, on progressive cooling, is known as the cloud point ([5]). The temperature 
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difference between the cloud point and the saturation temperature, is known as the metastable zone 

width (MSZW) [6] which changes as a function of concentration. Primary nucleation [7] occurs 

beyond the primary nucleation threshold (PNT) viz. at temperature/sasr below the critical value.  

2.1.2  Secondary nucleation and growth 

Conversely, secondary nucleation (SN) and growth occur within the MSZ. Generally, for robust 

and control industrial crystallization processes, seed crystals are added within the MSZ. The 

solution is then de-supersaturated following a pre-defined cooling profile and/or antisolvent 

addition profile. Secondary Nucleation occurs due to multiple mechanisms viz. crystal-crystal 

collisions, crystal-impeller collisions, surface nucleation, etc. Crystal growth occurs via (i) 

diffusion of molecules across the boundary layer on the crystals to the crystal surface (ii) surface 

integration of molecular units onto the steps/kinks on the crystal surface.  

 Spherical agglomeration 

Spherical agglomeration (SA) is a novel Process Intensification (PI) technique for pharmaceutical 

manufacturing (PM). Traditional PM consists of the sequence of unit operations crystallization, 

filtration, drying, milling, granulation. Many Active Pharmaceutical Ingredients (APIs) form 

needle shaped crystals, which cause problems during filtration. These large-sized crystals also 

need to be milled down to smaller crystals to increase their bioavailability. However, the small 

sized crystals tend to segregate in the tablet press, so they need to be agglomerated in the 

granulation stage. Spherical Agglomeration solves these problems by producing fine particles in 

the crystallizer and then agglomerating them in-situ in the crystallizer. The small size of the 

primary crystals ensures enough bioavailability whereas the spherical shape of the agglomerates 

decreases the time required for filtration and drying. These spherical agglomerates can then be sent 

directly to the tablet press bypassing the milling and granulation unit operations. 

There have been numerous reports in literature on improvements in micrometric properties 

of agglomerates, compared to the primary crystals. Zhang et al. [8] showed that particulate 

properties of cefotaxime sodium viz. flowability, compactability, bulk density improved 

drastically on agglomerating the PCs. There have been similar reports in literature concerning 

improvements in micrometric properties, for other APIs as well viz. bucollamine [9], salicylic acid 

[10]. Maghsoodi et al.[11] showed carbamazepine agglomerates showed higher tensile strength 
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compared to PCs. They suggested that agglomerates deform much more upon compression, 

leading to inter-particle bond formation between the PCs, therefore giving higher tensile strength. 

Spherical agglomerates are also highly desirable as vehicles for drug delivery[12] since spheres 

have the highest surface area-to-volume ratio among all shapes. However, development of a SA 

for a new API remains a challenging exercise primarily due to two major reasons (i) solvent 

selection [13] for a new API is a challenging problem. The solvent-antisolvent combination has to 

be carried out to enable maximum process yield during the crystallization stage. In addition, the 

binder needs to be chosen such that it is insoluble in the solvent-antisolvent mixture (ii) choice of 

the optimal process parameters[11][14] largely remains a trial and error exercise. This work 

primarily concerns with tackling the second problem by using a combination of mathematical 

modeling and directed experimentation. 

 SA involves two stages (i) reverse antisolvent crystallization to form small size primary 

crystals (PCs) (ii) agglomeration by binder addition, which agglomerates the crystals. The 

fundamental rate processes at play during the agglomeration stage are very similar to the ones 

during wet granulation, as shown in Figure 2-2. The initial stage of granule nucleation via wetting 

of the PCs by the binder follows two modes (i) when droplets are smaller than the crystals, the 

droplets coat the crystal surfaces and form agglomerate nuclei, which is known as the distribution 

mechanism (ii) when the droplets are larger than the crystals, an immersive mode of agglomeration 

occurs where the crystals first coat the droplet surface. The rate of coating depends on the surface 

wettability of the droplets on the crystals. This is followed by penetration of the crystals onto the 

droplets, which forms the granule nuclei. This is followed by a progressive compaction and 

consolidation of the agglomerated nuclei, which results in a reduction in the size of the 

agglomerates and porosity. Breakage and attrition of the agglomerates can also occur within the 

crystallizer, depending on the process conditions. Breakage occurs due to imposed shear forces on 

the agglomerates resulting from agglomerate-particle collisions or agglomerate-stirrer collisions. 

The hydrodynamic conditions within the crystallizer viz. the average shear rate, tip speed, which 

depend on the stirrer rpm, affect the breakage and attrition kinetics. There are alternate modes of 

granule growth described in literature viz. layering of particles onto the agglomerates. It is to be 

noted that the attrition fragments can also layer onto the agglomerates, thereby contributing to the 

agglomerate growth.  
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Figure 2-2. Rate processes and possible mechanisms during SA showing wetting and nucleation, 

distributive vs immersive modes of agglomeration, consolidation, breakage and granule attrition 

and granule growth.  

There are a multitude of process and material parameters that affect SA, including (i) solvent-

antisolvent-binder combination (ii) temperature (iii) agitation rate (iv) binder to solids ratio. The 

effect of each of these process parameters on the SA process is next discussed in detail.  

2.2.1 Choice of solvent-antisolvent-binder 

The choice of the solvent-antisolvent pair decides the fate of the crystallization process. Since the 

first phase is reverse antisolvent crystallization, the choice of the antisolvent is crucial to ensure 

(i) process yield [15] (ii) phase purity[16]. Moreover, for some antisolvents the initial 

supersaturation generated can be so high that oiling out of crystals occurs, which can lead to (i) 

loss of process yield due to crystals sticking on the crystallizer walls (ii) problems during scale-up 

since droplet breakage is hard to effectively control during scale-up.  
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The binder also needs to be chosen such that it is insoluble in the solvent-antisolvent 

mixture so that it forms discrete binder droplets. Typically, ternary phase diagrams of the solvent-

antisolvent-binder are constructed to identify the critical operating space. For example, ternary 

phase diagrams have been used to design SA processes for ketoprofen [17], benzoic acid [18] and 

etodolac [19].  

2.2.2 Temperature 

Temperature has opposing effects on the outcome of SA process: 

(a) It affects the relative solubility of the various solvent species viz. solvent-antisolvent-

binder. Thus, it changes the relative mole fractions of the different components under 

process conditions. 

(b) It affects the nucleation and growth kinetics of the crystals, which is typically modeled 

using an Arrhenius rate law viz. Wu et al [20]. 

(c) The instantaneous rate of agglomeration depends on the local supersaturation [21] for many 

APIs, especially when hydrodynamics in the reactor is the critical factor behind 

agglomeration. Since temperature affects the local supersaturation, it has an indirect effect 

on the agglomeration kinetics. 

Kawashima et al.[22] showed that agglomerate size first decreased with an increase of temperature, 

followed by an increase. This apparent contradictory effect was attributed to the opposing effects 

of the various factors outlined above. Thati et al.[23] also showed that the process yield of SA 

decreased on increasing the temperature, along with a slight increase of the agglomerate size.  

 

Agitation rate 

The agitation rate of the stirrer affects the outcome of the SA by virtue of its effect on the reactor 

hydrodynamics [24]. Agitator rpm has two opposing effects on the agglomerate size. Initially, with 

increasing agglomeration, the rate of agglomeration increases, which increases the agglomerate 

size [18]. However, with further increase in the agitator rpm, breakage and attrition of the 

agglomerate occurs, which decreases the agglomerate size [25]. However, the agitator rpm needs 

to be high enough to ensure well-mixedness in the reactor, otherwise there may be particulate 

settling in the reactor.  
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Agitator rpm affects solution mixing at all scales viz. micromixing, mesomixing and 

macromixing. Increasing the agitator rpm improves the bulk scale macromixing in the reactor by 

decreasing the circulation time. Increasing the agitator rpm also decreases the micromixing time 

scale [26] by increasing the turbulent kinetic energy dissipation rate. For reverse antisolvent 

crystallization, which is the first step of SA, increasing the rpm also improves the mesomixing 

[27] viz. the interaction between the inlet fluid stream and the bulk solution. If mesomixing is not 

proper, there may be a local zone of high supersaturation at the mouth of the dip tube, which can 

drastically change the nucleation kinetics in the reactor and subsequently the PSD. Thus, the 

agitator rpm is carefully chosen to (i) ensure well-mixedness (ii) ensure no breakage or attrition 

(iii) generate optimal micromixing to cause particulate collisions with sufficient velocity to form 

agglomerates.  

2.2.3 Effect of binder to solids ratio 

One of the critical process parameters during agglomeration is the binder to solids ratio (BSR) 

[28]. The relative proportion of the binder compared to the solids decides the rate of agglomeration. 

Figure 2-3 shows the progressive change in the degree of agglomeration upon increasing the BSR. 

If the BSR is too low, no agglomeration occurs [29] viz. Figure 2-3 a. However, if the BSR is too 

high, a paste like slurry forms viz. Figure 2-3 f. The BSR during all stages of the process need to 

be within the critical BSR range indicated in Figure 2-3c-d.  

 

Figure 2-3. Different stages during SA as a function of increasing binder content (a) – (f).  
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However, determining the optimal process conditions and the material properties for SA remains 

a Herculean task, which makes mathematical modeling imperative for process development.  

 Mathematical modeling using population balance equations 

Population balance equations (PBE) [30] have been widely used to model particulate processes. 

PBEs effectively capture the fundamental mechanisms at play during crystallization viz. 

nucleation [31], growth [32], breakage [33] and agglomeration [34]. PBEs provide a quantitative 

estimate [35] of the evolution of the number density of the particulate population within the 

crystallizer. PBEs had its genesis in the classical work of Hulbert and Katz [36], who formulated 

the equations from a statistical mechanics perspective. Randolph et al. [37] discussed in detail the 

use of PBEs to model crystallization process. However, PBEs have also found use in modeling 

population evolution in other diverse fields of engineering and science viz. biomedical engineering 

[38], electrochemistry [39], catalysis [40], geography [41] and agricultural engineering [42].  

 Process optimization 

Mathematical models have been widely used for in-silico process optimization [43]. Traditionally 

process optimization has been carried out using statistical design of experiments (DOE) [44]. 

However, depending on the number of factors, the number of experiments necessary to get to the 

process optimum can be prohibitive. To add to the complexity, identifying the critical factors 

necessary to define the DS is challenging because of compounding effect amongst the different 

process parameters. Dynamical process optimization [45] solves a lot of these challenges by 

identifying the critical factors in-silico as a solution of a user-defined non-linear programming 

(NLP) problem [46], while at the same time minimizing the experimental burden. Generally, 

chemical processes are modeled as a system of differential algebraic equations (DAEs) [47] where 

the differential equations quantify the dynamical evolution of the system and the algebraic 

equations describe the underlying constitutive relationships. There are two major approaches to 

solving dynamical optimization problems involving DAEs viz. the variational approach [48] and 

NLP. The variational approach solves the first order necessary conditions for optimality [49], 

which are derived using Pontryagin’s maximum principle. However, using the variational 

approach becomes tough especially if there are multiple active inequality constraints[50]. 
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Moreover, the solution requires initial guess values [51] of all the state variables, which requires 

sufficient engineering expertise. This makes the variational approach restrictive for solving most 

engineering problems, including optimization of SA which involves multiple state equations and 

active inequality process constraints. 

Dynamic optimization using NLP methods can be broadly classified into two approaches 

which use (i) sequential methods (ii) simultaneous methods. Sequential approach [52] discretizes 

only the control variable, while the simultaneous approach [53] discretizes both the control and 

the state variables. For a given set of initial conditions (IC) on the control (and state for 

simultaneous approach) variables, the DAEs can be integrated to obtain the objective function 

(OF) [54]. Depending on the user-specifications, the OF can incorporate values of the control (and 

state) variables during all the discretization time steps or only at the final time point. A NLP solver 

[55] is then used to find the optimal control (and state) variables which minimize the OF. In terms 

of robustness, simultaneous approaches score higher [56] since they can identify unstable solution 

modes, thereby purging infeasible guess values. However, since all the state and control variables 

are discretized, simultaneous approach typically gives rise to large scale NLP problems, which 

typically make them infeasible [57] for most practical engineering problems. In this thesis, 

sequential approaches have been primarily used due to their simplicity and since the optimization 

problem structures did not necessitate the use of computationally intensive simultaneous 

approaches.  

 Model predictive control (MPC) 

However, the optimal process conditions, obtained from offline process optimization, do not 

always produce the best results when implemented on an actual plant. This discrepancy stems 

primarily due to two reasons (i) any mathematical model contains uncertain model parameters. 

However, when process optimization is carried out, these uncertainties are typically neglected and 

the process is optimized considering the nominal values of the model parameters (ii) there are 

disturbances inherent in any plant operation, which are typically not modeled. These inherent 

uncertainties lead to non-optimal solutions when the open-loop calculated optimal profile is 

implemented industrially.  
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2.5.1 Different types of model uncertainties 

These uncertainties stem from (i) model parametric uncertainties [58] (ii) measurement 

uncertainties [59] (iii) structural uncertainties [60]. A generalized state space model is shown in 

equation (1), where x  is the state vector, u  is the vector of control moves and θ  is the parameter 

vector. 

 
0 0

( )
( ( ), ( ), ) , ( )= =

x
x u θ x x

d t
f t t t

dt
  (1) 

Model parametric uncertainties [61] essentially arise because all parameters are estimated 

from offline experimental data, and there are uncertainties associated with all lab-scale 

experiments. Typically, the uncertainties can be quantified using a multidimensional normal 

distribution viz. equation, where 0θ  is the nominal values of the model parameters and   is the 

variance-covariance matrix. It can be seen from equations that the final state vector for a system 

evolving with the nominal model parameters viz. 1( )x ft  (equation (3)) and actual model 

parameters (sampled from (2)) viz. ( )x ft , from equation (1), are generally different.  

 0~ ( , )θ θN   (2) 
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f t t t

dt
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Measurement uncertainties arise due to sensor noise [62] and/or sensor drift [63]. Typically the 

state vector x is not directly measured, but is estimated from measured vector z viz. equation (4), 

which contains measurement uncertainties w . 

.   

 = +z Hx w   (4)  

Structural uncertainties [64] arise due to fundamental differences in model formulation viz. 

failing to capture certain aspects of the underlying physics in the process model. Mathematically, 

the process is modeled according to equation (1), while the real underlying process evolves 

according to equation (5), where 1f f . 
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2.5.2 Model based control 

Given the fact that the process model has inherent uncertainties, the open loop optimal control 

profile does not give the best process performance. This is illustrated in Figure 2-4, where the 

actual state evolution is much different from the open loop model predictions. This necessitates 

the use of feedback control [65], which can correct for any deviations from the nominal state 

evolution, by adjusting the process conditions online in real time. 

 

Figure 2-4. Nominal state evolution in the absence of uncertainties vs actual state evolution, in 

the presence of uncertainties.  

There are many feedback control strategies viz. PID control [66], internal model control 

(IMC) [67], etc. Model predictive control (MPC) [68] is a special class of advanced feedback 

control strategies, which solves a mathematical optimization problem online to calculate the 

optimal control moves in real-time. However, only the first of the calculated control moves is 

implemented and the optimization problem is solved repeatedly online at each sampled time instant. 

MPC for batch reactors [69] have been typically solved using a shrinking horizon strategy, where 

the model predictions are carried out till the end of the batch and is illustrated in Figure 2-5. 



30 

 

 

Figure 2-5. Shrinking horizon control model predictive control strategy 

MPC has its genesis in Bellman’s theory of dynamic programming [70]. The earliest 

reported works on MPC were from researchers at Shell Oil Company, which they formulated as 

dynamical matrix control (DMC) problem [71]. However, solving constrained multivariable 

optimization problems still remained a challenging endeavor [68], which necessitated the 

reformulation of the DMC problem as a quadratic programming problem [72] with explicit 

constraints. However, most real-world problems involve inherently nonlinear problems [73]. 

Traditionally MPC on non-linear systems involved linearizing the nonlinear model around the 

operating point [66], followed by implementing DMC on the linearized model. However, higher 

quality specifications [74] and increasing productivity constraints [75], stricter environmental 

regulations [76] necessitate process systems to operate over a wide range of process conditions. 

Linearized process models fail to accurately capture the system dynamics [77] when operating at 

process conditions far from the operating point. This has necessitated the use of nonlinear process 

models to describe the system dynamics, which has necessitated the development of nonlinear 

MPC.  

 Process analytical technology (PAT) 

PAT tools are inline process sensors which provide information about the real-time evolution of 

critical quality attributes (CQAs) of the product. In the context of crystallization, PAT tools can 

provide in-situ measurements of the product quality viz. particle size distribution and solute 

concentration. The process analytics data recorded by PAT tools also serve as the in-situ 
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measurements for the implementation of online MPC. The various PAT tools used for 

crystallization/spherical agglomeration are now described below.  

2.6.1 Focused beam reflectance measurement (FBRM) 

FBRM probe is used for in-situ measurements of the chord length distributions of particles in 

solution. FBRM probe has an inbuilt rotating scanning laser inside the probe, which traces a 

circular path at a constant velocity. This produces a highly focused light beam near the probe 

window, which gets reflected to the probe when a particle comes in the path of the beam (Figure 

2-6). The tangential velocity of the laser is known apriori which, multiplied by the time the beam 

was reflected, gives the length of the chord intercepted by the beam. The length measured by the 

FBRM software is, in fact, a chord length and not the particle diameter, with the exception of 

spherical particles. This is because the probability of the laser beam passing through the center of 

non-spherical particles is very low. An assumption in these calculations is that the velocity of the 

rotating laser is much higher than the particle velocity, which holds good for most practical 

applications.  

 

Figure 2-6. Schematic of Focused Beam Reflectance Measurement probe. 

2.6.2 ATR-UV/Vis 

UV spectroscopy measures the photon absorption in the visible and ultraviolet spectra which span 

400-800 nm and 200-400 nm respectively. The absorbance recorded by the UV/Vis 
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spectrophotometer is correlated to the solute concentration according to the Beer Lambert Law, 

where   is the molar extinction coefficient, c  is the solute concentration and l  is the path length. 

The absorbance of solutions of known concentrations can be recorded using the UV-Vis 

spectrophotometer, from which a calibration curve can be constructed. This can then be further 

used to find the concentration of an unknown API solution.  

 =A Cl   (6) 

  

          However, the UV-Vis spectrophotometer does not yield accurate measurements when there 

are solids present in the solution, which has necessitated the development of attenuated 

spectrophotometers (Figure 2-7).The ATR-UV/Vis probe sends a light signal which travels 

normal to the probe surface and excites the solute. Attenuated total reflection (ATR) works on the 

principle that when light travels from a material with high refractive index (RI) to a material with 

low RI, the intensity of the reflected wave is severely attenuated. This allows detection of the 

signal intensity of the reflected wave using traditional UV detectors, without any prior sample 

preparation. Thus, problems associated with offline sampling viz. chances of recrystallization 

during filtration, do not pose a problem in these methods. Additionally, slurries with high solids 

concentration can also be accurately measured using this technique. 

 

Figure 2-7. ATR-UV/Vis spectroscope to measure solute concentration in solutions with solids 

present.  
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2.6.3 Ultraperformance liquid chromatography (UPLC) 

However, UV/Vis spectroscopy has severe limitations when there are multiple components in 

solution. In this thesis, Chapter 7 studies simultaneous crystallization and degradation of an API 

,where there were two distinct components in solution viz. the API and the degradation product. 

However, the UV-Vis spectra of both the components were very similar which made post-

processing using traditional techniques nearly impossible. Liquid Chromatography (LC) provides 

a potential solution since it can separate the various components temporally depending on the 

sorption-desorption equilibrium. The fundamental principle of LC is shown in Figure 2-8. The LC 

column is loaded with the stationary phase on a silica support. In reverse phase chromatography, 

the LC column has preferential absorbability for the non-polar analyte. For gradient elution 

chromatography, a gradient of velocity/solvent composition is imposed on the mobile phase. 

Initially the mobile phase is primarily composed of the polar analyte and due to lower velocity, 

preferential adsorption of the non-polar analyte on the stationary phase occurs. At later stages, the 

mobile phase is composed of mostly the organic phase which leads to desorption of the non-polar 

analyte. The higher solvent velocity of the mobile phase towards the later stages also contributes 

to the faster desorption. The UV detector detects the various components viz. polar and non-polar 

analytes as a function of time, which leads to temporal resolution of the different components. 

UPLC is a special class of LC instruments, which can operate at very high column pressures (upto 

14,000 psi). This leads to superior resolution capabilities for UPLC compared to conventional high 

performance liquid chromatography (HPLC), which can operate at maximum 6000 psi.  
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Figure 2-8. Various stages of solute elution for reverse phase gradient elution chromatography. 
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3. ITERATIVE MODEL BASED EXPERIMENTAL DESIGN FOR 

SPHERICAL AGGLOMERATION PROCESS 

Reproduced with permission from Kanjakha Pal+, Botond Szilagyi+, Christopher L. Burcham*, 

Daniel J. Jarmer*, Zoltan K. Nagy+. Submitted to the Journal of Crystal Growth and Design, in 

review.  
+School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, US 

*Eli Lilly and Company, Lilly Technology Center, Indianapolis, IN, US 

 Introduction  

Crystallization is a widely used separation and purification process [1], which is used to separate 

the compound of interest from a solvent or a mixture of solvents [78]. As a unit operation, it is 

widely used in a multitude of industries including chemical [79], food processing [80], 

petrochemical and microelectronics [81]. Crystallization functions as an impurity rejection and 

particle design unit operation, and plays a vital role in the pharmaceutical industry [82]. Although 

crystallization might give particles of desired purity, designing a crystallization process followed 

by scale up requires considerable investment of time and resources [83]. In the pharmaceutical 

industry, various downstream processes [84] are necessary following crystallization, such as 

filtration [85], milling [86], blending [87] and granulation [88] to produce particles of desired 

attributes, including size [89], and morphology [90]. However, this sequence of unit operations 

often have conflicting design objectives in terms of particulate properties. For example, efficient 

filtration necessitates the mean particle size from the crystallizer to be as large as possible [91]. 

However large sized crystals often do not satisfy bioavailability requirements or content 

uniformity (e.g. they do not dissolve fast enough in the body) , hence they need to be milled [92]. 

However very fine particles cause problems during tableting due to segregation or poor flowability 

[93] within the tablet press, hence they need to be granulated to form compact spherical particles.   

  Spherical agglomeration (SA) offers a solution to the aforementioned problems by agglomerating 

crystals directly within the crystallizer [14]. The idea behind SA is to produce fine crystals 

(primary crystals, PC) by crystallization [23] and then agglomerate them in-situ by adding a 

bridging liquid. The small size of the PCs meet the bioavailability requirements while the large 

size and shape of the spherical agglomerates reduces the filtration time, and increases flowability 

and processability, in general for non-cohesive powders. The filtered agglomerates can then be 
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directly sent to the tablet press, bypassing the milling and granulation stages. However, selecting 

the process parameters for obtaining spherical agglomerates with desired product properties 

(flowability, friability) is challenging. Subero-Coureyor et al. [10] showed that  numerous process 

parameters, including. the wetting period and the mode of binder injection affects the final 

agglomerate size. Thati et al. [14] demonstrated that binder to solid ratio (BSR),  batch time,  

rotational speed of the stirrer and the temperature influence the size and product quality of the 

agglomerates. Mathematical models can give insights into process dynamics and guide judicious 

selection of process conditions for obtaining agglomerates with desired particulate attributes.  

Petela et al. [94] was one of the first to model the agglomeration of fine particles. They 

carried out a force balance on the fine particles undergoing agglomeration and developed 

predictive models for the end-of-batch mean agglomerate size. David et al. [95] modeled the 

agglomeration process using a combined agglomeration kernel, which took into account three 

agglomeration mechanisms - brownian, laminar and turbulent modes of agglomeration. Blandin et 

al. [9] used population balance equations (PBE) to describe agglomeration in suspension using a 

novel agglomeration kernel which involved both the agglomeration frequency and the 

agglomeration efficiency in its formulation. However, all these descriptors of SA modeled the 

entire particulate population within the reactor as a single population while there are two distinct 

populations during SA – the PCs and the agglomerates. Peña et al. [96] was one of the first to 

consider both these populations in their PBM formulation. However, the model parameters 

describing their agglomeration kernel were taken from literature and not estimated from 

experimental data. Moreover, the agglomeration kernel was chosen rather arbitrarily from 

literature rather than using a systematic selection criterion directly based on experimental data. 

In most of the published literature on agglomeration, the agglomeration kernels are chosen 

based on intuition about the physical mechanism behind the agglomeration process. However, it 

is quite conceivable that the agglomeration process is so complex that selecting the right 

agglomeration kernel from intuition about the process physics is not plausible. This is particularly 

true for SA process where there are multiple mechanisms of agglomerate formation followed by 

growth of agglomerates that can occur. Data based model identification (MI) is a strategy to 

discriminate amongst various models and identify the model that best fits the experimental 

observations. Reilly et al. [97] explained various statistical methods of model discrimination for 

identification of the correct model for chemical kinetics. Hsiang et al. [98] used a personalistic 
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Bayesian methodology to discriminate amongst different mechanistic models, which did not need 

model linearization or assumed any specific form of the error distribution. Vatcheva et al.[99] 

developed a procedure to discriminate among several semi-quantitative models that explained the 

growth of phytoplankton in a bioreactor. They formulated a statistical criterion to design additional 

experiments when the existing experimental data was not sufficient for model discrimination. Hsu 

et al. [100] developed a Bayesian framework to build kinetic models of catalytic reactions where 

the prior knowledge of the experimenter could be incorporated in the model discrimination 

framework. One of the key features of their approach was the use of distribution of model 

parameters rather than point estimates, which avoided regression from model data and allowed 

incorporation into a Bayesian model discrimination framework.  

Once an appropriate mathematical model has been identified, the model parameters need to 

be estimated accurately for in-silico predictions of process outcomes. Traditionally, experimental 

design for model parameter estimation have been carried out using a statistical design of 

experiments (DOE) [101] including full factorial design, and fractional factorial design, among 

others. However, increased number of experiments are typically necessary to get precise estimates 

of model parameters using traditional DOE methodologies. Model based experimental design 

(MBED) is a framework to use an imprecise mathematical model to guide the design of future 

experiments which, in turn, improves the model fidelity. The rationale behind MBED is to use 

information theoretic tools [102] on the mathematical model to design experiments such that the 

information content obtained from successive experiment is maximized. Gadkar et al. [103] 

developed an iterative approach to identify models in biological networks. They found that optimal 

experimental design was crucial to obtain information-rich experimental data, which maximized 

the accuracy of the estimated model parameters. Rojas et al. [104] adopted a min-max approach to 

robust optimal experimental design for energy systems with bounded power inputs. They found 

that optimal experimental design substantially improved the worst-case performance of the system 

model over the nominal experimental design. Galvanin et al. [105] proposed a novel online model 

based redesign of experiments (OMBRE) for estimating model parameters in dynamical systems. 

Their method utilized the experimental information as soon as it was generated and used it online 

to redesign the experiments in real time. This online redesign of experiments substantially reduced 

the time to obtain precise estimates of model parameters over a sequential MBED strategy. MBED 

has also been used to estimate kinetic parameters in crystallization literature. Chung et al. [106] 
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used D-optimal experimental design criterion to minimize the number of experiments necessary 

to obtain precise parameter estimates of nucleation and growth kinetics for crystallization.  

Although there are numerous publications on model identification and optimal experimental 

design for precise parameter estimates in biological networks, catalysis, crystallization, a similar 

data-based model identification strategy is lacking in the particulate agglomeration literature. The 

focus of this work is to first identify the correct mechanism for SA by discriminating among 

various agglomeration kernels each of which gives a different interpretation of the fundamental 

agglomeration mechanism. Once the correct agglomeration mechanism has been identified, an 

Iterative Model Based Experimental Design (IMED) approach is then developed where 

information theoretic tools are used to minimize the number of experiments to obtain precise 

estimates of parameters of the agglomeration kernel.  

 Theory  

3.2.1 Mathematical modeling of SA 

In a batch SA process [14], the anti-solvent is initially stirred in a crystallizer. The active 

pharmaceutical ingredient (API), dissolved in a solvent, is then added to the crystallizer. Since the 

API is insoluble in the anti-solvent, as soon as the solution droplets contact the antisolvent, a high 

degree of local supersaturation is created. This leads to rapid, primary nucleation of API crystals 

followed by crystal growth. After crystallization is complete, the bridging liquid is added into the 

crystallizer. The bridging liquid is chosen so that it is insoluble in the solvent-antisolvent mixture 

and wets the surface of the API particles. The discrete binder droplets then bring the crystals 

together and form granule nuclei, which after a period of particulate layering, forms compact 

spherical agglomerates.  

The crystals and agglomerates in the solution are rarely monodisperse and there is typically 

a size distribution associated with the particulate population(s). Population Balance Equations 

(PBE) are widely used to characterize the evolution of the particulate population in solution. The 

size distribution of the crystals and agglomerates in solution are characterized by their number 

densities  cn (v,t)  and an (v,t)  respectively. Since the process is a semi-batch process, the volume 

in the solution changes throughout the batch. To take this dilution effect into account, a modified 

number density ( , )n v t  is used where ( )V t  is the volume of the solution in the vessel. 
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Equation (8) represents the PB for the crystals in solution where the nucleation, growth and 

agglomeration of the crystals have been considered. Equation (9) represents the PBE for the 

agglomerates in the solution where birth and death of agglomerates occur only due to 

agglomeration. The rate of agglomeration is quantified by an agglomeration kernel 
/( , ) v v , 

which represents the rate of agglomeration of particles characterized by volumes v  and /v . It is to 

be noted that agglomeration can happen between both crystals and/or agglomerates, which need 

to be reflected in the integral terms for agglomeration. Thus a total population of particles ( , )n v t   

is redefined in equation (10), which is a combination of the crystal and agglomerate population.  

The driving force for crystallization is the instantaneous supersaturation in the solution given by 

equation (11), where sc  is the API concentration.  

 = s

sat

c
S

c
  (11) 

satc  is the saturation concentration of the API, which is a function of the instantaneous 

solvent to antisolvent ratio ( sasrx  ) in the vessel, given by equation (12). 
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The nucleation and growth rates of the crystals are given by equations (13)-(14). In 

equation (13), both primary and secondary nucleation have been taken into account, where M is 

the total mass of crystals in the solution. All model parameters were taken from reference [107].  

 ( 1) (1 0.5 )= − +b

bB k S M   (13) 

 ( 1)= − g

gG k S   (14) 
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The PBEs are coupled with the mass balance equations (15)-(17). 
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Equation (15) is the mass balance for total slurry in the crystallizer where liqm  is the mass 

of the solution and sF  is the mass flow rate of solution into the crystallizer. Equation (16) 

represents the mass balance for the solute (API) in the crystallizer where ,s inc  is the inlet API 

concentration. c  is the density of the API crystals, vk  is the shape factor of the crystals. Here 2  

is the second moment of the crystal population which appears due to the consumption of solution 

supersaturation from crystal growth. Equation (17) represents the dynamics of solvent to anti-

solvent ratio in the agglomeration vessel, where ,0liqm  is the initial mass of antisolvent in the 

vessel .  

3.2.2 Finite Volume Solution of PBEs 

Equations (8)-(9) are discretized over a computational finite volume grid and solved by using high 

resolution schemes for the growth terms following Qamar et al. [108] and fixed pivot techniques 

for the agglomeration terms following Kumar et al. [109]  

 

Figure 3-1. Finite volume grid for discretizing particle volumes. The actual particle volumes are 

represented by the grid points 1, +i iv v whereas the particle population in the i-th C.V. are assumed 

to be concentrated at a representative volume ix  for computational purposes.  
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Figure 3-1 shows a representative grid for the particulate volume in the context of the fixed 

pivot technique. The internal variable v  of the PBEs is divided into   control volumes where the 

ith control volume is assumed to lie between the particle volumes iv  and 1+iv  .The particulate 

population in the ith C.V. is represented by a representative volume ix  where the grid is chosen 

such that 1( ) / 2−= +i i iv x x  [109]. To maintain consistency with the nomenclature followed in 

Qamar et al. [108] for the high resolution method for the growth terms, the faces of the ith C.V. are 

also marked as ix +
and ix −

. The total number of particles contained in the ith C.V. is given by (18). 
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Finite volume discretization of equations (8) - (9) then gives equations (19) - (20). 
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where , ( , )i k j kx x =  represents the rate of agglomeration of particles of volumes jx  and kx  . 

Here   is a parameter that is important for preserving number and mass during agglomeration 

[109]. 
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The discretized ODEs (19)-(20) at each of the   grid points are solved along with the ODEs for 

mass balance (15) - (17) to get the evolution of the primary crystal size distribution (CSD) and the 

agglomerate size distribution (ASD).  

 

For ease of comparison, all the model predictions and experimental measurements  were 

normalized according to equations (22)-(23). Here modelf  and expf  are the normalized number of 

particles from the model and experiments respectively. It is to be noted that the number of grid 
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points for the model predictions and the experiments are different (   and  respectively). 

However, for parameter estimation purposes, the model predictions modelf  are re-computed at the 

experimental grid-points.   
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3.2.3 Different agglomeration kernels and initial parameter estimation 

Table 3-1. Different agglomeration kernels used in this work where 𝑥 and 𝑦 are the volumes of 

the agglomerating particles 

Kernel Expression 
Parameter 

Vector 

Schomoloski kernel 

[110] 
𝑄 = 𝛽0(𝑥1/3 + 𝑦1/3)3 o   

Brownian kernel 

[42] 
𝑄 = 𝛽0

(𝑥1/3 + 𝑦1/3)

(𝑥𝑦)1/3
 0   

Zauner Jones Kernel 

[111] 
𝑄 = 𝑎𝑟𝑜𝑡(𝑏𝑟𝑜𝑡 + 𝑐𝑟𝑜𝑡𝜀0.5 − 𝑑𝑟𝑜𝑡𝜀)𝑆𝑒  rot rot rot rota b c d e   

Thompson kernel 

[110] 
𝑄 = 𝛽0

(𝑥 − 𝑦)2

(𝑥 + 𝑦)
 

0   

Golovin kernel [41] 𝑄 = 𝛽0(𝑥 + 𝑦) 
0   

Sastry kernel [112] 𝑄 = 𝛽0

(𝑥2 3⁄ + 𝑦2 3⁄ )

(
1
𝑥 +

1
𝑦)

 0   

 

Table 3-1 shows the different agglomeration kernels considered in this study where x and y are 

the volumes of the particles undergoing agglomeration. Each of the agglomeration kernels 

considered in this study refer to different modes of agglomeration, which are now described briefly.  
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Smoluchowski and Brownian Kernels 

In Smoluchowski’s theory of agglomeration [110], two different modes of agglomeration 

were defined – perikinetic and orthokinetic. There is a fundamental mechanistic difference 

between the two agglomeration mechanisms – perikinetic agglomeration occurs due to random 

Brownian motion of the particles while orthokinetic agglomeration refers to the agglomeration of 

two particles due to imposed velocity gradients from the fluid motion. 

However, the Schmolowski agglomeration kernel referred to in this work represents only 

the rate of orthokinetic agglomeration of two particles. For a laminar flow field, the agglomeration 

kernel constant 𝛽0 depends on the fluid shear rate. For a turbulent flow field, the agglomeration 

constant depends on the rate of turbulent energy dissipation in the agglomerator. Thus, the 

Smoluchowski orthokinetic agglomeration kernel is fundamentally dependent on the fluid 

mechanics conditions, which is lumped into a constant parameter 𝛽0. This represents a subtlety in 

the use this kernel – all the experiments for the parameter estimation and the subsequent model-

based design experiments need to be carried out under experimental conditions that conserve the 

fluid mechanical conditions in the agglomerator viz. same stirring speed of the stirring, etc. Figure 

3-2 provides a schematic representation of these two mechanisms.  

The Brownian kernel [110] represents perikinetic mode of agglomeration in 

Smoluchowski’s theory, which occurs due to random fluctuations of the particles in solution due 

to Brownian motion and is unaffected by any fluid mechanical conditions. Brownian diffusivity of 

particles is dependent on the solution temperature: at higher temperature, the diffusivity of 

particles is higher leading to higher rates of agglomeration. However, the PCs in this work are 

generated exclusively via antisolvent crystallization, so cooling crystallization is not necessary.  

Hence, the effect of process temperature on the agglomeration kernel is not explicitly considered 

in this work.  
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Figure 3-2. (a) Orthokinetic agglomeration of a large particle and a small particle due to fluid 

shear which is represented by Schomulowski’s kernel, and (b) Perikinetic agglomeration of a 

large particle and a small particle due to random Brownian motion, which is represented by 

Brownian kernel 

 

 

Zauner-Jones Kernel 

The Zauner-Jones Kernel [111] considers two fundamental mechanisms of agglomeration – (i) 

agglomeration of two particles via orthokinetic agglomeration and (ii) growth of agglomerates via 

layering of particles from solution onto pre-formed agglomerates (Figure 3-3). Since the 

orthokinetic mode of agglomeration depends on the fluid mechanical conditions, the mean rate of 

dissipation of turbulent kinetic energy (𝜀 ) is explicitly considered in this kernel. Growth of 

agglomerates due to particle layering is dependent on the local supersaturation (S). However, since 

the crystallizer is assumed to be well mixed, the supersaturation S is a measure of the average 

supersaturation in the entire solution while the spatial inhomogeneities in the local agglomeration 

is discounted in this work.  
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Figure 3-3. Agglomerate growth by layering of fine crystals in solution onto pre-formed 

agglomerates 

Thompson and Golovin Kernels 

Berry et al. [113] modeled the agglomeration of cloud droplets using two different models – the 

continuous model and the stochastic model. The continuous model assumed that smaller water 

droplets formed a continuous phase around the larger discrete cloud droplets (Figure 3-4a), which 

essentially led to droplet coalescence growing following a deterministic rate law. In fact the 

continuous mode of droplet growth with a summation kernel (Golovin kernel) was solved earlier 

by Golovin et al. [114] analytically. 

However, the stochastic model assumed that not all the large droplets collect smaller 

droplets (Figure 3-4b) – in fact, a fraction of the large droplets collect smaller droplets which was 

modeled as a Poisson process. It was found that although the stochastic model gave similar growth 

rates to the continuous model, the predictions of the actual droplet distributions was significantly 

better for the stochastic model. However, one limitation of the stochastic model formulation was 

the high computational cost associated with solving the underlying stochastic differential equations. 

Thompson et al. [115] proposed a new kernel to reduce the computational costs of solving Berry’s 

agglomeration kernel, while preserving its mechanistic  aspects. At the same time, Thompson’s 

reformulated kernel made deterministic solution of the PBEs possible which was considerably 

simpler than solving the stochastic differential equations.  

It is to be noted that the Thompson kernel is just a reformulation of the Golovin summation 

kernel but in a stochastic mode of agglomeration. Thus, comparison between the model predictions 

between the Golovin (Figure 3-4Figure 3-4a) and Thompson (Figure 3-4b) kernels essentially 
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provides evidence on whether the deterministic or stochastic mode of agglomeration is 

predominant in the agglomeration vessel.  

 

  

Figure 3-4. (a) Continuous coalescence model where 100 large droplets all grow by coalescing 

with smaller sized droplets – Golovin kernel, and (b) Stochastic Growth Model where only a 

fraction (10%) of the larger sized droplets grow by coalescing with smaller sized droplets – 

reformulation of this mechanistic kernel gives the Thompson kernel. 

Sastry Kernel 

Sastry et al. [40] proposed an empirical agglomeration kernel based on their observations of 

granule nucleation followed by granule growth in a batch agglomerator. They formulated two rules 

which formed the basis of their agglomeration kernel. 
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(a) The driving force for coalescence of particles is provided by the surface area of the 

agglomerating particles viz. particles with larger surface areas have a higher probability to 

agglomerate.  

(b) The resistance to coalescence is provided by the particulate volumes viz. particles with 

larger volumes have less tendency to undergo deformation which is necessary for 

particulate agglomeration.  

Since their agglomeration kernel is largely empirical, there is no mechanistic interpretation 

about the fundamental mechanism of agglomeration.  

3.2.4 Modification of agglomeration kernels 

It was pointed out by Pena et al. [96] that spherical agglomerates were only formed under a limited 

range of BSR’s. During the process of binder addition, the agglomeration kernel will change 

throughout the process and this will be critically dependent on the volume of binder in the 

suspension, which is not considered in all the kernels mentioned previously in Table 3-1. Here the 

dependence of the agglomeration kernel on the cumulative binder volume in the system is taken 

into account using a linear relationship (24). 
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where ,binder tvol  is the volume of binder in the agglomerator at time t and ,binder refvol  is the total 

volume of binder at time = bindert t  .  
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Model Discrimination and Precise Parameter Estimation 

 

Figure 3-5. Overview of model discrimination followed by model-based design strategy used in 

this work. Model discrimination gives the best model that explains the initial experimental 

observations. Model based design uses information theory to design experiments which gives 

precise parameter estimates with minimal number of experiments. 

Once a database of different agglomeration mechanisms was developed, initial 

experiments were carried out to discriminate among the different agglomeration kernels. The 

model parameters of this best agglomeration kernel were then precisely estimated using a model-

based design approach where experiments were sequentially designed to minimize the 

uncertainties associated with the parameter estimates at each iteration. 

3.2.5 Model Discrimination 

Although different agglomeration kernels were proposed in Table 3-1 which correspond to 

different agglomeration mechanisms, there needs to be a statistical criterion to differentiate 

between the different agglomeration kernels. If the number of model parameters is increased, the 

model is expected to fit the experimental data better. But if the model complexity is too high, 

model overfitting occurs viz. the model gets finely tuned to the noise in the experimental data. The 

Akaike information criterion is a statistical criterion to differentiate between different models (25) 

where k is the number of model parameters and L is the maximum likelihood estimate which is an 

indication of the goodness of fit between the model predictions and the experimental observations. 
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 AIC = 2k - ln(L)    (25) 

To quantify the maximum likelihood estimate for the different models ( L  ), the K-fold 

leave-one-out cross-validation procedure is applied over all the experiments and for all the kernels 

in Table 3-1. If expN  is the total number of experiments, one experiment is left out during the 

model training process. The model parameter is estimated by minimizing the deviation between 

the experimental ASD and the model predicted ASD using (26) where k
θ  is the parameter 

estimate by leaving out the kth experiment during the model training process. This parameter 

estimate is then used on the left-out experiment to calculate the error on the test experiment ( k
  ). 

The average error over the K-fold cross validation is then calculated using (28) which works as a 

proxy for the maximum likelihood function estimate ( L ) for the model.  
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It can be observed from Table 3-1 that except the Zauner-Jones kernel, all other agglomeration 

kernels have just one model parameter ( 0  ). Thus, for model discrimination, the AIC criterion is 

not calculated but a more pragmatic approach is adopted here: 

(i) Model parameters of each of the agglomeration kernels in Table 3-1 are estimated using 

K-fold cross-validation. 

(ii) The average error between the model predictions and the experimental observations is 

then calculated from the errors at each iteration of cross-validation.  

(iii) If the Zauner-Jones kernel has the best model fit from step (ii), there is a chance that 

the superior goodness of fit was due to a greater number of model parameters (4). The 

AIC criterion then needs to be calculated for all the kernels in Table 3-1. However, if 

the Zauner-Jones kernel does not give the best model fit from step (ii), computing the 
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AIC criterion will not give additional information since Zauner-Jones kernel has higher 

model complexity. This comparison is explained schematically in (29). 
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3.2.6 Precise Parameter Estimation 

The experiments used during the initial parameter estimation were designed using intuition about 

the process physics and heuristic understanding of the experimental operating space for SA. But 

these experiments were not optimally designed for precise estimation of the model parameters, so 

the fidelity of the model parameters estimated at this stage may not be high  . The rationale behind 

optimal experimental design is to use an information theoretic measure to design new experiments 

which minimizes the parametric uncertainties.  

Mathematically, the parametric uncertainties are quantified by the volume of the 

confidence hyper-ellipsoid of the parameter covariance matrix which scales as 
1| |V

−
. Here θV   is 

the marginal posterior density covariance of the parameters and S is the parameter sensitivity 

matrix which indicates the sensitivity of the model output (ASD) is to changes in the parameter 

vector θ , at the final time finalt  . 
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The D-optimality criterion [106], which minimizes the volume of the confidence hyper-

ellipsoid, is used in this work to design the optimal experimental conditions by solving the 

optimization problem (32)  

 

1

min max

min max

min max

,min ,max

min | |

. .



−=

  
 

  
 

  
   

φ
φopt

sol sol sol

V

Conc Conc Conc

SASR SASR SASR
s t

BSR BSR BSR

F F F

   (32) 

The experimental design space φ consists of (a) concentration of API in inlet solution 

(Conc), (b) solvent to anti-solvent ratio (SASR), (c) binder to solid ratio (BSR), and (d) Volumetric 

flow rate of inlet solution ( Fsol ). The bounds on the experimental conditions are introduced as 

constraints in the optimization problem (32). 

The overall procedure for precise parameter estimation is illustrated in Figure 3-6. 

 

Figure 3-6. Algorithm for model based experimental design for precise estimation of model 

parameters. 
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3.2.7 Effect of Mixing 

There are two fundamental rate processes in the crystallizer, which are dependent on the mixing 

modalities viz. antisolvent crystallization and agglomeration. The flow conditions within the 

crystallizer viz. laminar vs turbulent flow regimes depends on the Reynolds number (equation 

(33) ).  

 

2

Re

ND ρ
N =

μ
  (33) 

The time constant for macromixing ( M
  ) is related to the circulation time ( C

 ) in the 

crystallizer according to equation (34). The circulation time is calculated according to relation 

(35), which depends on the impeller dimensions relative to the crystallizer diameter, type of 

impeller, etc. 

 

 4
M C

    (34) 

 CNτ = κ   (35) 

 

The time scale for micro-mixing ( E
 ) is given by equation (36), where  is the average 

energy dissipation rate per unit mass calculated from equation  (37). P is the power input into 

the impeller which can be calculated from equation  (38), and pN is the power number for the 

impeller .  
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 Materials and methods 

Benzoic acid (>99.5 % purity, BASF Corporation) was used as model API. Absolute ethanol (99.5% 

w/w) from Fisher Scientific was used as the solvent. Deionized water, produced in-house, was 

used as the anti-solvent. Toluene (> 99.5%, Fisher Scientific) was used as the binding agent. A 

500 mL jacketed crystallizer equipped with a 0.05m three-blade retreat curve impeller was used 

for all experiments. The solution temperature was maintained at 20℃ for all experiments. The anti-

solvent is initially stirred at constant speed (400 rpm) in the crystallizer. The API is then dissolved 

in the solvent in a beaker and the API solution is pumped into the agglomerator at a constant flow 

rate (2mL/min). Peristaltic pumps from Cole-Palmer and platinum-cured silicone tubing from 

MasterFlex (L/S, Inner diameter = 1.6 mm) were used for solution addition. The tubing was dipped 

into the bulk solution and the API solution was charged near the impeller to ensure rapid mixing.  

After 1 hour, the binder is added at constant flow rate (4 mL/min) and the rotational speed of the 

stirrer is increased to 600 rpm. After 2 hours, the solution is taken out of the crystallizer and filtered 

using a vacuum filter equipped with a Butchner funnel. The filtered agglomerates are then washed 

with a solvent mixture (5% w/w ethanol-water mixture), followed by drying in an air-oven at 40 

℃ for 1 day. The moisture content in the agglomerates was analyzed using a halogen moisture 

analyzer (Mettler H53, Mettler Toledo), which consistently showed that the residual solvent 

content was less than 0.1% in all the product agglomerates. Photomicrographs of these samples 

are then taken using a Nikkon SMZ stereo microscope. The captured images are further analyzed 

using ImageJ software from which the ASD is reconstructed. 

The system of Differential Algebraic Equations (15)-(21) are solved using ode15s function 

of MATLAB R2016a. The optimization problems(26), (32) were solved using the genetic 

algorithm function ga of the global optimization toolbox of MATLAB R2016a.  

 Results and Discussions 

3.4.1 Experiments for finding best model amongst suite of candidate models 

The experimental design space consists of the solute concentration (Conc), solvent to anti-solvent 

ratio (SASR), binder to solids ratio (BSR), and flow rate of solution (Fsol). Since the most important 

factors were Conc and SASR [116], the experimental design space (Table 3-2) for initial parameter 
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estimation was constructed with only these two process variables while the other process variables 

were kept constant at BSR = 1.0 and Fsol = 2mL/min.   

 

Table 3-2. Experimental design for model discrimination 

Experiment Number Conc (g/mL) SASR 

1 0.15 0.175 

2 0.15 0.35 

3 0.25 0.175 

4 0.25 0.35 

5 0.25 0.5 

6 0.375 0.175 

  

 

 

Figure 3-7. (a) Experimental ASD of SA experiments (b) stereomicroscope images of 

agglomerates produced from Experiment 5. 

(a) 

(b) 



55 

 

            Figure 3-7a show the ASD of the experiments from Table 3-2 and Figure 3-7b shows a 

typical stereomicrograph of the agglomerates. The experimental conditions were chosen such that 

the expected final product ASD is significantly different for different experiments, which is 

necessary for the initial parameter estimation.  The detailed explanation of how changes in Conc 

and SASR change the ASD is beyond the scope of this work and interested readers are referred to 

the relevant literature [14][23].   

 Model discrimination 

Initial Parameter Estimation  

Table 3-3. Parameter estimates of the agglomeration kernels obtained by minimizing the mean 

square error deviations between the experimental ASD and the model predicted ASD 

Kernel 
Parameter Parameter 

Value 

Zauner Jones 

a 510-16 

b 1.734 

c 1.781 

d 2.84 

e 4.896 

Thompson 𝛽0 0.091 

Schomoloski 𝛽0 2.2310-5 

Sastry 𝛽0 1.5410-6 

Golovin 𝛽0 7.8710-4 

Brownian 𝛽0 1.49510-16 

 

Table 3-3 shows the parameter estimates of each of the agglomeration kernels given in 

Table 3-1 by solving the optimization problem (26). It is to be noted that the change in volume of 

the solution (30 mL) is not significant (7.5%) compared to the initial volume of antisolvent (400 

mL), so the hydrodynamic effect can be assumed to be constant throughout the experiment.  

The critical variables associated with the mixing kinetics in the crystallizer are given in 

Table 3-4 Table 3-4. Since the Reynolds number is higher than the critical Reynolds Number 



56 

 

(4000), the flow conditions in the crystallizer can be assumed to be turbulent. Since M C
  , the 

crystallizer can be considered to be well mixed. The Kolmogorov microscale (𝜂) within the 

crystallizer is calculated to be 1671 𝜇𝑚, which is lies in the range of the agglomerate sizes (Figure 

3-8). It is known that the relative importance of some of the effects viz. orthokinetic, perikinetic 

may change depending on the size of the crystals/agglomerates relative to  𝜂. However, since 𝜂 

lies in the range of the particle sizes, a full-fledged model discrimination is necessary to elucidate 

the most probable agglomeration mechanism.  

Table 3-4. Mixing parameters associated with crystallizer 

Variable Value 

𝐷

𝑇
 

1

3
 

ReN  1.75*104 

M
   8 s 

C
   2s 

C
N   5.3 

E
   0.0543 s 

𝜂 1671 𝜇𝑚 
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Figure 3-8. ASD from Experiment 4 and model predictions with Golovin kernel. Model 

predicted ASD with optimized parameters (𝛽02 = 7.8710-4) gives less mismatch to experimental 

ASD than ASD predicted with the parameter (𝛽01 = 310-2), used as initial guess. 

Figure 3-8 shows the experimental ASD for Experiment 4 and the model predicted ASD 

using the Golovin kernel. To illustrate that the optimal parameter gave better prediction 

comparison with the experimental ASD, the model predictions were run with the initially guessed 

kernel constant, 𝛽01=3  10-2 in addition to the optimal estimated kernel constant 𝛽02=7.87  10-4. 

This is clearly shown in Figure 3-8. This is further supported by the Mean Square Errors (MSE) 

between the experimental ASD and the model predictions where the model simulations with non-

optimal parameter estimates has much higher MSE (30.83%) than the models with optimized 

parameter estimate (5.03%).  

 

Cross-Validation Computer Experiments 

Table 3-5 shows the average MSE for different agglomeration kernels. The Golovin kernel and 

the Smoluchoswki kernels give the best fit to the experimental data while the Thompson kernel 

gives the worst average error. 

The deterministic Golovin kernel performs better than the stochastic Thompson kernel 

which is further exemplified in Figure 3-9 , for experiment 5. The MSE between the experimental 

ASD and the model predicted ASD is also much more for the Thompson kernel (58.17%) than the 

Golovin kernel (31.04%). This can be due to two major reasons (i) the stochastic mode of 

agglomerate growth as mentioned in Berry et al. [113] does not actually take place in SA, which 
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is quite plausible, and (ii) the numerical assumptions made in Thompson et al. for reformulation 

of the stochastic Golovin agglomeration kernel does not apply here. Based on just these 

experimental observations and model predictions, it is not plausible to point to the precise reason 

behind this discrepancy. But for all pragmatic purposes of model predictions, the Thompson kernel 

can be excluded from the list of possible kernels to consider. The Sastry kernel also gives a high 

MSE (62.13%) and hence can be discarded from future model predictions. 

Table 3-5. Cross validation designed experiments for different agglomeration kernels. 

KERNEL KERNEL FORM AVERAGE MSE (%) 

SMOLUCHOWSKI 𝑸 = 𝜷𝟎(𝒙𝟏/𝟑 + 𝒚𝟏/𝟑)𝟑 38.65 

BROWNIAN 
𝑸 = 𝜷𝟎

(𝒙𝟏/𝟑 + 𝒚𝟏/𝟑)

(𝒙𝒚)𝟏/𝟑
 

61.1 

ZAUNER-JONES 𝑸 = 𝒂𝒓𝒐𝒕(𝒃𝒓𝒐𝒕 + 𝒄𝒓𝒐𝒕𝜺𝟎.𝟓

− 𝒅𝒓𝒐𝒕𝜺)𝑺𝒆 

43.86 

GOLOVIN 𝑸 = 𝜷𝟎(𝒙 + 𝒚) 36.27 

THOMPSON 
𝑸 = 𝜷𝟎

(𝒙 − 𝒚)𝟐

(𝒙 + 𝒚)
 

70.48 

SASTRY 
𝑸 = 𝜷𝟎

(𝒙𝟐 𝟑⁄ + 𝒚𝟐 𝟑⁄ )

(
𝟏
𝒙 +

𝟏
𝒚)

 
62.13 
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Figure 3-9. ASD from Experiment 5 and model predictions with the optimal parameter estimates 

for Thompson and Golovin kernels. Model Predictions with Golovin kernel (MSE = 31.04%) has 

better agreement with the experimental ASD than the Thompson kernel (MSE = 58.17%). 

The kernels with the best predictive power are the Golovin (36.2%), Smoluchowski (38.6%) 

and the Zauner-Jones (43.8%) kernels. Since the Zauner-Jones kernel does not give a lower MSE 

than all other kernels, the AIC criterion is not calculated. However, the differences between the 

MSE are too small to draw mechanistic conclusions about the actual agglomeration mechanism in 

the process. It is quite plausible that the mechanism by which the particles agglomerate is a 

combination of the fundamental agglomeration mechanisms underlying the three kernels. For 

example, an agglomerate might be formed by a combination of orthokinetic agglomeration, 

layering of particles and gravitational settling (Figure 3-10) which would need the formulation of 

new mechanistic agglomeration kernels. In this work, a more pragmatic approach to model 

discrimination is adopted, i.e. the Golovin kernel is chosen as the best kernel for model predictions 

and is further used for refined parameter estimation. However, if the goal is to pinpoint the actual 

mechanism of agglomeration, a second step of model-based design for model discrimination is 

necessary after this step.  
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Figure 3-10. Hypothetical mechanism of agglomeration where three difference agglomeration 

mechanisms (orthokinetic, gravitational, layering) all occur simultaneously. 

It is to be noted that the MSE for experiment 5 only is much lower than the average errors 

given in Table 3-5. The reason is that in Table 3-5, the errors are averaged over all the six cross-

validation experiments; in some experiments the MSE is much higher, which increases the average 

error. This points to the fact that there can be substantial improvements made to the parameter 

estimate 𝛽0 of the Golovin kernel, which necessitates parameter re-estimation experiments. 

3.5.1 Model based design of experiments for refined parameter estimation 

The initial parameter estimate of 𝛽0 = 7.8710-4 (Table 3-6) is chosen for model refinement. The 

lower and upper bounds of the process variables are given in Table 3-6 which were chosen based 

on prior experience from conducting experiments.  
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Table 3-6. Bounds for experimental process variables. 

Process Condition Lower Bound Upper bound 

Concentration of solute (gm/gm) 0.15 0.3 

Solvent to Antisolvent Ratio 

(SASR) 

0.09 0.18 

Binder to Solid Ratio (BSR) 0.85 1.2 

Volumetric flow rate of solution 

(mL/min) 

1 10 

At each stage of the iterative parameter estimation process, the optimization problem (32) is solved 

to generate the new experimental conditions. The new experiments are now run with these 

experimental conditions and the product agglomerates are collected and analyzed to determine the 

new ASD. A parameter re-estimation problem is run again to find the new estimates of model 

parameters. This process is run sequentially until convergence (Figure 3-6). Table 3-7 shows the 

prior estimates of 𝛽0, the new experimental conditions and the posterior estimates of 𝛽0 after 

parameter re-estimation. The parameter estimation process converged within three iterations.  
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Table 3-7. Parameter Estimates and Process Conditions 

Iteration 

Number 

Prior estimate 

of 𝜷𝟎 

Process 

Variable 

Experiment 

Number 

Process 

Condition 

New 

Estimate of 

𝜷𝟎 

1 7.87  10-4 Conc (g/mL) E1 0.29 2.621  10-3 

SASR 0.09 

BSR 1.0 

Vsol (mL/min) 4.42 

2 2.621  10-3 Conc (g/mL) E2 0.287 5.637  10-3 

SASR 0.09 

BSR 1.1 

Vsol (mL/min) 9.87 

3 5.637  10-3 Conc (g/mL) E3 0.251 5.637  10-3 

SASR 0.135 

BSR 1.0 

Vsol (mL/min) 1.99 
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Figure 3-11. ASD from experiments (a) E1, (b) E2, and (c) E3 and model simulations with 

parameter estimates of β0. 

(a) 

(b) 

(c) 
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Figure 3-10 shows the ASD obtained from model predictions with parameter estimates 

of 𝛽0 and the experimental ASD at each iteration of the MBED experiments.It is clear from 

Figure 3-10 and Table 3-8 that the deviation between the experimental ASD and the model 

predicted ASD decreases with increasing number of iterations.  Figure 3-11 shows the ASD 

estimated with the model parameters in iteration 3 is much closer to the experimental ASD than 

the ASD estimated from iteration 1. This also proves that the model predicted ASD indeed 

becomes closer to the experimental ASD with increasing number of iterations of MBED. The 

number of experiments necessary to obtain refined estimates of model parameters is substantially 

reduced compared to traditional statistical DOE.  If each of the four factors had four levels, a 

fractional factorial design would need at least 4 14 64− = experiments. The number of experiments 

in MBED is substantially reduced (only three), which proves the utility of the proposed MBED 

framework to find precise estimates of model parameters for SA.  

Table 3-8. MSE for each iteration of MBED showing the MSE decreases with increasing iterations. 

Experiment MSE (%) 

E1 60.2 

E2 13.6 

E3 2.1 

 

 

Figure 3-12. Model predictions with optimal parameters from iteration 1 and iteration 3. 
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 Conclusions 

In this work a two-tiered strategy for model discrimination followed by parameter estimation was 

introduced. The initial goal of this work was to discriminate among various mechanistic kernels 

for spherical agglomeration. From the initial cross-validation experiments, some kernels could be 

immediately rejected due to the high mean square error. But it was found that precise 

discrimination between Golovin, Smoluchowski, Zauner-Jones kernels was not possible from 

available experimental data. It was hypothesized the actual agglomeration mechanism may be a 

combination of orthokinetic, gravitational agglomeration along with layering of particles from 

solution. A more pragmatic approach towards model selection was then adopted where the Golovin 

kernel, which gave the least MSE, was selected as the best agglomeration kernel with the full 

understanding that developing a precise mechanistic description for spherical agglomeration needs 

further investigation. The model parameters of the Golovin kernel was then re-estimated using a 

MBED framework. The D-optimality criterion was used to find the experimental conditions, which 

minimized the uncertainties of the estimated model parameters. It was found that the MBED 

framework converged within three experimental iterations and the estimated model parameters fit 

the experimental data very well. This two-tiered model-discrimination and refined parameter 

estimation framework can work as a generic framework for a variety of model development 

problems in particle technology. An additional step will be further introduced in the future where 

the mathematical model is used in a model based experimental design framework to discriminate 

among the various mechanistic kernels before using this framework for parameter re-estimation. 
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4. MODEL BASED OPTIMAL CONTROL OF SPHERICAL 

AGGLOMERATION UNDER PARAMETRIC UNCERTAINTIES 

Reproduced with permission from Kanjakha Pal+, Francesco Rossi+, Gintaras V. Reklaitis+, ZoltanK. 

Nagy+ Submitted to Journal of Process Control, in review.  
+School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, US 

 Introduction 

Spherical agglomeration (SA) is a novel process intensification (PI) method [117] for 

pharmaceutical manufacturing (PM), which reduces the number of unit operations in downstream 

manufacturing. Traditional PM consists of several unit operations, namely, crystallization, milling, 

filtration, drying and granulation, followed by blending and tablet pressing [118]. The rationale 

behind SA is to add a binder into the crystallizer to agglomerate the crystals in-situ [10]. The 

primary advantage of this approach is that spherical particles offer much better filtration 

performance [119] than needle or plate shaped crystals, which are usually encountered in PM. The 

flowability of the spherical agglomerates is also much higher [120], which reduces the cost of 

transportation in bulk solids handling between different unit operations. Thus, SA allows for 

control of the manufacturability of the product agglomerates, while simultaneously allowing for 

handling smaller sized primary crystals without the penalty associated with processing very fine 

powders.   

Although SA has the aforementioned advantages, the highly coupled and nonlinear 

phenomena, on which it relies, inherently reduce the robustness [121] of the intensified unit 

operation. Mathematical models of processes can provide predictions [122] of the process output 

under process uncertainties. Blandin et al. [9] modeled the SA process using a phenomenological 

model. They formulated the agglomeration kernel as a product of two factors, which describe the 

probability of two particles colliding and their sticking efficiency after collision. Madec et al. [123] 

formulated a new multi-dimensional kernel, which gave insight into the effects of size and binding 

agent composition on the mechanism of agglomeration. They found their agglomeration kernels 

were able to explain the qualitative trends in the evolution of the particle size distribution. However, 

the previous works considered the entire particulate population within the crystallizer as a single 

population, which is physically unrealistic. Pena et al. [96] modeled the particulate population as 
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two separate populations of crystals and agglomerates and formulated population balance 

equations for each population. They also solved a model-based optimization problem to get the 

desired end-of-batch manufacturability and bioavailability of the agglomerates. However, their 

work considered the mathematical model to be perfect, with model parameters taken from 

literature data. Moreover, the optimization problem was solved only in open loop viz. no feedback 

from the process was considered in their work.  

Advanced control strategies [124] using mechanistic mathematical models, can be applied 

to steer the batch to the desired end-of-batch state, even in the presence of process uncertainties. 

However, control of batch processes [125] is challenging endeavor due to the inherent dynamic 

nature of batch systems. Model predictive control (MPC) [126] has been widely used for batch 

process control, which ensures that the process attains the target end-of-batch product attributes, 

including process yield and product quality. However, MPC exhibits limitations in control 

performance, especially when there are uncertainties inherent in the process models [127]. 

Parametric uncertainty [128] is one of the most well-known and widely studied class of 

uncertainties, which arise in process models. Uncertainty in model parameters often arise due to 

unavoidable errors in the experimental measurements, which are used to compute the model 

parameters. Uncertainties may also arise from the lack of experimental measurements, which 

makes it impossible to accurately estimate all the model parameters. Robust control strategies [68] 

allow mitigation of these issues by computing robust control actions, which allow precise set-point 

tracking and enforce all the key operational constraints, even in the presence of uncertainty on the 

model parameters.   Such model parametric uncertainties also arise naturally during the 

formulation of SA models because the mechanistic models of nucleation, growth and 

agglomeration contain kinetic parameters which are estimated from lab-scale experiments. This 

makes traditional deterministic MPC unsuitable for batch process control of SA. However, robust 

NMPC [129] takes such parametric uncertainties into account while calculating the optimal control 

moves and hence is more suitable for batch process control under uncertainty.  

In this work, the uncertainties in the model parameters associated with the SA model is first 

estimated from experimental measurements. An open-loop optimization of the SA process is 

solved with the nominal values of model parameters, to obtain the target MAS in the crystallizer. 

A closed loop deterministic MPC problem is then solved, and its solution is compared to the open 

loop optimization problem. Model parameters are then sampled from this multidimensional 
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distribution, which are then propagated through the nonlinear process model to obtain the uncertain 

model outputs. A low dimensional model is then reconstructed from these model outputs using 

Polynomial Chaos (PC) Theory[18] [19][132][133], which is used as a surrogate model for MPC. 

A robust nonlinear model predictive control (RNMPC) problem is then solved using this surrogate 

model reconstruction, and its performance is then compared to the open loop optimizer and 

deterministic MPC.  

 Theory 

4.2.1 Model predictive control (MPC) 

Closed loop predictive control involves taking experimental measurements of PSD, followed by 

solving an online optimization problem, to predict the future control moves for the crystallizer. 

The control moves for the SA process include (a) API solution flow rate, (b) antisolvent flow rate, 

and (c) binder flow rate (Figure 4-1). There have been many techniques reported in literature to 

find the evolution of particle size in the crystallizer using process analytical technology (PAT) 

[134]  tools, including focused beam reflectance measurement (FBRM) [135], bulk video imaging 

(BVI) [136], and other in-situ and inline imaging systems[137], [138] . However, accurate 

reconstruction of the PSD using online measurements from PAT tools remains a challenging task 

to date [139]. In this work, it is assumed that online measurements of the ASD is available from 

PAT measurements viz. Figure 4-1. 
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Figure 4-1. Conceptual experimental setup of online MPC with real-time imaging to find in-situ 

particle size.  

Optimization problem formulation 

The MPC problem is formulated as a Mayer control problem in equation (39)  
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Here, the final mean particle size predicted from the model is calculated from the end-of-

batch particle size distribution at the final time using equation (40). 
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The MPC problem (39) is a multivariable control problem viz. there are 3 manipulated 

variables for the MPC problem which are given by (41). 

 ( ) [ ( ), ( ), ( )]=u s AS bint F t F t F t   (41) 

The optimization problem (39), solved online after taking the measurements at each 

sampled instant, gives the optimal control moves. However, only the first optimal control move is 

implemented, and the process is repeated iteratively until the end of the batch process. The batch 

MPC represents a shrinking horizon control problem, where the control horizon is shrunk 

iteratively viz. the number of predicted control moves is reduced as the batch progresses. The 

measurements included the full ASD obtained from in-situ imaging. The sampling time was 11.11 

mins, which was chosen to balance controller performance vs computational effort for the solution 

of the online optimization problem. The sampling time was constant for all calculations of the 

online optimization problem (39). The measurement error was a random number bounded within 

10% of the current value of the state measurement. Full-state feedback was not considered in this 

work since the measured ASD forms only a part of the full state . Extended Kalman Filter (EKF) 

[140] was used as the state estimator for all the computations.  

 

MPC under parametric uncertainties 

For the parametric uncertainty formulation, the uncertain model parameter vector is given by 

equation (42) where all the parameters are uncorrelated and assumed to follow Gaussian 

distributions.  

 0[ , , , , ]=Θ g bk g k b   (42) 

The process model with parametric uncertainties is now given by equation (43). 
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Figure 4-2. Hypothetical uncertainty propagation and GPC reconstruction for a parameter space 

with 3 parameters and state space with 3 states.  

The uncertain parameter space of the model parameters Θ is sampled as shown in Figure 

4-2. The resulting scenarios are then propagated through the non-linear process model and the 

process outputs at prediction time 1t ,.., Nt are computed viz. 1( )x t ,…, ( )x Nt . Since the parameter 

vector Θ is a stochastic variable, the estimated states ( )x t are also stochastic variables. 

Generalized Polynomial Chaos (GPC) theory is now used to reconstruct the output state ( )x t  as a 

function of the model parameters Θ according to equation (44), where ( )Γ θ
k

is a multivariate 

polynomial in the model parameter Θ . In addition, ( )Γ θ
k

 is a multiplication of univariate 

polynomials 
,

Γ (θ )i k i  in θ i of degree ,i k , according to equation (45). 
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Here, since the model parameters are assumed to be gaussian random variables, the 

Hermite polynomials are chosen for the univariate polynomials 
,

Γi k
, according to the Wiener 

Askey scheme for Polynomial Chaos [141].  
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To use the 2L  convergent expansion for ( )x t , its expansion is truncated depending on the order of 

the Polynomial Chaos expansion (p) according to
5

,

1


=

 i k

i

p . In addition, the total number of 

terms in the PC expansion is given by 
(5 )!

5! !

+
=PC

p
N

p
, and the approximated PC expansion is given 

by equation (46). 
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Here 
0 1

( ) [ ,..., ]  −
=Ξ θ Γ Γ

NPC

 is the vector of multivariate polynomials and 

[ ,..., ]
PC

T

0 N -1A(t) = a (t) a (t)  is the vector of coefficients. The coefficients of the PCE expansion are 

calculated using probabilistic collocation method (PCM) [142], where the collocation points are 

selected to be the roots of a one-degree-higher orthogonal Hermite polynomial than the PCE order.  

After the PCE coefficients are estimated, the mean final state can be calculated from 

( ( )) ( )=
o

x aE t t , where ( )
o

a t is the first term in the PCE.  

The optimization problem, iteratively solved within the MPC, is now reformulated as Equation 

(47). Here , ,( ) ( )=a i f o i fN t a t , and is calculated from the first term in the PCE. 
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  (47) 

Here, an approximation has been introduced because 
simx is not the expected value of the 

end-of-batch MAS but approximates the MAS over all the simulations. The approximation is 
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necessary because the expectation of a random variable is a linear operator, thus does not scale 

over the division operator viz. (48). 
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An overview of development and implementation of the robust MPC, based on the low 

dimensional surrogate model is given in Figure 4-3. 

 

Figure 4-3. Workflow for model predictive control of SA under parametric model uncertainties 

using low dimensional PCE based surrogate model reconstruction.  

 Results and discussions 

The system of differential algebraic equations (DAEs) was solved using ode15s of Matlab R2017b, 

run on an i7-2600 CPU (3.40 gHz). The optimization problem (47) was solved using the gradient-

based solver fmincon of Matlab. The open loop optimization problem was solved using the genetic 

algorithm optimizer ga of Matlab. However, for solving the closed loop model-based optimization 

and stochastic optimization problems, ga was too slow. The optimal control profile calculated 
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using ga was used as an initial control profile for solving a local optimization problem, using the 

function fmincon of Matlab. The model parameter vector Θ is estimated by carrying out batch 

experiments under different process conditions and minimizing the deviation between the time-

course measurements of experimental data and model predictions. The experimental data used for 

parameter estimation included (i) particle size distribution from Malvern Mastersizer 3000 and (ii) 

API concentration from ultraperformance liquid chromatography (UPLC, Waters Corporation). 

The uncertainty in the model parameters was estimated by Markov Chain Monte Carlo (MCMC) 

sampling, using MatlabStan, the Matlab interface to the Stan Modeling Language[143]. For brevity 

the full experimental results are not shown here, but only the estimated model parameters along 

with their standard deviations are shown in Table 4-1. Here the model parameters follow a 

multidimensional normal distribution with diagonal variance-covariance matrix viz. the model 

parameters are uncorrelated. This later assumption simplified the solution of the RNMPC problem. 

For calculating the model prediction errors, 500 MCMC simulations were run with sampled model 

parameters for all the cases viz. open loop, MPC, RNMPC. 

Table 4-1. Estimated model parameters along with standard deviations 

Parameter Mean Standard Deviation 

bk  (#/cm3-min) 720 60 

gk  (cm/min) 4.49 X 10-4 0.18 X 10-4 

g  1.0025 0.01 

b  1.1860 0.11 

0  0.0001 0.0002 

 

4.3.1 Open loop optimization  

The open loop optimization problem was solved considering the nominal values of model 

parameters, while the actual process evolved with uncertainties in model parameters. Figure 4-4a-

c show evolution of antisolvent, API solution and binder flow rates and Figure 4-4e-h shows a 

schematic of the process evolution. During stage 1, API solution is added to the antisolvent (Figure 

4-4a) which induces API crystallization (Figure 4-4e). During stage 2, addition of API solution is 
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stopped and binder is added to induce agglomeration (Figure 4-4f), which increases the MAS 

(Figure 4-4d). However, the MAS overshoots the set-point MAS (Figure 4-4d) in stage 3a 

(Figure 4-4g) due to rapid granule growth. Hence, antisolvent is again added in stage 3a (Figure 

4-4c) to induce further API crystallization. The rationale behind the further addition of antisolvent 

in stage 3 was to form smaller crystals, which upon agglomeration, would have given rise to 

smaller agglomerates. However, due to plant-model mismatch (Figure 4-5), the rate of API 

nucleation is much higher than the model predictions, which reduces the MAS drastically below 

the set-point MAS. It can be seen from Figure 4-4d, that the uncertainty associated with the MAS 

predictions are huge, since the open-loop optimizer is not aware of the plant-model mismatch.  

 

Figure 4-4. (a) Evolution of API solution flow rate, (b) binder flow rate, (c) anti-solvent flow 

rate, and (d) particle size during the different stages of optimization. (e) In stage 1, API solution 

is added to antisolvent to form the primary crystals. (f) In stage 2, addition of API solution is 

stopped and binder is added to induce agglomeration. (g)  In stage 3a, binder addition is stopped 

and antisolvent addition is started to induce further formation of primary crystals by 

desupersaturation (h) In expected scenario stage 3b, smaller agglomerates were expected. (i) 

However in reality in stage 3b, due to excessive primary nucleation, there was not enough binder 

to agglomerate the primary crystals. 
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Figure 4-5. Model Prediction vs physical process for evolution in stage 3 of process after 

antisolvent addition. Model parametric uncertainties give rise to the plant-model mismatch. 

4.3.2 Deterministic MPC 

Figure 4-6a-c show the evolution of the process variables and Figure 4-6d shows the evolution 

of the mean agglomerate size. Comparing Figure 4-6a-c and Figure 4-4 a-c, it can be seen that 

the major differences in flow rate profiles occur during stages 3a-b. The antisolvent addition is 

stopped during stage 3b, since the controller anticipated the MAS would end up below the 

threshold MAS, due to rapid API nucleation during stage 3b. Thus, although the controller is not 

aware of the plant-model mismatch, it takes proactive actions to mitigate the effects viz. addition 

of more binder in stage 3b (Figure 4-6b). This induces further agglomeration of the fine crystals 

generated in stage 3b, which increases the MAS (Figure 4-6d) after the slight dip. This illustrates 

the efficiency of feedback control to steer the system close to the target end-of-batch MAS, even 

in the presence of parametric uncertainties. A schematic of the evolution of the system in the 

various stages is shown in Figure 4-6e-h. However, even after introduction of feedback control, 

the end-of-batch MAS (1150 𝜇𝑚) is still higher than set-point MAS (1000 𝜇𝑚), which necessitates 

the use of RNMPC to improve controller performance.  It can be seen from Figure 4-6d that the 

uncertainty associated with the MAS predictions are much less compared to Figure 4-4d, even 
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under the presence of plant-model mismatch. This points to the efficacy of feedback control to 

bring the system to the desired end-of-batch set-point and simultaneously reduced the uncertainty.  

 

Figure 4-6. (a) Evolution of API solution flow rate, (b) binder flow rate, (c) anti-solvent flow 

rate, and (d) particle size during the different stages of optimization. (e) In stage 1, API solution 

is added to antisolvent to form the primary crystals. (f) In stage 2, addition of API solution is 

stopped and binder is added to induce agglomeration. (g)  In stage 3a, binder addition is stopped 

and antisolvent addition is started to induce further formation of primary crystals by 

desupersaturation (h) In stage 3b, the optimizer predicts excessive nucleation and hence stops 

antisolvent addition and induces further agglomeration via binder addition (i) In stage 3c, binder 

addition is stopped and the process MPS reaches very closed to the set-point MPS.  

4.3.3 Robust nonlinear model predictive control (RNMPC) 

Figure 4-7a-c shows the evolution of the process variables and Figure 4-7e-h show a schematic 

of the process evolution on implementing RNMPC. Comparison of Figure 4-6b and Figure 4-7b 

shows that the binder is added much earlier in the process during RNMPC. This is due to the 

inherent nature of the controller formulation viz. the controller anticipates the uncertainties in the 

process output due to model parametric uncertainties. Thus, it takes the riskier control moves viz. 

binder addition earlier in the process to hedge against the inherent process risk. Figure 4-7d shows 
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that the MAS increases beyond the set-point again around 70 mins. However, after antisolvent 

addition in stage 3 (Figure 4-7c), the end-of-batch MAS (995 𝜇𝑚) is very close to the target MAS. 

Addition of further antisolvent in stage 3a depletes the residual supersaturation and generates fine 

PCs. The residual binder from stage 2 now agglomerates the in-situ generated crystals in stage 3a, 

to produce agglomerates of desired size.  

Table 4-2 shows the difference from the end-of-batch MAS and set-point MAS for the three 

cases, averaged over 500 model simulations. The difference is the highest for open-loop 

optimization which diminishes upon implementation of MPC. However, the difference (15%) is 

still higher than the user-specified threshold (5%). Implementation of RNMPC reduces the 

difference to 2% and drastically improves controller performance. It is to be noted that the solution 

time of the open-loop optimization problem is the highest, since a global optimizer was used for 

this case. But for solutions of MPC and RNMPC problems, a local optimizer was used, which 

provided faster solutions. However, the solution time for one-run of the RNMPC (13.6 mins) is 

higher than the sampling time (11 mins), which makes it practical implementation infeasible. In 

the future, faster methods for RNMPC implementation need to be developed to enable real-time 

process implementation. It can also be seen from Figure 4-7d that the uncertainty associated with 

SMPC is much less, compared to Figure 4-4d and Figure 4-6d. This is because when the online 

controller carries out stochastic simulations, it finds the optimal control moves which reduces the 

uncertainty associated with the model output, along with reducing the end-of-batch deviation 

between the expected value of the deviation between the model predictions and the set-point. It is 

to be noted that in Figure 4-7d, the MPS decreases rapidly around 66 mins due to rapid nucleation 

from the antisolvent addition. However the residual binder from Stage 1 agglomerates these fine 

crystals, which again increases the MAS in stage 3b.  
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Figure 4-7. (a) Evolution of API solution flow rate, (b) binder flow rate, (c) anti-solvent flow 

rate, and (d) particle size during the different stages of optimization. (e) In stage 1, API solution 

and binder are added to antisolvent to form the primary crystals and agglomerate them (f) In 

stage 2, API solution and binder addition are stopped. (g)  In stage 3a, antisolvent addition is 

started to induce further formation of primary crystals via de-supersaturation (h) In stage 3b, 

antisolvent addition is stopped and the system reaches the desired end-of-batch mean particle 

size.  

Table 4-2. Difference of MAS from set-point MAS for open loop optimizer, deterministic MPC 

with parametric uncertainty and MPC with surrogate model reconstruction. 

Controller Type End-of-batch 

MAS 

Deviation Solution 

Time 

(mins) 

Open Loop Optimizer 515 𝜇𝑚      48% 200.8 

Deterministic MPC  1153 𝜇𝑚 16% 7.1 

Robust NMPC 995 𝜇𝑚 2% 13.6 



80 

 

 Conclusions 

In conclusion, a comparative study over different kinds of controller designs viz. open loop vs 

closed loop, was carried out on a SA process. The target of the controller was to design the control 

moves viz. flow rates of API solution, antisolvent and binder, to obtain the set-point end-of-batch 

MAS specified by the customer. The process model was constructed, and the uncertainties in the 

model parameters were quantified from lab scale experimental data. The open loop optimization 

problem, run with nominal values of the model parameters, was found to be insufficient to reach 

the target end-of-batch MAS. MPC, which incorporates feedback control via solution of an online 

optimization problem, was found to be give much better controller performance. Since MPC 

updates the model predictions in real-time based on in-situ measurements, it was able to predict 

the large deviations in the end-of-batch product quality and adjust for the controller actions 

accordingly. However, the deviation in the MPC objective was still higher than the user-specified 

threshold (5%), which necessitated the use of RNMPC based on surrogate model reconstruction 

using PCE. The controller performance from the RNMPC improved drastically, as quantified by 

the very low deviation (2%) from the user-specified threshold. However, the solution of the 

RNMPC takes much longer since multiple optimization problems are solved, based on sampling 

of the uncertain parameter space. In the future, faster techniques for RNMPC implementation need 

to be developed to enable real-time implementation. Alternatively, process modifications can be 

carried out to change the process dynamics, to enable real-time implementation of RNMPC in its 

current formulation. One limitation of the proposed RNMPC formulation is that the model 

parameters were assumed to be uncorrelated, which simplified the solution of the RNMPC 

problem. However, depending on the API, this assumption may not always hold good. In the future, 

novel PC expansions viz. arbitrary polynomial chaos[144] need to be developed, which can 

generate low dimensional surrogate models for correlated model parameters. 

However, one of the major problems with traditional SA technology is that it is very difficult 

to co-agglomerate APIs and excipients using a binder. The difficulty stems from the differences in 

surface wettabilities of the APIs and excipients (Figure 4-8). If there are PCs of API and excipients 

in solution, the only situation when the binder will wet both the APIs and excipients, with equal 

vigor, is if the contact angle of the binder is the same for both. However, for most practical 

situations, the contact angles are different, due to which the binder preferentially binds the APIs 

and not the excipients. At the end of the experiment, this produces a slurry of API agglomerates 
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and primary particles of excipients, which defeats the primary purpose of co-agglomeration. This 

necessitated the development and deployment of a novel Spherical Crystallization technology to 

enable rapid co-agglomeration, as discussed in the following chapters.  

 

 

Figure 4-8. Challenges with co-agglomerating APIs and excipients simultaneously, using binder. 
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5. MECHANISTIC INSIGHTS INTO SPHERICAL CRYSTALLIZATION 

GUIDED BY PROCESS ANALYTICAL TECHNOLOGY : TOWARDS 

QUALITY BY DESIGN FOR PHARMACEUTICAL PROCESS 

INTENSIFICATION 

Reproduced with permission from Kanjakha Pal+, Christopher L. Burcham*, Daniel J. Jarmer*, 

Ramon Peña+, Zoltan K. Nagy+. Submitted to Crystal Growth and Design, in review.  
+Davidson School of Chemical Engineering, Purdue University, West Lafayette. 

*Eli Lilly and Company, Lilly Technology Center, Indianapolis. 

 Introduction 

Spherical Crystallization (SC) [145] [117] is a bulk property enhancing crystallization technique 

that can be carried out through emulsion solvent diffusion (ESD) [146] or spherical agglomeration 

(SA) [147]. ESD is a particle design technique [148] that requires the stabilization of an emulsion, 

carrying the active pharmaceutical ingredient (API) solution, followed by crystallization within 

the emulsion via solvent diffusion. SA [14] agglomerates crystals in suspension by the addition of 

a bridging liquid (binder), which is immiscible with the solvent mixture and preferentially wets 

the crystals [10]. SC enables process intensification (PI) [116] in Pharmaceutical Manufacturing 

(PM) by reducing the number of downstream unit operations such as milling [149][150], and 

granulation [88].  

The key breakthrough in these particle technologies will be the ability to formulate the drug 

product (DP) directly in suspension [151]. Excipients are added to the active ingredient to increase 

the downstream manufacturability [152] and bioavailability [153][134] of the tableted DP. 

Incorporating excipients within the API agglomerates [154] using SA has been very challenging 

due to the complex nature of surface interactions with the binder.  ESD enables co-agglomeration 

of APIs and excipients directly within the crystallizer, which can potentially lead to direct 

compression formulations [155]. Pawar et al. [156] was the first to experimentally prove the 

concept of co-agglomerating an API with an excipient using SC.  Genikal et al. [157] described 

the formulation of co-agglomerates of Naproxen with Polyvinyl Pyrrolidone and Polyethylene 

Glycol. Raval et al. [158] elucidated the role of excipients in the crystallization of albendazole and 

found the presence of excipients to be critical to obtain co-agglomerates with desired powder 

properties. Garala et al. [159] used Quality-by-Design (QbD) approaches to develop co-
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agglomerates of racecadotril and loperamide hydrochloride. They demonstrated that multivariate 

statistical methods including factorial Design of Experiments (DOE), and Response Surface 

Modeling (RSM) could be used to characterize the sources of variability in the co-agglomeration 

process. Co-agglomeration of two active ingredients have also been demonstrated using ESD. 

Viswanathan et al. [160] agglomerated Mefanamic Acid and Nabumetone to produce spherical 

particles with improved micrometric properties.   

In recent years, the USFDA has been encouraging pharmaceutical companies to shift from 

the traditional Quality-by-Testing (QbT)  framework to a Quality-by-Design (QbD) framework 

[118][161]. QbD emphasizes a systematic approach to process development [162] based on 

thorough scientific understanding of the manufacturing processes. However, fundamental 

mechanistic understanding of the ESD process is still lacking from literature. Process analytical 

technology  (PAT) tools [163] are one of the key enablers of QbD. PAT enables process 

understanding [164] and can enhance prior process knowledge during process development. PAT 

tools [54] including focused beam reflectance measurement (FBRM) [165], spectroscopic tools, 

such as UV-Vis [166], Raman [167], and IR [168] have been the mainstay of pharmaceutical 

process understanding, especially crystallization. Howard et al. [169] carried out a PAT based 

investigation of polymorphic transformation during antisolvent crystallization of sodium benzoate 

from IPA/water. Simone et al. [166] used a composite sensor array of spectroscopic tools including 

NIR and ATR-UV/Vis along with FBRM and particle vision and measurement (PVM) [170] [171] 

to design an intelligent decision support system for pharmaceutical crystallization. However, 

literature studies on the use of PAT tools for process understanding of ESD have been relatively 

scarce.  

The focus of this work is to understand the fundamental mechanism of crystallization of API 

particles inside the emulsion droplets. This is critical to controlling the primary particle size 

distribution of API inside the co-agglomerates, which influences the bioavailability of the 

agglomerates. However, due to the fundamental multiscale nature of the process., the evolution of 

the particulate population within the droplets cannot be observed experimentally. On the other 

hand, the evolution of the droplet population can be experimentally observed by using in-situ PAT 

tools viz. FBRM. The dynamics of crystallization within the droplets also depend on the critical 

process parameters (CPPs) viz. API solution concentration, solvent to antisolvent ratio, emulsifier 

concentration, which is ultimately reflected in the statistics of droplet population recorded via the 
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FBRM. This work develops the first-of-its-kind inferential deductive approach (IDA) where 

statistics from time evolution of FBRM counts has been used to infer the relative time scales of 

nucleation and growth within the droplets. This work thus proposes a new multiscale framework 

where in-situ macroscale process data from PAT tools can be used to understand the fundamental 

mechanisms at the microscale, which will open new vistas for product and process design. 

 Experimental Section 

5.2.1 Chemicals and analytical methods 

Materials 

Ibuprofen (>99 % purity, BASF Corporation) was used as model API. Polyvinyl Alcohol (4% 

Aqueous Solution, Ward’s Science) was used as an emulsifier. Acetone (99.5 % purity, Fischer 

Chemicals) was used as solvent. Talc (99.3 % purity, Fischer Chemicals) was used as an excipient. 

Deionized water was used as the antisolvent.  

Sample characterization 

Optical micrographs of the spherical agglomerates were taken using an optical microscope (Nikon 

SMZ 1500 stereomicroscope) at 0.75X resolution. The samples were also characterized by using 

a Scanning Electron Microscope (FEI Quanta 3D FEG Dual Beam SEM). A G-400 FBRM probe 

from Mettler-Toledo with IC FBRM 4.3 software (Mettler-Toledo) was used to monitor the 

Droplet Size Distribution within the crystallizer. 

5.2.2 Process Description 

An overview of the process development is shown in Figure 5-1. All experiments were carried 

out in batch mode. A 1L jacketed crystallization vessel was filled with the antisolvent, water and 

the water-soluble stabilizer (PVA) was dissolved in it. The system was stirred at the desired 

agitation rate (400-800 rpm). The API was dissolved in acetone (solvent) in a feed vessel. Talc 

(excipient) was dispersed in the API solution under constant agitation and the dispersion was 

pumped into the antisolvent at a controlled rate of 2 mL/min as shown in Figure 5-1a.  

As soon as the API solution droplets meet the antisolvent, the emulsifier attaches to the droplets 

(Figure 5-1b). This is necessary to prevent droplet coalescence, which would cause random 

particulate agglomeration, thereby preventing the formation of spherical co-agglomerates with 

controlled size distribution. Since the solvent within the emulsion droplets and the antisolvent in 
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the continuous phase are miscible, diffusion of antisolvent into the emulsion droplets starts 

immediately (Figure 5-1c). Since the API is insoluble in the antisolvent, it starts crystallizing 

within the droplets. The excipients are trapped within the emulsion droplets, which ultimately leads 

to the formation of API-excipient co-agglomerates. The pumping of API solution is stopped after 

10 min (Figure 5-1d) and the evolution of the process is tracked until the end-of-batch time (2 h). 

At the end of the batch, the suspension is filtered under vacuum and then air dried in an oven at 

35℃ for one day. The dried agglomerates are then characterized for further analysis. 

Figure 5-2a shows a schematic of the droplet population within the crystallizer along with 

the FBRM. The FBRM only measures the chord length distribution of the droplet population, from 

which the droplet size distribution (Figure 5-2b) can be calculated [172]. However, the crystal 

population within the droplet viz. the primary particles are not measured by the FBRM directly. In 

this work, the dynamics of the droplet size distribution is used to get an inferential understanding 

on the evolution of the primary particle population within the droplets (Figure 5-2b). It is to be 

noted that the agglomerates influence the manufacturability of the drug substance, such as 

flowability whereas the primary particles influence the bioavailability (Figure 5-2a). 
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Figure 5-1. Overview of process development for emulsion solvent diffusion (a) emulsifier is 

dissolved in antisolvent, which is stirred at constant rpm, (b) API solution is pumped into the 

antisolvent in the crystallizer. Since the solvent within the emulsion droplets and the antisolvent 

in the continuous phase are miscible, diffusion of antisolvent into the droplets takes place. (c) 

Since the API is insoluble in the antisolvent, it starts crystallizing out within the droplets. The 

API solution is stopped after 10 mins and the evolution of the process is tracked till the end-of-

batch time (120 mins). (d) Diffusion of antisolvent into the emulsion droplets and solvent out of 

the emulsion droplets in stage (b) and (c).  

(d) 
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Figure 5-2. Illustration of the two populations – droplet population and crystal population within 

the droplets. The droplet size distribution (DSD) can be measured using FBRM while the crystal 

size distribution (CSD) within the droplets cannot be measured directly, but its evolution can be 

inferred from the evolution of the droplet size distribution. 

 Results and Discussions 

The initial experiments were run with API concentration of 0.5 g/mL, emul  = 0.25%, sasr = 0.025 

and at 800 rpm. Figure 5-3a-b shows SEM images of the dried co-agglomerates. Figure 5-3a 

shows the spherical morphology of a singular product agglomerate. Figure 5-3c shows optical 

micrographs of the co-agglomerated product, which clearly shows the presence of spherical 

agglomerates. It is clear from Figure 5-3b that primary particulates of different morphologies are 

present in the final drug product. This is indicative of the presence of the API and the excipient 

inside the co-agglomerates where the well-defined primary particles are the Ibuprofen crystals and 

the particles of irregular morphology are the excipient particles. This provides evidence that the 

ESD process designed in Figure 5-1 can produce well-dispersed primary particles of APIs and 

excipients within the spherical drug product. However, the mere presence of API and talc in the 

product co-agglomerates does not provide any mechanistic process understanding. To gain a better 

process understanding, the effect of process perturbations on the dynamical evolution of FBRM 

counts is next investigated.  
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Figure 5-3. SEM image at (a) 1000X showing the presence of spherical co-agglomerates and (b) 

4000X showing the presence of both ibuprofen (API) and talc (excipient) in the filtered co-

agglomerates. (c) Optical micrographs of the final product co-agglomerates showing the 

presence of spherical particles. 

 

 

(a) 

(b) 

(c) 
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5.3.1 Effect of API Concentration 

Figure 5-4 shows the effect of concentration of initial API solution on the end-of-batch chord 

length distribution (CLD) in the crystallizer.  There are two populations within the crystallizer – 

the air bubbles and the emulsion droplets, which ultimately form the spherical agglomerates. A 

blank experiment was carried out where only the solvent (without any API) was pumped into the 

antisolvent. To distinguish between the FBRM peaks coming from the particles in the crystallizer 

and from the free emulsion droplets, a blank experiment was also carried out with just the emulsion 

droplets in the system (not shown). From these initial experiments, it was seen that the emulsion 

droplet peaks correspond to the peak at lower chord lengths (~ 3 𝜇𝑚 and 15 𝑚 ). These peaks at 

lower chord lengths were discarded from the subsequent analysis since only the peaks in CLD due 

to the particles were of interest.   

Figure 5-4 also shows that with increase of API concentration, the end-of-batch CLD shifts 

to the right increasing the final mean chord length (Table 5-1). Figure 5-5a-b Figure 5-7a-b show 

the difference in the evolution of FBRM counts for two different API concentrations of 0.5 g/mL 

and 0.125 g/mL. In Figure 5-5ba time lag between the FBRM counts evolution of smaller (10-

100 μm) and larger (100-1000 μm) particles is observed, which is not present in  Figure 5-5a The 

FBRM counts in Figure 5-5a also keep changing throughout the entire duration of the batch 

whereas the FBRM counts in Figure 5-5b stabilize after ~ 25 mins.  

 

Figure 5-4. End-of-batch chord length distribution (CLD) of ibuprofen-talc co-agglomerates at 

different initial API concentrations. The CLD becomes progressively right-skewed with increase 

in API concentration which indicates the formation of larger agglomerates. There are two peaks 

in the CLD – the peak at smaller chord length (~4 μm ) arises due to air bubbles in the 

crystallizer, whereas the peak at larger chord lengths (~90-200 μm) occurs due to emulsion 

droplets, which ultimately form product agglomerates. 
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Table 5-1. End-of-batch mean chord length increases with increase in API Concentration. 

API Concentration (g /mL) Mean Chord Length (𝝁𝒎) 

0.125 83 

0.25 92 

0.5 147 

 

 

Figure 5-5. Evolution of FBRM counts for (a) 0.5 g/mL (b) 0.125 g/mL illustrating the 

difference in dynamical evolution of particle counts in FBRM, which shows the time lag in 

evolution of small and large particle counts for a lower API concentration. 

A mechanistic hypothesis is proposed for the above observations in Figure 5-7a-b. For 

lower API concentration (C1 = 0.125 g/mL), the supersaturation generated is lower (S1) as 

illustrated in Figure 5-6. Thus, at t = 2 min, the rate of nucleation within the droplet is low followed 
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by low growth rates at t = 8 min (Figure 5-7a). At t = 10 min, the crystals within the droplet grow 

to a large enough size to exert stress on the droplet interface, which then starts to expand (Figure 

5-7a). This expansion of the droplet interface manifests as an increase in droplet size, which is 

then recorded as an increase in large particle counts in FBRM (Figure 5-7b). At t = 25 min, the 

supersaturation within the droplets is completely depleted, so the crystals within the droplets stop 

growing which leads to no expansion of the droplet interface (Figure 5-7a). This, in turn, manifests 

as stabilization of particle counts in FBRM (Figure 5-7b).  

However, at higher API concentration (C2 = 0.5 g/mL), the supersaturation generated is 

higher (S2, Figure 5-6). This gives rise to higher nucleation rates at t = 2 min (Figure 5-7b) 

followed by rapid crystal growth at t = 8 min, which puts high interfacial stress on the droplets. 

This yields a faster rate of droplet expansion, which leads to no time lag between the small and 

large particle counts in Figure 5-7a. The supersaturation within the emulsion droplets is now 

depleted at a slower pace, which leads to crystal growth and droplet expansion throughout the 

entire period of the batch. This manifests in continuous increase of droplet counts in the FBRM 

throughout the batch (Figure 5-7a). 

 

Figure 5-6. Evolution of operating point in phase diagram shows higher supersaturation for 

higher API concentration, which gives higher nucleation and growth rates. 
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Figure 5-7. (a) Droplet expansion for lower API concentration, which shows crystal nucleation 

at t=2 min followed by crystal growth at t = 8 min. At t=10 min, interfacial stress on droplets 

makes droplets expand which is recorded as increase of large particle counts in FBRM. At t=25 

min, the supersaturation is completely depleted, so the droplet stops expanding. (b) for higher 

API concentration, the rapid growth at 8 min leads to faster droplet expansion and since the 

supersaturation depletion is slower, the droplet keeps on expanding at t = 25 min. 

(a) 

(b) 
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5.3.2 Effect of Emulsifier Concentration                           

 

Figure 5-8. (a) End-of-batch chord length distribution becomes left skewed with increase of 

𝜑𝑒𝑚𝑢𝑙 (b) FBRM counts at high emulsifier concentration 𝜑𝑒𝑚𝑢𝑙 = 1.25 % stabilize after 30 mins 

(c) FBRM counts at low  emulsifier concentration 𝜑𝑒𝑚𝑢𝑙=0.25 % keeps changing throughout the 

batch 
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Experiments were conducted at 3 different emulsifier concentrations. Figure 5-8a shows that as 

the emulsifier concentration is increased, smaller sized particles are obtained. Figure 5-8b-c shows 

an interesting dynamical observations – for higher emulsifier concentration, the counts stabilize 

while for lower emulsifier concentration, the FBRM counts keep changing throughout the process. 

Table 5-2. Effect of emulsifier concentration on the end-of-batch mean chord length.  

Emulsifier Concentration (%) Mean Chord Length (𝝁𝒎) 

0.025 195 

0.25 144 

1.25 143 

 

         

 

Figure 5-9. (a) At lower emulsifier conentration, droplets in solution that encounter each other 

coalesce to form a larger droplet (b) at higher emulsifier concentration, droplet coalescence is 

prevented due to steric repulsion between emulsifier molecules on adjacent droplets. 

There are two hypothesis that can explain this observation 

(H1) The crystallization dynamics inside the droplets is different for φemul  = 0.25% , 1.25% 

similar to Figure 5-7a-b. This gives rise to differences in the growth rates of the droplets, which 

ultimately leads to different dynamics in the evolution of FBRM counts. 

(H2) Coalescence of droplets happens at low emulsifier concentration because the steric repulsion 

is not enough to prevent coalescence (Figure 5-9a). However, at higher emulsifier concentration, 

steric repulsion prevents droplet coalescence (Figure 5-9b).  

To quantitatively investigate the veracity of H1, the mass flux equation is taken into 

consideration following the Epstein-Plesset equation. A representative droplet of size 150 μm  has 

(a) 

(b) 
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been considered in this study. The API concentration inside the droplet has been assumed to be at 

its initial concentration of 0.5 gm/gm with a saturation concentration of 0.25 gm/gm. The radius 

of gyration of the polymer chain has been calculated according to the relation (49) [173], where 

pvaN  is the number of repeat units. The length of a polymer step has been calculated from equation 

(50), and the expanded coil radius of the polymer chains has been calculated according to equation 

(51). It has been assumed the polymers attach as a monolayer layer on the droplets, with the length 

of the polymer chain attached to the interface being equal to the expanded coil radius. 

 
0.65

g pvaR = N   (49) 

 
2

g 0.5

pva

pva

6R
l = ( )

N
  (50) 

 
0.6

exp pvaR = N l   (51) 

  

          The rate of diffusion of the antisolvent into the droplet is determined by the proportion of 

the surface area on the droplets, which is free of emulsifier. The total number of droplets and the 

total number of polymer chains in solution are calculated according to equations (52)-(53). Here 

solV  is the total volume of API solution and dropV  is the volume of the droplet. totV  is the total 

solution volume in the reactor, emulf  is the volumetric fraction of the emulsifier, poly  is the density 

of the polymer solution and polyMW is the molecular weight of the polymer.      

 sol
drop

drop

V
N =

V
  (52) 

 

 tot emul poly

poly

poly

V f ρ
N =

MW
  (53) 

The total expanded coil radius of all polymer molecules is calculated from equation the 

total perimeter of all the droplets is calculated from equation (55). The fraction of surface area of 

droplets occupied by the emulsifiers is calculated according to equation (56). 

 exp,tot exp polyR = R N   (54) 

 tot dropP = 2πRN   (55) 
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exp,tot

occ

tot

R
f =

P
  (56) 

The mass flux is calculated according to the Epstein-Plesset equation [174] , where the 

mass flux has been calculated at 40 min. The time-scale of diffusion of antisolvent into the 

droplets is calculated according to equation (58), and the time-scale for growth of primary 

crystals (PC) is calculated according to equation (59). Here CL  is a representative length of PCs 

and G is the growth rate calculated according to equation  (60). 

 
 
 
 

2

occ s

dm 1 1
= 4πR f D(c - c ) +

dt R πDt
  (57) 

 
drop AS

MT

V ρ
t =

dm

dt

  (58) 

 
C

G

L
t =

G   (59) 

 
  
  
  

G0

G1 s

T c
G = k exp

k c
  (60) 

Table 5-3. Numerical Estimates for variables associated with mass flux of antisolvent and crystal 

growth 

Variable Numerical Estimate 

D   
2.2 * 10-5 

2cm

s
  

CL   40 μm   

  

pvaMW   

100,000 

MTt  ( emulf  =0.25%) 2.68 s 

MTt  ( emulf  =1.25%) 2.76 s 

tG 3.1 s 
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Table 5-3 shows that MTt  is comparable to Gt , and changing the emulsifier conc from 0.25% to 

1.25% does not cause any substantial difference to MTt . This disproves hypothesis H1 and the 

only other plausible hypothesis i.e. H2 is selected. 

5.3.3 Effect of stirring speed 

Figure 5-10a shows that with increase in rpm of the stirrer, the end-of-batch mean chord length 

decreases which is substantiated in Table 5-4. The average shear rate is related to the impeller rpm 

according to equation (61), where sK  is a proportionality constant. sK is calculated from equation 

(62), where qN   is the impeller pumping number. qN   Is obtained from Table 5-4 in reference 

[175] and depends on the Reynolds number, which is obtained from equation (63). For the range 

of Re  in Table 4 in reference [175], qN =0.35 and hence sK =2.45. This implies the average shear 

rate scales directly with N, which is also illustrated in Table 5-4. The tip speed of the stirrer is 

calculated from equation (64). 

 
.

sγ = K N   (61) 

 s qK =7N   (62) 

 

2

sND
Re =

ν
  (63) 

 tip sU =πD N   (64) 
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Figure 5-10. (a) End-of-batch CLD becomes left skewed with increase in rpm of stirrer, (b) 

evolution of FBRM counts at higher rpm (800) shows increase of smaller particle counts 

throughout the batch, which is indicative of droplet breakage in the crystallzer.  

Table 5-4. End-of-batch Mean Chord Length decreases with increase in stirrer rpm 

Stirrer rpm 
tipU   

 (cm/s) 

Re .


  

(1/s) 

Mean Chord 

Length (𝝁𝒎) 

400 104.72 1123.6 16.33 142 

600 157.08 1658.4 24.5 123 

800 209.43 2247.2 32.67 98 

 

 

Droplet 

Breakage 

(a) 

(b) 

rpm = 800 
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 Hall et al.[176] showed that the Sauter mean diameter ( 32d  ) is inversely correlated with the 

rotor tip speed in in-line rotor-stator mixers, while Farzad et al. [177] showed that  32d   is inversely 

corelated to the average shear rate in the vessel  . This is related to increased mixing intensity 

with increase in tipU  and .


, which increases the local disruptive stress on the droplets. For low 

viscosity liquids, the only opposing cohesive stress ( c
  ) originates from the interfacial tension at 

the droplet interface. c
  is constant at different rpms, thus the net stress at the droplet interface 

increases with increase in tipU  and .


, which produces smaller droplets.  

 The increase in the rate of droplet breakage with rpm is substantiated from the FBRM counts 

in Figure 5-10b, which shows the counts in the lower bins progressively increasing with time. 

This contrasts with Figure 5-8b, where the FBRM counts stabilize after 25 minutes, which 

indicates a stable particle size distribution has been attained in the crystallizer.  

5.3.4 Effect of Solvent to Antisolvent Ratio 

Figure 5-11a shows that as sasr is increased, the final end-of-batch mean chord length of the 

particles reduces, which is substantiated in Table 5-5. At lower sasr = 0.0125, the small-particle 

(10-100  𝜇𝑚) FBRM counts increase monotonically throughout the batch (Figure 5-11b), whereas 

for higher sasr m= 0.05, the FBRM counts first increases until 12 min followed by decrease until 

the end-of-batch.  
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Figure 5-11. (a)  End-of-batch Chord Length Distribution becomes left skewed with increase in 

sasr; (b) at lower sasr, small-particle(10-100  𝜇𝑚) FBRM counts increase monotonically 

throughout the batch; (c) at higher sasr, FBRM counts first increase but then decrease throughout 

the batch. 

Counts increase 

monotonically 

Counts decrease 

(a) 

(b) 

(c) 

sasr = 0.0125 

sasr = 0.05 
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Table 5-5. End-of-batch mean chord length decreases with increase in sasr. 

sasr Mean Chord Length (𝝁𝒎) 

0.0125 255 

0.025 143 

0.05 135 

 

Note that the emulsifier concentration was increased proportionately to the increase in 

solvent to antisolvent ratio following previous work in literature [148]. Emulsifier attaches to the 

interface between the droplets and the continuous phase and reduces the interfacial tension. Thus, 

the emulsifier concentration should have been increased proportional to the increase in surface 

area of the droplet( S ), whereas it was increased proportionately to the increase in droplet 

volume (V  ).  A hypothetical case of increase in number of droplets is shown in Figure 5-12a 

where the increase in sasr led to an increase in the amount of emulsion droplets.  The increase in 

the number density of emulsion droplets led to an increase in the surface area (S  ) as well as the 

volume (V  ) of the droplets.  In equation (65),  1n  and 2n  are the number of droplets before 

and after increase of sasr and all the droplets are assumed to be monodisperse with radius r . 

 

2

2 1

3

2 1

( ) 4

4
( )

3

1

3
1





 = −

 = −




= 



S n n r

V n n r

r

S

V r

  (65) 

However, the increase in droplet surface area is higher than the increase in the droplet volume as 

shown in equation (65).  

Thus at high sasr, the surface area increased more than necessary, whereas the emulsifier 

amount was not increased proportionately. At high sasr, there is less emulsifier in solution than 

the nominal case (Figure 5-12b). Using equations (49)-(60), the time scales for mass transfer at 

two representative sasrs are calculated and shown in Table 5-6. At low sasr, MT G
t t  and hence 

the system is mass transfer limited. Figure 5-13b illustrates the increasing resistance faced by 

antisolvent molecules which leads to slower formation of primary crystals within the droplets. 
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However at a higher sasr (Figure 5-13a) MT G
t t , so there is faster diffusion of antisolvent 

followed by crystallization of PCs within the droplets.  

Table 5-6. Timescales of diffusion and primary crystal growth at low and high sasrs. 

Variable Numerical Estimate 

MT
t  (sasr = 0.05) 2.68 s 

MT
t  (sasr = 0.0125) 14.67 s 

G
t  3.1 s 

 

 

 

Figure 5-12. (a) Increase in sasr leads to an increase in the number of droplets in the crystallizer; 

(b) at a low sasr, the number number density of emulsifier molecules in solution is higher than 

nominal, while at high sasr, the number density of emulsifier molecules is lower than nominal. 
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Figure 5-13. (a) At higher sasr, the emulsifier concentration is lower than necessary; so the 

antisolvent diffusion is faster, which causes rapid crystallization and the droplets expand; (b) at 

lower sasr, the emulsifier concentration is higher than necessary; so the antisolvent diffusion is 

slower, which causes slower crystallization. 

5.3.5  Conceptual Model Formulation 

The fundamental mechanistic interpretations elucidated in Sections 5.3.1-5.3.4 opens a new vista 

of multiscale product and process design. In this paradigm, inferential analytics on real time PAT 

data is used to design particulate processes starting from the macroscale phenomena to the 

microscale attributes. Although the PAT guided inferential process understanding (PIPU) 

developed in this work does not directly give quantitative estimates of primary particles, it can 

provide valuable information into the development of a mechanistic process model. For brevity, 

the full mathematical model is not shown here, but will be discussed in detail in a follow-up work. 

However, for illustration the effect of this inferential mechanistic understanding on the 

mathematical model development is now elucidated.  

A preliminary mechanistic population balance model (PBM) is given in equation (66) 

which describes the evolution of the droplet size distribution within the crystallizer. The evolution 

of the crystal population within the individual droplets is taken into consideration via the moments 

of the population ( 0 1 2 3, , ,    ).  
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Here ( , )i 
_ _

sola,C,C  represents the droplet population within the crystallizer where the internal 

coordinates are the droplet size ( a ) , the average API concentration ( C ) and solution concentration 

within the droplets ( sol
C ) and the moments of the crystal population ( i

 ). The function 

_

( , , , )h a C t represents the rate of birth and death of droplets due to breakage. The last term 

represents that the API solution is pumped into the crystallizer only up to a certain time ( solt ) viz. 

10 min in Figure 5-1c. An additional term associated with the growth of the droplets, due to stress 

generated from the primary crystal growth, has also been included in equation (66).The functional 

dependence 0( , )G a  indicates that the growth rate is dependent on the droplet size as well as the 

mass of PCs within the droplet.  

In equation (66), 
_

( , , , )h a C t represents the birth and death of droplets only due to breakage 

as elucidated in Lam et al. [178] However, as illustrated before, agglomeration of droplets happens 

at lower emulsifier concentration. Thus, an agglomeration term needs to be introduced for the 

droplets, in addition to the breakage term, which is illustrated in equation (67). 
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  (67) 

The rate of agglomeration of two particles is also dependent on the emulsifier concentration in the 

crystallizer ( eC  ) via equation (68). Here the rate of agglomeration decreases with an increase of 

emulsifier concentration (Figure 5-9), where  is a scaling constant that needs to be estimated 

from experimental data.  

 ,0

,0

( , , ) ( , , ) exp( )    = − e
e e

e

C
a C a C

C
  (68) 

 Conclusions 

In this work, a systematic study was carried out to gain a fundamental understanding of the 

mechanistic processes underlying emulsion solvent diffusion. An in-situ PAT tool viz. FBRM was 

used to gain a mechanistic understanding of the dynamics of antisolvent diffusion and 
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crystallization within the emulsion droplets. This work proposes a novel framework where 

dynamical trends in FBRM counts can be used to gain a multiscale understanding of fundamental 

mechanistic processes happening within the emulsion droplets. The work also promotes a system 

perturbation approach to process understanding viz. by changing the critical process variables 

around their nominal values and deconvoluting the underlying process mechanisms from the 

process dynamics. This approach enabled to identify phenomena, that emerged upon changing the 

API concentration and emulsifier concentration viz. droplet expansion due to stress from crystals, 

droplet coalescence, which had not been considered before. A mechanistic process model is 

proposed and modifications to the process model, due to the enhanced process understanding, are 

then illustrated. In the next chapter, the full multiscale PBM has been solved for a representative 

experimental scenario, which will enable rapid process design for new API-excipients 

formulations in the drug development pipeline. 
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6. MATHEMATICAL MODELING OF EMULSION SOLVENT 

DIFFUSION FOR SPHERICAL CRYSTALLIZATION: HOW TO DE-

CONVOLUTE PRIMARY CRYSTAL SIZE DISTRIBUTION FROM 

AGGLOMERATE SIZE DISTRIBUTION? 

Reproduced with permission from Kanjakha Pal+, Doraiswami Ramkrishna+, Zoltan K. Nagy+ 
,submitted to Industrial and Engineering Chemistry Research, in review.  
+Davidson School of Chemical Engineering, Purdue University, West Lafayette. 

 Introduction 

Pharmaceutical manufacturing (PM) is undergoing an era of rapid change [179]. The cost of 

pharmaceutical research and development (R&D) has increased significantly [84] over the past 

decades, however manufacturing innovations have not caught pace to offset this cost increase. 

Spherical crystallization [145] is a process intensification (PI) strategy, which can lead to 

significant cost savings. Traditionally, PM first involves drug substance (DS) manufacturing [180] 

following the sequence of unit operations crystallization [181], filtration[182], drying [183]. This 

is followed by drug product manufacturing [155]  following, for example, the sequence of unit 

operations milling [184], blending [87], granulation [185] and tableting [186]. The major barrier 

to integrating DS and DP manufacture was the inability to control the bioavailability [187] and 

manufacturability [188] simultaneously while crystallizing the active pharmaceutical ingredient 

(API). Spherical crystallization [116] (SC) produces spherical agglomerates of fine crystals 

directly within the crystallizer, thereby enabling direct compounding of the drug substance. This 

also allows to bypass the DP manufacture stages viz. milling, granulation, blending, which 

substantially reduces the cost of manufacturing.  

The US Food and Drug Administration (FDA) has been encouraging pharmaceutical 

companies to shift from a Quality-by-Testing (QbT) [189] to a Quality by Design (QbD) [190] 

paradigm. QbD emphasizes enhancing process understanding [159] based on elucidation of the 

underlying process mechanisms. Mathematical modeling [191] is one of the key enablers of QbD 

paradigm in PM. Mathematical models enhance process understanding [192] and provide in-silico 

tools for process optimization [193], which significantly reduces the experimentation cost [194] 

during drug development. Mathematical models fall into three broad categories – empirical [195], 

mechanistic [196] and hybrid models [197]. Mechanistic models of particulate processes enable 
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prediction of the critical quality attributes [159] (CQAs) of the end-of-batch products viz. particle 

size [198], shape [199] as a function of the critical process parameters [117] (CPPs).  

Population balance equations (PBE) [200][30][201] have been widely used to model 

particulate processes. PBEs can characterize the evolution of the particle size distribution in the 

crystallizer, one of the most important CQAs of the drug substance (DS). This makes PBEs one of 

the most effective frameworks to characterize the multiscale evolution of droplet population, along 

with the crystal population within the droplets. Aamir et al.[202] modeled the dynamic evolution 

of crystal size distribution of a crystallizer using PBEs. They found that a combined method of 

moments (MOM) and method of characteristics (MOC) approach was much faster for model-based 

dynamic optimization of crystallizers. Various numerical methods have also been developed to 

solve PBEs. Kumar et al.[109], [203] used fixed pivot and moving pivot techniques to solve PBEs 

incorporating various mechanistic rate processes viz. nucleation, growth and agglomeration. PBEs 

have also been widely used to model spherical agglomeration unit operation, where particulate 

agglomeration takes place in suspension [96]. Blandin et al. [9] used PBEs to understand how the 

timescales of the fundamental mechanistic processes – nucleation, growth and agglomeration 

affect the product agglomerates. Madec et al. [123] used multi-dimensional agglomeration kernels, 

which incorporated novel process and product properties viz. bridging liquid concentration, 

particle size in the model formulation. However, the traditional SA process needs the presence of 

a binding liquid to agglomerate the crystals. This creates additional problems when a suitable 

binder-solvent combination is not available. 

Emulsion solvent diffusion [204] (ESD) can produce spherical crystals in solution, without 

the addition of a binder. Kawashima et al. [153] was the first to describe the ESD process where 

coacervate droplets were gradually converted to pliable beads due to solvent diffusion. Niwa et al. 

[205] prepared polymer coated microcapsules using a two stage emulsion based process. Khidr et 

al. [206] prepared sustained release microspheres of meclofenamic acid using ESD. However, 

although there have been numerous literature reports on experimental work using ESD, 

mathematical modeling of spherical crystallization using ESD has been relatively rare. The 

exception was the work by Chang et al. [207]  who modeled the pervaporation process of emulsion 

droplets to produce spherical particles. They compared PBEs to plug flow reactor models and 

found PBEs to yield better predictions on experimental measurements of PSDs. However, PBEs 

have been used to model mass transfer in liquid-liquid dispersions, which have many similarities 
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in the underlying process mechanism with ESD. Some of the earlier works for this purpose [208] 

considered the inlet dispersion to the reactor to be heterogeneous and used interfacial transport 

equations to model the mass transfer process. Shah and Ramkrishna [209] were the first to use 

PBE for modeling mass transfer into the dispersed phase, which took into account the 

heterogeneity induced in the droplet population due to fundamental rate processes viz. breakage. 

It was found using PBEs for this purpose significantly improved the model predictability over the 

previous works, which considered only the rate of interfacial mass transport into the droplets.  

  In the current work, PBEs have been used to model the multiscale evolution of droplet population 

and the population of crystals within the droplets during ESD. Method of characteristics [210] 

have been used to solve the PBEs and the time-course evolution of the size distributions were 

evaluated. The evolution of the conditional number density of primary crystals within the droplets, 

given two widely different droplet sizes, was then investigated. The time course of evolution of 

the API and the solvent concentration within the droplets were also elucidated to investigate the 

differences in the crystal size distribution for two different droplet sizes.  

 Theory 

6.2.1 Process Description 

ESD is a particle design methodology to produce spherical crystals directly in the crystallizer. An 

example process flow diagram of a traditional PM involving a sequence of unit operations is shown 

in Figure 6-1a. The impure API solution coming from upstream processes is first crystallized to 

remove any impurities. Simultaneously, the crystallization unit operation serves as a particulate 

design stage to control the product CQAs viz. particle size, shape. This is followed by milling to 

improve the bioavailability of the dried crystals. These milled crystals are further agglomerated in 

a granulator along with excipients to improve the downstream manufacturability of the 

agglomerates. ESD is a one-step method that combines the processes of crystallization, milling, 

blending and granulation to make spherical co-agglomerates (Figure 6-1b) inside the crystallizer, 

which can be sent directly to the tablet press.  
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Figure 6-1. (a) An example process flow diagram of a traditional PM process for solid oral 

dosage pharmaceutical manufacturing, where the downstream manufacturing consists of seven 

unit operations, (b) Proposed process flow diagram of an intensified PM process, where the 

downstream drug manufacturing consist of only four unit operations. The unit operations milling, 

granulation and blending have been eliminated and the particle design for producing spherical 

agglomerates is carried out directly inside the crystallizer. 

  

(a) 

(b) 
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Figure 6-2. Process development for SC (a) API solution pumped into crystallizer creates 

droplet at the nozzle tip (b) Emulsifier attaches to detached droplet interface (c) Crystallization 

occurs within droplets due to supersaturation generation (d) Due to good miscibility, antisolvent 

from bulk solution diffuses into droplets while solvent inside droplets diffuses out. Since the API 

within the droplet is insoluble in the antisolvent, it crystallizes out. (e) Droplet breakage occurs 

due to collision with the stirrer, however droplet agglomeration is prevented due to emulsifier 

attached to droplet interface. 

Figure 6-2 shows a process development schema for the SC process. API solution is first 

pumped into the crystallizer, which contains the emulsifier dissolved in an anti-solvent via a dip-

tube. In Figure 6-2a, droplets are generated at the nozzle of the dip-tube, with size determined by 

the diameter of the nozzle tip and the fluid flow conditions in the crystallizer. Figure 6-2b shows 
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the emulsifier in solution attaching to the interface of the detached droplets followed by droplet 

detachment into the continuous phase (Figure 6-2c). Since the solvent within droplets and 

antisolvent in the bulk phase are miscible, diffusion of solvent from the droplets into the bulk phase 

starts (Figure 6-2d). This is followed by counter-diffusion of the antisolvent into the droplets, 

which leads to API crystallization within the droplets (Figure 6-2c-d). Droplet breakage also 

occurs inside the reactor due to collision with the stirrer and the walls of the crystallizer (Figure 

6-2e). However, droplet agglomeration is prevented due to the emulsifier attached to the droplet 

interface.  

 

Figure 6-3. API tablet produced in the tablet press contains the spherical crystals, which forms 

the compact tablets due to the compression force exerted by the tablet press. The tablet ingested 

by the human is broken down in the digestive tract, however the actual bioavailability of the 

tablets depends on the primary crystal size distribution that forms the agglomerates. 
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Figure 6-3 shows the schema of DP formation by SC process, followed by subsequent 

ingestion into the human body. The spherical crystals from the crystallizer are first filtered and 

dried and then sent directly to the tablet press, where they are compressed to form tablets. The 

manufacturability of the tablets in the tablet press is determined by the agglomerate size 

distribution (ASD). However, the dissolution of the API in the human body is dictated by the size 

distribution of the primary crystals forming the agglomerates. 

Thus, the most important critical quality attributes (CQAs) of the product agglomerates are 

the agglomerate size distribution (ASD) and the size distribution of the primary crystals (PC) 

within each agglomerate. However, in-line particulate characterization tools viz. focused beam 

reflectance measurement (FBRM), particle vision measurement (PVM) and offline 

characterization tools viz. laser diffraction can only provide information about the ASD.  However, 

real-time measurement of CQAs that control the agglomerate bioavailability remains elusive. This 

necessitates the use of mechanistic mathematical models, which can provide information about the 

evolution of the PC size distribution within each agglomerate. The primary focus of this work is 

to investigate the effect of the droplet size on controlling not just the manufacturability, but also 

the bioavailability of the product agglomerates.  
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6.2.2 Mathematical Modelling of Spherical Crystallization 

           

 

Figure 6-4. (a) Interfacial mass transport model, where a heterogeneous droplet population is 

considered at the reactor inlet (b) Population balance model, where a homogeneous droplet 

population is considered at the reactor inlet. 

Figure 6-4a-b show the differences in mass transport between an earlier proposed model 

viz. Interfacial transport (IT) model (Gal-or et al. [208]) from the PBM (Shah et al.[209] ). For 

the IT model, a heterogeneous droplet population is considered at the inlet of the reactor. Mass 

transport of anti-solvent occurs into the droplets, which leads to a progressive depletion of 

solvent concentration. However, for smaller droplets the rate of transport is higher, which leads 

to lower solvent concentration at the exit. But for the PBM, all the droplets at the reactor inlet are 

of the same size. Simultaneous mass transfer of antisolvent and droplet breakage occurs in the 

crystallizer, which leads to a heterogeneous droplet population at the exit in terms of two internal 

coordinates viz. droplet size and solvent concentration. 

Assumptions 

(a) The API crystals formed within the droplets are forming compact bonds; however, the 

agglomeration process of crystals within the droplets is not modeled here. 

(a) 

(b) 
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(b) The expansion of the droplet interface, due to stress from the growing crystals, is not 

considered in this model. The size of the final product agglomerates is assumed to be 

determined by the size of the droplets. 

(c) The emulsifiers attached to the droplet interface are assumed to be removed during the 

filtration, washing and drying stages and do not end up in the final product agglomerates.  

           The PBE for the droplet population is given by equation (69). Here   represents the 

population density of droplets in the crystallizer,  represents the droplet age, 
_

C represents the 

average solute concentration and 
_

solC represents the average solvent concentration within the 

droplets, i represents the i-th moment of crystal population within the droplets, 
0

•

N represents 

the rate of droplets entering the crystallizer with internal coordinates 0 0 ,0[ 0 ]=0Z sola C C ; 

_

( , , , )h a C t represents the birth and death of droplets due to breakage. The last term comes due to 

the dilution effect in the crystallizer – for  solt t the volume of the solution in the crystallizer keeps 

changing. The initial solution volume is  solV ( the initial volume of the continuous phase) and the 

flow rate of API solution into the crystallizer is 
•

solF . 
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i

sol
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F
H t t

V F t

  (69) 

            The population balance equations for the primary crystals within the droplets are given by 

equations (70)-(73). In equation (73), a is the droplet size and MTK is the mass transfer coefficient 

at the droplet interface.   

 0 =
d

B
dt

  (70) 

 
1


 −=i

i

d
iG

dt
  (71) 
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 23 = − v

dC
k G

dt
  (72) 

 3

3

3
1





•

= −
−

sol v
sol MT sol

v

dC k
C aK C

dt k
  (73) 

            Equations (2-5) can be solved using an ODE solver provided the initial droplet size 

distribution (DSD) is known. The challenge comes with solving equation (1), which is an integro-

partial differential equation with non-homogeneous terms. In view of this, numerical methods need 

to be used to solved equations (69)-(73) in a nested manner.  

             The API supersaturation within the droplet is given by equation (74).  The nucleation and 

growth rates of primary crystals within the droplets are given by equations (75)-(76).  
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  (74) 
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  (76) 

 

The right-hand side of equation (1) is redefined as equation (77). 
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  (77) 

Using equation (77), equation (1) can be now redefined as equation (78). 

 
3

0

( ) ( ) ( ) ( , , , , , )
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sol i sol
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C C H t a C C
t C C

  (78) 

The internal coordinates of the droplet are represented by a vector 0 1 2 3[ , , , , , , , ]    =Z sola C C  

and the number density can now be described by ( ) = Z . 

The breakage rate of droplets is given by equation (79). 

 ( ( ), , ) ( ( ), , ) ( ( ), , )h t h t h t  + −= −Z Z Z Z Z Z   (79) 



116 

 

where ( ( ), , )+
Z Zh t and ( ( ), , )−

Z Zh t are the rates of birth and death of droplets via breakage 

given by equations (80)-(81). 

,0 ,00 0

' / / / / / / / / / / /

0 0 0 0 0
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( , , , , , )
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   (80) 

 

_ _ _ _

( ( ), , ) ( , , , , , ) ( ) ( , , , , )    − −= = Z Z sol soli ih t h a c c t a a c c t   (81) 

Here ( ) Z represents the rate of breakage of droplets of state Z and 
/( )Z,Zp  represents the  

probability of formation of a droplet of state Z from a droplet of state /
Z . 

Further Assumptions 

(a) The rate of breakage of the droplet of state Z  is assumed to depend only on the droplet 

size, which is characterized by equation (82). 

 
/ / / / / /( , , , , ) ( )  =sol ia C C a   (82) 

(b) The droplets break into two equal sized daughter droplets with age 0. The probability of 

forming daughter droplets is assumed to be independent of the other internal coordinates 

viz. 
_ _

, ,sol ic c   given by equation (83). This is a justified assumption since the concentration 

of the API within the droplets or the population of crystals within the droplets does not 

affect the droplet collisions, which ultimately is responsible for breakage of the droplets. 

 

/_ __ _
/ / / / /

1/3
( , , , , , , , , , ) 2 ( ) ( )

2
      = −sol soli i

a
p a c c a c c a   (83) 

Now we simplify some of the term on the LHS of equation (69) viz. equations (84) - (91). 
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So, equation (89) now reduces to equation (92). 
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Thus, the LHS of equation (7) can be rewritten as equation (93). 
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Thus, using equations (84)-(92), equation (93) can be reduced to equation (94). 
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Equation (94) can now be rewritten as equation (95). 
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with the boundary condition given by equation (96). 
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The initial condition is given by equation (97) 

 ,( , , , , , 0) ( , , 0) 0    = = = =Zsol i ta C C t t   (97) 

Using method of characteristics (MOC), the characteristic curve is identified by the set of ordinary 

differential equations (98). 
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Equation (95) now can be modified to equation (99). 
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The solution of equation (99) along the characteristics now becomes equation (100), while the 

solution of equation (98) is given by equations (101)-(102). 
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 (100) 

 0 s = +   (101) 

 0t = t + s   (102) 

The initial condition is given by at s = 0  , 0t = t  , 0 =  , 0 =  where  

 

_ _

0 0( , , , , , )   = sol i oa C C t   (103) 

Equation (101) can now be reduced to equations (104)-(105). 

 0 0s  = + = + 0t - t   (104) 

 0 0t = τ +t - τ   (105) 

For τ >t  , the curve traces back to 0=t , which is the Initial Condition. 

For τ <t  , the curve traces back to 0 =  , which is the Boundary Condition. 

This is shown schematically in Figure 6-5. 
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Figure 6-5. Characteristic curves for solution of the population balance equations for droplet size 

distribution. When the droplet age 𝜏 < t (time), the characteristic curve falls to 𝜏=0 and the 

problem reduces to solving the boundary value problem. However, then 𝜏 > t, the characteristic 

curve falls to 𝑡=0 and the problem reduces to solving the Initial Value Problem. 

From equation (105), if / =  , then / /t = τ +t - τ . 

Thus, if 0/t =  , then /τ = τ - t  and if /t = t , then / = . 

Equation (100) is now redefined as equation (106) where the integrand is given by )/ /β(τ ,t . 
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The boundary condition (96) now reduces to equation (107). 
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,( , 0, )  =tZ t is now redefined according to equation (108)-(109). 

 , ,( , 0, ) ( , )   = =Z Zt tt h t   (108) 
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From equation (108), we can now get equation (110). 

 , ,( , ) ( , 0, )    − = = −Z Zt th t t   (110) 

The integral kernel in equation (109) is now redefined as equation (111) and an additional integral 

term is defined according to equation (112). 
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Equation (109) now gets redefined to equation (113): 
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Equation (113) is solved by the method of successive approximations[30]  viz. 

(1) Initiate 
(0)

,( , ) ( ) =Zth t G t   

(2) Iteratively solve equation (114) until convergence between two successive iterations. 
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A further simplification is made to the initial condition viz. equation (115) which indicates that 

there are no droplets initially in the crystallizer.  
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Thus the integral equation (113) gets modified to equation (116). 
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6.2.3 Crystal agglomeration within droplets 

The PCs within the droplets can also agglomerate as the batch progresses, which increases the 

mean size of the PCs. The evolution of the number density of the crystal population within the 

droplets is given by equation (117). Here PCn is the number density of primary crystals and 

( , ) L  represents the agglomeration kernel given by the constant kernel viz. equation (118). It 

is to be noted that no distinction has been made between the un-agglomerated and agglomerated 

crystal populations within the droplets viz. PCn  characterizes both the agglomerated and un-

agglomerated primary crystal populations within a droplet.  
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 0( , )  =L   (118) 

Equation (117) can be solved using the method of finite volume [109]. However, since 

only the moments of the primary crystal population are of concern, equation (118) can be 
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converted to equation in terms of moments viz. equation (119). The quadrature method of 

moments [211] approximation is used to approximate the set of moments viz. equation (120). 
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The equations for the moment of the crystal population within the droplets viz. equations 

(70)-(72) are now modified to equations (121)-(123). 
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6.2.4 Conditional Density Distributions 

Conditional number density of primary crystals within droplets 

Equation (116) gives the evolution of the droplet number density as a function of time, which is a 

multi-dimensional distribution. But our real interest lies in being able to predict the conditional 

CSD given a particular droplet size, at the final batch time viz. equation (124).  
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 The conditional densities are given by equations (125)-(126). 
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Figure 6-6. DSD can be reconstructed from the FBRM measurements, while the CSD within the 

droplets need to be estimated from a mathematical model. The CSD depends on the droplet size 

and is very different (green and red curves) for different droplet sizes.  

Conditional concentration Evolution 

The evolution of the API concentration, given a droplet size, is given by equation (127). 
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The joint pdf in the numerator of equation (127) is given by equation (128) while the denominator 

is given by equation (126).  
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The evolution of the mean API concentration within the droplet, given a particular droplet size, is 

then given by equation (129). 
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The evolution of the mean antisolvent concentration within the droplet is similarly given by 

equation (130). 
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A summary of the important steps involved for solution of the multiscale PBEs is shown in 

Figure 6-7. 
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Figure 6-7. Summary of important steps for solving multiscale PBEs. 

 Results and Discussions 

The model API was ibuprofen, with ethanol as the solvent and water as the antisolvent. The 

solubility data and the kinetic parameters associated with nucleation and growth of PCs were 

taken from Rashid et al.[47][48] and are shown in Table 6-1, along with the process parameters.  
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Table 6-1. Kinetic and process parameters associated with spherical crystallization. 

Parameter Numerical value 

 1Bk   4.2 X 109 3#/ /cm min  

 2Bk   0.12 

 g0k   4.8 X 10-4 /cm min  

 g1k   29 

 solF   5 mL/min 

 solV   400 mL 

 0N   100 /min 

 0C   0.5 g/mL 

 ,0solC   1 g/g 

 T   25 C  

    1.03 g/cc 

 MTK   0.01 #/ /cm min  

 0   0.3 X 10-6 

 0a   330m  

 solt   20 min 

 

6.3.1 Effect of droplet size (r) on primary crystal number densities at different times 

Figure 6-8a shows the evolution of the particle size distribution (PSD) within the droplets over 

the batch for a smaller droplet of radius r = 20 μm. Before t = 12.5 min, diffusion of antisolvent 

occurs into the droplets from the bulk phase, along with a simultaneous counter-diffusion of 

solvent into the bulk phase. This leads to supersaturation generation in the droplets since the API 

is immiscible in the antisolvent. Primary nucleation takes place around t = 12 min followed by 

crystal growth from 12-27 min. However, the entire supersaturation is depleted during this time 
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period, which leads to negligible crystal growth during 27-120 min. This is reflected in the similar 

size distributions at t=27 min and 120 min. Figure 6-8b shows the evolution of the PSD for a 

larger droplet. Due to the large droplet size, the supersaturation takes much longer to generate, 

within the droplet which is reflected in the late onset of nucleation at t = 29 min. The rate of 

nucleation is also much lower, which is reflected in the lower number density of crystals in Figure 

6-8b (~2000-5000) compared to Figure 6-8a (~105). However, the crystal growth rates are now 

much higher, which is reflected in the gradual right shifting of the number density distribution 

throughout the batch. The final PSD in Figure 6-8b  has a much higher mean crystal size (~ 98 μm) 

compared to Figure 6-8a (~ 27 μm), which leads to larger primary crystals for larger droplets.   

 

 

Figure 6-8. Particle size distribution for (a) smaller droplet of radius 20 𝜇𝑚; (b) larger droplet of 

radius 240 𝜇𝑚. This illustrates that smaller droplets have higher nucleation rates of primary 

crystals, which produces smaller particles at the end of the batch. For larger droplets, 

thenucleation rates are lower and the crystallization process is growth dominated, which 

produces larger primary crystals at the end of the batch.  
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Conditional concentration evolution as a function of time in the phase diagram 

Figure 6-9 shows the concentration evolution throughout the batch for two droplet radii. For 

smaller radius of 20 μm, there is rapid concentration drop around 12.5 min due to rapid nucleation. 

 

Figure 6-9. Concentration evolution during the batch for two different droplet radii. For smaller 

droplet, the concentration rapidly decreases around 12.5 min due to high rates of primary 

nucleation. 

 

 

    

Figure 6-10. (a) For smaller droplets, rapid antisolvent diffusion into the droplet during 0-9 min 

creates high supersaturation which leads to high rate of primary nucleation at 12.5 min. 

However, the crystal growth rate is much lower which produces smaller Primary Crystals at the 

end of the process (b) For larger droplet, antisolvent diffusion is much slower which generates 

supersaturation more slowly. At 29 min, nucleation of primary crystals is triggered followed by 

crystal growth over the entire batch which produces larger end-of-batch primary crystals. 

A process schema shown in Figure 6-10a illustrates the mechanistic processes within the 

droplets. From t = 0-9 mins, antisolvent gradually diffuses into the droplets, which leads to rapid 

supersaturation generation and produces a high number density of primary crystals at t = 12.5 min. 

However, this leads to rapid supersaturation depletion during 9-12.5 min, which leads to very low 

(a) 

(b) 
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growth rates during the remaining period of the batch (12.5 – 120 min). Thus, the number density 

of crystals at the end of the batch (t=120 min) is very similar to the number density at t = 12.5 min. 

Figure 6-9 also shows the concentration evolution for a higher droplet of radius 120 μm, which 

shows crystal nucleation at t=29 min followed by gradual drop in API concentration from 29-120 

min. This leads to high crystal growth rates during 29-120 min, which is also illustrated in Figure 

6-10b. The final end-of-batch product crystals are also larger for larger droplet size (Figure 6-10b) 

than smaller droplet size (Figure 6-10a).   

6.3.2 Evolution of the conditional antisolvent concentration within the droplet as a 

function of time 

To facilitate comparison, instead of plotting the time course evolution of the antisolvent 

concentration (Xw) within the droplets (Figure 6-9), it is plotted alongside the API concentration  

in Figure 6-11. It can be seen for lower droplet radius, the nucleation happens at a much higher 

supersaturation (point A), which leads to rapid drop in API concentration from the point A to C in 

Figure 6-11. However, for higher droplet radius, nucleation happens at a lower supersaturation 

(point B), which leads to lower nucleation rates and slower depletion of supersaturation within the 

droplet. The operating point crosses into the growth dominated zone which leads to higher crystal 

growth rates, forming larger crystals at end of the batch (Figure 6-10b).   

 

 

Figure 6-11.  Operating curve in the phase diagram of API concentration-antisolvent 

concentration for two different droplet radii. For smaller radius droplet, nucleation happens at a 

higher supersaturation (point A), which generates smaller primary crystals. For larger droplets, 

nucleation happens at lower supersaturation (point B), which leads to lower nucleation rates but 

higher growth rates, which ultimately produces larger primary crystals. 
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6.3.3 Number density evolution with agglomeration 

Figure 6-12 compares the evolution of number density distribution with and without crystal 

agglomeration within the droplet for t = 29, 120 min for
6

0 10 −= . The comparison in Figure 6-12 

was carried out for a larger droplet size (240 𝜇𝑚).  Figure 6-12a shows that when agglomeration 

is present, there is a bimodal size distribution at 29 min with peaks at 4 𝜇𝑚 and 30 𝜇𝑚. The peak 

at 4 𝜇𝑚 is due to the presence of primary crystals and the peak at 30 𝜇𝑚 is due to the agglomerated 

crystals. Figure 6-12b also shows a bimodal distribution at the end of the process (120 min). 

However, the number density at the smaller peak (69 𝜇𝑚) is much smaller than that at the larger 

peak (148 𝜇𝑚). This happens because as the batch time increases, more crystals agglomerate, 

which increases the proportion of agglomerated crystals compared to the primary crystals within 

the droplets (Figure 6-12c).   
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Figure 6-12. Number density of primary crystals within droplet of size 240 𝜇𝑚 with and without 

agglomeration for (a) t = 29 min; and (b) t = 120 min; (c) Evolution of crystal agglomerates 

within the droplet.  

 Conclusions 

A multiscale population balance framework was constructed to elucidate the evolution of the 

populations of droplets and crystals within droplets. The multi-dimensional PBE was solved using 

method of characteristics, which was then used to investigate the time course of evolution of the 

number densities of crystals within the droplets. It was found that the fundamental rate processes 

of crystal nucleation and growth within the droplets were very different depending on the size of 

(a) 

(b) 

(c) 



133 

 

the droplets. For smaller droplets, faster antisolvent diffusion led to rapid nucleation and smaller 

crystals within the droplets. However, for larger droplets, slower antisolvent diffusion led to a 

growth dominated process which led to larger primary crystals in the final product agglomerates. 

This underlies the importance of controlling process parameters to produce uniform sized droplets 

within the crystallizer, since droplet uniformity is shown to control not only the manufacturability 

but also the bioavailability of the product agglomerates.  

One of the critical stages underlying both SA and SC is the first stage viz. crystallization. 

The yield and purity of the end-of-batch API crystals are two of the most important CQAs of the 

product. However, many APIs degrade under process conditions, thereby reducing their process 

yield. This problem is particularly accentuated for cooling crystallization of APIs, where many 

APIs degrade at the high initial process temperatures. The dilemma is further explained in Figure 

6-13. If the initial process temperature is high, a lot of the API molecules degrade which reduces 

the process yield. To overcomes this problem, the initial process temperature can be low, which 

reduces the theoretical yield of the process. A strategy is devised in the next chapter, where instead 

of changing the initial and final process temperatures, dynamical optimization is utilized to design 

the path of the process viz. the cooling profile.  

 

Figure 6-13. Dilemma regarding initial process temperature for APIs undergoing thermal 

degradation.  
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7. MODEL-BASED OPTIMIZATION OF COOLING 

CRYSTALLIZATION OF ACTIVE PHARMACEUTICAL 

INGREDIENTS UNDERGOING THERMAL DEGRADATION 

Reproduced with permission from Kanjakha Pal+, Yang Yang+, Zoltan K. Nagy+ 
, published in Cryst. Growth Des. 2019, 19, 6, 3417-3429.  
+Davidson School of Chemical Engineering, Purdue University, West Lafayette. 

 Introduction 

Crystallization is one of the most widely used unit operations in  separation processes[1]. If 

designed properly, crystallization can give products of very high purity[214] with very low capital 

and operating costs and it is therefore widely used in the fine chemical and pharmaceutical 

industries, where product purity is of paramount importance. Crystallization depends on the 

fundamental thermodynamic principle that the solubility of a solute in a solvent is a strong function 

of critical process parameters such as temperature and anti-solvent to solvent ratio[82]. There are 

different modes of crystallization, including cooling, anti-solvent[78], evaporative[215] and 

combined cooling/antisolvent crystallization[216]. The type of crystallization used[217] depends 

on factors such as the compound’s solubility curve, thermal stability, yield and operational 

requirements. Cooling crystallization is one of the most widely used crystallization processes. 

Cooling crystallization is based on the fact that for most compounds, the solubility decreases with 

decreasing temperature. Hence by decreasing the temperature in a controlled manner[218], crystals 

of desired size distribution can be obtained. Cooling crystallization has many advantages over 

antisolvent or evaporative crystallization, which either require the use of extra operational volume 

and extra chemical species to generate the requisite supersaturation in solution or cannot 

effectively reject impurities during the process. However cooling crystallization also poses 

concerns because many solutes are thermally unstable and degrade at the initial high process 

temperature.  

Cooling crystallization essentially involves cooling the solution from an initial temperature 

to a final temperature. The initial and final temperatures depend on the desired yield[219] of the 

particular product. One of the most important factors in cooling crystallization is the temperature 

profile followed during the cooling process[220]. Many important properties, such as the final 
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crystal size distribution (CSD), depend on the cooling profile[221]. It was shown by Doki et al.[181] 

that the final crystal size distribution obtained after crystallization of potash alum was strongly 

dependent on the mode of cooling. A controlled cubic cooling profile gave crystals with much 

higher mean size than natural cooling profiles.  The cooling profiles have been traditionally 

obtained by using an optimizer that optimizes a defined objective function which is representative 

of the product properties under consideration (maximum average final crystal size, minimum 

coefficient of variation, etc). Biegler et al.[222] used dynamic optimization to obtain optimal 

cooling profiles for batch cooling crystallization. They used minimum batch process time and 

maximum final crystal size as their two objective functions for the optimization. They found that 

the key final product properties viz. the mean crystal length depends on the optimum cooling 

profiles obtained for various optimization objectives. Ma et al.[223] investigated the effect of 

different optimized temperature profiles on the size and shape of the product crystals in a batch 

stirred tank crystallizer. They simulated a multidimensional population balance model using finite 

volume method and found that the CSD is very different along the height of the crystallizer and 

changing the optimal cooling profile also had an effect on the spatio-temporal variation of these 

properties. Miller et al.[224] studied the sensitivity of optimal cooling profile to changes in model 

parameters. They formulated the optimal control problem in terms of the parameters of interest 

and quantified the model uncertainty by using the worst-case uncertainty criterion. Mesbah et 

al.[225] designed a closed loop optimal control cooling profile for batch cooling crystallization, 

using a Luenberger type observer to estimate the state of the system. They found that implementing 

this closed loop optimal control policy led to a great increase in crystal volume fraction at the end 

of the batch and the method was also robust to variations between batches  Model based and model-

free approaches have also been used to control polymorphic purity during cooling crystallization 

of small molecules[226],[227]. There have also been significant advances in modelling the stability 

of industrial crystallizers[228] including the case that also considers the evolution of crystals 

shape[229], where the principles of optimal control of crystallizers can be used to better predict 

stability under dynamic conditions.  

Although cooling crystallization is the most widely used crystallization strategy, some 

compounds do not have steep solubility variation with temperature. For such compounds, the 

decrease of process temperature needs to be large to obtain the desired yield. Hence for such 

compounds, the initial starting temperature needs to be high. Many small molecules degrade in 
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solution at high temperatures[230]. The degradation may be by hydrolysis[231] or by some other 

mechanism like oxidation, photolysis, etc. The rate of degradation usually increases as the 

temperature increases. Thus if such APIs are purified by cooling crystallization, it may be possible 

that the compound starts degrading at higher temperatures. Degradation of the API leads to 

decreased yield as instead of obtaining the active product it is converted into a degraded product. 

It is also possible that the degraded product gets incorporated as impurity during crystallization, 

thereby affecting the product purity. For example, many researchers have reported that impurities, 

especially those that have similar structures as the solute, can be preferentially adsorbed and 

incorporated into the crystal lattice of the solute even at low impurity concentration[232]. Thus, 

impurity rejection must be carried out to the maximum extent possible to minimize the amount of 

impurity formed as well as the amount of impurity that goes inside the crystal lattice. Various 

analytical methods such as High Performance Liquid Chromatography (HPLC)[233],[234] and 

Mass-Spectrometry[235] have been used to find the concentration of degraded product during 

accelerated stability tests.  

For such thermally unstable APIs, other crystallization strategies viz. antisolvent 

crystallization[214], reactive crystallization[236] may be used. However, the use of such alternate 

crystallization strategies may be limited due to limited solubility[237] or generation of undesired 

crystal forms[238]. So cooling crystallization remains the only viable choice in such cases. 

However the most widely used cubic cooling profile, which maximizes average particle size may 

be inappropriate as it keeps the solution at high temperature for a long time and may promote 

degradation. The present work proposes a methodology for finding the optimal cooling profile for 

the crystallization of APIs viz. aspirin, paracetamol which undergo decomposition at high 

temperatures. A model-based framework has been first constructed to find the evolution of the 

desired product properties. Two different optimization criteria have been used in this study: (i) 

maximization of final crystal size and (ii) minimization of final impurity concentration in the 

solution. It was also shown experimentally that implementing the calculated optimum cooling 

profiles provided better control of the final mean crystal size and purity of the final product. 

However, for the degradation product concentration minimization objective, a qualitative 

difference in the trends in the evolution of the experimentally observed and the model predicted 

concentrations was observed.  Further, it was seen that a modified kinetic model with an additional 
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impurity adsorption term incorporated was able to explain the experimental observations much 

better. 

 Theory 

The Population Balance Equation (PBE) describes the evolution of number density of crystals in 

the slurry is given by equation (131). 

0( ) ( )
 

+ = −
 

f
Gf B L L

t L
     (131) 

where f  is the number density of crystals in the solution, L  is the size of the crystals, B is the 

rate of nucleation of crystals in solution and G  is the growth rate of the crystals. ( ) L is the Dirac 

Delta function which indicates that nucleation occurs at minimum crystal size.  

The  rates of primary nucleation and the growth of the crystals are given by equations (132)-(133). 

 2 3
1 2
exp exp

ln ( )

  
= − −  

   

n n
n

k k
B k

RT S
  (132) 

 ( ) 32

1 exp ( 1)
 

= − − 
 

gkg

g sat

k
G k C S

RT
  (133) 

S is the relative solution supersaturation given by 

 
s

sat

C
S(T)=

C (T)
  (134) 

Here sC is the concentration of the solute and  satC (T) is the saturation concentration at 

the process temperature. kn1, kn2, kn3, kg1, kg2, kg3 are nucleation and growth kinetics parameters. 

The solubility of aspirin as a function of temperature at the specified solvent composition is 

given by equation (135) where T is in ℃ which is calculated from Lindenberg et al. [221] by 

fixing the solvent composition at constant ethanol weight fraction of wethanol = 0.3. 

 

2 -5 3 -6 4 -8 5 -11 6

satC (g / mL)= -0.2265+0.0371T -0.0024T +8.87×10 T -1.834×10 T +2.07×10 T -9.983×10 T  

 (135) 

Since solving the fully discretized population balance equation is computationally 

intensive, it is converted to a set of differential equations in terms of the moments of the 
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distribution ( j ). The jth moment is given by 
0

( , )j

j L f L t dL


=  . The partial differential equation 

(1) is converted into a set of ordinary differential equations (ODEs) in terms of the first 4 moments 

of the CSD given by: 
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Equations (136)-(137) are coupled with the mass balance equation for the solute. Assuming 

that the solute molecules S degrade according to a simple (pseudo-)first order kinetics into a 

degradation product P that represents the impurity in the system (S → P), the mass balance 

equation for the solute is given by: 

2 03
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s RT
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k G k e C
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 

−

= − −     (138) 

ρc, kv, E are the crystal density, shape factor, and activation energy, respectively. The first term on 

the right-hand side of equation (138)) represents the loss of solute due to crystal growth and the 

second term corresponds to the loss of solute due to degradation of the API in solution. Here the 

degradation by hydrolysis is assumed to follow pseudo-first order kinetics[239]. It is to be noted 

that the solids density in the suspension considered in the work is less than 5%. This ensures that 

equation  (138) remains valid in the dilute suspension limit.  vk represents the shape factor of the 

crystals which is assumed to remain constant throughout the crystallization experiments. However, 

if this assumption does not hold, multi-dimensional PBEs with different growth rates for different 

crystal faces need to be used instead of equation (131), which has not been considered here.  

To simplify the study further, it is also assumed that only the dissolved solute undergoes 

degradation whereas the crystals do not. Equations (136)-(138) form a closed set of equations but 

the equation for the evolution of degradation product is also solved to track the concentration of 

the degradation product. The mass balance for the degradation product is given by the pseudo-first 

order degradation kinetics[239] : 

0
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where pC  is the concentration of the degradation product (i.e. impurity) in solution.  

Multiple objectives have been considered in the study including: 

(i) maximization of the average final product crystal size  

(ii) minimization of the degradation product concentration 

It is frequently desired in the pharmaceutical industry to have maximum sized crystals[240] 

because various downstream unit operations, such as filtration, demand crystals to be as large as 

possible. But for the case where the API degrades at high temperature, it is also necessary for the 

concentration of the degradation product in the final batch to be minimum. Impurities reduce the 

process yield and pose a quality problem if they get incorporated in the crystal lattice. 

The maximization of final product crystal size objective (i) is formulated as follows: 
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     (140) 

Equation (140) indicates maximization of the final mean size of the product crystals (
_

,n finalL ) 

subject to the following constraints: 

(a) The temperatures are bounded between upper and lower bounds 

(b) The rate of decrease of temperature is bounded between upper and lower bounds. This follows 

from the physical constraint that the rate of cooling has some maximum and minimum values. The 

minimum rate of cooling is 0 which indicates that the system can only be cooled and not heated, 

and the maximum rate of cooling is set to 1℃/min by the physical constraints on the cooling 

apparatus.  

(c) The final product concentration is less than some upper limit. The upper limit is selected based 

on process yield considerations viz. in this work, it is assumed that at least 90% process yield is 

attained. 

The degradation product concentration minimization objective (ii) is formulated as follows: 
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The final concentration of degradation product ( ,p finalC ) is minimized subject to the same 

constraints on temperature and rate of cooling and yield.  

A multi-objective optimization problem is also solved in-silico where the objective 

involves a weighted combination of size maximization and degradation product concentration 

minimization viz. equation (142). The purpose of this multi-objective optimization is to show the 

smooth transition in the optimal cooling profiles between the two competing objective functions 

(size maximization and degradation product concentration minimization) as the weight on one of 

the objectives is changed.   
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  (142)     

The optimum cooling profiles are obtained using fmincon function of Matlab R2015a and using 

the interior-point algorithm.  

It is to be noted that for the model API(Aspirin), there are two degradation products – 

Salicylic Acid and Acetic Acid[239]. The degradation reaction is given by equation  

 9 8 4 7 6 3 2 4 2
(Acetic Acid)(Aspirin) (Salicylic Acid)

C H O C H O +C H O→   (143) 

 However, structurally similar impurities have much higher effect on the nucleation and 

growth rate of crystals than impurities that are not structurally related to the API. So, in this work 

it is assumed that only Salicylic Acid is adsorbed onto the growing API crystals and the other 

degradation product (acetic acid) has no effect on the growth rates or purity of the API crystals.  

The adsorption of impurity within the API crystals has been modeled by considering impurity 
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adsorption to be a first order process. Equations (2-5) remain the same except that the rate of 

adsorption of the degradation product into the aspirin crystals is included in the equation for the 

evolution of concentration of degradation product, which is given by equation (144). 

 0

−

= −
E

p RT
s a p

dC
k e C k C

dt
  (144) 

Here ak  is the kinetic constant for adsorption and the last term on the right-hand side of 

equation (144)  indicates the change in concentration of the degradation product due to adsorption 

onto the growing API crystals. The intricacies of the adsorption-desorption kinetics of the 

impurities on the API crystals as elucidated in Borsos et al.[232] have not been included in this 

model but the entire adsorption phenomena has been lumped onto the first order adsorption 

kinetics of the degradation product.  

 Experimental Methods 

7.3.1 Materials 

Aspirin (≥99%, Alfa Aesar) was used as the model API. Salicylic Acid was the degradation 

impurity generated in-situ during the crystallization experiment. De-ionized water and Ethanol 

(200 proof, Fisher Scientific) were used as the solvents. Acetic Acid and Methanol (Optimal 

LC/MS grade, Fisher Scientific) were used as solvents for isocratic UPLC methods.  

3.2. Experimental Setup 

The experiments were run in a 1 L batch crystallizer. Aspirin was dissolved in a 30% (w/w)  

ethanol-water mixture, creating a supersaturated solution and then cooled from its saturation 

temperature (48 ℃ ) to the final temperature (18 ℃) following programmed cooling profiles. The 

solubility surface for aspirin in the solvent mixture is a function of both the temperature and solvent 

composition as shown in Lindenberg et al[221]. However, in this work the solvent composition is 

fixed, so the solubility is only a function of temperature which is obtained by fixing the solvent 

composition at wethanol = 0.3 in the solubility polynomial. The initial concentration for the 

experiments was the saturation concentration at the starting temperature of  the experiment viz. 

0.044 g/mL which is calculated according to equation (135). An online Ultra Performance Liquid 

Chromatography (UPLC) system (from WatersTM Corporation with ACQUITY UPLC Console 

and EMPOWER Software) was connected to take samples online and measure concentrations of 
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Aspirin and Salicylic Acid in situ and in real-time. The online UPLC consists of the Binary Solvent 

Manager (BSM), Process Sample Manager (PSM), Column Manager (CSM) and a UV detector 

along with an integrated process sampling and dilution loop. Here the BSM refers to the 

supervisory control logic within the UPLC which adjusts the flow rates of the solvent and buffer 

streams for the mobile phase. The outlet of the PSM was recycled back to the reactor to minimize 

the amount of solution lost due to sampling. Since the initial process temperature (48 ℃) is higher 

than the room temperature, there was potential for clogging in the sampling and the dilution loops. 

To avoid any clogging, the sampling and dilution loops were wrapped with propriety carbon fiber 

tubular heaters[241]. Hot air was also blown on the sample valve and the injection valve to avoid 

further clogging within these valves. Focused Beam Reflectance Measurement (FBRM) G-400 

from Mettler-Toledo with IC FBRM 4.3 software was used to track the evolution of counts/s of 

crystals in the crystallizer in different bins of chord lengths. Although the chord length distribution 

is different from CSD, it can be used to estimate changes in the CSD qualitatively or 

quantitatively[195], [242]. Process Vision Microscope (IC PVM 7.0) from Mettler-Toledo was 

used to obtain in-situ images of particles in the crystallizer. A Pt-100 probe was used to monitor 

the temperature. The crystallizer was a 1 L vessel (LABTEX) provided with overhead stirring, 

which was connected to a circulating water bath (Huber) for heating/cooling. These Process 

Analytical Technology (PAT) tools were connected to the Crystallization Monitoring and Control 

(CRYMOCO also known as CryPRINS) system via a RS-232 interface. The cooling profile was 

implemented in CRYMOCO and the set-point temperature from CRYMOCO was sent to a chiller 

bath (Huber ministat 230) which controlled the reactor temperature through a jacketed 

heating/cooling arrangement. The details of the setup of the online UPLC have also been explained 

in a previous publication[163]. All experiments were carried out at 350 rpm. All the isocratic 

UPLC methods for sample analysis were taken from Yang et al[163] .  
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Figure 7-1. Schematic of experimental setup showing the jacketed crystallizer and Process 

Analytical Technology Tools. 

 Results and discussions 

The growth and nucleation rates as well as the coefficients of the solubility model were taken from 

Lindenberg et al.[243]. The kinetics of degradation were taken from Alibrandi et al.[239]. The 

shape factor was assumed to be constant throughout the simulations. The kinetic parameters used 

in the study have been shown in Table 7-1.The maximum value of cooling rate in Table 7-1 viz. 

maxR = 0℃/𝑚𝑖𝑛 indicates that the solution can only be cooled. The minimum value of cooling rate 

in Table 7-1 viz. minR = -1.35 ℃/𝑚𝑖𝑛 was chosen based on studies on the actual experimental 

system in the laboratory. 

Four scenarios of different objective functions and with/without degradation kinetics were 

investigated and compared, as shown in Table 2. 
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Table 7-1. Kinetic parameters of nucleation, growth and degradation processes 

1Jk  6.9 × 1016  #/𝑐𝑚3/𝑚𝑖𝑛 

2Jk  7.67 × 104 J/mol/K 

3Jk  0.16 

1gk  1.9260 𝜇𝑚/𝑚𝑖𝑛 

2gk  2.560 × 104 J/mol/K 

g3k  1.0 

0k  2.409 × 106 /min 

E 6.66 × 104 J/mol 

minR  -1.35 ℃/𝑚𝑖𝑛 

maxR  0℃/𝑚𝑖𝑛 

, ,s fin initC  0.053 g/mL 

, ,maxs finC  0.0053 g/mL 

vk  0.94 

 

  Optimization of batch cooling crystallization 

7.5.1 Optimal Cooling for product crystal size maximization 

Figure 7-2 shows the optimum cooling profiles for the crystallization of aspirin with the two 

optimization objectives which are obtained by solving the optimization problems (140)-(141) . It 

can be seen from Figure 7-2 that for the size maximization objective, the optimum cooling profile 

with degradation kinetics turned on (scenario O2, red curve) is steeper compared to the case with 

degradation kinetics turned off (scenario O1, blue curve). The kinetics of degradation follows a 

first order rate law and increases with temperature which follows from equation (139). So, when 

degradation occurs, the temperature needs to be reduced faster (red curve in Figure 7-2) compared 

to no degradation case (blue curve in Figure 7-2 ) to reduce the rate of degradation.  However, the 



145 

 

solution cannot be cooled too rapidly (black curve in Figure 7-2) because it would lead to rapid 

nucleation which will produce very small crystals, thereby defeating the optimization objective of 

size maximization. Thus, to maintain balance between these two extremes viz. slow cooling which 

leads to higher API degradation and rapid cooling which leads to rapid nucleation, the optimizer 

follows the cooling profile in the presence of degradation (red curve in Figure 7-2).  

 

Figure 7-2. Simulated optimum cooling profiles for (O1) size maximization without degradation 

kinetics, (O2) size maximization with degradation kinetics and (O3) degraded product 

concentration minimization. 

7.5.2 Optimal Cooling for degraded product concentration minimization 

Figure 7-2 also shows that the cooling profile for the degraded product concentration minimization 

objective O3 is much steeper compared to the size maximization objective O1 and O2. The rational 

for the steep temperature decrease follows from the previous discussion – to decrease the rate of 

degradation, the optimizer decreases the temperature rapidly (black curve in Figure 7-2). The 

sharp temperature drop quickly generates a high degree of supersaturation which leads to high 

rates of primary nucleation. However, in this case the optimizer is not worried about the crystal 

size at all. Comparing the cooling profiles for the two objectives, it can be inferred that choosing 

the correct optimization objective is of paramount importance since the two profiles (red and black 

curves in Figure 7-2 ) are very different, even qualitatively.  
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Figure 7-3. Evolution of mean crystal size for (O1) size maximization without degradation 

kinetics, (O2) size maximization with degradation kinetics and (O3) degraded product 

concentration minimization objective. The final Mean Crystal Size is higher for size 

maximization objective than degradation product concentration minimization objective.  

Table 7-2. Different Optimization studies with the optimization problem formulations and 

underlying mechanistic models.  
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Table 7-2 continued 
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 Evolution of process variables 

Figure 7-3 shows the evolution of mean size for the two different optimization objectives (i) and 

(ii). The details of the underlying optimization problem as well as the dynamical models on which 

the optimal cooling profiles were implemented are shown in Table 7-2. It can be seen from Figure 

7-3 that when degradation is included in the model (red curve in Figure 7-3) , the mean crystal 

size starts increasing much faster around 20 mins since the temperature starts decreasing around 

that time (Figure 7-2). From around 30 minutes till 60 minutes, the mean size increases rapidly 

because of the high growth rates. After 70 minutes, the growth rates become lower and the mean 

size still increases from 70-200 minutes but at a much slower pace. When no degradation is 

considered in the size maximization model, the size increases much slowly initially but increases 

rapidly after 100 minutes (blue curve in Figure 7-3). The final mean crystal size when there is no 

degradation is higher than when there is degradation because degradation depletes API 

concentration in solution. The reduced API concentration reduces API supersaturation which 

decreases the crystal growth rate leading to lower final crystal size. For objective (ii), the mean 
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particle size increases very rapidly due the fast drop in initial temperature which generates high 

supersaturation and hence leads to high growth rates. But the high growth rates immediately 

deplete all the supersaturation and the growth rates for the remaining batch period (20-200 mins) 

is very low which leads to essentially constant mean particle size from 20-200 mins.  

Optimization scenario O4 (Table 7-2) represents a common industrial crystallization 

optimization problem where the optimization problem O1 is run without considering API 

degradation. But, in fact, there is API degradation which ultimately means a dynamical 

optimization problem was solved with an incorrect mechanistic model. However, when there is 

degradation, the correct optimal cooling profile with the proper mechanistic model is given in 

scenario O2 (Table 7-2).  Figure 7-3 shows that the size evolution for scenario O4 (cyan curve in 

Figure 7-3) is very different  from the size evolution for scenario O2 (red curve in Figure 7-3) 

and the final mean crystal size is lower for scenario O4. This is because for scenario O4, the 

crystallizer is now held at a higher temperature for a longer time (blue curve in Figure 7-2) 

whereas the temperature should have been dropped more steeply (red curve in Figure 7-2, scenario 

O2). Holding the temperature high for a longer time (scenario O4) results in more degradation 

which leads to lower API supersaturation in solution. This leads to lower growth rate of API which 

produces smaller API product crystals. 
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Figure 7-4. Evolution of (a) API concentration (b) degradation product concentration. The API 

concentration reduces much faster with the concentration minimization objective. The final 

degradation product concentration is much higher with the concentration minimization objective. 

Figure 7-4a shows the dynamic profiles of change of aspirin concentration for the two 

different objective functions: (i) size maximization and (ii) degradation product concentration 

minimization. The API concentration decreases much faster for objective (ii). This happens 

because of the steep decrease in temperature for objective (ii) (Figure 7-2) which leads to high 

supersaturation generation followed by rapid nucleation and growth which depletes all the 

supersaturation. It can also be seen that the API concentration decreases much earlier for size 

maximization with degradation (red curve, Figure 7-4a) than without degradation (blue curve, 

Figure 7-4b). This is due to the steeper temperature drop when degradation is included in the 

(a) 

(b) 
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model (red curve in Figure 7-2) which essentially leads to faster supersaturation depletion, 

although not as fast as objective (ii). It is to be noted that the concentration evolution of degradation 

product for objective (i) with no degradation is not shown since the degradation product 

concentration is always 0.  

Figure 7-4b compares the evolution of the concentration of the degradation product for the 

two different objectives (i) and (ii). As expected, the final degradation product concentration is 

much lower when the simulation was conducted with the degradation product concentration 

minimization objective (ii) than the size maximization objective (i). Since the rate of degradation 

is higher at higher temperatures, for objective (ii), the steep temperature drop at the beginning of 

the batch (Figure 7-2) leads to lower degradation and hence less concentration of degradation 

product at the end of the batch.    

Figure 7-4 also shows that when the incorrect optimal cooling profile is implemented 

(scenario O4 in Table 7-2), the API concentration decreases much faster (cyan curve , Figure 7-4a) 

than when no degradation is considered (blue curve , Figure 7-4a ). This follows from the 

discussion from Figure 7-3 – now the temperature is held higher for a longer time (blue curve in 

Figure 7-2) when in fact, it should have been decreased faster (red curve in Figure 2). This gives 

rise to higher rates of API degradation and higher concentration of degradation product in the 

solution (cyan curve in Figure 7-4b). There may be a possibility of the degradation product 

crystallizing along with the API during cooling crystallization. However, Table 7-3 shows the 

solubility of the degradation product (Salicylic Acid) at 25℃  in ethanol and water. However, 

Figure 7-4 shows that the maximum concentration of the degradation product (1.5 * 10-4 g/mL) is 

much less than the solubility at 25 ℃  in either solvents, which voids the possibility of 

crystallization of the degradation product. This also explains why the incorporation of degradation 

product in Section 4.6 is modeled only using additional adsorption terms and not co-precipitation. 

Table 7-3. Solubility of Salicylic Acid in ethanol and water at 25℃ 

Solvent Solubility (g/mL) 

Ethanol 0.3006 

Water 0.0022 
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4.1. Evolution of nucleation and growth rates 

  
  

Figure 7-5. Nucleation rates for aspirin for (O1) size maximization without degradation kinetics, 

(O2) size maximization with degradation kinetics and (O3) degraded product concentration 

minimization. The supersaturation generated is much higher for concentration minimization 

objective. The growth rates are similar for both the objectives, but the nucleation rate is much 

higher for concentration minimization objective. 

(a) 
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Figure 7-5a shows the rate of nucleation for aspirin for the two different optimization 

objectives. For size maximization objective, when degradation is considered, nucleation occurs 

much earlier (~ 50 min) than without degradation (~ 110 min). The nucleation onset is the earliest 

for concentration minimization objective and occurs around 10 minutes. The trends in nucleation 

onset follows the trends in temperature drop in the cooling profile (Figure 7-2) – for concentration 

minimization objective, the temperature drop is very sharp towards the beginning of the batch 

leading to earlier nucleation. The rate of nucleation is also much higher for concentration 

minimization objective (~2000 #/𝑐𝑚3 /𝑚𝑖𝑛) compared to size maximization objective (~100-

200#/𝑐𝑚3 /𝑚𝑖𝑛) which happens due to the differences in supersaturation generated for the two 

objectives (Figure 7-5b). The nucleation at large times (~180-200 min ) in Figure 7-5a happens 

because the rate of cooling is very fast towards the end of the batch (Figure 7-2) leading to small 

nucleation events at the end of the batch. The Area Under the Curve (AUC) for the second 

nucleation event is much smaller than the first nucleation event which makes this assumption valid.  

Such nucleation events can be neglected for all practical purposes since they will not considerably 

affect the final product CSD.  

A subtlety in the size evolution can be noted by comparing Figure 7-5a and Figure 7-3 – 

the mean crystal size in Figure 7-3 starts decreasing around 85 minutes whereas the nucleation  

event in Figure 7-5a starts around 90 minutes. This happens due to numerical interpolation 

between the time axes for the different optimization objectives and is only a numerical artefact. 

 

Figure 7-5b shows the temporal evolution of growth rates for the two different objective 

functions (i) and (ii). The maximum growth rates for both the objectives are very similar. Thus, 

the differences in final mean particle size (Figure 7-3) is primarily due to differences in nucleation 

rates at the middle of the batch viz. 50 mins for red curve and 100 mins for blue curve in Figure 

5. Differences in rate of nucleation (Figure 7-5a) gives rise to different number density of particles 

in solution, so with similar growth rates, when the rate of nucleation is higher, the final particle 

size is lower.  

It is to be noted that scenario O4 was only a hypothetical scenario constructed to prove the 

importance of using the correct mechanistic model for solving the dynamical optimization problem. 

Hence, the dynamics of nucleation and growth rates for optimization scenario O4 are not 

elucidated in Figure 5. 
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 Multi-objective optimization 

The multi-objective optimization equation (142) and simulations were run for different values of 

w1, the weight for size maximization objective. It is to be noted that for wethanol = 0.3, the optimal 

cooling curves for different values of w1 were getting too cluttered. Hence the optimal cooling 

profiles in Figure 7-6 were obtained for wethanol = 0.35 to better illustrate the smooth transition on 

sequentially changing w1. From Figure 7-6, it can be seen that as the objective function gets 

weighted more towards the size maximization objective (w1 =1), the temperature profiles become 

more convex which illustrates the smooth transition on changing the value of w1. However, it is to 

be noted that the multi-objective optimization study was carried out only in-silico whereas for 

experimental validation, the optimal cooling curves corresponding to Figure 7-2 were 

implemented. 

 

Figure 7-6. Temperature profiles obtained from the multi-objective optimization using different 

weights between size maximization objective and degradation minimization objective. The 

cooling profile shows a monotonic shift in the shape of the profile as the weight given to the 

individual objective is changed. 

7.7.1 Experimental Validation 

All the experiments were conducted with aspirin in 30% (w/w) ethanol-water mixture.  

 

Experimental validation for size maximization objective 

The optimal cooling profile for size maximization with degradation (red curve in Figure 7-2) was 

implemented experimentally.  Figure 7-7 shows the concentration evolution of aspirin (API) and 
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salicylic acid (degradation product) in the crystallizer which was measured using UPLC. It can be 

seen from Figure 7-7 that the concentration of aspirin first showed a slight increase but decreased 

monotonically as time progressed. The slight increase is hypothesized to be due to some solvent 

evaporation initially at high temperatures.  Comparing Figure 7-4a and Figure 7-7, it can be seen 

that the evolution of API concentration between the model predictions and the experiments are 

qualitatively similar. A slight mismatch between the initial API concentrations from model 

predictions (Figure 7-4) and experimental measurements (Figure 7-7) is evident which happens 

due to solvent evaporation at the high initial temperatures in the sampling loop from the UPLC. 

However, this mismatch in API concentrations is neglected for the purposes of this study since 

only qualitative trends in API concentrations are sought here. 

Figure 7-8a shows the evolution of the FBRM counts of the API crystals in the batch. The 

nucleation event occurring around 70 min is indicated by the sudden increase in the FBRM counts 

of the particles. There is no increase in counts in bin 1-10 from 75-180 min, whereas the counts in 

the bins 10-100 and 100-1000 keep on increasing indicating a growth dominated process. The 

slight nucleation event observed in the simulations (Figure 7-5a) is evident towards the end of the 

batch (~3 h) however this has a very small effect on the final product crystals. Figure 7-8b shows 

the evolution of the Square Weighted Mean Chord Length (SWMCL), which shows a clear trend 

in growth of crystals. Since aspirin crystals are needle shaped, the evolution of FBRM counts is 

not representative of the actual evolution of particle size in the crystallizer but in-situ PVM images 

taken during the experiment (Figure 7-9) clearly show large needle shaped crystals present at the 

end of the experiment.  



155 

 

 

Figure 7-7.  Experimental Concentration evolution of Aspirin (API) and salicylic acid (degraded 

product) for size maximization objective. The API concentration decreases due to crystallization 

and degradation while the degradation product concentration increases with time. 
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Figure 7-8.  Experimental evolution of (a) number of chord counts for a certain size range per 

second (b) SWMCL in FBRM for objective of size maximization. 
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Figure 7-9.  PVM image of final product crystals when operated with the objective of size 

maximization. 

Experimental validation for degradation product concentration minimization objective 

For the objective of degraded product concentration minimization, the cooling profile 

corresponding to the black curve in Figure 7-2 was implemented. Figure 7-10 shows the evolution 

of the concentration of the API (aspirin) and the degradation product (salicylic acid). Comparing 

Figure 7-10 and Figure 7-7, it can be seen that the final concentration of the degradation product 

(salicylic acid) for objective (ii) is lower than for objective (i), which validates the results from the 

simulations (Figure 7-4b). It can also be seen from Figure 7-10 that the initial concentration of 

the API shows an increase due to solvent evaporation at high temperature followed by monotonic 

decrease. There are qualitative differences between the shape of the evolution of concentration of 

salicylic acid between the experiments and the simulation (Figure 7-10 and Figure 7-4). In the 

experiments, the concentration of the degradation product first increases followed by a slight 

decrease towards the middle of the batch (Figure 7-10), whereas in the simulations, the 

concentration of the degradation product increases and then stabilizes (Figure 7-4b). These 

differences can be explained by the adsorption of the degradation product onto the API crystals – 

as the degradation product adsorbs onto the growing crystals, their solution concentration 

decreases. Figure 7-11 shows the evolution of the chord length data in FBRM. Comparing Figure 

7-9b and Figure 7-11b, it can be seen that the final SWMCL in Figure 7-11b is much lower, 

which also validates the results of the simulations (Figure 7-3a). It is to be noted that the 

underlying mechanistic models (136) - (137) are moment based models and the actual CSD cannot 

be accurately reconstructed from the evolution of the moments. Thus, quantitative trends in the 

actual crystal size distributions between the model simulations and the experiments are not 
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evaluated here; rather, qualitative trends between the mean particle size from model simulations 

and SWMCL from FBRM are elucidated. The deviation between the actual final mean crystal size 

predicted from the simulations (Figure 7-3a) and the final SWMCL obtained from the experiments 

can be attributed to plant-model mismatch, which can be easily corrected by an online parameter 

re-estimation [244] during an actual process run.  

  

Figure 7-10.  Concentration evolution of (a) aspirin, and (b) salicylic acid (degradation product) 

for optimization with objective as minimization of concentration of degraded product. 
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Figure 7-11. Evolution of (a) counts/s in FBRM and (b) SWMCL for objective of minimization 

of concentration of degradation product. 

 

Figure 7-12. PVM image of particles for objective of minimization of concentration of 

degradation product showing smaller crystals compared to size maximization. 

(a) 
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Modeling the crystallization system considering the adsorption of degradation product within the 

product crystals 

It is also possible that the impurities get adsorbed onto the product crystals as crystallization 

progresses rather than remaining in solution (Figure 7-10b). This would lead to reduced product 

quality of the final crystals since the degradation product cannot be eliminated by filtration. The 

resulting evolution of concentrations for the API and the degradation product are shown in Figure 

7-13 for 
30.02ak mol m−=  and 

30.2ak mol m−= in equation (144)  These kinetic rate constants for 

adsorption were chosen to illustrate the effect of a tenfold increase in the adsorption coefficient on 

dynamics of the impurity concentration profiles. 

 

 

Figure 7-13.  Concentration evolution of (a) aspirin (API) and (b) salicylic acid (degradation 

product) for two different adsorption kinetic constants. The API concentration does not change 

with change in adsorption kinetics because the growth rate of the API is assumed to be 

independent of the adsorption of impurities. The degradation product concentration changes on 

changing the adsorption kinetics since faster adsorption onto crystals leads to lower 

concentration of degradation product in the solution. 

(a) 

(b

) 
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It can be seen from Figure 7-13a that the evolution of aspirin concentration does not 

change by changing the rate of adsorption of the degradation product since it is assumed that the 

impurity adsorption does not affect the growth rate of aspirin. Figure 7-13b shows that the 

concentration of the degradation product increases initially, followed by a decrease due to 

adsorption of the degradation product onto the API crystals, which leads to depletion of the 

solution concentration of the degradation product. Figure 7-13b shows that the maximum 

concentration of salicylic acid is much less for 
30.2ak mol m−=  than for

30.02ak mol m−= . This is 

due to the difference in adsorption kinetics - for 
30.2ak mol m−= , the adsorption is much faster. 

As soon as the salicylic acid forms in solution, its starts getting adsorbed onto the crystals and the 

solution concentration decreases rapidly. But for 
30.02 −=ak mol m , the adsorption of salicylic 

acid onto the API crystals is much less rapid, so its solution concentration increases initially to 

0.16 g/mL before the adsorption kinetics starts dominating.  

 

Figure 7-14. Concentration of degradation product with optimal parameter estimate. The model 

simulations run with the optimal estimated parameter shows very good match to the 

experimental concentrations. The slight model mismatch happens because either (i) the 

degradation product (SA) first gets adsorbed onto the aspirin crystals but then desorption of the 

adsorbed also takes place, which was not considered in the kinetic model (ii) adsorption rate 

constant is actually temperature dependent which was not modeled in this work. 

The adsorption constant that best fits the experimental data was estimated by minimizing the 

deviation between the experimental degradation product concentration and the model estimates. 
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The optimal estimate of the adsorption kinetic constant is
2

, exp, mod ,

0

min ( )
a

N

a opt i el i
k

i

k C C
=

= − , where 

expC and modelC are the experimental and predicted concentrations of the degradation product. The 

optimal parameter estimate for the adsorption rate constant was estimated to be 

3 31.13 10ak mol m− −=  .Figure 7-14 shows the evolution of the degradation product concentration 

for the model simulation with the optimal parameter estimates compared to the experimental data. 

There is still some plant-model mismatch since the model predicts a steady decrease in degradation 

product concentration whereas the experiments predicted the concentration was essentially 

constant after ~75 minutes. This can be further rectified by including a temperature dependent 

Arrhenius term for the adsorption kinetics; at lower temperature the rate of adsorption is lower, 

which leads to less adsorption after ~75 minutes when the temperature has dropped significantly. 

Inclusion of a desorption kinetics of the degradation product from the crystal surface may also 

explain the experimental data better – as degradation product gets adsorbed onto the crystals, the 

rate of desorption from the crystal surface also increases and ultimately a stage is reached where 

the overall adsorption rate is balanced by the rate of desorption, which leads to no change in the 

concentration of the degradation product in the solution.  

It is also to be noted that while surface adsorption of impurity is a possible mechanisms 

which explains the experimental results, there can be various other methods of impurity 

incorporation onto crystals viz. substitutional or interstitial incorporation, kinetic incorporation, 

and impurity inclusion[245]. However, these alternate methods of impurity incorporation and 

subsequent impurity purge strategies are not elucidated in this work but will be discussed in detail 

in a future work. Another limitation of the proposed mathematical model is that the growth rate in 

equation (133) is assumed to be independent of the impurity concentration. However, there have 

been reports in literature[246] where both the impurities and solvents affect the crystal growth rate. 

Since the time-course evolution of the model predictions correlated well with the experimental 

observations in Figure 7-14, such effects were not modeled in the crystal growth rate equation 

( equation (133)) for this particular API-solvent-impurity combination. However, as a cautionary 

note, this assumption cannot be extrapolated for all API-solvent combinations and the growth rate 

in equation (133) needs to be modified on a case-by-case basis. Such mechanistic investigations 
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of the effect of impurities on the rate of crystal growth and the effect on the optimal cooling profile 

will be elucidated in a future publication.  

The process model considered here can also be applied to the closed-loop control of 

crystallization process that involves degradation. Model predictive control strategies for batch 

cooling crystallization[247],[161] ,[248] ,[218],[249] have been reported in literature, where the 

process model is used online to calculate the optimal control moves in a receding horizon 

framework so that the system reaches the desired target setpoint at the end of the batch, in the 

presence of system uncertainties. Similar closed-loop control framework can also be achieved by 

incorporating the online UPLC system used in this work and the degradation model to adjust the 

cooling profile automatically in real-time to minimize degradation. 

 Conclusions 

In this work the crystallization of an API, which undergoes degradation at high temperatures was 

modelled considering nucleation, growth, degradation and impurity absorption followed by an 

experimental validation using PAT tools including FBRM, PVM and a novel online UPLC system. 

This is an industrially relevant problem since APIs often have low solubilities, and hence need to 

be cooled from a high initial process temperature at which the API may be thermally unstable. For 

such APIs, an optimal cooling profile that balances the objectives to achieve large final mean 

particle size versus minimizing the degradation of the API is crucial to the successful performance 

of the crystallization process. In this study Aspirin in ethanol/water mixture is used as the model 

system. Two objective functions are chosen for the process: (i) maximization of the average final 

product crystal size, and (ii) minimization of the degradation product concentration. It was shown 

that the cooling profiles required for these two objectives are very different and a trade-off exists 

between obtaining large crystals or minimizing the degradation of the API. If the end objective is 

to maximize the final particle size, the system needs to be kept at higher temperatures for a longer 

duration, but this leads to more degradation of API. However, if the end objective is to minimize 

the API degradation, the system needs to be cooled very fast, but this leads to smaller particles due 

to high rate of nucleation. It is shown in this work that the experimental results and the model 

simulation results are qualitatively consistent when the objective is to maximize the final particle 

size. However, when the objective is to minimize the concentration of the degradation product, the 

concentration evolution profiles of the degradation product are qualitatively different between the 
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experiments and the model simulations. This difference is attributed to structural uncertainty of 

the process model and the process model is modified to include adsorption of the degradation 

product into the API crystals. The optimal parameter estimate of the adsorption kinetics is obtained 

by fitting the experimental data. Using the optimal parameters, a better correlation between the 

model predictions and the experimental data was achieved when the impurity adsorption is 

included in the model.  
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8. FUTURE DIRECTIONS 

It is hoped that the novel tools and technologies developed in this thesis will accelerate the rapid 

industrial deployment of Spherical Crystallization technology. However, there remains areas, 

which can benefit from further scientific research endeavors: 

1. There needs to be more automated methods to detect the best solvent/antisolvent/binder 

combinations for development of successful SC technology of new APIs. There have been 

recent advances in literature on automated solvent selection for crystallization viz. [250]. 

Extension of such technology and adaptation to SC process will significantly reduce the 

time for process development.  

2. Robust and accurate imaging-based sensors need to be developed to quantify the in-situ 

PSD and ASD during SA. The major bottleneck in industrial deployment of robust NMPC 

for SA is the lack of state-of-the-art in-situ measurement tools to characterize the ASD. 

Current PAT tools viz. FBRM have the limitation that it is hard to decouple the ASD from 

the PSD from in-situ CLD data. Moreover, retro-calculation of the PSD from the CLD is 

an ill-posed problem [251], which needs newer and more robust mathematical techniques 

for particles of arbitrary shapes. However, there are newer imaging-based tools coming out 

in the market viz. Blazemetrics probe [252], which can provide accurate in-situ estimates 

of the ASD.  

3. With rapid advances in microfluidic crystallization, there needs to be more research on 

development of novel platform technology which can validate the experimental findings 

for co-agglomeration. Tracking the crystallization kinetics within droplets, in a lab-scale 

crystallizer is a challenging task. In-situ PAT tools viz. PVM cannot effectively track 

individual droplets over enough time duration, since the droplets rapidly disappear from 

the focal window of the PVM. However, with accurate engineering of channel dimensions 

in the microfluidic setup, along with multiple sensors positioned smartly along the channel, 

what happens within each droplet can be tracked.  

4. Novel mathematical frameworks need to be developed which can rapidly detect the 

fundamental mode of impurity adsorption, from PAT data. This can enable online model 

adaptation, which will accelerate the convergence between mathematical modeling and 

experiments for industrial crystallization engineering.  
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