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ABSTRACT

Soroush Aramideh Ph.D., Purdue University, December 2019. Complex Fluids in
Porous Media: Pore-scale to Field-scale Computations. Major Professors: Arezoo
M. Ardekani, Pavlos P. Vlachos.

Understanding flow and transport in porous media is critical as it plays a central

role in many biological, natural, and industrial processes. Such processes are not

limited to one length or time scale; they occur over a wide span of scales from micron

to Kilometers and microseconds to years. While field-scale simulation relies on a

continuum description of the flow and transport, one must take into account transport

processes occurring on much smaller scales. In doing so, pore-scale modeling is a

powerful tool for shedding light on processes at small length and time scales.

In this work, we look into the multi-phase flow and transport through porous

media at two different scales, namely pore- and Darcy scales. First, using direct nu-

merical simulations, we study pore-scale Eulerian and Lagrangian statistics. We study

the evolution of Lagrangian velocities for uniform injection of particles and numeri-

cally verify their relationship with the Eulerian velocity field. We show that for three

porous media velocity, probability distributions change over a range of porosities from

an exponential distribution to a Gaussian distribution. We thus model this behavior

by using a power-exponential function and show that it can accurately represent the

velocity distributions. Finally, using fully resolved velocity field and pore-geometry,

we show that despite the randomness in the flow and pore space distributions, their

two-point correlation functions decay extremely similarly.

Next, we extend our previous study to investigate the effect of viscoelastic fluids

on particle dispersion, velocity distributions, and flow resistance in porous media. We

show that long-term particle dispersion could not be modulated by using viscoelastic
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fluids in random porous media. However, flow resistance compared to the Newtonian

case goes through three distinct regions depending on the strength of fluid elasticity.

We also show that when elastic effects are strong, flow thickens and strongly fluctuates

even in the absence of inertial forces.

Next, we focused our attention on flow and transport at the Darcy scale. In par-

ticular, we study a tertiary improved oil recovery technique called surfactant-polymer

flooding. In this work, which has been done in collaboration with Purdue enhanced

oil recovery lab, we aim at modeling coreflood experiments using 1D numerical sim-

ulations. To do so, we propose a framework in which various experiments need to

be done to quantity surfactant phase behavior, polymer rheology, polymer effects on

rock permeability, dispersion, and etc. Then, via a sensitivity study, we further re-

duce the parameter space of the problem to facilitate the model calibration process.

Finally, we propose a multi-stage calibration algorithm in which two critically impor-

tant parameters, namely peak pressure drop, and cumulative oil recovery factor, are

matched with experimental data. To show the predictive capabilities of our frame-

work, we numerically simulate two additional coreflood experiments and show good

agreement with experimental data for both of our quantities of interest.

Lastly, we study the unstable displacement of non-aqueous phase liquids (e.g.,

oil) via a finite-size injection of surfactant-polymer slug in a 2-D domain with ho-

mogeneous and heterogeneous permeability fields. Unstable displacement could be

detrimental to surfactant-polymer flood and thus is critically important to design

it in a way that a piston-like displacement is achieved for maximum recovery. We

study the effects of mobility ratio, finite-size length of surfactant-polymer slug, and

heterogeneity on the effectiveness of such process by looking into recovery rate and

breakthrough and removal times.
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1. INTRODUCTION

Flow and transport of chemicals in porous media is a critical aspect of many bio-

logical, natural, and industrial processes. Examples of such processes are subsurface

transport of containment and multi-phase flow during enhanced oil recovery or CO2

sequestration. In this thesis, we study such processes at two different scales, namely

pore-scale and continuum-scale.

At pore-scale, flow and transport can be described by Navier-Stokes and advection-

diffusion equations, respectively. Moreover, one needs the exact description of pore-

geometry and apply proper boundary conditions on the fluid-solid interface. In the

case of particle tracking and particle flows, interactions of particles with solid sur-

faces and Brownian motion needs to be taken into account. Pore-scale modeling is

inherently a computationally expensive approach and has recently become a promis-

ing tool with the increase in computational power and development of advanced

numerical techniques. Thus, our work in this area requires development and usage

of high-performance codes and tools to solve all the relevant physics at the smallest

scales (high-fidelity).

In the first chapter of this thesis, we report on the effects of different pore-

structures on Eulerian and Lagrangian statistics of flow and transport through porous

media. We first construct two porous media by means of an assemblage of mono and

polydisperse hard spheres and overlapping spheres. These two different protocols

allow for constructing two very distinct pore-structures and systematic study of the

effects of pore-structure on the flow and transport. Then, using pore-scale simulations

and particle tracking, we derive different Eulerian and Lagrangian statistics for these

two types of porous media.

In chapter 2, we extend our previous studies on flow and transport in Newtonian

fluids to non-Newtonian and viscoelastic fluids. As we see later, polymeric fluids
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and viscoelastic solutions are ubiquitous in flow through porous media applications,

especially the one in enhanced oil recovery, which we will study in detail. Viscoelastic

fluids could enhance particle dispersion and change flow resistance, either of which

could have a huge impact on transport processes. We study the impact of viscoelastic

fluids on the particle dispersion and flow resistance using pore-scale simulations.

On continuum level, under certain circumstances, single (or multi-) phase flow is

described by Darcy’s law. In the case of a single-phase flow, Darcy’s law conveniently

relates fluid flux to the pressure gradient. In the case of multi-phase flows, other state

variables such as capillary pressure and relative permeability arise and are modeled

as functions of saturation. In chapters 3 and 4, we have investigated three-phase

and two-phase flows arising due to the injection of surfactant-polymers into an oil

reservoir at the Darcy-scale.

In the third chapter of this thesis, we focus on modeling of a tertiary oil recovery

technique called surfactant-polymer flooding through a series of laboratory experi-

ments and numerical simulations. We lay out a procedure in which, first by a series

of experiments, one can understand the phase behavior of water/oil/surfactant sys-

tems, dispersion, polymer rheology, etc. Then by means of sensitivity analysis and

a multi-stage algorithm, two critically important quantities, namely cumulative oil

recovery factor and maximum pressure drop, are matched with those of experiments.

In the fourth chapter of this thesis, we numerically investigate surfactant-polymer

flooding applied to a 2-D domain to displace a secondary immiscible phase. Surfactant

and polymer are injected as additives to injected water (brine) for a finite time,

which corresponds to a finite-size chemical slug. We study the instabilities occurring

at leading and trailing edges of this chemical slug during displacing a secondary

immiscible fluid (e.g., oil). It is of critical importance to protect such chemical slugs

from severe viscous fingering and distortion so that a piston-like displacement is

achieved for maximum recovery.
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2. PORE-SCALE STATISTICS OF FLOW AND

TRANSPORT THROUGH POROUS MEDIA

This chapter is reproduced with permission from: Aramideh, S., Vlachos, P. P.,

Ardekani, A. M. (2018). Pore-scale statistics of flow and transport through porous

media. Physical Review E, 98(1), 013104. The final publication is available at jour-

nals.aps.org

2.1 Abstract

Flow in porous media is known to be largely affected by pore morphology. In

this work, we investigate the effects of pore geometry on the transport and spatial

correlations of flow through porous media in two distinct pore structures arising from

three dimensional assemblies of overlapping and non-overlapping spheres. Using high

resolution direct numerical simulations (DNS), we perform Eulerian and Lagrangian

analysis of the flow and transport characteristics in porous media. We show that

the Eulerian velocity distributions change from nearly exponential to Gaussian dis-

tributions as porosity increases. A stretched exponential distribution can be used to

represent this behavior for a wide range of porosities. Evolution of Lagrangian veloc-

ities is studied for the uniform injection rule. Evaluation of tortuosity and trajectory

length distributions of each porous medium shows that the model of overlapping

spheres results in higher tortuosity and more skewed trajectory length distributions

compared to the model of non-overlapping spheres. Wider velocity distribution and

higher tortuosity for overlapping spheres model give rise to non-Fickian transport

while transport in non-overlapping spheres model is found to be Fickian. Particu-

larly, for overlapping spheres model our analysis of first passage time distribution

shows that the transport is very similar to those observed for sandstone. Finally,
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using 3-D velocity field obtained by DNS at the pore-scale, we quantitatively show

that despite the randomness of pore space, the spatially fluctuating velocity field and

the 3-D pore-space distribution are strongly correlated for a range of porous media

from relatively homogeneous monodisperse sphere packs to Castlegate sandstone.

2.2 Introduction

Understanding the flow through porous media is of great importance in many

natural and technological processes such as oil recovery [1], CO2 sequestration [2],

filtration [3], biological flows [4], and reactive transport [5]. In many practical cases,

low Reynolds number flows through porous media are modeled at the Darcy scale

using Darcy’s law which relates the specific discharge, q, to pressure drop, ∆p, along

the flow direction as:

q =
−κ
µ

∆p

L
(2.1)

where κ is the permeability, µ is the viscosity of the fluid, and L is the length of

medium along the flow direction. In flow through porous media, intricate pore ge-

ometry creates a complex and spatially fluctuating velocity field and it is well-known

that such flow variations at pore-level affect the transport processes in porous media

and give rise to many anomalous behaviors which macroscopic models fail to predict,

such as early breakthrough of the solute [6] or mixing-controlled reactions in hetero-

geneous media [7]. Naturally, it is of great interest to relate such complex velocity

fields and resulting macroscopic transport properties to pore geometry.

Recent advances in porous media imaging techniques such as X-ray micro-tomography

and pore-scale simulations have allowed for resolving the flow at the pore-scale for

complex and realistic pore geometries. Computationally, fluid flow at pore-scale is

investigated either through direct pore-scale or pore-network models. In the latter

approach, the pore structure is approximated by a network of pores connected by

throats. As a result, pore-network models do not preserve the original pore-space

features. A review of pore-scale analysis using pore-network models is given in [8].
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Direct pore-scale modeling, on the other hand, is achieved by solving governing equa-

tions directly on the pore-structure [9]. Recently, a direct comparison of velocity fields

obtained by particle image velocimetry (PIV) and magnetic resonance imaging (MRI)

with pore-scale simulations suggests that given an accurate representation of the pore

geometry, DNS could predict accurately flow and transport at the pore-scale [10].

Pore-scale modeling has been intensively used to study the effects of pore geome-

try on transport properties such as hydraulic permeability [11–14], heat transfer [15]

and solute dispersion [16, 17]. For example, studies of Daneyko et al. [18] and Vidal

et al. [19] suggest negligible effects of grain size distribution on the hydraulic per-

meability, whereas Garcia et al. [20] showed that the grain shape is a key parameter

and could change permeability by a factor of 2. In a similar study, Pan et al. [21]

proposed improvements to the existing empirical permeability relationships for sphere

packing with various porosities and polydispersities. Contributions of flow inertia to

permeability in regular and random sphere arrangements were evaluated in [22]. It

was shown that the pore structure plays an important role on the drag force acting on

the sphere packing along with the solid volume fraction and the direction of the flow.

Anisotropy of the porous medium and its effects on the permeability were studied by

Stewart et al. [23]. A correlation between the mean tortuosity and the porosity was

proposed in stochastically generated porous media in [24].

Many recent observations have shown that displacement of solute could not be

accurately predicted by advection-dispersion equation (ADE) [25] and this discrep-

ancy is often attributed to the extreme heterogeneity of the medium and significant

changes in the local velocity field [26]. The signature of anomalous transport is the

power-law tail of solute concentration long after its breakthrough [27]. Different

stochastic models have been developed to address this anomalous behavior such as

mobile-immobile concept [28], multiple-rate transfer models [29], fractional ADE [30],

and continuous time random walk (CRTW) [31, 32]. In the CTRW framework, the

transport of solute is greatly affected by the behavior of transit time distribution,

ψ(t), where it is generally assumed that ψ (t) ∼ t−1−β. For example, truncated
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power-law (TLP) distribution for ψ (t) has been particularly successful at describing

anomalous transport [33]. However, the key parameter β in ψ (t), also a measure

of medium heterogeneity, still needs to be determined. In fact, effective parameter-

ization of such models requires knowledge of Eulerian and Lagrangian statistics of

flow through porous media. For example, given the physical interpretation of ψ (t), it

can be determined from pore-scale velocity field [34,35]. Bijeljic and Blunt [36] used

pore-network model of a Berea sandstone to determine transient time distribution

where they observed a power-law distribution of pore-to-pore travel times.

Importance of detailed knowledge about underlying velocity distributions and cor-

relations in porous media due to their impact on transport behavior and hydraulic

properties of the media has led to intensive research focused on measuring velocity

probability density functions (PDF) and its correlations through experimental and

numerical techniques [37–39]. A combination of log-normal and exponential functions

has been suggested [40] to describe the velocity distribution of slow flow in monodis-

perse bead packing for the low- and high-velocity regions of the velocity distribution,

respectively. Velocity distribution for low and moderate Reynolds number flows were

reported by Icardi et al. [41] in porous media generated by irregular nonconvex poly-

disperse objects. They obtained almost symmetric distribution for transverse com-

ponents of velocity with increasing variance with respect to Reynolds number. It was

pointed out that the streamwise velocity distribution is highly skewed for low Darcy

velocities showing an intensified negative tail as Darcy velocity increases, indicating

the existence of recirculation zones. Recently, it was shown that for two-dimensional

models of fibrous material, PDFs of all velocity components follow a power-law with

some tuning parameters [42]. In an experimental study by Patil and Liburdy [43],

they observed in planes near the bed walls where flow is nearly two-dimensional, pore-

space and velocity autocorrelations feature the same patterns but such patterns vanish

in central planes. Using confocal microscopy and PIV, Datta et al. [44] showed that

in a channel comprised of glass beads, 2-D velocity components follow an exponential
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behavior. Moreover, they presented strong relationship between spatial fluctuations

of 2-D velocity field with pore-space geometry.

In this work, we study Eulerian and Lagrangian velocity PDFs by means of high

resolution direct numerical simulation of Navier-Stokes equations at the pore-scale.

Our emphasis is on characterizing statistics of flow and transport and their relation-

ships to pore-space. We study how Eulerian velocity PDFs vary with respect to

medium properties (i.e. porosity) and their correlations for two distinct models of

porous media namely hard-sphere and overlapping sphere models of porous media.

Later on, we study Lagrangian velocity PDFs sampled isochronally and equidistantly

along the particle trajectory and their evolutions with time and space. We investi-

gate the Lagrangian velocity PDFs and their relationship with their Eulerian counter-

part. Transport properties of porous media are obtained using a streamline approach

through analyzing first passage time distributions and mean tortuosity. We show

that that wider Eulerian velocity PDFs and higher tortuosity for overlapping sphere

system yield in more anomalous transport compared to hard-sphere system where Eu-

lerian velocity PDFs and tortuosity show narrower distributions and smaller values,

respectively. Finally, we analyze the correlation functions of pore-space and Eulerian

velocity field and show that not only for rather homogeneous porous media comprised

of spheres in 3-D, but also for natural rocks there exists a strong relationship between

these correlation functions.

2.3 Numerical method

The fluid flow is described by the mass and momentum conservation equations:

∇ · u = 0 (2.2)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · (ρν∇u) (2.3)
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Conservation equations are solved using finite volume method (FVM) and projection

method [45] by using PArallel Robust Interface Simulator (PARIS) [46]. Eq. (2.3) is

discretized on a staggered grid configuration where no-slip and no-penetration bound-

ary conditions are enforced on the fluid-solid interface. Convection and diffusion terms

in Eq. (2.3) are discretized using QUICK and central difference schemes [47], respec-

tively and time integration is performed using Euler explicit scheme. The resulting

Poisson equation is solved by Biconjugate gradient stabilized method (BiCGSTAB)

with the residual tolerance of 10−8. The computational domain is a cube where peri-

odic boundary condition is prescribed on all boundaries. A constant pressure gradient

(i.e. body force per unit mass) is applied to induce the flow from left to right in x-

direction. In many applications of flow through porous media such as enhanced oil

recovery, given the physical properties of water, typical flow rate of 1ft/day (u) and

average pore size of 10 microns (l) results in Re << 1 where Re = ρul
µ

. In this pa-

per, we study flow and transport through porous media in the creeping flow regime

(Re << 1). The results are reported after steady-state condition is achieved based

on criterion given by Botella and Peyret [48].

2.3.1 Validation

In this section we show the validation of our simulations. For the purpose of

validation, we compare our results with experimental data by Suekane et al. [49] and

numerical results the same experiment by Finn and Apte [50]. In the experiment,

pore-scale velocity measurements were carried out for flow packed bed using magnetic

resonance imaging (MRI). Figure 2.1 shows a comparison for the normalized velocity.

As can be seen, there is an excellent agreement between predicted velocity profile

and experimental data. Moreover, Figure 2.1 shows the effect of grid resolution on

the predicted velocity profile. Additionally, we obtained k/D2 = 6.82 × 10−4 for

the permeability of monosized sphere pack for φ = 35.8% which is close to k/D2 =
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6.8×10−4 reported by Bryant and Blunt [51] for the same system and for φ = 36.2%.

Fig. 2.1.: (a): comparison of interstitial velocity profiles at Re = 105.57 with experi-
mental data of Suekane et al. [49] (#) and numerical results of the same experiment
by Finn and Apte [50] (−−). − simulation data with grid spacing of ∆/D = 56, · − ·
simulation data with grid spacing of ∆/D = 28. (b): schematic of the experimental
setup of Suekane et al. Simulation is performed with 4 lateral faces as wall and inflow
and outflow boundary conditions for bottom and top faces, respectively, according to
the experiment of Suekane et al. Normalized velocity is measured along the centerline
of the plane shown in white (along x axis). Solids are colored gray.

2.3.2 Porous media

In this work, we build porous media via arranging spheres in 3-D space. A

wide range of real heterogeneous porous media can be represented by considering

two distinct categories of packing, (a) impenetrable (hard-) sphere model and (b)

fully-penetrable (overlapping) sphere model [52]. In the latter model, also known as

boolean model, spheres centers are points of a stationary Poisson process. Boolean

model is an extreme case of a penetrable-concentric-shell (cherry-pit) model where im-

penetrability parameter is zero. In the case of hard-sphere model, the impenetrability

constraint makes it difficult to analyze and generate such systems specially at high
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solid volume fractions [53]. There are a number of techniques for generating (jammed)

packing of hard-spheres. In this work, we adopted the collision-driven molecular dy-

namics algorithm of [54] which is essentially a generalization of Lubachevski-Stillinger

(LS) algorithm [55]. In LS algorithm, spheres are initially added sequentially in a pe-

riodic box at a small volume fraction. Spheres then evolve in time while their radii

grow at rates proportional to their radii until the desired packing is achieved. Polydis-

persivity gives more flexibility in representing a wide class of microstructures. Thus,

we further generalized this algorithm based on the work of [56] to generate dense

polydisperse sphere packings. In the case of polydisperse spheres with M classes of

spheres, density function of sphere radii is given by:

f(r) =
M∑
j=1

yiδ(r − ri) (2.4)

where yi = Ni
N

and harmonic mean particle diameter D is defined as:

D =

∑M
j=1 NiD

3
i∑M

j=1 NiD2
i

(2.5)

while 〈D〉 =
∑M

j=1 yiDi. Since particle size distribution of many granular systems is

found to be approximately log-normal [57], spheres radii probability density function

takes the form:

f(r) =
1

rσ
√

2π
exp

[
−(ln(r)− µ)2

2σ2

]
(2.6)

where σ and µ are variance and average of ln(r), respectively. In LS algorithm,

the initial configuration, expansion rate, and initial distribution of particle velocities

affect the final packing. It is also worth noting that the expansion rate must be chosen

carefully as small values lead to local crystallization while a relatively large ones will

not produce random close packing. Finally, we build the overlapping sphere model

by placing mono-sized spheres in random locations within the computational domain

sequentially until the desired porosity is achieved. In this study, we use three models
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of porous media including monodisperse hard-spheres, polydisperse hard-spheres, and

overlapping spheres with different porosities by changing the number of spheres in the

system where all the porous media have the same harmonic mean particle diameter

(D) (Figure 2.2).

(b)

(a) (c)

(d)

(e)

(f)

Fig. 2.2.: Three dimensional periodic assemblies of spheres and cross sectional views
of indicator function (solid or pore space) for (a,b) monodisperse hard-spheres, (c,d)
polydisperse hard-spheres, and (e,f) (monodisperse) overlapping spheres. Pore space
is colored black.

2.3.3 Characterization of porous medium

Characterization of the microstructure of porous media plays an important role in

determining macroscopic properties such as residual saturation of nonwetting phase,

permeability, reaction constant, etc. [58]. Microstructure of porous media can be

characterized by n-point probability functions [59], Voronoi statistics [60], fractal

geometry [61,62], local-porosity theory [63], Minkowski functional [64], and pore size

distribution [65], to name a few. Our aim here is to connect our findings about flow in

porous media to such statistical descriptors. Each realization of the porous medium
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is a domain of space V ⊆ R3 consisting of two disjoint phases namely pore and grain.

Thus, each phase could be identified through an indicator function I i(r) for phase i

as:

I i(r) =

1 r ∈ Vi

0 otherwise

(2.7)

Complete statistical description of a medium is then obtained by means of n-point

correlation function Sin given as:

Sin(r1, r2, . . . , rn) = 〈
n∏
j=1

I i(rj)〉 (2.8)

where 〈· · · 〉 denotes the ensemble average over all the possible positions r and Sin

defines the probability of finding r1, r2, . . . , rn all in the phase i. For statistically

isotropic material (i.e. joint probability distributions are invariant of coordinates ro-

tation) n-point correlation function depends only on the relative position of points

rather than their absolute positions [66]. Hereafter, for simplicity, we drop the super-

script i and let I to be indicator function of the pore phase. Perhaps the simplest

and most important characteristics of a porous medium is its porosity (i.e. the ratio

of pore volume to total volume) and is given by the one-point correlation function as:

S1(r) = 〈I(r)〉 = φ (2.9)

Among various statistical descriptors of random media, in this study we focus on two-

point correlation functions as they arise in analytical estimations of many physical

properties of random media and reveal their global structures [59]. These functions

have been extensively used to characterize the porous media [67, 68]. They could be

used to estimate upper and lower bounds for fluid permeability, electrical conductivity,

and magnetic fields [69]. Recently, Jiao et al. [70] used two-point correlation functions

to model heterogeneous two-phase media. However, it is worth noting that two-point
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correlation functions cannot be sufficient alone to completely determine a medium [71]

(i.e. for capturing long-range connectivity higher order statistics are required).

For two-phase medium two-point correlation functions have limiting behavior as

[66,68]:

lim
r→0

S2(r) = φ (2.10)

lim
r→∞

S2(r) = φ2 (2.11)

For isotropic two-phase medium, Debye et al. [72] showed that derivative of S2(r) at

origin (r = 0) is in direct relationship with the specific surface area (s) of the medium

as:

lim
r→0

S
′
2(r) = −s/4 (2.12)

This relationship was later generalized for anisotropic media by Berryman [73].

Blair et al. [67] showed that two-point correlation functions could also be used to

obtain estimations of effective pore size and mean grain diameter. Additionally, the

shape of two-point correlation functions reflects an underlying medium morphology.

Thus, S2(r) plays an important role in this work as we later show that structure of

S2(r) can determine that of velocity fluctuations in porous media regardless of how

the porous media is constructed. Shown in Figure 2.3 is S2 for our three models of

porous media.

2.3.4 Determining representative elementary volume (REV)

Modeling of fluid flow at pore-scale or imaging porous media is limited to small

samples. Thus, it is important to show that such data sets is representative of larger

scale systems. The prerequisite for any analysis of porous medium for calculating

macroscopic properties, is evaluating the representative elementary volume of such

medium. The concept of REV has different definitions in the literature [74], however,

it could be regarded as a length-scale at which flow obeys Darcy’s law and macroscopic
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(a) (b)

(c)

Fig. 2.3.: Different models of porous media and their two-point correlation functions.
Significant difference in the structure of S2 (r) is an indication of different morphology
of porous media models. In hard-sphere systems (a), oscillations in S2 (r) is due to
exclusion volume effect. These oscillations becomes weaker in the case of polydis-
perse hard-spheres (b) and completely vanishes for overlapping spheres (c). Different
statistics could be obtained simply by calculating S2 (r), as shown in the figure.

properties such as porosity and permeability are defined using volume averaging.

Many different procedures exist for determining REV [74]. In this work we determine

“statistical” REV with slight modifications in the procedure proposed in [75]. It

is worth mentioning that in the statistical approach a sample is called REV if the

mean and variance of the quantities of interest (e.g. porosity, specific surface) falls

below a certain value [21]. Here, instead of generating a reference domain and then

dividing it to smaller subdomains for further analysis, we increase the domain size

incrementally and generate 20 independent packings for each increment in domain

size. We believe this procedure provides a better way of doing such an analysis as

(i) every single medium satisfies periodicity in all directions which is consistent with

boundary conditions used in numerical simulations, (ii) different packings generated
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for each domain size allows for variability in packing structure even when porosity is

kept constant (i.e. we randomly choose the parameters affecting packing, see §2.3.2),

(iii) this procedure eliminates boundary effects (e.g. wall) and the need for adding

buffer layers to the outlet and inlet. We studied different REVs for porosity, specific

surface area, and permeability and found that permeability gives the largest REV.

Here, we define REV where coefficient of variation of permeability falls below 3%.

Figure 2.4a shows that domain sizes with L/D ≥ 5.0, satisfies this criteria and thus

are considered REV. Empirical variograms are useful in determining REV as they

show the correlation of data with distance [76]. Thus, to further analyze and quantify

how large our domain is with respect to spatial correlations and different length scales

of the medium, we evaluated the empirical variograms of porosity and velocity in the

direction of flow as:

γp(h) =

∑N
1 (I(xi + h)− I(xi))

2

2N
, (2.13)

γu(h) =

∑N
1 (u(xi + h)− u(xi))

2

2N
(2.14)

where I is the indicator function for porosity (I(xi) = 1 for pore space and I(xi) = 0 for

solid space) and N is total number of points with the distance h. Figure 2.4b suggests

that beyond one particle diameter (D ≥ 1), variograms of porosity and velocity

become uncorrelated and hence our porous medium represents larger samples [77].

Table 2.1 summarizes values of two different characteristic length scales namely, mean

pore diameter (lc) and integral length scale (λ) and ratios of domain size to these

length scales. Mean pore diameters are calculated based on two-point correlations

functions (see Figure 2.3) as φ(1−φ)
S′2(0)

(i.e., intersection of S2 = φ2 and a tangent to S2(r)

at r = 0). Integral length scale of the spatial structure of each medium is calculated

as:

λ =

∫ ∞
0

S2(r)dr (2.15)
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Finally, we used a simulation box of size L/D = 8 discretized into 4803 finite volumes

to both eliminate finite size effects and achieve grid independent results.

(a)

(b)

Fig. 2.4.: Representative elementary volume calculation: (a) Variation of permeability
with respect to domain size. (b) Variogram of porosity and velocity in the direction
of flow normalized by their theoretical asymptotic values γ∞ = φ(1− φ) for porosity
and γ∞ = 〈u2〉 − 〈u〉2 for velocity variograms. Variograms are plotted as functions
of distance from the inlet face. Data is for the monodisperse hard-sphere model at
φ = 0.40.

Table 2.1.: Mean pore size (lc) and integral length scale (λ) of non-overlapping and
overlapping systems.

porous medium φ lc λ L/lc L/λ
monodisperse hard-spheres 0.45 0.29 0.14 27.58 57.14
polydisperse hard-spheres 0.45 0.17 0.15 47.00 53.33

overlapping spheres 0.45 0.50 0.30 16.00 26.66
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2.4 Lagrangian statistics

In this section we study Lagrangian-based statistics of flow through porous media.

Lagrangian description of flow field is obtained by means of particle tracking in the

steady-state Eulerian flow field. In each simulation, 105 tracer particles are introduced

on the inlet face uniformly. Particle trajectory is then obtained via integration of Eq.

(2.16) as:
dx (t)

dt
= v (x (t)) ,x (t0) = x0 (2.16)

where a third order Runge-Kutta scheme is used for time integration and a trilinear

interpolation scheme is used to locally interpolate particle velocity from fully resolved

Eulerian field. We also performed computations where we used 104 and 5× 104 par-

ticles and confirmed that 105 particles gives converged statistics. Particle tracking

enables us to study useful quantities such as trajectory length, breakthrough curves,

and tortuosity. Figure 2.5 shows variations of trajectory length distribution for three

(a) (d) (g)

(e)

(h)

(e)

(f)

(b)

(c)

Fig. 2.5.: Variation of trajectory length distribution with respect to porosity for (a-
c) monodisperse hard-sphere, (d-f) polydisperse hard-sphere, and (g-h) overlapping
sphere models of porous media.
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models of porous media. For all the three types of porous media, trajectory length

distributions are highly conditioned by porosity. Interestingly, trajectory length dis-

tributions for the hard-spheres model exhibit less skewness compared to those of

overlapping spheres at the same porosity where long-tailed particle trajectory length

distribution is observed. Such long tails signify highly tortuous pathways due to clos-

ing off of pore throats as spheres overlaps in the overlapping spheres model whereas

in porous media comprised of hard-spheres pore space is hydrodynamically well con-

nected. Overall, it is clear that trajectory length distributions are different for each

case such that as we move from overlapping sphere to hard-sphere model and from

low to high porosities, the mean trajectory length as well as its variation reduces

(Table 2.2). From the data in Figure 2.5, we can calculate the tortuosity for different

Table 2.2.: Mean, standard deviation (SD), minimum, maximum, and skewness of
trajectory lengths for different monodisperse models of porous media and porosities.

porous medium φ mean SD min max skewness

hard-sphere
0.36 10.09 0.49 8.74 12.60 0.57
0.45 9.65 0.39 8.57 11.45 0.27
0.60 9.29 0.36 8.47 10.71 0.45

overlapping
0.36 10.86 1.01 8.97 16.08 1.23
0.45 10.33 0.79 8.69 13.69 0.91
0.60 9.57 0.55 8.50 12.18 0.75

models of porous media. Elongation of streamlines in flow through porous media,

captured by tortuosity, impacts medium’s permeability and its transport properties

and thus has been studied intensively in the literature [78–85]. In this work tortuosity

is defined as:

T =
〈λ〉
L

(2.17)

where 〈λ〉 is the average trajectory length traveled by all the particles while no flux

weighting is involved and L represents the straight line connecting injecting and

absorbing sites (i.e. inlet and outlet boundaries here). Generally, obtaining fluid

trajectories to be used in Eq. (2.17) is notoriously difficult both experimentally and
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numerically in complex geometries. Alternatively, it has been shown that tortuos-

ity could be obtained by calculating 〈u〉
〈ux〉 [82]. This simple equation, however, has

limitations due to existence of recirculation zones in flow through porous media as

mentioned by Duda et al. [80]. Here we extended the work of Matyka et al. [83] by

directly calculating tortuosity in our two distinct classes of porous media. Figure 2.6

shows the variation of tortuosity calculated using Eq. (2.17) for porous media com-

prised of hard-spheres and overlapping spheres. We found that tortuosity scales well

with porosity for the range of porosity 0.36 < φ < 0.60 according to two empirical

relations [79,86] as:

T = 1− p ln (φ) (2.18)

T = 1− p (1− φ) (2.19)

where p is a constant parameter equals to 0.26 and 0.55 for hard-sphere and overlap-

ping sphere models, respectively. The values reported here for hard-sphere systems is

in excellent agreement with tortuosities reported by Muljadi et al. [87] for the same

medium using the indirect formula of Koponen et al. [82] as well as geometric tortu-

osity values reported by Sobieski et al. [85]. Since streamlines are uniformly initiated

at the inlet plane, we expect tortuosity values reported here to be even smaller than

when streamlines are initiated in a flux-weighted fashion. It was also found that

polydispersivity has negligible effect on tortuosity. Tortuosity is linked to transport

phenomena in porous media and its macroscopic properties such as dependence of

permeability in Kozeny-Carman theory on tortuosity [41, 80, 88]. It is thus expected

that different values of tortuosities result in significance differences in transport prop-

erties. To investigate the effect of our two distinct pore-structures on the nature of

transport, we have studied the transport of solute particles using streamline approach

in purely advective flows (in the absence of diffusion).

Here, we calculated the first passage time of solute particles, which is the travel

time required for a particle to percolate through the porous medium. First passage
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Fig. 2.6.: Variation of tortuosity with different models of porous media and porosity.
Error bars for the case of hard-sphere model are the size of symbols and thus not
plotted.

time distribution (FPTD) in fact could be seen as ψ (s, t) with displacement equal to

the distance between injection and absorbing sites. We associate ψ (t) to FPTD and

directly calculate the key parameter β from pore-scale simulations for two models of

porous media. It is worth noting that although the models of porous media examined

here are idealized ones, but they in fact represent two opposite extremes of porous

media classes. For example, overlapping spheres at low porosities can be used as

models for consolidated media such as sandstone while on the other hand hard-sphere

model could represent unconsolidated media such as packed beds and particulate

composites [66]. Using pore-scale simulations on two different types of porous media,

we obtained parameter β which could be seen as degree of medium heterogeneity [36].

Shown in Figure 2.7 is FPTD for two models of porous media and two porosities. As

can be noted, transport of solute plume in the hard-sphere model is considered Fickian

(i.e., β > 2). However, overlapping sphere medium shows anomalous behavior (i.e.,

β < 2) with parameter β = 1.8. This is interestingly close to the value reported

by Bijeljic and Blunt [36] which was obtained for two-dimensional model of Berea

sandstone, corroborating the fact that the model of overlapping spheres could be used

to represents consolidated systems. Moreover, the shape of FPTD is consistent with
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trajectory length distributions where there exists a long tail of particle trajectories

for the case of overlapping spheres while in the case of hard-sphere model, trajectory

length distributions are essentially symmetric and do not exhibit long-tailed behavior.

(a) (b)

Fig. 2.7.: First passage time distribution for (a) monodisperse hard-spheres and (b)
overlapping spheres for high (2) and low (#) porosity media.

Now, we study the Lagrangian velocity statistics and their evolution. Lagrangian

description of particle velocity consists of two viewpoints which is analyzing La-

grangian velocities sampled isochronally and equidistantly along streamlines. Studies

on flow through porous media and observations of intermittency of fluid velocities

suggest that particle velocities persist for a characteristic length scale lc rather than

a characteristic time scale τc [35]. Thus, stochastic description of particle transport

in porous media is based on distribution of Lagrangian velocities sampled equidis-

tantly along streamlines. Naturally, it is important to quantify the velocity statistics

in these two frameworks and their relations to the Eulerian velocity field. Recently,

Dentz et al. [34] provided expressions that relate Lagrangian velocity statistics to

those of Eulerian. Here, we briefly review these relations and proceed to our analysis

of Lagrangian statistics. We first consider particle velocity along its trajectory as a

function of travel distance, s. According to Dentz et al. [34], the PDF of s(pace)-

Lagrangian and t(ime)-Lagrangian velocities are related through flux-weighting as

ps(v) =
vpt(v)

〈vt〉
(2.20)
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where 〈vt〉 =
∫
vpt(v)dv. Furthermore, due to volume conservation, t-Lagrangian

velocity PDF, pt(v), is equal to Eulerian velocity PDF, pe(v). Thus, this means that

ps(v) is related to pe(v) through flux weighting as

ps(v) =
vpe(v)

〈ve〉
(2.21)

where 〈ve〉 =
∫
vpe(v)dv. It is worth noting that Eq. (2.21) is valid under stationary

condition. T- and s-Lagrangian velocity distributions evolve in time and space if their

initial distribution is different than their steady-state one. Clearly, at t=0 and s=0

both ps(v) and pt(v) are identical and equal to initial particle velocity distribution,

p0(v). Furthermore, under Eulerian ergodicity and uniform injection which is the

case here, t-Lagrangian velocity PDF coincides with Eulerian velocity PDF and thus

does not evolve [34, 89]. However, s-Lagrangian velocity distribution for the case of

uniform injection evolves towards its steady-state PDF given in Eq. (2.21). Figure 2.8

shows the evolution of mean s-Lagrangian velocity. As expected, at s = 0 the mean

s-Lagrangian velocity (and mean t-Lagrangian velocity) is equal to the mean Eulerian

velocity. However, mean s-Lagrangian velocity evolves to its steady-state value while

mean t-Lagrangian velocity remains constant and equal to mean Eulerian velocity.

It is worth noting that mean s-Lagrangian velocity converges faster to its steady-

state value for the case of monodisperse hard-sphere model compared to overlapping

sphere model due to relatively simpler pore-structure. Finally, using Eq. (2.21), we

can calculate the stationary s-Lagrangian velocity distribution and compare it with

the distribution obtained from numerical simulation and particle tracking. Figure 2.9

shows that measured s-Lagrangian velocity PDF agrees well with the flux weighted

Eulerian velocity PDF.

2.5 Eulerian statistics

A complete picture of velocity field is extremely useful in understanding transport

in porous media. For example, Tennekes and Lumley [90] showed that mechanical
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Fig. 2.8.: Evolution of the mean velocity sampled equidistantly in space for hard-
sphere (#) and overlapping sphere (�) models. Due to uniform injection of particles,
mean velocity sampled equidistantly in space evolves from its initial value which coin-
cides with mean Eulerian velocity (· − ·) and reaches its steady-state value calculated
from Eq. (2.21) (−−). Inset: Mean velocity sampled isochronally remains constant
until breakthrough and is equal to mean Eulerian velocity as expected. nt is the
number of time steps.
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Fig. 2.9.: Comparison of stationary s-Lagrangian velocity PDF as given by Eq. (2.21)
and numerical simulation.

dispersion (DL) is directly related to the Lagrangian velocity of a particle (VL) and

Lagrangian integral time scale (TL) as:

DL
∼=
(
VL − VL

)2
TL (2.22)
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Patil and Liburdy [43] replaced the Lagrangian velocity variance with Eulerian veloc-

ity variance under the assumption of VL being stationary and estimated the mechan-

ical component of longitudinal dispersion. Although it has been shown that different

pore-space structures have significant effects on the velocity distribution at the pore-

scale as well as changing the nature of transport, a quantitative study showing the

interplay of pore structure, velocity, and transport is still lacking. One can imag-

ine that due to incompressibility of fluid, local velocity changes as fluid go through

network of throats and pores of different sizes. This simple argument suggests that

given the pore and throat size distribution of a medium, the velocity distribution

must obey the same distribution, a fact that was studied by Siena et al. [39] where

they found that the pore size and velocity distributions decay similarly. However,

such a relationship is not always very simple as spatial correlation of pore and throat

sizes has also found to be an effective parameter [39].

Here, we first look at the velocity distribution for our three models of porous me-

dia with increasing level of pore space complexity over a range of porosities. Then,

we focus on generalizing such velocity PDFs. Figure 2.10 shows that the velocity is

broadly distributed and despite the randomness of pore space in different models of

porous media, its distribution shows some universality. It is worth noting that in all

the cases shown in Figure 2.10, there exist the following common feature as (i) the

peak in PDFs locates at zero and it becomes more significant as porosity reduces,

(ii) all the PDFs have both negative and positive tails, the latter is due to the tortu-

ous flow path. This effect is the strongest in the case of overlapping spheres, which

is supposed to result in the most complex pore space among the models examined

here, (iii) in all the cases here, velocity distribution becomes less broad as porosity

increases and the positive tail of velocity distribution decays faster, (iv) spanwise ve-

locity components are symmetric with a peak value at zero, similar to the streamwise

component of velocity. One can see by looking at Figure 2.10 that flow in overlapping

spheres model results in broader range of velocity compared to hard-sphere mod-

els. Additionally, Figure 2.11 shows the velocity norm distributions of monodisperse
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2.10.: Top row: PDF of streamwise velocity. Bottom row: PDF of velocity
perpendicular to mean flow direction (spanwise). All velocities are normalized by
mean interstitial velocity (q/φ) for (a,b) monodisperse hard-sphere, (c,d) polydisperse
hard-sphere, and (e,f) overlapping sphere models of porous media.

hard-sphere and overlapping sphere models in log-log scale. It reveals a significant

difference in velocity norm PDF of these two models in low velocity ranges. As shown

in Figure 2.11, greater portion of pore-space in overlapping sphere model experiences

very low velocities, which is consistent with the transport behavior shown in Figure

2.7. Quantitatively speaking, streamwise velocity variance scales as 0.89〈u〉2 com-

pared to 1.21〈u〉2 for hard-sphere and overlapping sphere models, respectively. Since

there is no long-range correlation of pore-space in our models of porous media (see

Figure 2.3), we can explain this by studying pore-size distribution functions of theses

models. Klatt and Torquato [91] numerically estimated complementary cumulative

distribution functions (1-CDF) of pore sizes (Fδ) for monodisperse hard-sphere and

overlapping spheres. Consistent with our velocity PDFs, they showed that Fδ de-

cays much slower for overlapping spheres compared to hard-spheres, resulting in a
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Fig. 2.11.: PDFs of velocity norm for monodisperse hard-sphere (#) and overlapping
sphere (�) models for φ = 0.36.

broader pore size distribution and also larger effective pore-diameter (see Figure 2.3).

To generalize the velocity PDFs, we focus on the positive tail of distribution as the

contribution of the negative tail to transport is negligible. The velocity distribution

could be divided into two regions: first region (u < 〈u〉) is characterized by very

small velocities due to existence of extensive fluid-solid interfaces and stagnant zones

(see normalized velocities around zero in Figure 2.10) and second region (u > 〈u〉)
which is responsible for most of transport and is characterized by the structure of

sample-spanning network of pores and throats [92]. Here, we adopted a stretched

exponential distribution as [42]:

f(u/〈u〉) = a exp

[
−
(
u/〈u〉
α

)η]
(2.23)

where parameter η controls the shape of the positive tail (e.g. exponential or normal)

and α indicates the decay rate. Parameter a is a normalizing factor such that Eq.

(2.23) is integrated to one and thus is given by η
αΓ(1/η,1/αη)

where Γ is the incomplete

gamma function. Figure 2.12 shows that η heavily depends on the porosity and

exhibits a transition from subexponential (η < 1) to normal (η ≈ 2).

Velocity distributions for models of porous media in this study showed broad

dynamic ranges of velocity which can be estimated by Eq. (2.23) accurately for several
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(a) (b)

Fig. 2.12.: Dependence of model parameters in Eq. (2.23) on porosity for two models
of porous media (hard-sphere and overlapping). η strongly depends on the porosity
and is consistently larger for hard-spheres (a). On the other hand, the dependence of
α on the porosity is not very strong (b). This figure clearly quantifies the transition
in velocity distribution shape as a function of porosity.
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Fig. 2.13.: Streamwise velocity distributions for (monodisperse) hard-sphere and over-
lapping sphere models of porous media with their corresponding fits obtained by Eq.
(2.23) (solid line). Porosity is 0.45.

decades in probability (Figure 2.13). Despite the usefulness of velocity distribution,

they cannot be used to learn about spatial correlations of velocity field while such

correlations are critically informative as the flow pass through tortuous paths and

channels of high and low velocities. Thus, to examine the spatial features of velocity,
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we calculated two-point correlation function of 3-D velocity field which averages the

scalar product of all velocity vector pairs separated by distance R by:

Cuu (R) =

〈∑
j [u′ (rj) · u′ (rj +R)]∑

j‖u′ (rj)‖2

〉
(2.24)

where u′ = u− u and the summation is taken over 104 positions rj randomly chosen

in the simulation domain. Figure 2.14 shows Cuu and S2 obtained for monodisperse

hard-spheres. In particular, Cuu is strongly similar to S2(r), shows a nearly expo-

nential decay. We show that spatial features in velocity field are exactly the same

as those of pore space. The oscillations in S2(r) due to exclusion volume effects

are reflected on pore-scale velocity fluctuations causing velocity fluctuations to be

slightly correlated at large distances. To further generalize these findings, we carried

Fig. 2.14.: Spatial correlation in velocity fluctuations for monodisperse hard-sphere
model along with their two-point correlation function calculated on pore space. Strong
similarities suggests spatial correlations of velocity and pore space are almost identical
in the creeping flow regime.

out the same analysis on more complex pore geometries such as those in polydis-

perse hard-spheres and overlapping spheres. Interestingly, results shown in Figure

2.15 suggest that even in completely different pore structures such as those in over-

lapping sphere model, spatial correlations of velocity are reflective of those of pore

space. Observed strong relationship between pore-structure characteristics and spa-
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(a) (b)

Fig. 2.15.: Spatial correlation in velocity fluctuations for (a) polydisperse hard-sphere
and (b) overlapping sphere models along with their two-point correlation function
calculated on pore space.

tially fluctuating velocity field motivated us to see if such a relationship exists for

natural rocks. We used cube samples (512× 512× 512) of unconsolidated sandpack

and Castlegate sandstone with voxel size of 9.184µm and 5.6µm, respectively (data

is publicly available at https://www.digitalrocksportal.org). These samples are origi-

nally obtained via x-ray micro-CT and then segmented where each voxel is identified

as either void or solid. Porosity is 0.36 and 0.206 for unconsolidated sandpack and

Castlegate sandstone, respectively. Figure 2.16, shows two-dimensional cross sections

of the segmented image of these samples. To confirm that observed relationship be-

tween pore-space characteristics and fluctuating velocity field does not exist due to

spatial homogeneity of the pore-space in hard-sphere and overlapping sphere models,

similar analysis was performed on samples of unconsolidated sandpack and Castlegate

sandstone. Figure 2.17 shows that consistent with what we observed previously for

overlapping sphere and mono(poly)disperse hard-sphere models, a similar relationship

exists in natural rocks as well where two-point correlation functions of pore-space and

fluctuating velocity field decay similarly.
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(b) (d)

Fig. 2.16.: Cross sectional view of the indicator function (solid or pore space) and
normalized velocity magnitude (|U|/|U|max) for (a,b) the unconsolidated sandpack and
(c,d) Castlegate sandstone with porosity of 36% and 20.6%, respectively. Pore-space
is colored black.

2.6 Conclusion

We investigated the flow through porous media through direct numerical simula-

tion for three models of porous media with increasing levels of pore space complexity.

We showed that the Eulerian velocity field has a broad dynamic range which reflects

the complexity of the pore space. It was shown that streamwise Eulerian velocity dis-

tributions in virtually all porous media could be accurately modeled by a stretched

exponential function which captures the transition from nearly exponential to Gaus-

sian shapes of Eulerian velocity distribution for several decades in probability as

porosity increases. A streamline particle tracking approach was used to calculate the

Lagrangian statistics in an advection-dominant transport regime. We showed that
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Fig. 2.17.: Spatial correlation in velocity fluctuations for different models of porous
media along with their two-point correlation function calculated on pore space. Strong
similarities suggest spatial correlations of velocity and pore space are almost identical
in the creeping flow regime.

particle trajectory in overlapping sphere model compared to hard-sphere model was

more tortuous and its distribution had higher skewness. We then showed by means

of FPTD that higher tortuosity and broader Eulerian velocity distributions of non-

overlapping sphere model resulted in non-Fickian transport (with quantitative agree-

ment with transport in sandstone) while transport in the hard-sphere model was found

to be Fickian. Evolution of Lagrangian velocity distributions, sampled isochronally

and equidistantly along the particle trajectory were studied for the uniform injection

rule and it was found that mean s-Lagrangian velocity evolves in space and reaches

stationary condition quickly (takes longer for overlapping sphere model compared to

hard-sphere model due to more complex pore-structure) while mean t-Lagrangian

velocity does not evolve in time. Under stationary condition, s-Lagrangian velocity

distribution is related to Eulerian velocity distribution through flux-weighting. Fi-

nally, we studied the spatial correlations in 3-D velocity field by means of two-point

correlation functions of velocity fluctuations. For the relatively homogeneous porous

media examined here (overlapping and non-overlapping spheres in 3-D), we showed

that the two-point correlation function of 3-D velocity field decays similarly to that

of pore space and even at long distances displays similar oscillations. We tested
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the generality of this finding on two more heterogeneous porous media (i.e., uncon-

solidated sandpack and Castlegate sandstone) in which we again observed a similar

behavior, where two-point correlation functions of 3-D pore space and velocity fields

were extremely similar.
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3. NANOPARTICLE DISPERSION IN POROUS MEDIA

IN VISCOELASTIC POLYMER SOLUTIONS

This chapter is reproduced with permission from: Aramideh, S., Vlachos, P. P.,

Ardekani, A. M. (2019). Nanoparticle dispersion in porous media in viscoelastic

polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 268, 75-80. The

final publication is available at sciencedirect.com

3.1 Abstract

Flow of viscoelastic fluids in porous media is ubiquitous in biological and indus-

trial processes, and the choice of viscoelastic fluids is of foremost importance for

their effect on macroscopic flow and transport properties. In this paper we study the

macroscopic properties of flow and transport of viscoelastic fluids through a model

porous media by means of Direct Numerical Simulation (DNS). We show that flow of

a viscoelastic fluid modeled via a FENE-P constitutive model features three distinct

regimes of flow resistance: a plateau at low Deborah numbers, and a shear-thinning

phase followed by an abrupt flow thickening above a critical Deborah number, consis-

tent with experimental observations. Congruous to this shear-thickening, we observe

the onset of hydrodynamic instabilities resulting in fluctuations in pressure drop and

flow resistance. These fluctuations intensify with increasing the fluid’s elasticity. Fi-

nally, we investigate Lagrangian attributes of viscoelastic flow and transport through

porous media. We find that although the fluid’s elasticity broadens the Lagrangian

velocity distributions, it does not alter the long-term particle dispersion in disordered

porous media.
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3.2 Introduction

In a wide range of processes, from drug delivery [93, 94] to enhanced oil recov-

ery [95, 96], sub-micron particle transport is central to the efficacy of the process.

In many practical cases of flow through porous media, flow is dominated by viscous

forces because of very small length-scales and is described by Darcy’s law [97, 98].

In the case of Newtonian fluids for creeping flow and advection-dominant transport,

pore-geometry profoundly impacts the particle transport through mechanical mixing

of fluid stream and thus governs the long-term dispersion of particles [99–101]. In

non-Newtonian fluids, fluid rheology could further complicate the transport of par-

ticles and other macroscopic properties of flow. In cases where fluid is viscoelastic,

there is ample experimental evidence of onset of hydrodynamic instabilities due to

elastic nature of flow [102]. Specifically, such instabilities have been experimentally

observed in contractions [103], Couette flow between two cylinders [104,105], curved

channels [102], and periodic array of cylinders [106,107] (see reviews by Larson [108],

McKinley et al. [109] and Shaqfeh [110]). These elastic instabilities, in the absence of

inertial effects, are so-called elastic turbulence and occur due to extra polymer stress

and curved streamlines, even in the absence of inertia. A simple criterion developed

by Pakdel and McKinley [111] and later modified by Morozov and van Saarloos [112]

characterizes the critical conditions for the onset of elastic instabilities. Further-

more, experimental observations have shown that onset of such instabilities generate

secondary flows and at the macroscopic level increase flow resistance [104, 113, 114].

This upturn in flow resistance has been investigated via experimental [115, 116] and

numerical [117–119] approaches. Some studies have shown that this upturn in flow

resistance coincides with the onset of hydrodynamic instabilities [120–123].

The presence of elastic instabilities can thus have important effects on mixing

[124,125], solute dispersion in porous media [126], or displacing trapped secondary im-

mobile phase at the pore-scale [122]. For example, as discussed by Clarke et al. [122],

increased oil mobilization was attributed to elastic turbulence during polymer flood-
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ing in a microchannel. Despite the experimental observation of an increased flow

resistance of viscoelastic fluids in porous media, numerical simulations of such prob-

lems are scarce and thus it is not clear whether elastic instabilities contribute to the

increased flow resistance. Even for simple geometries such as flow over periodic arrays

of cylinders, numerical observations are contradictory [120, 124]. Moreover, it is not

clear whether and through which mechanism viscoelasticity enhances mixing in flow

through porous media. While experimental observations by Scholz et al. [126] show

that elastic turbulence significantly enhances transverse dispersion, Babayekhorasani

et al. [127] suggest that fluid rheology will not ultimately alter the dispersion of par-

ticles. To address this gap in literature, we focus on numerical simulation of flow of

viscoelastic fluids through porous media at the pore-scale, to study its characteris-

tics and transport of nanoparticles. We illustrate the effects of fluid viscoelasticity

via comparisons with equivalent Newtonian flows. In this study, we also look at the

Lagrangian velocity distributions and how the particle dispersion in a random array

of cylinders is changed due to fluid elasticity. We study the flow resistance over a

range of fluid elasticity. Finally, we show that when elastic effects are strong enough,

consistent with experimental observations, flow does not reach a steady-state.

3.3 Governing equations

A finite volume method and body-fitted grid is used to model the flow of viscoelas-

tic fluid through porous media within the open-source framework OpenFOAM [128].

Transient flow of incompressible single-phase isothermal fluids is governed by the

conservation of mass and momentum as:

∇ · u = 0, (3.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τττ + g, (3.2)
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with velocity vector u, density ρ, pressure p, external body forces g, and extra stress

tensor τ . The extra stress tensor comprises solvent contribution τ s and polymer

contribution τ p so that τ = τ s+τ p. In Eq. 3.2, the solvent stress tensor, τ s, is given

by ηs
(
∇u +∇uT

)
where ηs is the solvent viscosity and constant. The polymer stress

in this work is modeled via the finite extensible nonlinear elasticity (FENE) model

of polymeric fluids. We adopted the shear-thinning FENE-P constitutive equations

[129,130]. The FENE-P constitutive equation reads:

τp +
λ

f

∇
τp =

aηp
f

(
u +∇uT

)
− D

Dt

(
1

f

)
[λτ p + ηpI] , (3.3)

where ηp is the polymer viscosity at zero shear-rate, λ is the relaxation time of the

polymer, I is the identity tensor, D
Dt

is the material derivative, and operator ∇ is the

upper-convected time derivative given by:

∇
τ p =

Dτ p
Dt
− τ p · ∇u +∇uT · τ p, (3.4)

Finally, the function f is given by:

f(τ ) =
L2 + λ

aηp
tr(τ )

L2 − 3
, with a =

L2

L2 − 3
, (3.5)

In Eq. 3.5, parameter L characterizes the maximum polymer extensibility. It is

worth noting that when L → ∞, the Oldroyd-B constitutive equation is recovered.

We use L = 1000 for all our simulations. The governing equations are discretized

using the finite volume method. Most notably, the log-conformation approach is used

for calculating the viscoelastic stress tensor for increased accuracy and robustness.

The polymer stress tensor is related to the conformation tensor and for FENE-P

constitutive model, natural logarithm of the conformation tensor (Θ) is related to the

stress tensor by:

τp =
ηp
λ

(feΘ − aI) (3.6)
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Further details of the numerical recipes for pressure-velocity and stress-velocity cou-

pling and overall solution procedure could be found in Pimenta and Alves [131]

(RheoTool v2.0). Here, to quantify the elastic nature of the flow, we define the

Deborah number (De) as:

De = λ/tflow (3.7)

where λ and tflow are polymer relaxation time and characteristic flow residence time.

We use tflow ≈
√
k/〈ux〉 where 〈ux〉 and k are average interstitial velocity in the

mean flow direction, and the hydraulic permeability (measured with Newtonian fluid),

respectively. The Reynolds number (Re) is defined as Re = ρ〈ux〉
√
k

η
where η = ηs +ηp

is the solution viscosity. We use
√
k as an effective length scale as it has been found

useful in characterizing other nonlinear effects in flow in porous media [132,133].

In this work, we are interested in the effects of fluid’s rheology on macroscopic flow

and transport properties in porous media. We study the transport properties in a

Lagrangian framework by tracking a large number of tracer particles. Particle tracking

is advantageous over solving the advection-diffusion equation as it does not suffer from

numerical dispersion/diffusion. Time evolution of tracer particles is obtained through

numerical integration of the equation:

r(t+ ∆t) = r(t) + v(r(t))∆t+ ζ
√

2Dm∆t, (3.8)

where r(t) and v(r(t)) are particle location and particle velocity (i.e., fluid flow ve-

locity at the particle location), respectively. In Eq. 3.8, ∆t is the time step, Dm

is the molecular diffusion, and ζ is a vector with random components drawn from a

standard normal distribution. Particles may hit the solid interface due to Brownian

motion. We impose a reflective boundary condition on the fluid-solid interface. The

relative importance of advection and diffusion in Eq. 3.8 is characterized by Peclet

number (Pe) defined as Pe = UL
Dm

where U , L are characteristic velocity (〈ux〉) and

length scale (
√
k).
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3.4 Problem description

We study the unsteady and steady-state flow of viscoelastic fluids and transport

through a random array of monodispersed cylinders. Our computational domain is

20D× 20D where D is the cylinder diameter with porosity of 0.4 as shown in Figure

5.5. The random array of cylinders is generated by a collision-driven molecular dy-

namics algorithm used in our previous work [99] and is periodic in both directions.

Due to the randomness of the pore-space and periodicity of our computational do-

main, it is worth noting that the domain should be large enough to be representative

of larger samples and prevent the flow from interacting with its periodic image [134].

This condition is satisfied for all simulations presented here. Flow is driven by a

pressure gradient in the x-direction so that the average interstitial velocity (〈ux〉)
of unity is achieved. Although the mean interstitial velocity of unity is achieved in

a short time for a range of De examined here, as we will show later in this paper,

pressure gradient could not reach a steady-state for high De. For such unsteady sim-

ulations, we run our simulations for 20λ to obtain meaningful statistics and report

time-averaged quantities. In this work, we examine flows with a wide range of De

from 0 (i.e., Newtonian) to 48 by varying the polymer relaxation time. In all the

simulations, the Reynolds number is kept small (Re � 1) which allows us to only

study the interaction of fluid rheology and viscoelastic effects with random pore space

geometry.

To obtain Lagrangian statistics and transport properties via particle tracking, we

place 2× 105 tracer particles randomly in the pore space. We have verified that this

number of particles gives converged statistics. Since our computational domain is

periodic in both directions, particles that exit from each boundary will naturally re-

enter the computation domain. This will help us study the particle transport over

a long time. Finally, in all simulations we use Pe = 103 and thus focus on the

mechanically-mixed regime where advection is dominant.
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X

Y

Z

Fig. 3.1.: Computational domain: random array of cylinders with solid volume frac-
tion of 0.6 (i.e., porosity of 0.4). The zoomed-in view illustrates refined and layered-
mesh around solid surfaces to accurately resolve the flow.
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3.5 Results

3.5.1 Flow type and normal stresses

We seek to answer whether the fluid rheology significantly alters the flow topology.

We quantify the flow topology with the parameter ξ defined as:

ξ =
|D| − |Ω|
|D|+ |Ω| , (3.9)

where |D| and |Ω| are magnitudes of rate-of-deformation and vorticity tensors, re-

spectively:

D =
1

2

[
∇u + (∇u)T

]
Ω =

1

2

[
∇u− (∇u)T

]
, (3.10)

Flow type parameter, ξ, thus varies from -1 (pure solid-body rotation) to +1 (pure

extensional flow) and pure shear-flow yields ξ = 0. Shown in Figure 3.2 is flow

type for flow of Newtonian and viscoelastic fluids in porous media. It is clear that

the fluid is undergoing mostly shear and elongation for both cases and the fluid

elasticity does not result in a significant change in the flow structure and type. Flow

topology is largely affected by pore-structure and inherent randomness in pore-space

distribution rather than fluid rheology. Figure 3.3 signifies the importance of fluid

rheology on the distribution of flow topology and strain rate throughout the porous

media. Although the changes between Newtonian and viscoelastic fluids are not

significant, fluid elasticity slightly enhances regions of elongational flow and shifts

the strain rate towards higher values. We expect such effects to increase with De,

however, random pore-space is the dominant factor determining the flow topology

and strain rate of fluid in random porous media. Flow in porous media features

preferential pathways [99, 135]. Figure 3.4 shows normalized velocity magnitude for

Newtonian and viscoelastic flows at the pore-scale. While in both cases the flow

structure and preferential pathways remain similar, subtle differences are observed

due to presence of normal stress. As mentioned above, extra-stress due to polymer

makes subtle changes to velocity profile around solid surfaces. Figure 3.5 reveals
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Fig. 3.2.: Contour plot of flow type (ξ) for Newtonian fluid (left) and viscoelastic fluid
(right). Flow with De = 12 results in qualitatively similar flow topology throughout
the porous media at the pore-scale. The flow is shear-dominated (ξ = 0) in both
cases.
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Fig. 3.3.: Probability density function (PDF) of flow type parameter (ξ) and strain
rate for a viscoelastic fluid compared to a Newtonian fluid.

the first normal stress profile at the pore-scale. The contour plot of log-conformation

tensor reveals how polymer compresses and stretches around solid obstacles, resulting

in filament-like regions of high first normal stress which interact with the underlying

velocity field, changing the local velocity profile from that of a Newtonian fluid where

normal stresses do not exist. Although not shown here, magnitude of (normalized)

normal stresses increase with the increase of De.
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Fig. 3.4.: Normalized velocity magnitude (|u| /〈ux〉) for the Newtonian and viscoelas-
tic case with De = 12.

Fig. 3.5.: Θxx where Θ is the log-conformation tensor (left) and normalized normal
stress (τ xx/ηU/D) for De = 12 (right).

3.5.2 Shear thinning and thickening

Experiments of flow of viscoelastic fluids in porous media have reported Newtonian

behavior at low-shear rates, followed by a shear-thinning and then onset of flow

thickening after a critical De [123]. This, interestingly, is in contrast to data obtained

from purely shear flows (e.g., in a rheometer) where shear-thickening behavior is not

observed, while in fact, such flow thickening has important implications in many
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biological and industrial applications such as enhanced oil recovery [136]. Up to now,

most of studies of viscoelastic flows have focused on simple flow configurations such

as those in parallel-plate [113,137], Taylor-Couette [138], serpentine [102] geometries.

In this section, we look at the onset of elastic instabilities and evolution of flow

resistance in flow of viscoelastic fluids through porous media. We characterize the

elastic instabilities in terms of fluctuations in pressure gradient [114], dp/dx, required

to drive the flow at the mean interstitial velocity of unity. To study the flow resistance,

we define a resistance factor parameter as:

Resistance factor =

(
dp/dx
〈ux〉

)
V(

dp/dx
〈ux〉

)
N

, (3.11)

where V and N denote viscoelastic and Newtonian, respectively. Shown in Figure

3.6 is the variation of resistance factor as a function of De. Consistent with exper-

imental observation, the resistance factor features three distinct regions: a plateau

at small De, shear thinning at intermediate De, and flow thickening and increased

resistance above a critical De. In flow through porous media, polymer molecules expe-

rience shear near walls and constantly undergo elongation and contraction due to the

converging-diverging nature of the flow. When flow time scale is small and polymer

relaxation time is large (i.e., large De), flow thickening appears as polymer molecules

could not adjust to the flow rapidly. Furthermore, we analyzed the contributions from

dτxx
dx

and dτxy
dy

to the pressure gradient, dp
dx

. We found out that the contribution from

the first term to pressure gradient follows the same behavior as the pressure gradient

itself. Meaning that initially, it decreases with De until around the critical De. Above

the critical De contribution from dτxx
dx

to the pressure gradient increases with De and

becomes the dominant factor at large De. An important observation here is that

for flows with De above a critical value and due to elastic instabilities, steady-state

cannot be achieved even when Re � 1. Although such instabilities are quite small

around the critical De, they grow quickly as De increases and cause strong fluctua-

tions in pore-scale velocity and pressure drop across the porous medium. Fig 3.6 also
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features error bars showing variation in the resistance factor because of variations in

pressure drop across the porous medium (see Eq. 3.11). Figure 3.7 shows the time

history of pressure gradient fluctuation for three flows with increasing levels of fluid

elasticity. For the case with De = 6 and where elastic effects are relatively small, the

pressure gradient fluctuates with a relatively small amplitude and a distinct period.

As we make fluid elasticity stronger, pressure drop fluctuations show enhanced mag-

nitude and become more irregular and the time period no longer simply corresponds

to the polymer relaxation time.
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Fig. 3.6.: Three regions of resistance factor parameter: initial plateau, shear thinning
followed by a shear thickening period. The onset of shear thickening behavior is
congruous with elastic instabilities and thus the variability in the resistance factor
for high De. The magnitude of this variability grows rapidly with De. Note that
fluctuations of resistance factor (dp/dx) is absent before the onset of flow thickening.
Although we observe small but growing fluctuations with De, small fluctuations could
not be seen on this plot as they are smaller than the marker size used here.
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Fig. 3.7.: Pressure gradient fluctuations as a result of onset of elastic stress instabilities
for high values of De. Magnitude of pressure fluctuations grows substantially as De
increases.

3.5.3 Lagrangian statistics

In this section, we investigate whether fluid elasticity changes particle dispersion

in porous media. To answer this question, as described earlier, we place 105 particles

uniformly in the pore-space and record their position and velocity isochronally (as

opposed to equidistantly) along the particle trajectory. Particle trajectories are shown

in Figure 3.8.

Next, we study the the particle velocity distributions for the case of Newtonian

and viscoelastic fluids. Particle velocity distributions are important as they reveal

the velocity distribution from which particles are sampling and thus determining the

degree of media heterogeneity and particle dispersion. Figure 3.9 shows the effects of

fluid elasticity on the particle velocity distribution.

Evidently, flow of viscoelastic fluids creates a broader underlying velocity field,

consistent with experimental findings of [127]. Broader, more heterogeneous velocity
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Fig. 3.8.: Sample of particle trajectories. Each (colored) line represents one particle.
Only few trajectories are shown for better visualization.
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Fig. 3.9.: Probability density function of longitudinal (ux/〈ux〉) and transverse
(uy/〈ux〉) velocities for Newtonian and viscoelastic (De = 12) fluids. In both direc-
tions, fluid elasticity broadens the velocity distribution. This implies that particles
undergo stronger dispersion as they sample from a broader velocity distribution in
the case of viscoelastic fluid compared to that of a Newtonian fluid.

distributions imply a more dispersive regime. However, it is important to understand

if polymer solutions change the long-time dispersion coefficient. To answer this ques-

tion, we next look at the mean-squared displacement (MSD) of particles defined as

σ2
x = 〈(x(t)− 〈x(t)〉)2〉 where 〈·〉 denotes averaging over all particles. Plotted in Fig-

ure 3.10 is the MSD for tracer particles in Newtonian and viscoelastic fluids. In short

times, MSD in both directions and for both fluids show ballistic scaling (MSD ∼ t2)

as reported elsewhere [126, 139]. This is followed by a period of non-Fickian scaling

before a linear scaling (i.e., Fickian regime) regime is achieved. It is worth noting
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that while MSD of tracer particles in the longitudinal direction in both fluids scales

similarly in early, intermediate, and long times, MSD in the transverse direction grows

faster in intermediate times in viscoelastic fluids compared to that of a Newtonian

fluid. Of course after reaching the Fickian regime MSD scales similarly, regardless of

fluid rheology. This is important as it shows that in long times, in random porous

media, dispersion of tracer particles occurs regardless of fluid rheology. In fact, ran-

domness of pore-space, in long times, averages out any effects of fluids elasticity on

the underlying velocity field and thus resulting in a similar scaling of MSD and thus

dispersion coefficient (D(t) = 1
2
dσ2

dt
). These results are consistent with experimental

observations of Babayekhorasani et al. [127], where they showed that fluid elasticity

only alters the dispersion coefficient in intermediate times and nanoparticles have

similar long-time dispersion behavior in both Newtonian and viscoelastic fluids in

disordered media (packed bed of monosized beads). Our finding that fluid rheology
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Fig. 3.10.: Mean-squared displacement (MSD) of tracer particles in longitudinal (L)
and transverse (T) directions. After an early-time ballistic scaling followed by a
pre-asymptotic regime, MSD for both Newtonian and viscoelastic cases reaches its
asymptotic Fickian regime and scales linearly with time.
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(viscoelastic effects) cannot be used to modulate the particle dispersion in discorded

media in long times is in contrary to findings of Scholz et al. [126] in periodic and

ordered porous media. They showed experimentally that velocity fluctuations arising

from high De flows in ordered porous media could significantly enhance the trans-

verse dispersion of particles. However, experimental observation of Babayekhorasani

et al. [127] and our numerical results of the viscoelastic flows through disordered

media show that randomness of pore-space is the dominant factor determining the

long-term dispersion of particles in disordered media and mechanically-mixed regime

(Pe ≥ 72).

3.6 Conclusions

In this study, we investigated the macroscopic properties of flow of viscoelastic

fluids represented via a FENE-P model and compared it to those of Newtonian flu-

ids. We showed that in both cases, the flow type parameter remains the same and

flow is shear-dominated. In addition, we showed that in the flow of viscoelastic fluids

filament-like regions of high normal stresses develop in the wake of cylinders (stag-

nation points) and become stronger with increasing De. By showing a contour plot

of first component of conformation tensor we illustrated how polymer molecules are

compressed or stretched at the pore-scale. We then studied the flow resistance of vis-

coelastic fluids in a model porous media and showed that flow goes through phases of

shear-thinning followed by intense shear-thickening, above a critical De. Additionally,

we demonstrated the onset of fluctuations in the flow by studying temporal evolution

of pressure gradient. Finally, we investigated the particle dispersion in disordered

media and the role of fluid rheology (viscoelasticity) by means of particle tracking.

We found that particle dispersion in the transverse direction is slightly enhanced due

to broadening of velocity distribution and changes in the underlying velocity field in

intermediate times. However, consistent with experimental observations of the same

problem, we observed that fluid elasticity does not alter the particle dispersion in
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disordered porous media in long times where we observed Fickian scaling of MSD

in both cases of Newtonian and viscoelastic flows. This result has great implica-

tions when choosing viscoelastic polymers in various processes such as enhanced oil

recovery where particle/solute dispersion is crucial.
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4. MULTI-OBJECTIVE HISTORY MATCHING OF

SURFACTANT-POLYMER FLOODING

This chapter is reproduced with permission from: Aramideh, S., Borgohain, R., Naik,

P. K., Johnston, C. T., Vlachos, P. P., Ardekani, A. M. (2018). Multi-objective

history matching of surfactant-polymer flooding. Fuel, 228, 418-428. The final publi-

cation is available at sciencedirect.com

4.1 Abstract

Surfactant-polymer flooding is an effective process in extracting most of the orig-

inal oil in place remained after conventional water flooding process. However, this

technique is complicated and involves extensive screening and numerous experiments

to find the optimum chemical composition, salinity, etc. Surfactant-polymer flood

modeling can facilitate the optimization of the process, however the inherently large

parameter space results in great uncertainty and poor predictive capability. Here, by

means of a novel approach using global sensitivity analysis, we reduce the parameter

space of a typical surfactant-polymer flood model to facilitate model calibration and

history matching process.

To inform our analysis, we performed three Berea coreflood experiments with

different slug designs resulting in different salinity profiles. The results from our core-

flood experiments revealed and quantified the high sensitivity to salinity, underlying

the importance of accurate phase behavior modeling.

In addition to coreflood experimental data, we used an extensive set of laboratory

data including polymer rheology, surfactant phase behavior, polymer permeability

reduction, and capillary desaturation along with results from sensitivity analysis to

build a mechanistic surfactant-polymer flood model.
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After modeling of sub-processes such as polymer flood model or phase behavior of

our surfactant/oil/water system, through a multi-stage calibration algorithm, core-

flood experimental data was used to build a thorough surfactant-polymer flood model

where cumulative oil production and pressure profile were history matched simulta-

neously. Finally, we showed that our surfactant-polymer flood model has predictive

capabilities with no need for ad-hoc tuning of the model parameters by modeling

two additional coreflood experiments where cumulative oil production and pressure

profile matched those of experiments.

4.2 Introduction

Enhanced oil recovery is of great importance as two-third of the original oil in

place (OOIP) remains intact after waterflooding of many mature reservoirs [140,141].

Waterflooding becomes ineffective as oil is dispersed and trapped in small pores by

strong capillary forces. Surfactant-polymer (SP) flooding is a tertiary oil recovery

technique targeting the oil trapped in small pores through reducing the interfacial

tension between water and oil, improving mobility control as a result of polymer

injection, and avoiding early breakthrough. Despite the elegant mechanism of oil

recovery in SP flooding and its high efficacy in controlled laboratory experiments, it

has showed poor performances in field-scale experiments [142, 143] due to significant

uncertainties [144].

Numerical simulations of subsurface flows are subjected to various sources of epis-

temic uncertainty due to lack of data. This issue is more severe in the case of chemical

enhanced oil recovery as such processes are very complicated. A typical SP coreflood

model requires about 170 input parameters [145] and extensive screening processes

and various experiments. A successful SP process necessitates an optimal design of

parameters such as slug sizes, chemical concentration in each slug as well as taking

into account uncertain variables such as residual oil saturation to chemical flooding,
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chemical adsorption rates, etc. Consequently, the design of a successful SP flood is

highly dependent on uncertain parameters.

There exists a large body of literature on SP flooding models [141, 146–148].

History matching with coreflood experiments is the first step in developing these

models [149], where some model parameters such as relative permeability curves or

capillary desaturation curves (CDC) are tuned until a satisfactory match between ex-

periment and simulation results is achieved. AlSofi et al. [147] used data from several

SP coreflood experiments on carbonates and history matched cumulative oil recovery.

In their work, they tuned parameters such as dispersivity, critical micelles concen-

tration, interfacial tension, and capillary desaturation to predict the incremental oil

recoveries correctly. Hosseini-Nasab et al. [150] studied the performance of Alkaline-

surfactant-polymer (ASP) flooding at sub-optimum conditions in Bentheimer cores

and history matched their model for pressure drop profile, cumulative oil recovery,

and effluent profile. However, most previous works did not provide a quantitative

analysis of performance of their history matched model or did not further validate

their models by predicting new coreflood experiments.

After successful history matching, one can use the SP flood model for various

purposes such as production forecast or optimization. In literature, much effort has

been devoted to sensitivity analysis of design parameters (i.e., slug sizes and concen-

trations, reservoir characteristics such as porosity and permeability, fluids properties

such as viscosity, etc.) [151–156]. One of the most comprehensive studies has been

performed in [157] where optimum phase type, effects of salinity profile, oil viscosity,

salinity window, and solubilization ratios among other parameters were separately

studied on the overall oil recovery. To quantify uncertainty in SP flooding models, a

probabilistic collocation method was used to propagate uncertainty in polymer vis-

cosity multiplier, chemical adsorption rates and Sorc [158]. In the work of Hou et

al. [159], a quasi-Monte Carlo sampling approach was adopted for efficient sampling

of uncertain variables and then the effects of medium heterogeneity on CO2 migration

was studied. Dourache et al. [160] carried out sensitivity analysis of SP flooding at
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the reservoir scale using a response surface methodology (RSM) and Gaussian re-

gression to approximate the reservoir output as a function of time. To avoid large

computational costs, Mollaei et al. [156] used Winding Stairs (WS) as a sensitivity

analysis method in conjunction with an analytical chemical flood predictive model

(CFPM). Although quite important, sensitivity analysis of design parameters facili-

tates optimization of SP flooding and not history matching. Thus, it is important to

perform a separate sensitivity analysis on model parameters to facilitate the history

matching process. Sensitivity of SP flood experiments to model parameters in SP

floods, however, are well-known to be the main difficulty in scaling up a SP coreflood

experiment to field scale [142, 161]. Thus, sensitivity of SP floods to model parame-

ters and intrinsic uncertainty associated with them are critically important and must

be quantified. Despite the numerous studies on modeling SP flooding, only a few

studies have examined sensitivity of important quantities of interest (i.e. cumulative

oil production and maximum pressure drop) to key parameters in SP flood model. In

the early work of Brown et al. [142], a simple SP flooding model based on a fractional

flow theory was employed and the effects of adsorption, relative permeability curves

at high capillary numbers, residual water saturation Sorw and residual oil saturation

Sorc were examined. Similar analysis is presented in studies such as [160,162,163] us-

ing rather simple models for SP flooding. In those studies oil/water/surfactant phase

behavior were disregarded and thus formation of the third phase (i.e. middle phase

microemulsion) or solubilization of oil/water in the surfactant-rich phase cannot be

captured. Consequently, [160, 162] did not focus on successful history matching and

further validating it. Inability of those simple models is further clear by relatively

poor history matching presented in [163]. In an experimental study, Walker et al. [164]

showed that microemulsion viscosity alone has major effects on the pressure gradient

and overall recovery efficiency. Recently, AlSofi et al. [147] studied SP flooding in

carbonates by means of a 1D coreflood model. They later quantified the sensitivity

of their 1D model to some detailed model parameters such as those used in polymer

viscosity calculation and surfactant phase behavior. Finally, although in mechanistic
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modeling studies of SP flooding such as [150,165] good matches between experimen-

tal and modeling data have been observed, no systematic history matching algorithm

were presented. Furthermore, predictive capability of such history matched models

were not further tested.

One can easily notice that in most previous SP flooding studies, (i) there exists

an arbitrariness in history matching methodology and thus a systematic approach to

history matching of SP flooding is needed, (ii) history matched SP models have not

been further tested to assess their predictive capabilities and rather blindly applied

at larger scales, (iii) history matching has been performed by matching the cumula-

tive oil production only and other important quantities such as oil-cut, pressure and

effluent profiles were ignored, (iv) sensitivity analysis and uncertainty quantification

are carried out using simplistic SP models which are far from real processes occurring

during a SP flood experiment.

In this work, we aim at addressing two issues we mentioned above namely lack

of robust history matching with multiple objectives and determining sensitivity of

typical SP flood models to some key physical parameters using a comprehensive SP

flood model rather than a simplified one. To do so, we build a mechanistic SP flood

model where most of the model parameters are determined prior to coreflood simula-

tion using laboratory measured data and only few parameters are left for the history

matching process. Model calibration is greatly assisted by means of global sensitivity

analysis to quantify the response of the model to uncertain input parameters taking

into account all major physical processes occurring during a SP flood experiment.

First, each sub-model in a SP flood model is examined to identify the most impor-

tant parameters. Next, a sensitivity analysis is done on the entire SP flood model

determining the most important processes. Then, we history match the cumulative

oil production and pressure profile using a multi-stage calibration algorithm. Finally,

we validate the model by predicting new independent experimental results without

further tuning the model parameters and we quantify the accuracy of the numerical

results.
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In the next section, we describe the coreflood experiments, which we used for his-

tory matching and calibrating our models. In §4.3, we discuss the modeling approach

and how we divide a typical SP flooding process into smaller sub-processes, where

model calibration can be done robustly. In §4.4, we perform a thorough sensitivity

analysis of SP flood model to further reduce the parameter space and facilitate the

history matching process. Finally, we present the calibrated SP flood model and its

validation in §4.4.5 obtained via a multi-stage algorithm.

4.3 Coreflood experiments

In this section, we briefly discuss the coreflood and other experiments used in this

study for model calibration and validation. Berea sandstone samples (Length: 12′′,

diameter: 2′′) of similar permeability (≈ 400 mD) and porosity (0.2) to the reservoir

of interest were used for all the flooding experiments under reservoir temperature (24

◦C) and pressure (400 psi). Throughout the experiments, a synthetic field brine with

total dissolved solid (TDS) of 9400 ppm and reservoir oil (dead oil) were used. A

combination of PETROSTEPR© S-13D HA (Alcohol Alkoxy Sulfate) and A6 (Alkyl

Benzene Sulfonate) and Huntsman SURFONICR© L series co-solvent was used at total

chemical concentration of 8000 ppm for the SP slug. Partially hydrolyzed polyacry-

lamide polymer (SNF Flopam 3330) was used for mobility control. An injection rate

of 1 ft/D was used for all the oil recovery experiments. A summary of fluid prop-

erties is shown in Table 4.1. Experiments were performed in secondary and tertiary

Table 4.1.: Fluid properties used in experiments

Property oil brine

Viscosity (cP) 13.8 1.0
Interfacial tension (dyn/cm) 22
pH — 8.0
Anions (meq/ml) — 0.145
Divalent cations (meq/ml) — 0.0097

modes of recovery following the same injection sequence: initial waterflooding (IWF)
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at reservoir salinity, high total dissolved salt (HTDS) preflush, surfactant-polymer

flooding (SP), polymer flooding (P), and finally extended waterflooding (EWF). Ex-

perimental data and models used to describe the experiments are provided in the

next section.

4.4 Coreflood modeling

Berea coreflood experiments (BCF) are modeled using UTCHEM [166,167]. UTCHEM

is a multicomponenet multiphase simulator with robust phase behavior modeling and

is considered the most comprehensive tool for SP flood modeling [157,168]. Generally,

chemical flooding requires a large set of model parameters relating to polymer behav-

ior, surfactant phase behavior and interfacial tension, and multiphase displacement

models. A common problem with such a high-dimensional problem is the existence

of a non-unique solution, meaning that many different sets of model parameters yield

the same results [169]. Our approach here is to avoid this condition through finding

and calibrating most of the model parameters separately via additional experiments.

Figure 4.1 shows a summary of different processes during a typical SP coreflood and

highlights the experimental data used for model calibration.

Fig. 4.1.: A summary of different processes in SP flooding and corresponding model
calibration approach. Colored boxes are those left for the history matching process
due to lack of experimental data (i.g. microemulsion viscosity) or large uncertainty
involved in measuring them such as surfactant/oil/water phase behavior.
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4.4.1 Modeling polymer flooding

Polymer viscosity

In order to quantify and model the polymer behavior, a series of rheology experi-

ments were performed on HPAM 3330. The goal is to model polymer behavior as a

function of salinity, shear rate, and its concentration [170]. Eq. 4.1 accounts for the

polymer concentration and the salinity effects

µ0
p = µw(1 + (A1 + A2C

2
p + A3C

3
p)C

Sp
SEP ), (4.1)

where µ0
p is the polymer viscosity at the zero shear rate, CSEP is the effective salinity

to polymer, and Sp is the exponent used in Eq. 4.2 (slope of the line in Figure 4.2b).

µ0
p − µw
µw

∝ C
Sp
SEP . (4.2)

Finally, shear rate effect is modeled via Eq. 4.3

µp = µw +
µ0
p − µw

1 + ( γ̇
γ̇1/2

)Pα−1
, (4.3)

where γ̇1/2 and Pα are fitting parameters.

The parameter γ̇1/2 used in Eq. 4.3 is not constant and rheological data at different

polymer concentrations and salinities shows significant variations in this parameter.

In order to account for these effects, γ̇1/2 is assumed to be of the from:

γ̇1/2(cSEP , cp) = (a1cSEP + a0) exp(a2cp), (4.4)

where cSEP and cP are effective salinity to polymer and polymer concentration, respec-

tively. Figure 4.3 shows variation of γ̇1/2 with salinity and concentration for HPAM

3330 and the corresponding fit of Eq. 4.4 to the experimental data.
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Fig. 4.2.: Polymer rheology data and model calibration. Left: dependency of polymer
viscosity on its concentration and the corresponding model, Eq.4.1, at three different

salinities. Middle: Polymer viscosity (
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) as a function of CSEP described by Eq.
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ppm.
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Fig. 4.3.: Variation of γ̇1/2 with salinity and concentration for HPAM 3330 and its
modeling using Eq. 4.4. Salinity is in ppm.

Residual resistance factor (RRF) experiments

One of the most important effects of polymer flooding is its permeability reduction.

In order to obtain correct model parameters to describe this process, we performed a

single phase polymer flooding experiment with the following steps:

1. Waterflooding and measuring the absolute permeability.

2. Polymer flooding until pressure profile reaches steady state.

3. Waterflooding and measuring the absolute permeability.
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The flooding experiments were carried out on a 0.5 ft long Berea sandstone (Length:

6′′, Diameter: 2′′) at 24 ◦C and flow rate of 0.25 cc/min. One can easily estimate poly-

mer residual resistance factor by taking a ratio of mobility before and after polymer

flooding. It is worth noting that in UTCHEM permeability reduction is not reversible,

meaning that the polymer reduction factor is equal to its residual resistance factor.

In addition to finding the permeability reduction factor for our polymer, we have used

the pressure data in this experiment to approximate the inaccessible pore volume as

well. Figure 4.4 shows the evolution of pressure drop along the core and simulation

results. Choosing value of 0.068 for Crk in Eq. 4.14 to model permeability reduction
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Fig. 4.4.: Evolution of pressure drop in the residual resistance factor experiment.

factor and 0.85 for inaccessible pore volume gives the best match to our polymer

flooding experiment.

4.4.2 Modeling surfactant flooding

Surfactant-oil-water systems at surfactant concentrations above critical micelles

concentration (CMC) are complex and modeling their phase behavior requires a series

of phase behavior experiments. The phase environment of such systems is strongly

affected by the salinity with type II(-) emulsions forming at low salinities, type III at

intermediate salinities, and type II(+) at high salinities. Phase behavior experiments
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were performed at room temperature and water to oil ratio (WOR) of 1. Based on the

experimental data, solubilization ratios for oil and water were calculated and used for

phase behavior modeling. After solubilization data is obtained, phase behavior can

be represented through binodal curve and tie lines and Hand’s rule [171–174]. Phase

behavior modeling requires three input parameters related to solubilization ratios and

two parameters defining salinities where transition from type II(-) to type III and

from type III to type II(+) occurs (salinity window). Phase behavior experiments are

quite complex and the solubilizations ratios and the salinity values at which change

in microemulsion type occurs are subjected to uncertainty. Solubilization data and

the resulting phase behavior model are shown in Figure 4.5.
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Fig. 4.5.: Solubilization data as a function of effective salinity for phase behavior
(CSE) for WOR of 1.

4.4.3 Capillary desaturation experiments

A high-permeability (air permeability ≈ 700 mD) Berea core (Length: 6′′, Diam-

eter: 2′′) was used to determine the capillary desaturation process through a flooding

experiment. A commercial co-solvent in the reservoir synthetic brine was used to

lower the interfacial tension (IFT) of the waterflood. The core was initially saturated

with the reservoir synthetic brine + co-solvent (20% Vol/Vol) solution and aged with

the reservoir oil for two weeks. It was assumed that the IFT of the system remained
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constant throughout the flooding process. Table 4.2 summarizes the set of parameters

for capillary desaturation experiments. The capillary number was increased by grad-

Table 4.2.: Initial parameters for the capillary desaturation experiment.

Property Value

Flow rate (cc/min) 0.09
Porosity 0.23
Viscosity (cP) 2.14, 14.2
IFT (mN/m) 2.80
Capillary number 2.5E-06

ually increasing the flow rate (0.09 to 100 cc/min) of the injectant (reservoir brine +

co-solvent solution). Shown in Figure 5.1 is the capillary desaturation experimental

results and its corresponding model. The residual oil saturation of ≈ 10% can be
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Fig. 4.6.: Experimental results showing the reduction in the residual oil ratio vs.
capillary number and the corresponding model, Eq. 4.8

achieved with a capillary number of 2.75E-03. So, for this particular Berea under the

experimental conditions, an in-situ IFT reduction of 0.002-0.003 mN/m is required to

achieve Sorc ≈ 10%. The experimental results agree well with the literature [175]. At

intermediate capillary numbers, relative permeabilities and residual saturations are

obtained by the interpolation given in Eq. 4.8,4.9.
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4.4.4 Conductivity experiments

Since our models does not account for heterogeneous permeability at the sub-core

scale, adopting reasonable values for dispersivity is essential to account for additional

mixing arising from inherent heterogeneity of cores. In order to estimate correct

values of dispersivity, we used electrical conductivity (EC) as a direct indicator of the

tracer concentration (i.e., ions). This is a common practice due to the simplicity of EC

measurements and the simple relationship between EC and TDS, which is described

as TDS = A× EC [176,177]. In each coreflood experiment, EC of effluent is measured

during the entire process, however, we only use the EC values corresponding to IWF

and HTDS flooding, where oil production is at steady state and negligible. Figure 4.7

shows that adopting dispersivity value of 0.01 ft gives an excellent match to measured

EC profile of effluent. This is also consistent with findings of other researchers for

Berea sandstone [178]. Finally, we assume the same dispersivity for aqueous, oleic,

and microemulsion phases.
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Fig. 4.7.: Measured conductivity for known TDS solutions (outside the core) and
its linear relationship with TDS in the range of 9400-20000 ppm (left). Salinity of
effluent fluid in a coreflood experiment measured via its conductivity, resulting in
dispersivity value of 0.01 ft (right).
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4.4.5 History matching and model validation

As described in previous sections, many of the model parameters can be obtained

through different experiments than corefloods. However, some model parameters

such as relative permeabilities at high capillary number, microemulsion viscosity, and

phase behavior parameters need to be tuned through modeling the entire SP flooding

process. In doing so, we honor the already estimated model parameters in the previous

sections.

Sensitivity analysis

We often do not have enough experimental data to find all the model parameters

needed for SP flooding. Thus, it is crucial to assess the impacts of lack of knowledge

about some model parameters on various quantities of interests (i.e., overall recovery).

To do so, we adopted the Sobol method to carry out global sensitivity analysis (SA)

[179, 180]. Global SA explores the entire range of model inputs (global rather than

local) and ranks model inputs according to their contributions to the output variance

[181]. Here, we emphasize on SA as it can potentially reduce the number of calibration

parameters within each model drastically, thus making the history matching process

tractable.

In this SA framework, X = (x1, x2, · · · , xn) denotes the model input vector and

Y = f(X) is the quantity of interest, where f is our deterministic model. It is worth

mentioning that each variable in vector X is a random number with a probability

distribution function (PDF). Such PDFs reflect our knowledge about each variable.

In global SA, importance of each variable is quantified through sensitivity indices.

First order effects of a variable i is calculated as:

Si =
VXi(EX∼i(Y |Xi))

V (Y )
, (4.5)
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where V denotes variance and the expectation is taken over the n-1 dimensional pa-

rameter spaceX∼i. An additional and more popular sensitivity index is the total-order

sensitivity index [181], STi, which quantifies the contribution of variable i including

first order effects and its higher order effects to the output variance as:

STi =
∑
k 6=i

Sk, (4.6)

where k 6= i includes all the indices where variable i is involved. Total-order index is

calculated as:

STi =
E∼i(VXi(Y |X∼i))

V (Y )
. (4.7)

We perform SA on two levels. First by analyzing each model separately to identify

the dominant model parameter within each model such as microemulsion viscosity

with five input parameters (see Eq. 4.17). Since we history match both the cu-

mulative oil production and pressure drop, the SA is carried out with respect to

these two quantities of interest (i.e. final cumulative oil recovery and peak pressure

drop). Similar to [147], we assume %20 uncertainty via uniform distribution in the

experimentally measured data and consequently model parameters obtained via ex-

perimental data. For the parameters that were not experimentally measured namely

those in IFT model (Chun Huh model, Eq. 4.11,4.12), ME viscosity model (Eq. 4.13),

and Corey’s exponent for relative permeability at high capillary number, we adopt the

range from [170], [157, 182–185], and [186], respectively. We then generate sufficient

number of model inputs (i.e., to ensure convergence of Sobol indices) using method

of [179] and evaluate our two quantity of interests namely cumulative oil recovery

(%OOIP) and maximum of dP via UTCHEM simulations. Finally, we compute the

Sobol indecies based on the Sobol’s method which is briefly described here (Eq. 4.5-

4.7). Figure 4.8 summarizes a series of sensitivity simulations for the five models with

more than one calibration parameter including IFT, residual resistance factor, phase

behavior, ME viscosity, and dispersion models that are separately examined. The

purpose of this analysis is to reduce the parameter space of each model rather than
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comparing different models with each other. Results shown in Figure 4.8 suggest that,
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Fig. 4.8.: Sensitivity analysis on different models in SP flooding using the Sobol
technique.

for our parameter ranges and experiment designs, only a few parameters in the five

model examined here are contributing to the variance of final outputs (cumulative

oil recovery and maximum pressure drop). For example, in microemulsion viscosity

model, the parameter describing the dependency of microemulsion viscosity on oil is

the most significant one and the other four parameters including the one determining

the contribution of brine have negligible effects. The same is true for other models

such as Chun Huh model for IFT and residual resistant factor model for polymers

both with only one significantly important parameter. Furthermore, this results show

negligible effects of dispersivity of oil and microemulsion on overall oil recovery and

maximum pressure drop along the core.



66

Our next level of SA is done on the entire SP flood model, meaning that the

dominant model parameters found in the previous step are used to rank the sensi-

tivity of cumulative oil production and peak pressure drop to different models. This

gives us an idea of how different models are contributing to the total variance of

our outputs. Figure 4.9 shows the sensitivity of our two quantities of interests to

different sub-models in a SP flood model. Here, we include two additional parame-

ters namely residual saturation and relative permeability exponents in Corey model

at high capillary number. We assume the same values of residual saturation and

Corey’s exponents for high capillary number flows and dispersivity for all the phases

(i.e., aqueous, oleic, and microemulsion). Results from Figure 4.9 gives insight about
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Fig. 4.9.: Sensitivity analysis on an entire SP flood model using the Sobol technique.



67

which model parameters should be targeted in the next section for history matching

and which ones should be left out as they do not contribute to the output variance.

For example, the constant, a, in the Chun Huh IFT model (Eq. 4.11) has almost

no effects on either maximum pressure drop or cumulative oil production and thus

must not be included into history matching process. Our SA also shows how critically

important inaccessible pore volume (EPHI4) for polymer is with regards to maximum

pressure drop, justifying its measurement it in a separate experiment (our polymer

flooding experiment). Moreover, with regards to cumulative oil production, the most

important parameter is dispersivity. Again, it justifies the need for measuring this

model parameter via a separate experiment due to its high impact on the overall oil

recovery as it can greatly improve the accuracy of the final SP flood model.

Final model calibration and validation

After the first stage of model calibration using the experimental data and finding

the most sensitive parameters in the remaining models, we aim at history matching the

entire SP model including the remaining models that needed to be calibrated. Based

on the SA presented in Figure 4.9, we aim at tuning microemulsion viscosity model

(α2), phase behavior model (h1), and Corey’s exponent at high capillary numbers.

As opposed to similar studies, where only the overall oil recovery is history matched

[147], in this study we aim at history matching two key outputs namely, overall

oil recovery and maximum pressure drop. This ensures a more realistic solution to

the coreflooding problem. To carry out the history matching, we adopted a multi-

stage history matching algorithm as shown in figure 4.10. In this approach, we first

history match the waterflooding part by matching the oil production and pressure

profile history. Next, we history match the performance of SP flood by matching

the incremental oil recovery and ignoring the pressure profile developed during SP

flooding. Once a match is achieved for overall oil recovery, we move to the final

stage of the history matching by matching the maximum pressure drop. It is worth
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noting that history matching the pressure might impact the overall oil recovery in

step two and thus it is necessary to correct for mismatched overall oil recovery after

the pressure is history matched in an iterative fashion. Here, we use one coreflood

Fig. 4.10.: Flowchart of the multi-objective history matching process. The process
includes three stages and in each stage only one objective function is minimized
(i.e., difference between numerical and experimental values) using different calibration
parameters for each stage.

experiment (BCF 1) for history matching and validate the obtained SP flood model

by predicting two different coreflood experiments (BCF 2 and BCF 3). A summary of

the injection schemes and chemical slug designs for our three coreflood experiments

are shown in Table 4.3. Figure 4.11 summarizes the history matching process for

BCF 1 from the 1st to 5th iteration. At the end of this process, a perfect match is

obtained for cumulative oil recovery and maximum pressure drop. Figure 4.11 also

presents how history matching BCF 1 is improving the model predictions for two

other BCFs (also refer to Table 4.4). Figure 4.12 shows the history matched SP

flood model with experimental results for BCF 1 as a function of pore volume (PV)

of injected fluids. As can be seen, the bimodal experimental oil cut, corresponding

to neat oil and oil+microemulsion productions in the experiment were accurately

captured. Additionally, a good match is achieved for the overall oil recovery and

pressure drop history. Next, we apply the same parameter set to model BCF 2 and
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Table 4.3.: Injection sequence and data of BCF experiments. Concentrations are in
ppm.

Slug Property BCF 1 BCF 2 BCF 3

IWF
PV 1.60 1.60 1.45
TDS 9400 9400 9400

HTDS
PV 1.0 0.25 —
TDS 17500 17500 —

SP

PV 0.25 0.25 0.50
TDS 17500 17500 9400
Surf. conc. 6780 6780 6780
Poly. conc. 2500 2500 3300

P
PV 0.50 0.51 1.01
TDS 9400 9400 9400
Poly. conc. 2500 2500 3300

EWF
PV 1.59 1.49 1.27
TDS 9400 9400 9400
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Fig. 4.11.: History matching results with BCF 1. Predictions by history matched
model in each iteration for BCF 2 and 3 are also shown.

Table 4.4.: History matching the SP flood model for BCF 1

Physical parameter Variable 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration
Surfactant phase behavior h1 0.009 0.0155 0.0155 0.0155 0.0155
Corey’s exponent at high Ca e1c, e2c, e3c 1 1 2 2 2
Microemulsion viscosity αV2 1 1 1 1.5 2
Cumulative oil production OOIP% 92 89 81.3 80 79.4
Cumulative oil production (Exp.) OOIP% 79.63 79.63 79.63 79.63 79.63
Max. pressure drop dP(psi) 2.76 2.77 4.26 4.96 5.66
Max. pressure drop (Exp.) dP(psi) 5.6 5.6 5.6 5.6 5.6

BCF 3 for model validation. Our experimental data shows extreme sensitivity for

oil production to HTDS pre-flush. In BCF 1, 1 PV of HTDS pre-flush was used to
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Fig. 4.12.: History matching results with BCF 1. From left to right: oil cut, cumula-
tive oil production, and pressure drop.

elevate the salinity level of the core to the optimum salinity where we observed the

maximum recovery. In BCF 2 and BCF 3, we reduced the slug size of HTDS pre-flush

to 0.25 PV and zero, respectively, resulting in lower overall oil recoveries compared

to that in BCF 1. Shown in Figure 4.13 is the validation study with BCF 2 and BCF

3. It is worth noting that there is a drop in the overall oil recovery consistent with

the experimental results. Again, oil cut, cumulative oil recovery, and pressure drop

profile were successfully predicted. Table 4.5 summarizes all the parameters used in
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Fig. 4.13.: Validation study with BCF 2 (top row) and BCF 3 (bottom row). From
left to right: oil cut, cumulative oil production, and pressure drop.

our SP flood model.
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Table 4.5.: Final SP flood model parameter set

UTCHEM parameter(s) Description Value(s)
Polymer models
AP1, AP2, AP3 Zero shear viscosity multipliers 15, 0, 155
BETAP Effective divalent salinity parameter 1
CSE1 Salinity above which viscosity is affected 0.0001
SSLOPE Log-log slope of viscosity-effective salinity −0.76
GAMMAC,POWN Polymer shear rate dependency parameters 40, 1.66
A0, A1, A2 Constants in Eq. 4.4 −588, 7683,−12
Surfactant models
C2PLC, C2PRC Oil concentrations at the plait point of type II (−), and type II (+) 0, 1
EPSME Critical micelle concentration 0.0001
CSEL,CSEU Salinity window for type III 0.255, 0.305
HBNC70, 71, 72 Heights of binodal curve at zero, optimal, and twice optimal salinities 0.027, 0.0155, 0.02
chuh, ahuh Constants in Chun Huh IFT model 0.3, 10
Xiftw Log of oil-water interfacial tension 1.32
ALPHAVi; i: 1–5 ME viscosity parameters 2, 2, 0, 0.9, 0.7
Chemical-rock interactions
t11, t22, t33 CDC parameters for the aqueous, oleic, and ME phases 1500, 1100, 346
e1c, e2c, e3c Corey exponents at high Ca numbers for the aqueous, oleic, and ME phases 2.0, 2.0, 2.0
AD31, AD32, B3D Surfactant adsorption parameters 0.31, 0, 100
AD41, AD42, B4D Polymer adsorption parameters 8.4, 0, 100
EPHI4,BRK,CRK Polymer permeability reduction parameters 0.85, 100, 0.068

4.5 Conclusion

In this study, we showed that model calibration and history matching can be

greatly facilitated by means of sensitivity analysis, and we presented a comprehen-

sive methodology integrating extensive experimental data required for a successful

SP flood modeling. Some of the key model parameters such as those in polymer

permeability reduction factors can be determined prior to SP coreflood modeling and

thus reduce the uncertainty of final SP flood model. Using the rheological data for

polymer, phase behavior tests, capillary desaturation and polymer RRF experiments

we were able to build a SP flood model via a multi-stage calibration algorithm where

the cumulative oil production and pressure profile were successfully history matched.

Improving the polymer shear-thinning model in UTCHEM led to better agreement

between experimental and simulation pressure profile among three different BCF ex-

periments. We also provided insight into the relative importance of some of key

model parameters in SP flooding. Results presented in Figures 4.8-4.9 can be readily

used for other SP flooding experiments to build accurate history matched models.

However, one limitation would be regarding phase behavior modeling, as in our ex-

periments we have explored the optimum and under-optimum salinity regimes. It

is likely that results presented in Figures 4.8-4.9 slightly change for over-optimum

salinity regime, however, it must be noted that the main insight from our sensitivity
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analysis is relative importance of model parameters rather than their exact sensitivity

indices. Finally, we showed that our model can accurately predict the performance

of two additional independent coreflood experiments conducted with different slug

design and thus salinity profiles.
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4.7 Appendix

4.7.1 Capillary Number and Relative Permeability

The residual saturation is modeled based on the trapping number as shown below:

Slr = min

(
Sl, S

high
lr +

Slowlr − Shighlr

1 + Tl(NTl)
τl

)
(4.8)

where τ l and Tl are fitting parameters for trapped saturation data for phase l (l=1:

aqueous, l=2: oleic, l=3: microemulsion). Shighlr and Slowlr are trapped saturation

at high and low capillary number respectively. We use a value of one for τl. The

endpoint relative permeability for each phase increases in a very predictable way as

the trapping number increases. The following equation is used to modify the endpoint

relative permeability based on residual saturation of conjugate phase:

k0
rl = k0,low

rl +
Slowl‘r − Sl‘r
Slowl‘r − Shighl‘r

(
k0,high
rl − k0,low

rl

)
(4.9)

where Sl‘r is the residual saturation of the conjugate phase. k0,high
rl and k0,low

rl are

endpoint relative permeability at high and low capillary number respectively. Now,
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using a simple function such as Corey-type relative permeability equation, we can

calculate relative permeability.

krl = k0
rl(Sl)

nl (4.10)

where Sl = Sl−Slr
1−Swr−Sor is the normalized saturation and nl is the Corey exponent for

lth phase.

4.7.2 Interfacial Tension Model

We use Chuh-Huh equation to model interfacial tension which correlates the in-

terfacial tension to the solubilization ratio as:

σl3 = σ exp(−aRl3) +
cFl
R2
l3

(1− exp(−aR3
l3)), l = 1, 2 (4.11)

where σow is oil-water interfacial tension, Rl3 is the solubilization ration for lth phase,

a and c are fitting parameters. The Hirasaki’s correction factor, F2, is defined as :

Fl =
1− exp(−√conl)

1− exp(−
√

2)
(4.12)

where conl =
∑3

k=1(Ckl − Ck3)2

4.7.3 Permeability Reduction Model

The model used for permeability reduction accounts for both the reduction in mo-

bility of the displacing fluid as well as reduction in effective permeability of the porous

medium. This model assumes that the permeability reduction is irreversible i.e. per-

meability reduction does not decrease with the decrease in polymer concentration.

The equation for permeability reduction is given by:

Rk = 1 +
(Rk,max − 1)brkC4l

1 + brkC4l

(4.13)
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where Rk,max is modeled as:

Rk,max = max

1− crk(Ap1C
Sp
SEP )1/3

(

√
kxky

φ
)1/2

 , 10

 (4.14)

where crk and brk are input fitting parameters, maximum Rk is taken as 10.

4.7.4 Adsorption Model for Surfactant and Polymer

The effect of adsorption is assumed to be irreversible with concentration and

reversible with salinity. We use Langmuir type isotherm to model the adsorption of

both the surfactant and polymer given by:

Ĉ∗m =
am(C̃m − Ĉ∗m)

1 + bm(C̃m − Ĉ∗m)
, m = 1, 2 (4.15)

where

am = (am1 + am2CSEP )(
kref
k

)1/2 (4.16)

where m = 1 is surfactant and m = 2 is polymer, a3 and b3 are fitting parameters,

CSEP is effective salinity, C
∗
m is volume of adsorbed surfactant or polymer/volume of

water, and C̃m is adsorbed surfactant or polymer concentration/pore volume.

4.7.5 Microemulsion viscosity

The micro-emulsion viscosity is modeled using the following model:

µ3 = C13µw exp[α1(C23 +C33)] +C23µo exp[α2(C13 +C33)] +C33α3 exp[α4C13 +α5C33]

(4.17)

where α1, α2, α3, α4, α5 are fitting parameters. µw and µo are water and oil viscosity

and Ckl is concentration of kth component in lth phase where k = 1: water, k = 2:

oil, k = 3: surfactant, and l = 1: aqueous, l = 2: oleic, and l = 3: microemulsion.
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5. UNSTABLE DISPLACEMENT OF NON-AQUEOUS

PHASE LIQUIDS WITH SURFACTANT AND POLYMER

This chapter is reproduced with permission from: Aramideh, S., Vlachos, P. P.,

Ardekani, A. M. (2019). Unstable Displacement of Non-aqueous Phase Liquids with

Surfactant and Polymer. Transport in Porous Media, 126(2), 455-474. The final

publication is available at sciencedirect.com

5.1 Abstract

In this paper we study two-phase multicomponent displacement of two immiscible

fluids in both homogeneous and heterogeneous porous media. In many applications

such as enhanced oil recovery, fluid mixing and spreading can be detrimental to the

efficacy of the process. Here, we show that when an initially immobile phase is being

displaced by a finite-size slug of solvents (surfactant and polymer), viscous fingering

significantly enhances mixing and spreading of solvents. This effects are similar to

those caused by medium heterogeneity and lead to poor displacement efficiency. We

first quantify the efficacy of our displacement subject to different mobility ratios,

Peclet numbers, and levels of medium heterogeneity. We observe a non-monotonic

behavior in displacement efficiency as a function of mobility ratio, indicating that

although stable frontal interface is desirable, miscible viscous fingering on the rear

interface will eventually disintegrate the solvents slugs and reduce the displacement

efficiency. Then, we show that miscible viscous fingering developing on the rear

interface of the chemical slug could be greatly suppressed when viscosity contrast is

gradually decreased using exponential or linear functions, leading to 10% increase in

displacement efficiency while using the same amount of chemicals. To elucidate this

low displacement efficacy, we study the evolution of mixing, spreading, and interfacial
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length and show that while higher viscosity ratios are quite effective in mobilizing the

initially immobile phase in 1D displacements, they are in fact detrimental in 2D

unstable displacements since they enhance mixing and spreading of solvents.

5.2 Introduction

Spatially fluctuating velocity field in porous media causes concentration fields

to spread [99]. Spreading creates new fluid-fluid interface and thus enhances mixing

through diffusion. Mixing and spreading of passive tracers in porous media have been

intensively studied due to their fundamental role in many applications such as CO2

sequestration [187–189], enhanced oil recovery [190,191], groundwater flows [192,193],

and reactive transport [194–196].

Recently many studies have focused on quantifying mixing in porous media due

to their importance primarily in reactive transport [197]. Besides variation in rock

properties that is a primary cause of spreading and mixing [198,199], hydrodynamic

instabilities can also further enhance mixing in flow through porous media [200–203].

Such hydrodynamic instabilities are ubiquitous in natural and industrial process due

to viscosity (or mobility in the case of multi-phase flow) or density contrast.

Displacement of a more viscous fluid by a less viscous fluid leads to a hydrody-

namic instability called viscous fingering [204–206]. In the realm of two-phase flows,

viscous fingering has been studied for decades through experiments [207–210], numer-

ical simulations [211–213], and linear stability analysis [214,215]. Different aspects of

viscous fingering for immiscible displacements such as effects of relative permeabil-

ity [216], permeability heterogeneity [217, 218], viscosity ratio and gravity [219], and

flow rate [220] have been studied. A series of numerical simulations and experiments

for drainage process were performed in [221] where the region of stable displacement

was identified as a function of viscosity ratio and capillary number (Ca).

Most previous studies have focused on drainage and imbibition processes in the

absence of solvents. Solvents such as polymers and surfactants play a central role in
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many technological processes such as enhanced oil recovery (EOR) [140] and surfac-

tant enhanced aquifer remediation [167, 222–224]. For example, in mature oil reser-

voirs more than two-third of oil remains trapped in small pores as a disperse phase due

to capillary forces where injecting surfactants and polymers have been proven very

effective in mobilizing the remaining oil in place [225–228]. In this paper, we focus on

a tertiary enhanced oil recovery process called surfactant-polymer (SP) flooding [168].

SP flooding efficacy in mobilization of non-aqueous phase liquids (NAPL) is due to

its synergy between polymer and surfactant. The key mobilization mechanism in SP

flooding is lowering the interfacial tension (IFT) between the two immiscible fluids by

injection of surfactant in concert with enhanced sweeping efficiency due to polymer

injection.

In this study, we investigate multi-phase transport at continuum (Darcy) scale in a

rectilinear domain with line source injection [229]. Efficacy of SP flooding is directly

related to stable displacement of displacing fluids often referred to as piston-like

displacement [230–232]. In piston-like displacement there is a sharp interface between

displacing and displaced fluid. However, this condition virtually never occurs due

to variations in rock properties (i.e., permeability and porosity) and hydrodynamic

instabilities. In practical applications, due to economical and technical considerations,

surfactant (s) and polymer (p) are only injected for a small pore volume (PV). This

creates a leading and trailing interfaces. These interfaces are both prone to become

unstable and will interact with each other due to finite width of injected solvent

slug [233]. We aim to answer following questions: how does mobility ratio change

spreading and mixing of solvents? what are the effects of finite-size solvent slug, and

finally how does recovery rate depend on hydrodynamic instabilities. We perform

high-resolution numerical simulations and analyzing degree of solvent mixing, its

spreading, breakthrough curves, and evolution of interfacial length.
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5.3 Mathematical method

5.3.1 Governing equations

We study a multicomponent (wetting, non-wetting, surfactant, and polymer) two-

phase (wetting and non-wetting) imbibition process in which a wetting phase is in-

jected into a porous media to displace a non-wetting phase. Transport equation for

each component is given by:

φ
∂ (SwCiw)

∂t
+∇ · (uwCiw − φSwD∇Ciw) = Ri, i = w, s, p (5.1)

with Sw the wetting phase saturation, uw Darcy flux of wetting phase, φ the porosity,

and Ciw the concentration of wetting phase (w), surfactant (s), and polymer (p) in

the wetting phase and Ri is the source/sink term accounting for injection/production

of each component. In this study, solvents (surfactant and polymer) are only soluble

in the wetting phase and non-wetting phase saturation, Sn, is calculated as 1 − Sw.

In Eq. 5.1, D is the dispersion tensor and is given as [199]:

Dij = (Dm + (αT |uw|)) δij + (αL − αT )
uwiuwj
|uw|

, i = x, y (5.2)

where Dm is the molecular diffusion coefficient and αL and αT are longitudinal and

transverse dispersivities of solvents in the wetting phase, respectively.The Darcy phase

velocities for each phase are given by:

ui = −kri
µi

K (∇pi + ρig∇z) , i = w, n (5.3)

where K is the absolute permeability tensor of medium, g and z are the gravity and

depth, respectively. Moreover, µi, ρi, kri are the viscosity, density, and relative perme-

ability of phase i where w and n denote wetting and non-wetting phases, respectively.
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Here, relative permeabilities are modeled based on Corey-type functions [234, 235].

These functions for the wetting and non-wetting phases have the general form of:

kri = kei (Sni)
ei, i = w, n (5.4)

where kei is the endpoint relative permeability for each phase and ei is the exponent

of the each phase Corey function. Sni is the normalized saturation of phase i defined

as:

Sni = Si−Sir
1−Swr−Snr , i = w, n (5.5)

where Sir is the residual saturation of phase i during drainage (i = w) and imbibition

(i = n) processes, respectively. End-point relative permeabilities along with Corey’s

exponents and residual saturations fully describe a set of relative permeability curves

for wetting and non-wetting phases. Displacement of trapped non-wetting phase is

governed by the interplay of viscous and capillary forces and thus is a function of

Ca = |K∇p|
σ

where σ is IFT [236]. Injection of surfactant increases the Ca number by

orders of magnitude which results in mobilization of trapped fluid, a process called

capillary desaturation [175, 237]. Shown in Figure 5.1 is the capillary desaturation

curve used in this study which is obtained from experiments on sandstone (see [228]).

In addition to reducing the residual saturation, an elevated Ca number further mod-

ifies the shape of relative permeability curves, shifts them toward linear functions

of Snw (ei → 1) [239–242]. In this study, we use relative permeability data at low

Ca number (during waterflooding) obtained via experiments on sandstone. At high

Ca numbers (ultra-low IFT, Ca ≈ 10−1) it is assumed that relative permeability

curves are linear with zero residual saturation [243, 244] (see Figure 5.2). We do not

consider gravitational effects and only focus on viscous fingering. Moreover, the cap-

illary pressure is neglected due to an ultra-low IFT during surfactant flooding. We

use the Implicit Pressure Explicit Saturation (IMPES) algorithm [245–247]. Pressure

field is obtained by solving a linear system of equations arising from imposing an



80

10−6 10−5 10−4 10−3 10−2 10−1

Ca

0.0

0.2

0.4

0.6

0.8

1.0

S
∗ n

r

Model (T=1100)

Exp.

Fig. 5.1.: Effects of increasing Ca number on residual saturation of non-wetting phase.
S∗nr is normalized with residual saturation after waterflooding (i.e. low Ca number).
The normalized residual saturation is modeled as 1

1+TCa
where T is a fitting parameter

[167,238].
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Fig. 5.2.: Impact of increasing Ca number on relative permeability curves.

overall mass balance on volume-occupying phases (i.e. here wetting and non-wetting

phases). Once the pressure field is known the phase velocities are calculated via Eq.

5.3 and then components concentration (wetting phase, surfactant, and polymer) are

obtained by explicitly solving Eq. 5.1.

A surfactant concentration above its critical micelle concentration (CMC) creates

a complex surfactant/oil/water phase behavior [171, 248, 249]. Here, surfactant is

present at concentrations below its CMC where there exist only two phases namely
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wetting and non-wetting phases with former one containing all the surfactant. We

use experimental data for a commercial surfactant to model IFT as a function of

surfactant concentration as shown in Figure 5.3.

0.00 0.01 0.02 0.03 0.04 0.05

Conc. (wt%)

10−2

10−1

100

101

102

IF
T

(m
N
/m

)
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Fig. 5.3.: Variation of IFT between wetting and non-wetting phases with respect to
surfactant concentration in the wetting phase. Note that IFT remains constant for
concentrations above CMC.

Polymer injection is an effective technique for mobility control and better sweeping

efficiency [140, 250]. Here, we use the experimental data obtained for a Hydrolyzed

polyacylamide (HPAM), one of the most widely used and successful polymer types

[251, 252]. In general, the viscosity of polymer solution depends on the shear rate,

salinity, and concentration of polymer. In this study, we neglect the other two effects

and only consider dependency of polymer viscosity on its concentration given by the

Flory-Huggins equation [253]:

µp = µw
(
1 + Ap1Cp + Ap2C

2
p + Ap3C

3
p

)
(5.6)

where µw is the viscosity of the wetting phase without polymer and Cp is the polymer

concentration in the wetting phase. Fitting parameters Ap1, Ap2, and Ap3 are obtained

from rheology experiments on HPAM 3230 as shown in Figure 5.4 (see [228] for

detailed rheological data).
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Fig. 5.4.: Variation of viscosity of polymer solution with respect to polymer concen-
tration.

5.3.2 Problem setup

We are interested in investigating hydrodynamics instabilities occurring on leading

and trailing edges of a finite-size solvent slug and their impacts on solvents’ mixing,

spreading, and efficiency in mobilizing an immobile non-wetting phase. As shown in

Figure 5.5, our computational domain is a rectangular with aspect ratio of L/W = 10.

It is assumed that solvents have small diffusivity within the wetting phase which re-

sults in Pe = UL
D

= 106 where U is the Darcy velocity, L is the length-scale (either

length or width of the domain), and D is the solvent diffusivity in the wetting phase.

Here, the computational domain is discretized by a fine 200× 500 mesh. We have

performed additional simulations with coarser grids and observed nearly identical

overall recovery and breakthrough curves [202]. Furthermore, we use a total varia-

tion diminishing (TVD) flux-limited higher-order scheme for convection terms which

minimizes numerical dispersion. This is necessary to accurately capture the small-

scale viscous fingering. Solvents such as surfactant and polymer are often used after

waterflooding process. Thus, to obtain a realistic condition, we performed a separate

simulation to obtain the saturation profile of the wetting phase for the entire domain.

After waterflooding, average of wetting phase and non-wetting phase saturations are
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0.55 and 0.45, respectively (Sw + Sn = 1). In all simulations, solvents are injected

through vertical wells covering the entire depth of the domain where it takes two

days to inject one pore volume (PV) of fluids. It is worth noting that we do not place

the solvent slug inside the domain and instead inject it similar to real applications.

After the desired amount of solvents are injected we keep injecting pure wetting phase

(with no solvent) for two PVs. The ratio of viscosity of non-wetting phase to that of

pure wetting phase (without polymer) is µn/µw = 10. In all simulations surfactant is

injected at its CMC concentration and for our baseline case polymer concentration is

chosen such that the wetting phase viscosity be equal to that of non-wetting phase. A

no-flow boundary condition is imposed in the transverse direction. To trigger hydro-

dynamic instabilities, the injected concentration of polymer is randomly perturbed

with a small amplitude of 1% of the injected concentration and duration of 0.001

PV in all cases. In all simulations, the time step is selected during run-time so that

maximum CFL=0.01 is achieved.
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Fig. 5.5.: Schematic of problem setup with initial and boundary conditions.

5.4 Results

We expect two types of displacement and viscous fingering instability. On the

frontal interface, the displacement and consequently the viscous fingering are close

to those of immiscible condition whereas on the rear interface they are close to those

of miscible condition as there is little to no mobile non-wetting phase. Miscible

displacement becomes unstable to transverse perturbations when viscosity ratio of

displacing fluid is less than that of displaced fluid. This criterion is always satisfied
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in our study and thus displacement is unstable on the rear interface. This is also

the case for real applications as injecting an infinitely long solvent slug to prevent

viscous fingering on the rear interface is not feasible and economical. One remedy to

this situation is to gradually decrease (graded slug) the solvent concentration (i.e.,

only polymer) rather than a sharp decrease to zero. We will discuss the effects of

graded polymer injection later. In immiscible displacement flow becomes unstable

when mobility ratio calculated as:

M =
λw
λn

=
krw/µw
krn/µn

(5.7)

becomes larger than one. Mobility ratio is thus the key parameter governing the sta-

bility of the displacement. In the works of [215,254], end-point relative permeabilities

(ke
n,w) were used to evaluate Eq. 5.7. In this approach, mobility ratio does not depend

on the shape of relative permeability curves (i.e., only depends on end-point relative

permeabilities). This is in contrast to finding of [216] where they found that shape

of relative permeability curves greatly influences the onset of instability. Solution of

Eq. 5.1 in 1D is a well-known Buckley-Leverett profile which features a saturation

shock and instabilities in immiscible displacement are localized around the shock re-

gion [214]. It has been shown in the works of [255,256] that mobility ratio measured

across the shock (Ms) should be used to assess the onset of instability. Moreover,

imbibition experiments in [257] shows that shock mobility ratio correctly predicts the

onset of flow instability (as opposed to end-point mobility ratio). Properties of satu-

ration shock (i.e., shock velocity, saturation, etc.) could be obtained from fractional

flow curves. However, as opposed to the case of constant relative permeabilities, we

cannot construct fractional flow curves due to spatio-temporal change of relative per-

meability curves as surfactant and polymer flow through the medium. Nevertheless,

displacement on the frontal interface is still an immiscible one and a saturation shock

forms at a specific saturation and travels at a constant speed and displacement is

expected to become unstable when Ms > 1 similar to the case of constant relative
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permeabilities. Thus, to confirm this, we perform a series of unperturbed displace-

ment simulations with three values of polymer concentrations and numerically obtain

shock mobility ratio. In our work, shock mobility ratio is defined by the ratio of total

mobilities upstream and downstream of shock front [258]. As shown in Figure 5.6,

for three cases with different viscosity ratios (i.e., different polymer concentration)

there forms a saturation shock and mobility ratio across the shock is obtained ac-

cordingly. Performing the same simulations but this time with perturbed interfaces

shows that, consistent with the theory, displacement remains stable for shock mobility

ratio smaller than unity whereas it is unstable for shock mobility ratio greater than

unity. In the present study, we also investigate the effects of medium heterogeneity

0.0

0.2

0.4

0.6

0.8

1.0

S
w

PVI=0.05

PVI=0.07

PVI=0.09
Ss = 0.48

PVI=0.05

PVI=0.07

PVI=0.09
Ss = 0.8

PVI=0.05

PVI=0.07

PVI=0.09
Ss = 0.94

0.0 0.05 0.1 0.15 0.2
0.0

0.2

0.4

0.6

0.8

1.0
Ms = 2.8

0.0 0.05 0.1 0.15 0.2

Ms = 1.7

0.0 0.05 0.1 0.15 0.2

Ms = 0.8

0.4

0.9
Sw

Fig. 5.6.: Top row: The formation of saturation shock at specific saturations for three
cases of polymer concentration which results in µn/µw = 4.39, 1.05, 0.36 (unperturbed
cases). Arrow shows the saturation shock location. Bottom row: snapshots of wetting
phase saturation at PV = 0.075 (perturbed cases). Long fingers develops around the
saturation shock when Ms > 1 whereas displacement is stable for Ms < 1.

on the displacement efficiency. In addition to a homogeneous permeability field, three

heterogeneous permeability fields with isotropic, multi-lognormal, and stationary dis-

tributions are considered. An exponential covariance function with correlation lengths

of 0.1 of domain size (i.e., mean flow parallel to bedding [259]) and log-k variances

of 0.01,0.1, and 1 is used to build heterogeneous permeability fields (Figure 5.7). All
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permeability fields have a constant porosity of 0.2 and geometric mean permeability

(K) of 420 md.
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0
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Fig. 5.7.: Three heterogeneous permeability fields used in this study with increasing
level of heterogeneity (σ2

lnK = 0.01, 0.1, 1) from left to right.

5.4.1 Displacement efficiency

In surfactant enhanced aquifer remediation or enhanced oil recovery applications

displacement efficiency is the foremost parameter. Displacement efficiency (recovery)

is quantified by calculating the ratio of the total amount of recovered (produced)

immobile phase to its initial in-place amount. Here, the wetting phase displaces the

non-wetting phase and we report displacement efficiency as the percentage of the non-

wetting phase produced after injecting 2 PV of wetting phase. To properly quantify

how viscous fingering and heterogeneity affects the displacement efficiency, we first

carried out a series of simulations in a homogeneous permeability field with no per-

turbation of interfaces (referred to ideal displacement hereafter) thus eliminating the

two main sources that negatively impact the displacement efficiency. Such a condition

yields to a displacement type often called piston-like displacement where the vertical

sweeping efficiency is maximum and displacement efficiency is the highest. In real

applications, however, a piston-like displacement cannot be achieved due to hydrody-

namic instabilities and medium heterogeneity. In figure 5.8, we present the effects of

viscosity ratio, Pe number, and medium heterogeneity on the displacement efficiency

of our problem of interest. Intuitively, more of immobile phase could be displaced

by more favorable mobility ratios (i.e., through adding more polymer to the wetting

phase). This is however true only for an ideal (piston-like) displacement. As shown
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in Figure 5.8a, the displacement efficiency increases monotonically as the viscosity ra-

tio (µn/µw) and consequently the mobility ratio reduces. In a realistic displacement

process driven by a finite-size slug of solvents (i.e. surfactant and/or polymer) the

displacement efficiency is not solely governed by the favorable mobility ratio across

the saturation shock but also hydrodynamics of the rear interface. Figure 5.8a shows

that in a 2D displacement a more favorable mobility ratio (on the frontal interface)

is not as effective as it is in an ideal displacement and in fact could negatively im-

pact the displacement efficiency by creating unfavorable viscosity ratio (on the rear

interface). This effect is attributed to excessive viscous fingering occurring on the

rear interface as the viscosity ratio becomes more favorable on the frontal interface.

Theoretically, lower values of Pe number implies stronger diffusive forces and conse-

quently more dilution of solvents within the wetting phase; one thus expects lower

displacement efficiency as a result of stronger solvent dilution. Figure 5.8b shows that

for ideal displacements this effect is not important until around a very low Pe number

(Pe ≈ 10) and above this value displacement efficiency is not negatively affected by

the Pe number. Interestingly, for 2D cases, this effect is completely reversed and by

reducing the Pe number the displacement efficiency dramatically increases such that

for Pe number of 10, an unstable displacement (2D) recovers almost the same amount

of non-wetting phase as in its corresponding ideal displacement. Although stronger

diffusive forces severely smear out the solvent concentration and it could be detrimen-

tal to the displacement efficiency, such a smearing effect heavily suppresses and delays

the growth of fingers on the rear interface, resulting in almost the same displacement

efficiency as in the ideal case. In addition to hydrodynamic instabilities caused by

unfavorable viscosity (mobility) ratio, medium heterogeneity could be detrimental to

displacement efficiency through enhanced dilution of solvents and channeling through

high-permeability pathways. Figure 5.8c quantifies such negative effects on displace-

ment efficiency. It is clear that compared to the case of homogeneous permeability

field, even a very small value of heterogeneity (σ2
lnK = 0.01) drastically reduces re-

covery and this effect is stronger for more heterogeneous media. Figure 5.9 shows
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Fig. 5.8.: Effects of Pe number, viscosity ratio, and medium heterogeneity on the
displacement efficiency and comparisons with corresponding piston-like (ideal) dis-
placement.

surfactant concentration field for different viscosity ratios, Pe numbers, and levels of

medium heterogeneity.

Based on our results presented in Figures 5.8a,b, it is clear that viscous fingering

occurring on the rear interface due to inevitable unfavorable viscosity ratio is the

main reason for deviating the displacement regime from the piston-like or the ideal

one. Ideally, one aims to attenuate the viscosity contrast on the rear interface while

making sure enough polymer exists throughout the solvent slug to efficiently displace

the immobile non-wetting phase. To suppress the viscous fingering, various solutions

have been proposed such as addition of a low dose of nanoparticle to base fluids [260],

varying injection ratio of the electric current to flow rate [261], or by gradual reduc-

tion of pore sizes along the flow direction [262]. While those ideas are exciting and

show great promise in reducing the extent of viscous fingering and flow instabilities,

they often are not applicable to large scale problems of our interest (e.g. chemical

enhanced oil recovery). A possible solution has been sought through grading (taper-

ing) the polymer solution such that the polymer concentration is gradually reduced

and thus decreases the negative effects of viscous fingering in two ways: (i) reducing

the viscosity contrast on the rear interface and thus suppresses the growth of viscous

fingers, (ii) enlarging the polymer slug (note that injected polymer mass remains
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Fig. 5.9.: Top row: snapshots of surfactant concentration (c/c0) for three different
injected polymer concentrations results in µn/µw = 4.39, 1.05, and 0.36 from left to
right at PVI = 0.2. It is clear that smaller viscosity ratio suppresses instabilities on
the frontal interface while promoting viscous fingering on the rear interface. Middle
row: snapshots of surfactant concentration (c/c0) for three different Pe numbers of
106, 103, and 102 from left to right at PVI = 0.5. Stronger diffusive forces suppress
viscous fingering and thus integrity of the solvent slug is preserved for longer times,
resulting in a higher overall displacement efficiency even though higher diffusion of
solvents within the wetting phase and hence dilution of the solvent concentration
field is not desired, but here the gains through delayed hydrodynamic instabilities
are much higher. Bottom row: snapshots of surfactant concentration (c/c0) for three
different heterogeneity permeability fields with an increasing level of heterogeneity
(σ2

lnK = 0.01, 0.1, 1) from left to right at PVI = 0.2.

.

constant or could be even smaller than the conventional scenario) and thus it takes

more time for the pure wetting phase to develop fingers through the solvent slug and

disintegrates it [157,263,264]. Here, we are interested in studying the efficacy of such

approach in which we keep the total amount of injected polymer constant and con-

tinuously decrease its concentration as a function of time. We used three exponential

(with different decay rates) and linear functions to obtain the polymer concentration

profile at the injection well as a function of time. Again, we have performed two series

of simulations corresponding to 2D unstable displacements and piston-like or ideal

displacements. It is worth noting that grading the polymer reduces the maximum

achievable displacement efficiency compared to the case of pulse injection. Figure 5.10
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shows a comparison of various grading functions and how they perform compared to

their corresponding ideal case. It can be seen that the graded viscosity profile re-
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Fig. 5.10.: The effects of graded polymer injection and comparison with the corre-
sponding piston-like (ideal) displacement. It is found that grading the polymer slug
improves the displacement efficiency for all types of grading (i.e. exponential and
linear functions) due to suppressing the viscous fingering through creating smaller
viscosity ratios on the rear interface. Note that the maximum efficiency indicated
by the ideal recovery is slightly reduced by the grading of the polymer slug. This
reduction in displacement efficiency is due to smaller polymer concentration around
the saturation shock where it is needed the most. Linear grading achieves the highest
efficiency. H(t0 − t) is the Heaviside function.

gardless of its shape (exponential with different decay rates or linear) improves the

displacement efficiency even though the maximum achievable displacement slightly

drops compared to the case of pulse injection. Effects of graded polymer injection on

the development of viscous fingering on rear and frontal interfaces are illustrated in

Figure 5.11.

5.4.2 Mixing, spreading, and interfacial length

As mentioned and showed before, in applications such as enhanced oil recovery

or surfactant remediation mixing and spreading of the solvent slug is detrimental to

displacement efficiency. It is thus important to quantify to what degree our solvent
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Fig. 5.11.: Snapshots of surfactant concentration (c/c0) at PVI = 0.3 for three poly-
mer injection schemes from left to right: c0H(0.15− t), c0e−6.3tH(0.45− t), and
c0e−3.0tH(0.2− t). The graded polymer injection effectively suppresses the devel-
opment of viscous fingering.

slug mixes and spreads as it travels from the injection well to production well. In

the case of homogeneous medium, hydrodynamic instabilities (i.e. viscous fingering)

are responsible for mixing and spreading of solvents and in the case of heterogeneous

porous media heterogeneous conductivity field further enhances mixing and spreading.

We express the degree of segregation (or mixing) through the variance of solvent (i.e.

surfactant or polymer) concentration field normalized by its maximum value which

corresponds to the complete segregated state (i.e. piston-like displacement) as:

σ2
c =
〈c2〉 − 〈c〉2
σ2
max

(5.8)

where σ2
max = 〈c〉 (c0 − 〈c〉) and c0 is the injected concentration of the solvent. σ2

c

varies between 0 and 1. The former indicates the perfectly mixed state where c = 〈c〉
and the latter corresponds to when PDF of concentration field is bimodal (either 0

or 1) indicating a perfectly segregated state [200, 265, 266]. Shown in Figure 5.12

is evolution of segregation intensity for three different shock mobility (Ms) ratios.

For the case of Ms = 2.8, mixing occurs earlier than the other two cases with more

stable frontal interfaces. This initial mixing is thus due to viscous fingering on the

frontal interface when Ms = 2.8. After solvent slug is completely injected (square

symbol, PV = 0.15) however, viscous fingering on the rear interfaces of cases with

Ms = 1.7 and 0.8 enhances mixing of the solvents rapidly (see the rapid decline of

segregation intensity, σ2
φ). Thus, despite of more stable frontal interfaces, rear vis-

cous fingering results in more mixing and deterioration of solvent slug at later times.
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Fig. 5.12.: Evolution of segregation intensity for three different shock mobility ratios.
Different times are marked by symbols including end of solvent injection at PV = 0.15
(square), breakthrough time (circle), and removal time (hexagon).

We now direct our attention to cases with Ms = 1.7 and 0.8. According to results

presented in Figure 5.8 discussing the effects of mobility (viscosity ratio) on the re-

covery for ideal (piston-like or perfectly segregated state) and 2D displacements, the

case with Ms = 0.8 results in higher recovery than the case with Ms = 1.7 for ideal

displacement. However, this improvement in 2D displacement where hydrodynamic

instabilities are taken into account is not observed. This is in fact that due to consis-

tently higher mixing of solvents before breakthrough (marked by circle) for the case

of Ms = 0.8 compared to Ms = 1.7. Thus, although injecting higher concentration of

polymer results in more stable frontal interface and results in higher Ca numbers,

excessive viscous fingering on the real interface counteracts those favorable effects.

Next, we quantify the spreading of solvents along the mean flow direction caused

by viscous fingering in homogeneous media by [267]:

σ2
xx =

〈cx2〉
〈c〉 −

(〈cx〉
〈c〉

)2

(5.9)
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Shown in Figure 5.13 is spreading dynamics of solvents. Before focusing on 2D dis-

placements, it is worth noting that spreading behavior for these three mobility ratios

are not quite the same for ideal displacement (i.e. in the absence of viscous fingering).

This is due to different wetting phase saturation profiles (note that solvents only exist

in the wetting phase) as shown in Figure 5.6. For the case with Ms = 2.8, varying

(maximum at the trailing edge and minimum at the leading edge of the solvent slug)

wetting phase saturation coupled with relative permeability causes the mixing zone

to expand as solvents move with different velocities [268]. This effect is minimal for

the case with Ms = 1.7 and does not exist when Ms = 0.8 as wetting phase satura-

tion remains uniform across the solvent slug and thus solvents throughout the slug

move with the same velocity, spreading only due to diffusion. As can be seen, for two
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Fig. 5.13.: Spreading of solvents along the mean flow direction for three different shock
mobility ratios (open symbols). Different times are marked by vertical lines including
end of solvent injection at PV = 0.15 (black dashed) and breakthrough time (colored
dashed dot lines). Black solid lines show approximate scaling behavior. Colored solid
lines show spreading behavior during the corresponding ideal displacements in the
absence of viscous fingering.

types of displacement and all mobility ratios, during the injection period, longitudinal

spreading exhibits ballistic scaling, σ2
xx ∼ t2 [269]. However, after complete injection

of solvents slug, PV = 0.15, and by start of viscous fingering on the rear interface,
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we observe different scaling behaviors. While for the cases with more stable frontal

interface we observe superdiffusive scaling (σ2
xx ∼ t2), the case with Ms = 2.8 shows

Fickian scaling (σ2
xx ∼ t) which persists until breakthrough. Overall, when compared

to their corresponding ideal spreadings, one can see that miscible viscous fingering on

the rear interface for Ms = 1.7, and 0.8 significantly increases spreading of solvents

whereas this enhancement of spreading for Ms = 2.8 is moderate.

Due to finite width of our solvent slug and in the presence of instabilities, rear and

frontal interfaces may meet each other and start interacting. This could be accurately

measured by calculating the interfacial length given by [270,271]:

I(t) =

∫ lx

0

∫ ly

0

[(
∂c

∂x

)2

+

(
∂c

∂y

)2
]1/2

dxdy (5.10)

Interfacial length in fact measures distortion of the interface due to instabilities and

its evolution provides insight about the rate at which small fingers disappear and large

fingers grow [216]. Shown in Figure 5.14 is the evolution of interfacial length for three

different shock mobility ratios normalized by the injected solvent concentration (c0).

Here, viscous fingering is responsible for distortion of the interface and enhancement

of mixing of solvents. As can be seen from the Figure 5.14, the interfacial length is

consistently higher for Ms = 2.8 while it is the lowest for Ms = 0.8 until breakthrough,

indicating poorer mixing in the former compared to the latter. This is also consistent

with segregation intensity (σ2
c ) results presented in Figure 5.12. Interfacial length

for the least stable frontal interface (Ms = 2.8) increase the earliest due to viscous

fingering on the frontal interface, this happens at a later time for Ms = 1.7 and does

not happen for Ms = 0.8 until after solvent injection completes. Interfacial length

displays the t0.75 growth after a period of sharp growth (see point g). Interestingly,

this growth rate does not change after point a (end of solvent injection and start of

instabilities on the rear interface) as majority of fingers are developing on the frontal

interface and thus the growth rate is controlled by those fingers. The same observation

can be made for the case with Ms = 1.7 where after a short period of rapid increase
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Fig. 5.14.: Evolution of interfacial length for three simulations with
Ms = 2.8, 1.7, and 0.8. End of solvents injection (PV = 0.15) and breakthrough
time for each case are marked by square and circle symbols, respectively.

in interfacial length after point b, interfacial length grows with a rate ∝ t0.25 until

breakthrough, point e. In the case with Ms = 0.8, interfacial length departs from its

almost constant value (note that in the absence of viscous fingering interfacial length

increases by time due to diffusion which is negligible here with Pe = 106) and increases

rapidly by the onset of fingering on the rear interface. After this sharp increase in

interfacial length (until point h), it shows a complete different scaling behavior than

the other two cases by growing at a rate ∝ t−0.25. Point h is the time that rear and

frontal interfaces meet and start interacting with each other [233]. This does not

happen for the other two cases due to the constant expansion of the mixing zone

as fingers are developing on both interfaces. Another important difference between

the three cases with different shock mobility ratio is the structure of the fingers on

the frontal and rear interfaces. For the case with the least stable frontal interface,

Ms = 2.8, after coalescence of relatively large numbers of fingers at the earlier stages

(see Figure 5.14 point a), a few main fingers dominates the flow at later times (see
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Figure 5.14 point d). However, this is not the case for the other two cases with

more stable frontal interfaces. In those cases, solvents seem to be well mixed around

the frontal interface and form one dominant finger as wide as the domain height

(see Figure 5.14e,f). On the rear interface, for the cases with the higher viscosity

contrast (i.e., Ms = 1.7, and 0.8) we observe tip splitting and detachments of blobs

of solvents whereas in the case with less viscosity contrast (Ms = 2.8) these effects

are not observed.

5.4.3 Breakthrough and removal

In applications such as enhanced oil recovery or surfactant enhanced aquifer re-

mediation it is critical to have an estimate of breakthrough curves (BTC). BTCs

also carry information regarding the nature of the transport in porous media where

heavy-tailed curves imply anomalous transport. Here, we look into BTCs (mass flux

of solvents at the production well in time) for three shock mobility ratios in homo-

geneous media to emphasize on the role of viscous fingering alone. As can be seen in

Figure 5.15, lower shock mobility ratio (i.e, more unfavorable viscosity ratio on the

rear interface) reduces the peak value of mass flux, the same effect caused by medium

heterogeneity [272]; in both cases it is due to enhanced mixing and spreading which

in our study is significant for Ms = 1.7, and 0.8. Another effect of enhanced mixing

and spreading due to viscous fingering is heavy tailing in the BTCs; as shown in

the Figure 5.15, the case with Ms = 0.8 exhibits anomalous behavior with its BTC

scaling as t−1−1.1 whereas the transport for the case with Ms = 2.8 is Fickian. It is

worth noting that BTCs are highly fluctuating for the cases with Ms = 1.7 and 0.8,

indicating that packets of solvents with different concentrations and velocities arrive

at the production well (see Figure 5.14), due to the severe viscous fingering. Inter-

estingly, although we observe early breakthrough for the case with Ms = 2.8 due to

unstable shock front and development of long viscous fingers on the frontal interface,

BTC for this case does not show fluctuations in later times as in the other two cases,
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Fig. 5.15.: Mass flux of the solvent (surfactant) exiting the production well (Fout) as a
function of time for three shock mobility ratios. Inset: BTCs plotted in log-log scale.
Solid lines show scaling of the tails of BTCs at late time obtained using maximum-
likelihood method (MLE) assuming scaling of form t−1−β where for β > 2 transport
is Fickian and is called anomalous for β < 2. Our results give t−1−2.1 and t−1−1.1 for
Ms = 1.7 and Ms = 0.8, respectively.

indicating a rather homogeneous concentration field. In Fig. 5.16, we plotted the vis-

cosity profiles at the end of solvents injection at PVI=0.15 and at their corresponding

breakthrough. Similar to what is shown before in Fig. 6, at PVI=0.15, as a result

of viscous fingering on the leading front we observe smearing of the viscosity profile.

The most smearing occurs for the case with Ms = 2.8 and the least for the case with

Ms = 0.8. At breakthrough, however, viscosity profile is smeared on both leading and

trailing fronts in all cases with Ms = 2.8 showing the most symmetric profile and the

least drop from its nominal viscosity (that is one). For the other two shock mobility

ratios the viscous fingering severely decreases the polymer efficacy. In the case with

Ms = 1.7 a relatively uniform viscosity profile is achieved whereas for the case with

Ms = 0.8 viscosity profile is highly skewed with a long tail exhibiting much lower

viscosity than its corresponding nominal value (<< 1). Finally, it is clear that the

mixing length increases as the shock mobility ratio decreases from values above one

to under one. Next, we look at the effects of heterogeneity on the shape of BTCs for
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a fixed shock mobility ratio Ms = 1.7. As shown in Figure 5.17, even a small amount

of heterogeneity reduces the peak mass flux compared to that of homogeneous case.

However, at small amount of heterogeneity, late-time tail in BTC is quite similar to

the homogeneous case as it is governed by viscous fingering. This changes drastically

as strength of heterogeneity increases. Here, the interplay of viscous fingering and

conductivity heterogeneity, as shown in Figure 5.17, results in long residence time of

solvents in the medium which will be discussed quantitatively next. We now look into
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Fig. 5.17.: Mass flux of the solvent (surfactant) exiting the production well as a
function of time for homogeneous (σ2

lnK = 0) and three heterogeneous media. Inset:
BTCs plotted in log-log scale.
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the breakthrough and removal times of solvents as functions of shock mobility ratio

and σ2
lnK in homogeneous and heterogeneous conductivity fields, respectively. We

define the breakthrough and removal times when 0.2% and 99.8% of the surfactant

mass has exited the production well, respectively. As shown in Figure 5.18a, viscous

fingering in homogeneous media affects the breakthrough and removal times of sol-

vents. However, this effect is not significant for breakthrough time and does not vary

much with respect to shock mobility ratio (or equivalently viscosity ratio on the rear

interface). This is apparently due to the the formation of well mixed region near the

saturation shock in the cases with Ms = 1.7 and 0.8 where there dose not exist a well

defined finger. Nevertheless, removal time is found to be monotonically increasing

as shock mobility ratio decreases (i.e., viscosity ratio on the rear interface increases).

This is due the significant viscous fingering on the rear interface and lobes of solvent

detaching from the solvent slug and thus increasing the removal time. Note that

these lobes travel at much slower velocity than their ambient fluid. In the presence of

heterogeneity, normalized breakthrough time reduces as σ2
lnK increases. Additionally,

removal time drastically increases due to presence of both viscous fingering and het-

erogeneity. We previously observed that in the presence of viscous fingering and due

to lobe detachments, packets of solvent slowly arrive at the production well. Here,

in addition to that mechanism, some solvents with quite lower mobility than their

ambient fluid could also flow in regions of low velocity due to heterogeneity in the

conductivity field. Combination of these two effects thus yields in very long removal

times.

5.5 Conclusion

In this study, we performed high-resolution numerical simulation of two-phase

multicomponent flow in porous media and investigated the role of hydrodynamics

instabilities and medium heterogeneity on displacement efficiency and fate of solvents.

We showed that a finite-size slug of solvents (i.e., surfactant and polymer) often used
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Fig. 5.18.: Breakthrough (tb) and removal (tr) times of solvents. Left: homoge-
neous media at three different shock mobility ratios normalized by their corresponding
breakthrough and removal times in ideal displacements (i.e., no disturbance). Right:
heterogeneous media at three different values of σ2

lnK but the same shock mobility
ratio Ms = 1.7. Breakthrough and removal times are normalized with those in the
homogeneous case (σ2

lnK = 0) with the same shock mobility ratio Ms = 1.7 to isolate
the effects of heterogeneity.

in enhanced oil recovery and groundwater cleanup processes could develop viscous

fingering on both frontal and rear interfaces where the latter is controlled by the

viscosity ratio whereas the former is controlled by the shock mobility ratio. Although

in the absence of any flow disturbances and thus a piston-like displacement more

viscous slugs results in better displacement efficiency due to increased Ca number

and better sweep, we showed that there exists an optimum viscosity ratio that gives

the highest recovery in unstable displacements and increasing viscosity above that

point leads to severe viscous fingering on the rear interface which in turn could even

reduce the recovery.

We tested the idea of gradually decreasing the viscosity contrast between the

ambient fluid (wetting phase) and the finite-size slug of solvents (graded slug) as it

is being injected and showed that in fact it is an effective strategy for suppressing

development of miscible viscous fingers on the rear interface and could increase the

displacement efficiency by around 10%.

To elucidate the low recovery in unstable compared to idea or piston-like (i.e.,

in the absence of any disturbance) displacements, we studied the evolution of mix-
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ing, spreading, and interfacial length and showed that viscous fingering significantly

enhances mixing and spreading of solvents and serves as the key mechanism in de-

creasing the displacement efficiency.
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6. CONCLUSION

In this work, we studied flow and transport in porous media from a fundamental

and applied point of view. Fundamentally, flow and transport is affected by pore-

structure at the pore-scale. Theses pore-scale effects then manifest themselves at

different macroscopic properties of flow and transport. Using DNS and particle track-

ing, we studied pore-scale statistics of flow and transport in detail for two cases: (i)

Newtonian fluids and (ii) viscoelastic fluids. We showed that the Eulerian velocity

field has a broad dynamic range, which reflects the complexity of the pore space.

Using particle tracking on three distinct pore-space models, we quantified differences

in FPTS, tortuosity, and transport regime in those porous media. Finally, we studied

the spatial correlations in the 3-D velocity field by means of two-point correlation

functions of velocity fluctuations. We showed that for the relatively homogeneous

porous media (overlapping and non-overlapping spheres in 3-D), the two-point corre-

lation function of 3-D velocity field decays similarly to that of pore space and even at

long distances displays similar oscillations. We tested the generality of this finding on

two more heterogeneous porous media (i.e., unconsolidated sandpack and Castlegate

sandstone) in which we again observed a similar behavior, where two-point correla-

tion functions of 3-D pore space and velocity fields were extremely similar. We then

moved into the second study, where the background fluid is considered viscoelastic.

Fluid viscoelasticity could have drastic effects on the general flow and transport in

porous media. We looked into the effect of this change in fluid rheology on long-term

particle dispersion and flow resistance compared to the equivalent Newtonian flows in

the same porous medium. We found out that for the flow of a FENE-P fluid through

porous media, the flow goes through phases of shear-thinning followed by intense

shear-thickening, above a critical De. Additionally, we demonstrated the onset of

fluctuations in the flow by studying the temporal evolution of the pressure gradient.
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With regards to particle dispersion, consistent with experimental observations of the

same problem, we observed that fluid elasticity does not alter the particle dispersion

in disordered porous media in long times where we observed Fickian scaling of MSD

in both cases of Newtonian and viscoelastic flows.

In the last two chapters, we looked into multi-phase and multi-component flows

and transport at the Darcy scale. This allowed us to look at practical cases where

various techniques are used at large scale in processes related to enhanced oil re-

covery (EOR). In particular, we looked into chemical enhanced oil recovery where

chemicals like surfactant and polymer are used to reduce the oil saturation in an

already waterflooded reservoir. First, in collaboration with our experimental teams,

we successfully designed experiments to model various aspects of processes related to

the flow of multi-phase flow in porous as well as those related to the flow of surfactant

and polymer. We then presented a comprehensive methodology integrating extensive

experimental data required for a successful SP flood modeling. In particular, using

the rheological data for polymer, phase behavior tests, capillary desaturation, and

polymer RRF experiments, we were able to build an SP flood model via a multi-stage

calibration algorithm where the cumulative oil production and pressure profile were

successfully history matched. In the end, we showed that our history matched model

could successfully predict the new and unseen experiments with the model.

In the last chapter, we drew our attention to the important problem of unstable

displacement in porous media. As we saw in our previous work on surfactant-polymer

flooding in porous media, mobility control, and the onset of flow instability could

drastically change the overall recovery efficiency. Thus, we focused on modeling such

instabilities and their role in displacement efficiency and the fate of solvents. We used

a finite-size slug of solvents (i.e., surfactant and polymer) to displace a secondary im-

miscible phase. We showed that depending on the viscosity ratio and shock mobility

ratio, viscous fingering could develop on rear and frontal interfaces, respectively. We

found out that due to the presence of competing mechanisms, there exists an opti-

mum flow property set where the recovery is maximum. Finally, we quantified the
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evolution of mixing, spreading, and interfacial length and showed that viscous fin-

gering significantly enhances mixing and spreading of solvents and serves as the key

mechanism in decreasing the displacement efficiency.
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[113] J. A. Byars, A. Öztekin, R. A. Brown, and G. H. Mckinley, “Spiral instabilities
in the flow of highly elastic fluids between rotating parallel disks,” Journal of
Fluid Mechanics, vol. 271, pp. 173–218, 1994.

[114] B. Khomami and L. D. Moreno, “Stability of viscoelastic flow around periodic
arrays of cylinders,” Rheologica acta, vol. 36, no. 4, pp. 367–383, 1997.

[115] C. Chmielewski and K. Jayaraman, “The effect of polymer extensibility on
crossflow of polymer solutions through cylinder arrays,” Journal of Rheology,
vol. 36, no. 6, pp. 1105–1126, 1992.

[116] L. Skartsis, B. Khomami, and J. L. Kardos, “Polymeric flow through fibrous
media,” Journal of Rheology, vol. 36, no. 4, pp. 589–620, 1992.

[117] M. A. Hulsen, R. Fattal, and R. Kupferman, “Flow of viscoelastic fluids past
a cylinder at high Weissenberg number: stabilized simulations using matrix
logarithms,” Journal of Non-Newtonian Fluid Mechanics, vol. 127, no. 1, pp.
27–39, 2005.

[118] P. J. Oliveira and A. I. Miranda, “A numerical study of steady and unsteady
viscoelastic flow past bounded cylinders,” Journal of non-Newtonian fluid me-
chanics, vol. 127, no. 1, pp. 51–66, 2005.

[119] S. De, J. Kuipers, E. Peters, and J. Padding, “Viscoelastic flow simulations in
model porous media,” Physical Review Fluids, vol. 2, no. 5, p. 053303, 2017.

[120] E. Hemingway, A. Clarke, J. Pearson, and S. Fielding, “Thickening of vis-
coelastic flow in a model porous medium,” Journal of Non-Newtonian Fluid
Mechanics, vol. 251, pp. 56–68, 2018.

[121] D. Kawale, E. Marques, P. L. Zitha, M. T. Kreutzer, W. R. Rossen, and P. E.
Boukany, “Elastic instabilities during the flow of hydrolyzed polyacrylamide
solution in porous media: Effect of pore-shape and salt,” Soft Matter, vol. 13,
no. 4, pp. 765–775, 2017.

[122] A. Clarke, A. M. Howe, J. Mitchell, J. Staniland, L. Hawkes, and K. Leeper,
“Mechanism of anomalously increased oil displacement with aqueous viscoelas-
tic polymer solutions,” Soft Matter, vol. 11, no. 18, pp. 3536–3541, 2015.

[123] A. M. Howe, A. Clarke, and D. Giernalczyk, “Flow of concentrated viscoelastic
polymer solutions in porous media: effect of mw and concentration on elastic
turbulence onset in various geometries,” Soft Matter, vol. 11, no. 32, pp. 6419–
6431, 2015.

[124] M. Grilli, A. Vázquez-Quesada, and M. Ellero, “Transition to turbulence and
mixing in a viscoelastic fluid flowing inside a channel with a periodic array of
cylindrical obstacles,” Physical review letters, vol. 110, no. 17, p. 174501, 2013.



114

[125] J. A. Pathak, D. Ross, and K. B. Migler, “Elastic flow instability, curved stream-
lines, and mixing in microfluidic flows,” Physics of fluids, vol. 16, no. 11, pp.
4028–4034, 2004.

[126] C. Scholz, F. Wirner, J. R. Gomez-Solano, and C. Bechinger, “Enhanced dis-
persion by elastic turbulence in porous media,” EPL (Europhysics Letters), vol.
107, no. 5, p. 54003, 2014.

[127] F. Babayekhorasani, D. E. Dunstan, R. Krishnamoorti, and J. C. Conrad,
“Nanoparticle dispersion in disordered porous media with and without poly-
mer additives,” Soft Matter, vol. 12, no. 26, pp. 5676–5683, 2016.

[128] H. Jasak, A. Jemcov, Z. Tukovic et al., “Openfoam: A c++ library for complex
physics simulations,” in International workshop on coupled methods in numer-
ical dynamics, vol. 1000. IUC Dubrovnik, Croatia, 2007, pp. 1–20.

[129] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids.
Vol. 1: Fluid mechanics, 1987.

[130] R. B. Bird, R. C. Armstrong, O. Hassager, and C. Curtiss, Dynamics of Poly-
meric Liquids-Volume 2: Kinetic Theory, 1987.

[131] F. Pimenta and M. Alves, “Stabilization of an open-source finite-volume solver
for viscoelastic fluid flows,” Journal of Non-Newtonian Fluid Mechanics, vol.
239, pp. 85–104, 2017.

[132] F. Zami-Pierre, R. De Loubens, M. Quintard, and Y. Davit, “Transition in
the flow of power-law fluids through isotropic porous media,” Physical review
letters, vol. 117, no. 7, p. 074502, 2016.

[133] M. Delshad, D. H. Kim, O. A. Magbagbeola, C. Huh, G. A. Pope, F. Tarahhom
et al., “Mechanistic interpretation and utilization of viscoelastic behavior of
polymer solutions for improved polymer-flood efficiency,” in SPE Symposium
on Improved Oil Recovery. Society of Petroleum Engineers, 2008.

[134] A. Hendrick, R. Erdmann, and M. Goodman, “Practical considerations for
selection of representative elementary volumes for fluid permeability in fibrous
porous media,” Transport in porous media, vol. 95, no. 2, pp. 389–405, 2012.

[135] S. Aramideh, P. P. Vlachos, and A. M. Ardekani, “Unstable displacement of
non-aqueous phase liquids with surfactant and polymer,” Transport in Porous
Media, pp. 1–20, 2018.

[136] C. Xie, W. Lv, and M. Wang, “Shear-thinning or shear-thickening fluid for
better EOR? — a direct pore-scale study,” Journal of Petroleum Science and
Engineering, vol. 161, pp. 683–691, 2018.

[137] A. Groisman and V. Steinberg, “Elastic turbulence in a polymer solution flow,”
Nature, vol. 405, no. 6782, p. 53, 2000.

[138] R. G. Larson, E. S. Shaqfeh, and S. J. Muller, “A purely elastic instability in
Taylor–Couette flow,” Journal of Fluid Mechanics, vol. 218, pp. 573–600, 1990.



115

[139] P. K. Kang, P. Anna, J. P. Nunes, B. Bijeljic, M. J. Blunt, and R. Juanes,
“Pore-scale intermittent velocity structure underpinning anomalous transport
through 3-d porous media,” Geophysical Research Letters, vol. 41, no. 17, pp.
6184–6190, 2014.

[140] L. W. Lake, “Enhanced oil recovery,” 1989.

[141] L. E. Zerpa, N. V. Queipo, S. Pintos, and J.-L. Salager, “An optimization
methodology of alkaline–surfactant–polymer flooding processes using field scale
numerical simulation and multiple surrogates,” Journal of Petroleum Science
and Engineering, vol. 47, no. 3, pp. 197–208, 2005.

[142] C. Brown, P. Smith et al., “The evaluation of uncertainty in surfactant eor
performance prediction,” in SPE Annual Technical Conference and Exhibition.
Society of Petroleum Engineers, 1984.

[143] S. Thomas et al., “Chemical eor: The past–does it have a future,” Paper SPE,
vol. 108828, pp. 2005–2006, 2006.

[144] A. Alkhatib, M. Babaei et al., “Applying the multilevel monte carlo method for
heterogeneity-induced uncertainty quantification of surfactant/polymer flood-
ing,” SPE Journal, vol. 21, no. 04, pp. 1–192, 2016.

[145] K. Rai, R. T. Johns, L. W. Lake, M. Delshad et al., “Oil-recovery predictions
for surfactant polymer flooding,” in SPE Annual Technical Conference and
Exhibition. Society of Petroleum Engineers, 2009.

[146] A. K. Sinha, A. Bera, V. Raipuria, A. Kumar, A. Mandal, and T. Kumar,
“Numerical simulation of enhanced oil recovery by alkali-surfactant-polymer
floodings,” Petroleum Science and Technology, vol. 33, no. 11, pp. 1229–1237,
2015.

[147] A. M. AlSofi, J. S. Liu, M. Han, and S. Aramco, “Numerical simulation
of surfactant–polymer coreflooding experiments for carbonates,” Journal of
Petroleum Science and Engineering, vol. 111, pp. 184–196, 2013.

[148] F. Hakiki, D. A. Maharsi, and T. Marhaendrajana, “Surfactant-polymer core-
flood simulation and uncertainty analysis derived from laboratory study,” Jour-
nal of Engineering and Technological Sciences, vol. 47, no. 6, pp. 706–725, 2015.

[149] A. Pandey, M. Suresh Kumar, D. Beliveau, D. W. Corbishley et al., “Chemi-
cal flood simulation of laboratory corefloods for the mangala field: generating
parameters for field-scale simulation,” in SPE Symposium on Improved Oil Re-
covery. Society of Petroleum Engineers, 2008.

[150] S. M. Hosseini-Nasab, C. Padalkar, E. Battistutta, and P. L. Zitha, “Mecha-
nistic modeling of the alkaline/surfactant/polymer flooding process under sub-
optimum salinity conditions for enhanced oil recovery,” Industrial & Engineer-
ing Chemistry Research, vol. 55, no. 24, pp. 6875–6888, 2016.

[151] K. Rai, R. T. Johns, M. Delshad, L. W. Lake, and A. Goudarzi, “Oil-recovery
predictions for surfactant polymer flooding,” Journal of Petroleum Science and
Engineering, vol. 112, pp. 341–350, 2013.



116

[152] Y. Bai, J. Li, J. Zhou, and Q. Li, “Sensitivity analysis of the dimensionless
parameters in scaling a polymer flooding reservoir,” Transport in Porous Media,
vol. 73, no. 1, pp. 21–37, 2008.

[153] A. M. AlSofi and M. J. Blunt, “Polymer flooding design and optimization under
economic uncertainty,” Journal of Petroleum Science and Engineering, vol. 124,
pp. 46–59, 2014.

[154] G. A. Anderson, M. Delshad, C. L. Brown King, H. Mohammadi, G. A. Pope
et al., “Optimization of chemical flooding in a mixed-wet dolomite reservoir,”
in SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum
Engineers, 2006.

[155] N. T. B. Nguyen, Z. J. Chen, L. X. Nghiem, C. T. Q. Dang, C. Yang et al.,
“A new approach for optimization and uncertainty assessment of surfactant-
polymer flooding,” in Abu Dhabi International Petroleum Exhibition and Con-
ference. Society of Petroleum Engineers, 2014.

[156] A. Mollaei, L. W. Lake, and M. Delshad, “Application and variance based
sensitivity analysis of surfactant–polymer flooding using modified chemical flood
predictive model,” Journal of Petroleum Science and Engineering, vol. 79, no. 1,
pp. 25–36, 2011.

[157] J. Sheng, Modern chemical enhanced oil recovery: theory and practice. Gulf
Professional Publishing, 2010.

[158] P. King, A. Alkhatib et al., “Uncertainty quantification of a chemically en-
hanced oil recovery process: Applying the probabilistic collocation method to
a surfactant-polymer flood,” in SPE Middle East Oil and Gas Show and Con-
ference. Society of Petroleum Engineers, 2013.

[159] Z. Hou, D. W. Engel, G. Lin, Y. Fang, and Z. Fang, “An uncertainty quan-
tification framework for studying the effect of spatial heterogeneity in reservoir
permeability on co2 sequestration,” Mathematical Geosciences, vol. 45, no. 7,
pp. 799–817, 2013.

[160] F. Douarche, S. Da Veiga, M. Feraille, G. Enchéry, S. Touzani, and R. Barsa-
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