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ABSTRACT

Al-Herz, Ahmed Ph.D., Purdue University, December 2019. Approximation Algo-
rithms for Maximum Vertex-Weighted Matching. Major Professor: Alex Pothen.

We consider the maximum vertex-weighted matching problem (MVM), in which

non-negative weights are assigned to the vertices of a graph, and the weight of a

matching is the sum of the weights of the matched vertices. Vertex-weighted match-

ings arise in many applications, including internet advertising, facility scheduling,

constraint satisfaction, the design of network switches, and computation of sparse

bases for the null space or the column space of a matrix. Let m be the number of

edges, n number of vertices, and ∆ the maximum degree of a vertex in the graph.

We design two exact algorithms for the MVM problem with time complexities of

O(mn) and O(∆mn). The new exact algorithms use a maximum cardinality match-

ing as an initial matching, after which the weight of the matching is increased using

weight-increasing paths.

Although MVM problems can be solved exactly in polynomial time, exact MVM

algorithms are still slow in practice for large graphs with millions and even billions of

edges. Hence we investigate several approximation algorithms for MVM in this thesis.

First we show that a maximum vertex-weighted matching can be approximated within

an approximation ratio arbitrarily close to one, to k/(k + 1), where k is related to

the length of augmenting or weight-increasing paths searched by the algorithm. We

identify two main approaches for designing approximation algorithms for MVM. The

first approach is direct; vertices are sorted in non-increasing order of weights, and

then the algorithm searches for augmenting paths of restricted length that reach

a heaviest vertex. (In this approach each vertex is processed once). The second

approach repeatedly searches for augmenting paths and increasing paths, again of
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restricted length, until none can be found. In this second, iterative approach, a vertex

may need to be processed multiple times. We design two approximation algorithms

based on the direct approach with approximation ratios of 1/2 and 2/3. The time

complexities of the 1/2-approximation algorithm is O(m + n log n), and that of the

2/3-approximation algorithm is O(m log ∆). Employing the second approach, we

design 1/2- and 2/3-approximation algorithms for MVM with time complexities of

O(∆m) and O(∆2m), respectively. We show that the iterative algorithm can be

generalized to find a k/(k+1)-approximate MVM with a time complexity of O(∆km).

In addition, we design parallel 1/2- and 2/3-approximation algorithms for a shared

memory programming model, and introduce a new technique for locking augmenting

paths to avoid deadlock and related problems.

MVM problems may be solved using algorithms for the maximum edge-weighted

matching (MEM) by assigning to each edge a weight equal to the sum of the ver-

tex weights on its endpoints. However, our results will show that this is one way to

generate MEM problems that are difficult to solve. On such problems, exact MEM

algorithms may require run times that are a factor of a thousand or more larger than

the time of an exact MVM algorithm. Our results show the competitiveness of the

new exact algorithms by demonstrating that they outperform MEM exact algorithms.

Specifically, our fastest exact algorithm runs faster than the fastest MEM implemen-

tation by a factor of 37 and 18 on geometric mean, using two different sets of weights

on our test problems. In some instances, the factor can be higher than 500. More-

over, extensive experimental results show that the MVM approximation algorithm

outperforms an MEM approximation algorithm with the same approximation ratio,

with respect to matching weight and run time. Indeed, our results show that the

MVM approximation algorithm outperforms the corresponding MEM algorithm with

respect to these metrics in both serial and parallel settings.
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1 INTRODUCTION

1.1 Matching Problems and Applications

Matching in graphs is one of the most studied problems in combinatorics due to its

importance as a representative problem in computer science as well its applications

in many domains. One of the earliest publications on matching algorithms in the

last century dates to Kuhn [1] in 1955, which was originally motivated by the need

to optimally assign personnel to jobs. Subsequently matching problems have been

considered in many applications.

Given a graph G = (V,E) with a set of vertices V , and a set of edges E, a

matching M is a subset of edges such that no two edges in M meet at the same

vertex. A graph may be unweighted, edge-weighted or vertex-weighted. Thus, we

have three basic variations of the matching problem:

1. Maximum cardinality matching (MCM).

2. Maximum edge-weighted matching (MEM).

3. Maximum vertex-weighted matching (MVM).

Most of the previous work has focused on cardinality and edge-weighted matchings,

while little attention has been paid to vertex-weighted matchings despite the recent

increase in the use of MVM in many applications.

In this thesis we study the maximum vertex-weighted matching problem on non-

bipartite graphs and present efficient exact and approximation algorithms.

Vertex-weighted matchings arise in many applications, including internet adver-

tising [2], the design of network switches [3–10], facility scheduling [11], the compu-

tation of sparse bases for the null space or the column space of a rectangular ma-

trix [12–14], drawing permutations [15], reverse spanning trees [16], and constraint
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satisfaction [17, 18]. To provide motivation for our study, we will briefly discuss the

role of MVM in solving four problems from different areas.

Vertex-weighted matching in bipartite graphs has recently been applied to internet

advertising. In a simplified model, U is a set of advertisers known at the beginning

of the algorithm, and V is a set of keyword searches which arrive online during the

execution of the algorithm. Each advertiser u ∈ U expresses interest in placing ads

for a subset of keywords, and will pay φ(u) units of money for placing the ad. The

problem is to find a set of ad placements that maximizes the money spent. Here

the order of arrival of the keywords V is unknown, and the problem is to design an

online MVM algorithm that finds a matching with weight as close to the optimal as

possible (when V is fully known). Aggrawal et al. [19] design an online algorithm for

this problem that computes a weight that is at least (1−1/e) ≈ 0.632 of the optimal,

assuming that the vertices in V arrive in random order. The best approximation

ratio for the online vertex-weighted matching problem is 0.6534 [20], assuming that

the vertices in V arrive in random order.

Mehta [2] surveys several ad allocation problems as well as the online algorithms

that have been designed to address this problem. He states that “internet advertis-

ing constitutes perhaps the largest matching problem in the world, both in terms of

[money] and numbers of items”. He also asks for “a fast simple offline approximation

algorithm [for non-bipartite matching] as opposed to the optimum algorithm, espe-

cially when the data is very big” (Section 10.1.2). Our work describes precisely such

an off-line algorithm for MVM that beats the competitive ratio of this known on-line

algorithm. Indeed, the MVM problem can be approximated arbitrarily close to one

using one of the approximation algorithms we have designed.

Another recent application is network switch scheduling [4], where a switch is

modeled as a bipartite graph. Here U is a set of input ports and V is set of output

ports. There is an edge (u, v) if a packet in u ∈ U needs to be routed to v ∈ V .

The weight of u ∈ U is the number of packets at port u; the weight of v ∈ V is the

number of packets that need to be sent to v. The objective of the scheduling policy is
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to maximize the number of packets sent in one time slot. This is achieved by finding

a maximum vertex-weighted matching, where for each matched edge (u, v) the packet

is routed from port u to port v. It has been shown that modeling network switch

scheduling as a vertex-weighted matching problem is better than modeling based on

edge-weighted matching since the vertex-weighted model evacuates all packets in the

system in the minimum amount of time given that there are no more new arrivals.

The vertex-weighted models are also throughput-optimal.

Vertex-weighted matching can also be applied to scheduling astronaut training

sessions [11]. Let T be a set of time periods, R a set of requests from astronauts

for resources, and S a set of shared resources. Each astronaut provides a subset

of time periods in which he/she is available and a subset of the shared resources

needed. The objective is to schedule as many astronauts as possible with no conflicts

regarding shared resources. The problem can be solved in two phases. In phase one,

a graph is constructed as follows: R is a set of vertices representing the requests, S

is a set of vertices representing the shared resources, and there is an edge between

r ∈ R and s ∈ S if there is at least one time period at which both r and s can be

accommodated. Computing a maximum vertex-weighted matching results in a set of

matching edges and unmatched vertices, denoted as a group set Gr. In phase two, a

graph is constructed with a set of vertices Gr and T , where gr is a vertex in Gr, t is

a vertex in T and there is an edge between gr and t if gr can be accommodated at

time t. A vertex weight is assigned to a group based on its priorities. The maximum

vertex-weight matching results in a matching of groups to periods of time such that

the total weight is maximized.

Finally, we will discuss an MVM application in solving the sparsest column-space

basis (SCB) problem [13]. Let A be a matrix with k rows and n columns, with n > k,

and full row rank k. The maximum number of linearly independent columns (or rows)

of A is the numerical rank of A. The maximum number of nonzeroes in a diagonal is

the structural rank of A. The numerical rank of a matrix is less than or equal to its

structural rank of A. A basis for the column-space of A is a linearly independent set of
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columns of maximum cardinality. A sparsest basis for the column-space of A is a basis

with the fewest nonzeroes. An SCB problem can be modeled as an MVM problem.

An n by k A matrix can be represented as a bipartite graph G = (S, T,E, φ) with

weight function φ : S 7→ R≥0, where set S represents the n columns, set T represents

the k rows, and there is an edge (s, t) ∈ E if the entry A(s, t) is nonzero. The

vertex weights in S are given by φ(s) = k+ 1−d(s), where d(s) equals the number of

nonzero elements in column s. A matching M in G is equivalent to a subset of nonzero

elements in A, such that no two nonzero elements share a column and a row. The

subset of nonzeroes that corresponds to matched edges can be placed on the diagonal

of A by permuting the rows and columns of A. Assuming that the numerical rank

of A is equal to the structural rank of A and given the weights described above, a

sparsest basis is obtained by a maximum vertex-weighted matching in G.

1.2 Approaches for Solving MVM Problems

The MVM problem can be transformed into an MEM problem by assigning each

edge a weight obtained by summing the weights at its endpoints, and thus an MEM

algorithm can be used to solve the MVM problem. A simpler and more efficient

exact algorithm is obtained by solving an MVM problem directly. The first MVM

polynomial time algorithm was presented by Spencer and Mayer [21] with time com-

plexity of O(m
√
n log n). The Spencer-Mayer algorithm has not been implemented

to the best our our knowledge; we have not done so because it is a sophisticated

algorithm, and we believe that it would be slower than the simpler algorithms we

have designed. Our focus is also on faster approximation algorithms for MVM. A

more recent polynomial time algorithm was devised by Dobrian et al. [22] and Ha-

lappanavar [23], with time complexity of O(mn). This algorithm was implemented,

and we found it is indeed faster than exact MEM algorithms by three to four orders

of magnitude. However, there were some instances in which the algorithm did not

terminate within 200 hours. In this thesis, we present two exact algorithms with time
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complexity O(mn) and O(∆mn), where ∆ is the maximum degree. In practice, the

new exact algorithms outperform the earlier exact algorithms. Furthermore, in some

instances, the new exact MVM algorithms can be 100 to 1000 times faster than exact

MEM algorithms.

Although MVM problems can be solved exactly in polynomial time, on recent

big data problems featuring massive graphs with millions and even billions of edges,

exact MVM algorithms are slow, taking hours, and occasionally failing to terminate

within hundreds of hours. In light of this, there is a demand for fast approximation

algorithms. For instance, LEDA [24, 25] (a commercial software library for solving

many combinatorial problems) failed to solve the nlpkkt200 problem in 200 hours,

whereas our new exact algorithm found the matching in 160 hours. Our fastest 2/3-

approximation algorithm computes a matching in under few minutes! It is worth

mentioning that semi-streaming algorithms for MCM and MEM have been studied

since they were introduced in [26] where a limited space of O(n polylog n) can be

used and the edges arrive one by one. The best approximation ratio for MEM using a

semi-streaming algorithm is 1
2

+ c [27], assuming that the edges arrive in random or-

der, where c > 0 is an absolute constant. Many approximation algorithms for solving

the MEM problem have been proposed in the last several years. The approxima-

tion algorithm with the best approximation ratio guarantees a (1-ε) fraction of the

maximum edge weight, where ε is a positive real number [28]. In contrast, approx-

imation algorithms for MVM have not been well-investigated till our work. While

MEM approximation algorithms can be used, their performance in terms of time and

matching weight relative to approximation algorithms for the MVM problem has not

been studied.

In this thesis we identify two techniques, direct and iterative, for designing approx-

imation algorithms. The direct approach begins with an empty matching, and at each

step matches a currently heaviest unmatched vertex to a heaviest unmatched vertex

that it can reach by an augmenting path of a restricted length. In this algorithm,

once a vertex is matched, it will always remain matched because augmentation does
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not change a matched vertex to an unmatched vertex. The second approach processes

the vertices in arbitrary order. It looks for any augmenting and increasing paths with

respect to the current matching and terminates when there is none. This second

iterative algorithm has the advantage that it has more concurrency, whereas the first

algorithm has to process vertices in a specified order.

We designed two approximation algorithms based on the first approach with ap-

proximation ratios of 1/2 and 2/3. The technique for proving the approximation ratio

of the 2/3-approximation algorithm requires several new concepts.

Unfortunately there are three drawbacks to the above approach for designing

approximation algorithms. First, we do not know how to generalize the algorithm

to obtain an approximation ratio of k/(k + 1). Second, it is not suitable for parallel

implementation since vertices must be processed in a particular order. Third, the

algorithm must start with an empty matching and cannot be initialized, which is

critical for obtaining fast runtimes in practice.

1.3 Significant Contributions in This Thesis

One of our significant contributions is a theorem that leads to an algorithm with

approximation ratio arbitrarily close to one for the MVM problem. We show that if

a matching does not admit an augmenting path of length less than or equal to 2k− 1

or a weight-increasing path of length less than or equal to 2k, then it is a k/(k + 1)-

approximate matching. We present 1/2- and 2/3- approximation algorithms based

on this approach that obtain nearly optimal weights while also being fast in practice.

The key advantages of the iterative approach lie in its abilities to initialize the

matching and to process vertices in any order, which makes it suitable for parallel

implementation. We have designed parallel 1/2- and 2/3-approximation algorithms

for a shared memory programming model. In order to compute the correct matching

in parallel, locking and synchronization methods must be used. The previous methods

for parallelization were based on locking the neighbor of a vertex for non-bipartite
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graphs [29]. While this suffices for 1/2-approximate matching, it will lead to deadlock

or livelock if the augmenting or weight-increasing paths are longer than one edge. We

successfully designed a new technique for locking augmenting paths; it identifies the

vertices on these paths that need to be locked, and locks them in a specific order.

To the best of our knowledge, this is the first parallel algorithm with approximation

ratio greater than half for a weighted matching problem.

In addition to the theoretical results, we present extensive experimental results to

show that the MVM approximation algorithm outperforms an MEM approximation

algorithm with the same approximation ratio. We show that, indeed, the MVM

approximation algorithm outperforms the corresponding MEM algorithm in terms of

time and matching weight in both serial and parallel settings.

We summarize our contributions in this dissertation as follows:

1. Given a vertex-weighted graph, we can transform it into an edge-weighted graph

by summing the vertex weights to obtain edge weights. We prove that the exact

MEM and MVM algorithms find the same matching in this graph, provided ties

in weights are broken consistently in the two algorithms (Theorem 3.3.1).

2. We obtain a new theorem (Theorem 4.1.1) that identifies sufficient conditions

to obtain a k/(k + 1)-approximation ratio for the MVM problem.

3. We design two new exact MVM algorithms on non-bipartite graphs (Algorithms

15 and 16) and prove their correctness (Theorems 3.5.2 and 3.5.4).

4. We design new 1/2- and 2/3-approximation algorithms for MVM on non-

bipartite graphs based on the direct method (Algorithms 17 and 18).

5. We prove the approximation ratio of the new 2/3-approximation direct algo-

rithm using a new proof technique (Theorem 4.2.12).

6. We present new 1/2- and 2/3-approximation algorithms (Algorithms 19 and

20) based on the iterative approach, where an unmatched vertex might have to
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be processed multiple times since it could be matched and unmatched in the

course of the algorithm.

7. Given a transformed edge-weighted graph obtained from a vertex-weighted

graph, we prove that the 1/2-approximation MEM algorithm based on locally

dominant edges and the 1/2-approximation MVM algorithm based on the direct

method find the same matching (Theorem 4.2.1).

8. We implement serial 1/2- and 2/3-approximation algorithms based on the direct

approach.

9. We implement serial and parallel 1/2- and 2/3-approximation algorithms based

on the iterative approach on a shared memory parallel computer.

10. We implement the (1− ε)-approximation algorithm for MEM.

11. We evaluate the performance of the new 2/3-approximation iterative algorithm

by comparing its running time, matching weight, and cardinality with several

MEM approximation algorithms.

12. We show that the new 2/3-approximation algorithms obtain better weight

and cardinality than all approximation algorithms for MEM. Moreover, the

new 1/2-approximation iterative algorithm runs faster than the fastest 1/2-

approximation algorithm for MEM.

13. We show that the new 1/2- and 2/3-approximation parallel algorithms scale

very well on a shared memory machine with a modest number of cores; they

out-perform the parallel Suitor algorithm.

14. We present an open-source library of C++ routines to compute several variants

of matchings called Matchbox.

Some of these results have been published in the following papers. Dobrian et

al. [22] describe a 2/3-approximation algorithm for MVM in bipartite graphs in a
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paper in the SIAM Journal of Scientific Computing. Al-Herz and Pothen [30] de-

scribe a 2/3-approximation algorithm for MVM in non-bipartite graphs in a paper

in Discrete and Applied Mathematics. Finally, Al-Herz and Pothen [31] describe a

parallel 2/3-approximation algorithm for MVM in non-bipartite graphs in a paper

in the Proceedings of the SIAM Workshop on Combinatorial Scientific Computing,

2020.

We now describe how the rest of the dissertation is structured.

In Chapter 2, we will provide definitions and background information regarding

matching. We will discuss relevant previous work on exact and approximation algo-

rithms for maximum cardinality matching, maximum edge-weighted matching, and

maximum vertex-weighted matching.

In Chapter 3, we will describe important concepts related to MVM. First we will

prove sufficient and necessary conditions for obtaining an exact MVM. Second, we

will prove that when a transformed edge-weighted graph is obtained from a vertex-

weighted graph, the MEM and MVM algorithms find the same matching. Third, we

will describe the new exact algorithms, prove the algorithms correct, and obtain time

complexities for the algorithms. Finally, we will discuss practical improvements to

the exact algorithms.

In Chapter 4, we will prove a theorem stating sufficient conditions for obtaining

a k/(k + 1)-approximation ratio for the MVM problem. Then, we will describe the

approximation algorithms, prove their time complexity, and prove their correctness.

We will prove that the 1/2-approximation algorithm based on the direct approach

finds the same matching as the edge-weighted 1/2-approximation algorithm based on

the locally dominant approach. Lastly, we will show that the iterative algorithm can

indeed be used to find a k/(k + 1)-approximate matching.

In Chapter 5, we will discuss how the iterative approximation algorithm could be

parallelized. We will introduce a new method of locking vertices on augmenting paths

in order to augment only along a vertex-disjoint subset of the paths, and prove the

correctness of the parallel algorithm.
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In Chapter 6, we will present extensive experimental results. We will compare the

new approximation algorithms with a set of approximation algorithms for the MEM

problem. In particular, we will compare running time, matching weight, and matching

cardinality. Additionally, we will compare the number of edges scanned by these

algorithms, since it is a metric that does not depend on the machine specifications.

We will present a break-down of time for each major step of the approximation

algorithms in order to see what percentage of time the algorithm spends on each

step. In addition, we will present parallel experimental results using 20 threads of a

shared memory parallel processor, and we will report on the speedup and scalability

of each algorithm.

Lastly we will summarize our contributions and discuss future work in the con-

cluding Chapter 7.
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2 BACKGROUND AND RELATED WORK

In this chapter, we will provide the basic foundations of matching algorithms. More

comprehensive coverage of matching theory and matching algorithms can be found

in [32–36]. We begin by introducing definitions, notations, and basic theorems in

matching, and then we will highlight representative previous work. In particular, we

will discuss exact algorithms for maximum cardinality, maximum edge-weighted, and

maximum vertex-weighted matching, on both bipartite and non-bipartite graphs. We

will keep the descriptions of algorithms brief, since the main goal is to provide basic

background and an overview of the development of matching algorithms.

2.1 Foundations

Let G = (V,E) be a simple graph where V is a set of vertices and E is a set

of edges; each edge constitutes an unordered binary relation on V . We will use the

notations (u, v) and uv for an undirected edge with endpoints at the vertices u and

v. The number of vertices and edges are denoted by n and m, respectively. The

degree of a vertex u is the number of edges that are incident on u, denoted d(u). The

maximum degree of a vertex in a graph will be denoted by ∆. The set of neighbors

of a vertex u will be denoted by N(u). A graph can be unweighted or weights could

be associated with its edges or vertices. Weights on vertices can be represented as

φ : V 7→ R≥0 for weighted vertices and φ : E 7→ R≥0 for weighted edges. A bipartite

graph G = (S, T,E) is a graph in which the set of vertices S ∪ T can be partitioned

into two disjoint sets S and T , such that no edge joins any two vertices in S, and no

edge joins any two vertices in T . Since edges only connect vertices in S and vertices

in T , bipartite graphs do not contain a cycle of odd length. A matching M in a

graph G = (V,E) is a subset of edges such that no two edges in the subset meet at
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the same vertex. A matching can be seen as an independent set of edges or a set of

pairs of vertices. If u is matched in M let Mate(u) = v where (u, v) ∈ M ; otherwise

Mate(u) = NULL. The cardinality of a matching M is the number of edges in M

and is denoted by |M |. Based on whether the graph is weighted or not, we have three

types of maximum matching problems, which are defined below.

Definition 2.1.1 Given a graph G = (V,E), the Maximum Cardinality Matching

problem is to find a matching M of maximum cardinality in G.

Definition 2.1.2 Given a graph G = (V,E, φ) and a weight function φ : E 7→

R≥0, we define the weight of a matching as
∑

e∈M φ(e), the sum of the weights of

the matching edges. In the Maximum Edge-Weighted Matching problem we find a

matching M of maximum weight in G.

Definition 2.1.3 Given a graph G = (V,E, φ) and a weight function φ : V 7→ R≥0,

we define the weight of a matching as
∑

e∈M,e=(u,v)(φ(u) + φ(v)), the sum of the

weights on the endpoints of matching edges. The Maximum Vertex-Weighted Matching

problem is to find a matching M of maximum vertex weight in G.

There are several variants of matching problems. A maximal matching is a match-

ing such that another edge cannot be added to it without violating the matching

constraints on the vertices. A perfect matching is matching in which every vertex

in the graph is matched. A maximum (or minimum) weighted perfect matching is a

perfect matching with maximum (or minimum) weight. A maximal matching is not

necessarily a maximum cardinality matching but a perfect matching is always a max-

imum cardinality matching. A graph might not have a perfect matching. Note that a

maximum edge-weighted matching is not necessarily a maximum cardinality match-

ing, whereas a maximum vertex-weighted matching can be chosen to be a maximum

cardinality matching when the vertex weights are non-negative.

A path P in G is a finite sequence of distinct vertices {vi, vi+1, ..vi+k} such that

(vj, vj+1) ∈ E for i ≤ j ≤ i+ k − 1. The length of a path |P | is the number of edges
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in the path. A cycle is a path concatenated with an edge joining its first and last

vertices. A subgraph induced by a subset of vertices X is the graph that includes

all edges that join vertices in X. A subgraph induced by a subset of edges F is the

graph obtained from the edges in F and all vertices which are its endpoints. We refer

to the set of edges of a subgraph H as E(H) and similarly its set of vertices as V (H).

Definition 2.1.4 An alternating path P with respect to M is a path whose edges

alternate between edges in the matching M and edges not in the matching.

Definition 2.1.5 An augmenting path P with respect to M is an M-alternating

path of odd length where the first and last vertices on the M-alternating path P are

unmatched.

Definition 2.1.6 In the context of vertex-weighted matching, a weight-increasing

path P with respect to M is an M-alternating path of even length where one end-

point is unmatched and the other endpoint is matched such that the weight of the

unmatched vertex is heavier than that of the matched vertex.

Definition 2.1.7 A vertex v on a path P is an outer vertex if the number of edges

from an unmatched vertex to v is even, and an inner vertex if the number is odd. All

unmatched vertices are considered as outer vertices.

The matching M can be augmented by matching the edges in the symmetric

difference M ′ = M ⊕ P , which is a matching of cardinality |M | + 1. Augmenting

paths may used to find a maximum cardinality matching by repeatedly searching an

augmenting path from an unmatched vertex, if it exists. When no augmenting path

can be found with respect to M , then the cardinality of the matching is maximum.

The following theorem from Berge [37] is a cornerstone to many matching algorithms.

Theorem 2.1.1 A matching M in a graph G is a maximum matching if and only if

there is no M-augmenting path in G.
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Proof If there exists an augmenting path P in G with respect to M , then the

cardinality of M can be increased by matching the edges in M ⊕ P , and hence M

cannot be a maximum matching. Conversely, assume M is not a maximum matching

and M ′ is a maximum matching. Consider the symmetric difference M ⊕M ′, which

results in M ⊕M ′-alternating paths and even cycles. In the case of an alternating

path or an alternating cycle of even lengths, both M and M ′ match the same number

of edges. Since |M ′| > |M |, there must exist an M ⊕M ′-alternating path P of an

odd length such that |P ∩M ′| > |P ∩M | where the first and the last edges belong to

M ′. Thus, P is augmenting path with respect to M in G.

2.2 Exact Algorithms

Here, we will give generic descriptions of the three types of maximum matching.

Moreover, we will describe the basic combinatorial algorithms for cardinality and

vertex-weighted matching and primal-dual algorithms for edge-weighted matching.

There are scaling and randomized algebraic techniques [38–42], that are not discussed

here. For each type of maximum matching we will start by describing a generic

bipartite maximum matching algorithm because it is simpler; we will then describe

the non-bipartite maximum matching algorithm.

2.2.1 Maximum Cardinality Matching

Bipartite Graphs

Let G = (S, T,E) be a bipartite graph and M an empty matching. The algorithm

picks an unmatched vertex s ∈ S and searches for an augmenting path P . If P is

found then M is augmented by P ⊕M , and the algorithm repeats until all vertices

in S are considered. if we fail to find an augmenting path from an unmatched vertex

during the algorithm, then it does not need to be considered again. The search for an
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augmenting path takes O(m) time, and since we have n vertices, the time complexity

is O(mn).

Algorithm 1 Exact Algorithm for MCM on Bipartite Graphs.

1: procedure Exact-MCM-Bip(G = (S, T,E))

2: M ← ∅;

3: for all s ∈ S do

4: Starting from s search for an augmenting path P ;

5: if P is found then

6: M ←M ⊕ P ;

7: end if

8: end for

9: end procedure

Hopcroft and Karp [43] presented an algorithm that drastically reduces the num-

ber of searches by finding a maximal set of vertex-disjoint augmenting paths of short-

est length in one O(m) search. The aim is to divide the searches into phases, and in

each phase, a maximal set of shortest length vertex-disjoint M -augmenting paths is

found. It can be shown that the number of phases is bounded by O(
√
n). Since each

phase takes O(m), the time complexity for such an approach in bipartite graphs is

O(m
√
n). We refer the reader to [43] for a proof.

Non-bipartite Graphs

Solving the maximum cardinality matching on non-bipartite graphs is more com-

plicated. If the bipartite algorithm described above is used on a non-bipartite graph,

the search for an augmenting path may not succeed because of the existence of odd

length cycles. Odd length cycles which have the maximum cardinality of matched

edges are called blossoms.
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Definition 2.2.1 Let M be a matching in G and B be an odd set of vertices. B is a

blossom if the set of vertices in B form a cycle C and the number of matching edges

in C is (|B| − 1)/2, that is, |C ∩M | = |(|B| − 1)/2|.

Consider the example in Figure 2.1, where the search for an augmenting path

starts from v1 and there exists an augmenting path {v1, v2, v3, v4, v6, v7, v5, v8}. If a

breadth-first search is used, then two alternating paths are found: {v1, v2, v3, v4, v6}

and {v1, v2, v3, v5, v7}, and both fail to find the augmenting path. If a depth-first

search is used, then one alternating path could be {v1, v2, v3, v5, v7, v6, v4}, which also

fails to find the augmenting path.

Figure 2.1. A correct augmenting path is {v1, v2, v3, v4, v6, v7, v5, v8}.

Edmonds [44] discovered a remarkable solution to the problem caused by odd

cycles. His idea was to shrink a blossom, replace it with a super vertex vB, and

replace the edge set E1 incident on vertices in B with the set E2 = {(vB, j)|∃(i, j) ∈

E1, i ∈ B, j 6∈ B}.

Now, we can describe the maximum matching algorithm. Let G = (V,E) be

a graph and M an empty matching. The algorithm picks an unmatched vertex u

and searches for an augmenting path. If a blossom is discovered, then the algorithm
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shrinks the blossom, updates G, and recursively starts searching for an augmenting

path from u. If an augmenting path is found, then the algorithm expands all blossoms

on the augmenting path recursively to recover the augmenting path in the original

graph. Then, the algorithm augments the matching. The algorithm repeats until all

vertices are considered.

Searching for an augmenting path takes O(m) time, updating a graph that is

caused by discovering a blossom costs O(m) time, and there can be at most O(n)

recursive shrunken blossoms. Thus, each search in Edmonds’ algorithm takes O(mn)

time, and since we have n stages, the time complexity is O(mn2). Gabow [45] im-

proved the time complexity to O(n3) by avoiding explicitly shrinking blossoms and

reconstructing the graph. A blossom membership array is used in order to find which

blossom a vertex belongs to, and when a blossom is discovered, the inner vertices are

inserted into a queue for future searches, which already includes the outer vertices.

Another improvement is using a union-find data structure for managing blossom mem-

bership [45]. Finding which blossom a vertex belongs to takes O(mα(n,m)) per stage,

so the total time complexity is O(nmα(n,m)), where α is the inverse of Ackermann’s

function. The cost per stage can be reduced to O(m) by using the incremental tree

set union algorithm [46].

Like the bipartite case, the MCM problem in non-bipartite graphs can be solved

in O(
√
nm) using O(

√
n) phases [47]. In each phase the algorithm finds a maximal

set of shortest length vertex disjoint augmenting paths. We refer the reader to [47,48]

for a detailed description.

2.2.2 Maximum Edge-Weighted Matching

The MEM problem can be formulated as a linear programming problem to which

the theory of duality can be applied. In this section, we will discuss primal-dual

solutions to the MEM problem in bipartite and non-bipartite graphs. We refer the
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Algorithm 2 Exact Algorithm for MCM on Non-Bipartite Graphs.

1: procedure Exact-MCM(G = (V,E))

2: M ← ∅;

3: for all u ∈ V do

4: Search for an augmenting path P starting from u;

5: if a blossom B is found then

6: Shrink B and continue the search for an augmenting path P from u;

7: end if

8: if P is found then

9: Expand all blossoms recursively that P goes through;

10: M ←M ⊕ P ;

11: end if

12: end for

13: end procedure
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reader to [32] for more detailed discussions about linear programming and primal-dual

methods.

Bipartite Graphs

The primal-dual solution for the MEM problem on bipartite graphs is known as

the Hungarian method, and it was first applied to the assignment problem proposed

by Harold W. Kuhn [1]. Consider a bipartite graph G = (S, T,E, φ) with weight

function φ : E 7→ R≥0. The primal-dual formulation for the MEM problem is given

by:

Primal problem:

max
∑
st∈E

φ(st)x(st)

s.t. 0 ≤ x(st) ≤ 1 for ∀st ∈ E,∑
t∈T

x(st) ≤ 1 for ∀s ∈ S,∑
s∈S

x(st) ≤ 1 for ∀t ∈ T.

Dual problem:

min
∑
s∈S

y(s) +
∑
t∈T

y(t)

s.t. y(s) + y(t) ≥ φ(st) for ∀st ∈ E,

y(s) ≥ 0 for ∀s ∈ S,

y(t) ≥ 0 for ∀t ∈ T.

A primal variable x(st) is assigned to each edge st ∈ E, and can take a value

of 1 (for a matching edge) or 0 (for a non-matching edge). A dual variable y(v) is

assigned to each vertex v ∈ S ∪ T . The dual variables are used to guide the graph

search procedure. Let π(st) be a slack variable for each edge st ∈ E, such that

π(st) = y(s) + y(t) − φ(st). If π(st) = 0, we say the edge st is tight. A primal-dual

solution is optimal if the following complimentary slackness conditions hold:

1. π(st) ≥ 0, ∀st ∈ E.



20

2. If st is a matching edge, then π(st) = 0.

3. If s is an unmatched vertex, then y(s) = 0.

The main idea of the primal-dual algorithm is to start with an initial solution that

satisfies conditions 1 and 2 but violates condition 3. For instance consider the follow-

ing initialization: y(s) is assigned the maximum weight of an edge incident on s for

all s ∈ S, and y(t) is assigned 0 for all t ∈ T . This assignment satisfies conditions 1

and 2 but violates condition 3, and during the course of the algorithm, the number

of violations of condition 3 is reduced while maintaining conditions 1 and 2.

The algorithm picks an unmatched vertex s, and then searches for an augmenting

path that starts from s and uses tight edges. If an augmenting path is found, then

the current matching is augmented with this path. If no tight edges can be found,

the duals are adjusted by the minimum positive slack δmin = min(π(st)) such that

π(st) > 0 ∀st ∈ E as follows:

• y(s)← y(s)− δmin.

• y(t)← y(t) + δmin.

After the duals are adjusted, new tight edges could cause an augmenting path to be

found. The steps repeat until the current vertex s is matched or the dual variable

y(s) becomes 0. The time complexity of the algorithm is influenced by the method of

finding the minimum slack δmin and updating the duals. A simple array search leads

to O(n3) time complexity [49]. Using a binary heap will reduce the time complexity to

O(mn log n) [50,51], and using a Fibonacci heap will result in O(mn+ n2 log n) time

[52]. The fastest exact MEM algorithm on bipartite graphs using integer weights

is presented in [53] and has a time complexity of O(
√
nm log(W )), where W is the

maximum edge weight.
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Algorithm 3 Exact Algorithm for MEM on Bipartite Graphs.

1: procedure Exact-MEM-Bip(G = (S, T,E, φ))

2: M ← ∅;

3: ∀s ∈ S y(s) = max(φ(st));

4: ∀t ∈ T y(t) = 0;

5: for all s ∈ S do

6: while ∃ a tight edge do

7: Search for an augmenting path P starting from s using tight edges;

8: if P is found then

9: M ←M ⊕ P ;

10: break;

11: else

12: δmin ← minimum positive slack;

13: y(s)← y(s)− δmin;

14: y(t)← y(t) + δmin;

15: end if

16: end while

17: end for

18: end procedure
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Non-bipartite Graphs

If we solve the non-bipartite problem using the primal-dual formulation used for

bipartite graphs, the matching may not be correct since the solution to the linear

program may have fractional values. Consider a triangle graph and assume the weight

of each edge is 1. In this case,
∑

uv∈E x(uv) = 1.5 is an optimal solution to the linear

program, where each x(uv) = 0.5. Edmonds [54] proposed an ingenious way to solve

this problem by adding constraints of the form∑
uv∈E(B)

x(uv) ≤ (|B| − 1)/2, ∀B ∈ Vodd,

where Vodd is the set of all odd size subsets of V . The primal-dual formulation is as

follows:

Primal problem:

max
∑
uv∈E

φ(uv)x(uv)

s.t. 0 ≤ x(uv) ≤ 1 for ∀uv ∈ E∑
uu′∈E

x(uu′) ≤ 1 for ∀u ∈ V∑
uv∈E(B)

x(uv) ≤ (|B| − 1)/2 for ∀B ∈ Vodd.

Dual problem:

min
∑
u∈V

y(u) +
∑

B∈Vodd
z(B)(|B − 1|)/2

s.t. y(u) + y(v) +
∑

B∈Vodd:uv∈B
z(B) ≥ φ(uv) for ∀uv ∈ E,

y(u) ≥ 0 for ∀u ∈ V,

z(B) ≥ 0 for ∀B ∈ Vodd.

The slack is given by π(uv) = y(u)+y(v)+
∑

B∈Vodd:uv∈B
z(B)−φ(uv). The optimality of

the primal-dual solution is given if the following complimentary slackness conditions

hold:

1. π(uv) ≥ 0 ∀uv ∈ E.
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2. If uv is a matching edge, then π(uv) = 0.

3. If u is an unmatched vertex, then y(u) = 0.

4. z(B) > 0 for all shrunken blossoms.

Let Vouter be the set of outer vertices, Vinner be the set of inner vertices, Vnon =

V \ Vouter ∪ Vinner. Additionally, let Bouter be the set of outer blossoms and Binner

be the set of inner blossoms. The outer and inner blossoms are defined as the outer

and inner vertices in Definition 2.1.7. The algorithm consists of O(n) stages. In each

stage, we search for an augmenting path using tight edges. If an augmenting path

is found, then augment the matching. If a blossom B is discovered, then shrink it

and set z(B) = 0. If an inner blossom B is visited and its dual z(B) equals 0, then

expand B. If there are no tight edges, then update dual variables by δmin to make a

new tight edge. We choose

δmin = min{δ1, δ2, δ3}, where

• δ1 = min(π(uv)), if u ∈ Vouter and v ∈ Vnon.

• δ2 = min(π(uv)/2), if u, v ∈ Vouter.

• δ3 = min(z(B)), if B ∈ Binner.

Then we update the duals as follows:

• y(u)← y(u)− δmin, if u ∈ Vouter.

• y(u)← y(u) + δmin, if u ∈ Vinner.

• z(B)← z(B) + 2δmin, if B ∈ Bouter.

• z(B)← z(B)− 2δmin, if B ∈ Binner.

If δmin = δ3 then expand all inner blossoms with z(B) = 0. If δmin = δ1 or δ2 then the

tight edges can be used to grow the search or to discover a new blossom. Again, as in
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the bipartite algorithm, the costliest part is finding the minimum slack and updating

dual variables. The fastest exact MEM algorithm on non-bipartite graphs for integer

weights is given in [53] and has a time complexity of O(
√
nm log(nW )), where W is

the maximum edge weight.

Algorithm 4 Exact Algorithm for MEM on Non-Bipartite Graphs.

1: procedure Exact-MEM(G = (V,E, φ))

2: M ← ∅;

3: ∀u ∈ V y(u) = max(φ(e))/2;

4: for all u ∈ V do

5: while ∃ a tight edge e = uv such that u ∈ Vouter do

6: One of the following steps is done;

7: Growing a search tree step, if v ∈ Vnon;

8: Shrinking a blossom step, if v ∈ Vouter and v is matched;

9: Augmenting a path step, if v ∈ Vouter and v is unmatched;

10: Expanding a blossom step, if and v ∈ Binner and z(B) = 0;

11: if @ a tight edge then

12: δmin ← min{δ1, δ2, δ3};

13: y(u)← y(u)− δmin for ∀u ∈ Vouter;

14: y(u)← y(u) + δmin for ∀u ∈ Vinner;

15: z(B)← z(B) + δmin for ∀B ∈ Bouter;

16: z(B)← z(B)− δmin for ∀B ∈ Binner;

17: end if

18: end while

19: end for

20: end procedure
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2.2.3 Maximum Vertex-Weighted Matching

Bipartite Graphs

Tabatabaee et al. [3] proposed an algorithm that was used for designing network

switches. The algorithm works as follows. First, it computes a maximum cardinality

matching and then sorts the unmatched vertices in non-increasing order of weights.

From each unmatched vertex in this order, it searches for a weight-increasing path.

If an increasing path is found, then it updates the matching, and if not, it proceeds

to the next unmatched vertex in the order. A maximum cardinality matching can be

computed in O(m
√
n) time; searching for increasing paths takes O(mn) time. Thus

the time complexity is O(mn).

Dobrian et al. [22] and Halappanavar [23] proposed an algorithm that exploits the

structure of bipartite graphs. The premise is to sort the vertices in non-increasing

order of weights and decompose the problem into two one-side-weighted problems.

After this, the two problems are solved separately by finding augmenting paths from

each vertex. The two matchings can be combined into a final matching by invoking the

Mendelsohn-Dulmage Theorem [55]. Finding a maximum vertex-weighted matching

in a one-side-weighted graph takes O(mn) time, and combining the two matchings

into the final matching takes O(n) time. Thus the time complexity of this algorithm

is O(mn).

Non-bipartite Graphs

Spencer and Mayer [21] presented an exact algorithm for the MVM problem. Ver-

tices are sorted in non-increasing order of their weights, and a non-bipartite graph is

transformed into a bipartite graph by shrinking all blossoms and assigning a shrunken

blossom the weight of the lightest vertex in a blossom. In addition, the bipartite

weighted matching is solved as two one-side-weighted problems. Then the two match-

ings are combined using the Mendelsohn-Dulmage Theorem [55]. A divide and con-
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Algorithm 5 Exact Algorithm for MVM on Bipartite Graphs (Dobrian et. al.).

1: procedure MVM-Bip(G = (S, T,E, φ))

2: M ← ∅; MS ← ∅; MT ← ∅;

3: Q← S;

4: while Q 6= ∅ do

5: u← heaviest(Q);

6: Q← Q− u;

7: Find an augmenting path P starting at u;

8: if P found then

9: MS ←MS ⊕ P ;

10: end if

11: end while

12: Q← T ;

13: while Q 6= ∅ do

14: u← heaviest(Q);

15: Q← Q− u;

16: Find an augmenting path P starting at u;

17: if P found then

18: MT ←MT ⊕ P ;

19: end if

20: end while

21: M ←MendelsohnDulmage(MS,MT ,M);

22: end procedure
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quer strategy is used to recursively split the one-side-weighted bipartite graph into

smaller sub-problems, in each of which a maximum cardinality matching is found.

The divide and conquer strategy divides the graph to log n parts, and at each step a

maximum cardinality matching takes at most O(m
√
n) time. Thus the Spencer and

Mayer algorithm takes O(m
√
n log n) time.

Dobrian et al. [22] and Halappanavar [23] proposed a simpler MVM algorithm.

Vertices are sorted in non-increasing order of weights. The algorithm starts with an

empty matching M , and then it attempts to match a heaviest unmatched vertex u.

From u the algorithm searches for a heaviest unmatched vertex v that it can reach by

an augmenting path P . If it finds P , then the matching is augmented by forming the

symmetric difference of the current matching M with P , and the vertices u and v are

removed from the set of unmatched vertices. If it fails to find an augmenting path from

u, then u is removed from the set of unmatched vertices. When all the unmatched

vertices have been processed, the algorithm terminates. The time complexity of the

algorithm is O(mn). We will revisit this algorithm in the next chapter with a proof

of its correctness, since one of our approximation algorithms is based on it with a

restriction on the augmenting path length.

2.3 Approximation Algorithms

An α-approximation matching algorithm finds a matching that is within a fac-

tor of α of the weight of the exact matching. If Mα is a matching that is com-

puted by an α-approximation algorithm and Mopt is the optimal matching, then∑
u∈Mα

φ(u) ≥ α
∑

u∈Mopt
φ(u). Approximation algorithms are generally designed for

NP-hard problems [56–59]. However, polynomial time exact matching algorithms are

very slow for applications involving massive graphs. and ones that require especially

fast computations. For many applications (e.g., big data) a matching needs to be

computed fast on massive graphs, and the optimality of the matching is not crucial.

This is one motivation for the development of fast approximation algorithms. An-
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other motivation is the necessity for parallel algorithms on massive graphs, when a

processor is not able to store the graph in memory; often the exact algorithms do not

possess much concurrency but the approximation algorithms do.

A recent detailed survey of approximation algorithms for several variant maximum

matching problems (cardinality, edge-weighted matching, vertex-weighted matching,

and b-matching) and the related minimum edge cover problems (cardinality, edge-

weighted, and b-edge cover) is provided in [60]. An earlier survey of cardinality and

edge-weighted matching approximation algorithms is given in [61]. In this section we

will briefly discuss some of the recent developments in approximation algorithms for

edge- and vertex-weighted matching.

2.3.1 Edge-Weighted Matching

Avis [62] proposed a simple 1/2-approximation algorithm for maximum edge-

weighted matching. Given a graph G = (V,E, φ) with weight function φ : E 7→ R≥0,

consider the edges in non-increasing order of weights. The algorithm picks a heaviest

non-matching edge and adds it to the matching M . Then it deletes all the edges that

are incident on the endpoints of the current matching edge. The algorithm repeats

the process until all the edges have been considered. The cost of sorting edges is

O(m log n), so the total time is O(m log n+m).

Algorithm 6 The Greedy 1/2-Approximation Algorithm for MEM.

1: procedure Greedy(G = (V,E, φ))

2: M ← ∅;

3: while E 6= ∅ do

4: Pick a heaviest edge uv ∈ E;

5: M ←M ∪ uv;

6: Delete all edges incident on vertices u and v;

7: end while

8: end procedure
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The locally-dominant-edge approximation algorithm was proposed by Preis [63].

It guarantees a 1/2-approximation for maximum edge-weighted matching and runs in

linear time O(m). Given a graph G = (V,E, φ) with weight function φ : E 7→ R≥0,

the algorithm arbitrarily picks a non-matching edge uv ∈ E. It scans the edges that

are incident to the vertices u and v. An edge uv is said to be a locally-dominant if it is

at least as heavy as all other edges incident on the vertices u and v. If an edge ux (or

vy) is found such that φ(ux) > φ(uv) (or φ(vy) > φ(uv)) then the algorithm proceeds

to the edge ux (or vy). The algorithm repeats recursively until a locally-dominant

edge is found, and adds it to the current matching. After that the algorithm removes

all the edges that are incident on the matching edge. The algorithm repeats until all

the edges have been deleted. When all edges incident on a path have been deleted, the

algorithm begins searching for a new path from another non-matching edge chosen

arbitrarly.

Algorithm 7 The Locally Dominant Edge 1/2-Approximation Algorithm for MEM.

1: procedure Local-Dom(G = (V,E, φ))

2: M ← ∅;

3: while E 6= ∅ do

4: Pick an arbitrary edge uv ∈ E;

5: if uv is locally dominant edge then

6: M ←M ∪ uv;

7: Delete all edges incident on u and v;

8: else

9: Searching from u and v, find a locally dominant edge xy ∈ E;

10: M ←M ∪ xy;

11: Delete all edges incident on x and y;

12: end if

13: end while

14: end procedure
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Drake and Hougardy [64] proposed a simpler algorithm based on the concept

of growing a path in a graph. The path-growing algorithm guarantees a 1/2-

approximation for maximum edge-weighted matching, and works as follows. Given

a graph G = (V,E, φ) with weight function φ : E 7→ R≥0 and two empty matching

sets M1 and M2, the algorithm starts with an arbitrary unmatched vertex u. The

algorithm searches for a heaviest edge uv ∈ E incident on u and adds it to the match-

ing set M1. Then, the algorithm deletes u and all other edges incident on u from G.

Next, the algorithm proceeds to v, and repeats the same steps, except, this time, it

adds a heaviest edge vw ∈ E to the matching set M2. The algorithm repeats the

process of adding new edges alternatively to sets M1 and M2. After all edges are

deleted, the final matching is the heavier of M1 and M2. The time complexity of the

path growing algorithm is clearly O(m) since it requires scanning the adjacent edges

for each vertex once.

The dynamic programming method can be used to find optimal matching

edges from each path grown by the Drake-Hougardy algorithm. Yet another 1/2-

approximation algorithm is the Global Paths algorithm (GPA) which was proposed

by Maue and Sanders [65]. The algorithm sorts the edges in non-increasing order of

their weights. It constructs sets of paths and cycles of even length by considering the

edges in non-increasing order of their weights. It then computes a maximum weight

matching for each path and cycle using dynamic programming, and it deletes the

matching edges as well as their adjacent edges. The algorithm repeats this process

until all edges are deleted. The time complexity of the GPA algorithm is O(m log n).

A more recent 1/2-approximation algorithm is the Suitor algorithm [29], which

employs a proposal-based approach similar to the classical algorithm for a stable

matching [66]. Each vertex u proposes to a heaviest vertex v that still has not

received a better proposal earlier. If v already has a proposal of lower weight from a

vertex w, then v annuls it and accepts the new proposal from u; the annulled vertex

w must propose again for another partner. An edge is matched when both vertices
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Algorithm 8 The Path Growing 1/2-Approximation Algorithm for MEM.

1: procedure PG(G = (V,E, φ))

2: M ← ∅;

3: M1 ← ∅; M2 ← ∅;

4: while E 6= ∅ do

5: i = 1;

6: Pick an arbitrary vertex u ∈ V of degree at least 1;

7: while u has degree at least 1 do

8: Let uv be a heaviest neighbor of u;

9: Mi ←Mi ∪ uv;

10: Delete all edges incident on u;

11: u = v;

12: i = 3− i

13: end while

14: end while

15: M ← max {M1,M2};

16: end procedure
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Algorithm 9 The Suitor 1/2-Approximation Algorithm for MEM.
1: procedure Suitor(G = (V,E, φ))

2: M ← ∅;

3: suitor(u)← NULL ∀u ∈ V ;

4: ws(u)← 0 ∀u ∈ V ;

5: for each u ∈ V do

6: x = u;

7: done = False;

8: while not done do

9: partner = suitor(x);

10: heaviest = ws(x);

11: for each v ∈ N(x) do

12: if φ(vx) > heaviest and φ(vx) > ws(v) then

13: partner = v;

14: heaviest = φ(vx);

15: end if

16: end for

17: done = True;

18: if heaviest > 0 then

19: y = suitor(partner);

20: suitor(partner) = x;

21: ws(partner) = heaviest;

22: if y 6= NULL then

23: x = y;

24: done = False;

25: end if

26: end if

27: end while

28: end for

29: end procedure

propose to each other. The Suitor algorithm’s time complexity is O(∆m) in the worst

case, where ∆ is the maximum degree.
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Two recent approaches have been used to achieve a better approximation ratios

than 1/2. The first approach employs short augmenting paths and cycles repeatedly

until a specific criterion is reached. The second approach is based on the primal-dual

formulation. We will describe two (2/3− ε)-approximation algorithms that are based

on the first approach. Then, we will describe a (1− ε)-approximation algorithm that

is based the on the primal-dual formulation.

Before outlining the (2/3 − ε)-approximation algorithms we will describe a 2-

augmentation centered at a vertex u. An arm of u is defined to be either an edge

{u, v} or a path {u, v, v′}, where (u, v) is a non-matching edge and (v, v′) is a matching

edge. The gain of an arm is defined to be the weight of the non-matching edge minus

the weight of the matching edge and if the arm consists of a non-matching edge then

the gain is the weight of the non-matching edge. We have two cases:

Case 1) u is unmatched: find an arm of u with the highest positive gain.

Case 2) u is matched to u′: find the highest positive gain by checking the gains of

the following paths or cycles: (1) Alternating cycles of length four that include the

edge (u, u′). (2) Alternating paths: the search is executed as follows: Find two vertex

disjoint arms of u, with the highest gains P and P ′, then find an arm of u′ with highest

gain Q. If P and Q are vertex disjoint then P ∪(u, u′)∪Q is a highest gain alternating

path; otherwise choose P ∪ (u, u′)∪Q as a highest gain alternating path. Now we will

consider the (2/3 − ε)-approximation algorithms. The random matching algorithm

(RAMA) [67] chooses a random vertex u and performs a 2-augmentation centered at

u with the highest-gain. This is repeated k = n1
3

ln 1
ε

times. The random ordered

matching algorithm (ROMA) [65] permutes the order of vertices, and each vertex u

in the permuted order performs 2-augmentation with the highest-gain centered at u.

This is repeated for k = 1
3

ln 1
ε

phases. If no further improvement can be achieved

after finishing a phase, then the algorithm terminates.

The same technique has been used to achieve (3/4− ε)-approximation [68,69] by

extending the length of augmentations.
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Algorithm 10 The Random (2/3− ε)-Approximation Algorithm for MEM.

1: procedure RAMA(G = (V,E, φ), k)

2: M ← ∅ (or initialized with any matching);

3: for i = 1 to k do

4: Randomly pick a vertex u ∈ V ;

5: M ←M⊕ 2-augmentation(u);

6: end for

7: end procedure

Algorithm 11 The Random Ordered (2/3− ε)-Approximation Algorithm for MEM.

1: procedure ROMA(G = (V,E, φ),k)

2: M ← ∅ (or initialized with any matching);

3: for i = 1 to k do

4: Permute the order of vertices;

5: for each u ∈ V in the permuted order do

6: M ←M⊕ 2-augmentation(u);

7: end for

8: if there is no improvement then

9: break;

10: end if

11: end for

12: end procedure
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A (1− ε)-approximation algorithm has also been proposed [28,68]. The algorithm

is based on the scaling technique, the primal dual formulation of the problem, and

relaxed feasibility and complementary slackness. Let W be the maximum edge weight,

ε′ = Θ(ε), δ0 = W/ε′, δi = δ0/2
i, φi(e) = δibφ(e)/δic and γ = log 1/ε. A root blossom

is a blossom that is not contained in any other blossom. The dual variables y are

defined over the vertices, and z over the blossoms. We define the variable yz over the

edge e = uv as

yz(e) = y(u) + y(v) +
∑

uv∈E(B)

z(B),

where B is a blossom.

The approximation algorithm consists of logW + 1 scales. At every scale i, the

relaxed feasibility and complementary slackness conditions hold:

1. z(B) is a non-negative multiple of δi ∀B ∈ Vodd and y(u) is a non-negative

multiple of δi/2 ∀u ∈ V .

2. z(B) > 0 for all root blossoms.

3. yz(e) ≥ φi(e)− δi, ∀e ∈ E.

4. yz(e) ≤ φi(e) + (δj − δi), ∀e ∈M , where e becomes a matching edge in scale j

and j ≤ i.

At each scale only eligible edges are considered. At scale i an edge e is eligible if at

least one of the following hold:

• e is in a blossom.

• If e is a matching edge, yz(e) − φi(e) is a non-negative integer multiple of δi,

and log φ(e) ≥ i− γ.

• If e is a non-matching edge, yz(e) = φi(e)− δi and log φ(e) ≥ i− γ.

The algorithm starts with an empty matching and sets δ0 = ε′W and y(u) =

W/2 − δ0/2, for all u ∈ V . At the i-th scale, the algorithm performs the following
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four steps: it finds and augments a maximal set of disjoint augmenting paths using

eligible edges; it shrinks discovered blossoms and sets the duals of discovered blossoms

to zero; it updates dual variables of vertices and blossoms reached by unmatched

vertices in the search; and it expands inner blossoms whose dual variables are equal

to zero. The four steps are repeated until the duals of unmatched vertices are equal

to W/2i+2 − δi/2, (zero at the last scale). After the end of each scale i (except the

last one), the dual variables of all vertices are incremented by δi/2.

The time complexity of this algorithm is O(mε−1 log ε−1).

2.3.2 Vertex-Weighted Matching

A 2/3-approximation algorithm for MVM on bipartite graphs was proposed by

Dobrian et al. [22,23]. The vertices are sorted in non-increasing order of weights, and

the problem is decomposed into two one-side-weighted problems. These problems

are solved individually by restricting the length of augmenting paths to at most

three. The two matchings are then combined into a final matching by invoking the

Mendelsohn-Dulmage Theorem. The time complexity is O(m+ n log n).
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Algorithm 12 (1− ε)-Approximation Algorithm for MEM.

1: procedure Scaling(G = (V,E, φ),ε)

2: M ← ∅;

3: δ0 ← ε′W ; // W is the maximum edge weight, and ε′ = Θ(ε)

4: y(u)← W/2− δ0/2 for all u ∈ V ;

5: for Scale i = 0 to logW do

6: while there are unmatched vertices u with y(u) > W/2i+2−δi/2 or (y(u) 6=

0 and i = logW ) do

7: Find a maximal set P of vertex-disjoint augmenting paths using eligi-

ble edges;

8: M ←M ⊕P;

9: Shrink blossoms found in step 6;

10: z(B)← 0 for all blossoms B found in step 6;

11: Update the duals:

12: y(u)← y(u)− δi/2 for all u ∈ Vouter;

13: y(u)← y(u) + δi/2 for all u ∈ Vinners;

14: z(B)← z(B) + δi for all B ∈ Bouter and B is a root blossom;

15: z(B)← z(B)− δi for all B ∈ Binner and B is a root blossom;

16: Expand all inner root blossoms whose z(B) = 0;

17: end while

18: if i < logW then

19: δi+1 ← δi/2;

20: y(u)← y(u) + δi+1 for all u ∈ V ;

21: end if

22: end for

23: end procedure
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Algorithm 13 2/3-Approximation Algorithm for MVM on Bipartite Graphs.

1: procedure 2/3-MVM-Bip(G = (S, T,E, φ))

2: M ← ∅; MS ← ∅; MT ← ∅;

3: Q← S;

4: while Q 6= ∅ do

5: u← heaviest(Q);

6: Q← Q− u;

7: Find a shortest augmenting path P of length at most 3 starting at u;

8: if P found then

9: MS ←MS ⊕ P ;

10: end if

11: end while

12: Q← T ;

13: while Q 6= ∅ do

14: u← heaviest(Q);

15: Q← Q− u;

16: Find a shortest augmenting path P of length at most 3 starting at u;

17: if P found then

18: MT ←MT ⊕ P ;

19: end if

20: end while

21: M ←MendelsohnDulmage(MS,MT ,M);

22: end procedure
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3 EXACT ALGORITHMS FOR MVM

In this chapter, we will present some important properties of the maximum vertex-

weighted matching problem (MVM). First we will demonstrate necessary and suffi-

cient conditions for an MVM to have the maximum weight. Then we will describe

a lexicographical ordering property that characterizes an MVM. Next we will show

how an MVM problem can be transformed to an MEM problem, and we will prove

that the matchings computed by the MVM and MEM algorithms are the same, pro-

vided ties in weights are broken consistently. Additionally we will revisit an earlier

algorithm that we call the Direct-Augmenting algorithm and provide a proof of cor-

rectness. Finally we will present two new exact algorithms for MVM and describe

practical improvements.

3.1 Necessary and Sufficient Conditions for an Optimal MVM

Theorem 3.1.1 Given a graph G = (V,E, φ) and a weight function φ : V 7→ R≥0

such that the weights are all positive, a matching M is a maximum vertex-weighted

matching if and only if there is neither an M-augmenting path nor an M-increasing

path in G.

Proof Let M be a maximum vertex-weighted matching in G and assume that the

weights are all positive. For the sake of contradiction, assume that there exists an

M -augmenting path or an M -increasing path P in G. Then, M ⊕P will increase the

matching weight, which contradicts M having maximum weight.

Let M be a maximum vertex-weighted matching in G such that there is neither

an M -augmenting path nor an M -increasing path in G. For the sake of contradiction,

assume that there exists a matching M ′ such that φ(M ′) > φ(M). The symmetric

difference M ′ ⊕M results in M ⊕M ′-alternating paths and even cycles. In the case
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of an even alternating cycle, both M ′ and M match the same vertices so we get

φ(M ′) = φ(M).

Now we have two cases if φ(M ′) > φ(M):

Case 1: There exists at least one alternating path P such that |E(M ′∩P )| = |E(M ∩

P )| + 1 as shown in Figure 3.1. Notice that the path P is an augmenting path with

respect to M , which is a contradiction.

Case 2: (Let V (M) denote the set of vertices that are matched in M .) There exists

at least one alternating path P such that |E(M ′ ∩ P )| = |E(M ∩ P )|, such that u ∈

V (M ′), v /∈ V (M ′), u /∈ V (M), v ∈ V (M), and φ(u) > φ(v) as shown in Figure 3.2.

Notice that the path P is an increasing path with respect to M , which contradicts

our assumption.

Figure 3.1. M ⊕M ′-alternating path P , where |E(M ′ ∩ P )| = |E(M ∩
P )|+ 1.

Figure 3.2. M⊕M ′-alternating path P , where |E(M ′∩P )| = |E(M ′∩P )|.

Corollary 3.1.1.1 Given a graph G = (V,E, φ) and a weight function φ : V 7→ R≥0,

a maximum vertex-weighted matching M is also a maximum cardinality matching.

Proof It follows from Theorem 3.1.1 that, if M is a maximum vertex-weighted

matching, then there is no M -augmenting path in G. Thus, M is a maximum cardi-

nality matching.
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Notice that if a graph admits a perfect matching (all vertices are matched), then

a maximum cardinality matching (MCM) algorithm will suffice to solve the MVM

problem. However, if a graph does not admit a perfect matching, then a subset of

vertices will not be matched and the MCM algorithm cannot be used, as we need to

match vertices with highest weights. The following well-known theorem from Tutte

states a necessary and sufficient condition for the existence of a perfect matching in

a graph.

Theorem 3.1.2 ( [70]) Let G = (V,E) be a graph, X ⊆ V be a set of vertices, and

odd(G \X) be the number of odd components in the subgraph induced by V \X (i.e.,

the number of components with an odd number of vertices). Then G has a perfect

matching if and only if odd(G \X) ≤ |X| for every X ⊆ V .

The Gallai-Edmonds decomposition, stated in the following theorem, gives more

information about the structure of an MCM.

Theorem 3.1.3 ( [32]) Let G = (V,E) be a graph and let

D = {v ∈ V such that there exists an MCM in which v is unmatched },

A = {v ∈ V such that v /∈ D, u ∈ N(v), u ∈ D}, and

C = V \ (D ∪ A).

Then: 1- D is the union of odd components from G \ A, and each component in

D is a factor-critical subgraph. (A graph G is said to be factor critical if G \ {v}

has a perfect matching for each vertex v in the graph). 2- C is the union of even

components from G \ A, and each component in C has a perfect matching.

If the Gallai-Edmonds decomposition of a graph G is available, then we need not

consider the subgraph induced by C any further since any perfect matching of V

belongs to the MVM of G.

3.2 Lexicographical Ordering

Mulmuley et al. [71] introduced the lexicographical ordering of vertex sets, an

important concept in MVM. For a graph G = (V,E, φ) with weight function φ : V 7→
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R≥0, let each vertex be assigned a distinct integer between 1 and |V |. A relationship

between two vertices can be established by using both the weights and the labels

associated with the vertices. A precedence operator � can be defined as follows: given

two vertices u and v, u � v if and only if φ(u) < φ(v), or φ(u) = φ(v) and l(u) < l(v),

where l(u) and l(v) are distinct integer labels. The precedence relationship can be

used to compare two vertex-weighted matchings. Given two matchings M and M ′ in

a graph G = (V,E, φ), let U = V (M) and U ′ = V (M ′) be the set of vertices matched

by M and M ′, respectively. Assuming that the cardinality of the two matchings are

equal, if U � U ′ ( U is lexicographically greater than U ′), then the first difference

between the two sets, u ∈ U and v ∈ U ′ is such that u � v. The lexicographical

order of a vertex set was used by Mulmuley et al. [71] to prove that some maximum

cardinality matching is also a maximum vertex-weight matching in a graph.

Theorem 3.2.1 ( [71]) Given a graph G = (V,E, φ) and weight function φ : V 7→

R≥0, a lexicographically largest matching of maximum cardinality is also a maximum

vertex-weight matching in G.

Proof Let ML represent a lexicographically largest matching and M represent a

maximum vertex-weight matching. Also, let ML and M differ from each other in

their sets of matched vertices. From Corollary 3.1.1.1, M is a maximum cardinality

matching in G, and ML is also a maximum cardinality matching by choice. Consider

the matched vertices in ML and M in non-increasing order of weights. Let u ∈ V be

the first vertex that is matched inML but not inM . The symmetric differenceML⊕M

will result in an alternating path P starting at u, matched only by ML and ending

with v ∈ V , matched only by M . Since u is the first vertex in the non-increasing order

that is different, we have φ(u) ≥ φ(v). If φ(u) > φ(v), the matching obtained by the

symmetric difference P ⊕M will have a weight larger than M , thereby contradicting

the assumption that M is a maximum vertex-weight matching. If φ(u) = φ(v), then

by performing M = P ⊕M we have brought the two matchings ML and M closer

to each other by one more edge. By continuing this process of considering the two
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matched sets of vertices where they differ, we either obtain a contradicton, or we can

transform the matching M to the matching ML without changing their weights.

3.3 Relationship between Exact MVM and MEM Algorithms

An MVM problem can be transformed to an MEM problem by transforming G =

(V,E, φ) into G′ = (V,E, φ′) as follows: for each edge e = (u, v) ∈ E, add the

vertex weights of its endpoints u and v, and assign that weight to the edge: thus

φ′(e) = φ(u) + φ(v). The following theorem shows that exact MVM and MEM

algorithms find the same matching if weights in ties are broken consistently.

Theorem 3.3.1 Let G = (V,E, φ) be a vertex-weighted graph and G′ = (V,E, φ′)

be an edge-weighted graph such that for all e = (u, v) ∈ E we have φ′(e) = φ(u) +

φ(v). Then, exact MVM and MEM algorithms find the same matching in G and G′,

respectively, if ties in weights are broken consistently in the two algorithms.

Proof Let Mv be a maximum vertex-weighted matching in G and Me be a maximum

edge-weighted matching in G′. If the two matchings do not have the same weight,

then first we assume for showing a contradiction that φ(Mv) < φ′(Me). (We will

consider the case φ(Mv) > φ(Me) next.) Consider the symmetric difference Mv⊕Me,

which results in Mv ⊕Me-alternating paths and even cycles. We have four cases:

Case 1 (Figure 3.3): An Mv ⊕Me-alternating path P where |E(Me ∩ P )| = |E(Mv ∩

P ))|+1. Here we find a contradiction as this creates an augmenting path with respect

to Mv, but we know from Theorem 3.1.1 that if Mv is an MVM, then there is no Mv-

augmenting path in G.

Case 2 (Figure 3.4): An Mv⊕Me-alternating path P where |E(Mv ∩P )| = |E(Me∩

P )| + 1. Here, we have a contradiction to the assumption φ(Mv) < φ′(Me), since

the weights of the edges matched in Me are also included in the weights of vertices

matched in Mv.

Case 3 (Figure 3.5): An even Mv ⊕Me-alternating path P where |E(Mv ∩ P )| =

|E(Me ∩ P )|, assume without loss of generality that P = {u1, u2, ..., uk−1, uk}. The
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Figure 3.3. An Mv⊕Me-alternating path P , where |E(Me∩P )| = |E(Mv∩
P )|+ 1.

Figure 3.4. An Mv⊕Me-alternating path P , where |E(Mv∩P )| = |E(Me∩
P )|+ 1.

weight of E(Me ∩ P ) is φ(u1) + φ(u2) + ...+ φ(uk−1) and the weight of V (Mv ∩ P ) is

φ(u2) + φ(u3) + ...+ φ(uk). Notice V (Mv ∩P ) and E(Me ∩P ) have the same weights

except u1 and uk, and because by assumption φ′(Me) > φ(Mv), φ(u1) > φ(uk).

However, the weight of Mv can be increased by flipping the matching edges along P ,

which contradicts the fact that Mv is an MVM.

Case 4: An even Mv ⊕ Me-alternating cycle C. Since all vertices are matched in

the cycle C, φ′(E(Me ∩ C)) must equal φ(V (Mv ∩ C)). In addition, because ties are

broken consistently, E(Me ∩ C) must equal E(Mv ∩ C).

Hence,φ(Mv) = φ′(Me) and both matchings are the same.

Figure 3.5. An Mv ⊕Me-alternating path, where |Me(P )| = |Mv(P )|.
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Now we consider the case that φ′(Me) < φ(Mv) to obtain a contradiction.

Let yz(u) + yz(v) = y(u) + y(v) +
∑

(u,v)∈E(B)

z(B), where B is a blossom, be the

dual variables in the linear programming formulation of the maximum edge-weighted

matching. The following complimentary slackness conditions involving the weights

and dual variables must hold:

1. yz(u) + yz(v) ≥ φ(u) + φ(v) ∀uv ∈ E. (domination property)

2. If uv is an edge in the matching Me, then yz(u)+yz(v) = φ(u)+φ(v). (tightness

property)

3. If u is an unmatched vertex in Me, then yz(u) = 0.

Take the symmetric difference Mv ⊕ Me, which results in Mv ⊕ Me-alternating

paths and even cycles. We have four cases:

Case 1: Mv ⊕ Me-alternating path where |E(Mv ∩ P )| = |E(Me ∩ P )| + 1. Let

P = {u1, u2, ...uk}, where Me matches vertices u2, u3, ...uk−1. We know that matching

edges must be tight, non-matching edges must be dominated, and the dual variables

of unmatched vertices should be zero. Here, by domination we have

yz(u1) + yz(u2) + ....+ yz(uk) ≥ φ(u1) + φ(u2) + ....+ φ(uk), (3.1)

and by tightness, we have

yz(u2) + ....+ yz(uk−1) = φ(u2) + ....+ φ(uk−1). (3.2)

Using the value of yz(u2) + ....+ yz(uk−1) in (3.2), the inequality (3.1) becomes

yz(u1) + yz(uk) + φ(u2) + ....+ φ(uk−1) ≥ φ(u1) + φ(u2) + ....+ φ(uk)

=⇒

y(u1) + y(uk) ≥ φ(u1) + φ(uk).

Since u1 and uk are unmatched vertices in Me, their dual variables are equal to 0,

which implies φ(u1)+φ(uk) = 0. Now, all non-matching edges in P with respect to Me
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are tight and Me should have been augmented with the path P . Thus, φ′(E(Me∩P ))

equals φ(V (Mv ∩ P )) and E(Me ∩ P ) is equal to E(Mv ∩ P ).

Case 2: An Mv ⊕Me-alternating path where |E(Me ∩ P )| = |E(Mv ∩ P )| + 1. This

leads to a contradiction, since Mv is not maximum because there exists an augmenting

path with respect to Mv.

Case 3: An even Mv ⊕Me-alternating path where |E(Mv ∩ P )| = |E(Me ∩ P )|. The

weight of E(Me ∩ P ) is φ(u1) + φ(u2) + ... + φ(uk−1), and the weight of V (Mv ∩ P )

is φ(u2) + φ(u3) + ...+ φ(uk). Because Mv is maximum we know that φ(uk) > φ(u1).

By domination, we have

yz(u2) + ....+ yz(uk) ≥ φ(u2) + ....+ φ(uk), (3.3)

and by tightness, we have

yz(u1) + ....+ yz(uk−1) = φ(u1) + ....+ φ(uk−1). (3.4)

Using the value of yz(u2) + ....+ yz(uk−1) in (3.4), we get

yz(uk)− yz(u1) + φ(u1) + ....+ φ(uk−1) ≥ φ(u2) + ....+ φ(uk)

=⇒

yz(uk)− yz(u1) ≥ φ(uk)− φ(u1).

Since uk is unmatched, its dual variable is equal to 0, thereby implying φ(u1) ≥

y(u1) + φ(uk), which contradicts φ(uk) > φ(u1).

Case 4: An even Mv ⊕ Me-alternating cycle C. Since all vertices are matched in

the cycle C, φ′(E(Me ∩ P )) must equal φ(V (Mv ∩ C)). In addition, because ties are

broken consistently, E(Me ∩ C) must equal E(Mv ∩ C).

Thus,φ(Mv) = φ′(Me) and both matchings are the same.

This completes the proof.

3.4 Direct-Augmenting Algorithm for MVM

Dobrian et al. [22] and Halappanavar [23] proposed an exact algorithm that we

call the Direct-Augmenting algorithm, since each vertex is considered for matching
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using an augmenting path only once. The new direct approximation algorithms are

derived from this algorithm in a natural manner by restricting the augmenting path

length.

The Direct-Augmenting algorithm is listed in Algorithm 14. This algorithm sorts

vertices in non-increasing order of weights, and in each iteration it attempts to match a

heaviest unmatched vertex u. From u the algorithm searches for a heaviest unmatched

vertex v it can reach by an augmenting path P . If it finds P , then the matching is

augmented by forming the symmetric difference of the current matching M with P ,

and the vertices u and v are removed from the set of unmatched vertices. If it fails

to find an augmenting path from u, then u is removed from the set of unmatched

vertices, since we do not need to search for an augmenting path from u again. When

all the unmatched vertices have been processed, the algorithm terminates.

Algorithm 14 The Direct-Augmenting Exact Algorithm for MVM.

1: procedure Direct-Augmenting(G = (V,E, φ))

2: M ← φ;

3: Q← V ;

4: while Q 6= ∅ do

5: u← heaviest(Q);

6: Q← Q− u;

7: Find an augmenting path P from u that reaches

a heaviest unmatched vertex v;

8: if P found then

9: M ←M ⊕ P ;

10: Q← Q− v;

11: end if

12: end while

13: end procedure

The proof of correctness is taken from [22], and it is stated here for completeness.
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Lemma 3.4.1 ( [22]) Let z be an unmatched vertex with respect to a matching M

in a graph G = (V,E, φ). Suppose that there does not exist an M-augmenting path

from the vertex z and that there is no M-increasing path (from any vertex) in the

graph G. Let P be an M-augmenting path from a heaviest unmatched vertex u, whose

other endpoint v is a heaviest unmatched vertex that can be reached from u by an

M-alternating path. If M ′ = M ⊕ P , then there does not exist an M ′-augmenting

path from the vertex z, nor an M ′-increasing path (from any vertex) in the graph G.

Proof When P is an augmenting path from some M -unmatched vertex u, u has to

be distinct from the vertex z, as from the latter, there is no augmenting path by the

condition of the Lemma. A proof that there is no M ′-augmenting path from z can

be found in [33]. Hence we prove that there is no M ′-increasing path in G.

If there is no M ′-reversing path in G, then there cannot be any M ′-increasing

path, and we are done. Thus, choose an arbitrary M ′-reversing path P ′ that joins

an M ′-unmatched vertex w and an M ′-matched vertex w′. Since every vertex on the

M -augmenting path P is matched in M ′, the vertex w cannot belong to P , while the

vertex w′ can belong to P and does not need to be distinct from the vertices u or v.

We will prove that φ(w) ≤ φ(w′) and hence that the path P ′ is not M ′-increasing.

If an M -reversing path also joins the vertices w and w′, where w is M -unmatched

and w′ is M -matched, then since there is no M -increasing path in G, we have φ(w) ≤

φ(w′). If no M -reversing path joins w and w′, then the paths P ′ and P cannot be

vertex-disjoint; for if they were, then P ′ would also be an M -reversing path, which

we assumed does not exist in G. Thus the paths P and P ′ share at least one common

vertex, and indeed, as we show now, it shares a matching edge. For, every vertex on

the path P is M ′-matched, and hence a vertex in x in P ′ \ P that is adjacent to a

vertex y in P must have the edge (x, y) as a non-matching edge in M ′. Since P ′ is an

M ′-alternating path, the next edge on the path P ′ must be a matching edge incident

on the vertex y, and hence this matching edge is common to both paths P ′ and P .

(The paths P and P ′ could intersect more than once.)

Now we have two cases to consider.



49

The cases are illustrated in Figure 3.6 and 3.7. In the first case, there is an M -

augmenting path between u and w, and there are two subcases: either v and w′ are

the same vertex, or there is an M -reversing path Q between v and w′. The second

subcase corresponds to Figure 3.6. Now the path Q cannot be an M -increasing path

by our assumption that no such path exists in G. Hence in both subcases, we can

write φ(v) ≤ φ(w′). Since we chose the path P to begin at u and end at the M -

unmatched vertex v and not at the M -unmatched vertex w, we have φ(w) ≤ φ(v).

Combining the two inequalities, we obtain φ(w) ≤ φ(w′).

In the second case, there is an M -augmenting path between v and w, and again

there are two subcases: either u and w′ are the same vertex, or there is an M -reversing

path Q′ between u and w′. The second subcase is illustrated in Figure 3.7. As before,

the path Q′ cannot be M -increasing by supposition, and therefore φ(u) ≤ φ(w′).

Since u is a heaviest M -unmatched vertex by choice, and w is M -unmatched, we

have φ(w) ≤ φ(u). Combining, we have φ(w) ≤ φ(w′).

Figure 3.6. Construction used in the proof of Lemma 3.4.1.

Theorem 3.4.2 ( [22]) The Direct-Augmenting algorithm computes an MVM in a

graph G = (V,E, φ).
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Figure 3.7. Construction used in the proof of Lemma 3.4.1.

Proof Let M be the matching computed by the Direct-Augmenting algorithm. We

show by induction that there does not exist an M -augmenting path nor an M -

increasing path in the graph G.

Let na be the number of augmenting operations in the Direct-Augmenting algo-

rithm. The matching M is the last in a sequence of matchings Mi, for i = 0, 1, . . .,

na, computed by the algorithm. For 0 ≤ i < na, let Pi denote the Mi-augmenting

path used to augment Mi to the matching Mi+1, and let ui denote the source of the

augmenting path (the Mi-unmatched vertex from which we searched for an augment-

ing path), and let vi denote its other end point. The induction is on the matching

Mi, and the inductive claim is that

(1) there is no Mi-augmenting path from an unmatched vertex that has already been

processed, i.e., a vertex from which we have searched for an augmenting path earlier

and have failed to find one, and

(2) there is no Mi-increasing path from any vertex in G.

The basis of the induction is i = 0, when the result is trivially true. The first

condition holds because no vertices have been processed yet, and the second condition
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holds since the matching is empty and hence there is no increasing path. Hence assume

that the claim is true for some i, with 0 ≤ i < na. Now the result holds for the step

i+ 1 by applying Lemma 3.4.1.

The time complexity of this algorithm is O(nm + n log n). The algorithm tries

to match each vertex, and the search for augmenting paths from each vertex costs

O(m) time. The second term is the cost of sorting the vertex weights, when they are

real-valued. If the weights are integers in a range [0 K], then a counting sort could

be used with time complexity O(n+K).

3.5 New Exact Algorithms for MVM

3.5.1 Direct-Increasing Exact Algorithm

In this section we describe a new exact algorithm for computing MVM. The new

algorithm is based on sorting the vertices in non-increasing order of weights, then

computing a maximum cardinality matching, and finally finding all increasing paths

with respect to the former matching. It is called Direct-Increasing since each vertex

is processed once, and the algorithm uses increasing paths to increase the weight of a

maximum cardinality matching. The new approach consists of two phases. The first

phase finds a maximum cardinality matching and the second phase finds increasing

paths with the highest gain. The first phase of the exact algorithm, as shown in

Algorithm 15, starts with an empty matching, then sorts the vertices in non-increasing

order of weights and inserts the vertices in a queue Q. In each iteration the algorithm

attempts to match a heaviest unmatched vertex u. From u the algorithm searches

for an unmatched vertex v that it can reach via an augmenting path P . If it finds P ,

then the matching is augmented by forming the symmetric difference of the current

matching M with P , and the vertices u and v are removed from the set of unmatched

vertices. If it fails to find an augmenting path from u, then u is removed from the

set of unmatched vertices and inserted into a queue Q′, as we need to search for an
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increasing path from u in the next phase. When all the unmatched vertices have been

processed, the algorithm proceeds to the next phase.

In the second phase Q′ is the set of unmatched vertices from phase one, and in

each iteration, the algorithm attempts to match a heaviest unmatched vertex u. From

u, the algorithm searches for a lightest matched vertex v it can reach by an increasing

path P such that φ(u) > φ(v). If it finds P , then the matching is reversed by

forming the symmetric difference of the current matching M with P , and the vertex

u is removed from the set of unmatched vertices Q′. If it fails to find an increasing

path from u, then u is removed from the set of unmatched vertices. When all the

unmatched vertices in Q′ have been processed, the algorithm terminates.

Theorem 3.5.1 The time complexity of the Direct-Increasing algorithm is O(mn +

n log n).

Proof First, sorting vertices takes O(n log n) time. The maximum cardinality

matching takes O(m
√
n) time. In the second phase, each unmatched vertex takes

at most O(m) time to search for an increasing path. Since we have O(n) vertices, the

second phase takes O(mn) time. Thus the time complexity of the Direct-Increasing

algorithm is O(mn+ n log n).

Proof of Correctness

Theorem 3.5.2 The Direct-Increasing algorithm computes an MVM in a graph G =

(V,E, φ).

Proof Let M be a matching obtained by the Direct-Increasing algorithm. We know

that there does not exist an augmenting path in G with respect to M since M is a

maximum cardinality matching and reversing an increasing path results in the same

cardinality. Therefore it suffices to show that there do not exist increasing paths after

the algorithm terminates. Suppose that after the algorithm terminates there exists

an increasing path from some vertex u. There are two cases in which u is unmatched
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Algorithm 15 The Direct-Increasing Exact Algorithm for MVM.

1: procedure Direct-Increasing(G = (V,E, φ))

2: M ← φ;

3: Q← V ;

4: while Q 6= ∅ do

5: u← heaviest(Q);

6: Q← Q− u;

7: Find an augmenting path P from u to an unmatched vertex v;

8: if P found then

9: M ←M ⊕ P ;

10: Q← Q− v;

11: else

12: Q′ ← Q′ ∪ u;

13: end if

14: end while

15: while Q′ 6= ∅ do

16: u← heaviest(Q′);

17: Q′ ← Q′ − u;

18: Find an increasing path P from u reaching a lightest matched vertex v;

19: if P found then

20: M ←M ⊕ P ;

21: end if

22: end while

23: end procedure
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in M :

Case 1: u is matched in phase one and then unmatched in phase two because it is a

lightest vertex reachable by an increasing path P from some vertex v. In this case,

P was reversed, which unmatched u.

Figure 3.8. Before updating the matching, all outer vertices from v are
circled. After the matching is updated the same circled vertices are outer
vertices from u in addition to v.

As shown in Figure 3.8, before matching v and reversing P , all reachable outer

vertices from v become reachable outer vertices from u after reversing P . The vertex

v is also in this set of outer vertices. Since u is the lightest outer vertex reachable

from v, all outer vertices reachable from u are at least as heavy as u. Thus there does

not exist an increasing path from u.

Case 2: The algorithm failed to find an increasing path from u.

Suppose, during future steps, an increasing path is found and reversed; then an

increasing path is made from u.

Notice that the Direct-Increasing algorithm considers unmatched vertices in non-

increasing order of weights. Let P1 = {u1, ..., ux} be an alternating path visited by u

that fails to find an increasing path. Let P2 = {v1, ..., vy} be an increasing path that

is found from v and P1 ∩ P2 = {ui, ..., uj} where φ(u) > φ(v). The case is illustrated
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in Figure 3.5.1. The lightest vertex vy should have been reached by u when it was

considered by the path {u1....ui, ..., uj, ..., vy}.

Thus an increasing path does not exist in G with respect to M , and M is a

maximum vertex-weighted matching.

Figure 3.9. An increasing path from u to ux and from v to vy. This
existence of overlapped alternating path from ui to uj implies there is an
increasing path from u to vy.

3.5.2 Iterative Exact Algorithm

In this section we describe another exact algorithm for computing MVM. The

new algorithm is based on the iterative approach where a vertex may be processed

several times. The algorithm consists of two phases: in the first phase, a maximum

cardinality matching is computed, and, in the second phase, highest gain increasing

paths are sought. Phase two is repeated until no increasing path is found. In the

first phase of the exact algorithm, as shown in Algorithm 16, the algorithm processes

unmatched vertices in an arbitrary order, and in each iteration the algorithm attempts

to match an unmatched vertex u. From u, the algorithm searches for an unmatched

vertex v that it can reach by an augmenting path P . If it finds P , then the matching

is augmented by forming the symmetric difference of the current matching M with

P . When all the unmatched vertices have been processed, the algorithm proceeds to

the next phase.
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In the second phase the algorithm searches for increasing paths. The algorithm

processes unmatched vertices in an arbitrary order, and in each iteration it attempts to

match an unmatched vertex u. From u, the algorithm searches for a lightest matched

vertex v that it can reach by an increasing path P such that φ(u) > φ(v). If it finds

P , then the matching is reversed by forming the symmetric difference of the current

matching M with P , and now v becomes unmatched. The algorithm terminates when

it fails to find an increasing path during one pass over the unmatched vertices.

Algorithm 16 The Iterative Exact Algorithm for MVM.

1: procedure Iter(G = (V,E, φ))

2: M ← φ;

3: for each unmatched vertex u do

4: Find an augmenting path P from u;

5: if P found then

6: M ←M ⊕ P ;

7: end if

8: end for

9: do

10: done = true;

11: for each unmatched vertex u do

12: Search for an increasing path P from u reaching a lightest matched

vertex v;

13: if P found then

14: M ←M ⊕ P ;

15: done =false;

16: end if

17: end for

18: while not done

19: end procedure
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Theorem 3.5.3 The time complexity of the Iterative algorithm is O(∆mn).

Proof The maximum cardinality matching takes O(m
√
n) time. In the second

phase, each unmatched vertex takes at most O(m) time to search for an increasing

path. Since we have O(n) vertices, the second phase takes O(mn). Note that a vertex

can be unmatched at most O(∆) times. Thus, the time complexity of the Iterative

algorithm is O(∆mn).

Proof of Correctness

Theorem 3.5.4 The Iterative algorithm computes an MVM in a graph G =

(V,E, φ).

Proof Let M be a matching obtained by Algorithm 16. We know that there does not

exist an augmenting path in G with respect to M because M is a maximum cardinality

matching and reversing increasing paths results in the same cardinality. Therefore, it

suffices to show that there do not exist increasing paths after the algorithm terminates.

Since the algorithm keeps repeating phase two until no increasing paths can be found,

there does not exist an increasing path when the algorithm terminates. Thus M is a

maximum vertex-weighted matching.

3.6 Practical Improvements to Direct-Increasing Exact Algorithm

The Direct-Increasing exact algorithm can be further improved in practice. First,

we want to avoid repeating searching along paths that do not lead to increasing paths.

Notice that the algorithm processes vertices in non-increasing order of their weights,

so if a vertex vi fails to find an increasing path, the next vertex vj using the same

paths will also fail since all outer vertices (at an even distance) from vi are at least as

heavy as vi, and this is true for vj. To prevent repeating failed searches, we track all

visited outer vertices from the source vertex. If the search fails we label each tracked

vertex. If a search encounters a labeled vertex, the search along that vertex halts.
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Another method to accelerate the algorithm is as follows: since we know the order

of vertices in advance, we can check the lightest unmatched vertex. Now during the

search if the lightest unmatched vertex is encountered, then the algorithm can quit

further searching and return the increasing path.

A similar technique can be used to improve the performance of the Direct-

Augmenting algorithm. This time we want to avoid repeating searching along paths

that do not lead to augmenting paths. Again, the algorithm processes vertices in non-

increasing order of their weights, so if a vertex vi fails to find an augmenting path,

the next vertex vj using the same paths will also fail. We can track all visited outer

vertices from the source vertex and if the search failed we label each tracked vertex.

If any search encounters a labeled vertex, the search along that vertex halts. Azad et

al. [72] prove that there will not exist an augmenting path from such vertices in future

steps of the algorithm. Also, because we know the order of vertices in advance, we

can check the second heaviest unmatched vertex. During the search, if an unmatched

vertex (having the second heaviest weight) is encountered, then the algorithm ceases

further searching and returns an augmenting path.
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4 APPROXIMATION ALGORITHMS FOR MVM

Approximation algorithms were originally studied to address intractable problems,

but the demand for fast approximation algorithms for tractable problems has arisen

out of the following reasons:

• Some applications require a problem be solved multiple times as fast as possible

(e.g., multilevel graph partitioning [73,74] and real time switch scheduling [4]).

While there are polynomial time algorithms for these problems, they fail to

compute a solution within a reasonable time.

• Some applications require processing huge amounts of data (e.g., sparse matrix

computations [12–14, 75, 76] in computational science and engineering applica-

tions).

• Many applications do not require an exact solution.

• Parallelizing exact algorithms is often not possible due to the sophistication of

the algorithms, and their inherent lack of concurrency.

In this chapter we will prove a new theorem that states sufficient conditions for

obtaining a k/(k + 1)-approximate matching for the MVM problem. Similar results

are known for cardinality matching [43] and edge-weighted matching [60], so our

result extends it to the vertex-weighted context. Next we propose new approximation

algorithms based on direct and iterative techniques.

The direct technique begins with an empty matching, and at each step, matches

a currently heaviest unmatched vertex to a heaviest unmatched vertex that it can

reach by a short augmenting path. In direct algorithms, each vertex is processed

once (hence the appellation direct); once a vertex is matched, it will always remain

matched, as augmentation does not change a matched vertex to an unmatched vertex
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in the MVM problem. Two approximation algorithms based on the direct method

with approximation ratios of 1/2 and 2/3 are proposed.

The iterative technique begins with either an empty or initial matching. It then

looks for increasing paths or augmenting paths (all paths are restricted in length) with

respect to the current matching, and terminates when there is none; this algorithm

may need to process a vertex multiple times (for this reason, it is called ”iterative”).

We will describe new approximation algorithms based on the iterative method that

achieve 1/2, 2/3 and k/(k + 1)-approximation ratios for the MVM problem.

4.1 Sufficient Conditions for k/(k + 1)-approximation for MVM

Theorem 4.1.1 Let G = (V,E) be a graph and φ : V 7→ R≥0 a weight function. If

there does not exist an augmenting path of length 2k − 1 and an increasing path of

length 2k with respect to a matching M , then M is k/(k + 1)-approximation to the

optimal MVM.

To prove the Theorem we need the following Lemma.

Lemma 4.1.2 Let Mopt be an optimal matching and MA be an approximate matching

in a graph G = (V,E, φ) such that there does not exist an augmenting path of length

2k−1 and an increasing path of length 2k with respect to MA. For every M-unmatched

vertex u that is matched in Mopt, there are k distinct M-matched vertices that are at

least as heavy as u.

Proof Let U be the set of vertices that are matched in Mopt but unmatched in MA.

Consider the symmetric difference of the two matchings Mopt ⊕MA, which consists

of vertices with degrees 0, 1 or 2. Hence this subgraph is a union of alternating paths

and alternating cycles. In each alternating cycle all vertices are matched in both

Mopt and MA; hence we need consider only alternating paths. Each vertex u ∈ U

has degree one in the subgraph, and therefore must be an end point of an alternating

path. Since there does not exist an augmenting path of length 2k − 1, the length
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of each alternating path is at least 2k. Since there are no weight-increasing paths of

length 2k, the k vertices at even-valued distances from u on the symmetric difference

path must be at least as heavy as u. If both endpoints of an alternating path belong

to U , then it has length at least 2k + 1 as there are no augmenting paths of length

2k − 1. Then each endpoint can choose k distinct vertices which are at even-valued

distances from it. Note that the symmetric difference paths are vertex disjoint, and,

thus, for every unmatched vertex u, we have found k distinct matched vertices in MA

that are at least as heavy as u.

Now we prove Theorem 4.1.1.

Proof Let MA, Mopt and U all be as defined in the Lemma, and consider paths

in the symmetric difference between MA and Mopt. Each vertex u ∈ U must be an

endpoint of an alternating path in the symmetric difference. Thus

φ(Mopt) = φ(MA) + φ(U)− φ(MA \Mopt)

≤φ(MA) + φ(U).

By Lemma 4.1.2, we have φ(U) ≤ 1
k
φ(MA). Hence,

φ(Mopt)− φ(MA) ≤ 1

k
φ(MA)

⇒φ(MA) ≥ k

k + 1
φ(Mopt).

4.2 New Approximation Algorithms Based on the Direct Approach

In this section we present new 1/2- and 2/3-approximation algorithms which are

derived from the Direct-Augmenting algorithm (described in the previous chapter)

by restricting the augmenting path length to one and three, respectively. The ap-

proximation algorithms are called 1/2-Dir and 2/3-Dir for short. Additionally, we

will show that if vertex weights in a graph are transformed into edge weights, then
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a matching obtained by the 1/2-Dir algorithm is identical to the matching obtained

by the 1/2-approximation algorithms for MEM that match locally dominant edges,

given that ties in weights are broken consistently in the two algorithms.

In the exact Direct-Augmenting algorithm for MVM, at each step we search from

a currently heaviest unmatched vertex for a heaviest unmatched vertex reachable by

an augmenting path of any length. If such an augmenting path is found then augment

the matching using this path. If no augmenting path is found, we search from the

next heaviest unmatched vertex. Consider running the exact Direct-Augmenting

algorithm and the 1/2-Dir or 2/3-Dir approximation algorithm simultaneously using

the vertices in the same queue Q. Both consider vertices in non-increasing order of

weights and break ties among weights consistently. If a vertex u is matched by the

exact algorithm but not by the approximation algorithm (because the augmenting

path is longer than one or three), then we call u a failure or a failed vertex, because

the approximation algorithm failed to match it, while the exact algorithm succeeded.

In this section we distinguish between the origin (the first vertex) and the terminus

(the last vertex) of augmenting paths. The origin and terminus of an augmenting path

are corresponding vertices of each other, and this pairing is uniquely determined in

our algorithms.

4.2.1 A 1/2-Approximation Algorithm

The approximation algorithm sorts the vertices in non-increasing order of weights,

and inserts the sorted vertices into a queue Q. The algorithm begins with an empty

matching and attempts to match the vertices in Q in the given order. Each unmatched

vertex u is removed from Q, and the algorithm searches for a heaviest unmatched

neighbor v. If such neighbor exists, then we match the edge (u, v) and remove the

vertex v from Q. If no unmatched neighbor is found, we search from the next heaviest

unmatched vertex. The algorithm terminates when all vertices are processed.
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Algorithm 17 The Direct 1/2-Approximation Algorithm for MVM.

1: procedure 1/2-Dir(G = (V,E, φ))

2: M ← ∅;

3: Q← V ;

4: while Q 6= ∅ do

5: u← heaviest(Q);

6: Q← Q− u;

7: Let v denote a heaviest unmatched neighbor of u

8: if v is found then

9: M ←M ∪ (u, v);

10: Q← Q− v;

11: end if

12: end while

13: end procedure
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We will now illustrate the relation between the 1/2-Dir algorithm and the 1/2-

approximation algorithm for edge-weighted matching (1/2-MEM) which matches lo-

cally dominant edges (An edge (u, v) is said to be a locally dominant if it is at least

as heavy as all other edges incident on the vertices u and v). Recall that an MVM

problem can be transformed into an MEM problem by transforming G = (V,E, φ)

into G′ = (V,E, φ′): for each edge e = (u, v) ∈ E, sum the vertex weights of adjacent

vertices u and v, and assign that weight to the edge; hence φ′(e) = φ(u) + φ(v).

Theorem 4.2.1 Let G = (V,E, φ) be a vertex-weighted graph, and G′ = (V,E, φ′) be

an edge-weighted graph such that for all e = (u, v) ∈ E, we set φ′(e) = φ(u) + φ(v).

The matching obtained by the 1/2-Dir algorithm on G is identical to the matching

obtained by 1/2-MEM algorithm that matches locally dominant edges, given that ties

in weights are broken consistently.

Proof We run both algorithms step by step; the algorithms might match different

edges at a step, but we continue running the algorithms until we find two different

edges incident on a common vertex v matched by the algorithms (possibly at different

steps). Let (u, v) be matched by the 1/2-Dir algorithm and (w, v) be matched by the

1/2-MEM algorithm. We know that the 1/2-Dir algorithm processes vertices in non-

increasing order of weights and the 1/2-MEM algorithm matches edges that are locally

dominant. We consider two cases, the first of which is φ(u) ≥ φ(v), then we have two

subcases:

Subcase 1: φ(u) ≥ φ(w), so (w, v) is not locally dominant.

Subcase 2: φ(u) < φ(w). Then, w must be matched by 1/2-Dir to, say, q, since

1/2-Dir processes vertices in non-increasing order of weights. Clearly, φ(q) ≥ φ(v),

so (w, v) is not locally dominant.

Now consider the second case φ(v) > φ(u). Here again we have two subcases:

Case 1: φ(u) ≥ φ(w); then (w, v) is not locally dominant.

Case 2: φ(u) < φ(w). Then w must be matched to, say, q by the 1/2-Dir algorithm, as

this algorithm processes vertices in non-increasing order of weights. Clearly, φ(q) ≥
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φ(v), so (w, v) is not locally dominant.

Since all cases where the two algorithms pick different edges incident on a common

vertex contradicts the choice of the locally dominant edge matched by 1/2-MEM,

the matching of 1/2-Dir and 1/2-MEM must be the same, given that ties are broken

consistently.

Time Complexity

Theorem 4.2.2 The time complexity of the 1/2-Dir approximation algorithm is

O(m+ n log n).

Proof In each iteration of the while loop, we choose an unmatched vertex u and

examine all vertices in N(u) to find a heaviest unmatched neighbor, which can be

done in O(d(u)) time. Thus the search for a heaviest unmatched neighbor in the

algorithm takes O(m) time. Sorting the vertices in non-increasing order of weights

takes O(n log n) time.

Proof of Correctness

In this subsection, we will prove the approximation ratio of the 1/2-Dir approxi-

mation algorithm. Let MA be the approximate matching found by the 1/2-Dir algo-

rithm. We will prove first the non-existence of increasing paths of length two, which

is achieved by using Lemma 4.2.3.

Lemma 4.2.3 Let u be a vertex matched in the optimal matching that failed to be

matched by the approximation algorithm MA, and let P = {u, v1, v2, ...} be an Mopt⊕

MA-alternating path that begins with u. Then φ(v2) ≥ φ(u).

Proof In this case, we must consider two possibilities:

(a) The vertex v2 is an origin, in which case φ(v2) ≥ φ(u), since v2 was processed

before u by the approximation algorithm.
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(b) The vertex v2 is a terminus and v1 is an origin. In this case, v2 was matched in

preference to u, so φ(v2) ≥ φ(u).

Note that if v2 is a terminus and v1 is not the corresponding origin, then the alternat-

ing patj P = {u, v1, v2, ...} cannot exist; and v2 is not at distance two from u because

v1 cannot be matched to v2 in the approximate matching.

Lemma 4.2.4 After the 1/2-Dir algorithm terminates, there does not exist an aug-

menting path of length one and an increasing path of length two with respect to MA.

Proof Clearly there does not exist an augmenting path of length one, since the algo-

rithm scans all neighbors, and if there is an unmatched neighbor it will always select

one with the highest weight. For the increasing path of length two, by Lemma 4.2.3,

we know all matched vertices at distance two from any unmatched vertex u are at

least as heavy as u. Thus, an increasing path of length two does not exist with respect

to MA.

Theorem 4.2.5 The 1/2-Dir algorithm has the approximation ratio of 1/2.

Proof By Lemma 4.2.4, we know that there does not exist an augmenting path of

length one and increasing path of length two. Hence, it follows from Theorem 4.1.1

that MA is at least 1
2
Mopt.

4.2.2 A 2/3-Approximation Algorithm

The approximation algorithm described in Algorithm 18 sorts the vertices in non-

increasing order of weights and inserts the sorted vertices into a queue Q. The

algorithm begins with the empty matching and attempts to match the vertices in Q

in the given order. Each unmatched vertex u is removed from Q, and beginning at u,

the algorithm searches for a heaviest unmatched vertex v reachable by an augmenting

path of length at most three. If such an augmenting path is found, then the matching

is augmented by the path that leads to a heaviest unmatched vertex, and the vertex

v is also removed from Q. If no augmenting path of length at most three is found,
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we search from the next heaviest unmatched vertex (even though longer augmenting

paths might exist in the graph). The algorithm terminates when all vertices are

processed.

Algorithm 18 The Direct 2/3-Approximation Algorithm for MVM.

1: procedure 2/3-Dir(G = (V,E, φ))

2: M ← ∅;

3: Q← V ;

4: while Q 6= ∅ do

5: u← heaviest(Q);

6: Q← Q− u;

7: Let v denote a heaviest unmatched vertex reachable from u by an

augmenting path P of length at most three;

8: if P is found then

9: M ←M ⊕ P ; Q← Q− v;

10: end if

11: end while

12: end procedure

Time Complexity

Theorem 4.2.6 The time complexity of the 2/3-Dir approximation algorithm is

O(m log ∆ + n log n), where ∆ is the maximum degree.

Proof We sort the adjacency list of each vertex in non-increasing order of weights

and maintain a pointer to a heaviest unmatched neighbor of each vertex. Since the

adjacency list is sorted, each list is searched once from highest to lowest weight in the

algorithm. In each iteration of the while loop, we choose an unmatched vertex u and

examine all vertices in N(u) to find a heaviest unmatched neighbor, if one exists. If

u has a matched neighbor v, then we form an augmenting path of length three by
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taking the matching edge (v, w), and finding a heaviest unmatched neighbor x of w.

All neighbors of u, unmatched and matched, can be found in O(d(u)) time, and finding

the matched vertex w and a heaviest unmatched neighbor x can be done in constant

time since the adjacency lists are sorted. Thus, the search for augmenting paths in

the algorithm takes O(m) time. Sorting the adjacency lists takes time proportional

to ∑
u

d(u) log d(u) ≤
∑
u

d(u) log ∆ = m log ∆.

Sorting the vertices in non-increasing order of weights takes O(n log n) time.

Proof of Correctness

In this subsection, we will prove (Theorem 4.2.12) that Algorithm 18 computes a

2/3-approximate MVM, MA. Note that Theorem 4.1.1 cannot be used since the 2/3-

Dir algorithm does not guarantee the non-existence of an increasing path of length

four. Consider the following case illustrated in Figure 4.1, first the algorithm match

v2 with v5 and v3 with v6. Then two augmenting paths of length three are found and

augmented {v7, v5, v2, v1} and {v8, v6, v3, v4}. Searches for an augmenting path from

u1 and u2 will fail. As shown in Figure 4.2, there are two increasing paths of length

four, in this case {u1, v1, v2, v3, v4} and {u2, v4, v3, v2, v1}.

Figure 4.1. A case that leads to an increasing path of length four after
the 2/3-Dir algorithm terminates. W and ε are real values, where W � ε.
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Figure 4.2. After the 2/3-Dir terminates, we have two increasing paths
{u1, v1, v2, v3, v4} and {u2, v4, v3, v2, v1}.

The proof of the approximation ratio for the 2/3-Dir algorithm requires several

new concepts. First, we need a more careful study of the structure of augmenting

paths. In addition to the concepts of the origin and terminus of an augmenting path,

we also introduce the concept of a heaviest unmatched neighbor of a matched vertex.

We consider the symmetric difference of an optimal matching and an approximate

matching, and then examine the first five vertices on a path that begins at a failed

vertex and alternates between edges in the two matchings. We show that this al-

ternating path does not change in future augmentation steps of the approximation

algorithm and prove that the weight of a failed vertex is no larger than the correspond-

ing vertices of two of the vertices on this path. However, the corresponding vertices

themselves may not be on the augmenting path. The proof makes use of heaviest

unmatched neighbors to establish relationships among the weights of the vertices. A

heaviest unmatched neighbor of u is denoted by HUN(u). Note that HUN(u) might

not be unique, but the weight of HUN(u) is unique.

Let φ(F ) denote the sum of the weights of the failures, φ(MA) the weight of the

approximate matching, and φ(Mopt) the weight of an optimal matching. In order

to prove the approximation ratio, it suffices to prove that φ(F ) ≤ 1
2
φ(MA), since

φ(Mopt) ≤ φ(MA) + φ(F ).

To prove that φ(F ) ≤ 1
2
φ(MA), we show that for every failure there are two

distinct vertices that are matched in MA, with the weight at least as heavy as the
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failure. This is achieved in Lemma 4.2.11 by considering Mopt ⊕ MA-alternating

paths, using a charging technique in which each failure charges two distinct vertices

matched in MA. Each failure is an endpoint of the Mopt⊕MA-alternating path. The

two distinct vertices are obtained as the corresponding vertices (the other ends of the

augmenting paths) of two of the first three vertices on the Mopt ⊕ MA-alternating

path.

We prove the approximation ratio by means of several Lemmas. The key

Lemma 4.2.11 is proved using Lemmas 4.2.7, 4.2.8, 4.2.9 and 4.2.10. We begin

by proving each of the latter Lemmas.

Lemma 4.2.7 Let (u, v) be a matching edge in a matching M at some step in the 2/3-

Dir approximation algorithm, and let w = HUN(v) be a heaviest unmatched neighbor

of v. Suppose (u, v) is changed to a matching edge (u, v′) in a future augmentation

step, and let w′ = HUN(v′) denote a heaviest unmatched neighbor of v′, then φ(w) ≥

φ(w′).

Proof The proof is by induction on i, the number of augmentation steps that in-

clude u on the augmenting path. Let v′i be the matched neighbor of u after i aug-

mentation steps involving u, and let w′i be its heaviest unmatched neighbor HUN(v′i).

There are two possible augmentation steps that include the matching edge (u, v). (1)

{oi, u, v, ti}, and (2) {oi, v, u, ti}, where oi (ti) is the origin (terminus) of the augment-

ing path.

For the base case, i = 1), consider Figure 4.3. If the augmentation path is {o1 =

w, v, u, t1 = v′1}, clearly φ(w) ≥ φ(w′1), since the algorithm processes vertices in non-

increasing order of weights. If the augmenting path is {o1 = v′1, u, v, t1 = w}, then

φ(w) ≥ φ(w′1) because w was matched in preference to w′1.

Assume the claim is true for k augmentation steps. By using the same argument

as in the base case we have φ(w′k) ≥ φ(w′k+1) at the k + 1-st augmentation step.

Now by the inductive hypothesis we have φ(w) ≥ φ(w′k), and by combining the two

inequalities, we obtain φ(w) ≥ φ(w′k+1).
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Figure 4.3. Lemma 4.2.7: Base case.

Lemma 4.2.8 Let Mx
A denote the 2/3-Dir approximate matching at the xth failure

fx, and let P = {fx, v1, v2, ...} be an alternating path that begins with fx in Mopt⊕Mx
A.

(1) If v1 is an origin oi of some prior augmentation step, then φ(ti) ≥ φ(fx).

(2) φ(v2) ≥ φ(fx).

Proof (1) If v1 is an origin oi, then we have φ(ti) ≥ φ(fx), because ti was matched

in preference to fx.

(2) In this case, we have to consider three possibilities.

(a) The vertex v2 is an origin, in which case φ(v2) ≥ φ(fx), since v2 was processed

before fx.

(b) The vertex v2 is a terminus that is matched by an augmenting path that includes

v1. An example of this case is shown in Figure 4.4. In this case we have two possibil-

ities: either v1 is an origin and v2 is the corresponding terminus, or v1 is previously

matched in which case we have an augmenting path {oi, x, v1, v2}. In both possibili-

ties, v2 is matched in preference to fx, so φ(v2) ≥ φ(fx).

(c) The vertex v2 is a terminus that is matched by an augmenting path that includes

a vertex u 6= v1, where u is adjacent to v2. An example of this case is shown in

Figure 4.5. Let HUN(u) be a heaviest unmatched neighbor of u after v2 is matched.

In this case, again, we have two possibilities: u is an origin and v2 is the correspond-

ing terminus, or u is previously matched in which case we have an augmenting path
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{oi, x, u, v2}. In both possibilities, v2 is matched in preference to HUN(u), so we have

φ(v2) ≥ φ(HUN(u)). By Lemma 4.2.7, when the matching edge (u, v2) is changed

to the matching edge (v1, v2), we have φ(HUN(u)) ≥ φ(fx). By combining these two

inequalities, we obtain φ(v2) ≥ φ(fx).

Figure 4.4. Lemma 4.2.8 Case (b): v2 is a terminus that is matched by an
augmenting path that includes v1.

Figure 4.5. Lemma 4.2.8 Case (c): v2 is a terminus that is matched by an
augmenting path that includes u 6= v1.

Lemma 4.2.9 Let Mx
A denote the 2/3-Dir approximate matching at the xth failure

fx, and let P = {fx, v1, v2, v3, ...} be an Mopt⊕Mx
A-alternating path that begins with fx.

If the vertex v3 is an origin oi of some prior augmentation step in the Approximation

algorithm, and if φ(ti) < φ(fx), then 1) immediately prior to the step when the

Approximation algorithm matches the vertex v3, the vertex v2 is matched to a vertex

u 6= v1, and {v2, v3, u} is a cycle.

2) the i-th augmenting path is {v3 = oi, u, v2, ti}.

Proof 1) First we will establish that v2 is matched to some vertex u prior to the

step when v3 is matched. To obtain a contradiction, assume that v2 is not matched to
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some vertex u prior to the step of matching v3. Then after v3 is matched, the terminus

ti is either v2 or a vertex that is matched in preference to v2. In both possibilities

we have φ(ti) ≥ φ(v2). We know from Lemma 4.2.8 that φ(v2) ≥ φ(fx). Combining

the two inequalities, we have φ(ti) ≥ φ(fx), which contradicts the assumption in the

Lemma.

Now we show that the vertex u 6= v1. Assume for a contradiction that u = v1, then

at the step of matching v3 there exists an augmenting path from v3 to fx of length

three. After we match v3, we have φ(ti) ≥ φ(fx), since it was matched in preference

to fx. This again contradicts the assumption in the Lemma.

Now we show that {v2, v3, u} is a cycle by showing that v3 = HUN(u). Assume

v3 6= HUN(u) and let some vertex q = HUN(u), as shown in Figure 4.6. Note that by

Lemma 4.2.7 we have φ(q) ≥ φ(HUN(v1)) ≥ φ(fx) (A), since we know the matching

edge (v2, u) is changed to (v2, v1). Also, immediately prior to the step when v3 is

matched, there exists an augmenting path of length three from v3 to q. So after we

match v3, ti is either q or a vertex that is matched in preference to q, so φ(ti) ≥ φ(q)

(B). Combining (A) and (B) we get φ(ti) ≥ φ(fx). Thus, v3 = HUN(u). Hence

{v2, v3, u} is a cycle since we have established the existence of the edge (u, v3) (the

existence of the other two edges of the cycle were established earlier).

2) We establish this result by contradiction as well. Suppose the augmenting path

is not {oi, u, v2, ti}. Then we have two cases:

Case 1: The augmenting path is {oi, v2, u, ti} as shown in Figure 4.7. In this case

there must exist an unmatched vertex w adjacent to v3, since after matching the edge

(v2, v3) it must be changed to (v2, v1) by an augmenting path of length three. After

matching v3, assume without loss of generality that w becomes HUN(v3). After the

augmentation step, we have φ(ti) ≥ φ(w) (A), since there existed an augmenting

path from v3 to w when ti was matched. Also, (v2, v3) was matched in this step,

and it must be changed to the matching edge (v2, v1). By Lemma 4.2.7 we have
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Figure 4.6. Lemma 4.2.9: The case where v3 6= HUN(u).

φ(w = HUN(v3)) ≥ φ(HUN(v1)) ≥ φ(fx) (B). Combining (A) and (B), we obtain

φ(ti) ≥ φ(fx). Again we have a contradiction of the condition of the Lemma.

Case 2: The augmentation step does not include the edge (v2, u) as shown in

Figure 4.8. In this case there must exist an unmatched vertex q adjacent to u since

the matching edge (v2, u) must be changed to (v2, v1) by an augmenting path of

length three. After matching v3, assume without loss of generality that q becomes

HUN(u). After the augmentation step, we have φ(ti) ≥ φ(q) (A), since there existed

an augmenting path from v3 to q. Note that (v2, u) is still matching and must be

changed to (v2, v1). By Lemma 4.2.7 φ(q = HUN(u)) ≥ φ(HUN(v1)) ≥ φ(fx) (B).

Again, by combining (A) and (B), we obtain φ(ti) ≥ φ(fx).

In both cases we obtain φ(ti) ≥ φ(fx), a contradiction to the condition of the

Lemma. Therefore, the i-th augmentation step must be {v3 = oi, u, v2, ti}.

Lemma 4.2.10 Consider the symmetric difference Mopt ⊕Mx
A, corresponding to the

2/3-Dir approximate matching at the x-th failure. Let P = {fx, v1, v2, v3, v4} be an
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Figure 4.7. Lemma 4.2.9, (2) Case 1: The augmentation step is
{oi, v2, u, ti}.
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Figure 4.8. Lemma 4.2.9 (2) Case 2: the augmentation step does not
include the edge (v2, u).

Mopt ⊕Mx
A-alternating path, then the alternating subpath P = {fx, v1, v2, v3} will not

change in future augmentation steps of the approximation algorithm.

Proof Assume for the sake of contradiction that after fx is determined to be a

failure, the edge (v1, v2) is changed by a future augmenting path of length three, say

{u, v1, v2, q}, as shown in Figure 4.9. Then, the augmenting path {fx, v1, v2, q} must

exist when fx was determined as a failure, and in this case fx could not have been

a failure. Hence the matching edge (v1, v2) in the approximate matching Mx
A cannot

be changed in future augmentations.

Lemma 4.2.11 Consider the symmetric difference Mopt ⊕ MA, where MA is the

matching computed by the 2/3-Dir approximation algorithm. For every failure f there

are two distinct matched vertices in MA that are at least as heavy as f .
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Figure 4.9. Lemma 4.2.10: Augmenting the path {u, v1, v2, q} after fx is
determined to be a failure.

Proof First run the approximation algorithm and at the i-th augmentation step

label the origin by oi and the terminus by ti. Recall that we denote oi as the cor-

responding vertex of ti, and vice versa. Consider the symmetric difference between

Mopt and MA which results in alternating paths and cycles. We can ignore alternating

cycles since every vertex in a cycle is matched in both Mopt and MA. Since failures

are matched by the optimal matching but not the approximate matching, they are at

the ends of alternating paths.

By Lemma 4.2.10, the first four vertices of an alternating path beginning with

a failure do not change, which makes it possible to identify the origins and termini

which are used to construct the alternating path. We will number each failure fx in

the order that it was discovered in the approximation algorithm. A failure fx could be

an end of an alternating path which has one failure or two failures. We will consider

these two types of alternating paths in the following.

(i) First consider an alternating path with one failure, and denote the path as

P = {fx, vx1 , vx2 , vx3 , vx4}. We charge two distinct vertices for fx as follows:

(i − 1) If the vertex vx1 is a terminus, then charge the corresponding origin, which

must be at least as heavy as the failure fx since it was processed before fx. If vx1 is
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an origin then charge the corresponding terminus, which by Lemma 4.2.8 (1) must

be at least as heavy as fx.

(i − 2) If the vertex vx3 is a terminus, then charge the corresponding origin which

must be at least as heavy as the failure fx since it was processed before fx. If vx3

is an origin, and the corresponding terminus is at least as heavy as fx, then charge

the corresponding terminus. If the corresponding terminus is strictly lighter than fx,

then by Lemma 4.2.9 we have immediately prior to the step in which vx3 is matched,

the vertex vx2 is matched to some vertex u, u 6= vx1 such that {vx2 , vx3 , u} is a cycle, as

shown in Figure 4.10. In this case we consider vx2 instead of vx3 to find a vertex to

charge. If the vertex vx2 is a terminus (in a prior augmentation step), then charge the

corresponding origin which must be at least as heavy as fx, since it was processed

before the latter. If vx2 is an origin in the prior augmentation step, then charge the

corresponding terminus which must be at least as heavy as fx since it was matched

in preference to vx3 which is an origin.

Figure 4.10. Lemma 4.2.11, i− 2: The corresponding terminus is strictly
lighter than the failure fx.

(ii) Now we consider an alternating path with two failures fx and fy as its end-

points. We assume without loss of generality that φ(fx) ≥ φ(fy).

For the failure fx we charge two distinct vertices as we did in Part (i) of this Lemma.

Now we consider charging for the failure fy. If the length of the alternating path is

at least seven edges, then we can label two alternating subpaths {fx, vx1 , vx2 , vx3} and
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{fy, vy1 , v
y
2 , v

y
3}, and these do not overlap. Hence we can charge two distinct vertices

for fy as we did in Part (i) of the Lemma.

If the length of the alternating path is five then {vx2 , vx3} and {vy2 , v
y
3} overlap.

Thus vx2 = vy3 , and vx3 = vy2 . So, we charge one vertex vy1 for fy as we did in (i − 1)

and we will charge the other distinct vertex as follows.

Case 1: If fx charged the corresponding vertex of vx2 then fy must charge the corre-

sponding vertex of vy2 = vx3 . Referring to (i−2), the vertex fx charged the correspond-

ing vertex of vx2 because vx3 = vy2 must be an origin and the corresponding terminus

is strictly lighter than fx. Let the origin vx3 be denoted by oi, and the corresponding

terminus be ti, for some augmentation step i. By Lemma 4.2.9 we have (1) at the

step of matching vx3 but before it is matched, vx2 is matched to some u, where u 6= vx1 ,

and {vx2 , vx3 , u} is a cycle; (2) the augmenting path is {vx3 = oi, u, v
x
2 , ti}.

We will show that φ(ti) ≥ φ(fy), and thus fy can be charged to ti. We consider

two subcases:

Subcase 1: fy is adjacent to u, as shown in Figure 4.11. Note that φ(ti) ≥ φ(fy),

since at the step of matching vx3 there existed an augmenting path from vx3 to fy.

Figure 4.11. Lemma 4.2.11, Case 1, Subcase 1: The failure fy is adjacent
to u.
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Subcase 2: The failure fy is not adjacent to u as shown in Figure 4.12. Note there

must exist some unmatched vertex q that is adjacent to u because after augmenting by

the path {vx3 = oi, u, v
x
2 , ti} the matching edge (vy2 = vx3 , u) must be changed to (vy2 , v

y
1),

which can be done with an augmenting path of length three. After the augmentation

step, we have φ(ti) ≥ φ(q) (A), because there existed an augmenting path from vy2

to q. After vy2 is matched, assume without loss of generality that q = HUN(u).

By Lemma 4.2.7, after (vy2 , u) is changed to (vy2 , v
y
1) we have φ(q = HUN(u)) ≥

φ(HUN(vy1)) ≥ φ(fy) (B). Combining (A) and (B) we obtain φ(ti) ≥ φ(fy).

Figure 4.12. Lemma 4.2.11, Case 1, Subcase 2: The failure fy is not
adjacent to u.

Case 2: If fx charged the corresponding vertex of vx3 = vy2 , then fy must charge

the corresponding vertex of vy3 = vx2 . We will show that the corresponding vertex

of vy3 is at least as heavy as fy. Suppose that the corresponding vertex is strictly

lighter than fy which is true if it is a terminus, say ti in the ith augmenting step.

By Lemma 4.2.9 we have (1) at the step when the vertex vy3 is matched but prior to
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matching it, the vertex vy2 is matched to some u, with u 6= vy1 , such that {vy2 , v
y
3 , u} is

a cycle; and (2) the augmenting path is {vy3 = oi, u, v
y
2 , ti}. By symmetry and using

the same argument as in Case 1 we get φ(ti) ≥ φ(fx). Since by assumption we have

φ(fx) ≥ φ(fy), it follows that φ(ti) ≥ φ(fy).

Note that each matched vertex has a unique corresponding vertex, since once they

(the vertex and its corresponding vertex) are matched they will not be unmatched.

So, to charge a vertex twice, a vertex u must be considered by two failures (and the

corresponding vertex of u must be charged twice). But two failures cannot consider

the same vertex. This is not possible for two failures in different alternating paths,

since the alternating paths are vertex disjoint. This is also not possible for two failures

in the same alternating path, since by our charging method they do not consider the

same vertices to charge.

Theorem 4.2.12 Algorithm 18 computes a 2/3-approximation for the MVM prob-

lem.

Proof Let MA be the matching computed by the approximation algorithm, and

Mopt be a matching of maximum vertex weight. Consider all paths in the symmetric

difference between MA and Mopt. Let φ(F ) denote the sum of weights of all the

failures, let φ(Mopt) denote the weight of the maximum-weighted matching, and let

φ(MA) denote the weight of the approximate matching. Then, φ(Mopt) = φ(MA) +

φ(F )−φ(MA \Mopt) ≤ φ(MA)+φ(F ), and we know from Lemma 4.2.11 that φ(F ) ≤
1
2
φ(MA) since for every failure we have two distinct vertices that are at least as

heavy as the failures. Hence φ(Mopt) − φ(MA) ≤ φ(F ) ≤ 1
2
φ(MA). Thus we have

φ(Mopt) ≤ 3
2
φ(MA). This completes the proof.

4.3 New Approximation Algorithms Based on the Iterative Approach

In this section, we propose new 1/2- and 2/3-approximation algorithms as well

as a generalized (k/k + 1)-approximation algorithm based on the iterative approach.
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These are abbreviated to 1/2-Iter, 2/3-Iter and (k/k+1)-Iter. The iterative approach

starts with an empty matching or initialized matching (naturally a cardinality match-

ing with restricted length augmenting paths). Then, process the unmatched vertices

in arbitrary order and improve the matching by finding restricted length increasing

path or restricted length augmenting path. Unlike the previous technique, the it-

erative approach can be initialized, thus exploiting the structure of vertex-weighted

graphs. In particular, an MVM has the same cardinality as a Maximum Cardinality

Matching (MCM). Also, an α-approximate MVM has at least the same cardinality as

an α-approximate MCM. In this way, the iterative approximation algorithms match

very large numbers of vertices rapidly, without considering the weights of vertices

by restricted length augmenting paths. Then, the algorithm finds increasing paths

and augmenting paths that may result from prior increasing paths. One huge advan-

tage of the iterative approach is its suitability for parallelization because the vertices

are processed in arbitrary order, while the direct approach processes the vertices in

non-increasing order of weights, making it unsuitable for parallelization.

4.3.1 A 1/2-Approximation Algorithm

In this section, we will describe the 1/2-Iter approximation algorithm. First, the

algorithm starts with an empty matching or an initialized matching. The following

steps are repeated as long as an augmenting or increasing path is found. The algo-

rithm considers the vertices in arbitrary order. For each unmatched vertex u, the

algorithm searches for an unmatched neighbor v. If it is found, then u and v are

matched. If not, then we search for an increasing path of length two that reaches a

lightest vertex v. If an increasing path is found, then the matching is updated by

reversing the increasing path.
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Algorithm 19 The Initialized Iterative 1/2-Approximation Algorithm for MVM.

1: procedure 1/2-Ite(G = (V,E, φ))

2: M ← ∅;

3: for each u ∈ V do

4: Find from u an unmatched neighbor v;

5: if v is found then

6: M ←M ∪ (u, v);

7: end if

8: end for

9: do

10: done = true;

11: for each u ∈ V do

12: if u /∈M then

13: Find from u an unmatched neighbor v;

14: if v is found then

15: M ←M ∪ (u, v);

16: done = false;

17: else

18: Find a highest gain increasing path P ′ from u s.t. |P ′| = 2;

19: if P ′ is found then

20: M ←M ⊕ P ′;

21: done = false;

22: end if

23: end if

24: end if

25: end for

26: while not done

27: end procedure
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Time Complexity

Theorem 4.3.1 The time complexity of the 1/2-Iter approximation algorithm is

O(∆m), where ∆ is the maximum degree.

Proof If the matching is initialized with a maximal matching, then the maximal

cardinality matching can be found in at most O(m) time. In each iteration of the for

inner loop, we choose an unmatched vertex u and examine all neighbors of u. If there

is a matched neighbor v, then the mate of v is examined. Thus, for a vertex u, the

algorithm examines at most a number of vertices equal to d(u). Since a vertex can be

unmatched at most O(∆) times, a total of O(d(u)∆) vertices are searched. Summing

over all vertices, we have
∑

u∈V d(u)∆ = 2∆m = O(∆m).

Proof of Correctness

Now, we will prove that the 1/2-Iter approximation algorithm computes 1/2-

approximation for MVM.

Theorem 4.3.2 Let G = (V,E, φ) be a graph and φ : V 7→ R≥0 a weight function.

Then the 1/2-Iter approximation algorithm computes a 1/2- approximation for the

maximum vertex-weighted matching problem on G.

Proof Let MA be the approximate matching computed by the 1/2-Iter algorithm

and Mopt be an optimal MVM. By the algorithm design, there does not exist an

augmenting path of length one and increasing path of length two with respect to MA

in G. It follows from Theorem 4.1.1 that MA is at least 1
2
Mopt.

4.3.2 A 2/3-Approximation Algorithm

The description of the approximation algorithm is similar to the 1/2-Iter, but it

finds augmenting paths of lengths at most three and increasing paths of lengths at

most four.
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Algorithm 20 The Initialized Iterative 2/3-Approximation Algorithm for MVM.

1: procedure 2/3-Iter(G = (V,E, φ))

2: M ← ∅;

3: for each u ∈ V do

4: Find an augmenting path P s.t. |P | ≤ 3 from u;

5: if P is found then

6: M ←M ⊕ P ;

7: end if

8: end for

9: do

10: done =true;

11: for each u ∈ V do

12: if u /∈M then

13: Find aug. path P from u s.t. |P | ≤ 3;

14: if P is found then

15: M ←M ⊕ P ;

16: done =false;

17: else

18: Find a highest gain increasing path P ′ from u s.t. |P ′| ≤ 4;

19: if P ′ is found then

20: M ←M ⊕ P ′;

21: done =false;

22: end if

23: end if

24: end if

25: end for

26: while done

27: end procedure
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Time Complexity

Theorem 4.3.3 The time complexity of the 2/3-Iter approximation algorithm is

O(∆2m), where ∆ is the maximum degree.

Proof If the matching is initialized then the initial cardinality matching is found

in O(m) time. This is achieved by using a pointer to the first unmatched neighbor

in the adjacency list. In this way, each vertex u requires at most O(d(u)) steps to

find an augmenting path of length at most three. Summing over all vertices, we have

O(m).

In the do while loop, in each iteration of the for loop, we choose an unmatched

vertex u and examine all neighbors of u. If there is a matched neighbor v, then all

neighbors of Mate(v) except v are examined. Therefore, for a vertex u, the algorithm

examines at most a number of vertices equal to

d(u) +
∑

v∈N(u)

d(Mate(v))− 1 ≤ d(u) +
∑

v∈N(u)

∆− 1 = d(u) + d(u)∆− d(u) = d(u)∆.

Since a vertex can be unmatched at most O(∆) times in total, O(d(u)∆2) vertices

are searched. Summing over all vertices, we have
∑

u∈V d(u)∆2 = 2∆2m = O(∆2m).

Proof of Correctness

We will now prove the approximation ratio of the 2/3-Iter approximation algo-

rithm.

Theorem 4.3.4 Let G = (V,E, φ) be a graph and φ : V 7→ R≥0 a weight function.

Then, the 2/3-Iter approximation algorithm computes a 2/3- approximation for the

maximum vertex-weighted matching problem on G.

Proof Let MA be the approximate matching computed by 2/3-Iter algorithm and

Mopt be an optimal MVM. By the algorithm design, there does not exist an augment-
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ing path of length three and increasing path of length four with respect to MA in G.

It follows from Theorem 4.1.1 that MA is at least 2
3
Mopt.

We investigated the possibility of reducing the iterations of the iterative approxi-

mation algorithms to one by processing the vertices in non-increasing order of weights.

We found that there is no advantage to sorting vertices in non-increasing order of their

weights, as it still requires more than one iteration. Consider a case illustrated in Fig-

ure 4.13. Since we process the vertices in non-increasing order of weights, first we

search for an increasing path from v1, and the search fails. Next, a search starts from

v6 and finds an increasing path of length four {v6, v5, v4, v7, v8}. After updating the

matching as shown in Figure 4.14, an increasing path is created {v1, v2, v3, v4, v7}.

Thus, another iteration is required.

Figure 4.13. A search for an increasing path from v1 fail. W � ε.

Figure 4.14. An increasing path from v1 is created after the matching is
updated. W � ε.
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For a 1/2-approximation algorithm, consider a case illustrated in Figure 4.15.

Since we process the vertices in non-increasing order of weights, first we search for an

increasing path from v1, and the search fails. Next, a search starts from v4 and finds

an increasing path of length two {v4, v3, v2}. After updating the matching, v5 finds

an unmatched neighbor and is matched to v2. Now, an increasing path of length two

is created {v1, v2, v5}. Again, another iteration is required.

Figure 4.15. A search for an increasing path from v1 fail. W � ε.

Figure 4.16. An increasing path from v1 is created after the matching is
updated twice. W � ε.

4.3.3 A (k/k + 1)-Approximation Algorithm

The approximation algorithm follows the same steps of the 1/2- and 2/3-Iter

approximation algorithms, but it finds augmenting paths of lengths at most 2k − 1
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and increasing paths of lengths at most 2k. Here, k is the maximum number of

non-matching edges in augmenting and increasing paths.

Algorithm 21 The Initialized Iterative k/k+1-Approximation Algorithm for MVM.

1: procedure k
k+1

-Iter(G = (V,E, φ), k)

2: M ← ∅;

3: M ← (k/k + 1)-APPROXCARD(G = (V,E),k);

4: do

5: done = true;

6: for each unmatched vertex u do

7: Find an aug. path P from u s.t. |P | ≤ 2k − 1;

8: if P is found then

9: M ←M ⊕ P ;

10: done = false;

11: else

12: Find a highest gain increasing path P ′ from u s.t. |P ′| ≤ 2k;

13: if P ′ is found then

14: M ←M ⊕ P ′;

15: done = false;

16: end if

17: end if

18: end for

19: while done

20: end procedure
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Time Complexity

Theorem 4.3.5 The time complexity of the k/(k+ 1)-Iter approximation algorithms

is O(∆km), where ∆ is the maximum degree of a vertex and k is the maximum number

of non-matching edges in an augmenting or increasing path.

Proof The ( k
k+1

)-cardinality matching can be found in O(mk) time, using the Micali

and Vazirani algorithm [47] with k rounds. In each iteration of the inner for loop,

we choose an unmatched vertex u. In the worst case, we search an alternating tree

of height 2k. We have the root u and k − 1 levels of vertices of even depth called

outer vertices (from which we search for an unmatched vertex and increasing path),

and the total is k outer vertices levels. Now, we will upper bound the number of

searched vertices. At the root, the algorithm examines all vertices in N(u). If there

is a matched neighbor v, then all neighbors of Mate(v) except v are examined so

we have at most N(u) vertices searched. For each other outer level i > 1, we have

N(u)(∆− 1)i searched vertices. So for a vertex u, the algorithm examines at most a

number of vertices equal to

d(u) +
k−1∑
i=1

d(u)(∆− 1)i

= d(u)(
k−1∑
i=0

(∆− 1)i) This is a partial geometric series

= d(u)((∆− 1)k − 1)/((∆− 1)− 1)

< d(u)(∆k−1).

Since a vertex can be unmatched at most O(∆) times in total, O(d(u)∆k) vertices

are searched. Summing over all vertices, we have
∑

u∈V O(d(u)∆k) = O(∆km).
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Proof of Correctness

Theorem 4.3.6 Let G = (V,E, φ) be a graph and φ : V 7→ R≥0 a weight function.

Then Algorithm 21 computes a (k/k + 1)- approximation for the maximum vertex-

weighted matching problem on G.

Proof Let MA be the approximate matching computed by (k/k+ 1)-Iter algorithm

and Mopt be an optimal MVM. By the algorithm design, there does not exist an

augmenting path of length 2k − 1 and an increasing path of length 2k with respect

to MA in G. It follows from Theorem 4.1.1 that MA is at least k
k+1

Mopt.
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5 PARALLEL APPROXIMATION ALGORITHMS FOR MVM

In this chapter we will describe how the iterative 2/3-approximation algorithm for

MVM can be parallelized in shared memory multi-core machines. We will also discuss

potential problems that arise when we augment and increase the weight of a match-

ing in parallel. We propose a new locking technique to ensure the correctness of a

matching, which we proved is free from livelock, deadlock and starvation states.

5.1 A Parallel 2/3-Approximation Algorithm

Now we will discuss the parallelization of Algorithm 20, the initialized iterative

2/3-approximation algorithm for MVM. While there are unmatched vertices, the algo-

rithm searches for augmenting paths (of length at most three) or increasing paths (of

length at most four). Once a thread finds one such path, it locks vertices on the path

such that no other thread should augment or update the matching on these vertices

since the augmenting and increasing paths discovered by two threads could overlap.

If a thread cannot acquire all locks needed, then it releases all locks and proceeds to

search from other unmatched vertices. There is an implicit synchronization barrier

across all threads at the end of each iteration of the for loop.

Note that for the 1/2-approximation algorithm, the same method of parallelization

may be employed by restricting the length of an augmenting path to one, and the

length of an increasing path to two.

Now we discuss how the test and set locks are employed in the parallel algorithm.

The lock is free if its value is zero and, not free otherwise. If a thread reads a value

of zero for a lock, then it has atomic access to the lock variable and can set it to a

nonzero value. If a thread reads a nonzero value for a lock, then it is unavailable. We

allow an augmenting path joining the vertices u and v to augment the matching only
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Algorithm 22 The Parallel Initialized Iterative 2/3-Approximation Algorithm for

MVM.
1: procedure Par-2/3-Iter(G = (V,E, φ))

2: M ← PAR-2/3-APPROXCARD(G = (V,E, φ));

3: do

4: done = true;

5: for all unmatched u ∈ V do in parallel

6: Find an aug. path P from u to v s.t. |P | ≤ 3;

7: if P is found and u < v then

8: if LOCK(P ,u) = true then

9: M ←M ⊕ P ; done = false;

10: release all locks;

11: else

12: continue;

13: end if

14: else

15: Find a highest gain increasing path P ′ from u s.t. |P ′| ≤ 4;

16: if P ′ is found then

17: if LOCK(P ′,u) = true then

18: M ←M ⊕ P ′; done =false;

19: release all locks;

20: else

21: continue;

22: end if

23: end if

24: end if

25: end for

26: while done = false

27: end procedure
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if u < v, and in this way we prevent two threads from attempting to acquire locks

and augmenting the same path from opposite directions.

For a single matching edge (u, v) on an augmenting path, we lock its lower-

numbered endpoint; for two matching edges (u, v) and (x, y) on an increasing path,

we need to lock the lower-numbered endpoint of both edges, but with the lowest

numbered endpoint locked first. Hence the lock for first min, the minimum among all

four vertices is acquired first, and then the lock for second min, the lower numbered

endpoint of the other matching edge, is acquired.

We proceed to describe the locking procedure in more detail in Algorithm 23.

When a thread finds an augmenting path of length one, {u, q}, then it tests lock(u).

If lock(u) 6= 0, then the algorithm continues to the next unmatched vertex. If it

equals 0, it sets lock(u) with 1 and then tests the status of the lock on q. If a

thread finds a lock(u) value to be nonzero, then it abandons the attempt to lock the

remaining vertices on the augmenting or increasing path, releases any locks that it

has acquired on the path, and processes the next unmatched vertex. If lock(q) = 0,

then it sets lock(q) to 1. After a thread has acquired all locks for a path, then it

checks to see if any other thread had already updated the matching using some of

the vertices or edges on this path during the time it took to acquire the locks before

updating the matching. If it has changed then the thread releases all acquired locks

and continues to the next unmatched vertex. After augmenting the matching using

the path, the thread then releases locks on u and q. To avoid repetition, from now

on, we will assume that if a thread finds a lock(v) value to be nonzero or a path has

been changed, then it abandons the attempt to lock the remaining vertices on the

augmenting or increasing path and update the matching, releases any locks that it

has acquired on the path, and processes the next unmatched vertex.

For an augmenting path of length three {u, v1, v2, q}, the same technique is used. If

lock(u) = 0, then it sets lock(u) to 1 and tests the status of the lock on q. If lock(q) =

0, then lock(q) is set to 1. After acquiring lock(q), the thread finds v = min(v1, v2)
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and tests lock(v). If its value is 0, it sets it to 1. If all three locks are acquired by the

thread, then it augments the matching and releases the locks acquired.

Next, we discuss how vertices on an increasing path are locked in order to update

the matching. First we describe this for an increasing path of length two, {u, v1, v2}.

If lock(u) = 0, then the thread sets lock(u) to 1. Now the thread finds v = min{v1, v2}

and tests lock(v); if lock(v) = 0, the thread sets lock(v) = 1. If the two required

locks on the increasing path are acquired by the thread, then the matching is updated

and the acquired locks are released. Now consider an increasing path of length four

denoted by {u, v1, v2, v3, v4}. If lock(u) = 0, then the thread sets lock(u) to 1. The

thread finds m1 = min{v1, v2} and m2 = min{v3, v4}. Let first min = min{m1,m2}

and second min = max{m1,m2}. The thread tests lock(first min), and if its value

is 0, the thread sets it to 1. Next, the thread tests lock(second min); if its value

is also 0, then the thread sets lock(second min) = 1. If the three required locks on

the increasing path are acquired by the thread, then the matching is updated, after

which the acquired locks are released.

In Algorithm 22, we must consider the possibility that, in an iteration of the for

loop, none of the threads is able to augment or update the matching because they

are unable to acquire the locks. This can happen in the case of a cyclic wait, where

each thread is unable to acquire all the locks it needs because other threads have

acquired some of the locks, causing a cyclic dependence on a subset of threads. We

illustrate this in Fig. 5.1 for a set of increasing paths of length four that overlap with

each other and induce a cycle in the graph. A thread Ti processing the unmatched

vertex ui needs to lock endpoints of two consecutive matching edges (we consider

the increasing paths in the clockwise direction). Thus T1 needs to lock (v1, v2) and

(v3, v4) and so on, with the last thread Tk needing to lock (vk−1, vk) and (v1, v2). If

each thread Ti succeeds in acquiring only one lock on v2i−1, we could have livelock as

shown in Figure 5.2, and none of the threads would be able to update the matching.

Similarly, an illustrattion of this is in Figure 5.3 for a set of augmenting paths of

length three that overlap with each other and induce a cycle in the graph. A thread
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Algorithm 23 Locking procedure.
1: procedure LOCK(P ,u)

2: if lock(u)=0 then

3: lock(u)=1;

4: if P is an augmenting path then

5: if lock(q)=0 then . q > u is other unmatched end point

6: lock(q)=1;

7: else

8: release any locks;

9: return false;

10: end if

11: end if

12: for each matching edge e = (vi, vj) on P do

13: min v in e = min(vi, vj);

14: end for

15: for each min v in e in increasing order do

16: if lock(min v in e)=0 then

17: lock(min v in e)=1;

18: else

19: release any locks;

20: return false;

21: end if

22: end for

23: if P has not changed then

24: return true;

25: else

26: release any locks;

27: return false;

28: end if

29: else

30: return false;

31: end if

32: end procedure
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Figure 5.1. A set of increasing paths of length four that could induce a
cyclic wait among threads.

Figure 5.2. If each thread Ti locks v2i−1, we have a cyclic wait.

Ti processing the unmatched vertex ui needs to lock endpoints of two consecutive

unmatched matched vertices (we consider the augmenting paths in the clockwise

direction). Thus, T1 needs to lock u1 and (u2) and so on, with the last thread Tk

needing to lock (uk) and (u1). If each thread Ti succeeds in acquiring only one lock

on ui, we could have livelock as shown in Figure 5.4, and none of the threads would

be able to update the matching.
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Figure 5.3. A set of augmenting paths of length three that could induce
a cyclic wait among threads.

Figure 5.4. If each thread Ti locks ui, we have a cyclic wait.

5.2 Proof of Correctness

Next we will prove the correctness of the parallel algorithm.

Theorem 5.2.1 In each iteration of the for loop in Algorithm 22, at least one thread

among a set of threads competing for locks will be able to acquire the locks it needs

and update the matching.

Proof We distinguish between the locks for unmatched vertices and matched ver-

tices and say they are locks of different types. In any iteration of the for loop, there

will be no dependence between locks of two distinct types. Cyclic dependencies among

threads {T1, ...Tk} occur when these threads need to acquire two locks of the same

type with one lock acquired by a thread Ti and the other by another thread Tj, in such
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a way that these dependencies are cyclic. In this case, these threads fail to acquire

the locks they need and release them, and no thread can update the matching.

We consider cases where such cyclic dependencies may occur, and hence we do

not need to consider the following cases:

1. A set of increasing paths of length two, since each thread requires a lock of a

distinct unmatched vertex and a lock of a distinct matched vertex, and these

locks are disjoint.

2. A set of increasing paths consisting of both lengths two and four for the same

reason as above.

3. A set including increasing paths of length four and augmenting paths of length

three, since a thread that locks an augmenting path needs two locks of un-

matched vertices and one lock for a matched vertex, whereas the thread locking

an increasing path needs one lock of an unmatched vertex and two locks of

matched vertices.

We will consider the following four cases.

Case 1: An overlapping set of augmenting paths of length three that induce a

(longer) path. Let the k augmenting paths be listed as {ui, v2i−1, v2i, ui+1}, for 1 ≤

i ≤ k. Let thread Ti be assigned to augment {ui, v2i−1, v2i, ui+1}. Then, since there

is no contention for the vertices u1 and uk+1, the thread T1 can lock the former and

Tk can lock the latter. If all threads lock their first unmatched vertices, then thread

Tk both acquires its locks and can augment. If not, some thread Tj for j ≥ 2 cannot

lock its first unmatched vertex since thread Tj−1 has acquired it. Choose Tj to be the

lowest numbered such thread. By choice of j, Tj−1 has acquired its first unmatched

vertex also, and hence the latter thread can augment.

Case 2: An overlapping set of augmenting paths of length three that induce a

cycle. Let the k augmenting paths be {ui, v2i−1, v2i, ui+1} for 1 ≤ i < k and

{uk, v2k−1, v2k, u1} for i = k. Let thread Ti be assigned to augment {ui, v2i−1 ,v2i, ui+1}

and Tk be assigned to augment {uk, v2k−1, v2k, u1}. Consider the lowest numbered
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unmatched vertex ui in this cycle. The previous and the next unmatched vertices in

the cycle, ui−1 and u+1, are numbered higher than ui. Because in Algorithm 22 we

augment only from a lower-numbered unmatched vertex to a higher-numbered un-

matched vertex, such a cyclic set of dependencies among augmenting paths requiring

locks cannot exist. Thus, this case reduces to a non-cyclic set of augmenting paths,

and from Case 1, one thread must succeed.

Case 3: An overlapping set of increasing paths of length four that induce a path.

Let the k increasing paths be {ui, v2i−1, v2i, v2i+1, v2i+2}, for 1 ≤ i ≤ k. Let thread

Ti be assigned to update {ui, v2i−1, v2i, v2i+1, v2i+2}. We denote (v2i−1, v2i) as the first

matching edge of Ti and (v2i+1, v2i+2) as the second matching edges of Ti. If all threads

lock a vertex in the first matching edge first, then Tk (the last thread) will lock the

vertex in the second matching edge since it is not shared. If not, there is some thread

Ti such that its neighbor thread Ti+1 locks a vertex in its second matching edge first.

Choose Ti to be the lowest numbered such thread. If Ti+1 succeeds in locking a vertex

in its first matching edge also, then it can augment the matching. If it fails, then by

choice of i thread, Ti has acquired its second matching edge and can augment.

Case 4: An overlapping set of increasing paths of length four that induce a

cycle in the graph (see Figure 5.1). Let the k increasing paths be denoted by

{ui, v2i−1, v2i, v2i+1, v2i+2} for 1 ≤ i < k and {uk, v2k−1, v2k, v1, v2} for i = k. Let

thread Ti be assigned to the path {ui, v2i−1, v2i, v2i+1, v2i+2} and Tk be assigned to

the path {uk, v2k−1, v2k, v1, v2}. Consider the lowest numbered matched vertex vm in

the cycle and denote the two threads competing for it by Ti and Ti+1. The one that

fails to lock vm will not seek to lock any other vertex; thus the cyclic dependence is

now broken. Again, we have reduced this case to Case 3, and hence, one thread must

succeed in acquiring locks and updating the matching.

This completes the proof.

In the context of Algorithm 22, there are three potentially adverse things that

could happen. The first is deadlock, when some thread cannot acquire the locks it

needs and cannot execute another instruction. This does not happen here by design,
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since when a thread fails to acquire a lock, it proceeds to the next unmatched vertex or

to the next iteration. The second is starvation, when one or more threads are not able

to acquire locks because other threads have higher priority. This also cannot happen

here because at least one thread responsible for augmenting or updating the matching

overlapping paths succeeds in each iteration, and thus, in at most n iterations, all

vertices will be processed. The third is livelock, when cyclic wait makes every thread

unable to acquire the locks it needs; we have proven that this cannot happen in this

parallel algorithm.
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6 EXPERIMENTS AND RESULTS

6.1 Experimental Setup

We used an Intel Xeon E5-2660 processor-based system (part of the Purdue Uni-

versity Community Cluster), called Rice and Snyder 1. The machine consists of two

processors, each with ten cores running at 2.6 GHz (20 cores in total) with 25 MB

unified L3 cache, 64 GB of memory for Rice, 256 GB for Snyder. The operating

system is Red Hat Enterprise Linux release 6.7. All code was developed using C++

and compiled using the g++ compiler (version: 6.3.0) using the -O3 flag. Our test

set consists of nineteen real-world graphs taken from the University of Florida Matrix

collection [77], covering several application areas and synthetic datasets that were

generated by the RMAT graph generator [78]. We generated three different synthetic

datasets varying the RMAT parameters. These are (i) rmat-G500 representing graphs

with skewed degree distribution from the Graph 500 benchmark [79] with parameter

set (0.57, 0.19, 0.19, 0.05), (ii) rmat-SSCA from HPCS Scalable Synthetic Compact

Applications graph analysis benchmark [80], with parameter set (0.6, 0.133, 0.133,

0.133), and (iii) rmat-ER Erdos-Renyi random graphs with uniform degree distri-

butions, with parameter set (0.25, 0.25, 0.25, 0.25). Table 6.1 gives some statistics

regarding our test set. The graphs are listed in increasing order of the total number

of vertices. The largest number of vertices of any graph is nearly 134 million, and

the largest number of edges is nearly 2 billion. For each graph, we list the maximum,

average vertex degrees and standard deviation (SD) over the mean degrees. The av-

erage degrees vary from 2.12 to 117.92, and SD/Mean vary from 0.0 to 15.5. Hence,

the graphs are diverse with respect to their degree distributions. We have three types

of weights. Integer weights of vertices were generated uniformly at random in the

1
https://www.rcac.purdue.edu/compute/rice/ , https://www.rcac.purdue.edu/compute/snyder/
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range [1 1000]; real-valued weights were chosen randomly in the range [1.0, 1.3]; and

the degree of a vertex v is used as the weight of v. The reported results are the

averages of ten trials of randomly generated weights, and for the degree weights, the

time is the average of ten trials using the same weights. The standard deviations for

run-time, weight ratio, and cardinality ratio are close to zero, so there is not much

variation in these metrics for each algorithm.

When the weights are integers in a range [0, K], we employ a counting sort with

O(n+K)-time complexity for sorting the weights, We observed that it is two to three

orders of magnitude faster than the sort function in C++ STL. For real weights, we

have used the latter sort function.

6.2 Serial Algorithms Results

6.2.1 Exact Algorithms

In this section we compare the Direct-Augmenting, Direct-Increasing and Itera-

tive maximum vertex-weighted matching (MVM) algorithms. We have included an

exact algorithm for the maximum edge-weighted matching (MEM) implemented in

LEDA [24, 25] in our comparisons. This is a primal-dual algorithm implemented

with advanced priority queues and efficient dual weight updates, with time complex-

ity O(mn log n) [81]. Since this is commercial software, we can only run the object

code, and we ran it with no initialization, Greedy initialization, and with a fractional

matching initialization. The latter first computes a {0, 1/2, 1} solution to the linear

programming formulation of maximum weighted matching by ignoring the odd-set

constraints (this solution is computed combinatorially) and then rounds the solution

to {0, 1} values [82]. We call these three variants LEDA1, LEDA2 and LEDA3, re-

spectively. Because all exact algorithms find the same weight and cardinality, we will

compare the running time and report weight and cardinality in Table 6.5. Unfortu-

nately, LEDA code runs on integer weights only, and because of data types issues, it

does not run on rmat-graphs with 2 billion edges. The cutoff time is set to be four
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Table 6.1.
The set of test problems.

Graph |V | Degree |E|

Max. Mean SD/Mean

G34 2,000 4 4.00 0.00 4,000

G39 2,000 210 11.78 1.17 11,778

de2010 24,115 45 4.81 0.62 58,028

shipsec8 114,919 131 56.90 0.25 3,269,240

kron g500-17 131,072 29,935 94.78 4.40 5,113,985

mt2010 132,288 139 4.83 0.74 319,334

fe ocean 143,437 6 5.71 0.12 409,593

tn2010 240,116 89 4.97 0.60 596,983

kron g500-19 524,288 80,674 106.46 5.76 21,780,787

tx2010 914,231 121 4.87 0.63 2,228,136

kron g500-20 2,097,152 213,904 117.92 7.47 91,040,932

M6 3,501,776 10 5.99 0.14 10,501,936

hugetric 6,592,765 3 2.99 0.01 9,885,854

rgg n 2 23 8,388,608 40 15.14 0.26 63,501,393

hugetrace 12,057,441 3 2.99 0.01 18,082,179

nlpkkt200 16,240,000 27 26.60 0.09 215,992,816

hugebubbles 19,458,087 3 2.99 0.01 29,179,764

road usa 23,947,347 9 2.41 0.39 28,854,312

europe osm 50,912,018 13 2.12 0.23 54,054,660

rmat-G500 48,877,747 2,407,313 85.28 15.48 2,084,251,521

rmat-SSCA 93,488,461 641,453 45.29 9.96 2,117,212,258

rmat-ER 134,217,728 241 32.00 0.29 2,147,483,625

hours for most graphs. nlpkkt200 using all weights, rmat-G500 and rmat-SSCA using

vertex degrees weights cutoff time is set to two hundred hours. We were able to find

the matchings on all graphs except rmat-G500 and rmat-SSCA using vertex degrees

weights.
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In general, the Direct-Increasing algorithm is the fastest and finished computing

matchings on all graphs except rmat-G500 and rmat-SSCA when the weights are

vertex degrees. Next, comes the Iterative algorithm, then the Direct-Augmenting

algorithm. LEDA is the slowest algorithm, with LEDA3 being the fastest among

LEDA variants.

For integer weights, we report the running time in Tables 6.2. The Direct-

Increasing is 415, 366 and 37 times faster than LEDA1, LEDA2, and LEDA3, re-

spectively, all on the geometric mean. Also, the Iterative algorithm is faster than

all LEDA variants by factors of 182, 160, and 22. The Direct-Augmenting algorithm

is 21, 19, and 1.2 times faster, respectively, again all on the geometric mean. The

Direct-Increasing algorithm is around 5 times faster than the Direct-Augmenting al-

gorithm on the rmat graphs, while the Iterative is faster than the Direct-Increasing

on the rmat-ER graph by a factor of two.

Running time in seconds using real weights in range [1.0 1.3] is reported in

Table 6.3. The Direct-Increasing is 1.7, 15 times faster than Iterative and Direct-

Augmenting algorithms, respectively, all on geometric mean. The iterative algorithm

is 9 times faster than the Direct-Augmenting algorithm on the geometric mean.

For vertex degrees weights, we report the running time in Table 6.4. Again, the

Direct-Increasing is faster; it outperformed all LEDA variants by a factor of 138,

108, and 18 all on the geometric mean. LEDA3 runs 1.2 and 4 times faster than

the Direct-Increasing algorithm on kron-g500-19 and kron-g500-20 graphs. The Iter-

ative algorithm is 122, 96, and 19 times faster than LEDA1, LEDA2, and LEDA3,

respectively. all on the geometric mean. The Iterative algorithm did not finish com-

puting the matchings on four graphs. The Direct-Augmenting algorithm is 71, 56,

and 10 times faster than LEDA implementations all on geometric mean. Note that,

the Direct-Augmenting algorithm did not complete in 4 hours on rmat-ER while the

Iterative finished in 34 minutes and the Direct-Increasing did so in one hour.

From the reported results, we can see that MVM exact algorithms outperform

the MEM exact algorithms. While initializing the matching with a fractional one
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Table 6.2.
The running time (seconds) of MVM and MEM exact algorithms. Ran-
dom integer weights in [1 1000].

Graph LEDA1 LEDA2 LEDA3 Direct Direct Iterative

Augmenting Increasing

G34 0.1600 0.1700 0.0700 0.0102 0.0005 0.0002

G39 1.3200 1.3100 0.0200 0.0240 0.0009 0.0009

de2010 3.9000 4.0500 0.2800 0.4909 0.0150 0.0112

shipsec8 - - 6.2100 27.119 0.2206 0.2607

kron g500-17 124.31 119.26 8.9400 3.5373 0.1660 7.3513

mt2010 16.920 15.700 1.5300 1.3993 0.1091 0.0934

fe ocean 613.51 611.760 753.69 142.28 0.6495 0.6271

tn2010 251.21 232.130 12.810 12.512 0.3329 0.3007

kron g500-19 628.76 595.010 39.560 19.077 0.8166 68.104

tx2010 2140.9 2124.84 79.390 91.545 1.9591 1.0547

kron g500-21 3361.9 3154.65 207.19 101.57 3.8188 683.89

M6 - - 1080.4 1774.1 9.3718 9.9665

hugetric - - 369.94 870.48 17.870 21.250

rgg n 2 23 - - 5867.8 2118.7 41.564 20.958

hugetrace - - 599.95 1396.9 35.628 32.087

nlpkkt200 - - - - 582050 -

hugebubbles - - 1581.0 3158.3 70.828 66.059

road usa 1389.1 824.070 127.60 63.437 28.483 14.806

europe osm 4076.4 1910.96 267.12 79.393 52.613 31.710

rmat-G500 - - - 1318.1 314.67 -

rmat-SSCA - - - 5557.1 953.91 -

rmat-ER - - - - 3176.3 1664.4

boosts the performance of LEDA considerably, it is still much slower than the MVM

algorithms; the Direct-Increasing and Iterative can be faster than LEDA3 by a factor

of 1000. The Direct-Increasing algorithm is the only algorithm that successfully

finished finding the matching on the nlpkkt200 graph in about 160 hours, while the
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Table 6.3.
The running time (seconds) of MVM and MEM exact algorithms. Ran-
dom real weights in [1.0 1.3].

Graph Direct Direct Iterative

Augmenting Increasing

G34 0.0087 0.0005 0.0002

G39 0.0174 0.0010 0.0009

de2010 0.2189 0.0136 0.0112

shipsec8 6.4723 0.2404 0.2520

kron g500-17 3.2481 0.1521 6.6568

mt2010 0.7030 0.1093 0.0926

fe ocean 62.541 0.5749 0.6404

tn2010 4.9192 0.3541 0.2901

kron g500-19 17.244 0.8180 74.874

tx2010 32.857 1.6196 1.0218

kron g500-21 102.36 3.8639 653.76

M6 644.99 9.2931 9.8297

hugetric 342.79 17.987 21.417

rgg n 2 23 650.09 40.250 21.420

hugetrace 532.37 31.366 32.301

nlpkkt200 - 627657 -

hugebubbles 1112.0 59.232 66.299

road usa 47.870 29.061 14.946

europe osm 71.707 53.071 31.266

rmat-G500 1247.7 174.27 -

rmat-SSCA 4432.1 466.13 -

rmat-ER - 1731.1 1860.0

other algorithms failed in 200 hours. Although the Iterative algorithm performed

very well and ran faster than the Direct-Increasing algorithm on many graphs, it

did not terminate in four hours on rmat-G500 and rmat-SSCA using all types of

weights. This is because, after a maximum cardinality matching is computed, a high
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Table 6.4.
The running time (seconds) of MVM and MEM exact algorithms.Vertex
degrees weights.

Graph LEDA1 LEDA2 LEDA3 Direct Direct Iterative

Augmenting Increasing

G34 0.0200 0.0200 0.0100 0.0002 0.0003 0.0002

G39 0.5700 0.5700 0.0200 0.0028 0.0010 0.0010

de2010 2.8800 2.7300 0.2600 0.0482 0.0145 0.0119

shipsec8 58.480 48.060 5.2600 0.7518 0.2329 0.2421

kron g500-17 3042.9 3147.6 75.920 19.755 20.565 151.26

mt2010 17.700 17.870 1.5800 0.3009 0.1011 0.0973

fe ocean 51.070 48.960 543.25 2.7413 0.6048 0.5901

tn2010 245.88 237.21 9.8900 0.8807 0.3289 0.3014

kron g500-19 - - 540.89 477.80 647.21 5802.9

tx2010 1730.2 1751.59 60.900 4.5231 1.5755 1.0388

kron g500-21 - - 2887.9 6387.2 10758 -

M6 - - 1125.5 27.417 10.788 10.158

hugetric 390.33 303.30 278.86 24.850 15.983 21.588

rgg n 2 23 - - 10671 268.30 36.692 21.553

hugetrace 2085.5 782.00 406.32 26.107 22.778 32.607

nlpkkt200 - - - - 465623 -

hugebubbles 2009.6 1609.9 995.86 65.080 54.361 67.233

road usa 1049.0 669.87 130.04 26.423 19.381 15.516

europe osm 3255.5 947.78 229.28 42.849 32.874 35.534

rmat-G500 - - - - - -

rmat-SSCA - - - - - -

rmat-ER - - - - 3535.4 2032.1

percentage around 51%, and 25%, respectively, of vertices are unmatched, which

increases the number of searches and iterations. The Iterative algorithm runs slower

than the Direct-Augmenting algorithm on graphs with high average degree graphs

because of the same reason.
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Table 6.5.
Exact matching weights and cardinalities.

Graph Random integers Random real Vertex degrees

Weight Cardinality

G34 9.8E5 2.3E3 8.0E3 1,000

G39 9.7E5 2.3E3 2.4E4 1,000

de2010 1.2E7 2.7E4 1.2E5 11,853

shipsec8 5.7E7 1.3E5 6.8E6 57,459

kron g500-17 4.4E7 9.1E4 1.0E7 38,823

mt2010 6.5E7 1.5E5 6.3E5 63,685

fe ocean 7.1E7 1.6E5 8.2E5 71,718

tn2010 1.2E8 2.7E5 1.2E6 117,989

kron g500-19 1.6E8 3.2E5 4.3E7 136,770

tx2010 4.5E8 1.0E6 4.4E6 449,167

kron g500-21 5.5E8 1.1E6 1.8E8 482,339

M6 1.7E9 4.0E6 2.1E7 1,750,888

hugetric 3.3E9 7.6E6 2.0E7 3,296,382

rgg n 2 23 4.2E9 9.6E6 1.3E8 4,194,303

hugetrace 6.0E9 1.4E7 3.6E7 6,028,720

nlpkkt200 8.1E9 1.8E7 4.6E8 8,000,000

hugebubbles 9.7E9 2.2E7 5.8E7 9,729,043

road usa 1.2E10 2.6E7 5.6E7 11,325,669

europe osm 2.5E10 5.8E7 1.1E8 25,149,787

rmat-G500 1.4E10 2.8E7 - 11,783,556

rmat-SSCA 3.9E10 8.2E7 - 35,024,914

rmat-ER 6.7E10 1.5E8 4.3E9 67,108,864

6.2.2 Approximation Algorithms

Here, we compare the new approximation algorithms, the direct 1/2- and 2/3-

approximation algorithms (1/2-Dir and 2/3-Dir), the iterative 1/2- and 2/3- approx-

imation algorithms (1/2-Iter and 2/3-Iter), and the initialized version of the iterative
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approximation algorithms (1/2-Init-Iter and 2/3-Init-Iter) with several approxima-

tion algorithms for MEM. The MEM approximation algorithms we chose are the

scaling approximation algorithm, ROMA initialized with a GPA matching, uninitial-

ized ROMA, and Suitor. The scaling algorithm provides the best approximation ratio,

and it has not been implemented before. GPA-ROMA and ROMA find high match-

ing weights in practice. Suitor is one of the fastest 1/2-approximation algorithms for

MEM. For the direct approximation algorithms and Suitor, we sorted the adjacency

lists in non-increasing order of weights, since we saw significant improvements in the

running time. The reported running time does not include the adjacency list sorting

time.

We compare the relative performance with respect to the Direct-Increasing ex-

act algorithm running time. In addition, We compare the number of scanned edges

as a metric that is not influenced by machine specifications. Also, we present the

percentage of the main steps performed by several approximation algorithms. For

the scaling algorithm, we report the percentage of searching for augmenting paths,

dual update, and handling blossoms. For GPA-ROMA, we report the percentages

of sorting, searching for paths and cycles, the dynamic programming procedure, and

ROMA algorithm time. We report percentages of sorting and searching for augment-

ing paths in the direct approximation algorithms, and for the iterative approximation

algorithms, we report percentages of phase one (computing approximate cardinal-

ity matching) and phase two (searching for augmenting and increasing paths). The

approximation algorithms compute nearly optimal weights, and in order to differen-

tiate among them, we report the gap to optimality as a percent. Hence we report

100 (1 − φ(MA)/φ(Mopt)), where φ(MA) is the weight computed by an algorithm A

and φ(Mopt) is the optimal weight computed by the exact algorithms. Similarly we

report the gap to a maximum cardinality as 100 (1−|MA|/|Mopt|). Since results using

different weights types are similar with few exceptions, we report here integer weights

results and briefly summarize the results of the other weight types. Results for real

and vertex degree weights can be found in the appendix.
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In general, 1/2-Iter and 1/2-Init-Iter are the fastest algorithms. 1/2-Dir comes

second. Suitor comes third, followed by 2/3-Iter and 2/3-Init-Iter. Finally, there are

2/3-Dir, ROMA, GPA-ROMA, and lastly, the scaling algorithm.

For integer weights, the relative performance of the approximation algorithm with

respect to the exact algorithm time is reported in Table 6.6. The 1/2-Init-Iter is the

fastest algorithm, being 65.6 times faster than the exact algorithm on the geometric

mean. The 1/2-Iter algorithm is about 63.2 times faster, followed by the 1/2-Dir,

which is faster by a factor of 52.5. The Suitor algorithm is slower than the other 1/2-

approximation algorithms, despite sorting the adjacency lists, and it is faster than

the exact by a factor of 25.9. The 2/3-Iter and 2/3-Init-Iter are very close to the

Suitor algorithm; they are 25.1 and 24.2 times faster, respectively. The 2/3-Dir and

ROMA are 15.0 and 1.2 times faster, all on the geometric mean. The GPA-ROMA

and scaling approximation algorithms are slower than the exact algorithm by a factor

of 1.5 and 2.9.

For the real weights, the previous ordering of algorithms in terms of running time

can be seen, except that the scaling algorithm outperforms GPA-ROMA and ROMA

by a factor of 2.4 and 1.2. This is due to the small ranges of real weights. Also,

the gap between 1/2-Dir and the fastest algorithm becomes bigger due to the cost of

sorting real numbers.

For the degree weights, the fastest algorithm is the 1/2-Dir. It is 103 times faster

than the exact algorithm on the geometric mean. The 1/2-Iter and 1/2-Init-Iter

algorithm are about as fast as the 1/2-Dir. The 2/3-Iter and 2/3-Init-Iter are faster

than the exact by a factor of 46 and they are 1.3 time faster than Suitor. The rest of

the algorithms come in the same integer weight order in terms of running time.

We observed a few factors that impact the running time:

1- Graph structure. First, the number of edges clearly impacts the running time

for all approximation algorithms. For this reason, rmat-ER and rmat-G500, with

about two billion edges, are the problems for which most approximation algorithms

needed the highest time. The connectivity of a graph also impacts the running time.



112

For example, nlpkkt200 with a high average degree will cause a large search tree to

be generated even for for relatively short augmenting paths.

2- The number of scanned edges. In Figures 6.1 and 6.2, we show the run times

of the algorithms against the number of edges scanned by the algorithms in a log-log

plot. A near-linear relationship is seen, showing that the run times are primarily

determined by the number of edges scanned by the algorithms. There are cases in

which the running time is low even when the number of scanned edges is high, and vice

versa. For the iterative algorithms, some graphs are easy to match, since more than

99.9% of vertices are matched in the cardinality matching initialization phase. For the

Direct-Augmenting algorithms, the time needed for sorting could make the runtime

higher. In addition, updating duals and handling blossoms in the scaling algorithm

can also increase runtimes. The ratio of the number of scanned edges to the number

of edges is reported in Tables 6.8, A.3 and A.8. The scaling algorithm has the highest

number of scanned edges, which is due to the high number of iterations. As shown

in Table 6.7 the majority of running time is spent in searching for a set of vertex-

disjoint augmenting paths. The GPA-ROMA algorithm also has very high number

of scanned edges because it searches for the highest gain 2-augmentations among all

possible 2-augmentation paths and cycles, from every matched or unmatched vertex.

The GPA initialization also searches a large number of edges. It can be seen from

Table 6.7 that these two type of searches constitute around 80 % of the running time.

3- Range of weights. This impacts the scaling algorithm, since the number of scales

increases with a larger range. For real weights in range [1 1.3], the scaling algorithm

outperformed the GPA-ROMA and ROMA algorithms, while for integer weights in

range [1 1000], it became the slowest algorithm. For degree weights, the range of

the difference between the maximum degree and the minimum degree determines

the runtime. The kron g500-logn21 graph has a maximum degree of 213,904 and

minimum degree of 1, and the scaling algorithm completes in 844 seconds.

4- Type of weights. This factor impacts algorithms that sort vertices or edges,

namely GPA-ROMA, 1/2-Dir and 2/3-Dir. This can be seen in the percentage of time
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Figure 6.1. Running time plotted against the number of edges scanned
by the scaling, GPA-ROMA, ROMA and 2/3-Dir algorithms (plotted on
a log-log scale).
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the 2/3-Init-Iter, 1/2-Init-Iter, 1/2-Dir and Suitor algorithms (plotted on
a log-log scale).

spent on sorting for these algorithms. For the GPA-ROMA algorithm, sorting real

weights increases the percentage to around 5.2 % from 3.5 %. The 1/2-Dir algorithm
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spent 7.6 % of the time sorting integer weights, while for real weights it used 30%

of the running time. The 2/3-Dir algorithm spent 2.7 % of the time sorting integer

weights, while for real weights it used 15% of the running time.

5- Sorting adjacency lists. This affected the Suitor, 1/2-Dir and 2/3-Dir algo-

rithms. As mentioned before, all reported results of these algorithms are obtained

with the sorted adjacency list, which made a big difference in the running time. The

reported times does not include the time to sort the adjacency lists. The Suitor, 1/2-

Dir, and 2/3-Dir algorithms gain a speedup of 1.2, 1.2, and 1.1 using integer weights,

1.3, 1.2, and 1.2 using real weights, and 1.8, 1.6, and 2.8, respectively, using degree

weights. Sorting adjacency lists in most cases exceeded the matching time (e.g., sort-

ing the adjacency list of rmat-G500 costs around 570 seconds, but the matching is

obtained by the Suitor algorithm in 45 seconds).

6- The ratio between phase one and phase two in the 1/2 and 2/3-Init-Iter al-

gorithms. If the percentage of work in phase one is larger than that in phase two,

then the algorithm finishes much faster because most of the matching is computed

using a fast cardinality matching algorithm, while less work is done in phase two,

which is more expensive. As shown in Table 6.7, on rmat-ER and rgg n 2 23, the

2/3-Init-Iter spent around 80 % of the time in phase one and finished in 99 and 0.6

seconds, respectively. in spite of the large number of edges. On rmat-G500, it spent

around 88 % of the time in phase two and finished in 405 seconds. Unfortunately, this

cannot be controlled and is determined by both the graph structure and whether a

graph admits perfect or close to perfect matching. If we consider the same problems,

rmat-ER admits a perfect matching and rgg n 2 23 admits a perfect matching minus

two vertices, while the matching in rmat-G500 is off by around a million vertices from

a perfect matching.

Now, we turn to comparing gaps to optimal weights and cardinalities. Overall,

the 2/3-Iter and 2/3-Init-Iter algorithms obtain the best weights and cardinalities.

GPA-ROMA comes third, then ROMA, followed by the 2/3-Dir algorithm. The 1/2-

Iter and 1/2-Init-Iter algorithms obtained better weights and cardinalities than the
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scaling algorithm. Last are the 1/2-Dir and Suitor algorithms, which have the worst

weights and cardinalities for all the weight types.

As shown in Tables 6.9 and 6.10, when the weights are integers the 2/3-Iter and

2/3-Init-Iter approximation algorithms obtain the best weight and cardinality with

gaps to optimality of 0.4% and 1.2%, respectively, all on average. The quality of

weights and cardinalities of GPA-ROMA comes third, with gaps of 0.7% and 2.3%,

while for ROMA, the gaps are 0.8% and 2.5%. For the 2/3-Dir algorithm the gap

to optimal weight is 0.9%, and the gap to maximum cardinality is 3.0%, on average.

Unexpectedly, the 1/2-Iter and 1/2-Init-Iter algorithms obtained better matchings

than the matchings of the scaling algorithm, on average. For both 1/2-Iter and

1/2-Init-Iter algorithms the gap to optimal weight is 2.4% and the gap to optimal

cardinality is around 4.1%, while for the scaling algorithm weight gap is 2.5% and the

cardinality gap is 6.0%. The Suitor and 1/2-Dir algorithms are the worst, with gaps

of 6% and 11%. The same ordering in quality is seen with degree weights, except

that the gaps between the algorithms become larger.

For the real weights, again the 2/3-Iter and 2/3-Init-Iter algorithms obtain the

best weight and cardinality, with gaps of 0.3% and 1.2% on average, respectively. The

scaling algorithm obtains the third best weight, with a gap of 1.0%. The 1/2-Iter and

1/2-Init-Iter algorithms come fourth and fifth, with a gap of 1.1%. The order of

the algorithms based on quality of cardinalities follows the same order as that of the

integer weights.

6.3 Results from Parallel Algorithms

We implemented the parallel code using C++, OpenMP 3.1, and the g++ com-

piler functions sync lock test and set and sync lock release for locking. We pinned

threads to cores to reduce the overhead of thread migration between cores by setting

the environment variable GOMP CPU AFFINITY=”0-(t−1)”, where t is the number

of threads. Using 20 threads with 20 cores, thread i is pinned to core i. We used static
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scheduling and experimented with chunk sizes of 256 and the default value equal to

the loop count divided by the number of threads. We report the faster running time

from these two options. The test set consists of problems from Table 6.1 where the

number of vertices is greater than 2 million.

We compare the 2/3-Iter, 2/3-Init-Iter, 1/2-Iter and 1/2-Init-Iter approximation

algorithms and the Suitor algorithm. Suitor is known to be the most concurrent

approximation algorithm for edge-weighted matching since it processes vertices in

arbitrary order, and vertices are free to offer proposals to their highest weight available

neighbor.

We report running times (in seconds) and speedups in Tables 6.11 and 6.12. The

speedup for a particular α-approximation algorithm is computed as the ratio of the

time of the fastest serial algorithm among all α-approximation algorithms to the time

needed on twenty threads by the parallel α-approximation algorithm under consid-

eration, for α = 2/3, 1/2. Thus, the baseline serial algorithm could be different for

algorithms with differing approximation ratios.

When integer weights are used, clearly the 1/2-Iter and 1/2-Init-Iter algorithms are

the fastest parallel algorithms on average. Both are faster than the Suitor algorithm

on all but two problems. The uninitialized variant of the iterative algorithm is faster

than the initialized variant for the 1/2-approximation algorithm, while the ordering

is reversed for the 2/3-approximation iterative algorithms. The 1/2-Iter and 1/2-

Init-Iter algorithms also achieved higher speedups, 8.9 and 7.4, respectively, in the

geometric mean on these problems; the speedup of the Suitor algorithm was 3.5. The

fastest 2/3-approximation algorithm is slower than the fastest 1/2-approximation

algorithm in parallel as well, by a factor of 2.50 in the geometric mean. The speedup

of 2/3-Iter and 2/3-Init-Iter are 9.7 and 10.7, respectively. There are four problems

in which the fastest 2/3-approximation algorithm is faster than the 1/2-approximate

Suitor algorithm, which is surprising. We obtained similar results using real weights.

For degree weights, the 2/3-Iter and 1/2-Iter algorithms show the best speedups, and

Suitor is the worst with speedup of 0.9.
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We define scalability to be the ratio of the time of a serial approximation algorithm

to the time taken by that algorithm in parallel on twenty threads. For integer weights,

the 2/3-Init-Iter algorithm scales well on twenty threads and is slightly better than

the Suitor algorithm in geometric mean (11.1 for the former and 10.2 for the latter).

The 1/2-Init-Iter algorithm scales slightly worse than Suitor, again in the geometric

mean. We obtained similar results for real weights, except that Suitor obtains the

best ratio of 10.5. When degree weights are used, Suitor scales worse than all other

algorithms, with a ratio of 5.1 on the geometric mean, while 1/2-Iter shows the best

scalability with a ratio of 9.1. The parallel Suitor algorithm obtains the same weight

as the single thread implementation, while the weights differ slightly in geometric

mean by 0.02% for the parallel 2/3-Iter and 2/3-Init-Iter, and 0.2% for the parallel

1/2-Iter and 1/2-Init-Iter algorithms. The difference is due to different initial maximal

matchings obtained in each run. However, the weight and cardinality of matchings

from the parallel iterative approximation algorithms are always better than that of

the parallel Suitor algorithm. The invariance of the matching obtained in serial and

parallel is an advantage of the Suitor algorithm.
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Table 6.8.
The ratios of the number of scanned edges by approximation algorithms
to |E|. Random integer weights in [1 1000].

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Suitor

G34 50.0 20.2 13.5 2.03 0.74 0.74 0.51 0.74 0.74 1.85

G39 42.3 19.5 14.2 1.98 1.64 2.20 0.48 0.89 1.03 1.53

de2010 49.7 19.7 13.4 1.77 2.32 2.72 0.55 1.28 1.38 1.77

shipsec8 36.6 20.1 14.1 3.29 0.51 0.51 0.14 0.51 0.51 1.73

kron g500-17 23.2 20.1 14.4 0.32 1.27 1.70 0.12 0.33 0.40 1.34

mt2010 49.3 19.6 13.3 1.66 2.25 2.68 0.55 1.32 1.55 1.75

fe ocean 46.7 19.9 13.7 2.25 0.78 0.79 0.42 0.69 0.70 1.80

tn2010 48.7 20.7 13.4 1.77 2.54 2.92 0.55 1.13 1.35 1.76

kron g500-19 21.6 20.1 14.4 0.27 1.23 1.46 0.10 0.36 0.38 1.35

tx2010 49.5 20.7 13.4 1.80 2.52 2.91 0.55 1.25 1.46 1.77

kron g500-20 20.7 20.1 14.3 0.24 1.19 1.58 0.09 0.30 0.36 1.33

M6 50.4 20.8 13.7 2.39 1.96 2.28 0.52 1.19 1.35 1.80

hugetric 48.6 20.6 13.2 1.82 1.36 1.50 0.67 1.02 1.12 1.87

rgg n 2 23 43.1 20.3 14.0 2.96 0.57 0.57 0.25 0.56 0.57 1.79

hugetrace 48.5 20.7 13.2 1.82 1.20 1.30 0.67 0.93 1.00 1.87

nlpkkt200 39.0 19.1 14.0 2.80 16.9 17.3 0.17 1.26 1.28 1.75

hugebubbles 48.6 20.7 13.2 1.82 1.36 1.48 0.68 0.93 1.06 1.87

road usa 51.1 20.3 12.6 1.53 2.83 3.27 0.72 1.90 2.18 1.84

europe osm 51.0 21.7 12.7 1.56 2.49 2.69 0.77 1.49 1.60 1.90

rmat-G500 24.1 19.9 14.0 0.28 2.57 3.05 0.16 0.75 0.84 0.98

rmat-SSCA 23.1 20.1 14.3 0.32 1.53 1.91 0.14 0.54 0.56 1.08

rmat-ER 36.9 20.2 14.1 3.08 0.71 0.78 0.36 0.61 0.66 1.73

Geo. Mean 39.2 20.2 13.7 1.32 1.59 1.80 0.34 0.81 0.89 1.63
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Table 6.9.
The gap to optimality of the weights of the matching obtained from the
approximation algorithms. Vertex weights are random integers in the
range [1 1000].

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 1.89 0.31 0.30 0.47 0.00 0.00 2.88 0.00 0.00 2.88

G39 1.63 0.04 0.06 0.06 0.02 0.02 2.92 1.34 1.27 2.92

de2010 3.46 0.90 0.93 0.99 0.52 0.53 6.75 3.14 3.15 6.75

shipsec8 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.05

kron g500-17 5.82 1.97 2.09 2.13 1.00 1.02 14.47 6.28 6.34 14.5

mt2010 3.86 1.10 1.14 1.21 0.63 0.64 7.61 3.48 3.51 7.61

fe ocean 1.06 0.14 0.15 0.21 0.02 0.02 2.26 0.10 0.10 2.26

tn2010 3.46 0.95 0.99 1.04 0.54 0.55 7.02 3.16 3.19 7.02

kron g500-19 5.29 1.72 1.81 1.95 0.82 0.84 14.33 5.81 5.83 14.3

tx2010 2.25 0.83 0.87 0.94 0.47 0.48 6.40 2.86 2.88 6.40

kron g500-20 5.05 1.52 1.61 1.79 0.70 0.72 14.09 5.41 5.44 14.1

M6 0.70 0.16 0.16 0.21 0.08 0.08 2.39 0.89 0.91 2.39

hugetric 1.57 0.50 0.64 0.81 0.17 0.17 4.43 0.79 0.86 4.43

rgg n 2 23 0.20 0.03 0.03 0.03 0.00 0.00 0.56 0.00 0.00 0.56

hugetrace 1.56 0.49 0.62 0.79 0.13 0.13 4.39 0.59 0.65 4.39

nlpkkt200 0.30 0.14 0.15 0.07 0.19 0.19 0.08 0.49 0.49 0.08

hugebubbles 1.57 0.50 0.63 0.81 0.15 0.15 4.42 0.68 0.75 4.42

road usa 3.35 1.16 1.50 1.74 0.91 0.92 7.81 4.13 4.17 7.81

europe osm 3.08 0.53 1.81 2.00 0.77 0.77 6.77 1.80 1.83 6.77

rmat-G500 4.69 1.03 1.08 1.35 0.48 0.50 13.1 4.86 4.82 13.1

rmat-SSCA 5.16 1.50 1.59 1.84 0.89 0.90 13.3 5.95 5.96 13.3

rmat-ER 0.07 0.00 0.00 0.00 0.00 0.00 0.19 0.02 0.03 0.19

Arith. Mean 2.55 0.70 0.82 0.93 0.39 0.39 6.19 2.35 2.37 6.19
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Table 6.10.
The gap to optimality of the cardinality of the matching obtained from
the approximation algorithms. Vertex weights are random integers in the
range [1 1000].

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 7.59 2.53 2.53 3.58 0.00 0.00 9.01 0.00 0.00 9.01

G39 7.29 1.03 1.13 1.22 0.69 0.70 9.74 5.32 5.16 9.74

de2010 9.86 3.98 4.05 4.42 2.75 2.79 14.07 7.91 7.94 14.07

shipsec8 0.91 0.14 0.15 0.17 0.00 0.00 1.13 0.00 0.00 1.13

kron g500-17 6.82 2.90 3.06 2.85 1.51 1.56 16.93 7.36 7.49 16.93

mt2010 9.96 4.08 4.15 4.56 2.75 2.78 14.52 7.93 7.99 14.52

fe ocean 6.10 1.75 1.77 2.41 0.19 0.19 8.19 0.29 0.30 8.19

tn2010 9.84 4.06 4.17 4.50 2.72 2.76 14.41 7.90 7.98 14.41

kron g500-19 5.65 2.40 2.51 2.45 1.16 1.20 16.24 6.54 6.60 16.24

tx2010 7.35 3.73 3.81 4.26 2.50 2.53 13.55 7.34 7.42 13.55

kron g500-20 5.16 2.10 2.21 2.21 0.98 1.01 15.69 5.95 6.01 15.69

M6 4.75 1.92 1.97 2.36 1.28 1.30 8.48 4.32 4.39 8.48

hugetric 6.96 3.34 3.54 4.63 1.16 1.18 11.61 2.50 2.70 11.61

rgg n 2 23 2.57 0.77 0.79 0.93 0.00 0.00 3.85 0.02 0.04 3.85

hugetrace 6.88 3.26 3.45 4.55 0.90 0.92 11.51 1.87 2.04 11.51

nlpkkt200 1.53 0.17 0.17 0.13 0.00 0.00 2.26 0.00 0.00 2.26

hugebubbles 6.94 3.32 3.52 4.61 1.02 1.04 11.58 2.16 2.34 11.58

road usa 7.09 3.34 3.81 4.59 2.43 2.46 13.37 7.23 7.32 13.37

europe osm 8.22 1.91 5.23 6.29 1.96 1.98 13.57 3.13 3.24 13.57

rmat-G500 4.02 1.31 1.37 1.50 0.60 0.62 13.84 4.95 4.91 13.84

rmat-SSCA 5.85 2.31 2.42 2.55 1.36 1.39 15.69 6.90 6.92 15.69

rmat-ER 1.60 0.06 0.07 0.08 0.03 0.03 2.31 0.73 0.77 2.31

Arith. Mean 6.04 2.29 2.54 2.95 1.18 1.20 10.98 4.11 4.16 10.98
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Table 6.11.
2/3-approximation algorithms run time (seconds) and speedup obtained
with twenty threads. Vertex weights are random integers in the range
[1 1000].

2/3-Iter 2/3-Init-Iter

Graph Time Speed Time Speed

-up -up

kron g500-21 0.27 14.1 0.29 13.4

M6 0.14 7.81 0.12 9.10

hugetric 0.12 9.14 0.11 10.1

rgg n 2 23 0.07 9.16 0.07 8.70

hugetrace 0.18 8.79 0.17 9.26

nlpkkt200 3.22 7.24 1.81 12.9

hugebubbles 0.41 7.83 0.36 8.70

road usa 0.66 10.5 0.62 11.1

europe osm 0.84 11.5 0.74 13.1

rmat-G500 22.6 16.8 23.8 15.9

rmat-SSCA 25.6 13.0 24.5 13.5

rmat-ER 17.0 5.84 14.9 6.70

Geom. Mean 9.72 10.7
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Table 6.12.
1/2-approximation algorithms run time (seconds) and speedup obtained
with twenty threads. Vertex weights are random integers in the range
[1 1000].

1/2-Iter 1/2-Init-Iter Suitor

Graph Time Speed Time Speed Time Speed

-up -up -up

kron g500-21 0.06 11.3 0.10 7.65 0.18 4.18

M6 0.07 8.57 0.08 7.39 0.13 4.54

hugetric 0.06 10.3 0.08 8.04 0.14 4.63

rgg n 2 23 0.07 6.19 0.06 7.12 0.30 1.52

hugetrace 0.11 8.53 0.14 6.72 0.24 3.91

nlpkkt200 0.19 7.65 0.24 6.01 1.50 0.96

hugebubbles 0.19 10.5 0.24 8.15 0.41 4.75

road usa 0.31 5.66 0.45 3.90 0.22 7.88

europe osm 0.45 6.91 0.65 4.80 0.47 6.65

rmat-G500 3.60 16.5 4.22 14.1 8.39 7.10

rmat-SSCA 5.10 12.3 5.69 11.0 14.0 4.49

rmat-ER 9.67 7.41 8.29 8.65 72.7 0.99

Geom. Mean 8.91 7.40 3.54
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Table 6.13.
Scalability of parallel approximation algorithms using 20 threads. Vertex
weights are random integers in the range [1 1000].

Graph 2/3-Iter 2/3-Init-Iter 1/2-Iter 1/2-Init-Iter Suitor

kron g500-21 14.1 15.0 11.3 8.23 14.6

M6 8.56 9.10 8.60 7.39 10.6

hugetric 9.66 10.1 10.3 8.19 6.7

rgg n 2 23 11.9 8.70 7.92 7.12 13.4

hugetrace 9.39 9.26 8.53 7.37 6.2

nlpkkt200 7.75 12.9 9.13 6.01 12.1

hugebubbles 8.28 8.70 11.2 8.15 7.8

road usa 10.5 11.8 10.0 7.09 7.9

europe osm 11.5 14.2 11.5 8.41 6.7

rmat-G500 16.8 17.0 16.5 14.8 14.3

rmat-SSCA 13.0 15.3 12.3 11.4 14.5

rmat-ER 7.14 6.70 9.10 8.65 13.8

Geom. Mean 10.4 11.1 10.3 8.3 10.2
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7 CONCLUSIONS

We have studied the vertex-weighted matching problem (MVM), characterized exact

and approximate solutions, and designed a number of new exact, approximation, and

parallel algorithms.

We designed two exact algorithms for MVM on non-bipartite graphs whose time

complexities are O(mn) and O(∆mn). The new exact algorithms have been im-

plemented and compared with maximum edge-weighted matching algorithms from

LEDA, and an earlier exact algorithm, the Direct-Augmenting algorithm. The re-

sults show that the fastest new algorithm outperforms the fastest variant of LEDA

implementations by a factor of 28 on average and the Direct-Augmenting algorithm

by a factor of 15 on average on our test problems.

We established the approximation ratio of the 2/3-Dir algorithm. The proof is

quite involved and is based on new techniques: we distinguish between two types of

matched vertices, origins and terminuses, and then establish a relationship between

origins, terminuses, and failed vertices, which are vertices matched by the exact algo-

rithm but unmatched by the approximation algorithm. We show that for each failed

vertex, there are two distinct matched vertices in the approximate matching that are

at least as heavy as the failed vertex. These two vertices may not be on the same

alternating path in the graph induced by the symmetric difference of the matchings

computed by the exact and approximation algorithms.

We proved that if a graph does not admit an augmenting path of length 2k − 1

and weight-increasing path of length 2k with respect to a matching M , then the

weight of M is at least a fraction k/(k + 1) of the maximum matching. We designed

iterative approximation algorithms that satisfy such sufficient conditions and achieve

the k/(k + 1)-approximation ratio.
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The new algorithms have been implemented and compared with several MEM

approximation algorithms. The results show that the new 2/3-approximation algo-

rithms obtained better matching quality in terms of weight and cardinality than all

MEM algorithms on three different sets of weights: integer and real values, and de-

grees. The gap to optimal weight is around 0.1 %, and the gap to optimal cardinality

is around 0.99 % on our test problems. In addition, the new 2/3-approximation algo-

rithm rquired times comparable to the 1/2-approximation algorithms for MEM, and

much faster than 2/3− ε and 1− ε MEM approximation algorithms designed earlier.

The new 1/2-approximation algorithms run much faster than all MEM approxima-

tion algorithms. These results show that the MVM approximation algorithms perform

better than the more general MEM approximation algorithms. This is because we

exploit the structure of the vertex-weighted matching problem.

We designed new parallel 1/2- and 2/3-approximation algorithms based on the

iterative approach. To our knowledge, this is the first parallel algorithm for ap-

proximating a weighted matching problem with approximation ratio better than 1/2.

We designed a new method for locking augmenting and weight-increasing paths to

ensure correctness of the parallel algorithm. We proved that the locking technique

does not cause deadlock, livelock or starvation. We implemented the parallel ap-

proximation algorithms using OpenMP on a shared-memory multi-core machine and

compared the results with the parallel Suitor algorithm. The results show the new

2/3-approximation algorithms scale very well on the 20 threads we have used. The

runtimes are close to that of the Suitor algorithm, while the parallel MVM algorithm

obtains greater matching weights. The new parallel 1/2-approximation algorithms

run faster than the Suitor algorithm, and again obtain greater weight and cardinality.

In practice Suitor is currently the fastest 1/2-approximation algorithm on both serial

and parallel computers for the MEM problem.

Now we will discuss future work and directions arising from our results.

• A k/(k + 1)-approximate cardinality matching can be found in O(km) using

k rounds. It would be interesting to investigate a similar approach to achieve
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O(km) running time for the MVM problem. It is not obvious if it is possible to

find a set of vertex-disjoint augmenting and weight-increasing paths of length

2i− 1 and 2i in the i-th round in O(m) time.

• We will explore the b-matching problem on vertex-weighted graphs. Can we

further exploit the graph structure and find better approximations than the

1/2-approximate edge-weighted b-matching [83, 84]? Are there advantages in

using our direct or iterative approach?

• One could consider designing and implementing a distributed-memory paral-

lel approximation algorithm using the iterative approach considered here, and

running experiments on hundreds to thousands of cores.
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Table A.3.
The ratios of the number of scanned edges by approximation algorithms to
|E|. Random real weights in [1.0 1.3].

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 8.20 20.2 13.6 2.03 0.74 0.74 0.53 0.74 0.74 1.57

G39 10.9 19.5 14.2 1.98 1.72 2.02 0.48 0.91 1.08 1.34

de2010 10.7 19.7 13.4 1.78 2.32 2.72 0.55 1.14 1.36 1.53

shipsec8 7.78 20.1 14.1 3.29 0.52 0.52 0.14 0.51 0.51 1.50

kron g500-17 5.60 20.1 14.4 0.32 1.28 1.52 0.12 0.34 0.40 1.33

mt2010 10.8 20.6 13.3 1.67 2.24 2.66 0.55 1.19 1.42 1.52

fe ocean 7.66 19.9 13.7 2.25 0.78 0.80 0.42 0.70 0.71 1.52

tn2010 10.6 20.7 13.4 1.77 2.05 2.66 0.55 1.13 1.35 1.53

kron g500-19 5.50 20.1 14.4 0.27 1.23 1.45 0.10 0.36 0.42 1.32

tx2010 10.6 20.7 13.4 1.80 2.29 2.68 0.55 1.25 1.46 1.53

kron g500-20 5.30 20.1 14.4 0.24 1.36 1.58 0.09 0.30 0.35 1.31

M6 10.3 20.8 13.7 2.39 1.96 2.27 0.52 1.19 1.35 1.52

hugetric 9.77 20.7 13.2 1.82 1.36 1.50 0.67 1.02 1.12 1.59

rgg n 2 23 10.0 20.3 14.0 2.96 0.57 0.57 0.25 0.56 0.57 1.51

hugetrace 9.62 20.7 13.2 1.82 1.20 1.30 0.67 0.89 0.96 1.59

nlpkkt200 7.58 19.1 14.0 2.80 17.6 18.0 0.17 1.28 1.30 1.51

hugebubbles 9.76 20.7 13.2 1.82 1.28 1.40 0.68 0.97 1.06 1.59

road usa 12.2 20.3 12.6 1.53 3.15 3.59 0.72 1.89 2.18 1.59

europe osm 11.8 21.7 12.7 1.56 2.32 2.52 0.77 1.57 1.67 1.64

rmat-G500 6.34 19.9 14.0 0.28 2.90 3.05 0.16 0.68 0.84 1.00

rmat-SSCA 5.96 20.1 14.3 0.32 1.53 1.91 0.14 0.50 0.56 1.07

rmat-ER 6.18 20.2 14.1 3.09 0.72 0.76 0.36 0.60 0.66 1.49

Geo. Mean 8.49 20.3 13.7 1.32 1.59 1.77 0.34 0.80 0.89 1.45
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Table A.4.
The gap to optimality of the weights of the matching obtained from the
approximation algorithms. Vertex weights are random real in the range
[1.0 1.3].

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 1.89 1.95 2.23 3.15 0.00 0.00 8.43 0.00 0.00 8.43

G39 1.90 0.94 1.22 1.04 0.69 0.64 8.86 4.70 4.77 8.86

de2010 6.88 3.50 3.65 4.06 2.46 2.48 13.0 7.21 7.25 13.0

shipsec8 0.00 0.13 0.13 0.14 0.00 0.00 1.01 0.00 0.00 1.01

kron g500-17 5.71 2.71 2.87 2.73 1.43 1.46 16.6 7.20 7.33 16.6

mt2010 6.29 3.66 3.77 4.09 2.48 2.51 13.6 7.40 7.46 13.6

fe ocean 1.44 1.41 1.56 2.13 0.17 0.17 7.43 0.26 0.28 7.43

tn2010 6.43 3.62 3.74 4.04 2.42 2.45 13.4 7.29 7.36 13.4

kron g500-19 5.92 2.27 2.43 2.39 1.11 1.14 16.0 6.46 6.51 16.0

tx2010 3.71 3.32 3.44 3.82 2.25 2.27 12.6 6.78 6.85 12.6

kron g500-20 5.51 2.00 2.13 2.15 0.94 0.97 15.4 5.88 5.93 15.4

M6 0.82 1.69 1.74 2.08 1.13 1.14 7.69 3.87 3.94 7.69

hugetric 2.73 2.84 3.17 4.13 1.03 1.05 10.7 2.27 2.46 10.7

rgg n 2 23 0.07 0.68 0.70 0.81 0.00 0.00 3.42 0.02 0.03 3.42

hugetrace 2.65 2.71 3.09 4.06 0.80 0.81 10.6 1.71 1.86 10.6

nlpkkt200 0.07 0.16 0.18 0.13 0.03 0.03 2.03 0.07 0.07 2.03

hugebubbles 2.76 2.82 3.15 4.11 0.91 0.92 10.6 1.97 2.14 10.6

road usa 6.62 3.02 3.51 4.21 2.23 2.26 12.6 6.83 6.91 12.6

europe osm 6.33 1.73 4.79 5.73 1.81 1.83 12.7 2.96 3.06 12.7

rmat-G500 6.14 1.28 1.33 1.48 0.58 0.60 13.7 4.96 4.91 13.7

rmat-SSCA 6.54 2.20 2.31 2.45 1.29 1.32 15.4 6.78 6.80 15.4

rmat-ER 0.00 0.06 0.06 0.07 0.03 0.03 2.03 0.65 0.68 2.03

Arith. Mean 1.00 1.42 1.60 1.78 0.30 0.30 8.53 1.04 1.10 8.53
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Table A.5.
The gap to optimality of the cardinality of the matching obtained from the
approximation algorithms. Vertex weights are random integers in the range
[1.0 1.3].

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 2.08 2.20 2.52 3.55 0.00 0.00 9.25 0.00 0.00 9.25

G39 2.04 1.07 1.39 1.19 0.79 0.73 9.74 5.22 5.29 9.74

de2010 7.26 3.90 4.06 4.52 2.75 2.78 14.0 7.84 7.88 14.0

shipsec8 0.00 0.15 0.15 0.17 0.00 0.00 1.15 0.00 0.00 1.15

kron g500-17 4.99 2.85 3.01 2.83 1.51 1.53 16.9 7.36 7.50 16.9

mt2010 6.54 4.06 4.18 4.53 2.76 2.80 14.6 7.99 8.06 14.6

fe ocean 1.58 1.60 1.77 2.42 0.19 0.19 8.20 0.29 0.31 8.20

tn2010 6.75 4.03 4.16 4.50 2.71 2.74 14.4 7.91 7.99 14.4

kron g500-19 5.17 2.37 2.53 2.46 1.15 1.19 16.2 6.56 6.63 16.2

tx2010 3.84 3.70 3.82 4.26 2.52 2.54 13.6 7.37 7.45 13.6

kron g500-20 4.70 2.08 2.22 2.21 0.98 1.01 15.7 5.96 6.01 15.7

M6 0.90 1.92 1.98 2.36 1.28 1.30 8.49 4.32 4.40 8.49

hugetric 2.91 3.19 3.55 4.63 1.16 1.18 11.6 2.50 2.70 11.6

rgg n 2 23 0.08 0.78 0.80 0.93 0.00 0.00 3.85 0.02 0.04 3.85

hugetrace 2.83 3.05 3.46 4.55 0.90 0.92 11.5 1.88 2.04 11.5

nlpkkt200 0.02 0.16 0.18 0.13 0.00 0.00 2.26 0.00 0.00 2.26

hugebubbles 2.95 3.18 3.52 4.61 1.02 1.04 11.6 2.17 2.35 11.6

road usa 6.73 3.30 3.82 4.59 2.44 2.47 13.4 7.24 7.33 13.4

europe osm 6.67 1.91 5.24 6.29 1.97 1.99 13.6 3.14 3.24 13.6

rmat-G500 5.15 1.32 1.37 1.50 0.60 0.62 13.9 4.97 4.92 13.9

rmat-SSCA 5.89 2.32 2.42 2.56 1.36 1.39 15.7 6.92 6.94 15.7

rmat-ER 0.00 0.07 0.07 0.08 0.03 0.03 2.31 0.74 0.78 2.31

Arith. Mean 3.60 2.24 2.56 2.95 1.19 1.20 11.0 4.11 4.18 11.0
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Table A.8.
The ratios of the number of scanned edges by approximation algorithms to
|E|. Vertex Degrees are used for vertex weights.

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 0.74 11.8 13.4 2.68 0.74 0.74 0.74 0.74 0.74 1.74

G39 92.2 19.5 14.3 2.68 1.80 2.12 0.65 1.02 1.20 1.57

de2010 79.5 19.7 13.5 2.40 1.57 1.95 0.62 0.92 1.13 1.78

shipsec8 31.4 21.2 14.1 3.39 0.51 0.51 0.25 0.51 0.51 1.67

kron g500-17 124 21.6 15.5 3.21 1.31 1.32 0.20 0.22 0.27 1.64

mt2010 106 19.5 13.5 2.38 1.95 2.07 0.62 1.11 1.33 1.77

fe ocean 3.21 19.2 13.7 2.69 0.71 0.72 0.61 0.68 0.68 1.71

tn2010 97.4 19.6 13.5 2.43 1.75 2.11 0.61 1.05 1.26 1.79

kron g500-19 144 21.8 15.7 3.22 1.35 1.34 0.17 0.23 0.28 1.63

tx2010 98.0 19.7 13.5 2.38 1.78 2.14 0.61 1.06 1.27 1.77

kron g500-20 164 21.8 15.9 3.23 1.40 1.82 0.15 0.24 0.29 1.62

M6 27.1 20.7 13.6 2.51 1.72 2.03 0.61 1.02 1.17 1.71

hugetric 3.64 20.9 13.1 1.74 1.13 1.26 0.71 0.85 0.92 1.68

rgg n 2 23 39.9 20.4 14.0 3.02 0.57 0.57 0.32 0.56 0.56 1.81

hugetrace 2.77 21.1 13.1 1.71 1.01 1.11 0.70 0.80 0.85 1.67

nlpkkt200 1.42 18.1 14.0 1.09 2.22 2.63 0.06 1.03 1.04 1.07

hugebubbles 3.24 20.9 13.1 1.73 1.08 1.19 0.70 0.83 0.89 1.67

road usa 44.9 20.2 12.8 1.98 2.17 2.59 0.81 1.43 1.70 1.80

europe osm 52.1 21.8 12.7 1.66 1.64 1.82 0.93 1.20 1.28 1.92

rmat-G500 274 21.7 15.9 3.09 4.44 4.84 0.36 0.47 0.56 1.57

rmat-SSCA 268 22.7 15.8 3.19 1.18 1.38 0.31 0.37 0.42 1.61

rmat-ER 57.7 19.2 14.2 3.19 0.72 0.77 0.37 0.61 0.66 1.73

Geo. Mean 31.3 20.0 14.0 2.43 1.31 1.46 0.43 0.68 0.76 1.67
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Table A.9.
The gap to optimality of the weights of the matching obtained from the
approximation algorithms. Vertex weights are vertex degrees.

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G39 4.47 0.71 1.21 1.48 1.13 1.13 10.0 8.82 8.82 10.0

de2010 10.8 3.01 3.62 4.06 1.89 1.89 13.4 6.87 6.90 13.4

shipsec8 0.04 0.15 0.10 0.01 0.00 0.00 0.02 0.00 0.00 0.02

kron g500-17 3.19 0.38 0.55 0.68 0.14 0.14 3.26 0.82 0.83 3.26

mt2010 11.4 3.28 3.90 4.40 1.96 1.96 14.1 7.04 7.06 14.1

fe ocean 0.34 0.38 1.70 0.56 0.09 0.09 0.85 0.16 0.16 0.85

tn2010 11.2 3.17 3.84 4.22 1.80 1.81 13.9 6.74 6.78 13.9

kron g500-19 4.31 0.33 0.48 0.60 0.12 0.12 2.87 0.70 0.71 2.87

tx2010 2.58 3.04 3.60 3.95 1.83 1.84 12.9 6.77 6.81 12.9

kron g500-20 3.99 0.27 0.39 0.47 0.10 0.10 2.50 0.60 0.60 2.50

M6 7.80 2.21 2.44 2.30 1.58 1.58 10.3 5.80 5.86 10.3

hugetric 3.19 2.11 4.51 1.61 1.60 1.60 3.56 3.54 3.54 3.56

rgg n 2 23 0.75 0.43 0.44 0.49 0.00 0.00 2.22 0.02 0.02 2.22

hugetrace 2.21 1.29 4.53 1.18 1.17 1.17 2.53 2.51 2.51 2.53

nlpkkt200 0.20 0.15 0.56 0.22 0.22 0.22 0.22 0.23 0.23 0.22

hugebubbles 2.86 2.22 4.46 1.41 1.40 1.40 3.09 3.07 3.07 3.09

road usa 8.63 4.46 4.84 5.45 2.64 2.65 14.6 8.44 8.46 14.6

europe osm 5.88 2.34 6.44 2.92 2.17 2.17 7.07 3.40 3.40 7.07

rmat-G500 - - - - - - - - - -

rmat-SSCA - - - - - - - - - -

rmat-ER 0.09 0.11 0.12 0.13 0.02 0.02 2.84 0.74 0.77 2.84

Arith. Mean 4.20 1.50 2.54 1.81 0.99 0.99 6.02 3.31 3.33 6.02
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Table A.10.
The gap to optimality of the cardinality of the matching obtained from the
approximation algorithms. Vertex weights are vertex degrees.

Graph 1− ε, 2/3− ε, ε = 0.01 2/3-approx 1/2-approx

ε = 1/3 GPA- Init- Init-

Scal. RO. RO. Dir Iter Iter Dir Iter Iter Su.

G34 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G39 11.3 1.60 2.60 3.10 2.40 2.40 19.5 17.4 17.4 19.5

de2010 22.7 6.95 8.15 8.59 4.67 4.67 22.7 12.8 12.8 22.7

shipsec8 0.01 0.22 0.16 0.01 0.00 0.00 0.04 0.00 0.00 0.04

kron g500-17 34.4 9.76 13.0 12.6 3.91 3.91 36.3 16.1 16.2 36.3

mt2010 24.7 7.59 8.77 9.40 4.71 4.71 24.7 13.5 13.5 24.7

fe ocean 0.63 0.75 2.19 1.08 0.22 0.22 1.50 0.35 0.35 1.50

tn2010 24.2 7.47 8.72 9.18 4.53 4.55 24.2 13.1 13.1 24.2

kron g500-19 34.3 8.90 12.1 12.1 3.34 3.34 36.0 15.3 15.4 36.0

tx2010 5.24 6.60 7.60 8.04 4.14 4.16 21.4 12.1 12.2 21.4

kron g500-20 35.0 8.43 11.5 11.0 2.94 2.95 35.8 14.8 14.9 35.8

M6 11.8 2.81 3.08 2.92 2.02 2.03 12.4 7.06 7.12 12.4

hugetric 3.56 2.12 4.52 1.62 1.60 1.60 3.58 3.54 3.55 3.58

rgg n 2 23 1.37 0.85 0.88 0.96 0.00 0.00 3.37 0.03 0.04 3.37

hugetrace 2.52 1.29 4.53 1.19 1.18 1.18 2.54 2.52 2.52 2.54

nlpkkt200 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00

hugebubbles 3.08 2.22 4.47 1.41 1.40 1.40 3.10 3.07 3.07 3.10

road usa 17.3 8.55 8.88 9.89 4.85 4.86 22.8 13.3 13.4 22.8

europe osm 8.36 3.07 7.50 3.81 2.68 2.68 8.36 4.13 4.13 8.36

rmat-G500 - - - - - - - - - -

rmat-SSCA - - - - - - - - - -

rmat-ER 0.20 0.24 0.26 0.28 0.06 0.06 4.50 1.30 1.36 4.50

Arith. Mean 12.0 3.97 5.62 4.86 2.23 2.24 14.1 7.52 7.55 14.1
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Table A.11.
2/3-approximation algorithms run time (seconds) and speedup obtained
with twenty threads. Vertex weights are random reals in the range [1.0 1.3].

2/3-Iter 2/3-Init-Iter

Graph Time Speed Time Speed

-up -up

kron g500-21 0.29 13.8 0.30 13.7

M6 0.13 7.90 0.13 7.96

hugetric 0.10 9.37 0.11 8.70

rgg n 2 23 0.08 7.67 0.08 7.73

hugetrace 0.19 7.74 0.18 8.15

nlpkkt200 3.03 7.17 2.25 9.65

hugebubbles 0.43 6.96 0.42 7.09

road usa 0.57 11.8 0.65 10.3

europe osm 0.81 12.2 0.84 11.7

rmat-G500 22.6 16.5 23.2 16.1

rmat-SSCA 25.8 13.2 26.1 13.0

rmat-ER 19.4 5.20 19.1 5.28

Geom. Mean 9.42 9.51



147

Table A.12.
1/2-approximation algorithms run time (seconds) and speedup obtained
with twenty threads. Vertex weights are random reals in the range [1.0 1.3].

1/2-Iter 1/2-Init-Iter Suitor

Graph Time Speed Time Speed Time Speed

-up -up -up

kron g500-21 0.06 12.7 0.07 11.3 0.23 3.45

M6 0.07 8.70 0.07 7.97 0.14 4.11

hugetric 0.07 8.76 0.07 8.49 0.14 4.33

rgg n 2 23 0.07 6.37 0.07 6.94 0.39 1.18

hugetrace 0.15 6.64 0.14 6.70 0.23 4.29

nlpkkt200 0.20 7.27 0.20 7.15 1.38 1.06

hugebubbles 0.26 7.40 0.27 7.34 0.45 4.35

road usa 0.36 4.99 0.39 4.58 0.24 7.41

europe osm 0.48 7.21 0.53 6.61 0.50 7.03

rmat-G500 3.81 16.3 4.31 14.4 6.56 9.46

rmat-SSCA 5.35 11.7 6.37 9.82 10.9 5.74

rmat-ER 9.58 7.20 9.10 7.58 65.5 1.05

Geom. Mean 0.36 8.31 0.38 7.92 0.85 3.57
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Table A.13.
Scalability of parallel approximation algorithms using 20 threads. Vertex
weights are random reals in the range [1.0 1.3].

Graph 2/3-Iter 2/3-Init-Iter 1/2-Iter 1/2-Init-Iter Suitor

kron g500-21 13.8 15.2 12.7 11.4 10.3

M6 8.09 7.96 9.16 7.97 10.1

hugetric 10.2 8.70 8.93 8.49 7.03

rgg n 2 23 8.62 7.73 9.55 6.94 10.3

hugetrace 8.98 8.15 6.64 7.08 10.3

nlpkkt200 7.17 9.78 8.23 7.15 13.3

hugebubbles 7.91 7.09 7.45 7.34 7.14

road usa 11.8 11.1 8.95 8.43 7.41

europe osm 12.2 12.3 10.4 10.2 7.03

rmat-G500 16.5 17.7 16.3 14.9 17.3

rmat-SSCA 13.2 14.5 11.7 10.0 18.2

rmat-ER 6.59 5.28 8.59 7.58 14.9

Geom. Mean 10.0 9.87 9.60 8.72 10.5
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Table A.14.
2/3-approximation algorithms run time (seconds) and speedup obtained
with twenty threads. Vertex weights are vertex degrees.

2/3-Iter 2/3-Init-Iter

Graph Time Speed Time Speed

-up -up

kron g500-21 0.25 14.5 0.23 15.6

M6 0.08 10.9 0.11 7.86

hugetric 0.10 7.23 0.10 6.99

rgg n 2 23 0.08 7.34 0.10 5.71

hugetrace 0.15 6.49 0.13 7.53

nlpkkt200 0.61 2.59 0.71 2.23

hugebubbles 0.28 7.79 0.29 7.49

road usa 0.46 9.31 0.44 9.73

europe osm 0.54 10.1 0.51 10.6

rmat-G500 30.8 17.7 31.4 17.3

rmat-SSCA 19.6 11.1 18.5 11.8

rmat-ER 19.4 5.03 17.6 5.53

Geom. Mean 8.27 8.0
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Table A.15.
1/2-approximation algorithms run time (seconds) and speedup obtained
with twenty threads. Vertex weights are vertex degrees.

1/2-Iter 1/2-Init-Iter Suitor

Graph Time Speed Time Speed Time Speed

-up -up -up

kron g500-21 0.04 14.1 0.05 13.3 8.99 0.07

M6 0.06 6.85 0.07 6.18 0.18 2.39

hugetric 0.05 8.08 0.05 8.10 0.31 1.24

rgg n 2 23 0.07 6.01 0.06 6.30 0.46 0.87

hugetrace 0.08 7.52 0.08 7.42 0.42 1.38

nlpkkt200 0.13 5.52 0.15 4.71 0.71 1.01

hugebubbles 0.14 7.96 0.14 8.22 1.05 1.08

road usa 0.22 7.04 0.27 5.77 0.25 6.31

europe osm 0.31 7.22 0.34 6.61 0.52 4.27

rmat-G500 2.58 15.6 2.88 14.0 229 0.18

rmat-SSCA 3.89 11.6 4.04 11.1 151 0.30

rmat-ER 9.66 8.27 8.99 8.89 69.1 1.16

Geom. Mean 8.37 7.95 0.93
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Table A.16.
Scalability of parallel approximation algorithms using 20 threads. Vertex
weights are vertex degrees.

Graph 2/3-Iter 2/3-Init-Iter 1/2-Iter 1/2-Init-Iter Suitor

kron g500-21 14.5 19.8 14.1 13.6 16.3

M6 11.4 7.86 7.12 6.18 5.18

hugetric 7.57 6.99 8.08 8.14 1.34

rgg n 2 23 8.38 5.71 7.58 6.30 9.75

hugetrace 7.30 7.53 7.95 7.42 1.49

nlpkkt200 2.59 2.32 5.69 4.71 2.06

hugebubbles 8.26 7.49 8.70 8.22 1.24

road usa 9.31 10.4 7.69 7.27 6.31

europe osm 10.1 11.9 9.22 8.94 4.27

rmat-G500 17.7 18.1 15.6 14.4 14.3

rmat-SSCA 11.1 13.8 13.2 11.1 13.5

rmat-ER 6.78 5.53 9.63 8.89 14.3

Geom. Mean 8.76 8.48 9.14 8.35 5.10


