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ABSTRACT

Raffiee, Amir Hossein Ph.D., Purdue University, December 2019. Elasto-Inertial
Migration of Particles and Capsules in Viscoelastic Microchannels. Major Professor:
Arezoo M. Ardekani, Sadegh Dabiri.

The motion of synthetic capsules and living cells in microchannels has been the

subject of numerous studies in the last decade due to its significance in engineer-

ing and biomedical applications. Cell sorting and separation are common processes

that are used for various purposes such as separation of leukocytes from blood used

in DNA sequencing. Isolation of rare cells in blood is needed for early diagnosis of

lethal diseases such as cancer. Cell isolation and enrichment will also provide a better

platform to biologists to study and analyze various properties of living cells. Thus,

there is a high demand for developing techniques to precisely control trajectories of

the cells and manipulate them in a desired manner. Microfluidic devices provide a

platform to achieve aforementioned needs while overcoming challenges such as sample

contamination, cost and complexity of the procedures. In many of these applications,

the background fluid is non-Newtonian due to the presence of DNA and proteins, or

polymers are added to control the trajectory of the cells. In this work, we first provide

a fundamental study on the dynamics of a single deformable capsule in a viscoelastic

matrix under a simple shear flow. Furthermore, we investigate the motion of a single

cell and suspension of cells in microchannels. The effects of cell size, inertia, cell

volume fraction, cell deformability and fluid elasticity are explored. Our findings on

capsule motion in the viscoelastic medium suggest that the use of constant-viscosity

viscoelastic fluid pushes the cells toward the channel centerline which can be used in
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microfluidic devices used for cell focusing such as cytometers. However, viscoelastic

fluid with shear-thinning characteristics and drives the flowing cells toward the chan-

nel wall. Particle motion in viscoelastic matrix equilibrium positions of the particle

in the microchannel for a wide range of inertial and elastic effects. These fundamen-

tal studies can provide insight on the role of rheological properties of the fluid that

can be tuned to control the motion of the cells and particles for efficient design of

microfluidic devices.



1

1. INTRODUCTION

Due to the rising application of microcapsules in consumable, pharmaceutical, and

medical industries, extensive research focusing on their dynamics has been docu-

mented in recent years. Capsules are liquid-filled droplets surrounded by an elastic

membrane that are often used in targeted drug and cell delivery [1] applications and

encapsulation of volatile substances in lab-on-a-chip devices [2, 3]. In many of these

applications, either the background fluid or encapsulated fluid are non-Newtonian due

to the presence of DNA, proteins, or polymers [4, 5]. A large number of numerical,

experimental and theoretical studies have been conducted on the capsule behavior

under various flow fields in a Newtonian fluid [6–10]. These studies suggest that the

motion of capsule depends on the imposed flow field, membrane stiffness, shear rate,

initial shape and viscosity ratio (the ratio of inner fluid viscosity to the outer fluid

viscosity) [6, 7, 11]. The numerical study shows that the capsule that is subject to

a simple shear flow deforms to a steady shape and the membrane rotates around it,

which is referred to as the Tank-Treading (TT) motion [12]. In this regard, theo-

retical analysis based on the perturbation method [13, 14] predicts the deformation

of initially spherical capsule as well as the Tank-Treading motion of the membrane.

The perturbation method is, however, only valid for small deformations. Therefore,

numerical solutions are required to address large capsule deformations. The bound-

ary integral, front-tracking [7, 8] and immersed boundary method [9] are among the

numerical techniques widely utilized for simulating the capsule dynamics in a shear

flow of a Newtonian fluid. In these methods the membrane is discretized using La-

grangian grids which enables us to accurately capture the membrane deformation and
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to calculate the elastic force acting on the capsule. These numerical methods have

been used to investigate the role of the membrane constitutive laws, area incompress-

ibility and bending resistance [8, 10, 15]. On the other hand, the experimental study

on synthetic capsules suspended in a confined shear flow suggests that the membrane

starts thinning along the principal strain axes of the shear flow when the shear rate is

sufficiently large [16] and its break-up occurs in these areas [11, 16]. Despite numer-

ous studies on the deformation and tank treating motion of capsules in Newtonian

fluids, their motion in a viscoelastic fluid is poorly studied. Hence, in chapter 2 we

present three dimensional numerical simulations of the dynamics of a Newtonian cap-

sule in a polymeric matrix following an Oldroyd-B fluid constitutive equation as well

as dynamics of a polymeric capsule in a Newtonian fluid. A front-tracking method

is employed to accurately capture the underlying physics of a deforming capsule in a

shear flow for a wide range of Ca and Wi.

1.1 Motion of cells in a microchannel

Separation and focusing of cells are critical processes in biomedical applications

[17–20]. In these applications, the samples of interest are mostly composed of various

population of cells with different sizes, shapes and properties needed to be isolated,

filtered or sorted. These operations are mostly used for diagnostic, therapeutic or

biological purposes [21]. For instance, fractionated blood components are used for

several diagnostic tests, such as leukocytes (white blood cells) required for hemato-

logic tests [21], isolated reticulocytes and mononucleated red blood cells (RBCs) used

for diagnosis of diseases concerned with RBC turnover [22], and purified plasma used

for cancer detection [23, 24]. In addition to these components, blood may contain

extremely rare cells which their identification is a vital step for diagnosis of lethal

diseases. The identification of circulating tumor cells (CTC) [25], malaria [26] and
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fetal cells [27] that are present in a limited quantity in blood are of significant im-

portance. Cell isolation is also used for therapeutics such as Platelet transfusion [28],

CTC filtration and blood cleansing [21]. Furthermore, providing highly concentrated

suspension of homogeneous cells enables biologists to study the biological and physi-

cal properties of cells [29] which points out the significance of cell isolation techniques.

There are several techniques that use biochemical markers for separation of cells in

a heterogeneous population such as Fluorescence-activated cell sorting (FACS) [30]

and Magnetic-activated cell sorting (MACS) [31]. These methods are robust, but the

complexity of the process and costly procedures required in these techniques prevent

them from being widely used in clinical applications. The use of biochemical markers

may also affect the natural biological process of cells in targeted samples. Hence, re-

searchers focus on the development of label-free strategies which rely on the intrinsic

properties of the cells including size [32], shape [33] and electrical polarizability [34].

One of the main advantages of these techniques is the fact that they are not costly

and the users do not need to be highly skilled to work with them. In this chapter 3 we

focus on a label-free technique which works based on the hydrodynamic interaction

between cells and the surrounding fluid.

Cross-stream migration of particles in a moderate Reynolds number was first ob-

served by Segre and Silberberg [35]. In their experiment the millimeter-sized particles

were distributed randomly in a circular tube and they noticed that these particles

assembled in an annulus with the radius 0.6 times the tube radius. A similar behavior

was also observed for tubes with rectangular and square cross sections [36–39]. Drag

and lift forces, acting on the particle surface, drive the particle to a steady equilibrium

position. The lift force is the results of two counteractive forces: (i) the inertial lift

force that pushes the particle toward the wall due to the shear gradient in the flow

field [40] and (ii) the repulsive wall-induced force [41] that drives the particle toward
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the channel centerline. The interplay between these two opposing forces determines

the final position of the particle in a channel filled with a Newtonian fluid. Several

analytical investigations were conducted to explain the dynamics of particles in the

flow. These studies used a matched asymptotic expansion technique to obtain a scal-

ing for the lift force [40,42–45]. Findings of these studies suggest that a particle with

diameter a moving in a channel with dimension H experiences a lift force in the form

of FL = fL(Re, x
L

)ρU2a4/H2. In other words, this model predicts that the lift force is

a function of particle position and Reynolds number. Although this model is accurate

enough to explain the observed particle behavior in Segre and Silberberg experiment,

it is only valid for small particle Reynolds numbers and size ratios a
H

that signifi-

cantly restricts its range of applicability [39]. This restriction motivated researchers

to conduct numerical and experimental investigations to study various aspects of

this phenomenon [45–49]. The suspensions in biomedical and industrial applications

mostly contain particles with deformable membranes. These particles have different

dynamics compared to rigid particles because of the additional deformability-induced

lift force acting on the deformable particles [50]. The interplay between three indi-

cated lift forces determines the transient motion and final position of particles. The

underlying physics of migration of deformable particles has been numerically [51, 52]

and experimentally [53] investigated. Recently, there has been a growing interest

in developing techniques that take advantage of cell deformability to enhance the

efficiency of microfluidic devices working with biological fluids [53, 54]. Thus, it is

necessary to study the motion of deformable particles, i.e., capsules, vesicles and red

blood cells, in a microchannel, but most of the studies in this field have been con-

ducted for rigid particles in a poiseuille flow. The findings of this work provides an

insight into the performance of the inertia-based separation techniques and effective

parameters that improve the efficiency of these devices for deformable particles.
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The current sorting strategies based on inertial migration suffer from a serious

restriction which is low flow throughput. The volume flow rate of the samples is

limited by two factors: (i) hydrodynamic transition from laminar to turbulent flow

in straight microchannels [55] and (ii) the ratio of the Dean drag force to inertial lift

that restricts the throughput in curved channels [56]. One of the promising approach

to solve this problem is the addition polymers to the fluid. Lim et al. [57] showed

that their microfluidic device for cell sorting and classification successfully works at

Re ∼10000 by adding polymers to the suspending fluid. They added micromolar

concentration of hyaluronic acid (HA) to the solution and were able to significantly

increase the sample volume flow rate and particle velocity. In this system, the mi-

gration behavior of the cells is significantly influenced by the interaction between

viscoelastic and inertial lift forces [57,58]. Del Giudice et al. [59,60] also investigated

the effect of fluid rheology on the dynamics of rigid particles in a microchannel. They

showed that the particle focusing in a viscoelastic fluid is enhanced for high flow rates

and they quantified the effect of fluid rheological properties on the focusing length of

particles. According to previous studies the rheological properties of polymeric fluids

can be tuned such that the resulting migration behavior changes in a desired manner

for high throughput conditions [58]. Furthermore, the system gives us the ability to

control the focal position of cells that enhances the efficiency of the current methods

in cell sorting and classification at a very low cost.

In chapter 3, we study the viscoelastic effects of the suspending fluid and its

interaction with inertial forces on the migration behavior of deformable cells. We

study the focal position of the cells in inertial-based microfluidic devices in polymeric

and Newtonian fluids. The role of various fluid rheological parameters are investigated

to provide an insight into an efficient design of microfluidic sorting and separation

devices.
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Despite the importance of the dynamics of cell suspension in a microchannel,

previous experimental and computational studies focus on the migration of cells in

a very dilute regime. In chapter 4, we focus on the suspension of deformable cells

in Newtonian and polymeric fluids in a semidilute regime and investigate the role

of various factors including cell size, deformability, inertia and viscoelasticity of the

suspending fluid. Our results provide fundamental understanding of the dynamics of

suspension of cells in a straight microchannel used in various microfluidic devices.

In chapter 5, we study the mechanism of particle migration in a viscoelastic fluid

and provide the results of fully resolved 3D numerical simulations on particle dynamics

in a microchannel. We calculate the distribution of lift force acting on the particle in

a viscoelastic fluid and investigate the influence of combined elastic and inertial forces

on the particle behavior in a microchannel. Furthermore, the location of equilibrium

points and their corresponding stability are determined for a wide range of elastic

and inertial effects which is important for designing the microfluidic devices relying

on viscoelastic effects.
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2. DEFORMATION AND BUCKLING OF

MICROCAPSULES IN VISCOELASTIC MATRIX

This chapter is reproduced with permission from: A.H. Raffiee, S. Dabiri, A.M.
Ardekani, Deformation and buckling of microcapsules in viscoelastic matrix”, Physi-
cal Review E, 96(3), 032603. [61]

2.1 Summary

In this chapter, we numerically study the dynamics of (i) a Newtonian liquid-filled

capsule in a viscoelastic matrix and that of (ii) a viscoelastic capsule in a Newtonian

matrix in a linear shear flow using a front-tracking method. The numerical results

for case (i) indicate that the polymeric fluid reduces the capsule deformation and

aligns the deformed capsule with the flow direction. It also narrows the range of

tension experienced by the deformed capsule for case (i), while the tank-treading

period significantly increases. Interestingly, the polymeric fluid has an opposite effect

on the tank-treading period and the orientation angle of case (ii), but its effect on

the deformation is similar to case (i).

2.2 Governing equations and Numerical methods

2.2.1 Newtonian fluid

In this section, we first present the system of equations governing the motion of

a deformable Newtonian capsule in a Newtonian fluid and the mathematical method

used for coupling the interfacial interaction between the elastic membrane and the
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surrounding fluid. We will then discuss the constitutive equation and the numerical

implementation for a viscoelastic fluid. The inner and outer fluids are assumed to be

incompressible. Hence, the flow field is governed by the Navier-stokes equations:

∇.u = 0, (2.1)

∂(ρu)

∂t
+∇.(ρuu) = −∇p+∇.τ + F, (2.2)

where ρ is equal to the density of inner (outer) fluid inside (outside) the capsule, p

represents the pressure, u is the velocity vector, t is the time and τ denotes the total

stress tensor. The total stress tensor for a Newtonian fluid is τ = µD, where D =

(∇u) + (∇u)T is the strain rate tensor. In this equation, F (x, t) =
∫
∂B
f(xi, t)δ(x-

xi)dV is the smoothed representation of the membrane force which is zero everywhere

except at the interface location. In this formulation, x and xi denote arbitrary

points on the Eulerian and Lagrangian grids, respectively, and δ and V represent the

Dirac delta function and the volume. Furthermore, f(xi, t) is the elastic force of the

membrane. The capsule membrane is modeled as an infinitely thin sheet of elastic

material following a neo-Hookean constitutive equation. Therefore, the corresponding

strain energy function W is expressed as:

W =
Es
6

(ε21 + ε22 + ε−2
1 ε−2

2 − 3), (2.3)

where ε1 and ε2 are the principal strains and Es is the two dimensional elastic shear

modulus. The elastic force on the capsule membrane is obtained using the finite ele-

ment model developed by [62,63]. In this model, the membrane surface is discretized

with triangular elements. The number of surface elements is large enough so that

these elements remain approximately flat even after large deformations. The La-

grangian grid is deformed due to the hydrodynamic interaction with the surrounding
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fluid and consequently a resistive elastic force develops. The deformed and initially

undeformed elements are transformed to a common two dimensional plane to evaluate

the displacement of vertices and the corresponding elastic force (f(xi, t)) exerted on

the membrane using the principle of virtual work, f = −dW
dv

, where v denotes the

displacement of vertices between deformed and undeformed states.

In this work, a finite volume method is used to discretize the equations. The com-

putational domain is discretized using a uniform, Cartesian and staggered grid. The

governing equations are solved in the entire domain using an explicit Euler method

for time discretization, a third order QUICK (Quadratic Upstream Interpolation for

Convective Kinematics) scheme [64] for the convective term and a central difference

scheme for the diffusive term. Furthermore, the pressure-velocity coupling is con-

ducted using a projection method [65]. A front-tracking method [66] is used to model

the capsule. The computational cost is reduced by solving the Navier-Stokes equa-

tions on the entire computational domain rather than solving them separately for

each phase and matching the boundary conditions at the interface. Fluid properties

(i.e., density and viscosity) are uniform in the interior and exterior fluids but sharply

vary in a small region across the interface. To provide a smooth representation of

material properties, we solve the Poisson’s equation for an indicator function which

is used to evaluate fluid properties everywhere in the computational domain. The

elastic force is evaluated on the Lagrangian marker points on the interface and are

added as a singular body force in the momentum equation to account for the presence

of membrane. The velocity field on Lagrangian points are calculated as:

u(xi) =

∫
u(x)δ(x− xi)dV. (2.4)

This method requires an interpolation for treating the singular body force in (5.2) and

tracking the membrane temporal evolution. Therefore, a smoothed representation of
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the delta function is employed to distribute the desired variables with sharp variation

across the interface over few grid points surrounding the interface:

δ(x) = D(x)D(y)D(z), (2.5)

D(x) =
1

4∆
(1 + cos(

π

2∆
(x))), |x| ≤ 2∆, (2.6)

where ∆ is the grid size. In summary, a single set of equations is solved in the

entire computational domain, taking into account the presence of the membrane and

changes in the fluid properties across the interface.

2.2.2 Non-Newtonian fluid

The Oldroyd-B constitutive equation is used to describe the polymeric stress in

the inner/outer fluid. The total stress tensor τ is decomposed into solvent τs and

viscoelastic τp stress tensors as follow:

τ = τp + τs, (2.7)

where

τs = µsD, (2.8)

λ
5
τp + τp = µpD, (2.9)

In this formulation, µs and µp are the solvent and polymeric viscosity, respectively.

The polymer relaxation time, represented by λ, is zero when the fluid is Newtonian
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and has a nonzero value when the fluid is viscoelastic.
5
τp denotes the upper convected

time derivative defined as:

5
τp =

∂τP
∂t

+ u.∇τp −∇uτp − τp∇uT . (2.10)

We follow the implementation of Aggarwal et al. [67] for the polymeric stress to

implement a single constitutive equation in the entire computation domain.

λ
∂τp
∂t

+ τp = K(t), (2.11)

where

K(t) = µpD − λ(u.∇τp −∇uτp − τp∇uT ), (2.12)

This equation is discretized using an explicit Euler scheme for time:

τp(t+ ∆t) = τp(t) exp

(
−∆t

λ

)
+K(t+ ∆t)−K(t) exp

(
−∆t

λ

)
− exp

(
−(t+ ∆t)

λ

)
∫ t+∆t

t

exp

(
t

λ

)
∂K

∂t
dt

(2.13)

We can neglect the integral in (2.13) assuming ∂K
∂t

= 0. In this case, the polymeric

stress tensor can be written as:

τp
n+1 = τp

n exp

(
−∆t

λ

)
+Kn

(
1− exp

(
−∆t

λ

))
(2.14)

2.3 Problem setup

In this study, we simulate the deformation of an initially spherical, unstressed

capsule which is introduced to the flow at time t=0. The capsule is deformed under

a linear shear flow bounded by two infinitely long flat plates as shown in Fig.2.1.



12

Accordingly, the undisturbed velocity field in the absence of the capsule is described

as:

U = γ̇(Z − H

2
), V = W = 0, (2.15)

where U, V and W denote the velocity of the fluid in the streamwise direction (X),

wall normal direction (Z) and vorticity direction (Y), respectively. In this formulation

γ and H represent the imposed shear rate and the distance between the parallel walls.

The computational domain is a rectangular box with the size of 10R× 5R× 10R (R

is the initial capsule radius) in the streamwise, wall normal and vorticity directions,

respectively. The computational domain is discretized using a uniformly distributed

128×64×128 Eulerian grid points. The capsule membrane is also discretized with 8120

triangular elements. A periodic boundary condition is imposed in X and Y directions

and a no-slip boundary condition is considered on the upper and lower walls. The

interior fluid of the capsule is incompressible and Newtonian while the exterior fluid is

viscoelastic, following an Oldroyd-B constitutive equation. The characteristic length

and time scales are R and γ̇−1 , respectively, leading to the following dimensionless

parameters: (i) Reynolds number Re = ργR2

µ
, which represents the ratio of the inertial

force to the viscous force (ii) Capillary number Ca = µγR
Es

, denoting the ratio of the

viscous force to the elastic force on the capsule membrane (iii) Weissenberg number

Wi = λγ̇, and (iv) β = µp
µ

, indicating the ratio of the polymeric viscosity to the total

viscosity. The total viscosity is defined as the sum of polymeric viscosity and solvent

viscosity of the fluid (µ = µp + µs). The interior and exterior fluids are assumed to

have the same density and total viscosity. The values of β and Re are set to β =0.5

and Re =0.1, unless otherwise stated.
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(a) (b)

Fig. 2.1. Schematic of the problem and coordinate system

2.4 Numerical verification

In this section, we compare our numerical results against previously published

numerical results of [68] and [69], where front-tracking and boundary element methods

were used, respectively. For this purpose, we simulate the deformation of a Neo-

Hookean membrane in a linear shear flow, where the interior and exterior fluids are

Newtonian. In order to conduct a quantitative comparison, the Taylor deformation

parameter D = (L−B)/(L+B) and orientation angle θ are evaluated, where L and

B are the major and minor axes of the deformed capsule in the shear plane and θ

represents the angle between the major axis of ellipsoid and the X-axis. Fig.2.2 shows

steady-state values of deformation parameter D and orientation angle θ for various

Ca. The results agree well with the published results in the literature.

The numerical convergence of the solution is investigated by increasing the grid

resolution from 64 × 32 × 64 to 160 × 80 × 160. The temporal evolution of the

deformation parameter and orientation angle for Ca =0.2 and Wi =2 are shown in

Fig.2.3. This figure shows that the capsule deformation does not depend on the grid

resolutions used here, while the orientation angle converges by increasing the grid

resolution. Henceforth, we choose 128× 64× 128 grid points.
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(a) (b)

Fig. 2.2. A comparison of (a) the capsule deformation parameter and
(b) orientation angle with the results of Doddi et al. [69] and Lac et
al. [68].

(a) (b)

Fig. 2.3. Temporal evolution of (a) the capsule deformation and (b)
transient orientation angle at Ca =0.2 and Wi =2

2.5 Transient dynamics of a viscoelastic capsule in a Newtonian fluid

When the capsule is released at the center of a linear shear flow, the membrane

deforms and elongates due to the hydrodynamic interaction with the surrounding
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fluid. The deformation grows until it reaches a steady state, when no further change is

observed in the final deformed shape and inclination angle. The Lagrangian nodes on

the capsule continuously rotate on the deformed capsule which is called tank-treading

mode (referred to as TT). The temporal evolution of three main axes of the deformed

membrane (L∗ = L
R

, B∗ = B
R

and W ∗ = W
R

) are plotted in Fig.2.4.c for Ca =0.1

and various values of Wi. In this plot, L∗ is the dimensionless semi-major axis

(a) (b)

(c)

Fig. 2.4. Temporal evolution of (a) the capsule deformation, (b) ori-
entation angle and (c) length of main axes at Ca =0.1
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and B∗ is the dimensionless semi-minor axis in the shear plane and W ∗ denotes the

dimensionless semi-axis of the capsule in the vorticity direction. The capsule elongates

in two directions and compresses in the wall normal direction for both Newtonian and

viscoelastic fluids. It should be noted that increase in Wi hinders stretching of L∗ and

W ∗ as well as the compression of B∗. This means that the surrounding viscoelastic

fluid reduces the capsule deformation and orientation angle due to large polymeric

stresses developed in the outer fluid (Fig.2.4.a-b). As illustrated in Fig.2.4.a, an

overshoot is observed in the deformation of the membrane when the outer fluid is

viscoelastic at Wi =0.5 and 1. This phenomenon is attributed to the relaxation

time of the outer viscoelastic fluid leading to a delay in the development of the

polymeric stress. Consequently, the membrane deformation is larger than its steady

values. Additionally, as the Weissenburg number increases the orientation angle of

the capsule in a shear flow decreases and it reaches the equilibrium state at a longer

time.

2.5.1 Capsule deformation in a low capillary number regime

In this section, we investigate the dynamics of a sheared capsule in a low capillary

number regime. The temporal evolution of the capsule deformation parameter for

different Weissenburg numbers at Ca=0.025 is shown in Fig. 2.5.a. The deformation

increases and reaches an equilibrium value, following by small amplitude oscillations.

These oscillations are caused by the formation of folds on the membrane surface which

is discussed later in this section. The membrane deformation in this low capillary

number regime decreases with Weissenburg number similar to the observation in the

previous section. However, the fluid elasticity does not have the same effect for

the entire range of Wi considered here. The reduction in the steady deformation is

observed for Wi ∈ [0, 2] . On the other hand, the capsule deformation monotonically
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increases for larger Wi numbers (e.g., Wi =5). This behavior was also observed for

(a) (b)

(c)

Fig. 2.5. The temporal evolution of (a) the capsule deformation, (b)
orientation angle and (c) axes length for Ca =0.025

droplets suspended in a shear flow. The reason for this unexpected behaviour can be

attributed to the memory and nonlinearity of the Oldroyd-B fluid as a similar trend

exists for the variation of the drag coefficient of a cylinder with increasing Wi [67].

In order to explore the deformation of capsule in more detail, the transient lengths of

major and minor axes are plotted in Fig.2.5.c. The elongation of L∗ and compression
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of B∗ reduces for cases with steady-state deformations. However, at Wi =5, L∗

and B∗ monotonically increase in time, while the vorticity-directed axis (W ∗) has an

infinitesimal change in this case. Increase in the fluid elasticity causes the capsule

to get more aligned with the flow direction. The orientation angle monotonically

decreases with the Weissenberg number for the entire range of Wi investigated in

this work. This is in contrast to the elasticity effects on the deformation where

it decreases for low weissenberg numbers, but is unstable for Wi above a certain

threshold. The folds on the capsule surface are illustrated in Fig.2.6 for various Wi.

(a) (b) (c)

(d)

Fig. 2.6. The deformation of capsule membrane at Ca =0.025 and (a)
Wi=0 (b) Wi=5 (c) Wi=10 and (d) The cross section of the capsule
membrane for different Weissenberg numbers
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One of the important parameters in cell biology is the maximum tension expe-

rienced by the cell membrane. If maximum tension exceeds a threshold the cell

membrane bursts and releases its content which has harmful effects on the function

of biological systems. The effects of principal tension on mechanotransduction of

biological cells have become the subject of recent studies [70] . Therefore, it is impor-

tant to study the evolution of maximum and minimum tension on the membrane. To

do so, the principal elastic tensions are computed on each triangular element on the

membrane which is used to evaluate the range of experienced tension at each time

step. According to Li et. al [7] the principal tension on each element, represented by

T1 and T2, are explicitly written as:

T1 =
1

ε2

dW

dε1
=

Es
3ε1ε2

(ε21 − ε−2
1 ε−2

2 ) (2.16)

T2 =
1

ε1

dW

dε2
=

Es
3ε1ε2

(ε22 − ε−2
1 ε−2

2 ) (2.17)

By finding the values of T1 and T2 on each element the maximum and minimum

principal tension on the membrane can be computed. The temporal evolution of

maximum and minimum tensions for different Wi at Ca=0.025 is illustrated in Fig.

2.7. The increase in Wi decreases the maximum and increases the minimum tensions,

indicating that the range of the tension experienced by the capsule decreases with

Wi.

2.5.2 Capsule deformation in a moderate capillary number regime

The deformation of a capsule is plotted in Fig. 2.8.a for Ca =0.2 and various

Wi. Numerical simulations predict that the steady-state deformation decreases with

increasing Wi number. This behavior changes for larger Wi number such that the

deformation starts increasing with increasing fluid elasticity. The reason for this
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Fig. 2.7. The temporal evolution of maximum and minimum principal
tensions at Ca =0.025

complex phenomenon is the nonlinearity of the fluid as discussed in the previous

section. The temporal evolution of orientation angle, plotted in Fig. 2.8.b, shows

the effect of fluid elasticity on the membrane inclination angle. The deformed shaped

of the capsule in Newtonian and viscoelastic surrounding fluids is represented in

Fig.2.9. The resulting membrane develops high-curvature tips due to the large viscous

stretching exerted by the flow field on the membrane in a Newtonian fluid, while these

tips are less sharp as Wi increases. This phenomenon is more prominent for larger Wi.

The effect of fluid elasticity on the deformation and orientation angle are shown in

Fig.2.10. The deformation increases with Ca as expected and fluid elasticity reduces

the capsule deformation particularly for large Wi. The effect of the fluid elasticity

on the deformation is negligible at small Ca but it has a significant effect on the

orientation angle. The capsule aligns more with the flow direction as fluid elasticity

increases. In order to study TT behavior of a deformed capsule the tank-treading

period (TTP) is defined as the time required by the material points on the membrane

to complete a circulation. Therefore, we choose an arbitrary material point located

on the shear plane and track its position and angle with the X-direction to quantify
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(a) (b)

(c)

Fig. 2.8. The temporal evolution of the (a) capsule deformation, (b)
orientation angle, and (c) axes length for Ca =0.2

the time period. Fig.2.11 shows the effect of Wi on the TTP compared to the one

in a Newtonian fluid. This ratio is always larger than unity, which implies that the

fluid elasticity of the outer fluid slows down the rotational velocity of the deformed

membrane leading to a larger TTP. As we know the TTP is prolonged at higher Ca

because the membrane is highly deformed and the material points circulate a larger
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(a)

(b)

Fig. 2.9. Deformed capsule at Ca =0.2 and (a) Wi =0 (b) Wi=5

(a) (b)

Fig. 2.10. (a) The capsule deformation and (b) inclination angle ver-
sus capillary number

distance to complete an orbit. According to Fig.2.11, the relative change in TTP

caused by fluid elasticity reduces as Ca increases.
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Fig. 2.11. The normalized value of the tank treading period versus Wi

2.6 Viscoelastic capsule in a Newtonian matrix

In this section, we investigate the dynamics of a viscoelastic liquid-filled capsule

suspended in a Newtonian fluid. The effect of inner polymeric fluid on the deformation

is shown in Fig. 2.12 for a range of Wi. The steady value of deformation decreases

for Wi ∈ [0, 2] and increases for any value outside of this range (Fig. 2.12.a and b).

Furthermore, the overshoot observed in the deformation parameter can be attributed

to the polymer relaxation time as explained in the previous section. The effect of the

inner viscoelastic fluid is of the order of 3-4% on the deformation parameter which

proves negligible effects of fluid elasticity compared to the case where the outer fluid

is viscoelastic (Fig. 2.12.b). The viscoelastic fluid is bounded in a finite volume of

capsule and can not have a significant effect on the deformation parameter as that

of the previous cases. On the other hand, the fluid elasticity has a more appreciable

effect on the angle as shown in Fig.2.13. Contrary to the deformation, polymer

increases the orientation angle for Wi <= 6 for Ca = 0.2 (Fig.2.13.a and b). The

effect of fluid elasticity on the dynamics of the deforming capsule is enhanced for

larger Ca (Fig.2.13.b). The tank-treading period of the viscoelastic capsule is shown
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(a)

(b)

Fig. 2.12. Temporal evolution of (a) deformation for Ca =0.2 and (b)
normalized deformation as a function of Wi

in Fig.2.14. Interestingly, this parameter decreases in the presence of inner fluid

elasticity which indicates faster rotational velocity of the capsule membrane. This

behaviour is opposite to the effect of fluid elasticity on the TTP when the outer fluid

is viscoelastic. As the Ca increases, the TTP decreases more significantly compared

to that of a Newtonian fluid.
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(a)

(b)

Fig. 2.13. Temporal evolution of (a) orientation angle for Ca =0.2
and (b) normalized orientation angle as a function of Wi

2.7 Conclusion

We have simulated a Newtonian capsule in a viscoelastic matrix as well as a vis-

coelastic capsule in a Newtonian matrix to investigate the dynamics of a deformed

capsule suspended in a shear flow using a front-tracking method. The deformation

of the sheared capsule is such that the major axis in the shear plane and the axis in

the vorticity direction are elongated, while the minor axis in the shear plane is com-



26

Fig. 2.14. The normalized value of tank treading period versus Wi

pressed. The numerical results show that the outer fluid elasticity reduces the capsule

deformation and orientation angle of the capsule with the streamwise direction. The

capsule has a steady-state deformation for low Weissenberg numbers and when Wi

exceeds a threshold, the capsule deformation increases with time. Furthermore, the

deformation curves display small amplitude oscillations in the low capillary regime

which is due to the folds developed on the capsule membrane. Other important

parameters investigated in this work are the maximum and the minimum tensions

experienced by the capsule. According to the results, the range of the tension gen-

erated on the membrane decreases with Wi. The TTP calculated for the deforming

capsule increases with Wi. This means that the fluid elasticity slows down the ro-

tational velocity of the membrane and this effect is more prominent for smaller Ca.

The numerical results for a viscoelastic liquid-filled capsule in a Newtonian matrix

also indicate the decrease in the deformation with Wi, but interestingly the TTP and

orientation angle increase, which is opposite to the capsule dynamics observed in a

viscoelastic matrix.
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3. ELASTO-INERTIAL MIGRATION OF DEFORMABLE

CAPSULES IN A MICROCHANNEL

This chapter is reproduced with permission from: A.H. Raffiee, S. Dabiri, A.M.
Ardekani, Elasto-inertial migration of deformable capsules in a microchannel”, Biomi-
crofluidics, 11(6), 064113. [71]

3.1 Summary

Cell classification and sorting are of importance in many biomedical applications.

The current methods suffer from various problems such as complexity of the process,

low-throughput, and costly procedures that limit the use of these technologies. In this

chapter, we study the dynamics of deformable cells in a channel flow of Newtonian and

polymeric fluids and unravel the effects of deformability, elasticity, inertia and size

on the cell motion. We investigate the role of polymeric fluids on the cell migration

behavior and the performance of inertial microfluidic devices. Our results show that

the equilibrium position of the cell is on the channel diagonal, in contrary to that

of rigid particles, which is on the center of the channel faces. A constant-viscosity

polymeric fluid, modeled using an Oldroyd-B constitutive equation, drives the cells

toward the channel centerline, while a shear-thinning polymeric fluid, modeled using a

Giesekus constitutive equation, pushes the cells toward the channel wall. The findings

of this paper suggest that the addition of polymers in microfluidic devices can be used

to enhance the throughput of cell focusing and separation at a low cost. This study

provides an insight on the role of rheological properties of the fluid and the ways that

they can be tuned to control focal position of the cells.
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3.2 Methodology

3.2.1 Governing equations

The system of equations governing the flow and the motion of an elastic capsule in

a Newtonian fluid is presented in this section. The inner and outer fluids are assumed

to be incompressible. Hence, we have:

∇.u = 0, (3.1)

∂(ρu)

∂t
+∇.(ρuu) = −∇p+∇.τ + F, (3.2)

where ρ is the density of the inner and outer fluids, u is the velocity vector, t represents

the time and p and τ denote the pressure and the total stress tensor, respectively.

The total stress tensor in a Newtonian fluid is calculated by τ = µD, where µ

is the viscosity and D=(∇u) +(∇u)T is the strain rate tensor. In equation (5.2),

F represents the smoothed elastic force exerted by the capsule membrane which is

calculated as:

F(x, t) =

∫
∂B

f(xi, t)δ(x− xi)dV. (3.3)

This force represents the membrane response to the surrounding fluid which is zero

everywhere except on the membrane. In this equation, x and xi denote arbitrary

points in the computational domain and membrane surface and δ and V are the

Dirac delta function and volume, respectively, that have been explained in previous

chapter. In equation 5.3, f is the response force due to the shear deformation and

area dilatation resistance of the capsule membrane. We use the Shalak model [72] to
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include the resistive force of the membrane. In this model, the following strain energy

function is assigned to the membrane:

W =
Es
12

((ε21 + ε22 − 2)2 + 2(ε21 + ε22 − 2)− 2(ε21ε
2
2 − 1)) +

Ea
12

(ε21ε
2
2 − 1)2, (3.4)

where ε1 and ε2 are principal strains and Es and Ea represent the shear and area

dilatation modulii, respectively. Following Krüger et al. [73], we assume a fixed ratio

for Ea

Es
= 2. We use a finite element method [62] to obtain the interfacial force f . We

have validated this model in our previous work [61].

Biological fluids are often complex fluids due to the presence of polymers, proteins,

and DNA molecules. In order to model viscoelastic complex fluids, the total stress

tensor in (5.2) is split into solvent stress tensor (τs) and polymeric stress tensor (τp)

as follow:

τ = τs + τp, (3.5)

where the solvent stress tensor τs is:

τs = µsD, (3.6)

where µs is the solvent viscosity. The nonlinear elastic properties of complex fluids can

be modeled using the Giesekus constitutive equation [74], which captures both effects

of fluid elasticity and shear-thinning behavior. The Giesekus constitutive equation is

written as:

λ
5
τp + τp +

αλ

µp
τp.τp = µpD. (3.7)

In this equation, µp is the polymeric viscosity and α denotes the mobility factor, which

is in the range of 0 < α < 0.5 [75]. If α is set to zero, the polymeric fluid follows an

Oldroyd-B model, which behaves like a constant-viscosity elastic fluid. Furthermore,
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λ is the relaxation time of polymeric fluid and
5
τp denotes the upper convected time

derivative defined as:

5
τp =

∂τP
∂t

+ u.∇τp −∇uτp − τp∇uT . (3.8)

The first and second normal stress differences in a viscoelastic polymeric fluid, defined

below, can lead to flow phenomena in contrast with their counterpart in Newtonian

fluids.

N1 = τxx − τyy (3.9)

N2 = τzz − τyy (3.10)

where τxx, τyy and τzz represent the normal stresses along the x, y and z directions,

respectively.

3.2.2 Problem setup

We consider the motion of a deformable capsule in a straight square channel

with the edge length of 2W and the channel length of 4W illustrated in Fig.3.1.

A constant pressure gradient is applied in the x direction, leading to a parabolic

Poiseuille flow. The periodic boundary condition is applied in the x direction and

the no-slip boundary condition is applied in the y and z directions. In this study,

we consider W and U0 (the centerline velocity of the channel filled with a Newtonian

fluid) as the length and velocity scales, respectively. The dynamics of motion of the

capsule is governed by the following dimensionless parameters: (i) Reynolds number

Re = ρU02W
µ

, representing the ratio of the inertial to the viscous force (ii) Laplace

number La = 2ρEsa
µ2

, denoting the deformability of the cell (iii) Weissenberg number

Wi = λU0

W
, which is defined as a function of polymer relaxation time, length and
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velocity scales, (iv) β = µp
µ

, representing the ratio of the polymeric viscosity to the

total viscosity. The total viscosity is defined as µ = µs + µp. (v) Aspect ratio

AR = a
W

, representing the blockage of the channel by the capsule. Unless otherwise

stated Re = 37.8. The blockage ratio is set to 0.2 and 0.3 to study the effect of the

capsule size on its cross-streamline motion. The fluid inside the cell is assumed to be

Newtonian, and its viscosity and density are equal to the total viscosity and density

of the outer fluid ((µs + µp)outer = (µs)inner and ρinner = ρouter). Unless otherwise

stated, β is set to 0.9 in polymeric fluids. The initial viscoelstic stress in the domain

is zero in all simulations. The cells are assumed to have spherical initial shape and

they are released at y
W

= 1.5 and z
W

= 1.3. Furthermore, in the case of polymeric

fluid the initial viscoelastic stress is zero. The computational domain is discretized

using two sets of uniformly distributed Eulerian grids. For the cases corresponding

to Re = 37.8, we use 128 × 76 × 76 grid points and for higher Reynolds numbers,

we use 200 × 128 × 128 grid points. The mesh independency tests are included in

the Appendix. The capsule surface is discretized using 21632 triangular elements

to accurately track the location of the membrane. Furthermore, according to Euler

explicit method for time discretization the time step is restricted by CFL number,

which is set to 0.9.

3.3 Results and discussion

3.3.1 Cell focusing in a Newtonian fluid

In this section, we study the dynamics of a cell moving in a Newtonian fluid. The

blockage ratio is set to a
W

= 0.2 and 0.3 and the Laplace number varies between 1 to

500.
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Fig. 3.1. Schematic of the microchannel.

The trajectories and the time history of distance from the channel centerline are

illustrated in Fig. 4.2 for various Laplace numbers. All the cells are released from the

same location in the channel. The motion of cells can be described by two phases. In

the first phase, cells migrate toward the diagonal until they reach it and then they

move slowly along the diagonal until they reach their equilibrium position represented

with symbols in Fig. 4.2(b). One of the main differences between solid particles and

deformable cells in the microchannel is the equilibrium position. According to Fig.

4.2(b), the equilibrium position for deformable cells lies on the diagonal which is in

agreement with a previous study [54]. On the other hand, experimental and numerical

investigations [76] show that solid particles focus onto four off-center points on the

main axes near the channel edges. This difference in the final equilibrium position

can be used for sorting cells with different deformability. Figure 4.2 (a) shows that

the cells with La =1 and 10 migrate to the channel center. The final position of

less deformable cells approaches the channel wall and their distance from the center

increases. A similar behavior is observed for the cells with a
W

=0.2 in which only

the very soft cells with La =1 move to the center and the equilibrium position for
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Fig. 3.2. (a) The distance of cells from the channel centerline and (b)
the trajectories of cells. The blockage ratio is a

W
=0.3 and Re = 37.8.

the rest of particles lies on the diagonal as shown in Fig. 3.5(a). The reason for this

phenomenon is the dependence of the inertial lift force and deformability-induced lift

force on the Laplace number. For low La, the deformability-induced force dominates

the inertial force and the cells tend to focus on the centerline. As Laplace number

increases, the strength of the inertial force increases, while that of deformability-

induced force reduces and the inertial force becomes the dominant driving force.
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Fig. 3.3. (a) The distance of cells from the channel centerline for
various Re and La. (b) Cell deformation for various Re and La. The
blockage ratio is a

W
=0.3.

Under this condition, the final position is pushed further away from the centerline and

closer to the that of solid particles which is in agreement with previous studies [51,54].

(a) (b) (c)

Fig. 3.4. Deformed shape of capsules with a
W

= 0.3 and Re = 60 and
(a) La = 1 (b) La = 50 (c) La = 500.

We have also investigated the effect of Re number on the dynamics of deformable

capsules. Previous numerical simulations [51, 54] studied this effect for the range of

1 < Re < 100, while in this work we extended this range to 37.4 < Re < 300. Our
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results show that the equilibrium position of rigid particles is almost independent of

Re in the range of 1 < Re < 100 and merely depends on La, which is in agreement

with previous observations. However, the equilibrium position of capsules is a function

of Reynolds number for larger values of Reynolds number. This dependency is more

significant for softer capsules. As shown in Fig.4.3 (a), the deformable capsules move

toward the channel center as Re increases and this dependency is enhanced with

increasing deformability. This behavior is also observed in Ref. [51], where they

showed the change in the focal position of capsules for large Reynolds numbers (Re =

100). We should note that the capsule with La = 500 is not completely rigid as shown

in Fig. 4.3 (b), where the capsule deformation is plotted.

We calculate the Taylor deformation parameter (D) to quantify the deformation of

capsules. For this purpose, we compute the moment-of-inertia tensor, which provides

us with the principal major and minor axes of an equivalent ellipsoidal particle (L

and B, respectively). Accordingly, the deformation parameter is defined as:

D =
L−B
L+B

(3.11)

Figure 4.3 (b) illustrates the deformation parameter versus Re for different La.

The increase in Laplace number leads to decrease in the deformation, except for La =

1 which is very soft and has a small deformation. The reason for this phenomenon is

related to the equilibrium position of these particles. The focal position for capsules

with La = 1 is the channel centerline where the shear rate is zero and the capsule has

a parachute shape that yields to a small deformation. Furthermore, increasing Re

leads to an increase in the deformation because of the increase in the viscous shear

stress acting on the deformable capsules. Interestingly, for La = 50 the deformation

rapidly falls at Re = 300. The final position of the capsule at this Reynolds number
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is at the centerline. This capsule has a parachute shape and experiences a small shear

rate.
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Fig. 3.5. (a) Equilibrium position of cells for various deformability
and size at Re = 37.8. (b) Temporal evolution of cross-streamline
velocity of cells with a

W
=0.3 and Re = 60.

Figure 4.4 shows the deformed shape of capsules at their focal position. According

to Fig.4.3 (a) soft capsules (e.g., La = 1) focus at the centerline and experience a

symmetric deformation, leading to a parachute shape. As the Laplace number in-

creases the final equilibrium position moves away from the centerline and capsules

asymmetrically deform. Increasing the Laplace number means that the capsule be-

haves more similar to a rigid particle. On the other hand, the final position of capsules

with larger La is closer to the wall which yields larger viscous stress exerted on the

capsule. Therefore, the deformation of capsule does not monotonically decrease with

La.

The inertial force scales with Re( a3

W 3 ) according to Ref. [54]. Therefore, the cell

size is another important factor that changes the motion of cells. According to the

Fig. 3.5(a), the critical Lac number at which the cell equilibrium position is away

from the centerline is affected by the size such that the larger cells require larger La
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number to not focus on the center. This value is also sensitive to Re number [54].

The cell size also affects the off-center equilibrium position of the cells illustrated

in Fig. 3.5(a). Smaller cells end up at the location more distant from the center

for a given La number. This is due to the fact that deq (the equilibrium distance

from the centerline) is proportional to La
( a
W

)4
according to Ref. [54]. Figure 3.5(b)

illustrates the temporal evolution of the cross-streamline velocity V ∗T and the role of

the cell deformability. The migration velocity of softer cells is larger, although all

cells are released from the same location in the microchannel. The cells reach their

focal position nearly at the same time. Hence, those cells that need to travel longer

distance to reach the equilibrium position have a larger velocity.

3.3.2 Cell focusing in an Oldroyd-B fluid

In this section, we study the effect of fluid elasticity on the cell migration behav-

ior. Our numerical results suggest that an Oldroyd-B viscoelastic fluid drives the cells

toward the channel centerline. Figure 3.6(a) shows the final position of cells for dif-

ferent Laplace and Weissenberg numbers for a
W

=0.3 and Re = 37.8. The equilibrium

position of the cells is on the diagonal similar to a Newtonian fluid. The equilibrium

position of the cells is shifted closer to the center with increasing Wi number (Wi =0

represents the Newtonian fluid). Ultimately, for Wi =2 all the cells regardless of their

size and deformability focus at the centerline. It should be noted that for La =1 and

10 the cells end up on the centerline even for a Newtonian fluid due to the strong

deformability-induced force. Hence, increasing the Wi number does not make any

change to the final position of these soft cells. The observed focusing behavior pro-

vides us with the ability to control the focal position of cells by tuning Wi number.

The cell migration is influenced by viscoelastic, inertial and deformability-induced

forces. The viscoelastic and deformability effects have reinforcing interaction in driv-
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ing the cells to the center, while the inertial force has an opposite effect. Therefore, for

low Wi numbers when the elasticity is weak, the cells are significantly influenced by

the inertial force and focus to an equilibrium location close to the one in a Newtonian

fluid. As the Weissenberg number and consequently fluid elasticity increase, the final

position of cells moves toward the centerline. Figure 3.6(b) shows the trajectories

of cells for La =500, a
W

=0.3 and Re = 37.8 at various Wi numbers. Cells migrate

to the diagonal of the microchannel and the final position represented by symbols

approaches the centerline as the fluid elasticity increases. Finally, at Wi =2 the cell

directly moves towards the centerline indicating the dominance of the viscoelastic

stress on the cell migration. Figure 3.7(a) shows the flow field in the cross-section of

the microchannel where the cell is located at Re = 37.8 and La = 500. The stream-

lines around the cell in an Oldroyd-B fluid are directed radially inward, leading to

cell focusing on the centerline.
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Fig. 3.6. (a) Focal position and (b) trajectories of cells with a
W

=0.3
and Re = 37.8 in an Oldroyd-B fluid.

Another important effect that influences the dynamics of the cells is the inertial

effect. Figure 3.8 illustrates the impact of the Re number on the final position of the
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(a) (b)

Fig. 3.7. The flow field around the cell in (a) an Oldroyd-B fluid
(Wi = 2) and (b) a Giesekus fluid (Wi = 2 and α = 0.1). The
blockage ratio is a

W
=0.2 and Re = 37.8.

cells at Wi =2 and Wi =5 for the cells with La =50 and a
W

=0.3. Increasing the Re

number induces disturbances in the flow field such that at a large enough Reynolds

number the flow regime transitions from laminar to turbulence and cell focusing no

longer occurs [57]. This is the main limitation of current microfluidic technologies

leading to low throughput devices for cell classification. Hence, it is important to

study the inertial effects in the presence of polymers and identify the threshold above

which cell focusing is not observed. Figure 3.8 shows the interplay between the flow

inertia and the elastic effects that determines the final position of the cell. The

equilibrium position of cells moves further toward the channel wall with increasing

Re. The reason for this behavior is the dependence of the inertial lift force on the

Reynolds number. The inertial lift force is correlated with the Reynolds number as

Finertail ∼ Re2 according to Ref. [54]. In high Re number regimes, the inertial lift

force dominates other effects, while in low Re number regimes, the viscoelastic effect

is stronger and the cells focus on the centerline. On the other hand, the effect of
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fluid viscoelasticity is significant even at high Re numbers such that cell focusing

occurs in the presence of polymers. However, the focal position is no longer at the

centerline. As shown in the Fig. 3.8 the final position of the capsule in polymeric

fluid is significantly affected by the Re number. This phenomenon is also observed

for solid particle migration in viscoelastic fluids [58]. The inertial lift force acting on

a solid particle [43] is in the form of:

Finertial = ρU2
0a

2(
a

W
)2C2(

y

W
) (3.12)

where y denotes the distance from the centerline. Furthermore, the viscoelastic force

on a solid particle in a second order fluid [77] is:

Fviscoelastic = −40

3
πρU2

0 (2a)2(
a

W
)(
Wi

Re
)β(

y

W
) (3.13)

The negative sign in eq. 3.13 shows that this force is toward the centerline, leading to

the cell migration toward the centerline in an Oldroyd-B fluid. The balance between

these two forces determines the equilibrium position of a solid particle. Equations

3.12 and 3.13 indicate that the location where the sum of forces are zero strongly

depends on the Reynolds number.

The results indicate that we still have a control on the equilibrium position of cells

in high Reynolds number regimes when the fluid is viscoelastic. We note that a higher

Reynolds number corresponds to a larger sample volume flow rate. The addition of

polymers improves the throughput of microfluidic cell focusing devices.

The fluid elasticity brings the equilibrium position of cells closer to the centerline.

For instance, at Re =100 the cell is no longer at the channel center for Wi =2 and

increasing the Re number leads to a larger equilibrium distance from the centerline.

Increasing the Wi number, on the other hand, decreases the equilibrium distance
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Fig. 3.8. Focal position of the cells in an Oldroyd-B fluid. Here,
a
W

=0.3 and La =50.

from the centerline. By changing the Weissenberg number from 2 to 5, the centerline

focusing occurs even for Re =100. This phenomenon suggests that for each Wi

number there is a critical Rec number above which the final position of the cells is

no longer on the centerline. In order to achieve the centerline focusing of the cells for

higher Re numbers, it is required to increase the Wi number of the fluid. This change

is experimentally possible by increasing polymer molecular weight or concentration,

but the resulting numerical instability limits the range of the Weissenberg number

that can be explored in this paper. These results suggest that this method can

be used for cleaning the particulate flows. Cells in an Oldroyd-B fluid (constant-

viscosity polymeric fluid) assemble in the channel center and can be separated from

the suspending fluid. For instance, bacteria or circulating tumor cells (CTC) can

be separated from the suspending fluid [21]. Furthermore, this method does not

employ any complex active system for controlling the migration such as electric or

magnetic field or acoustic wave application, which limit the sample throughput and

often requires skilled users.
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Another important advantage of using fluid elasticity is the ability of the polymer

chains in maintaining the flow regime in a laminar regime even for very high Re num-

bers. It means that higher sample throughput can be pumped into the microchannel

without transition into a turbulent regime, and the focusing behavior is still observed

for high flow rates. We note that the previous studies on particle focusing were re-

stricted to rigid particles in a Newtonian fluid or highly viscoelastic fluid (Wi� Re)

in the creeping flow limit [78–82]. In these studies, the deterioration of particle fo-

cusing was observed for Re >1. Lim et al. [57] showed that the focusing behavior

of rigid particles can be achieved for high Reynolds numbers (10< Re < 104) and

weakly viscoelastic fluids (Wi � Re). Here, we quantify for the first time focusing

of deformable cells in viscoelastic polymeric fluids.

3.3.3 Cell focusing in a Giesekus fluid

In this section, the effects of the fluid elasticity and shear-thinning behavior on

the cell migration is investigated by using a Giesekus constitutive equation. Figure.

3.9(a) shows the final position of the cells with varying deformability for a
W

=0.3 and

Re = 37.8. The cells in a shear-thinning viscoelastic fluid are pushed toward the wall

compared to their final position in a Newtonian fluid. This behavior is opposite of

what we observed in an Oldroyd-B fluid. The reason for this complex behavior can

be explained by considering the interplay between effective forces on the cell. In this

fluid, the dynamics of the cells is governed by the interplay between shear-thinning

effects, secondary flow generated by second normal stress difference (nonzero for a

Giesekus fluid and zero for an Oldroyd fluid ), elastic force, inertial effect and the

deformability-induced force. Mobility factor α that is non-zero in a Giesekus fluid

leads to a shear-thinning effect which is absent in an Oldroyd-B fluid. The shear-

thinning effect significantly reduces the viscoelastic force (the force that drives the cell
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Fig. 3.9. (a) Final equilibrium location of cells and (b) their cor-
responding trajectories in a Giesekus fluid. The blockage ratio is
a
W

=0.3 and Re = 37.8.

to the centerline) by reducing the viscosity. It also increases the flow velocity (Fig.

3.11(b)) which enhances the inertial force (the force that pushes the cells toward the

wall). Furthermore, the secondary flow induced by the second normal stress differ-

ence [58] shown in Fig. 3.7(b) moves the final position of cells closer to the channel

walls. The deformability-induced force for the cells with low La number (La =1 and

La =10) dominates other effects, and similar to the Newtonian fluid the cells move
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to the centerline. On the other hand, increasing the Laplace number leads to the cell

migration to off-center locations. The difference between the equilibrium position of

soft and rigid cells becomes larger in an Giesekus fluid and this effect enhances the

separation of cells based on cell deformability. The stress tensor generated in the

presence of the polymeric fluid depends on parameters such as α and β (see equa-

tion (5.7)). Therefore, it is important to study the effect of these parameters on the

cell migration to provide engineers with an insight to design more efficient sorting

techniques. According to Fig. 3.9(a), as β increases from 0.1 to 0.9 for constant

Wi and α, the focal position of cells is pushed toward the wall, while the distance

between the equilibrium position of the cells with different La number is significantly

reduced. This behavior continues with increasing β until the cells with Laplace num-

bers ranging from 50 to 500 assemble in the same location at β =0.9. In this case,

all cells focus onto the same off-center point in the cross section regardless of their

deformability. Figure 3.9(b) shows the trajectories of cells toward the equilibrium

position in a Giesekus fluid Re = 37.8. The final location of the cells are mostly

on the channel diagonal similar to the Newtonian and Oldroyd-B fluids except for

the case with Wi = 2, β =0.9 and α =0.1, where the equilibrium position is on the

x-axis. Previous studies [83] have shown that the stability of final position changes

with Re and size ratio ( a
W

), while here we show that the stability can also change

with the variation of fluid rheology such as β given a constant Reynolds number and

size ratio. Mobility factor α is another parameter that plays an important role in the

cell dynamics. Increasing α from 0.1 to 0.2 leads to an increase in the final distance

of the cells from centerline. The reason for this observation can be attributed to the

stronger secondary flow, generated in a Giesekus fluid, that pushes the cells toward

the wall. This phenomenon has been observed in previous works [58]. Additionally,

the shear-thinning effects increase the inertial lift force. This effect pushes the cells
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Fig. 3.10. Deformed shape of capsules with a
W

= 0.3, La = 50,
Re = 60 and (a) Wi = 0 (b) Wi = 0.9 and α = 0 (c) Wi = 2 and
α = 0 (d) Wi = 1 and α = 0.2

toward the channel wall. The results presented in this section suggest that the effi-

ciency of microfluidic technologies used for classification of soft and stiff cells increases

in shear-thinning polymeric fluids. In this section, we also investigate the effect of

fluid elasticity on the shape and deformation of cells. Figure 3.10 illustrates the de-

formed shape of capsules at their equilibrium position for various polymeric fluids at

Re = 60 and La = 50. The shape of the cell in a polymeric fluid is smoother and it

does not develop sharp edges compared to the cell in a Newtonian fluid. In order to

quantify the effect of viscoelasticity, the Taylor deformation parameter is plotted for

polymeric fluids in Fig. 3.11 (a). According to this figure the capsule deformation

decreases with increasing Wi number in an Oldroyd-B fluid. As we mentioned in

section 3.3.2, the cells move toward the centerline as the Weissenberg number in-

creases in an Oldroyd-B fluid. Therefore, the cells experience less viscous shear stress

leading to smaller deformations. Furthermore, as we shown in our previous work [61],

the capsule deformation decreases with increasing Wi number due to the developed

normal stress around the capsule membrane. The capsule at Wi = 2 focuses at the

centerline (Fig. 3.10(c)) and it recovers the parachute shape. On the other hand in

Geseikus fluid, the cells move toward the channel wall, leading to larger viscous shear

stresses and consequently larger deformations.
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Figure 3.11(b) shows the streamwise velocity profile at Z∗ = 1 and X∗ = x∗center,

where xcenter represents the x-component of the capsule center of mass. In this case,

Re = 60 and La = 1 leading to focusing of the capsule on the center in both Newto-

nian or polymeric fluids. According to this figure, the velocity profiles for Newtonian

and Oldroyd-B fluids are identical, while the velocity increases for a Giesekus fluid,

due to the shear-thinning effect [58]. This phenomenon suggests that the use of

Giesekus fluid in micro-devices increases the volumetric flow rate of samples. The

uniform velocity occurs inside the deformable capsules (channel centerline). The

translational velocity of the cells is smaller than the flow velocity at that location,

meaning the cell lags the flow. The similar behavior is observed for rigid particles [58].

This behavior is attributed to the dominant effect of the wall that increases the drag

force acting on capsules [84,85].
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Fig. 3.11. (a) Deformation parameter of capsules at Re = 60 and (b)
the velocity profile at Z∗ = 1 and X∗ = x∗center with Re = 60 and
La = 1
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3.4 Conclusions

In this paper, we studied the dynamics of deformable cells in Newtonian and poly-

meric fluids flowing in a square microchannel. We investigated the effects of various

parameters such as cell deformability, fluid elasticity, inertia and size on the cell migra-

tion behavior. The numerical results show that the equilibrium position of deformable

cells are different from the rigid particles. Previous studies [76, 86] showed that the

focal position of rigid particles are four off-center points near the channel wall, while

our results show that of deformable cells lies on the channel diagonal. The deforma-

bility has a significant role on the dynamics of cell migration such that the reduction

in the Laplace number causes the final position of cells to approach the channel cen-

terline. This behavior is attributed to the strength of deformability-induced force

that increases with decrease in La moving the cells to the center. This effect becomes

dominant for very soft cells (e.g., La =1), where cells focus on the centerline regard-

less of their size. The migration of cells in a Newtonian fluid is a function of size,

deformability and flow inertia. We observed a completely different behavior for the

cases in which the cells flow in a polymeric fluid. The constant-viscosity viscoelastic

fluid (an Oldroyd-B fluid) pushes the cells toward the centerline. The focal position

of the cells approaches th centerline with increasing Wi and ultimately all the cells

with various size and deformability end up at the centerline. The results suggest an

enhanced focusing behavior in a polymeric fluid that can be used in various appli-

cations aiming to separate the cells from the suspending fluid. We also investigate

the effect of fluid inertia and showed that increasing the Reynolds number, pushes

the equilibrium position toward the wall which exhibits an opposite effect compared

to the Weissenberg number. The stabilizing effect of the polymer molecules in the

suspending fluid enhances the throughput of current microfluidic technologies as it

delays the transition from laminar to turbulent flow. This allows us to increase the
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sample flow rate while achieving cell focusing. The cell motion in a shear-thinning

viscoelastic fluid (a Giesekus fluid) is considered in this paper. Our findings indi-

cate that non-Newtonian effects of a Giesekus fluid drives the cells toward the wall,

contrary to an Oldroyd-B fluid. The reason for this behavior can be attributed to

shear-thinning effects and the secondary flow generated in a microchannel. The find-

ings of this paper suggest that the addition of polymers in microfluidic devices can

be used to enhance the throughput of cell focusing and separation at a very low cost.

This study provides an insight on the role of rheological properties of the fluid and

ways they can be tuned to control the focal position of the cells.

3.5 Appendix

3.5.1 Mesh independency

In this section, we show the mesh-independency of the results presented in this

study. As we mentioned in section 3.2.2 the computational domain for Re = 37.8

is discretized using 128 × 76 × 76 in x, y and z directions, respectively. In order to

check the mesh-independency of the numerical simulations, we used 128× 152× 152

Eulerian mesh. The results are shown in Fig. 4.17 for La = 500. The focal positions

changes 1.5% as we increase the number of grid points.

The mesh-independency of the numerical simulation is also checked for Re = 200

and La = 50. Fig.3.13(a) and (b) show the distance of the capsule from the channel

centerline for Newtonian (Wi = 0) and Oldroyd-B (Wi = 2) fluids, respectively. The

maximum error between two different sets of grid points are 2.02% and 0.65% for

Newtonian and Oldroyd-B fluids, respectively.
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Fig. 3.12. Distance of the capsule from the channel centerline for
La = 500 and Re = 37.8 with 128 × 76 × 76 and 200 × 128 × 128
Eulerian grid points.

3.5.2 Domain independency

Here, we show the independency of the numerical results to the domain length in

the X-direction, where the periodic boundary condition is applied. Figure 3.14 shows

the distance of capsule from the channel centerline at Re = 100 and La = 500 for two

cases with different lengths in X-direction (L = 4W and L = 8W ). The maximum

error between two different cases is 1.71%.

3.5.3 Validation of viscoelastic model

The viscoelastic model used in this study is validated against published results.

For this purpose, we simulate the deformation of a droplet containing polymeric fluid

subjected to a shear flow. Figure 3.15 shows the ratio of steady-state deformation to

the deformation of a droplet with Newtonian content at Ca = 0.2 (Ca = µaγ
σ

, where

a and σ are the droplet radius and surface tension, respectively, and γ denotes the

imposed shear rate). The results are in a good agreement with previous published

results [67], with maximum error of 0.72%.
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Fig. 3.13. Distance of the capsule from the channel centerline at Re =
200 and La = 50 for a) Wi = 0 and b) Wi = 2 with 200× 128× 128
and 256× 152× 152 Eulerian grid points.

3.5.4 Validation of numerical method

Here, we compare the results of our study with published results [54] to show

that the numerical method used in this investigation accurately captures the inertial

effects. For this purpose, the equilibrium position of capsules of various La flowing

in a microchannel filled with a Newtonian fluid is computed. The Reynolds number

in our study is Re = 37.8. As we know, the Reynolds number does not affect the

equilibrium position of capsule in this range [51]. Our results are in good agreement

with Ref [54] and the maximum error observed here is 1.15% (Fig.3.16).
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Fig. 3.14. Distance of the capsule from the channel centerline at
Re = 100 and La = 500 for different domain lengths L = 4W and
L = 8W .
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Fig. 3.15. Deformation of polymeric droplet at Ca = 0.2 and various
Deborah numbers.



52

100 101 102

La

0.0

0.2

0.4

0.6

d∗

Schaaf et. al

Present

Fig. 3.16. Equilibrium position of a deformable capsule flowing in a
microchannel filled with a Newtonian fluid.
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4. SUSPENSION OF DEFORMABLE PARTICLES IN

NEWTONIAN AND VISCOELASTIC FLUIDS IN A

MICROCHANNEL

This chapter is reproduced with permission from: A.H. Raffiee, S. Dabiri, A.M.
Ardekani, Suspension of deformable particles in Newtonian and viscoelastic fluids
in a microchannel”, Microfluidics and Nanofluidics, 23(2), 22. [87]

4.1 Summary

In this chapter, we study a suspension of cells flowing in a microchannel of New-

tonian and viscoelastic fluids and investigate the role of cell size, cell volume fraction,

inertia, deformability and fluid elasticity on the cell distribution. Our results suggest

that the use of constant-viscosity viscoelastic fluid pushes the cells toward the chan-

nel centerline which can be used in microfluidic devices used for cell focusing such as

cytometers. Furthermore, we show that the volumetric flow rate can be significantly

enhanced with the addition of the polymer in the suspending fluid. This fundamental

study can provide insight on the role of rheological properties of the fluid and other

factors that they can be tuned to control the collective behavior of the cells that can

be used for efficient design of microfluidic devices.

4.2 Introduction

The motion of synthetic capsules and living cells in microchannels has been the

subject of numerous studies in the last decade due to its significance in engineering

and biomedical applications [88, 89]. Cell sorting and separation are common pro-
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cesses that are used for various purposes such as separation of leukocytes from blood

used in DNA sequencing [21]. Early diagnosis of lethal diseases such as cancer [25]

can be conducted by isolation of rare cells in blood, which is a complex suspension

of the cells. Furthermore, fractionated healthy blood components are used for dif-

ferent therapeutic applications such as platelet transfusion [28]. Cell isolation and

enrichment provide a better platform to biologists to study and analyze various prop-

erties of living cells [21,29]. In this regard, microfluidic devices provide a platform to

achieve aforementioned needs while overcoming challenges such as sample contami-

nation, cost and complexity of the procedures [90]. Besides, these devices offer higher

accuracy for analysis and increased automation of the process [91, 92]. Accordingly,

there is a high demand for developing techniques to precisely control trajectories of

the cells and manipulate them in a desired manner. Some of the proposed tech-

niques employ external factors such as electric [93], magnetic [94] and acoustic [95]

fields and sheath flows [96–98]. Even though, they can offer high throughput sample

processing, the complexity of the procedure and high cost limit their utilization in

clinical applications [21]. Furthermore, these methods require cell manipulation that

may change biological properties of the cells [99]. Hence, there is a growing interest

in employing label-free techniques that take advantage of physical properties of the

cells such as size, shape and deformability to control their trajectories in microflu-

idic devices [21, 90, 99]. Inertial microfluidics are among the proposed techniques

that use inertial forces to induce cell migration in microchannels [76,86,100]. In this

technique, cells focus at an equilibrium position depending on their physical proper-

ties [39, 101, 102]. The particles flowing in a Newtonian fluid follow the streamlines

without any transversal migration for low Reynolds numbers [43]. With increasing

the Reynolds number the inertial force becomes important and the cross-streamline

migration of particles is observed [79, 103]. Previous investigations show that the
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deformability of the cell can affect its trajectory in the microchannel [54, 71]. Due

to deformability of cell membrane, a deformability-induced force is generated and

the interplay of all the above forces governs the equilibrium position of the flowing

cells [71]. In chapter 3, we study the effect of cell deformability on the equilibrium

position of the deformable cells. Our results show that deformability-induced force

drives the cells toward the channel centerline in a Newtonian fluid. Recent studies

on microfluidic devices introduced an alternative way for cell focusing by adding a

polymer to the suspending fluid [104–106]. In this method, the polymer chains in

the fluid are stretched and generate an uneven normal stress on the flowing particles.

This phenomenon leads to a net elastic force that interacts with the inertial force

and affects the migration dynamics and equilibrium position of the particle [60, 99].

This phenomenon has been experimentally and analytically [78,79,81] observed. The

particle migration depends on the fluid rheology, cell size, channel geometry and volu-

metric flow rate [107]. There are several experimental studies that showed promising

results for cell separation and focusing using polymeric fluid as the suspending fluid.

For instance, human breast carcinoma and leukocyte cells were separated in a straight

microchannel [108] which highlights the effect of cell size and deformability on the

particle migration flowing in a viscoelastic polymeric fluid. The effect of size and de-

formability was also observed in Liu et al. [109] where solid particles, living cells and

bacteria were separated by focusing in different locations in the channel cross-section.

Previous studies [71,79,110,111] show that fluid rheological properties are important

on the dynamics of cell migration in microchannels. In chapter 3, we show that a

constant-viscosity viscoelastic fluid drives the particle toward the channel centerline,

while a shear-thinning viscoelastic fluid exhibits an opposite behavior. The equilib-

rium position of the cell depends on the cell size, deformability and volumetric flow

rate.



56

Despite the importance of the dynamics of cell suspension in a microchannel,

previous experimental and computational studies focus on the migration of cells in a

very dilute regime. In this chapter, we focus on the suspension of deformable cells

in Newtonian and polymeric fluids in a semidilute regime and investigate the role

of various factors including cell size, deformability, inertia and viscoelasticity of the

suspending fluid. Our results provide fundamental understanding of the dynamics of

suspension of cells in a straight microchannel used in various microfluidic devices.

4.3 Methodology

4.3.1 Problem setup

In this work, the computational domain is a straight squared channel illustrated in

Fig. 4.1. The edge of the channel is 2W and the channel length is set to be 4W . We

applied a periodic boundary condition in x direction and a no-slip boundary condition

is implemented in y and z directions. In this problem, W and U0 (the centerline

velocity of the channel) are used as the characteristic length and velocity scales,

respectively. Hence, the dimensionless numbers governing the problem are: (i) the

Reynolds number Re = ρU02W
µ

that represents the ratio of inertial to the viscous forces,

(ii) the Laplace number La = 2ρEsa
µ2

denoting the deformability of the cell, (iii) φ that

shows the volume fraction of cells in the microchannel, (iv) the Weissenberg number

Wi = λU0

W
showing the ratio of elastic to viscous forces and (v) β = µp

µ
representing

the ratio of the polymer viscosity to total viscosity (µ = µs + µp) and finally (vi) the

aspect ratio AR = a
W

that shows the blockage ratio in the microchannel. We assume

that the inner fluid of the cells is a Newtonian fluid with a density and viscosity

equal to those of the outer fluid ((µs+µp)outer = (µs)inner and ρinner = ρouter). Unless

otherwise stated, β is set to 0.9 and the cells are initially spherical. The computational
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domain and cell membrane are discretized using 128× 76× 76 Eulerian grid points in

x, y and z directions and 20000 Lagrangian grid points. The mesh and domain size

independency tests are provided in the Appendix.

4W

2W

2W

x y

z

2a

Fig. 4.1. Schematic of problem setup

4.4 Result and discussion

4.4.1 Newtonian fluid

In this section, the migration of cells flowing in a Newtonian fluid is investigated.

The effects of various factors including deformability (La), cell volume fraction (φ),

inertia (Re) and cell size ( a
W

) are explored. The computational domain is filled with a

suspension of randomly distributed cells (cells with the same size and deformability)

along the channel. A constant pressure gradient is applied to generate a flow in the

microchannel and cells flow and migrate across the microchannel due to the cell-

cell and cell-fluid interactions. The simulation is run long enough that the suspension

reach a statistically steady state. The Reynolds number is set to 37.8 unless otherwise

stated.
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(a) (b)

Fig. 4.2. The distribution of cells at (a) t∗ = 0 and (b) at t∗ = 1800
for φ = 20%, a

W
= 0.3, La = 500 and Re = 37.8

Figure. 4.2 illustrates the cell suspension at two time instances t∗ = 0 and t∗ =

1800 for La = 500, φ = 20% and a
W

= 0.3. The cells interact and deform in the

channel. Due to the low shear rate in the central region of the channel, cells maintain

their initial spherical shape, while cell deformation is more significant as the cells get

closer to the wall, where the shear rate is higher. Cells migrate in the cross-stream

direction and accumulate near the center of the channel. This migration behavior

toward the centerline is caused by the deformability-induced force acting on the cells.

The interplay between this force, inertial lift force and wall-induced force determines

the focal location of cells [54, 71] in the microchannel. The migration of cells toward

the center can also be observed by comparing cell distribution at two different time

instances in Fig. 4.2 where the accumulation of cells near the center of channel is

significant. To study the motion of a suspension of cells, the ensemble average of cell

distance from the centerline (< r∗ >) is computed. Figure. 4.3 shows the temporal

evolution of average distance of cells from the channel centerline for various La number

at φ = 10%, a
W

= 0.3. According to this figure, < r∗ > initially decreases and reaches

a quasi-steady state. The initial decrease in < r∗ > shows the net migration of

cells toward the centerline due to the deformability-induced force acting on the cells.

The steady value of cell position is computed by temporally averaging < r∗ > over
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Fig. 4.3. Average cell distance from the centerline for φ = 10%,
a
W

= 0.3 and Re = 37.8

the time period during which statistically steady state is reached (see Fig. 4.4 for

Re = 37.8). The cell distance from centerline increases with increasing La number
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Fig. 4.4. Quasi-steady cell distance from the centerline for various La
number at Re = 37.8

(decreasing deformability) which is in agreement with the behavior of a single cell in

a microchannel [54, 71]. This change is attributed to the effect of La number on the

deformability-induced force. As La increases this force gets weaker and the inertial

and wall-induced forces become dominant factors. Hence, the location of cells with a

high Laplace number is close to that of solid particle flowing in a microchannel. Figure
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4.4 also exhibits that increasing the cell volume fraction leads to increase in the cell

distance from the channel centerline. This behavior is due to the increase in the

cell-cell interaction due to the increase in the number of cells flowing in the channel.

Furthermore, the cell size has an important role on the net motion of cells. Comparing

the average distance for different blockage ratios ( a
W

= 0.2 and 0.3) indicates that

bigger cells get closer to the centerline consistent with previous studies [54,71] for an

isolated cell. According to Schaaf et al. [54], the deformability-induced forces scale

proportionally with the size of the cells. Hence, the bigger cells experience a larger

force towards the centerline. In order to study the steady distribution of cells in

microchannel, two quantities including radial volume fraction (φr) and local volume

fraction (φl) are defined. The local volume fraction represents the cell distribution

across the microchannel and is defined as the fraction of volume ∆y∆zLx (Lx is the

channel length in x direction) occupied by the cells at different y and z across the

channel cross-section. To find φr, eq. 4.1 is introduced.

φr =
1

Ar,r+∆r

∫ r+∆r

r

φl2πrdr, (4.1)

In this equation, r is the distance from the channel centerline and Ar,r+∆r is the

area between r and r + ∆r. Hence, the radial volume fraction (φr) is the fraction

of microchannel volume between r and r + ∆r that is occupied by cells. The radial

volume fraction for φ = 10%, a
W

= 0.3 is plotted for various Laplace number in Fig.

4.5(a). According to this figure, the cells are not evenly distributed across the channel.

The results show that the radial volume fraction of cells decreases with the distance

from the channel centerline and it reaches to zero at a particular radius. The region

in the microchannel in which the radial volume fraction is zero is called cell-free layer

(CFL). The formation of this layer has been numerically and experimentally observed

in previous studies [112, 113]. Furthermore, the same phenomenon occurs in blood
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Fig. 4.5. Radial volume fraction for (a) φ = 10%, a
W

= 0.3 and
Re = 37.8 and (b) for La = 500 and Re = 37.8

vessels where the concentration of the red blood cells close to the vessel wall is far

less than its value in the core region [114]. One of the important factors affecting

the thickness of CFL is La number. The thickness of CFL increases with decreasing

La number (Fig. 4.5(a)). The reason for this behavior is the tendency of deformable

cells to migrate toward the core region and this tendency is enhanced by decreasing

La number. Hence, the concentration of cells is higher in the central region leading

to a thicker cell-depleted layer near the wall. The maximum radial volume fraction

of cells at La = 1 occurs at the centerline and it decreases monotonously with the

distance. The occurrence of the peak at the centerline is caused by two factors:

(i) cell migration toward the centerline that yields to a significant cell accumulation

in that region and (ii) the small area of the region (Ar,r+∆r) over which the radial

volume fraction is computed in the central region. As the Laplace number increases

an off-center peak in the radial volume fraction occurs, although the maximum radial

volume fraction still occurs at the centerline due to the aforementioned reasons. In

order to better understand this trend in cell distribution, the effect of deformability

on the focal position of cells should be considered. Increasing the La number pushes
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the focal position of cells toward the wall of the microchannel [54, 71]. Therefore,

a significant increase in the local volume fraction of cells is observed at off-center

locations in the cross-section. This rise in the local volume fraction is reflected as the

second peak in the radial volume fraction in Fig. 4.5(a). The effect of the cell volume

fraction (φ) and the cell size on the cell distribution is plotted in Fig. 4.5(b). The

thickness of CFL decreases with φ due to the increase in the number of the cells and

their interaction. Hence, the cells are more spread across the channel cross-section

leading to a decrease in CFL thickness. Furthermore, decrease in the cell size results

in decrease in the CFL thickness. This effect is attributed to the role of the cell

size on the equilibrium position of cells shown in Fig. 4.4. More importantly, the

formation of the second peak is also observed for all the cases shown in Fig. 4.5(b).

In order to elaborate the formation of the second peak in the radial volume fraction in

details, the local volume fraction of cells (φl) in the channel cross-section at φ = 20%,

La = 10 and a
W

= 0.3 is plotted in Fig. 4.6. The blue region near the channel wall
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Fig. 4.6. Local volume fraction of cells at φ = 20%, La = 10, a
W

= 0.3
and Re = 37.8

with zero concentration of cells is the cell free layer. According to this figure, φl has
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its maximum values at the center and at off-center locations shown by red regions.

The off-center red regions in the channel cross-section lead to the formation of the

second peak in radial volume fraction (φr) in Fig. 4.5. This phenomenon is also

observed in previous studies [112, 115] in which suspension of droplets and capsules

were studied.

One of the important factors in evaluating the performance of microfluidic devices

is the sample throughput. Hence, we plot the volumetric flow rate of the suspension

exiting the microchannel (Q∗) for various Laplace numbers in Fig. 4.7 to quantify

the throughput of the microdevices. Our results show that the volumetric flow rate
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Fig. 4.7. The volumetric flow rate of the suspension for various La, φ
and size at Re = 37.8

deceases with increasing Laplace number. This effect can be elaborated by considering

the single cell dynamics in a microchannel. According to our previous study [58,71],

a single cell flowing in the microchannel lags the surrounding fluid and its velocity

is smaller than the local velocity of the fluid in the absence of the cell. This effect

becomes more significant as the Laplace increases. Hence, the reduction of volumetric

flow rate with increase in La is expected. In order to quantify the effect of the cell

deformability on the flow field, the velocity profile in the cross-section of microchannel

is plotted for various La numbera in Fig. 4.8. Our results show that decreasing the
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cell deformability results in decrease in the velocity distribution across the cross-

section. Furthermore, the velocity profiles for various La numbers are identical in the

cell depleted region, while they are different in the regions occupied by the flowing

cells. Figure 4.7 shows that the volumetric flow rate is also influenced by the cell

volume fraction (φ) and the cell size. Accordingly, the reduction in the volumetric

flow rate is observed with increasing the volume fraction (φ), while increasing the

cell size ( a
W

) enhances Q∗. Here, we also study the effect of Reynolds number on the

cell migration in the microchannel. In this work, we simulate the motion of cells at

φ = 10%, La = 500 and two different cell sizes ( a
W

= 0.2 and 0.3) for various Re

numbers. The average distance of the cells (< r∗ >) is plotted in Fig. 4.9. Our result
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Fig. 4.9. Average cell distance for φ = 10%, La = 500 and a
W

= 0.2 and 0.3
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shows that the average cell distance is not influenced by Reynolds number. This

behavior is in agreement with previous studies [58,71] that investigated the dynamics

of a solid particle and a deformable capsule with high La number in a microchannel.

Furthermore, the radial volume fraction distribution (φr) for the cell suspension with

a
W

= 0.2 is plotted in Fig. 4.10. This result also emphasizes that the steady spatial
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Fig. 4.10. Radial volume fraction distribution for φ = 10%, La = 500 and a
W

= 0.2

distribution of flowing cells is not affected by the Reynolds number and the change

in the CFL thickness is negligible.

4.4.2 Viscoelastic fluid

In this section, the effect of the polymeric fluid on the cell migration behavior

is investigated. As it is mentioned in section 4.4.1, the migration of the cells is

governed by the interplay between inertial lift force, deformability-induced force, wall-

induced force and cell-cell interaction. However, the cells flowing in a polymeric fluid

experience an elastic force beside other forces. The elastic force is generated due

to the deformation of polymer chains in the channel flow. The interplay between

various forces determines the cell distribution in the channel. The motion and the

quasi-steady distance of cells suspended in a polymeric fluid is significantly influenced
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by the fluid elasticity. Figure. 4.11 plots the temporal evolution of the average cell
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Fig. 4.11. Temporal evolution of cell distance from the centerline for
φ = 10%, a

W
= 0.3, La = 500 and Re = 37.8

distance from the channel centerline at φ = 10%, La = 500 and a
W

= 0.3 for various

Wi numbers (Wi = 0 corresponds to a Newtonian fluid). Our results show that

the cell distance decreases as Wi number increases. Therefore, the constant-viscosity

viscoelastic fluid pushes the cells toward the channel centerline. This behavior is in

agreement with previous numerical and experimental studies [57,58,71] for an isolated

cell. This result suggests that the polymeric fluid can be used as a passive method in

devices in which the main goal is cell focusing at the centerline such as cytometers.

Furthermore, this method adds another variable to be tuned by the user to control

the focal position of the cells in microfluidic devices. According to the results, the

deformability-induced force and elastic force have reinforcing effect that drives the

cells toward the centerline, while the inertial force has the opposite effect that pushes

the cells toward the channel wall. Therefore, for low Wi number the inertial force is

dominant and the resulting average cell distance is close to that of cells flowing in a

Newtonian fluid, while for high Wi number the elastic force has a significant effect

and the cells accumulate in the centerline. This effect is plotted in Fig. 4.12 which

shows the cell configuration for φ = 10%, La = 500 and a
W

= 0.2 for two different
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values of Weissenberg number (Wi = 0 and 0.2). According to this figure, the cells

flowing in a constant-viscosity viscoelastic fluid (Fig. 4.12(b)) focus more in the

centerline compared to the cells flowing in a Newtonian fluid (Fig. 4.12(a)). In order

(a) (b)

Fig. 4.12. The distribution of cells at φ = 10%, La = 500, Re = 37.8,
a
W

= 0.2 and (a) Wi = 0 and (b) Wi = 2

to quantify the effect of polymeric fluid, the quasi-steady value of the average cell

distance (< r∗ >) for various cell sizes and volume fractions is plotted as a function

of Wi number in Fig. 4.13 . The cell distance from the centerline decreases with

increase in Wi number for various φ and a
W

. The decrease in < r∗ > continues until

the Wi number reaches a critical value above which the cell distance does not reduce

further and reaches a plateau. This behavior is attributed to the cell-cell interaction

that has an opposing effect against elastic effect and does not allow the cells to focus

at the centerline. In other word, the cells are accumulated in the core region and

the distance between the cells cannot be further reduced. This effect can be seen

in Fig. 4.12 (b) that illustrates the distribution of cells in the central region. As

it is shown in Fig. 4.13, the cell distance is not computed for Wi above 2 for two
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cases (φ = 20%, a
W

= 0.3 and φ = 10%, a
W

= 0.2). The lack of data for these

cases is due to the numerical instability occurring for larger Wi numbers and volume

fractions. The effect of the cell volume fraction (φ) and the cell size ( a
W

) is similar

to their effect in a Newtonian fluid. Increasing the volume fraction increases the cell

distance and increasing the cell size decreases the cell distance from the centerline. In
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W = 0.3

Fig. 4.13. Quasi-steady cell distance from the centerline for various
Wi number at Re = 37.8

order to study the effect of elasticity on CFL thickness, the radial volume fraction is

plotted in Fig. 4.14 for φ = 10%, a
W

= 0.3 and Re = 37.8. The thickness of the CFL

increases with increasing Wi number. This change is attributed to the polymer chains

driving the cells more effectively toward the centerline with increasing Wi number.

Hence, a larger region in the vicinity of channel walls remain depleted from the cells.

Furthermore, the location of the off-center peak in the radial volume fraction of the

cells approaches to the centerline as the elasticity of the suspending fluid increases

which is also due to the enhanced tendency of the cells in accumulating in the core

region. The effect of the polymeric fluid on the throughput of microfluidic devices

is also studied in this section. The volumetric flow rate of the exiting suspension

is measured under various Wi numbers and constant pressure-gradient at φ = 10%,

a
W

= 0.3 and Re = 37.8 and is plotted in Fig. 4.15(a). Our results show that the



69

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r∗

0.0

0.1

0.2

0.3

0.4

0.5

φr

Wi = 0

Wi = 0.5

Wi = 2

Wi = 5

Fig. 4.14. Radial volume fraction of cells for φ = 10%, a
W

= 0.3 and Re = 37.8

volumetric flow rate increases with increasing Wi number. In order to elaborate this

effect, the velocity profile of the corresponding cases in the channel cross-section is

plotted in Fig. 4.15(b). As Wi number increases, the velocity at centerline (r∗ = 0)

increases and the velocity profile becomes flatter in the central region. Therefore,

the change in the velocity distribution across the microchannel due to the change

in fluid elasticity results in the enhanced sample throughput in microfluidic devices.

Furthermore, Fig. 4.15(a) shows that there is a critical Wic number above which the

volumetric flow rate reaches a plateau. This change is attributed to the accumulation

of cells in the core region where cells cannot be more compact above the critical Wic

number. Besides, the effect of Reynolds number on the performance of the microfluidic

devices in presence of polymeric fluids is investigated. The quasi-steady cell distance

is plotted for various Re numbers at φ = 10%, La = 500 and Wi = 2 in Fig. 4.16. As

it is shown, the distance of the cells from the centerline increases with increasing the

Re number. This finding is in agreement with previous studies [58, 71] in which the

dynamics of an isolated solid and deformable particle were studied in a microchannel.

This behavior can be elaborated according to the strong dependence of inertial and

elastic forces on Re number. The interaction between various forces such as inertial
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Fig. 4.15. (a) Volumetric flow rate of suspension for various Wi num-
ber at Re = 37.8 and (b) the velocity profile at φ = 10%, La = 500,
a
W

= 0.3 and Re = 37.8

and elastic forces determines the final position of cells in the microchannel. The

inertial effect is the dominant factor when Re >> Wi and the cells are expected to be

driven toward the walls, while for the case where Wi >> Re the elastic force become

dominant the the cells tend to accumulate in the central region of the microchannel.
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Fig. 4.16. Quasi-steady cell distance for various Re number at φ =
10%, La = 500 and Wi = 2
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4.5 Conclusions

In this work, the dynamics of cell suspension flowing in Newtonian and viscoelastic

fluids is investigated. We study the effect of the cell size ( a
W

), cell volume fraction

(φ), inertia (Re), deformability (La) and fluid elasticity (Wi) on the motion of cell

suspension and the performance of the microfluidic devices composed of a straight

microchannel. The variation of the aformentioned factors, changes the governing

forces and influences the distribution of cells in the microchannel. Our results show

that increasing the La number leads to the increase in the cell distance from the

channel centerline (r∗) and reduction in the volumetric flow rate of the exiting flow

(Q∗). These variables are also affected by the cell size and cell volume fraction.

Increasing the cell size pushes the cells further toward the wall and this effect can be

reinforced by increasing the cell volume fraction. However, the increase in a
W

and φ

has an opposite effect on the volumetric flow rate and causes the decrease in Q∗. Our

findings suggest that adding the polymer in suspending fluid pushes the cells further

toward the centerline compared to a Newtonian fluid and can be used in devices that

require centerline focusing of the cells such as cytometers. It is shown that increasing

fluid elasticity (Wi) yields the reduction in cell distance from the centerline, while it

increases the volumetric flow rate of the exiting flow. Furthermore, the effect of the

inertia (Re) is investigated for both Newtonian and viscoelastic fluids. The results

indicate that the change in the Reynolds number does not significantly affect the

suspension dynamics, while an opposite behavior is observed in a viscoelastic fluid in

which the cells are driven further toward the wall due ti increasing the inertial effects.
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4.6 Appendix

In order to check the mesh and the domain size independency of the cell suspen-

sion in a microchannel, we follow the method used in Doddi et. al [116] which the

volumetric flow rate of the flow is investigated for various grid and domain sizes. Fig-

ure 4.17.(a) shows the the volumetric flow rate of the cell suspension in a Newtonian

fluid at Re = 100, φ = 10% and a
W

= 0.3 for various La numbers with 128× 76× 76

and 200× 133× 133 grid points in x, y and z directions, respectively. The maximum

error between two different grid sizes is 2.44%. Hence, our results indicate that the

numerical simulation performed in this study is independent of the mesh sizes. The

results for the domain independency of the simulation is also plotted in Fig. 4.17(b)

. The variation of the volumetric flow rate at Re = 100, φ = 10% and a
W

= 0.3 for

two different domain sizes (Lx = 4W and 8W ) in the x direction along which the

periodic boundary condition is considered. The maximum error between two channel

geometries is 0.71% that proves the independency of the numerical results against the

computational domain size.
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Fig. 4.17. The volumetric flow rate at Re = 100, φ = 10% and
a
W

= 0.3 (a) for 128 × 76 × 76 and 200 × 133 × 133 grid points and
(b) for Lx = 4W and 8W in x direction
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5. NUMERICAL INVESTIGATION OF

ELASTO-INERTIAL PARTICLE FOCUSING PATTERNS

IN VISCOELASTIC MICROFLUIDIC DEVICES

This chapter is reproduced with permission from: A.H. Raffiee, A.M. Ardekani, S.
Dabiri, Numerical investigation of elasto-inertial particle focusing patterns in vis-
coelastic microfluidic devices”, Journal of Non-Newtonian Fluid Mechanics, 272,
104166. [117]

5.1 Summary

Viscoelastic microfluidic devices are promising for various microscale procedures

such as particle sorting and separation. In this chapter, we perform three dimensional

computational investigation of a particle in a viscoelastic channel flow by considering

combined inertial and elastic effects. We calculate equilibrium positions of the particle

in the microchannel for a wide range of Reynolds and Weissenberg numbers, which are

important in the design of microfluidic devices. The results provide an insight into

the motion of cells and particles and explain the findings of previous experiments.

Furthermore, we suggest new particle behaviors that have not been found before.

Ultimately, a phase diagram is provided to predict the particle dynamics under a

wide range of inertial and elastic effects.

5.2 Introduction

Microfluidic devices have been widely used in biomedical devices. These devices

have significantly enhanced therapeutic, diagnostic and many industrial procedures by
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increasing accuracy and accelerating the processes [21,29,39,118–121]. Isolation and

separation of rare cells from a heterogeneous population of cells is a critical process

in early diagnosis of fatal diseases such as cancer [25] and malaria [26]. Furthermore,

the isolated cells such as rare blood components can be used for therapeutic purposes.

For instance, platelet-rich plasma are used in transfusion [21,28] or stem cells can be

found in blood samples [21]. Enriching the cell population provides a platform to

biologists to conduct physical and chemical analysis on cells [122–127].

In order to accomplish the desired tasks in aforementioned applications the pre-

cise control of particles is required [99]. Hence, developing new techniques for the

manipulation of particle trajectory has been the subject of many studies in the past

decade. Some of these techniques are designed based on the use of externally ap-

plied forces generated by electric [93], magnetic [94] and acoustic [95] fields. These

methods offer high sample processing rates [21], however, there are many factors that

prevent them from widely being used in clinical applications. Mainly, these methods

work based on biochemical labeling of the cells that may affect the cell function and

properties [21, 29]. Furthermore, the cost and complexity of the process can also be

considered as an important downside for these methods [21]. Hence, there is a growing

interest in developing label-free techniques that introduce advantages such as accu-

rate analysis, low sample use and low cost operations [29]. In this regard, inertial

microfluidic devices are used to manipulate particle trajectories in microchannels.

[35] first reported the transverse migration of particles due to inertial forces in a

straight tube filled by a Newtonian fluid [35]. The hydrodynamic interaction between

the flowing particles and the ambient fluid can be used to manipulate the trajectory

of particles. This effect was studied theoretically by [43] in which they considered

the dynamics of a rigid sphere in a 2D Poiseuille flow and a simple shear flow and

predicted the equilibrium locations of the particle in these flows. Furthermore, they
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showed that the final location of the particle is independent of releasing point in

the microchannel. [128] also theoretically investigated the lateral migration of a solid

particle in a circular tube. They studied the motion of a buoyant and neutrally

buoyant particle in a Poiseuille flow and showed that their findings agree well with

experiments. Many microfluidic setups are designed based on inertial migration of

particles to control the location of targeted cells in microchannels, particularly for

sorting and separation of the cells [86, 100, 101, 105, 129, 130]. The efficiency of this

method reduces in cases where the targeted cells are small or the flow rate is low

[99,104,131]. Viscoelastic microfluics are developed to address this issue by replacing

the Newtonian ambient fluid by a dilute polymer solution [131]. The solute polymer

chains get deformed in the induced flow field and exert an additional elastic force

on the particle. The resulting force affects the particle migration along with the

inertial force [99, 105]. Previous studies show that the direction and the magnitude

of generated elastic force depends on the rheology of the polymer solution and the

volumetric flow rate of the suspending fluid [79,131,132].

Transverse migration of a particle suspended in a viscoelastic fluid is caused by

the lift force generated due to the interaction between ambient flow and the particle

[77,133,134]. This lift force comprises an inertial lift force (Fin) and an elastic lift force

(Fel). The inertial lift force can be decomposed into two forces: (i) shear-gradient lift

force (Fs in) that arises from the non-uniform velocity profile across the channel and

drives the particle away from the channel center and (ii) wall-induced lift force (Fw in)

that is caused by the uneven distribution of the vorticity around the particle that leads

to higher pressure in the gap between the wall and the particle and pushes the particle

away from the wall [41, 43, 135, 136]. These forces have been investigated extensively

in the literature and there are experimental [45, 46], numerical [47, 76, 137, 138] and

analytical [40,43,133,134] works proposing scaling relations for the total inertial force
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in square and rectangular microchannels. On the other hand, the elastic force acts

on the particle due to non-uniform distribution of normal stress difference across the

channel [77,139]. In this phenomenon, the first normal stress difference (N1) generates

a stream-wise tension and the second normal stress difference (N2) gives rise to a

secondary flow in the cross section [107]. There are numerical [71, 87, 107, 140, 141]

and experimental [99,110] studies investigating the particle migration in a viscoelastic

fluid. Here, in this work we focus on illustrating the distribution of elastic and inertial

forces acting on a particle in a viscoelastic channel flow and calculating the equilibrium

positions of the particle in the channel cross section.

In order to understand the mechanism of particle migration in a viscoelastic fluid,

fully resolved 3D numerical simulations are conducted. In this work, we show the

distribution of lift force acting on the particle in a viscoelastic fluid and investigate

the influence of combined elastic and inertial forces on the particle behavior in a mi-

crochannel. Furthermore, the location of equilibrium points and their corresponding

stability are determined for 1 < Re < 30 and 0 < Wi < 3 which is important for

designing the microfluidic devices relying on viscoelastic effects. Our results explain

various focusing pattern of particles observed in previous experimental works by scru-

tinizing the stability of equilibrium points. We also predict new behaviors that have

not been discovered in the past studies.

5.3 Mathematical modeling

In this work, we study the dynamics of a solid spherical particle suspended in

a straight, square microchannel. The particle is neutrally buoyant and the ambient

fluid is viscoelastic. The radius of the sphere is represented by a and the channel side

and its length are 2w and L, respectively. In this problem, the origin of the reference

frame is located at the channel center and x, y and z directions are aligned with the



77

streamwise, horizontal and vertical directions, respectively, as illustrated in Fig. 5.1.

The particle is initially at rest and a constant pressure gradient is applied in the x

direction, driving the flow in the microchannel. In order to simulate the hydrodynamic

interaction between the particle and the surrounding fluid, an incompressible Navier-

Stokes equation is numerically solved as follows:

∇.u = 0, (5.1)

∂(ρu)

∂t
+∇.(ρuu) = −∇p+∇.τ + F, (5.2)

where ρ is the fluid density, u is the velocity vector, t denotes the time and p and τ

represent the pressure and stress tensor, respectively. The particle density is assumed

to be the same as the fluid density. A Distributed Lagrangian Multiplier (DLM)

method is used to simulate the solid particle motion in the fluid. A forcing term F

is added in eq. 5.2 to enforce the rigid body motion of the particle. The details of

DLM method can be found in [142] [142] The viscoelastic properties of the fluid can

be modeled by splitting the stress tensor into two parts: (i) the contribution from

solvent τs and (ii) that of polymer τp. Hence, the total stress tensor can be written

as:

τ = τs + τp. (5.3)

The Newtonian viscous stress is described as τs = µs(∇u+∇uT ), where µs represents

the solvent viscosity. The Giesekus constitutive equation [74] is used to model the

viscoelastic behavior of the fluid. This model captures the shear-thinning behavior

and constrained elongation of polymer chains in the fluid [58]. According to this

model, the polymeric stress tensor is governed by:

λ
5
τp + τp +

αλ

µp
τp.τp = µp(∇u +∇uT ), (5.4)
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5
τp ≡

∂τp
∂t

+ u.∇τp −∇uτp − τp∇uT . (5.5)

Here λ represents the fluid relaxation time and µp and α denote the polymeric viscosity

and the mobility factor. The following equations are used to calculate the total, elastic

and inertial forces acting on the particle.

Ftotal = −
∮
V

F dv, (5.6)

Fel =

∫
τp.n ds, (5.7)

Fin = Ftotal − Fel, (5.8)

where n represents the unit vector normal to the particle surface and ds and dv denote

differential elements of particle surface and volume, respectively. In this problem, the

no-slip boundary condition is applied at the walls of the channel. These boundaries

are normal to y and z directions. The periodic boundary condition is applied at the

inlet and outlet of the computational domain. These boundaries are normal to the

x direction. The microchannel length is set to L = 20a to ensure the channel is

long enough and the particle does not interact with its periodic image. The details

of the numerical methods used in this work and their validations are reported in

our previous works [58, 61, 71, 87]. We use w as the characteristic length scale and

U0 as the characteristic velocity scale (where U0 is the undisturbed flow velocity

at the channel center filled with a Newtonian fluid). Accordingly, the governing

dimensionless numbers can be defined as: (i) Re = ρU02w
µ

, representing the ratio of

inertial to the viscous forces in which the total viscosity is defined as µ = µs +µp, (ii)

the Weissenberg number Wi = λU0

w
, representing the ratio of elastic to the viscous

forces, (iii) β = µp
µ

, representing the ratio of polymer viscosity to the total viscosity

and (iv) blockage ratio a
w

, describing the finite size of the flowing particle. In this
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Fig. 5.1. Schematic of the problem setup

work, β, a
w

and α are set to 0.5, 0.3 and 0.2, respectively, unless otherwise stated.

The particle has the same density as that of the fluid. It should be noted that the

initial velocity of the fluid is set to the undisturbed flow velocity in the absence of the

particle. In order to find the lift force distribution experienced by the particle across

the channel cross section, the lateral position of the particle is fixed at the location

where the lift force should be calculated. Consequently, the particle only travels

along a line parallel to the x direction and it rotates freely around all directions. The

particle is consequently not force-free and the elastic and inertial forces balance with

the transverse force required to fix the transverse location of the particle. Hence, the

dynamics of this particle is not the same as a force-free particle dynamics due to non-

linearity of the problem, but the equilibrium positions and their instability are the

same as the ones for a force-free particle. The particle is released with a zero initial

velocity in the microchannel and the simulation continues until the ambient flow field

reaches a steady state and then the lift force is calculated. This method is used to

determine the particle’s equilibrium locations and their corresponding stability across
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the microchannel in a Newtonian fluid [49,76,83,138,143,144]. The domain and grid

size independency tests and the validation of the employed method are shown in the

supplementary material.

5.4 Result and discussion

The migration of particles in Newtonian fluids has been extensively investigated

by many researchers. According to the previous numerical and experimental studies

[35, 39], the particles released in microchannel with a circular cross-section migrate

toward an annulus ring with a radius of ∼ 0.6R, where R represents the radius of

microchannel. However, the particle dynamics changes in a square microchannel due

to the reduced level of symmetry in the flow field [39,58,110]. In this case, the particles

focus at four discrete points along the main axes of the microchannel. Considering the

flow structure, there are nine equilibrium points, where the lateral force becomes zero,

among which only four are stable. The rest exhibit unstable behavior, meaning the

particles migrate away upon any disturbance in the flow [39,76,83]. This phenomenon

is further explained in details in the following section. In this work, we investigate the

stability and location of equilibrium points for the particles suspended in a viscoelastic

fluid and we show the focusing patterns of particles for a wide range of Re and Wi

numbers. The variety observed in the focusing patterns of particles indicates the

promising effect of addition of polymers in microfluidic devices and we show that this

method can be used for different applications without applying any changes to the

geometry of the microchannel.



81

5.4.1 Migration in a low inertial regime

In order to find the location and stability of the equilibrium points in a viscoelastic

fluid, the force field experienced by the particle is calculated. The particle size is fixed

at a
w

= 0.3 and the Reynolds number is set to Re = 5 in this section. Due to the

symmetry of the problem, the force field is illustrated only for one quarter of the

channel cross section. Figure 5.2(a) shows the lateral force profile acting on the

particle at Re = 5 and Wi = 0.

In this figure, the location of the equilibrium points are indicated by red circles.

The observed profile explains the particle configuration observed in [100], [81] and [76]

As shown in this figure, the radially directed forces drive the particle away from

the center and the wall and push the particle toward an annulus ring across the

channel marked with the dashed line. Hence, the particle primarily moves in the radial

direction to reach the annulus ring. This motion is followed by the migration along

the ring to focus at its equilibrium position along the main axes [83]. Considering

the force-map illustrated in Fig. 5.2(a), there are four stable equilibrium points

along the main axes and four unstable equilibrium points along the diagonal of the

channel. The results indicate that the lateral force is also zero at the channel center,

however, the force field around the channel center implies that this equilibrium point

is unstable. The focusing pattern of particles for this force map that can be observed

in experiments is presented in Fig. 5.2(b). In order to further investigate the location

and stability of the equilibrium points, the lateral force profile along the y-direction

(main axis of the microchannel, i.e., z = 0 and y = 0 lines in the cross section) is

shown in Fig. 5.3 for Re = 1 and 5 and a wide range of Wi number.

According to Fig. 5.3(b), the force profile for Re = 5 and Wi = 0 crosses the

dashed horizontal line at two points (one at the center and the other at ∼ 0.52w).

These points are identified as equilibrium points on the main axis and correspond to
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Fig. 5.2. Force-map accross the microchannel for Re = 5 and (a)
Wi = 0 and (b) the focusing pattern (stable equilibrium positions) at
Wi = 0, (c) force-map for Wi = 0.1 and (d) the focusing pattern for
Wi = 0.1, (e) force-map for Wi = 0.5 and (f) the focusing pattern at
Wi = 0.5.
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Fig. 5.3. Lateral force profile along the main axis for (a) Re = 1 and (b) Re = 5.

the locations where the lateral force is zero in Fig. 5.2(a). Stability of equilibrium

points depends on the slope of the force profile at those locations. Hence, the center of

channel is an unstable equilibrium point due to its positive slope, while the off-center

equilibrium point is stable due to the negative slope of the force profile in that region.

Increasing the Wi number changes the force field and consequently alters the focusing

pattern of the particle. Figure 5.2(c) shows the lateral force acting on the particle

for Re = 5 and Wi = 0.1. In the region constrained between two dashed curves

the particle moves toward the center, while in the outer regions the particle moves

toward the walls. A significant change in the force direction can be observed in the

near wall region, where it is directed toward the wall in a viscoelastic fluid as opposed

to a Newtonian fluid, where the particle is pushed away from the wall. Therefore,

the corner becomes a basin of attraction for the particle at Wi = 0.1. According to

the observed force-map, the expected focusing pattern is illustrated in Fig. 5.2(d).

This result also rationalizes the particle behavior found in [110], where the particles

aggregate at the corner and on the diagonal of the channel. The induced lateral force
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results in the appearance of two equilibrium points along the diagonal line among

which the one closer to the channel center is stable and the other one demonstrates

an unstable behavior. Furthermore, there are three unstable equilibrium points on

the main axis whose locations are shown in the force profile presented in Fig. 5.3(b).

According to this profile, the channel center and the equilibrium point near the wall

are unstable due to the positive slope of the force profile. The middle equilibrium

point is also identified as an unstable point despite the negative slope of the curve.

This behavior is attributed to the positive lateral force along the z-direction, which

pushes the particle away from the main axis and turns this point to a sub-stable

equilibrium point.

Figure 5.2(e) illustrates the force field for Re = 5 and Wi = 0.5. In this case

the channel can be divided into two regions by a separatix. The region closer to the

channel center (indicated by the region inside the dashed curve) attracts the particle

toward the centerline, whereas the outer region pushes the particle toward the corner

of the microchannel. Hence, only the channel center is stable and other equilibrium

points along the diagonal of the channel and the main axes are unstable. It should be

noted that the corner is also a basin of attraction for the particles. The correspond-

ing focusing pattern is plotted in Fig. 5.2(f). The calculated force-map indicates

the reason for the particle focusing pattern observed in previous experimental and

numerical studies for the cases where the inertial effect is small and the elastic force

is dominant [81, 99, 107, 110]. Figure 5.3(b) also shows a negative lateral force near

the central region and a negative slope for the force profile at the center that leads to

stability of the channel center. Another point that should be noted is the change in

the force profile near the wall region as the lateral force decreases with increasing the

elasticity effect for Wi above 0.5 in Fig. 5.3(b). As shown in Fig. 5.3, the change in

Wi number alters the force profile significantly, leading to various focusing patterns
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for the particles. This effect is more visible for smaller inertial effects as illustrated

in Fig. 5.3(a) (Re = 1). Increasing the Wi number changes the convexity of the

force profile along the main axis. In the Newtonian case (Wi = 0), the convexity of

the force is negative along the entire axis, while it becomes positive for higher Wi

numbers. Furthermore, the channel center which is unstable for Wi = 0, becomes

stable for any Wi number above 0.5 and the corner becomes the basin of attraction.

This change is observed for both Re = 1 and 5. According to Fig. 5.3(a) and (b), the

location at which the force profile crosses the horizontal line in the range of Wi > 0.5

shifts toward the channel center with increasing elasticity. Hence, the size of the

separatix shrinks with Wi. This behavior can explain the results found in previous

studies [99, 107, 110] as larger fraction of particles get attracted to the corner with

increasing the elastic effects (Wi).
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Fig. 5.4. Distribution of (a) elastic force and (b) inertial force at
Re = 5 and Wi = 0.5

In order to investigate the effect of elasticity, particularly in the case where inertia

is small, we split the lateral force plotted in Fig. 5.2(e) into two components: (i)

elastic force (Fel) and (ii) inertial force (Fin). Figure 5.4 shows the distribution of
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elastic and inertial forces for Re = 5 and Wi = 0.5. The elastic force (represented

in Fig. 5.4(a)) drives the particle toward the center in the entire channel unless the

particle is positioned near the wall region, where the elastic force direction reverses

and the particle is pushed toward the wall. Contrary to the elastic force profile, the

inertial force shown in Fig. 5.4(b) repels the particle from the center across the entire

channel, however, the magnitude of the inertial force becomes negligible compared to

that of elastic force for in the region close to the channel center. Hence, we observed

a trapping region formed near the center of the microchannel and the particles that

fall outside this region migrate to the corner. The comparison between elastic and

inertial forces shown in Fig. 5.4 can explain the observed experimental results in

previous studies. It should be noted that the magnitude of the elastic and inertial

forces are significantly different for some cases and we use different force scale bars,

which are shown in the figures.
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Fig. 5.5. Velocity profile at (a) the channel inlet and (b) the location
of particle center at Re = 5 and Wi = 3. The stream-wise velocity is
defined as u∗ = u

U0
.
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Figure 5.3 shows that increasing Wi number increases the magnitude of the lateral

force near the channel center (for Wi > 0.1). This effect accelerates the transverse

migration of the particle across the microchannel and leads to a shorter critical length

for the microchannel required for complete focusing of the suspending particles [105,

107]. The second normal stress is non-zero in a Giesekus fluid modeled in this paper

and it causes a secondary flow across the microchannel which affects the particle

migration in the channel [58, 104, 107]. In order to show the effect of the secondary

flow, the velocity profile is illustrated in Figure 5.5 at the channel inlet (far from the

particle) and the location of particle center at Re = 5 and Wi = 3.

5.4.2 Migration in an intermediate inertial regime

In this section, we investigate the particle focusing pattern at Re = 10 for various

Weissenberg numbers. The larger inertial effect leads to a significant change in the

generated flow field compared to that of the previous section. This change can be

reflected in the induced force-map shown in Fig. 5.6. Figure 5.6(a) illustrates the force

field at Wi = 0.1. The noticeable difference between this case and the Newtonian

fluid is the induced lateral force near the channel face center that attracts the particle

toward the wall leading to the existence of a basin of attraction at the channel face.

Furthermore, the generated lateral force turns the equilibrium point on the diag-

onal of the channel stable and those on the main axes and channel center unstable.

This phenomenon can be observed in Fig. 5.7, where the force profile along the main

axis is plotted, showing the locations where the lateral force becomes zero and their

corresponding stability status. Hence, the expected focal pattern looks like the one

illustrated in Fig. 5.6(b) which has not been discovered in previous studies. Increas-

ing the Wi number changes the force field significantly as displayed in Fig. 5.6(c).

The radially directed lateral force drives the particle toward the channel corner across
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.6. Force-map accross the microchannel for Re = 10 and (a)
Wi = 0.1 and (b) the focusing pattern at Wi = 0.1, (c) force-map for
Wi = 0.5 and (d) the focusing pattern for Wi = 0.5, (e) force-map
for Wi = 3 and (f) the focusing pattern at Wi = 3.
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the entire channel. Hence, the corner becomes the only basin of attraction resulting

in the focal pattern presented in Fig. 5.6(d). Correspondingly, the positive value of

the force along the entire main axis for Wi = 0.5 shown in Fig. 5.7 indicates that the

particle is pushed away from the center regardless of its location in the microchannel.

The calculated force field shown in Fig. 5.6(c) explains the particle configuration

reported in previous experimental studies [99,110]. For Wi = 3, the lateral force has

a distribution similar to that of a Newtonian fluid. In this case (shown in Fig. 5.6(e))

the radially directed force pushes the particle away from the wall and channel center

and creates an annulus ring which is similar to the curve marked in Fig. 5.2(a). Con-

sequently, the predicted focal pattern of the particle shown in Fig. 5.6(f) is similar

to that of a Newtonian fluid.
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Fig. 5.7. Lateral force profile on the main axis for Re = 10

According to Fig. 5.7, the fluid elasticity significantly affects the magnitude of the

lateral force such that the force profile near the wall region markedly changes and its

direction reverses for high Wi numbers, leading to a stable equilibrium point on the

main axes. On the other hand, the slope of the force profile is positive at the center
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for the entire range of Weissenberg number explored in this study, implying that the

channel center is not a stable position for the particle in this range of parameters. In

order to investigate the effect of elasticity on the total lateral force the force-map of

inertial and elastic forces are plotted for Wi = 0.1 to 3 in Fig. 5.8.

The results show that the inertial force dominates the elastic force. The direction

of total force matches that of the inertial force, while the elastic force has a similar

profile across the entire channel for various values of Wi number. This behavior

indicates that changing the elasticity of the fluid changes the velocity field in the

channel. Consequently, the inertial force is affected and the resulting focal pattern

alters, while the elastic force itself remains relatively unchanged. In other word, the

fluid elasticity affects the particle dynamic indirectly by changing the flow field and

not directly by means of elastic force.

5.4.3 Migration in a high inertial regime

With increasing the Reynolds number, the particle dynamics changes significantly

from those observed in previous sections. Figure. 5.9(a) shows the force profile for

Re = 30. The force has a similar trend along the channel main axis for the entire

range of Wi number. The force has a positive value near the center and it becomes

negative in the near wall region, i.e., the particle is pushed away from the center and

the wall, which leads to the existence of an off-center equilibrium point along the

main axis. As opposed to previous sections, where the elasticity changes the force

profile significantly, the force distribution across the microchannel remains unchanged

for the entire range of Wi number studied in this work.

The slope of the force profile at the center and the off-center equilibrium points

indicates that the particle is unstable and stable at these points, respectively. Ac-

cording to the force-map shown in Fig. 5.9(b), there is an unstable equilibrium point
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Fig. 5.8. Distribution of elastic force at Re = 10 and (a) Wi = 0.1 (b)
Wi = 0.5 (c) Wi = 3 and inertial force at (d) Wi = 0.1 (e) Wi = 0.5
(f) Wi = 3
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Fig. 5.9. Force profile for (a) Re = 30 and (b) the force-map at
Re = 30 and Wi = 0.5.

along the diagonal of the channel at Re = 30 and Wi = 0.5 that is similar to that

of a Newtonian fluid (Wi = 0). Hence, the behavior discovered in the numerical and

experimental studies by [110] and [58] can be rationalized using our computational

results. As shown in Fig. 5.9(a), the force gets stronger along most of the main axis

as the Wi number increases (for Wi > 0.1). Hence, the particles is pushed away from

the center and the wall faster, increasing the transverse migration toward the annu-

lus ring and leading to a smaller critical length of microchannel required for particle

focusing. However, this trend is not observed for Wi = 0.1 as the force magnitude is

smaller than that of a Newtonian fluid.

Figure 5.10 illustrates the distance of the off-center equilibrium points from the

channel center and their stability for the entire range of Re and Wi numbers studied

in this work along the main axis and the diagonal of the channel.
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Fig. 5.10. Distance of the off-center equilibrium points from the chan-
nel center along (a) the main axis and (b) the diagonal of the channel.
Filled symbols indicate stable equilibrium points and open symbols
represent unstable equilibrium points.

As shown in Fig. 5.10(a), the equilibrium points for Wi = 0 are all stable on the

main axis and their location does not change with Re, which is in agreement with

previous results found in Li et al. [58]. However, the results show that the equilibrium

points for Wi 6= 0 are mostly unstable in the low inertial regime (Re = 1, 5). The

distance of these points are smaller than that of a Newtonian fluid and they approach

the channel center with increasing Wi number (for Wi > 0.5), indicating reduction

of trapping area with increasing the elastic effects. Oppositely, the equilibrium points

for Wi 6= 0 are all stable on the main axis in the high inertial regime (Re = 20, 30, 50).

In this range of Re number, the equilibrium points at Wi = 0.1 have relatively the

same distance from the channel center as that of a Newtonian fluid which is due

to the small effect of elasticity compared to inertial effect, while for a higher Wi

number this distance is larger than that in a Newtonian fluid. The results also show

that the difference between the location of equilibrium points becomes smaller as
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the Re number increases. This can be attributed to the dominant effect of the flow

inertia compared to the elastic effects. In contrary to the stability of the equilibrium

points on the main axis, Fig. 5.10(b) indicates that most of equilibrium points on the

diagonal of the channel are unstable. The results show that the equilibrium points

approach the channel center with increasing Wi number for low inertial effects, while

this behavior changes for larger inertia such that the distance between equilibrium

points and channel center initially increases and subsequently the equilibrium point

approaches the center with increasing the Wi number.
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Fig. 5.11. (a) The force profile along the main channel for Wi = 0 and
(b) the stability of channel centerline equilibrium point for a range of
Re and Wi numbers

The location of equilibrium points along the main axis and the diagonal of the

channel does not change with the Re number in a Newtonian fluid. In order to explain

this phenomenon, the force profile along the channel main axis is plotted for Wi = 0

in Fig. 5.11(a). According to this figure, the change in the Re number changes the

magnitude of the lateral force acting on the particle. As the inertial effect becomes

stronger the lateral force magnitude increases significantly, however, the location at
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which the lateral force becomes zero is the same for the entire range of Re number

studied in this work. This explains the results reported by [58]. In order to investigate

the combined effects of inertia and elasticity on the stability of the channel centerline

equilibrium point, the stability phase diagram is illustrated in Fig. 5.11(b). As shown

in this figure, the channel center is a stable equilibrium point when the elastic effect

dominates the inertial effect, while with increasing the Re number the focal pattern

looks similar to that of a Newtonian fluid, where the particle is not expected to travel

toward the channel center.

5.5 Summary

In this work, we conduct 3D numerical simulations to find the distribution of lift

force acting on the particle in viscoelastic fluids. As a result, we predict the location

of equilibrium points and their corresponding stability for a wide range of parameter

space which is important for designing microfluidic devices relying on viscoelastic

effects. The results for low inertial regime show that the force field acting on the

particle changes significantly with increasing the elasticity of the fluid. In the case

of a Newtonian fluid the particle is pushed away from the wall and the channel

center to reach an annulus ring across the channel. Subsequently, the particle moves

toward the equilibrium points on the main axis. Our results show that only off-center

equilibrium points along the main axes are stable and other equilibrium points are

unstable in a Newtonian fluid. Increasing the elasticity changes the induced force field

such that the main axis has no stable equilibrium point and the particle focuses on

the corner and off-center points along the diagonal of the channel. Further increase in

the Weissenberg number leads to dominance of the elastic force over the inertial lift

force, shifting the off-center equilibrium points on the diagonal of the channel toward

the channel center.
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In the intermediate inertial regime, we also observe various focal patterns by

changing the fluid elasticity. In the low Wi number range, the particle focuses at

the wall face center and off-center points along the diagonal of the channel. This

configuration changes for larger Wi numbers, where the particle is driven radially

toward the corner in the entire channel cross-section, leading the corners to be the

only basin of attraction in the microchannel. Further increase in the elasticity re-

sults in a configuration similar to that of a Newtonian fluid, in which the particle

aggregates only at an off-center point on the main axis and equilibrium points on

the center and diagonal of the channel are unstable. By splitting the total lift force

experienced by the particle into inertial and elastic lift forces we conclude that the

elastic effect modifies the velocity field in the microchannel. As a result, the inertial

lift force changes accordingly, leading to various particle configurations. However,

the direction and the magnitude of the elastic force remain relatively unchanged in

the intermediate inertial regime implying that the fluid elasticity affects the particle

dynamics indirectly by changing the velocity field. Our results for the high inertial

flow indicate that the force profiles are similar for the entire range of Wi number

studied in this work. Accordingly the particle configuration is also similar to that of

a Newtonian fluid, in which the particles aggregate only at the off-center point along

the main axis.
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6. CONCLUSION

We investigated the dynamics of deformable cells in a channel flow of Newtonian

and polymeric fluids and unravelled the effects of deformability, elasticity, inertia

and size on the cell motion. Our results show that the equilibrium position of the

cell is on the channel diagonal, in contrary to that of rigid particles, which is in the

centre of the channel faces. A constant-viscosity polymeric fluid, modelled using an

Oldroyd-B constitutive equation, drives the cells toward the channel centerline, while

a shear-thinning polymeric fluid, modelled using a Giesekus constitutive equation,

pushes the cells toward the channel wall. We studied a suspension of cells flowing

in a microchannel of Newtonian and viscoelastic fluids and investigate the role of

cell size, cell volume fraction, inertia, deformability and fluid elasticity on the cell

distribution. We show that the use of constant-viscosity viscoelastic fluid pushes the

cells toward the channel centerline, which can be used in microfluidic devices used for

cell focusing such as cytometers. We also conduct 3D numerical simulations to find

the distribution of lift force acting on the particle in viscoelastic fluids that helps us to

predict the location of equilibrium points and their corresponding stability for a wide

range of inertial and elasticity regimes which is essential for designing microfluidic

devices relying on viscoelastic effects.

The experimental studies on microfluidic devices used for separating and focusing

of the cells show that cells flowing in a microchannel have various sizes, deformability

and shapes. Recent progress in fabrication methods at micro and nano-scale has

enabled researchers to develop microfluidic devices with complex geometries. To have

better understanding of the performance of these microfluidic devices, the dynamics
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of a particle with various geometries (e.g. elongated particles) in a microchannel of

complex shapes such as circular, triangular and square channels with round corner

filled with Newtonian and non-Newtonian fluids should be studied.
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