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ABSTRACT 

In perimeter building zones with glass façades, controllable fenestration 

(daylighting/shading) and electric lighting systems are used as comfort delivery systems under 

dynamic weather conditions, and their operation affects daylight provision, outside view, lighting 

energy use, as well as overall occupant satisfaction with the visual environment. A well-designed 

daylighting and lighting control should be able to achieve high level of satisfaction while 

minimizing lighting energy consumption. Existing daylighting control studies focus on 

minimizing energy use with general visual comfort constraints, when adaptive and personalized 

controls are needed in high performance office buildings. Therefore, reliable and efficient models 

and methods for learning occupants’ personalized visual preference or satisfaction are required, 

and the development of optimal daylighting controls requires integrated considerations of visual 

preference/satisfaction and energy use.  

In this Dissertation, a novel method is presented first for developing personalized visual 

satisfaction profiles in daylit offices using Bayesian inference. Unlike previous studies based on 

action data, a set of experiments with human subjects was designed and conducted to collect 

comparative visual preference data (by changing visual conditions) in private offices. A probit 

model structure was adopted to connect the comparative preference with a latent satisfaction utility 

model, assumed in the form of a parametrized Gaussian bell function. The distinct visual 

satisfaction models were then inferred using Bayesian approach with preference data. The 

posterior estimations of model parameters, and inferred satisfaction utility functions were 

investigated and compared, with results reflecting the different overall visual preference 

characteristics discovered for each person. 

Second, we present an online visual preference elicitation learning framework for 

efficiently learning and eliciting occupants’ visual preference profiles and hidden satisfaction 

utilities. Another set of experiments with human subjects was conducted to implement the 

proposed learning algorithm in order to validate the feasibility of the method. A combination of 

Thompson sampling and pure exploration (uncertainty learning) methods was used to balance 

exploration and exploitation when targeting the near-maximum area of utility during the learning 

process. Distinctive visual preference profiles of 13 subjects were learned under different weather 

conditions, demonstrating the feasibility of the learning framework. Entropy of the distribution of 
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the most preferred visual condition is computed for each learned preference profile to quantify the 

certainty. Learning speed varies with subjects, but using a single variable model (vertical 

illuminance on the eye), most subjects could be learned to an acceptable certainty level within one 

day of stable weather, which shows the efficiency of the method (learning outcomes).  

Finally, a personalized shading control framework is developed to maximize occupant 

satisfaction while minimizing lighting energy use in daylit offices with roller shades. An integrated 

lighting-daylighting simulation model is used to predict lighting energy use while it also provides 

inputs for computing personalized visual preference profiles, previously developed using Bayesian 

inference from comparative preference data. The satisfaction utility and the predicted lighting 

energy use are then used to form an optimization framework. We demonstrate the results of: (i) a 

single objective formulation, where the satisfaction utility is simply used as a constraint to when 

minimizing lighting energy use and (ii) a multi-objective optimization scheme, where the 

satisfaction utility and predicted lighting energy use are formulated as parallel objectives. Unlike 

previous studies, we present a novel way to apply the MOO without assigning arbitrary weights to 

objectives: allowing occupants to be the final decision makers in real-time balancing between their 

personalized visual satisfaction and energy use considerations, within dynamic hidden optimal 

bounds – through a simple interface.  

In summary, we present the first method to incorporate personalized visual preferences in 

optimal daylighting control, with energy use considerations, without using generic occupant 

behavior models or discomfort-based assumptions. 
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1. INTRODUCTION 

1.1 Background and Motivation 

One of the main purposes of building design and control is to provide comfortable building 

environment to satisfy occupants. Meanwhile, building energy efficiency is a primary topic of 

interest with a great potential of energy and cost savings, as well as overall sustainability 

improvement. In perimeter building zones with glass façades, controllable fenestration 

(daylighting/shading) and electric lighting systems are used as comfort delivery systems under 

dynamic weather conditions, and their operation affects daylight provision, outside view, lighting 

energy use, as well as overall occupant satisfaction with the visual environment. A well-designed 

daylighting and lighting control system should ideally maximize occupant satisfaction while 

minimizing lighting energy consumption, and should be capable of adapting itself to controlled, 

dynamic visual conditions and learned occupant(s) preferences. 

Toward the objectives, several studies have been conducted on daylight and lighting 

simulation algorithms, modeling and learning visual preference/satisfaction, as well as the 

development of control strategies. Automated shading controls aiming to reduce visual discomfort 

have been developed, while some studies focused on integrated shading and lighting control for 

minimizing energy use with visual comfort considerations. However, researchers have also 

recognized the research gaps with existing visual comfort models and control strategies, especially 

when smart control systems require self-tuning and personalization features in high performance 

buildings. 

Therefore, reliable and efficient models and methods for learning occupants’ visual 

preference or satisfaction profiles are needed, and the development of optimal daylighting and 

lighting control requires integrated considerations of visual preference/satisfaction and energy use.  

1.2 Objectives and Scope 

The objectives of this dissertation are: 

1) To develop a modeling method for learning occupants’ personalized visual preference 

and satisfaction profiles in daylit offices; 
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2) To develop and implement an online visual preference elicitation framework for 

efficiently learning occupants’ visual preferences and satisfaction utility functions; 

3) To develop a personalized daylighting control framework aiming at optimizing occupant 

satisfaction and lighting energy use in daylit offices. 

1.3 Document Overview 

Chapter 2 includes a literature review focusing on existing studies on building fenestration 

systems, daylighting and lighting simulation methods, conventional models of occupants’ visual 

comfort, preference and satisfaction, as well as shading and lighting controls. It summarizes the 

current research gaps with respect to visual preference modeling, learning frameworks, 

optimization approaches and application frameworks.  

Chapter 3 presents a Bayesian approach for inference of occupants’ personalized visual 

preferences and satisfaction in daylit offices. A probit model structure is adopted to connect the 

comparative preference with a latent satisfaction utility model, in the form of a parametrized 

Gaussian bell function, and the satisfaction models are then inferred using Bayesian approach with 

preference data collected from experiments with human subjects. 

Chapter 4 presents an online visual preference elicitation learning framework. To 

determine the (visual) condition “duels” for preference query with most information gain, a 

combination of Thompson sampling and pure exploration (uncertainty learning) methods was used. 

Distinctive visual preference profiles of 13 subjects were learned under different weather 

conditions, using data from experiments, demonstrating the feasibility and effectiveness of the 

proposed visual preference learning framework. 

Chapter 5 presents a personalized shading control framework to maximize occupant visual 

satisfaction while minimizing lighting energy use in daylit offices. Two optimization schemes are 

developed and compared with single-objective and multi-objective formulations. A novel way to 

apply the multi-objective optimization based control is presented by allowing occupants to be the 

final decision makers in real-time balancing between their personalized visual satisfaction and  

energy use considerations. 

Chapter 6 contains extensions of this Dissertation and recommendation for future work. 

  



 

 

17 

2. LITERATURE REVIEW 

The building sector accounts for a significant portion (30%) of global energy consumption 

(IEA 2015) and lighting represents a major energy consumer in commercial buildings in U.S (DOE 

2015), which indicates a great potential for energy savings. On the other hand, occupants play a 

significant role in energy use of buildings, while they have strong preferences for customized 

indoor environment. Their perception of a controlled indoor environment affects their satisfaction 

and productivity. In perimeter building zones with glass facades, controllable fenestration 

(daylighting/shading) and electric lighting systems are used as comfort delivery systems under 

dynamic weather conditions. Their operation affects daylight provision, outside view, lighting 

energy use, as well as overall occupant satisfaction with the visual environment. Researches on 

daylighting and energy, occupant comfort, as well as related building controls contribute towards 

energy conservation and improving occupant satisfaction. 

2.1 Shading System in Buildings 

Fenestration consists of glazing and shading systems, significantly affecting indoor 

environmental conditions, thermal and visual comfort, and building energy use. In perimeter zones 

of commercial buildings with large glass façades and high internal gains, reducing cooling and 

lighting requirements while maintaining good comfort conditions is often the major objective. 

Shading devices play a significant role in overall façade performance, providing privacy, blocking 

excessive solar heat gain and controlling natural light, as well as preventing glare. They are mainly 

categorized as fixed and movable, as well as interior and exterior. 

Fixed shading devices include overhangs, louvers, vertical fins, awnings and light shelves, 

etc. Although they can block solar radiation in summer, when the solar altitude is high, fixed 

shading systems are inefficient for solar control and glare protection, especially with low-altitude 

sunlight. Furthermore, they are hardly adjustable according to occupants’ preferences. Therefore, 

movable shading devices are more popular and widely employed in office buildings nowadays, as 

they are more flexible and efficient with changing conditions and can be centrally or locally 

controlled. Common movable shading devices include roller shades, venetian blinds, curtains and 

shutters. 
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2.1.1 Roller Shades 

Roller shades and are widely used in commercial buildings. They are pieces of fabric rolled 

around a roller that raises or lowers the fabric by spinning, either manually-operated, through 

chains/ropes, or motorized using electric motors.  

Roller shades have various materials, colors and weave construction that result in different 

optical and thermal properties – openness factor, solar and visible transmission/reflection. Visible 

transmittance, openness factor and color have a direct impact on indoor daylighting and comfort 

conditions. Other factors, including reflectance and absorptance, are more related with their 

thermal performance. The amount of light transmitted through the fabrics depends on the fabric 

optical properties (Chan et al. 2014). Part of the direct light becomes diffuse, and part of it remains 

as direct, unobstructed sunlight. 

Kotey et al. (2009) developed a semi-empirical model for direct-direct, direct-diffuse and 

angular properties of roller shades. The model was extracted from detailed integrated sphere 

measurements (Collins et al. 2012) of the spectral beam-beam and beam-diffuse transmittance, as 

well as beam-diffuse reflectance of different fabrics at incident angles ranging from 0° to 60°. The 

spectral data was converted to solar optical properties according to ASTM standards, and a cosine 

power function was fitted to the measured properties at different incident angles. The models were 

validated with integrated sphere measurements and full-scale experiments (Tzempelikos and Chan 

2016) and errors were reported when using only normal incidence data by manufacturers. The 

calculation steps are described below. 

The normalized beam-beam shade transmittance is calculated as: 

𝜏𝑏𝑏 = 𝑐𝑜𝑠𝑏 (
𝜃

𝜃𝑐𝑢𝑡𝑜𝑓𝑓

𝜋

2
)      𝜃 ≤ 𝜃𝑐𝑢𝑡𝑜𝑓𝑓 , (1) 

where 𝜃 is the incident angle, and 𝑏 is defined as: 

𝑏 = 0.6 𝑐𝑜𝑠0.3 (𝜏𝑏𝑏 (𝜃 = 0)
𝜋

2
), (2) 

And cut-off angle 𝜃𝑐𝑢𝑡𝑜𝑓𝑓  is defined as: 

𝜃𝑐𝑢𝑡𝑜𝑓𝑓 = 65° + (95° − 65°)(1 − 𝑐𝑜𝑠 (𝜏𝑏𝑏(𝜃 = 0)
𝜋

2
)). (3) 

The fabric beam-beam transmittance at normal incidence, 𝜏𝑏𝑏 (𝜃 = 0) is assumed equal to 

the openness factor, provided by manufacturers.  

The normalized beam-total shade transmittance is calculated as: 
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𝜏𝑏𝑡 = 𝑐𝑜𝑠𝑑(𝜃)      𝜃 ≤ 𝜃𝑐𝑢𝑡𝑜𝑓𝑓 , (4) 

where 𝑑 is defined as: 

𝑑 = {
0.133(𝜏𝑠𝑡𝑟 + 0.003)−0.467

0.33(1 − 𝜏𝑠𝑡𝑟 )
0 ≤ 𝜏𝑠𝑡𝑟 ≤ 0.33
0.33 ≤ 𝜏𝑠𝑡𝑟 ≤ 1

, (5) 

𝜏𝑠𝑡𝑟 =
𝜏𝑏𝑡(𝜃 = 0)− 𝜏𝑏𝑏(𝜃 = 0)

1 − 𝜏𝑏𝑏(𝜃 = 0)
. (6) 

Beam-total transmittance at normal incidence 𝜏𝑏𝑡(𝜃 = 0) is provided by manufacturers. 

The cut-off angle restriction is only applied to dark-colored fabrics. 

The beam-diffuse transmittance is calculated by the beam-total minus the beam-beam 

respectively for every incident angle. 

The diffuse-diffuse transmittance is calculated by integrating beam-total transmittance 

over the hemisphere: 

𝜏𝑑𝑑 = 2∫ 𝜏𝑏𝑡(𝜃) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 𝑑𝜃

𝜋 2⁄

0

. (7) 

The above model is used to predict daylight transmission through roller shades in this 

Dissertation. 

2.1.2 Venetian Blinds 

Venetian blinds are popular both in commercial and residential buildings. They are sets of 

rotatable horizontal slats linked with pulling ropes for changing the slats angles, which make them 

able to control the amount and the direction of transmitted light rays. The transmittance and 

reflectance of venetian blinds depend on the solar incident angle, slat tilt angle and optical 

properties of slat surface. 

Blinds with smooth slat surfaces will specularly reflect most of the light rays striking on it 

following the laws of reflection. However rough surfaces of slats reflect light anisotropically, and 

reflected lights result in diffuse or mixed patterns. Different blind properties could meet different 

application requirements. Case studies have shown that employing venetian blinds could bring 

significant energy profits (Chaiwiwatworakul et al. 2009; Kim et al. 2009).  
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2.1.3 Other shading devices 

A light shelf is a horizontal or inclined overhang projecting over a view aperture with a 

reflective surface, usually in the upper window section (Rao 2011). It is able to reflect light to 

ceiling or outside to partly block solar radiation and to redirect light rays. Studies have showed 

that light shelves help to improve the uniformity of illuminance distribution in buildings (Claros 

and Soler 2002; Kim 2009). 

2.2 Daylighting and Lighting Simulation 

Simulation of daylighting and electric-lighting enables architectural engineers to evaluate 

the visual environment, visual comfort conditions in spaces and the energy performance related to 

lighting, cooling and heating brought by fenestration and lighting systems; it further helps for 

design and implementation of corresponding façade and lighting controls based on simulation 

results. 

2.2.1 Daylighting Simulation Methods 

Detailed simulation of daylight distribution (illuminances and luminances) in a space can 

lead to understanding of visual comfort and lighting energy consumption conditions, but it requires 

efficient algorithms and advanced, heavy computational models. Daylighting simulation usually 

requires large numbers of input information, among which some are hard to obtain or need 

expensive sensors, such as weather conditions, and the optical properties of all related materials 

and devices. 

Radiosity and ray-tracing methods are two dominant methods applied in lighting 

simulation, as introduced in following sections. 

2.2.1.1 Radiosity Method 

The radiosity method was firstly developed in the engineering field of radiation heat 

transfer, and was later refined by Goral (1984) for application of computer graphics rendering and 

lighting simulation.  

The radiosity method assumes that all considered surfaces in the environment are perfect 

(or Lambertian) diffusers, reflectors, or emitters, which reflect incident light hitting on them in all 
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directions with equal intensity. Observed from the surface, the amount of reflected light is 

proportional to the cosine of the angle θ between the observer's line of sight and the surface normal 

(Lambert’s cosine law).  

A formulation for the system is facilitated by dividing the environment into a set of areas 

(patches). The radiosity of a patch is defined as the total rate of energy leaving the surface and 

equal to the sum of the emitted and reflected energy. For each pair of patches, a view factor, the 

proportion of radiation that leaves one surface and directly strikes another, is computed and stored 

as a coefficient. The radiosity equation of patch i can be written as: 

𝑀𝑖 = 𝑀0𝑖 + 𝜌𝑖∑𝑀𝑖𝐹𝑖,𝑗

𝑛

𝑗=1

, (8) 

where 𝑀𝑖  is the final luminous exitance of patch 𝑖  in lux, 𝑀0𝑖  is the initial luminous 

exitance ofpatch 𝑖in lux, 𝜌𝑖 is the reflectance of patch 𝑖, 𝐹𝑖,𝑗 is the view factor from patch 𝑖 to patch 

𝑗, and𝑛 is the number of total patches. 

Followed equation Error! Reference source not found.defines the system of equations in m

atrix form. 

[

𝑀𝑖

⋮
𝑀𝑖

] = [

𝑀0𝑖

⋮
𝑀0𝑖

] [

1 − 𝜌1𝐹11 ⋯ −𝜌1𝐹1𝑛
⋮ ⋱ ⋮

−𝜌𝑛𝐹𝑛1 ⋯ −𝜌𝑛𝐹𝑛𝑛

]

−1

. (9) 

A large inverse matrix in the equation creates computational problems when the dimension 

increases (e.g., separating interior surface into several sub-surfaces). To speed up the calculation 

process, iterative methods such as gathering and shooting algorithms can be implemented. 

The most evident limitation of the radiosity method is its basic assumption – assuming all 

the surfaces are perfect diffusers in the calculation process. When using the radiosity method to 

solve surfaces with specular characteristics or non-uniform intensity reflections, the accuracy of 

results is questionable (Versluis 2005). Also, when the amount of patches increases, the required 

memory to store view factors and the required time to calculate view factors would increase 

exponentially. 

2.2.1.2 Ray Tracing Method 

Ray tracing is a technique capable of simulating complex light interactions including 

specular reflections. It is derived from the idea that light reflection can be modeled by recursively 
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following the path that a light ray takes as it bounces within an enclosed environment. Light rays 

can be traced from the light source to the object (forward ray-tracing), from the observer’s eyes to 

the world (backward ray-tracing), or from both ways (hybrid ray-tracing). In forward ray tracing 

algorithms, each ray carries a certain amount of light intensity generated from the light source. 

When intersecting with a surface, a new ray is generated, resulting in a loss of intensity of the 

reflected light due to absorption by the surface. The trace process stops when the light intensity 

drops below a certain threshold. Forward ray tracing can accurately determine the luminance or 

illuminance of each object, but it is often inefficient as to limited target points since many rays 

from the light source never come through the reference point or through observer’s eyes.  

Backward ray tracing method was introduced to improve the efficiency of ray tracing, 

especially for computer graphics rendering purposes. However, there are disadvantages of the 

backward ray tracing method when applying it to daylighting simulation with complex fenestration 

systems. Several viewpoints need to be created which means several turns of tracing are required. 

Compared to backward ray tracing, forward ray tracing is independent of view and concentrates 

on producing numerical data rather than rendering a photo-realistic image. To combine the 

advantages of forward and backward ray tracing method, researchers also developed a hybrid ray 

tracing method that compromise speed and accuracy (Lafortune and Willems 1996; Chan and 

Tzempelikos 2012). The Monte-Carlo method, a sophisticated sampling method, was usually 

combined with ray-tracing calculations in ray sample generating process (Tsangrassoulis et al. 

2002). Depending on the reflection characteristics of the surface, not all of the reflected light would 

follow the path of specular reflection. At each transition of ray direction caused by reflection or 

transmission, the new direction is calculated according to statistical probabilities defined by the 

optical properties of each surface (Tregenza 1983). However, even if combined with the sampling 

method, the computational efficiency is still a big issue in ray tracing simulation when dealing 

with diffuse surfaces, since a large number of samples is required. 

2.2.1.3 Hybrid Ray-tracing and Radiosity Method 

As discussed above, ray tracing and radiosity are two major algorithms used to simulate 

indoor daylighting distributions and they are suitable for different applications. Ray-tracing 

algorithms are better for specular surfaces and accurate direct light simulation, while radiosity 

methods are more efficient with Lambertian surfaces and diffuse light simulation. Therefore, Chan 
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and Tzempelikos (2012) developed a hybrid ray-tracing and radiosity daylighting model which 

combines the strengths of these two methods, for application in complex fenestration systems such 

as venetian blinds. 

In the hybrid ray-tracing and radiosity method, the ray-tracing method is used to track the 

direct sunlight entering space and the radiosity method is used to simulate the diffuse inter -

reflections between interior surfaces and the final lighting distribution. For daylight simulation 

model focusing on dynamic façades with controlled fenestration systems (glass and roller shades), 

the inputs are the transmitted direct and diffuse illuminance from glazing and shading respectively. 

Figure 1 presents a flowchart of the hybrid ray-tracing and radiosity method. 

 

 

Figure 1 Flowchart of the hybrid ray-tracing and radiosity method.  

Total illuminance transmitted through glazing could be measured by an illuminance sensor, 

and then it is separated into direct and diffuse parts with measured direct-diffuse ratio obtained 

from outside sensor, together with the known optical properties of glazing and shading layers. 

Calculation of glazing and shading transmittances for direct component and diffuse component are 

discussed in (Chan and Tzempelikos 2012; Xiong and Tzempelikos 2016).  

 

Ray Tracing Module 
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For the direct sunlight, a ray tracing method is employed to track the daylight projection 

area after transmitted through façade (glazing-only part and glazing-shading part respectively). 

The one-bounce hybrid model assumes that all the interior walls, floors, and ceilings are perfect 

diffusers, which means all the direct components (rays) are reflected as diffuse component after 

they hit the surfaces once.  

All the points, planes, and rays are defined in a three-dimensional Cartesian coordinate 

system before tracing the rays. A certain number of rays are generated with a uniform distribution 

representing direct lights transmitted through the window. The total rays number in the model 

affects the accuracy of simulation results as well as simulation load and speed – more rays require 

larger calculation memory and time but lead to more accurate simulation results. Chan and 

Tzempelikos (2012) selected 3000 rays per square meter for the façade area for compromising 

calculation speed and accuracy. Each of the rays carries a certain amount of direct luminous flux 

entering the space, based on following equations. 

𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒  𝑓𝑙𝑢𝑥 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑎𝑦 𝑓𝑟𝑜𝑚 𝑔𝑙𝑎𝑠𝑠 =
𝐸𝑡𝑟−𝑑𝑖𝑟(1 − 𝜅𝑠ℎ)

𝑅𝑎𝑦#
 (10) 

𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑓𝑙𝑢𝑥 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑎𝑦 𝑓𝑟𝑜𝑚 𝑠ℎ𝑎𝑑𝑒𝑠 =
𝜏𝑑𝑖𝑟−𝑑𝑖𝑟𝐸𝑡𝑟−𝑑𝑖𝑟𝜅𝑠ℎ

𝑅𝑎𝑦#
 (11) 

where 𝐸𝑡𝑟−𝑑𝑖𝑟  is transmitted direct illuminance, 𝜅𝑠ℎ  is the shaded window fraction, 

𝜏𝑑𝑖𝑟−𝑑𝑖𝑟  is the shades direct-direct transmittance, 𝑅𝑎𝑦# is the number of rays. 

In the 3-D Cartesian coordinate system, the X-axis represents the north-south axis, the Y-

axis represents the east-west axis, and the Z-axis represents the vertical (height) axis. Each of the 

rays is represented with a position vector and a directional vector, which indicate the position 

where the ray is generated (on the façade in this case) and the direction the ray is heading to. The 

position vector is a coordinate of the ray starting point on window. The direction vector of the ray 

is related to the simulated moment, the solar position and corresponding solar angles as expressed 

by: 

�̅� = (𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝜙) , 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝜙) , − 𝑠𝑖𝑛(𝛼)) (12) 

where 𝛼 is the solar altitude, and 𝜙 is the solar-surface azimuth as expressed in Figure 2. 
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Figure 2 Corresponding solar angles and directional vector of light rays.  

Some computational strategies are used to save computation time (Chan and Tzempelikos 

2012). For example, if the solar incident angle indicates that the sun is under the horizon (less than 

0 degrees) or not facing to the façade (greater than 90 degrees), or the sky has been classified as 

overcast (when measured incident radiation is below 100 W/m2), it is assumed that no direct 

sunlight is transmitted through the façade and the ray-tracing step is skipped to save computation 

time. 

After the rays are generated, they are traced to determine the location where the rays firstly 

strike on. Each of the interior surfaces is viewed as a plane and defined with a position vector 

which can be any point on the plane indicating the plane’s position, and the normal vector of the 

plane which represents its direction. The travel distances from each ray’s generated point to every 

plane are computed and then the plane with minimum travel distance is determined as the plane 

that the ray strikes on. Travel distances less than zero are eliminated as the plane is opposite to the 

ray’s traveling direction. 

The travel distance of a ray is computed by followed equation. 

𝑡 =
(𝑃 − �̅�) ∙ 𝑁

�̅� ∙ 𝑁
 (13) 

where 𝑃 is the position vector of plane, �̅� is the position vector of the ray, 𝑁 is the normal 

vector of the plane, and �̅� is the directional vector of reflected ray. 

The directional vector of reflected ray is calculated by the following equation, based on the 

reflection law that the incident angle is equal to the reflection angle, as shown in Figure 3. 

�̅� = �̅� − 2(�̅� ∙ 𝑁)𝑁 (14) 
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where �̅� is the directional vector of incident ray. 

 

Figure 3 The law of reflection on ideal specular surface.  

In the one-bounce ray=tracing model, reflected light from interior surfaces is assumed 

entirely diffuse and thus the initial exitance of each interior surface is used in the radiosity method 

described in the following section. 

Virtual work plane (usually at 0.75-0.8 m height) and vertical reference point (usually at 

1.1-1.3 m height) could be assumed for target light receiver (desk and eye). The same equations 

above are employed to determine whether and where the direct light will strike on the work plane 

or eye. It is assumed that the work plane will not interrupt the inter-reflection between other real 

existing interior surfaces – this assumption is realistic and does not affect the final results, except 

for cases with large desks/furniture. 

 

Radiosity Module 

After computing the direction and intensity of reflected rays, it is assumed that all the 

components become diffuse light sources (façade and projection on floor/walls). Then a 3-D 

radiosity method is employed to simulate the final illuminance distributions on all interior surfaces 

and the virtual work plane as well as on any vertical reference point. The luminance values of 

interior surfaces are also computed based on the results. 

Each interior surface is usually evenly divided into small rectangular sub-surfaces for 

radiosity calculations. The final luminous exitance of each sub-surface can be expressed by: 

𝑀𝑚 = 𝑀0−𝑚 +∑(1− 𝑎𝑏𝑠𝑚)𝐹𝑘𝑚𝑀𝑘

𝑡

𝑘

 (15) 
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where 𝑀𝑚 is the final luminous exitance of sub-surface 𝑚, 𝑀0−𝑚 is the initial luminous 

exitance of sub-surface 𝑚, 𝑎𝑏𝑠𝑚  is the absorptivity of sub-surface 𝑚, 𝑡 is the total number of 

surfaces except sub-surface 𝑚, 𝐹𝑘𝑚  is a view factor between sub-surfaces 𝑘 and 𝑚. View factor 

𝐹𝑖𝑗 is defined as the ratio of flux emitted by surface 𝑖 that falls on surface 𝑗. 

The diffuse daylight coming from the sky is different from the diffuse daylight reflected 

from the ground, but to speed up the calculation, the sky and ground light are usually assumed 

uniform distributed respectively, which has a small impact on the accuracy of final results for most 

interior daylight simulations. Diffuse sky illuminance and ground reflected diffuse illuminance 

could be computed based on total horizontal illuminance measured by sensor and other simplified 

assumptions (Xiong and Tzempelikos 2016).  

Except for sky and ground-reflected light incident on the window, the interior window 

luminance is also affected by the reflected illuminance from other room surfaces. These 

components are assumed to be isotropic, and should be added to window patch luminances. 

Following equations presents the final window patch luminance considering the diffuse light 

coming from sky and ground-reflected respectively. 

𝐿𝑚−𝑠 =
𝜏𝑑𝐸𝑠𝑑
𝜋 2⁄

+
𝑀𝑚 − 𝑀0−𝑚

𝜋
 (16) 

𝐿𝑚−𝑔 =
𝜏𝑑𝐸𝑔𝑟

𝜋 2⁄
+
𝑀𝑚 −𝑀0−𝑚

𝜋
 (17) 

where 𝜏𝑑  is diffuse transmittance of glass, 𝐸𝑠𝑑  and 𝐸𝑔𝑟  are sky diffuse illuminance and 

ground-reflected illuminance respectively. 

Then the diffuse work plane illuminance on a point can be obtained by: 

𝐸𝑤𝑝−𝑑𝑖𝑓𝑓 =∑𝐿𝑚 𝑐𝑜𝑠 𝜃 𝑑𝜔

𝑠

𝑚

 (18) 

where 𝜃  is the angle between the normal vector to the sub-surface  𝑚  and the line 

connecting the work plane point and the sub-surface, and 𝑑𝜔 is the solid angle of sub-surface 𝑚. 

For horizontal work plane, any point on it is facing upward, so the light traveling from the 

point to the façade patch must contributed by the sky. Therefore, 𝐿𝑚−𝑠 values are assigned to all 

the window patches in the equation above in this case. 

For a vertical point facing toward the façade, every façade patch is compared with the 

horizontal line of sight (perpendicular to the façade). If the façade patch is above the line, the light 



 

 

28 

is contributed by the sky. Otherwise, the light traveling direction would be extended to the ground, 

and𝐿𝑚−𝑔value will be assigned to the corresponding window patch. 

The final step is to add the illuminance contribution from direct daylighting, which is 

calculated by the ray tracing method discussed in the previous section.  

2.2.2 Daylighting and Lighting Simulation Tools 

There are various software packages available nowadays for lighting and daylighting 

simulation for buildings, with different applications and different level of complexity and accuracy 

based on the simulation methods employed. 

Radiance (Ward and Shakespeare 1998) is a sophisticated daylighting and lighting 

simulation tool, which is powerful to compute accurate and detailed illuminance and luminance 

distributions by employing backward ray-tracing algorithms. It is customizable so there are several 

programs developed based on Radiance, aiming at different application. 

DAYSIM is one of the Radiance-based daylighting and lighting simulation tools (Reinhart 

and Herkel 2000) that is able to run annual dynamic simulation. It uses the daylight coefficients 

approach and the Perez sky luminance model to simulate indoor illuminances under various sky 

conditions. Reinhart and Walkenhorst (2001) compared six Radiance-based methods and validated 

the results for a test office with external venetian blinds, and showed that DAYSIM is a reliable 

and accurate tool for daylight simulation. In DAYSIM, the sub-model, Lightswitch, can predict 

the lighting energy performance of manually and automatically controlled electric lighting and 

blind systems (Reinhart 2004). Furthermore, to minimize the required time for dynamic simulation 

for complex glazing system, DAYSIM further employed the three-phase and five-phase methods 

based on Ray tracing method. In the three-phase method, flux transfer process is separated into the 

following three phases for independent simulation: 1) sky to exterior of fenestration with daylight 

coefficient method; 2) transmission through fenestration with BSDF function; 3) interior of 

fenestration into the simulated space with view matrix. Extended from three-phase method, the 

five-phase method handles the direct solar component separately from the sky and inter-reflected 

solar component to achieve better accuracy.  

Evalglare (Wienold 2004) is another daylight simulation program based on Radiance but 

designed specifically for glare assessment. It determines and evaluates glare sources within a 

fisheye image, given in a RADIANCE image file. The program calculates the daylight glare 



 

 

29 

probability (DGP) as well as other glare indexes (DGI, DGI_MOD, UGR, UGR_EXP, VCP, CGI, 

UDP) to the standard output. 

EnergyPlus is an integrated thermal and daylighting simulation tool. Simulated daylighting 

results are parameters to calculate internal heat gains involved in thermal modeling. EnergyPlus 

uses the daylight factor method in order to provide faster results. And it is capable of detailed 

daylight simulation only for representative days, with radiosity method in internally reflected 

calculations to achieve better accuracy.  

Ecotect (Autodesk Ecotect Analysis) performs daylight simulation using the split flux 

method, which is based on daylight factors, combined with ray-tracing. 

Relux (2013) is a commercial software widely used in Europe, which uses the daylight 

factor and ray tracing method to implement daylighting and artificial light simulation. DIALux 

(2013) is another commercial lighting simulation tool based on radiosity method.  

Doulos et al. (2005) conducted a detailed review to introduce and compare Relux, SPOT 

and DAYSIM. In the study, they pointed out three challenges in current daylighting simulation 

tools: 1) the best position of the photosensor; 2) control optimization of various types of shading 

systems; 3) a database with control functions for voltage and lighting output ratio for a large 

number of ballasts. 

The following table summarizes some of the most popular daylighting and lighting 

simulation software. 

Table 1 Daylighting and lighting simulation software.  

Daylighting Simulation Software Methods 

Radiance / Daysim / Evalglare Ray tracing / Three phase method / Five phase method 

EnergyPlus Daylight factor / Radiosity 

Ecotect Daylight factor / Split flux 

Relux Daylight factor / Ray tracing 

DIALux Radiosity 
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2.3 Visual Comfort, Preference, Satisfaction and Occupant Interactions with Shading and 

Lighting systems 

2.3.1 Variables 

In perimeter building zones, several physical or non-physical variables may affect 

occupants’ visual perception and visual comfort/satisfaction, as well as the possible resulting 

actions. Many studies have been conducted to identify, decouple and investigate the main factors 

triggering the interactions between occupants and shading and lighting systems. 

2.3.1.1 Illuminance and Luminance 

One of the most commonly considered factors of visual environment is the amount of light 

on a certain surface, represented by illuminance - the total luminous flux incident on a surface, per 

unit area, which can be measured with a single photometric sensor. IES (Illuminating Engineering 

Society) Standard recommends 300-500 lux of illuminance on work plane in offices (IESNA 2000). 

Rea (1984) conducted an experiment in a large scale building and found that most occupants 

operate blinds when direct sunlight hitting on working plane and they rarely changed it for view 

contact with outside or for natural lighting. While Reinhart (2004) found the thresholds of exterior 

vertical illuminance to be 50 klux and 25 klux for blinds closings and openings respectively, other 

studies (Rea 1984; Reinhart and Voss 2003) attempted to find correlations between work plane 

illuminance and operation of window shades, and Haldi and Robinson (2010a) found the 

thresholds of 1200 lux and 200 lux work plane illuminance for blinds closing and opening, 

respectively. Overall, daylight work plane illuminance and vertical illuminance on screen have 

been found to be strongly related to occupant preference or interactions with shading devices (Hunt 

1979; Love 1998; Sutter et al. 2006).  

Luminance is another fundamental factor describing the amount of light - the luminous 

intensity per unit area of light travelling in a given direction, usually characterizing the emitted or 

reflected light from surfaces. Luminance can be measured with a luminance meter with specific 

direction and solid angle, or luminances in a certain field can be measured from processed image 

taken by digital camera, in a similar way to color images. The luminance image is useful as it could 

approximately represent the whole field of view of actual human and describe the distribution of 

lights on all the surfaces in the field, when using a fisheye lens in the camera. Inkarojrit (2005, 

2008) concluded that luminances from window and background are proper indicators of blinds 
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operations. Most studies, on the other hand, further correlated the luminance with visual 

discomfort (glare). Escuyer and Fontoynont (2001) monitored occupant’s behavior in three office 

buildings in France and stated that most people tended to close blinds when reflected lights affected 

computer work (disability glare problem) but they rarely or partially raised their blinds when there 

was no more glare. Glare is discussed in the following section. 

Both illuminance and luminance represent the “brightness” concept in the visual 

environment, but from different aspects. Illuminance describes the brightness level of light falling 

on a specific point or surface (from all directions), and luminance represents the brightness level 

of light emitted or reflected from a specific point or surface in a given direction and solid angle. 

Illuminance is relatively easy to measure and gives a single value for brightness information, but 

the information is therefore limited as it is a point-measurement and independent of human. On 

the other hand, luminance image captured by a fish-eye-lens camera could replicate the perceived 

brightness information by human, but camera sensing applications involving occupants have many 

other issues, and a luminance image consists of a large number of outputs such as pixel-wise 

luminance values, positions (angles away from the line of eye sight) and solid angles which make 

it difficult to utilize in an efficient manner. Glare studies usually extract specific (part) information 

from luminance image such as glare source luminance identified with certain threshold, (average) 

background luminance, source solid angle and source positions.  

2.3.1.2 Visual Discomfort (Glare) 

Glare has been the focus of visual comfort studies in the past decades. Glare refers to the 

discomfort or difficulty of seeing as a result of bright light or contrast. A glare source can be direct 

or reflected daylight and artificial light, such as sun in the field of view and or headlamps. Glare 

can be generally divided into two types, discomfort glare and disability glare. Discomfort glare is 

usually caused by strong contrast of luminance between target seen and the glare source and it 

results in discomfort or difficulty in seeing, while disability glare does not necessarily cause 

discomfort (CIE). Our study is more related to discomfort glare caused by daylight. 

Several discomfort glare indices have been studied in previous studies with human subjects 

involved, characterized by subjective feelings and physical factors such as glare source luminance 

𝐿𝑠 and source solid angle 𝜔𝑠. 

a. BRS glare index (BGI) 
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The earliest glare index published is BRS glare index (BGI), developed by Petherbridge 

and Hopkinson (1950) at the Building Research Station in England. The BRS glare equation is 

empirically developed as followed. 

𝐵𝐺𝐼 = 10 𝑙𝑜𝑔10 0.478∑
𝐿𝑠
1.6𝜔𝑠

0.8

𝐿𝑏𝑃1.6

𝑛

𝑖=1

 (19) 

where 𝑛 is the number of glare sources;𝐿𝑏 is the background luminance (or general field 

of luminance) excluding the glare sources; Guth’s position index 𝑃 represents the change of glare 

sensed with source azimuth and altitude to observer’s line of sight. 

BGI is proved to be limited in application with large or wide glare sources (Chauvel et al. 

1982; Iwata et al. 1991; Osterhaus 1996) since the intention of developing BGI is for glare 

characterization from point light source, with solid angle smaller than 0.027sr. 

b. Visual Comfort Probability (VCP) 

The Visual Comfort Probability (VCP) developed by S.K. Guth (1963, 1966) represents 

the percentage of people that consider the lighting conditions comfortable. It aims at electric lights 

as glare sources and requires complex calculations. 

c. CIE glare index (CGI) 

Einhorn (1969) proposed a unified glare assessment equation and it was adopted by the 

International Commission on Illumination (CIE). 

𝐶𝐺𝐼 = 8 𝑙𝑜𝑔10 2
1 + 𝐸𝑑 500⁄

𝐸𝑑 +𝐸𝑖
∑

𝐿𝑠
2𝜔𝑠
𝑃2

𝑛

𝑖=1

 (20) 

where 𝐸𝑑  is the direct vertical illuminance at the eye from glare sources; 𝐸𝑖 is the indirect 

(diffuse) illuminance at the eye from background. 

CGI was developed to improve BGI for its mathematical inconsistency with multiple glare 

sources. 

d. Daylight Glare Index (DGI) 

Daylight glare index (DGI), or Cornell glare equation, is developed to modify BGI for large 

glare source by Hopkinson (1972). 

𝐷𝐺𝐼 = 10 𝑙𝑜𝑔10 0.48∑
𝐿𝑠
1.6𝛺𝑠

0.8

𝐿𝑏 + 0.07𝜔𝑠0.5𝐿𝑠

𝑛

𝑖=1

 (21) 

where 𝛺𝑠 (sr) is the solid angle subtended by the glare sourcemodified by the position of 

the source with respect to field ofview and Guth’s position index. 
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The equation was developed through experiments with glare from fluorescent lamps behind 

an opal-diffusing screen. Therefore its application is limited under real sky conditions and when 

the glare source is non-uniform or in the whole field of view (Fisekis et al. 2003; Osterhaus 2005; 

Bellia et al. 2008). 

The new daylight glare index (DGIN) was proposed by Nazzal (2001) to improve DGI 

equation, but its accuracy remains to be validated. 

e. Unified Glare Rating (UGR) 

Unified Glare Rating (UGR), proposed by Sorensen in 1987, was adopted by CIE (1992). 

𝑈𝐺𝑅 = 8 𝑙𝑜𝑔10
0.25

𝐿𝑏
∑

𝐿𝑠
2𝜔𝑠
𝑃2

𝑛

𝑖=1

 (22) 

UGR is a combination of CGI and BGI for glare prediction for artificial lighting system. It 

inherits BGI’s application limitation to some extent with solid angle restriction from 3 × 10−4sr 

to 10−1sr. 

f. Daylight Glare Probability (DGP) 

The most recent glare index aiming at daylight discomfort glare assessment is daylight 

glare probability (DGP), introduced by Wienold and Christoffersen (2006). 

𝐷𝐺𝑃 = 5.87 × 10−5𝐸𝑣 + 9.18 × 10
−2 𝑙𝑜𝑔10 (1 +∑

𝐿𝑠
2𝜔𝑠

𝐸𝑣
1.87𝑃2

𝑛

𝑖=1

)+ 0.16 (23) 

where 𝐸𝑣  is the vertical illuminance at the eye.  

The position index 𝑃 used in DGP calculation is a combination of Guth’s model (Guth 

1966) and Inoue’s model (Inoue et al. 1988). For the glare sources above the observer’s line of 

sight (perpendicular to the façade), the Guth’s position index is calculated by:  

lnP =(352-3.1889τ-12.2e-2τ 9⁄ )10-4σ+(21+0.26667τ-0.002963τ2)10-5σ2 (24) 

where 𝜏 is the angle between the normal of the plane where the glare source is on and the 

line of sight, and 𝜎 is the angle between the line from observer to source and the line of sight. For 

the glare sources below line of sight, the Inoue’s model position index is calculated by: 

𝑃 = 1+ 0.8 ×
𝑅

𝐷
{𝑅 < 0.6𝐷}  

𝑃 = 1+ 0.8 ×
𝑅

𝐷
{𝑅 ≥ 0.6𝐷} (25) 

𝑅 = √𝐻2+ 𝑌2   
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where 𝐷 is the distance from eye to the plane of source,𝐻 is the vertical distance between 

source and view direction, and 𝑌 is the horizontal distance between source and view direction. 

The solid angle 𝜔 is calculated by: 

𝐴𝑃 = 𝐴 𝑐𝑜𝑠𝜃 (26) 

𝜔 =
𝐴𝑃
𝐷

 (27) 

where 𝐴 is the area of glare source,𝐴𝑃 is the projected area of glare source to observer, and 

𝜃 is the angle between the normal vector of glare source plane and the line from observer to glare 

source, and 𝐷 is the distance between the observer and the glare source. 

DGP was evaluated by occupancy assessment experiments, initially showing better accord 

with occupant responses than any previous daylight glare index, such as CGI and DGI. The DGP 

limit for “unperceived” glare is 0.35 (Wienold 2009). Recent studies show that in some cases, DGP 

does not perform as well as expected (Suk and Schiller 2016).  

The most eminent development of DGP is its strong linear relation with observer’s vertical 

eye illuminance, which performs well with large glare sources. Wienold (2007) then proposed 

simplified DGP (DGPs) for application with no direct sun within field of view. 

𝐷𝐺𝑃𝑠 = 6.22 × 10−5𝐸𝑣 + 0.184 (28) 

Recent studies (Konstantzos et al. 2015) showed that DGPs is appropriate to use for all 

cases except when direct light falls on the eye. Therefore, the use of DGPs is not recommended 

for shades with noticeable openness transmitting direct light.  

Konstantzos and Tzempelikos (2017) conducted experiments with human subjects and 

developed two new metrics for cases when the sun is visible through roller shades. The first is a 

modified DGP equation, with coefficients that showed a better fit when the sun is within the field 

of view through shades: 

𝐷𝐺𝑃𝑚𝑜𝑑 = 8.4 ∙ 10−5 ∙ 𝐸𝑣 + 11.97 ∙ 10
−2 ∙ 𝑙𝑜𝑔 (1 +∑

𝐿𝑠,𝑖
2 ∙ 𝜔𝑠,𝑖

𝐸𝑣2.12 ∙ 𝑝𝑖
2

𝑖

)+ 0.16 (29) 

The second metric is alternate glare discomfort index, based on direct and total-to-direct 

vertical illuminance on the eye, that captures the impact of sunlight as well as the interdependence 

between the fabric color, overall brightness, and the apparent intensity of the visible sun. 

A collection of papers with recent discussion and findings on visual comfort and daylight 

discomfort glare can be summarized in Tzempelikos (2017).  
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2.3.1.3 Building and façade Configuration 

Facade orientation affects the magnitude and distribution of daylight, and thus affecting 

visual comfort and preference. Studies focusing on human behaviors in buildings on northern 

hemisphere agree that the number of shading operations is lowest on north façade and highest on 

south façade (Foster and Oreszczyn 2001; Inkarojrit 2008; Eilers et al. 1996; Mahdavi et al. 2008; 

Rubin et al. 1978; Zhang and Barrett 2012), as the north façade receives the least daylight and 

south façade receives the most. The east and west façades, however, have most solar penetration 

depth in the morning and afternoon, respectively, and thus significant diurnal patterns were found 

in the human-shading interaction for those orientations (Inoue et al. 1988). Despite these 

correlations, studies suggested that the effects from façade orientation could be accounted for by 

the related interior factors such as solar angles or solar radiation (O’Brien et al. 2012; Haldi and 

Robinson 2010a; Rea 1984). 

Office layout and interior design can have a profound influence over comfort (Day et al. 

2012). Occupants’ positions and view directions were found to be significant factors in glare 

studies (Jakubiec and Reinhart 2012; Heerwagen and Diamond 1992; Osterhaus 2005). Other 

studies (Galasiu and Veitch 2006) reported the importance of room dimensions and furniture 

positioning for preventing discomfort such as glare and draughts. The effects of glazing color on 

visual preference and human interaction with electric lights were studied by Arsenault et al. (2012) 

through simulation and experiment. 

2.3.1.4 Outdoor Conditions (Weather)  

Weather conditions outside are one of the early target of visual preference studies, but still 

the effects are ambiguous. While Rubin (1978) found that blind position seemed to be independent 

of sky conditions such as sunny, cloudy, and hazy, Rea (1984) showed that blind occlusion was 

significantly different with different sky conditions. Seasonal effects have been also studied by 

other researchers. Mahdavi et al. (2008) conducted a survey study on three office buildings, and 

found that cooling season resulted in 30% higher shade deployment than the heating season, due 

to higher solar radiation on the facade during cooling season.  Zhang and Barrett (2012) found 

occupants inactive of operating shading even with substantial change in solar radiation and 
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illuminance. Haldi and Robinson (2010a) reported that the effects of seasonal changes are mixed 

with other physical variables, such as indoor temperature or daylight levels.  

2.3.1.5 Connection to Outside, View and Privacy 

Other factors directly associated with visual satisfaction are connection to the outdoors and 

the desire for privacy as one of the main design purposes of windows is to provide a clear view 

and physical connection to the outside (Reinhart and Wienold 2011), while shading devices could 

serve for privacy considerations but obstruct outside view. 

The quality of view is one of the subjective factors associated with psychological sciences 

and mainly includes preferred outside scenes. Studies (Inoue et al. 1988; Aries et al. 2010) found 

that more attractive window views compromised discomfort, but this effect can be reversed for 

occupants close to unshaded windows. Tuaycharoen and Tregenza (2007) concluded that 

perceived discomfort glare was lower with satisfaction for “interesting” outside scenes. Similar 

findings, relating the type of view through the window with the perception of glare (Shin et al. 

2012) or job stress and well-being (Leather et al. 1998) or health recovery (Raanaas et al. 2012), 

have been reported. Konis (2013) noted that despite the presence of visual discomfort, the 

occupants in the perimeter zones left a portion of the window unshaded for most of the time to 

maintain connection to the outdoor. Researchers (Inkarojrit 2005; Zhang and Barrett 2012; 

Mahdavi et al. 2008) have acknowledged that the view to the outside as a possible factor for 

triggering shading actions, but there is no conclusive finding because of the interferences from 

other variables. Wienold (2007) concluded that future studies should be focused on investigating 

occupants’ preferences towards connection to the outdoors.  

Objective considerations such as the amount of view and view clarity are more important 

in urban areas, where there is limited flexibility in choosing the most desired outdoor scenery.  

Building rating systems (USGBC 2009) offer credits for outdoor views. The amount of view 

outside is usually quantified by the relative size of openings compared to opaque walls. Galasiu 

and Veitch (2006) suggested wider window with optimal height of 1.8 – 2.4 m, although window 

size will vary for different office settings. On the other hand, few studies focused on view clarity 

through windows with shading devices. Aston and Belichambers (1969) defined view clarity as a 

metric of sense of satisfaction, whereas Boyce (1977) defined it as the level of something being 

“visually distinct and clear”. Early studies associated clarity with distinctness of detail  (Yonemura 
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and Kohayakawa 1976) or considered the visual clarity of an illuminated scene to be highly 

correlated with the specific spectral concentration of light sources (Thornton and Chen 1978). 

Tzempelikos (2008) presented a detailed method for calculating the projected outside view for 

venetian blinds as a function of rotation angle, taking into account edge effects and slat thickness. 

Konstantzos et al. (2015) first developed detailed metric View Clarity Index (VCI) quantifying 

view clarity with only shade openness factor and visible transmittance with experimental data. 

Rubin, et al. (1978) first introduced the concept of privacy by stating that the view to the 

other office buildings can conflict with the preference to maintain a private indoor space. Later on, 

Inkarojrit (2005) reported that around 12% of occupants close blinds to maintain privacy. Similarly, 

Reinhart and Voss (2003) suggested that desire of privacy could be the main consideration if blinds 

were lowered at ambient horizontal illuminance less than 1000 lux. 

2.3.1.6 Natural Light (Daylight) and Electric Light 

Perception of daylight can also be another important factor influencing occupants’ visual 

preference and the interactions with shading and electric lighting systems. Cuttle (1983) conducted 

a survey study with 471 subjects and 86% of the responses preferred daylighting as lighting source 

to electric lighting. Survey study by Heerwagen and Heerwagen (1986) revealed that occupants 

widely believe daylight is crucial for their general health and work environment. Veitch et al. 

(1993) confirmed that people prefer daylight to artificial lighting for working. Veitch and Gifford 

(1996) found similar results with a strong belief of the superiority of natural light. On the other 

hand, experimental study by Wells (1965) showed that people perceived considerable amount of 

daylight even when most of the illumination was provided by electric lighting, and he concluded 

that the perception of natural light is independent of the actual visual environment.  

2.3.1.7 Other Factors 

Although early studies focusing on occupant behavior modeling found that thermal 

perception (temperature, solar radiation, etc.) could be a substantial factor affecting interactions 

with shading systems (Lindsay and Littlefair 1992; Foster and Oreszczyn 2001; Mahdavi et al. 

2008; Inoue et al. 1988; Inkarojrit 2005; Sutter et al. 2006; Zhang and Barrett 2012), it remains 

unclear if there is a link between thermal perception with visual preference. 
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The occupation dynamics was reported to be significant for visual preference in several 

studies (Haldi and Robinson 2010a; da Silva et al. 2013; O’Brien and Gunay 2014; Sadeghi et al. 

2016), where occupants were found to be sensitive to arrival and intermediate occupation period, 

and different models were developed for different periods, respectively. 

Additionally, in the last 3 years, focused research studies showed that perceived control, 

control access, interface and user preference with daylighting and electric lighting systems are 

inter-related and complex (Galasiu and Veitch 2006; Sadeghi et al. 2016). da Silva et al. (2013) 

found inconsistency between occupants’ override patterns and existing behavioral models when 

shading and lighting control was deployed in experimental study. Field studies have shown general 

preference or improved satisfaction of occupants with the “sense” of controlled environment 

(Meerbeek et al. 2014; de Korte et al. 2015). Langevin et al. (2012) performed detailed statistical 

analysis and showed significant correlations between variables of thermal comfort and perceived 

control and stated that occupants’ awareness and understanding of controls highly affect 

satisfaction and comfort. Several studies found that the type of control system, access to override 

and control frequency (Bakker et al. 2014), and the availability of expressive interface and 

feedback (Yılmaz et al. 2015; Meerbeek et al. 2016) are some of the parameters playing a 

significant role in occupants’ preference and satisfaction, in offices equipped with automatic 

shading and lighting systems, but the detailed relationships remain to be investigated. O’Brien and 

Gunay in their review study (2014) summarized observational studies including contextual factors 

affecting occupant comfort and behavior, and most of the categorized factors are related to 

perception of control and control system design, which are availability and accessibility of 

personal control, complexity and transparency of automation systems, presence of alternate 

comfort delivering systems and visibility of energy use. 

Finally, the physiological characteristics and psychological factors (e.g. mood) are 

important factors, but due to the difficulty of measuring or characterizing these states with existing 

techniques, there is no study that systematically considers them in learning visual 

preference/satisfaction. 

2.3.2 Modeling Occupant Interactions with Shading and Lighting Systems 

Conventionally, manual shading and lighting controls are applied in most buildings, either 

using ropes/chains or wall/remote switches. Even in buildings equipped with automatic shading 
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and lighting systems, occupant overrides on the automatic control are often observed and reported. 

Therefore, occupant interactions with shading and lighting systems were the main objectives for 

studies related to building simulation and operation. Occupant-shading and lighting interaction 

models have been developed with significant differences in the selection of variables and model 

formulation and structures.  

Different environmental parameters were investigated with various duration of 

observations from several days to years to evaluate their impact on occupant behavior with respect 

to operating shades and their feasibility of prediction as discussed in previous sessions. Previous 

studies showed that manual shading could be driven by changes of work plane illuminance (Rea 

1984; Reinhart and Voss 2003), luminance (Inkarojrit 2008), glare indices (Lee and Selkowitz 

1994; Wienoldet al. 2011), solar radiation (Foster and Oreszczyn 2001; Lindsay and Littlefair 1992; 

Zhang and Birru 2012), temperature (Nicol and Humphreys 2004), and other factors (Van den 

Wymelenberg 2012). In some studies (da Silva et al. 2013; Reinhart 2004), observations include 

both shading and lighting interactions.  

Deterministic models are used in studies of early researchers (Newsham 1994; Lee and 

Selkowitz 1994; Goller et al. 1998) and most of current application to predict occupants’ behaviors. 

Reinhart (2004) developed a dynamic model simulating manual blind operation based on the 

assumption that blinds are fully closed when direct solar radiation on façade is above 50 W/m2and 

solar projection falls on the work plane, and are fully re-opened at the beginning of working day. 

Several researchers in Japan and Germany (Inoue et al. 1988; Reinhart and Voss 2003) drew 

similar conclusion that shade position has strong relation with solar penetration depth when 

incident solar radiation on façade exceeds 50 W/m2. Several observational studies have shown that 

these models failed in predicting the observed occupant behaviors (Inkarojrit and Paliaga 2004; 

Inkarojrit 2005; Sutter et al. 2006; Zhang and Barrett 2012; da Silva 2013), as occupants’ behaviors, 

although dependent on a set of physical features, are governed by a stochastic process instead of 

deterministic relationship (Nicol 2001).  

Therefore, stochastic models have been developed to estimate human-building interactions 

by characterizing the randomness of occupant behaviors with probabilistic relationship (Haldi and 

Robinson 2010b; Fabi et al. 2015). Linear regression models were proposed by researchers (Foster 

and Oreszczyn 2001; Mahdavi et al. 2008; Van den Wymelenberg 2012), but linear models are not 

able to capture the upper and the lower bounds of the observations (Haldi and Robinson 2009; 
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Haldi and Robinson 2010a; Haldi and Robinson 2011) when distribution of variables are not 

Normal. Generalized linear models (e.g. logistic regression or probit), on the other hand, are more 

flexible in such cases. Most researchers (Inoue et al. 1988; Rea 1984; Nicol 2001; Clarke et al. 

2006; Haldi and Robinson 2008; Inkarojrit 2008; Haldi and Robinson 2009; Haldi and Robinson 

2010a; Zhang and Barrett 2012; da Silva 2013; Sadeghi et al. 2016; Gunay et al. 2017) suggested 

that logistic regression models are appropriate for estimating the probability of human-building 

interactions with respect to particular predictor variable(s). Different modeling formulation 

techniques such as Bernoulli process (Haldi and Robinson 2008), discrete-time Markov chain 

(Haldi and Robinson 2009), and survival analysis (Reinhart 2004; Haldi and Robinson 2008; Haldi 

and Robinson 2009) have been used in these studies. Modeling human behavior was also 

embedded in adaptive shading and/or lighting control in several studies (Guilemin and Molteni  

2001; Gunay et al. 2014a; Gunay et al. 2017). 

Most of these studies, however, are limited in terms of either input variables or prediction 

outcomes. Haldi et al. (2009) and Inkarojrit (2008) built models correlating multiple environmental 

variables with binary shading status (fully closed or fully open) although intermediate shading 

positions are important (Sadeghi et al. 2016). More models were developed (Haldi and Robinson 

2010; Sutter et al. 2006) trying to explain the probability of shades movement with single variable. 

Recently, machine learning methods, statistical data-driven modeling methods such as maximum 

likelihood estimation, have been used to develop probabilistic models of interactions to overcome 

the limitations of traditional regression models (Inoue et al. 1988; Rea 1984; Haldi and Robinson 

2010 A; da Silva 2013; Inkarojrit 2008; Zhang and Barrett 2012; Zarkadis et al. 2015), but it 

typically results in point estimates of the parameters without consideration of epistemic uncertainty 

induced by the limited data (epistemic uncertainty). Sadeghi et al. (2017) used Bayesian modeling 

approach, a novel probabilistic method capable of modeling epistemic uncertainty, to model 

occupant interaction with shading and lighting system with experimental data. 

2.3.3 Modeling Visual Preferences and Satisfaction 

Existing studies related to visual comfort have focused on predicting visual discomfort in 

daylit spaces by evaluating and suggesting visual discomfort metrics, mainly including daylight 

discomfort glare in perimeter offices with complex fenestration systems and variations in 

luminance patterns within the field of view (Van Den Wymelenberg and Inanici 2014; Karlsen et 
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al. 2015; Wienold and Christoffersen 2006; Van Den Wymelenberg 2014; Jakubiec and Reinhard 

2016; Konstantzos et al. 2015; Hirning et al. 2014; Jakubiec and Reinhart 2012; Konis 2014; 

Borisuit et al. 2010; Suk et al. 2017; Kent et al. 2017). However, preventing occupants from glare 

does not necessarily lead to satisfaction with the visual environment or achievement of optimal 

visual conditions. As a matter of fact, dissatisfaction with the visual environment, especially in 

daylit offices, could still exist even if specific criteria are met (Reinhart and Voss 2003; Lee et al. 

2013). Carter et al. (1999) reported that manually controllable lighting fixtures which do not even 

meet the lighting standards were perceived more satisfactory than the daylight linked automated 

lighting controls. 

On the other hand, although modeling human-shading and lighting interactions is useful 

for applications in building simulation models, behavioral models could be unreliable or 

inapplicable for the purpose of discovering preference profiles with overall visual environment, 

since human actions could be the combined results of many uncertain factors other than discomfort 

or dissatisfaction (Gunay et al. 2014b; Wang et al. 2016; Yan et al. 2015). The key assumption of 

action-based preference models that an action or override is triggered by dissatisfaction or the 

condition after action is preferred than the condition before it might be untenable for many cases. 

Recent studies (Gunay et al. 2014a; Gunay et al. 2014b; Yan et al. 2015; Tahmasebi and Mahdavi  

2017; Wang et al. 2016) reported general issues and limitations associated with the development 

of occupant behavior models in terms of their reliability, applicability and generalizability. 

Clevenger and Haymaker (2006) found the energy consumptions differed more than 150% 

considering the uncertainty of occupant behavior model. Gilani et al. (2016) highlighted the 

limitations of existing models predicting occupant-blinds interactions and associated impacts on 

occupant perception of view and connection to outdoors, by simulation study comparing 

conventional and stochastic modeling approaches. 

In spite of intensive studies on visual discomfort (glare) and studies on modeling human 

interaction with shading and lighting systems, few studies directly aimed at visual preferences and 

satisfaction. Galasiu and Veitch (2006) in the literature review paper tried to summarize s tudies 

investigating occupant satisfaction and preference related to the visual environment, but all the 

reviewed studies were still focusing on glare indices or behavior-oriented. A few studies focused 

on occupant’s preference toward electric lighting system, starting from simple statistical analysis 

on survey data (Hedge et al. 1995), to clustering and classification modeling with experimental 
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data (Despenic et al. 2017). Hua et al. (2011) investigated the daylighting design of a single 

building and the resulting occupant visual satisfaction, but the study outcome is still statistical 

analysis instead of modeling as the study aimed at evaluation of design. Sadeghi et al. (2018) firstly 

modeled occupant visual preference in daylit offices with experimental data using Bayesian 

approach, but the study focused on brightness preference only.  

2.3.4 Visual Preferences Learning 

In most studies on visual preferences learning mentioned in previous sections, actions are 

the most common feedback as monitoring human behavior or interactions with daylighting and 

lighting systems is straightforward and non-intrusive. However, there are two main issues with 

action-based visual preference learning. First, collecting enough action data usually requires more 

acquisition efforts as occupant actions are hardly predictable and controllable, and the frequency 

of actions varies among different occupants and with different environments (resulting in overall 

longer collection period), especially with manual shading and lighting systems or limited 

automatic control (Rea 1984; Inoue 1988; Lindsay and Littlefair 1993; Foster and Oreszcy 2001; 

Inkarojrit 2005 and 2008; Sutter et al. 2006; Haldi and Robinson 2010; Zhang and Barrett 2012; 

da Silva et al. 2014; Sadeghi et al. 2016). Second, actions are generally triggered by visual 

discomfort (glare) or comprehensive effects of multiple uncertain or random factors (Lindelof and 

Morel, 2008; Gunay et al., 2014; Wang et al., 2016; Yan et al., 2015), so the learned model based 

purely on actions would have overfitting or bias problems and high uncertainty beyond the 

boundary region of comfort and discomfort (especially in the standard comfort zone), and thus 

would fail to reflect the true preference. Visual preference learning based on actions easily results 

in behavioral modeling, which could not be directly used in control design and implementation as 

discussed previously.  

Other studies tried to actively learn occupant preferences and utilize surveys to query ranking 

or scoring data for modeling the visual satisfaction utility function that motives preference 

(Sadeghi et al. 2016; Despenic et al. 2017; Konis and Annavaram 2017). User-friendly interfaces 

can be used as survey tools to extract some of the unknown information and rationale behind 

actions or dissatisfaction with visual conditions (Sadeghi et al. 2017; Sadeghi et al. 2018; Despenic 

et al. 2017; Konis and Annavaram 2017). However, asking humans to rate with a scale has some 

built-in problems (i) scales could vary with different individuals and (ii) human evaluation is 
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affected by drift, where the scale varies with time, and anchoring, where early experiences weigh 

higher (Payne et al. 1993; Siegel and Castellan 1981). Instead, studies have argued that relative (or 

comparative) preferences  are often more accurate than absolute ratings (Kingsley 2006; Lockhead 

2004; Conitzer 2007). 

2.4 Shading and Lighting Controls 

Researches, designs and products focusing on automated shading control attracted more and 

more attentions in recent years. While studies of manual shading control focus mainly on 

investigating occupant behavior, studies of automated shading control try to optimize energy 

performance or occupant comfort. 

2.4.1 Shading Control 

There are basically three types of automated shading control (closed loop, open loop and 

model-based). The first method utilizes feedback sensor signal (illuminance, radiation and/or 

temperature, etc.) to move shades based on certain threshold. The second control tracks the sun 

(solar angles – altitude, zenith and incident, etc.) according to a time-based solar model and 

controls shades position to avoid direct sunlight falling on the task area. The last control method 

takes sensor readings as model inputs, simulates desired parameters in model and adjust shading 

devices based on model outputs. The last type of control will be discussed in detail in section 2.4.3. 

Automatic shading control usually requires higher cost related to devices and control operation 

compared to manual shading control, while it has great potential of energy efficiency and comfort 

improvement. Several studies (Van Moeseke et al. 2007; Tzempelikos and Athienitis 2007; 

Nielsen et al. 2011; Shen and Tzempelikos 2012; Grynning 2014) have proved the effectiveness 

of automatic shading control strategies concerning energy efficiency or visual comfort. 

Many studies have proposed control strategies for roller shades with threshold of certain 

variable, which could be modeled or measured by sensor. Measured incident or transmitted direct 

solar radiation were utilized by a few researchers (Shen and Tzempelikos 2012) and transmitted 

beam radiation of 94.5W/m2 was selected by Lee and Selkowitz (2006) as the threshold to close 

shades completely. Other studies (Newsham 1994; Wilson et al. 2000; Van Moeseke et al. 2007; 

Wankanapona and Mistrickb 2011) chose incident total irradiation readings or indoor temperature 

measurement as the reference of actuating shades movement and there was no agreement of a 
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general threshold. Wankanapon and Mistrick (2011) performed comparative study on three 

different set points of incident solar radiation on façade (95 W/m2, 189 W/m2, and 400 W/m2) for 

different orientations and climate zones with different shades. Tzempelikos and Shen (2013) 

compared control strategies based on different criteria and concluded that illuminance threshold is 

better than radiation and different strategies should be applied based on orientation and climate. In 

addition, they developed a control algorithm utilizing solar position as the first criterion and 

transmitted illuminance as the second one, and finally considering closing shades completely when 

solar heat gain is high in cooling season. Zhang and Lam (2011) used transmitted illuminance as 

the threshold with an outdoor temperature sensor distinguishing heating demand from cooling 

demand. For venetian blinds, solar angles are usually taken into account since blinds are controlled 

by rotating slats. “Cut-off” angle is introduced as the angle of slats at which direct lights are 

prevented, which can be calculated based by solar angles and blind geometry (Athienitis and 

Tzempelikos 2002), and Zhang and Birru (2012) employed it in open-loop blind control. 

Automated shading controls aiming to prevent glare using glare indices have been developed and 

studied in the last decade (Van Moeseke et al. 2007; Nielsen et al. 2011; Shen and Tzempelikos 

2017; Chan and Tzempelikos 2013; Koo et al. 2010; Din and Kim 2014). In several cases, 

integrated shading and lighting control operation was studied to account for parallel energy use 

considerations (Park et al. 2011; Tzempelikos and Shen 2013; Wienold 2007; Yao 2014; Yun et 

al. 2014; Oh et al. 2012; Xiong and Tzempelikos 2016; Shen et al. 2014; Grynning et al. 2014; 

Inoue et al. 1988; Wienold et al. 2011), as summarized in a recent review (Jain and Garg 2018). 

Some previous studies considered only binary shading positions – fully open or fully closed, which 

limited the development of advanced control using complex algorithms developed in recent years. 

Modern control theories were combined in automated shading control allowing continuous shading 

operation (Shen and Tzempelikos 2013, 2017). Some studies presented shading control strategies 

based on genetic and fuzzy logic for both roller shades control (Lah 2006) and blinds control 

(Čongradac et al. 2012) to provide desired work plane illuminance from daylighting. The objective 

was achieved well but the conflict of better genetic rules and tuning difficulty remained a limitation. 

Hu and Olbina (2011) developed blind control algorithms based on an artificial neural network 

(ANN) daylighting model, which is trained offline by data from EnergyPlus simulation results. 

Due to ANN’s linear characteristic, the simulation speed of the model is fast. Guillemin and 

Molteni (2002) added occupant preferences as inputs into genetic algorithm (GA) to control blinds 
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providing user-defined daylighting. Control efficiency, application feasibility and other issues in 

latest automatic shading control still remain unresolved. 

2.4.2 Electric Lighting Control 

Electric lighting control can also be divided to two types – manual control and automatic 

control. Manual lighting control is proved to be ineffective in many studies concerning energy 

efficiency. Reinhart and Voss (2003) found that lights were switched on at the beginning of 

working hours and seldom turned off until the end of the day, even when indoor illuminance was 

very high. 

Similar to automated shading control, electric lighting can also be controlled based on a 

sensor signal directly. The two main types of sensor-based lighting controls are occupancy sensor-

based and photometer-based controls. Occupancy sensors save energy by automatically turning 

off lights when the occupant is absent and turn them on once detecting occupant presence. Nagy 

et al. (2015) applied adaptive control for variable occupancy sensor time delay for further energy 

savings. However, most studies of occupancy sensor-based control focus on sensor development. 

Photosensor-based control usually adopts closed-loop lighting control to adjust target illuminance 

levels which the sensor measures directly or reflects through model. Previous studies (Lee and 

Selkowitz 1994) have proved that photometer-based lighting control system could benefit in 

energy conservation. Significant work on this topic has been recently published by Shen et al. 

(2014).  

Early studies of electric lighting control focused on on/off control due to the limit of 

devices, before dimmable lights allowed more complex continuous control. However, Galasiu et 

al. (2004) showed that both on/off and dimming control can reduce energy consumption by 50%-

60%. Other studies have also quantified and proved the energy benefits of on/off control and 

dimmable lighting systems (Lee and Selkowitz 1994; Vartiainen 2001; Tzempelikos and Athienitis 

2005, 2007; Tzempelikos 2010; Shen and Tzempelikos 2012). Recent studies also consider 

separate control for every single lamp or even fixture to achieve even lighting distribution, but it 

requires accurate commissioning work.  
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2.4.3 Model-based Control 

Model-based control (MBC) is a method of process control relying on the process model. 

It is widely used in motion control, aerospace, and automotive applications, and becomes an 

emerging technology in building automation. Model-based control takes input information from 

measurements, predictions or estimations, and manual settings, and processes them in a built-in 

real-time model with simulated control variables reflecting real environment and exports 

corresponding control actions or signals to achieve desired system behavior. It is well established 

in studies where model-based control technology has a great potential of application – in building 

automation regarding energy efficiency and indoor environment comfort. Most previous studies 

focused on model-based controls applied to HVAC system or IAQ control in office buildings and 

have showed the benefits of energy efficiency and comfort improvement (Lu et al. 2011; Morosan 

et al. 2010; Gruber et al. 2014a; Gruber et al. 2014b; Kolokotsa et al. 2005), as well as the 

flexibility in various applications from a single objective to large scale indoor environment in 

office buildings (Prívara et al. 2011).  

Model predictive control (MPC) was derived from model-based control using prediction 

by optimizing a finite time-horizon. Hazyuk et al. (2012a; 2012b) combined occupancy schedule 

with MPC for temperature control in heating season and showed 30%-40% energy conservation. 

Goyal et al. (2013) and Oldewurtel et al. (2013) both compared model-based control with predicted 

and measured occupancy information in office HVAC system. They found that MBC with 

measurements inputs alone could provide 50% energy conservation, while predicted MPC could 

only provide small improvements compared to MBC.  

However, few studies directly associated model-based control theory with shading and 

lighting controls. Fischer et al. (2012) utilized an accurate illumination model to control electric 

lights for different preferences at multiple locations. The model needs to be trained by 

measurements from light sensors located at every occupant seat. Although the model is trained 

offline and can be used for long term, it’s not adaptive for any changes in electric lights or occupant 

locations. Mahdavi (2008) established a detailed daylight model to control blinds and lights. The 

daylight model takes inputs of outdoor daylight conditions measured by twelve illuminance 

sensors, and updates itself with furniture change via a location-sensing system. It outputs discrete 

dimming levels, blind angles and positions to optimize an objective function combining work 

plane illuminance, lighting energy consumption and cooling load with corresponding weights. The 
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model simulates real-time daylight conditions accurately but it requires an extensive sensor 

network and time-consuming calculations. Further, the objective function with simple weighting 

could not reflect real assessment concerning lighting task and energy conservation at the same 

time.  

Le et al. (2014) applied machine learning algorithms with model-predictive control of 

shading devices to minimize cooling and lighting energy while providing daylight. Kim and Park 

(2012) employed model predictive control with an EnergyPlus model to determine the optimal 

blind slat angles within 24 hour concerning overall energy consumption using the Matlab 

optimization toolbox. The study compared developed MPC with static blinds and showed 

considerable energy savings. However, both the machine learning algorithm and the MPC 

optimization process increase the calculation load and lower the control response speed.  

There are also studies utilizing model-based shading and lighting control aiming at both 

energy saving and improving visual comfort. Chaiwiwatworakul et al. (2009) developed a 

daylighting model (work plane illuminance) and glare model (DGI) for blinds and lighting control 

to minimize energy use while maintaining visual comfort. Annual simulation showed up to 80% 

energy savings compared to traditional control strategies. Oh et al. (2012) proposed a similar 

control strategy of optimizing energy performance with DGI below 22 and showed 24.6% energy 

saving. Xiong and Tzempelikos (2016) developed an integrated model-based shading and lighting 

control strategy to minimize lighting energy use while maintaining DGP below 0.35 with detailed 

daylighting, glare and lighting models, and validated the control with full-scale experiments. Shen 

and Tzempelikos (2017) developed simplified model-based shading control for reduced lighting 

energy use and satisfied visual comfort constraint, which could be generalized with different 

configurations of space, shading and glazing. 

2.4.4 Optimal Control 

Optimization algorithms are widely used in building studies, mainly in two directions – for 

building design and for building control. Optimal building design usually sets up an optimization 

problem to find the optimal set of design variables such as building orientation, construction 

materials and façade properties, etc. Various studies used optimization for façade design (Ouarghi 

and Krarti 2006; Tuhus-Dubrow and Krarti 2010; Bichiou and Krarti 2011; Chantrelle et al. 2011; 

Rapone and Saro 2012; Rakha and Nassar 2011; Asadi et al. 2012). 
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Optimal building control is the control method solving an optimization problem for optimal 

control decision for building components (HVAC system, shading and lighting system, etc.) with 

respect to the control objective(s) and constraints, such as energy consumption, thermal and/or 

visual comfort. Optimal shading and/or lighting controls aiming to minimize energy use with glare 

constraint have been studied and developed in recent years (Ochoa et al. 2012; Ferrara et al. 2018). 

Carlucci et al. (2015) reviewed potential visual comfort indices and their use in optimization, 

including aspects of light quantity, uniformity, quality and color. The study concluded that spatial 

and temporal indices are needed, flexible for use in design optimization, with adequate generality 

and longevity. 

While traditionally comfort constraints were used when minimizing energy use in 

optimization efforts, previous studies have also considered comfort and energy use in multi -

objective optimization (MOO) schemes, with different levels of complexity and formulation types. 

Multi-objective optimization is the optimization problem involving more than one objective 

function to be optimized simultaneously. MOO usually provides a set of non-dominated 

alternatives (Pareto front) instead of a deterministic solution. 

Early related studies adopted MOO in optimal building design, especially for envelope 

design. Typical objectives combined with a measure of energy consumption and a measure related 

to human comfort were set in most studies (Wright 2002; Suga et al. 2010; Cassol et al. 2011; 

Ochoa et al. 2012; Han et al. 2013; Manzan and Padovan 2015; Futrell et al. 2015; Carlucci et al. 

2015; Ferrara et al. 2018). Wang et al. (2005, 2006) presented a multi-objective optimization of 

life cycle cost and life cycle environmental impact, also using genetic algorithms, designing for 

the sets of optimal orientation, construction types, aspect ratio, window type, and window size. 

Feature of MOO that it provides multiple solutions suits well in optimal building design as it’s 

natural to provide more than one design in real application.  

Few studies, however, utilized MOO in optimal building control application, as control 

system requires deterministic decision. Hu and Cho (2014) used MOO as a support to device-scale 

operation for CCHP system, and decision was made with probabilistic model. These studies 

applying MOO tried to set weights for multiple objectives to reach unique optimal solution among 

Pareto front. However, one could argue that the rationale of constructing the optimization problem 

by choosing weights that arbitrarily connect energy and general comfort metrics is debatable 

(Nguyen et al. 2014). Villa and Labayrade (2013) applied MOO in real-time lighting control – 
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controlling the dimming levels of luminaires to minimize lighting power while maximizing the 

modeled satisfaction level, obtained from subjective data. In this way, relationships between visual 

preferences and energy impact can be identified, and constraints can be representative of actual 

preferred conditions. However, a single decision was still suggested among the Pareto front of 

MOO based on work plane illuminance standard. Ascione et al. (2016) developed a model-

predictive temperature controller with MOO strategy targeting large-scale energy and thermal 

comfort control, and it is the first study allowing user as the final decision maker provided with 

the set of Pareto front. 

2.5 Research Gaps and Aims of Dissertation 

2.5.1 Research Gaps 

In spite of the large amount of studies of visual environment in buildings, occupant visual 

comfort, and daylighting and lighting controls, the development of an ideal optimal shading and 

lighting control considering occupant visual satisfaction/preferences and energy use is a complex, 

challenging and long-term work. The challenges exist along with the compositions of designing a 

modern control system including variables and sensing, learning and modeling, as well as the 

control strategy and efficient implementation.  

2.5.1.1 Variables affecting visual preference/satisfaction and Sensing Network 

First, discovering and quantifying important variables affecting visual preference and 

satisfaction are challenging.  

To date, limited and simple variables were usually considered when developing human 

interaction models with shading and lighting systems or visual preference/satisfaction models. For 

example, work plane illuminance is one of the most widely used variables (and the single variable 

considered for most cases) in existing models, which represents only part of the “brightness”  

information of occupant’s visual environment. As discussed in session 2.3.1, visual preferences 

depend on a variety of factors which could be environmental, contextual (e.g. illuminance, 

luminance, shading position and lighting level), psychological or subjective, and may be time-

variant, especially when both work plane and vertical tasks (i.e., computer screens) are involved 

and daylighting systems can be dynamically controlled. Tasks of quantifying visual factors with 

variables, sensing and decoupling correlated variables are needed and difficult. Outside view, for 
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example, was verified as important visual factor by experimental or field studies with survey data, 

yet it is hard to quantify or represent outside view with simple variable as it includes both objective 

(amount of view and view clarity) and subjective (quality of view) effects. Only a few studies 

(Konstantzos et al. 2015; Sadeghi et al. 2017; Sadeghi et al. 2018) integrated outside view with 

quantitative variables in visual preference studies. Luminance images, on the other hand, have 

been widely used in glare studies but never utilized in visual preference researches despite their 

powerful ability of representing the whole visual field of occupant, mainly due to 1) lack of studies 

of advanced modeling approaches capable of processing all information of a luminance map for 

real-time control, 2) the limitation of camera measurement at or close to occupant’s eye in practical 

applications. Also, most previous shading/lighting interaction or behavioral models were 

developed assuming manually-operated systems, which is different from automated operation. As 

discussed in the last part of section 2.3.1, the effects of “perceived” control of automatic shading 

and lighting systems and the characteristics of control system itself are potential factors affecting 

visual preference which need to be taken into account. Studies related to perceived visual  

environment are dominated by glare researches using partial information of luminance/illuminance 

and human behavioral model based on simple variable (illuminance), while quantitative modeling 

studies considering all possible factors affecting visual preference are needed. 

In parallel, some of the visual factors are limited of accessibility in real application with 

sensing techniques. For example, photometric sensors are commonly used to measure illuminance 

on the work plane for closed-loop lighting control to achieve certain light set-point, but to deploy 

illuminance sensors directly on work plane is not realistic for several reasons – 1) any selection of 

sensor location is somehow arbitrary and debatable for representing the lighting condition of the 

whole work area; 2) at least one sensor is required for each point of interest (e.g. occupant or desk) 

in the control system; 3) measurement could be obstructed by items nearby; 4) the sensor itself 

could bring inconvenience or be disturbing to occupant, etc.. Existing applications of such lighting 

control requiring feedback of work plane illuminance usually deploy illuminance sensor above 

occupants (e.g. on the ceiling) and commission the sensor for corresponding work plane light 

measurement with regression model, which at the same time causes some other issues such as 

commissioning accuracy and extra maintenance effort. Luminance in the field of view of the 

occupant cannot be easily measured in a practical way (without disturbing the person) even with 

the newest, small-size HDR (High Dynamic Range) cameras. 
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In addition, sensing infrastructure related to visual environment has a large potential of 

improvement: the cost of sensing network is a practical consideration while most lighting-related 

sensors are expensive comparing to thermal sensing devices (e.g. temperature sensors); more 

operation efforts are also required such as high performance DAQ system and wireless 

communication capability. In fact, the development of an integrated and low-cost lighting and 

daylighting (wireless) sensing network based on different types of related sensors for measuring 

the perceived visual environment of occupants is an open research topic.  

Another option to address some of the above sensing issues is to use advanced and detailed 

daylighting and lighting models and corresponding model-based control by simulating indoor 

illuminance or luminance distribution with less or no indoor sensors. However, there are also 

limitations using model-based control. First, compromise decisions between accuracy and 

efficiency must be carefully considered in terms of modeling structure, parameters and 

computational efforts. Most existing daylighting and lighting simulation tools employing daylight 

factor or radiosity methods might not be accurate enough when detailed prediction involving 

human occupants is needed. Radiance software, as introduced in section 2.2.2, is capable of 

detailed and accurate daylighting prediction with proper settings, but the backward ray-tracing 

simulation algorithm could be too computationally expensive to be used in real-time control with 

relatively short interval (e.g. 30 min), even much efforts were made for reducing the computation 

cost. The hybrid ray-tracing and radiosity method described in section 2.2.1.3 is a potential 

modeling algorithm that could be used in model-based control, and was validated in experimental 

study (Xiong and Tzempelikos 2016) using reduced number of exterior sensors as inputs, although 

the model is still limited in application as it requires comprehensive building information as model 

parameters and expert understanding for transferable use between different spaces. Other options 

of image-based simulation have been recently proposed (Zhao et al. 2018). 

For the variables that are hardly accessible with either sensors or physical models by 

existing techniques, modeling approaches that are able to deal with hidden variables and the 

corresponding uncertainty could be effective solutions. 
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2.5.1.2 Learning and Modeling Visual Preference and Satisfaction 

Visual discomfort vs. visual preference/satisfaction 

Existing studies which claimed to aim at visual comfort have actually focused on visual 

discomfort (glare) or associating indoor light levels (mostly illuminance) with human behavior, 

and few studies directly aimed at occupant overall visual preferences or satisfaction, especially in 

the “standard” comfort range, considering not only brightness perception but also other essential 

factors. As discussed in section 2.3.3, achieving general visual comfort criterion does not 

necessarily result in high satisfaction level with the visual environment. Therefore, learning 

preference profiles with respect to overall visual conditions, without just considering discomfort 

scenarios, and implementing them in controls, is a better approach towards achieving optimal 

visual environments. 

Personalized vs. generalized model 

Occupant diversity in visual comfort and preferences has been observed and studied in 

experimental studies (Inkarojrit 2005; Haldi and Robinson 2010). However, similar to 

conventional thermal preference studies, most studies of visual comfort and preference focused on 

developing generalized model based on data from relatively large number of subjects (Sadeghi et 

al. 2017; Despenic et al. 2017; Sadeghi et al. 2018). Although generalized visual preference models 

might be useful for some cases, they are not suitable to be implemented in shading and lighting 

controls in either office buildings or residential buildings because of the following reasons: 1) 

generalized model might not be really “generalizable” when space configurations and controls are 

changed, 2) generalized model could not accurately predict the visual preferences of individual 

occupants even the data from the individual contribute to the model, especially for application in 

private offices and residential buildings, and 3) control based on generalized model built for open 

plan office with multiple occupants might not satisfy most of the occupants due to individual 

differences in visual preference and the nature of generalization – compromise, so other methods 

are required to predict the probability of conflict in user preferences (Chraibi et al. 2016; Despenic 

et al. 2017) or to “aggregate” multiple preferences. For private offices, personalized visual 

preference profiles related to shading/lighting operation are useful, considering a generic set of 

physical and human variables, as well as quantified implications on energy use.  
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Modeling approaches 

Based on all above discussion, an ideal modeling approach for learning visual preference 

and satisfaction, should 1) be able to consider multiple variables and automatically identify and 

select the important ones from them, 2) have the flexibility of evolving according to any change 

in preference based on new data (data-driven), 3) be able to incorporate and quantify the effects of 

unmeasured/hidden variables, 4) be able to link and predict relative preference and satisfaction 

level, 5) be able to predict uncertainty due to hidden variables and/or limited data, etc. 

Bayesian models serve these purposes well (Jaynes 2003; S. Guo et al. 2010). Furthermore, 

Bayesian approaches automatically incorporate epistemic uncertainty in an intuitive and natural 

way (Chu and Ghahramani 2005). These advantages allow for addressing decision-making 

problems in a principled manner: to combine existing knowledge (prior beliefs) with additional 

knowledge that is derived from new data at hand (likelihood function), resulting in our prior 

knowledge (beliefs) being updated to new knowledge (posterior beliefs), following Bayes rule. 

These posterior beliefs can then be used as priors in future analyses, providing learning chains in 

science (Eric et al. 2008; Kuikka et al. 2014). The spread associated with the inferred posterior 

distribution quantifies the uncertainty associated with the sampling distribution. Moreover, auto-

selecting techniques such as automatic relevance determination (ARD) could be used for variable 

identification by introducing and tuning hyper-parameter along Bayesian inference. With these 

inherent advantages, we can develop flexible probabilistic models and investigate relationships 

between variables and models. 

Three studies implemented Bayesian inference models in the visual preferences field to 

this date. Lindelöf and Morel (2008) applied a Bayesian formalism to infer the probability of 

occupants considering horizontal illuminance distributions as uncomfortable. Although still based 

on human interactions, this was the first study that used this approach, and the authors discuss the 

issues of including more variables, challenges related to implementation in adaptive controls, and 

balancing visual comfort and energy use. Sadeghi et al. (2017) developed a Bayesian model of 

human interaction with shading and lighting systems with multi-variables using experimental data. 

More recently, Sadeghi et al. (2018) predicted generalized occupant visual preferences in 

perimeter offices using a large data set, considering environmental and human variables, and 

determined the optimal number of clusters of occupants with similar visual preference 

characteristics. Mixtures of clustered models could then be used to derive personal preferences. A 
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new method for developing personal visual satisfaction profiles in daylit offices through Bayesian 

inference is presented in Chapter 3.  

Online learning and model updating 

Most previous modeling works on occupant preferences were developed based on occupant 

actions, which may not reflect actual occupant satisfaction, as discussed in section 2.3.3. As aptly 

stated by Lindelof and Morel (2008), “it makes sense for a controller to learn from the desired 

effects of the occupants’ actions, not necessarily from the actions themselves”. Also, the frequency 

of actions is unpredictable or low with specific control configuration, which could lead to 

inefficient learning. Asking for preference/satisfaction, on the other hand, is straight-forward with 

less uncertainty introduced during learning process, yet mostly adopted in studies of visual 

discomfort, acquired by survey. The main difference between these two learning objects is that 

behavior could be monitored through observing the changes of operative devices, while 

satisfaction level or preference vote needs to be asked or reported, which could be a concern of 

disturbing occupants in real settings. Moreover, asking for satisfaction ranking and preference vote 

are different, as discussed in section 2.3.4 – satisfaction rating introduces more uncertainty or bias 

than relative preference vote. To use occupant action for learning preference, proper discriminative 

data acquisition methods or advanced modeling approaches need to be utilized to (i) translate 

actions into true preference or (ii) to eliminate the effects of drives of action other than preference.  

Also, to directly query preference votes or satisfaction levels, the preference survey or other 

preference acquisition interface (also a part of the sensing network) should be carefully designed, 

and efficient learning techniques could be exploited to reduce the data requirement and the possible 

ensuing disturbances; integrating both means in the learning process with proper considerations of 

implementation would be ideal. Nevertheless, efficient methods for acquiring occupant’s true 

preference/satisfaction need further research. 

Previous studies have shown the effectiveness and efficiency of building control strategies 

utilizing adaptive occupant preference models (Guillemin and Molteni 2002; Gunay et al. 2014; 

Gunay et al. 2017; Guillemin and Morel 2001; Haldi and Robinson 2010). Lee et al. (2019) 

proposed a novel HVAC control algorithm that enables self-tuning optimized temperature control 

with adaptive personalized thermal preference profile. 

However, studies on occupant visual preferences are still isolated from incorporating 

preference learning into the real building operation process. There exist three major gaps. 1) 
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Developing the preference models in most researches requires intrusive and/or high-cost sensing 

network, which might not be practical in application. 2) Typical preference learning process 

demands sufficient and reliable data from occupant feedback either in a short period or from a long 

learning term. Short-term learning requires intensive interactions with occupants, which is 

disturbing. On the other hand, occupant dissatisfaction could arise if the learning process takes a 

long time, when an accurate and reliable preference model has not been developed or trained due 

to limited data, and the “optimal” control based on the model fails to achieve satisfying condition. 

3) Human preference is dynamic so a robust preference model needs to be updated continuously 

to adapt itself to (possibly) changing preference (Jazizadeh et al. 2014; Daum et al. 2011; Zhao et 

al. 2014; Ghahramani et al. 2015).  

Moreover, learning efficiency is a core concern when embedding model learning in a 

control system. For daylighting and lighting control systems, this is especially essential as many 

variables could be involved (ideally), and acquiring visual preference data is quite difficult so that 

learning data is limited. In preference learning, the idea of active learning, by choosing the 

compared pairs in order to learn preference with minimal preference queries, was proposed for 

improving learning efficiency. Specifically, for learning visual preference, active learning could 

be achieved by initiatively controlling the visual environment to form designed condition pairs to 

trigger preference. As pointed out in the last part of section 2.3.4, learning preferences by 

observing occupant actions or by asking preference both have limitations, but preference query 

suits the active learning framework better as it ensures preference data from each pair of compared 

visual conditions, while action is relatively a less-frequent event and may happen because of 

several reasons. 

Therefore, an online visual preference learning method needs to be designed to actively 

acquire data efficiently in relatively short time with minimum disturbances to occupants. The 

concept of sequential learning in decision theory and utility theory, which uses the updated 

information after each learning step to determine the next step, could allow us to achieve this goal 

based on preference estimates or predictions. More specifically, (automated) preference elicitation 

in this field has brought increased interest and been applied to preference learning in recent years 

(Dyer 1972; White et al. 1984; Salo and Hamalainen 2001; Chajewska et al. 1998, 2000; Boutilier 

2002; Birlutiu et al. 2013; Hernández-Lobato et al. 2014; Farrugia et al. 2015; Wang and Jegelka 

2017; Gonzalez et al. 2017; Tee et al. 2017; Chapelle and Li 2011; Takahashi and Morimura 2015; 
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Radlinski and Joachims 2005), which aims at gaining sufficient preference information of a user 

through an appropriate sequence of queries or interactions to make a good or optimal decision.  

The core design problem of the preference elicitation is to determine which preference 

query to ask during the learning process, and is dependent on the objectives of the decision making 

system. Three major criteria of query selection technique are the regret/cost (Wang and Boutilier  

2003; Patrascu et al. 2005; Boutilier et al. 2004; Boutilier et al. 2003 and 2005), the uncertainty of 

preference or utility profile, and the expected value of information gain. More preference 

elicitation methods are reviewed in detail in Chapter 4. 

The above learning strategy could be embedded in the control system operation as learning 

phase. Meanwhile, as discussed in previous sections, human preference is a dynamic and uncertain 

object to model due to human nature that tends to change and numerous hidden or uncertain factors, 

and thus any adaptive control system needs to integrate model updating and real-time learning 

within the control flow. That is, model updating is needed in the control phase. Practical 

considerations of model updating during control include: 1) update frequency/interval, 2) selection 

of data for model updating: usually the newest data with a fixed time horizon are selected to update 

the model so the length of the time horizon needs to be justified, 3) acquisition of new preference 

data and discrimination of valid data: passive observation of occupant action or initiative report 

from occupant might be more realistic for application than querying preference vote in the control 

phase, and preference-related action needs to be distinguished and translated into true preference.  

2.5.1.3 Optimal Shading and Lighting Control Considering Visual Preference and Energy Use 

Increasing visual satisfaction (or ensuring comfort) and reducing energy consumption (for 

lighting or lighting and HVAC) have been the general two objectives of daylighting and lighting 

control designs, and most studies constructed optimization problem for optimal control with the 

two objectives in different ways. 

Optimal, personalized shading and lighting control 

There are mainly two forms of optimal control integrating both satisfaction/comfort and 

energy objectives, both in a single-objective optimization scheme. The first one proposes or 

utilizes some kind of visual comfort threshold or range as constraint for optimizing the lighting 

energy use. The visual comfort threshold/range could be simply the standard light level (e.g. work 

plane illuminance) requirement, solar angle-related parameters (e.g. penetration length), limits of 
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developed visual comfort models or limits of glare indices (e.g. DGP) based on glare models. This 

formation of optimization treats visual comfort as the priority by setting it as constraint to satisfy 

before optimizing, which could be debatable for personalization consideration, and the limitation 

that satisfying visual comfort criterion does not equal to satisfaction still remains. The second 

formation tends to combine multiple objectives into one by constructing a “cost function” with 

weighted satisfaction and energy based on quantitative models. However, any fixed weighting 

between the two objectives is arbitrary and debatable as discussed in section 2.4.4. 

Multi-objective optimization, on the other hand, could be an ideal algorithm for integrated 

both objectives in daylighting and lighting control, especially when personalized visual 

satisfaction/preference model takes the place of comfort constraint, and the relative relationships 

between visual preferences and energy impact should be identified and incorporated in the control 

process. MOO could provide multiple alternate “optimal” solutions (Pareto front) at each control 

step, which conflicts with conventional control application that requires deterministic control 

option. Therefore, most control-related studies adopting MOO picked one solution from Pareto 

front by setting fixed weight to avoid the conflict, which actually turned it back into single-

objective optimization and did not take full advantage of MOO. In fact, the charm of MOO is 

exactly the multiple options it provides, and such decision of selecting could be handed over to 

user (occupant) since a controller can hardly deal with, which in turns fulfills another level of 

“personalized control” besides utilizing personalized visual satisfaction models. Utilizing MOO in 

this way will for sure require extra efforts in designing the control system (e.g. interface) as it 

involves distinctive interaction with occupants compared to existing control systems. 

Realistically, to achieve optimal, personalized shading and lighting control we need to 

consider: (i) occupant satisfaction with the visual environment as one objective, adequately 

quantified, and (ii) energy minimization as another, provided that unique “optimal” solutions are 

not obtained by assigning arbitrary weights. 

Shading and lighting control in multi-occupant spaces 

In most buildings with automatic shading and lighting systems, spaces with multiple 

occupants (e.g. open plan offices) are usually controlled as groups. For the shading and lighting 

control system in such spaces, considering different preferences from multiple occupants is a 

difficult task to achieve high visual satisfaction of all occupants. Preference aggregation has been 

the topic aiming at such task, but mainly toward thermal comfort and HVAC control studies 
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(Jazizadeh et al. 2014; Sarkar et al. 2016; Li et al. 2017), proposing simple strategies such as  

summing and overlapping. More advanced preference aggregation methods are proposed in recent 

years for general algorithm development (Chen et al. 2013; Volkovs and Zemel 2012; Peters and 

Ketter 2013), but further studies related to application of advanced preference aggregation 

algorithm with shading and lighting control are required, and the rationale behind aggregating 

preferences should be carefully considered. 

Applications 

Although various application issues are discussed in previous sections, there are many 

other topics and issues related to applying optimal shading and lighting control considering visual 

preference and energy use. 

First, the learning phase is necessary for personalized control to establish a personalized 

visual preference model for individual occupants; the learning efficiency needs to be validated 

with experiments when active sequential learning strategies are adopted to learn faster with less 

data, so that the learning phase is short and not disturbing to occupants. Also, during the learning, 

the variable and model structure selection are strongly dependent on the computational capability 

and the size of data that are available and accessible. More variables and more flexible model 

structure are always preferred when data is sufficiently large and controller is computationally 

powerful (e.g. cloud-based computing). With limited computing ability and data, modeling needs 

to sacrifice accuracy for efficiency. This trade-off exists and differs for different applications, 

buildings configurations, control and sensing systems, so it will be an enduring issue. 

Next, human-machine interaction has become the emphasis of application studies or 

designs, especially when smart systems are involved. Traditional shading and lighting control 

systems have limited interaction with occupants except for switches or simple interfaces, while 

advanced control systems should have friendly, easy-to-use, well-designed user-interfaces (UI) 

which provide control (override) access for occupants, embedded sensing capability (e.g. 

preference query) and proper feedback to occupants such as energy consumption indication and 

suggestions, or even could enable AI-human interaction. All these are related to product 

development but still could start being tested in an experimental study. 

Last but not least, shading and lighting control systems integrating sensing, learning, 

modeling, optimization, control and interface components would have different intervals for 

different components, which leads to integrating issues and needs consideration in actual 
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application. Learning, optimization and control intervals are the major parameters need to be 

determined, so that intervals of other components could be chosen accordingly – sensing to 

learning, modeling to optimization, and interface to control. Short learning interval is disturbing 

to occupants, while longer learning interval might lead to false preference vote due to ambiguous 

memory, especially for the cases when outdoor weather is fluctuating. Similarly, a short control 

interval is disturbing while the daylighting system might not be able to response to changing visual 

environment promptly with long control interval. Learning and control intervals, at the same time, 

should be consistent (not necessarily same) as preference is learned with controlled environment 

(although with a different strategy) if active learning is applied and the control is based on the 

learned preference to achieve satisfying visual condition. Optimization interval is more complex 

as it could involve different (daylighting and lighting, preference and satisfaction) models with 

different requirements for simulation interval, and the models might read inputs from sensing 

system with another interval. Decision on optimization interval should be made considering all the 

involved intervals (at least greater than or equal to the largest one), and also the intervals of 

learning and control. Setting all the intervals the same might not be a feasible solution due to 

possible conflicts of computing efficiency, hardware driving and communication issues in real 

application. 

2.5.2 Aims of Dissertation 

Based on above discussion, the aims of this Dissertation are: 

 To develop a modeling method for learning occupants’ personalized visual preference and 

satisfaction profiles in daylit offices using Bayesian approach; 

 To develop and implement an adaptive online learning strategy for efficient visual preference 

learning; 

 To develop a personalized daylighting (shading) control framework aiming at optimizing 

occupant satisfaction and lighting energy use in daylit offices. 
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3. A BAYESIAN APPROACH FOR INFERRING PERSONALIZED 

VISUAL PREFERENCE AND SATISFACTION IN DAYLIT OFFICES  

3.1 Overview 

This chapter presents a novel method for developing personalized visual satisfaction 

profiles in daylit offices using Bayesian inference. Unlike previous studies based on action data, a 

set of experiments with human subjects was designed and conducted to collect comparative visual 

preference data (by changing visual conditions) in identical, single-occupancy private offices. A 

probit model structure was adopted to connect the comparative preference with a latent satisfaction 

utility model, assumed in the form of a parametrized Gaussian bell function. The distinct visual 

satisfaction models were then inferred using Bayesian approach with preference data. The 

posterior estimations of model parameters, and inferred satisfaction utility functions were 

investigated and compared, with results reflecting the different overall visual preference 

characteristics discovered for each person. 

In this dissertation, visual satisfaction and preference are two related but distinct concepts. 

Visual satisfaction is defined as the magnitude (or level) of satisfaction with the perceived visual 

environment for an individual; while visual preference refers to a relative attitude towards two (or 

more than two) different visual conditions by comparing them. Using this definition, the visual 

satisfaction level could be modeled as a utility function u(x), where x is a vector of variables 

describing the physical visual condition (state), and preference is a result of comparing the utility 

values corresponding to two (or more) conditions, which could be quantified by either 

deterministic or probabilistic link function. The relationship between these two concepts is 

illustrated in following figure. 
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Figure 4 Relationship between visual satisfaction and comparative visual preference.  

The statement that one visual condition is preferred to another can be expressed as an 

inequality relation 𝑢(𝒒) > 𝑢(𝒓), where q and r are two vectors of variables defining these two 

visual conditions (states), and 𝑢(⋅) defines the underlying (hidden) satisfaction utility function 

(Chu & Ghahramani 2005). This approach of defining a satisfaction utility function for preference 

learning is intuitive and easy to implement, but it is often very difficult to define a meaningful 

utility function (Keeney 1974; Marler and Arora 2004). One approach for creating the utility 

function is the algorithmic preference learning (Braziunas 2006). In our case, the preference 

learning process requires two parts: (i) acquiring comparative visual preference data from 

occupants and (ii) learning the response surface of the satisfaction utility function from the 

comparative preferences. For the first part, comparative visual preference data were obtained from 

specially designed experiments with human subjects. The preference data was then used to infer 

the visual satisfaction utility functions as posteriors through a Bayesian approach, and the inferred 

utility was sampled using a Sequential Monte Carlo algorithm.  
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3.2 Experiment Design for Acquiring Comparative Visual Preference Data 

3.2.1 Experiment Design and Setup 

Following the principles of preference learning, a set of experiments for studying 

personalized visual preference profiles was designed and conducted in identical private offices of 

the Center for High Performance Buildings at Purdue University in West Lafayette, Indiana. The 

offices are 3.3 m × 3.7m × 3.2 m high and have a south-facing curtain wall facade with 55% vision 

area (window-to-wall ratio) with high performance glazing units (normal visible 

transmittance=70%). The offices are equipped with motorized roller shades (openness 

factor=2.1%) and dimmable electric lights (32-W T5 fluorescent lamps), as well as with a 

comprehensive indoor environment sensing system, used in similar studies to investigating the 

impact of façade design and control strategies on occupant comfort and satisfaction. A Building 

Management System using the Niagara software framework is able to monitor and control the 

shading and electric lighting systems independently in each office using BACnet. In addition, the 

sensors measuring environmental variables are connected to data acquisition and control systems, 

which communicate wirelessly to the Niagara system through Modbus protocol. Figure 5 shows 

the office layout with respective instrumentation. Our experiment included continuous 

measurements of the following variables:  

 Shade position (0-100%) and light dimming levels (0-100%), monitored and controlled 

through the main control system. The shades moved to different positions, as explained 

below, to acquire comparative preference data. Since our approach is focused on visual 

preferences, and not on inadequate light levels or potential glare conditions that may cause 

dissatisfaction for obvious reasons (and not of interest in this study), we made sure that 

both of these cases are excluded from the experiments as follows.  

o To avoid inadequate light levels, electric lights were automatically controlled to 

provide 300 lux on the work plane (IESNA 2012) in all cases when daylight was 

insufficient.  

o To avoid potential glare conditions:  

 The experiment was conducted with carefully adjusting scheduling to avoid 

having the sun in the field of view, even though the shades have a relatively 

low openness factor and recent metrics can quantify the perception of glare 

in such cases (Konstantzos and Tzempelikos 2017)  
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 All cases with vertical (eye) illuminance higher than 2760 lux were 

excluded from the analysis. This has been proved a sufficient discomfort 

glare criterion in the absence of sunlight and high contrast (Chan et al. 2015; 

Konstantzos et al. 2015; Wienold 2009), also based on recent experimental 

studies with human subjects (Konstantzos and Tzempelikos 2017)  

 To ensure that the aforementioned restriction was adequate to eliminate all 

potential instances of glare, an additional validation check was obtained 

directly through surveys; perceptible glare was reported in very few 

instances and these were removed from the dataset.  

 Work plane illuminance, vertical (eye) illuminance and transmitted illuminance through 

the window. Calibrated LI-COR 210 photometric sensors were used for illuminance 

measurements. The work plane illuminance sensor was placed in the working area facing 

upwards. The vertical illuminance sensor was mounted on a camera adjacent to the 

occupant’s head (15 cm away) to capture representative values without obstructing the 

work area. The amount of transmitted light through the window was measured with a 

sensor vertically mounted on the inside of the glazing, facing outside.  

 Luminance distribution in the field of view. A calibrated HDR camera, mounted next to 

the person’s head, was used to measure the luminance field every 10 minutes (aligned with 

the survey response times), following the details described in Konstantzos and 

Tzempelikos (2017). These measurements were processed to obtain the luminance ratio of 

average screen luminance to average window luminance. More specifically, images were 

taken with nine exposures and were merged into HDR format using a calibrated response 

function with HDRgen (Ward 2017). The images were then processed in Radiance by 

creating mask files for the window area and the screen area, and finally used in Evalglare 

software (Wienold 2012) to compute average luminance of window and screen area, as 

well as DGP and average luminance of the visual field.  
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Figure 5 Office space layout and part of instrumentation.  

The experiments were conducted from November 2016 - March 2017, under various sky 

conditions (sunny, cloudy and mixed). Four subjects participated in the experiment, spending 5 

hours per day in the office (each subject was assigned to one office space) doing normal computer 

work (their own work). Note that this experiment was designed to obtain personalized preferences 

of studied individuals by comparing different visual conditions, and not to propose a “reference” 

general model. In that scope (demonstration of the method and creating the personalized models), 

the number of subjects did not need to be large, unlike studies that estimate general visual or 

thermal preferences (or actions) using a large number of subjects. The subjects were graduate 

students and staff (between 20 and 40 years old) not familiar with this research and were advised 

to avoid any direct contact with the monitoring instrumentation. Approval by the Institutional 

Review Board (IRB Protocol #: 1507016229) was obtained before conducting the experiments. 

To obtain comparative preference data required for preference learning algorithms, shading 

positions were adjusted every 10 minutes during the experimental study (in different positions in 

each office, without following a specific pattern, but making sure that excessive illuminance levels 

and potential glare conditions are avoided as explained above); therefore, the indoor visual 

environment changed every 10 minutes. The 10-minute interval was selected to prevent memory 

fading, which was reported in a pilot study we conducted with time intervals equal or longer than 

Illuminance sensor Solar pyranometer

Illuminance sensors 

(work plane illuminance)

Illuminance sensors 

(vertical illuminance)

HDR camera
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15 minutes. Five minutes after the change, allowing for adaptation, the subjects were asked to 

complete a short web survey (shown in Appendix A) while all required variables (illuminances, 

HDR images, shading and light dimming status) were simultaneously recorded and stored. The 

main question was about their overall visual preference between the two conditions, before and 

after the change (prefer current condition; prefer previous condition; no preference). These 

questions are pairwise comparison queries which are known to have low cognitive load 

(Chajewska et al. 2000), and in our case they provide an ideal data structure for formulating visual 

preference learning models that will lead to personalized preference profiles. Other questions were 

targeted at comparative illuminance levels or view preferences, as well as intended actions 

(moving shades or controlling electric lights), providing extra information and used as response 

reliability checks. 

3.2.2 Experimental Data Analysis and Important Variables 

Several variables (and their combinations) were considered to characterize the visual 

conditions in the room as perceived by the subjects: horizontal (work plane) illuminance, vertical 

(eye) illuminance, transmitted illuminance through the window, shading position and luminance 

ratio.  

 Vertical illuminance (Ev) represents the amount of light perceived by the occupants, 

resulting from the luminance field, and is a critical variable. It also contains the combined 

effects of outside conditions and shading position. Since the subjects focused on vertical 

(computer) tasks, Ev is considered more important than horizontal illuminance, which 

could be an alternate variable. In addition, the horizontal illuminance distribution was not 

as uniform across its range as compared to Ev (Figure 6), and its value might change over 

the task area depending on the room/desk layout. Therefore, Ev was selected as a variable 

instead of horizontal illuminance. 

 Transmitted illuminance (Et) through the window is a useful variable since it provides 

information about the sky conditions. However, it cannot indicate the perception of visual 

environment from the occupants’ point of view; therefore, it was used as an indicator 

variable (binary classifier) instead of a variable in the utility function. The Et threshold can 

be inferred given a prior and a reasonable distribution, just like the other variables; in our 

study, a constant threshold (9000 lux) was selected to separate sunny and cloudy days since 
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it was in good agreement with observed conditions and can simplify the demonstration of 

the method.  

 Shading position (SP) certainly affects the perception of the visual environment and is 

related to the amount of outside view (approximately proportional to the solid angle from 

the subject to the outside view), therefore it is one of the main variables.  

 Finally, the luminance ratio (LR) –ratio of average window luminance to average screen 

luminance, extracted from HDR images- is an indicator of the brightness contrast between 

the daylight source and the target area in the field of view, so it was also considered as a 

variable.  

All in all, based on the collected data from human subjects and their discovered effects on 

visual satisfaction, Ev, SP and LR were considered as significant variables (and used in the models) 

while Et was used as a binary classifier to account for the impact of outside weather conditions. 

This framework proved to be sufficient for learning and predicting personalized visual preference 

profiles, as shown in the results and analysis sections.  

 

Figure 6 Distribution of vertical and horizontal illuminance across all shading positions and 

variable sky conditions.  

Before the model training stage, the data was pre-processed and normalized to create 

homogeneous variable distributions (in terms of ranges and limits), convenient for efficiently 

facilitating the visual satisfaction inference process. The Ev data was transformed to logEv to scatter 
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the data points more uniformly across its range – Figure 7 shows the respective scatter plots 

between variables. The data (LogEv, SP, LR) were normalized in the range of [-2, 2] by:  

𝑥𝑛𝑜𝑟𝑚 = −2 + 4 ∙
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (30) 

For visualization and analysis of the results, the data are converted back to the original 

scale (Ev, SP, LR) for easier evaluation.  

 

Figure 7 Scatter plots between Ev, SP and LR experimental data.  

Let 𝒒, 𝒓 ∈ ℝ𝑑  denote two visual conditions of the room, each of which is defined by d 

features (e.g. {Ev, SP, LR}, d=3). Assume that each subject (i) has experienced 𝑁(𝑖) pairs of such 

conditions and reported the preferred ones. Then the data set consists of the ranked pairs 

(comparative preference): 

𝒟(𝑖) = {𝒒𝑘
(𝑖)
≻ 𝒓𝑘

(𝑖)
;𝑘 = 1, … ,𝑁(𝑖)}, 𝑖 = 1,2,3,4 (31) 

where 𝒒𝑘
(𝑖) ≻ 𝒓𝑘

(𝑖)
 denotes that the ith subject prefers condition 𝒒𝑘

(𝑖)
 over 𝒓𝑘

(𝑖)
.  

Figure 8 presents the experimental data from the four subjects in the Ev - SP conditions 

space, as representative data visualization. The arrows start from the non-preferred conditions and 

point to the preferred conditions (“no preference” data were excluded from the graphs), while the 

different colors indicate different directions in that space. These vector plots essentially provide 

an intuitive visualization of the personalized satisfaction profile of each subject under variable 

conditions. For example, subjects 1 and 3 do not seem to prefer brighter conditions, while they 

prefer higher shading positions when Ev becomes quite low. Subject 4 prefers intermediate 

conditions in the Ev – SP space, while subject 2 does not show any obvious pattern (and has less 

data displayed because of many “no preference” votes). Note that Ev and SP are correlated 

variables, and the slope of the arrows indicates the combined effects of these variables, as well as 

the dominance of one variable over the other as we move across the space. For example, the arrows 

tilt towards the vertical direction as Ev decreases, showing that SP becomes the dominant variable 
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at low vertical illuminance, and thus Et can contribute as a binary classifier. Similar observations 

can be obtained from the data plotted in the LR-Ev space. 

 

Figure 8 Experimental pairwise comparisons of overall visual preferences displayed over the Ev-

SP space for each of the subjects.  

3.3 Modeling Methodology 

3.3.1 Problem Formulation 

The scenario of learning personalized visual preferences is different from conventional 

supervised machine learning approaches in the sense that the training instances/features defining 

the state of the room are not assigned a single target (as in the case of regression or classification) 

(Chu and Ghahramani 2005). Instead, the training data consist of pairwise preferences between 

different visual conditions. The goal is to learn the underlying ordering over these states from the 

pairwise preferences. Bayesian parametric approaches are appropriate for preference learning due 

to their ability to encode prior beliefs; avoid overfitting; and explicitly capture uncertainty in 

occupants’ latent satisfaction utility functions (Guo et al. 2010). This uncertainty is induced by the 

limited amount of data and can be exploited to sequentially design optimal experiments in the 
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future. The key hypothesis is that there is a latent (utility) function 𝑢(∙) associated with each set 

of visual conditions, such that q > r if u(q) > u(r) (that is, preserving the preference relations 

observed in the pairwise dataset (Chu and Ghahramani 2005). Preferences and utility theory are 

briefly discussed in Appendix. 

3.3.2 Probabilistic Utility-based Preference Model 

In this problem of preference learning, the likelihood function is defined as the probability 

of observing one condition (state) being preferred over another, given that the utility function 

values for these two conditions are known. In other words, the likelihood models the deviation of 

an individual from the preference relation prescribed by 𝑢(∙). Put simply, the probability of an 

occupant preferring visual condition 𝒒 over 𝒓 given their utility functions’ values (Guo et al. 2010) 

is given as: 

𝑝(𝒒 ≻ 𝒓|𝑢(𝒒), 𝑢(𝒓), 𝜎 ) =  Φ(
𝑢(𝒒) − 𝑢(𝒓)

√2 ∙ 𝜎
) (32) 

where Φ(⋅) is the Normal cumulative distribution function (CDF), which serves the role of 

a sigmoid function: Φ(𝑧) =  ∫ 𝑁(𝛾|0,1)𝑑𝛾
𝑧

−∞
, and  is the variance of the normally distributed 

variable. The variance represents to what extend the preference is stochastic to the utility function 

if the scale of utility is fixed – the preference is more deterministic if  is smaller, and vice versa. 

Therefore, the joint data-likelihood for occupant i over the ranked pairs data set D(i) is then given 

as: 

𝑝(𝒟(𝑖)|𝑢(∙)(𝑖),  𝜎(𝑖)) =∏Φ(
𝑢(𝑖)(𝒒𝒌) − 𝑢

(𝑖)(𝒓𝒌)

√2 ∙ 𝜎(𝑖)
)

𝑁(𝑖)

𝑘=1

 (33) 

In the next section, we discuss how we parameterize the utility function and how we learn 

the parameters using Bayesian inference. 

3.3.3 Parameterizing the Utility Function 

Based on the experimental findings and our intuitive understanding of the problem, we 

extracted the following assumptions about the utility function: 

1. The utility function is continuous; 

2. “Extreme” visual conditions (e.g., the corners of Figure 8 space) are not preferred by 

individuals; 
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3. There exists a single condition, or, more correctly, a set of neighboring conditions that 

are most preferred, which reflects that the utility function has an area of global  maximum with a 

shape of a peak.  

By the above assumptions, and given the fact that the utility corresponding to the 

underlying preference relations is not unique but it is arbitrary up to a monotonically increasing 

transformation, we adopted the following Gaussian bell form for the utility function: 

𝑢(𝒙; 𝝁,𝜮) = exp(−
1

2
(𝒙 − 𝝁)𝑇𝚺−1(𝒙− 𝝁)) (34) 

where x are the model variables (d), 𝝁 is a d-dimensional vector indicating the location of 

the peak (mostly preferred conditions), and 𝜮 is a 𝑑 × 𝑑 positive definite matrix defining the shape 

of the function. 

Based on the likelihood function and the assumed satisfaction utility function, we can 

obtain the posterior distribution (the learning objective) given the pairwise comparative training 

data 𝒟 by following Bayes’ rule as: 

𝑝(θ|𝒟) =
𝑝(𝒟|θ)𝑝(θ)

𝑝(𝒟)
 (35) 

where parameters 𝜃  include 𝝁,𝜮  and variance 𝜎 , 𝑝(θ)  is the prior distribution of the 

parameters, and 𝑝(𝒟|θ) for each subject i, is essentially given as (u is determined by θ): 

𝑝(𝒟(𝑖)|θ) =  𝑝(𝒟(𝑖)|𝑢(𝑖)(∙,𝜃),  𝜎(𝑖)) (36) 

The prior on the mean vector 𝝁 adopted is standard normal distribution for each element 

of 𝝁, which is a weak prior assuming we have limited knowledge of the subjects. The priors on 

variance 𝜎  are selected as standard lognormal distribution to ensure positive estimation. The 

conjugate prior distribution for the matrix 𝛴  is usually chosen as inverse-Wishart distribution 

(Kass and Natarajan 2006) for multivariate Gaussian-like functions, which means Wishart 

distribution for 𝜮−1, with degree of freedom equal to the dimension of variables d and identity 

scale matrix 𝐼𝑑 , which again assumes lack of prior knowledge. The priors are summarized as 

followed: 

𝑝(𝝁) ~ 𝑁(0, 1) 

𝑝(𝜮−1) ~ 𝑊𝑝(𝑑, 𝐼𝑑) 

𝑝(𝜎) ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 1) 

Since the posterior of the parameters is not analytically available, sampling techniques, e.g. 

Markov Chain Monte Carlo (MCMC), must be used. Unfortunately, MCMC cannot estimate the 
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normalization constant 𝑝(𝒟|θ)  robustly, which is essential for performing Bayesian model 

selection (Bishop 2006). To overcome this issue, the Sequential Monte Carlo (SMC) method is 

used. SMC defines one-parameter continuous family of probability densities that bridges the gap 

between the prior and the posterior. Then, it samples a set of weighted “particles” from the prior 

and adaptively propagates them to obtain a weighted particle approximation of the posterior. The 

intermediate weights can be used to obtain a robust estimate of the normalization constant of the 

posterior. Complete details on SMC methods are described in Doucet et al. (2001). 

SMC implementation in pySMC (Bilionis 2014) requires specification of several 

parameters (number of particles, number of MCMC steps per SMC move, threshold below which 

sampling is triggered and reduction rate which controls how fast the family is traversed). Table 2 

lists the SMC settings that provided consistent results in multiple tries with reasonable training 

times in our case. 

Table 2 SMC settings used for sampling and posterior distribution approximation.  

Step method Random Walk Metropolis algorithm 

Number of particles 2000 

Number of MCMC steps 50 

Effective sample size reduction rate 0.9 

The threshold of the effective sample size 0.5 

 

Mathematically, SMC results in a weighted particle approximation {(𝜃𝑗 , 𝑤𝑗); 𝑗 = 1,… ,𝐻} 

of the posterior: 

𝑝(θ|𝒟) ≅ ∑𝑤𝑗 ∙ 𝛿(𝜃 − 𝜃𝑗)

𝐻

𝑗=1

 (37) 

where 𝛿(∙) is Dirac’s delta function. Equation above should be interpreted in the sense that, 

for any smooth function f(), almost surely as 𝐻 → ∞, we have: 

∑𝑤𝑗∙𝑓(𝜃𝑗) → ∫𝑓(𝜃) ∙ 𝑝(θ|𝒟)𝑑𝜃

𝐻

𝑗=1

 (38) 

In particular, the predictive preference probability of our model can be approximated as:  

𝑝(𝒒 ≻ 𝒓|𝐷) =  ∫ 𝑝(𝒒 ≻ 𝒓|𝜃) ∙ 𝑝(θ|𝒟)𝑑𝜃 ≅∑𝑤𝑗 ∙𝑝(𝒒 ≻ 𝒓|𝜃𝑗)

𝐻

𝑗=1

 (39) 
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Above equation can be used to estimate the prediction accuracy of the models as discussed 

in section 3.4.2.  

3.4 Results and Discussion 

The SMC method approximates the posterior distributions of θ = (𝝁,𝜮, 𝜎), with 2000 

particles (samples). These results were used to compute the median of the posterior of 𝜇 and 𝛴, 

which define the posterior median of the satisfaction utility function for each of the subjects, as 

well as the median of the posterior of 𝜎, which captures the random deviations from the preference 

relation encoded in the utility. The significant variables (Ev, SP and LR) and their combinations 

were investigated in this process, to evaluate how each model performs for each subject (the data 

indicate different personalized visual satisfaction profiles). Shading position (SP) was not 

considered as a single variable since it does not contain enough information about the visual 

environment. In addition, transmitted illuminance, Et, was considered as a binary classifier to 

account for the effect of bright vs cloudy sky conditions, which plays an indirect but noticeable 

role in overall visual satisfaction.  

From the experimental data (mixed arrow directions in Figure 8), it was clear that subject 

2 did not show a preference towards any specific visual conditions, while most survey results 

indicated no preference among a variety of different conditions. Therefore, this subject was 

insensitive to changes in the visual environment, at least with the current dataset, and therefore it 

was not included in the following results (satisfaction utility plots are flat).   

3.4.1 Posterior of (Mean) Visual Satisfaction Utility Function 

The following figures present the personalized visual satisfaction utility functions. 10 final 

models were developed and trained for each subject. These include: (i) single-variable models (Ev 

and LR), models with two variables (Ev-SP and LR-SP) and a model with all three variables. Each 

model was developed for sunny and cloudy conditions separately as explained above.  

To present consistent plots, the utility function and the 𝜎 were normalized by two steps, making 

the scale from 0 to 1:  
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 𝑢𝑖 =

𝑢𝑖 −𝑚𝑖𝑛 𝑢𝑖
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 (40) 

where 𝑖 = 1,… ,2000 is the particle number. The first step of particle-wise normalization 

aims to eliminate the effect of floating values of utility inherited from the nature of learning from 

comparative preference – the scale of utility is arbitrarily changed without affecting the 

comparative results – so that taking the median of utility functions would be the true median over 

all the posterior particles. The scale from 0 to 1 of utility is then ensured by the second step of 

normalization. As a result, the randomness of preference to the utility could be comparable through 

comparing the normalized variance 𝜎 – the lower the value of �̃� is, the more deterministic the 

subject is to the corresponding utility. Note that the variance does not determine the best model 

representing the subject’s preference. 

Figure 9 shows the posterior median of the satisfaction utility functions for the single 

variable models. All subjects have varying satisfaction with Ev while, in general, subject 1 seems 

to prefer darker conditions, subject 3 prefers medium brightness, and subject 4 prefers brighter 

conditions. Although Subject 4 shows preferences toward the bright range, these are all within 

visual comfort limits of 2760 lux in terms of Ev (Chan et al. 2015, Konstantzos et al. 2015, Wienold 

2009) and 1:10 in terms of luminance between the visual task and near surfaces (Osterhaus 2008), 

as a result of the design of the experiment aiming at eliminating discomfort instances. Naturally, 

individuals have different tolerances and preferences towards brighter conditions. Similar patterns 

are observed for the LR utility functions. The effect of outside conditions is more pronounced for 

subject 4 with these models. The single-variable models cannot provide information on the 

combined effects of other variables on visual satisfaction (i.e., someone might be more sensitive 

to one variable versus another). 
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Figure 9 Posterior median of visual satisfaction utility functions of single-variable models (Ev 

and LR) for each subject.  

Although the posterior medians of the utility functions are displayed over the entire 

conditions’ space, the function values are meaningless where there are no data points –even if the 

inferred models discover low utility values in those regions. For example, there are no data for 

very low SP and very high Ev (it is physically impossible) as can be seen from Figure 8. To identify 

such cases in the utility plots, the actual data points are marked with red dots for the two and three-

variable model functions.  

The posterior median of satisfaction utility plots with the two-variable models are shown 

in Figure 10. In this case, the effects of outside conditions are clear and justify the development of 
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different models for bright and cloudy sky conditions. Lower Ev values are again preferred by 

subjects 1 and 3, while on cloudy days the effect of SP becomes more important (distinct 

preference for high or medium SP respectively). Subject 4 clearly prefers higher SP and also higher 

illuminance levels on sunny days. The LR-SP utility plots show the different preference profiles 

for sunny and cloudy days for each subject.   

 

Figure 10 Posterior median of visual satisfaction utility functions of two-variable models (Ev-SP 

and LR-SP) for each subject.  
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Figure 11 shows the respective posterior median of satisfaction utility functions for the 

three-variable models. The graphs are displayed in the Ev-SP space with LR varying from 1 to 7 

(top to bottom). These models combine the effects of all three variables. Subjects 1 and 3 are not 

sensitive to LR under sunny conditions using this model, while the effects of preferred Ev (and SP 

on cloudy days) are still there. The visual preference profile on subject 4, on the other hand, is 

affected by LR when all variables are considered, while higher SP is preferred on sunny days and 

lower Ev is preferred on cloudy days, in agreement with the two-variable model. 

 

Figure 11 Posterior median of visual satisfaction utility functions of the three-variable model for 

each subject (top: sunny conditions; bottom: cloudy conditions).  
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Table 3 shows the posterior median of  after normalization for each model for each subject. 

Lower values of  indicate that the subject preference is more deterministic to the utility so that a 

smaller change in the condition could result in clear preference. Preferences of subjects 1 and 3 

are less random to Ev during sunny conditions and models with SP during cloudy conditions, while 

subject 4 is more deterministic with models with SP on both sunny and cloudy conditions. 

Table 3 Posterior median of 𝜎 for each model after normalization.  

Posterior median of 𝜎 Subject 1 Subject 3 Subject 4 

Ev 
Sunny 0.11 0.17 1.70 

Cloudy 0.22 1.12 0.44 

LR 
Sunny 0.20 0.98 1.50 

Cloudy 0.32 2.32 0.44 

Ev+SP 
Sunny 0.14 0.26 1.25 

Cloudy 0.15 0.78 0.37 

LR+SP 
Sunny 0.15 0.30 1.23 

Cloudy 0.11 0.93 0.61 

Ev+LR+SP 
Sunny 0.11 0.42 6.01 

Cloudy 0.24 2.56 0.45 

 

The inferred visual satisfaction utility functions allow a schematic comparison of 

preferences between subjects and between models (different variables), but not on a relative scale. 

They show whether there is a pronounced area of maximum visual preference using the selected 

variables, and they reflect the fact that each person has different visual preferences. However, the 

utility plots cannot be compared directly since different variables are considered in each model – 

they all describe the personalized visual preference profiles based on the given data for each model. 

More importantly, the utility curves cannot be used to determine which model performs better. 

The prediction performance of each model should be evaluated separately as discussed in the next 

section. 
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3.4.2 Evaluation of Personalized Visual Satisfaction Models 

3.4.2.1 Performance Metrics 

In order to investigate the performance of different models, the data are divided into 

training (60% of data) and testing (40% of data) sets. Different split ratios from 90%-10% to 50%-

50% were tested to demonstrate the best ratio for the given data and this split provides the most 

reliable results for our dataset (smallest standard deviation for the performance metrics). The 

models were constructed with the training set while their performance was evaluated on the testing 

set. The metrics used to evaluate the models’ performance are the following: 

 Hit Rate Accuracy (HRA) with condition distance threshold. HRA is defined as the average 

chance of correct prediction. That is, HRA is the proportion of true results (both true positives and 

true negatives) among the total cases examined. The predictive preference probability of our model 

is given in Eq. (39). We define our point predictions on the test data set as: 

𝑦𝑝𝑟𝑒𝑑
(𝑘) = {

1, if 𝑝(𝒒𝑡𝑒𝑠𝑡
(𝑘)

≻ 𝒓𝑡𝑒𝑠𝑡
(𝑘)

|𝐷) ≥ 0.5

0, otherwise
 (41) 

where 𝑘 = 1,… , 𝑀 represents each of the pairwise comparative data points in the test data 

set. The actual preference observations in the test data are given as:  

𝑦𝑎𝑐𝑡
(𝑘) = {1, if 𝒒𝑡𝑒𝑠𝑡

(𝑘)  ≻ 𝒓𝑡𝑒𝑠𝑡
(𝑘)

0, otherwise
, (42) 

The hit rate accuracy is then calculated as: 

𝐻𝑅𝐴 = 1 −
∑ |𝑦𝑝𝑟𝑒𝑑

(𝑘)
− 𝑦𝑎𝑐𝑡

(𝑘)
|𝑀

𝑘=1

𝑀
 

(43) 

The problem with this commonly used metric is that it can give obscure results when the 

condition pairs are too close: for example, vertical illuminance equal to 500 lux or 520 lux will be 

the same to the occupant while the preference vote might be affected by other unmeasurable factors. 

To avoid such cases (very similar conditions), we introduce a minimum distance (ε) between visual 

conditions into the HRA calculation. The condition distance is defined as:  

𝐷𝑖𝑠𝑡(𝒒𝑡𝑒𝑠𝑡
(𝑘)

 , 𝒓𝑡𝑒𝑠𝑡
(𝑘)

) = {
1, if ‖𝒒𝑡𝑒𝑠𝑡

(𝑘) − 𝒓𝑡𝑒𝑠𝑡
(𝑘) ‖

2
≥ 휀

0, otherwise
 (44) 

where ‖∙‖2 is the Euclidean norm (in our 3-dimensional space of normalized logEv, SP and 

LR) and the distance threshold ε is set equal to 0.2 with normalized variables (larger values would 

potentially exclude condition distances that should be considered). The hit rate accuracy with the 

distance threshold is then calculated as: 
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𝐻𝑅𝐴𝑑𝑖𝑠𝑡 = 1 −
∑ |𝐷𝑖𝑠𝑡(𝒒𝑡𝑒𝑠𝑡

(𝑘)
 , 𝒓𝑡𝑒𝑠𝑡

(𝑘)
) ∙ (𝑦𝑝𝑟𝑒𝑑

(𝑘)
− 𝑦𝑎𝑐𝑡

(𝑘)
)| 𝑀

𝑘=1

𝑀𝑑𝑖𝑠𝑡
 (45) 

where Mdist is the number of pairwise comparative points in the test data set which satisfy 

the condition distance requirement. 

 Receiver Operating Characteristic (ROC) curve and Area Under Curve (AUC): ROC curve 

is a plot of the true positive rate against false positive rate for different possible cut points (Hanley 

and McNeil 1982), above which we define positive prediction. It depicts the tradeoff between 

sensitivity and specificity (any increase in sensitivity (true positive rate) will be accompanied by 

a decrease in specificity (1 - false positive rate)). AUC is a metric of accuracy by computing the 

area under the ROC curve. An area of 1 represents perfect performance, while an area of 0.5 

indicates baseline performance. 

3.4.2.2 Performance of Personalized Visual Satisfaction Models 

The model evaluation results, together with the inferred visual satisfaction utility functions 

reflect the ability of the developed models to discover personalized visual preference 

characteristics. The performance metrics were computed using 10-fold Monte Carlo cross-

validation (random seeds from 1 to 10). The ROC curves of all cross-validation folds and the 

corresponding mean ROC curves for the three variable models are shown in Figure 12. The closer 

the curve follows the left and top edges of the plot, the better the performance is, and the diagonal 

line represents the baseline performance. 

Table 4 lists the performance metrics (AUC values and HRAdist) of the predicted 

probability distribution for each model with the average value and standard deviation. The results 

show that different performance is observed for different sky conditions for each subject and across 

subjects, indicating that this classification is indeed meaningful. The models for subject 1 show 

excellent performance for both sunny and cloudy cases; for subject 3, the model for sunny 

conditions performs well while for cloudy conditions the performance is fair; and vice versa for 

subject 4. The two metrics are consistent for all cases. The model evaluation results, together with 

the inferred visual satisfaction utility functions reflect the ability of the developed models to 

discover personalized visual preference characteristics. 

Finally, model performance results are presented in Figure 13 for all models, including 

single and dual variable models. Although multivariable models contain the effects of single 

variables and are safer to use, simpler models can be useful and computationally efficient, 
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especially for implementation in control applications – although the prediction performance might 

decrease. For example, models using only vertical illuminance and shade position are relatively 

easy to implement, since vertical illuminance can be predicted using advanced lighting models and 

shading position can be easily monitored. 

Due to the personalized nature of visual preferences, the performance of each model varies 

between subjects. For instance, the single Ev model works very well for subject 1 and subject 3 

during sunny days, while the Ev-SP model performs well for subjects 1 and 3 overall. Subject 4 

has different visual preferences, as shown in the experimental data and in the inferred utility 

functions. This person prefers brighter conditions and higher shading positions in most cases, and 

the LR model shows good performance in this case. The multivariate model performance is either 

better or within the standard deviation limits of the best performing model for all cases. For 

different and/or larger data sets, it is expected that multivariable models will always perform better.  

 

Figure 12 ROC curves for the three-variable models and all subjects with 10-fold cross 

validation.  
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Table 4 Performance evaluation metrics for the three-variable models using 10-fold cross 

validation results.  

Subject# Sky conditions HRAdist (Average ± St. dev.) AUC (Average ± St. dev.) 

Subject 1 
Sunny 0.92 ± 0.04 0.97 ± 0.01 

Cloudy 0.91 ± 0.05 0.95 ± 0.03 

Subject 3 
Sunny 0.78 ± 0.05 0.81 ± 0.06 

Cloudy 0.62 ± 0.07 0.64 ± 0.10 

Subject 4 
Sunny 0.68 ± 0.03 0.66 ± 0.05 

Cloudy 0.75 ± 0.07 0.78 ± 0.05 

 

 

 

Figure 13 Model accuracy (HRAdist average and st. deviation) for all developed models (all 

subjects and variables).  

3.5 Summary 

This chapter presents a method for developing personalized visual preference and 

satisfaction profiles in private daylit offices. Comparative visual preference data were collected 

from sets of experiments with human subjects in private offices with changing visual conditions, 

and visual satisfaction profiles were inferred using a Bayesian approach. The preference data were 

used to infer the visual satisfaction utility functions as posteriors, adopting a parametrized 
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Gaussian bell function for the latent utility models. Personalized visual satisfaction models were 

trained with a Sequential Monte Carlo algorithm using the experimental data. The inferred visual 

satisfaction utility functions and model evaluation results show the ability of the models to 

discover different personalized visual satisfaction profiles – therefore, it can be potentially used in 

personalized indoor environment controls.  

The inferred satisfaction utility functions and developed visual preference models 

presented in this study are not generalizable. They were not developed as a reference general model, 

but as individual, personalized visual satisfaction profiles for the studied human subjects. 

Therefore, the subject population did not need to be large. At the same time, other daylighting 

systems would result in different illuminance and luminance distributions under the same external 

conditions, and therefore visual preferences would be different even for the same occupants 

(brightness, view and contrast perception would be different). Therefore, diverse preference 

profiles are expected depending on the systems used, and potentially other variables might play a 

significant role. Nevertheless, the method presented in this chapter can be adopted to account for 

other factors.  
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4. AN ONLINE VISUAL PREFERENCE ELICITATION LEARNING 

FRAMEWORK  

4.1 Overview 

This chapter presents the development of an online visual preference learning method using 

preference elicitation framework, for efficiently learning occupants’ visual preference profiles 

with the modeling approach developed in Chapter 3. To determine the visual condition duels for 

preference query with most information gain, a combination of Thompson sampling method and 

pure exploration (uncertainty learning) method was used, addressing the balance of exploration 

and exploitation when targeting the near-maximum area of utility during the learning process. A 

set of experiments were designed and conducted to implement the proposed learning framework 

with human subjects and the experimental results demonstrated the feasibility and efficiency of 

the method.  

4.2 Visual preference elicitation 

4.2.1 Visual preference model and satisfaction utility learned from comparative preference 

data 

The developed personalized visual satisfaction profiles described in Chapter 3 were 

adopted. For demonstration purposes, the single-variable model using only vertical illuminance 

(𝐸𝑣 ) is used: 𝒙 = 𝐸𝑣, to reduce the order of  the models and the optimization problem (into one 

dimension).  

4.2.2 Visual preference elicitation  

Preference elicitation is a learning task involving preference modeling and decision making. 

Assuming that the occupant is experiencing the current visual condition 𝒙1, designing a preference 

elicitation learning method is to choose and achieve the next visual condition 𝒙2  to query the 

preference vote comparing the two conditions from the occupant, and then learn the visual 

preference profile of the occupant from the feedback. An optimal elicitation framework is to design 

sequentially and iteratively the condition duels {𝒙1,𝒙2}, {𝒙3, 𝒙4},…  or {𝒙1,𝒙2}, {𝒙2, 𝒙3}, 

{𝒙3, 𝒙4},… in a (limited) feasible region such that we learn the preference model and satisfaction 

utility efficiently, essentially a two-armed bandit sequential decision problem (Robbins 1952; 
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Fürnkranz et al. 2012; Agrawal and Goyal 2012; May et al. 2012). There exist different elicitation 

learning methods targeting different objectives of what aspect and how well one wishes to learn 

the utility. When the objective could be stated as an optimization problem for tuning the hyper-

parameters 𝜃 of the target satisfaction utility, the preference learning problem could then be solved 

with machine learning optimization techniques (e.g., Bayesian optimization).  In this study, we 

construct the optimization problem as selecting next visual condition 𝒙𝑡+1 in step 𝑡 such that: 

𝒙𝑡+1 = argmax
𝒙

 a(𝒙, 𝒙𝑡|𝒟𝑡) (46) 

where a(𝒙, 𝒙𝑡|𝒟𝑡) is an information acquisition function of duel (𝒙𝑡, 𝒙), given all the data 

at and before current step 𝒟𝑡 . And the formulation of the acquisition function determines the 

objective (what and how) of learning. 

Specifically, visual preference elicitation serves as a decision support system for optimized 

visual environment control for the occupants. For most optimal control strategies optimizing a 

utility function, either the whole utility or the location of the maximum of the utility (and maybe 

a range around it) is of most interest. Several methods with different acquisition functions are 

discussed in the following sections. 

4.2.2.1 Random exploration 

Random exploration is a simple but effective method utilized in global optimization 

(Brochu et al. 2010; Fürnkranz and Hüllermeier 2010; Bergstra and Bengio 2012). In this study, 

when we want to learn the whole utility function over the feasible space (under all achievable 

visual conditions), random exploration is the first candidate technique as it simplifies the learning 

process with respect to system design and control implementation. The selection of the next 

condition duel in each learning step is random, so it could be achieved by changing the visual 

environment randomly. In practical applications, however, feasible visual conditions are 

dynamically limited by changing outdoor weather, which results in higher randomness and 

decreased efficiency – it might take more steps with more repeated and redundant preference data 

and is dependent on weather condition.    
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4.2.2.2 Exploration 

Pure exploration method, or uncertainty learning (UL), aims at discovering the whole 

utility more efficiently by exploring the most uncertain point of the model in every step. That is, 

in step 𝑡, the acquisition function is the variance of the predictive preference probability : 

𝑎𝑉𝑎𝑟(𝒙, 𝒙𝑡|𝒟𝑡) = Var(𝑝(𝒙𝑡 ≺ 𝒙|𝒟𝑡)). (47) 

4.2.2.3 Exploitation 

Exploitation methods aims at finding maximum fast. In Bayesian optimization studies, an 

acquisition function characterizing the potential or predicted higher objective function value is 

defined; and as a result, maximizing the acquisition function translates to discovering the 

maximum of utility (Brochu et al. 2010). The probability of improvement (PI) is a representative 

acquisition function in early work (Kushner 1964): 

𝑃𝐼(𝒙) ≔ 𝑝(𝒙𝑡 ≺ 𝒙), (48) 

So, the next condition selection 𝒙𝑡+1 is made by maximizing the expectation of PI over 

posterior samples: 

𝑎𝐸(𝒙, 𝒙𝑡|𝒟𝑡) = 𝔼(𝑝(𝒙𝑡 ≺ 𝒙|𝒟𝑡)), (49) 

Pure exploitation (maximizing PI repeatedly at every step for selecting both arms of the 

duel) could easily fall into the trap of false maximum before exploring enough possibilities.  

4.2.2.4 The exploration-exploitation dilemma:   

Exploitation is more efficient than exploration when an optimal control system focuses on 

satisfying occupants (by achieving maximum utility). However, learning only the maximum could 

be insufficient or risky depending on the application. There are two major concerns in the practical 

application of visual preference model in daylighting and lighting control: 1) sometimes the most 

satisfying visual condition corresponding to the maximum utility is not achievable, due to the 

limitation in outdoor conditions; 2) even when the maximum of utility is achievable, the control 

system might need to satisfy another conflicting objective such as energy saving. An example 

could be the daylighting control using multi-objective optimization for parallel visual satisfaction 

and energy use developed by Xiong et al. (2019). Both cases are equal to optimal control with a 

constrained utility objective, and the final realized visual condition is usually near but not at the 

exact maximum of the utility (in the feasible space); in other word, satisfying but not the most 

satisfying condition. Therefore, the “exploration-exploitation dilemma” should be addressed when 
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learning visual preference for practical applications, and the learning target becomes a certain area 

near the maximum other than a single maximum. Modified PI has certain drawbacks although it 

is capable of tuning the trade-off between exploration and exploitation, as described in the previous 

section. Thompson sampling (TS) method (Thompson 1933) is an heuristic method dating back to 

1930s and a promising solution to addressing the “exploration-exploitation” in multi-armed bandit 

problems that draws back researcher’s interest in recent years (Graepel et al. 2010; Granmo 2010; 

May et al. 2012; May and Leslie 2011; Scott 2010). Chapelle and Li (2011) showed the 

effectiveness of the Thompson sampling method with empirical results and comparison with 

popular algorithms with simulation on real data, and emphasized its competitiveness of efficient 

implementation, which is an essential factor for system design. Agrawal and Navin (2012) 

guaranteed the efficiency of Thompson sampling method theoretically by proving its regret bound 

for two-armed and N-armed bandit problem.   

In this study, we adopt the Thompson sampling method to deal with the exploration-

exploitation trade-off in discovering a range of satisfying visual conditions. In an exploitation step 

𝑡, instead of using all the samples of model posterior (mean or variance), the Thompson sampling 

method randomly adopts one sample 𝜃𝑡
(1)

 from posterior 𝜃𝑡  and selects the next condition 𝒙𝑡+1 

following the PI principle for that sample: 

𝑎(𝒙, 𝒙𝑡|𝒟𝑡) = 𝑝(𝒙𝑡 ≺ 𝒙|𝜃𝑡
(1)
, 𝒟𝑡), (50) 

𝒙𝑡+1 = argmax
𝑥

𝑝(𝒙𝑡 ≺ 𝒙|𝜃𝑡
(1), 𝒟𝑡). (51) 

This randomized selection step embeds an exploring element in Thompson sampling 

method by testing different possibilities of maximum of utility. This results in a search inside a 

wider region enclosing the most satisfying visual condition, without sacrificing much the 

efficiency of pure exploitation (Agrawal and Navin 2012). On the other hand, the randomness of 

TS suffers from the same problems as pure exploitation, i.e., it can get trapped in local maxima. 

We address it by combining uncertainty learning (pure exploration) and TS iteratively to enforce 

stable exploration – when selecting the two conditions (arms) of a duel in two consecutive steps, 

one arm is selected with maximum uncertainty and the other one with Thompson sampling. And 

to increase data collection efficiency, each condition is shared in two duels with previous condition 

and next condition respectively. That is, the combined TS and uncertainty learning algorithm 

(TS+UL) follows the iterative learning sequence: 
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 𝒙1 = argmax
𝑥

𝑝(𝒙0 ≺ 𝒙|𝜃0
(1)
, 𝒟0),  (TS) 

(52) 

 𝒙2 = argmax
𝒙

𝑉𝑎𝑟(𝑝(𝒙1 ≺ 𝒙|𝒟1)),  (UL) 

 𝒙3 = argmax
𝑥

𝑝(𝒙2 ≺ 𝒙|𝜃2
(1), 𝒟2),  (TS) 

 𝒙4 = argmax
𝒙

𝑉𝑎𝑟(𝑝(𝒙3 ≺ 𝒙|𝒟3)),  (UL) 

 ⁞  

where 𝜃0
(1), 𝜃2

(1), … are randomly selected single-samples from posterior 𝜃0 , 𝜃2 , … at step 0, 

2, … respectively; and 𝒟1,𝒟3, … are the data at and before step 1, 3, … respectively. 

4.2.3 Preference elicitation and passive learning with occupant override action 

In a well-designed building control system, override should always be granted to the 

occupant(s) even in the learning process, especially for daylighting control with changing weather. 

In the meantime, occupant actions could be used in passive preference learning. Therefore, a 

method of integrating passive learning into the preference elicitation learning framework is 

proposed as follows. Assuming a rational occupant who takes override actions to adjust the visual 

condition towards the maximum of his or her utility (even if the utility is hidden to himself/herself), 

the action could be equivalent to a combination of a preference vote (that the condition after action 

is preferred) and a selection of the next visual condition, which is a complete exploitation step. 

Thus, an action during the learning process could take the place a TS step; the next learning step 

would be UL step; and the learning sequence in Equation 52 continues until another occupant 

override occurs. 

4.2.4 Evaluation metric and “stop” criterion 

To evaluate the performance of the proposed visual preference learning strategy, a metric 

is needed to quantify how well the learning outcome (the satisfaction utility or preference model) 

is at each step. Typically, a model is tested or validated by accuracy metrics, given a set of test or 

validation data. For an online learning system, however, obtaining such data for validating the 

updated preference model in each step is unrealistic as they are “future” data – all the current data 

has to be used for training the current model. Alternatively, considering that the objective of the 

learning framework is to find out the (most) satisfying visual condition, which is to discover the 

location of the maximum satisfaction utility, we could translate the goodness of learning results to  
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quantifying how sure we are about the maximum by obtaining the probability density function 

(PDF) of the posterior of maximum for each step: 

PDF(𝒙𝑡
∗) = 𝑝(𝒙𝑡

∗|𝜃𝑡 , 𝒟𝑡), (53) 

where 𝒙𝑡
∗ is the posterior of maximum of utility in step t: 

𝒙𝑡
∗ = argmax

𝒙
𝑢(𝒙|𝜃𝑡 , 𝒟𝑡). (54) 

Given the samples of posterior, the PDF is estimated by taking the histogram of the 

posterior of maximum: 

𝑝(𝒙𝑡
∗|𝜃𝑡, 𝒟𝑡) ≈ ∑1𝐵𝑖 (𝒙𝑡

∗)

i=1

𝑓𝑖 , (55) 

where 𝐵𝑖  and 𝑓𝑖 is the ith histogram bin and the corresponding sampling frequency. The 

function 1𝐴(𝑥) is the indicator function of the set 𝐴. Then, we could quantify the certainty level 

by calculating the information entropy (or Shannon entropy, 𝐻) of the PDF (Shannon 1948): 

𝐻𝑏[𝑝(𝒙𝑡
∗|𝜃𝑡, 𝒟𝑡)] ≈ −∑𝑓𝑖 log𝑏 𝑓𝑖

𝑁

𝑖=1

, (56) 

where 𝑏 is the base of the logarithm, and is 10 in this study.  

Entropy measures the unpredictability of the variable 𝒙𝑡
∗, so lower entropy reflects higher 

certainty of the maximum. Note that entropy is a relative value that is meaningful only when 

comparing two or more entropy values. In this study, the evolution (ideally reducing) of entropy 

of the maximum as the number of steps increases could provide intuitive insights on the learning 

trend, and a “stop” criterion is defined as a benchmark of a usable preference profile. The “stop” 

criterion is not a threshold to stop the learning process, but a sign of when the learned preference 

profile starts to be usable for control purpose. The criterion is computed as the entropy of a 

Gaussian distribution of a maximum (some arbitrary 𝐸𝑣
∗) with a standard deviation of 150 lux 

(Figure 14): 

 

Figure 14 Example PDF of criterion (𝐸𝑣
∗= 1000 lux, σ = 150 lux).  
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𝐻𝑠𝑡𝑜𝑝 = 𝐻(𝐸𝑣~𝑁(𝐸𝑣
∗ , 150 lux)) = 6.43. (57) 

If the calculated entropy at a specific step is larger 6.43, it means that the location of the 

maximum is more uncertain than a Gaussian distribution with 150 lux standard deviation. This 

criterion is set with considerations that 150 lux difference of vertical illuminance could be around 

the boundary that transit from insignificant to noticeable to typical occupants.  

4.3 Experiment 

4.3.1 Experiment design 

To demonstrate and evaluate the proposed visual preference elicitation learning framework, 

a set of experiments was designed and conducted with human subjects in the same experimental 

facility described in Chapter 3. 

4.3.1.1 Experiment setup 

Figure 15 is a flowchart illustrating the connections between systems (platforms), sensing, 

programming, controls and the communication flow in each step. Sensor measurements, override 

interface (Figure 16) and action monitoring, as well as control implementation (shading control) 

are realized in Niagara framework; Online preference survey is obtained through MySQL database 

management system with a simple web interface (Figure 16); preference modeling and learning 

are implemented in a Python program, communicating with all other platforms through Modbus 

protocol (Niagara) and MySQL client/server protocol (MySQL). 

 

Figure 15 System integration and communication flowchart.  
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Figure 16 Interfaces of survey (up), override enabled (bottom-left) and override disabled 

(bottom-right).  

4.3.1.2 Experiment procedure 

The experiments were conducted from May – June, 2019 with 13 subjects. Each subject 

participated in the experiment for two days (or four half-days depending on weather conditions) 

to experience one complete sunny day and one complete cloudy day, in order to learn their visual 

preference profiles under different sky conditions. Subjects were asked to spend 7 hours per day 

(or two half-days) in the office doing normal computer work. The subjects were graduate students 

and staff (between 20 and 40 years old) not familiar with this research and were advised to avoid 

any direct contact with the sensing instrumentation. Approval by the Institutional Review Board 

(IRB Protocol #: 1507016229) was obtained before conducting the experiments. 

During the experiment, the visual condition (𝐸𝑣 ) was changed by operating the roller shade 

position (SP) (see Figure 15) with a simple feedback control – adjusting SP according to the 

difference of measured and target vertical illuminance – together with an automatic lighting control 
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to achieve the minimum work plane illuminance requirement (300 lux). Note that the simple 

shading control was adopted to simplify control implementation under stable weather conditions . 

When the preference model becomes more complicated (with more variables), model-based 

control that utilizes advanced daylighting and lighting model is more competent and robust with 

fluctuating weather. Subjects would be asked to complete a short web survey (Figure 16) for 

preference vote after the condition change and adaptation while variables for visual preference 

modeling were collected at the same time, and override of SP was enabled for a limited period 

after answering the survey.  

Figure 17 shows the learning procedure in one learning step during the experiment. 

Learning interval is determined as 8 min in a step (when one learning decision is made)  to 

accelerate the learning process, referring to the 10-min interval selected in Chapter 3. At the 

beginning of one step (4 minutes after the last change of visual condition by changing SP, and 

override is disabled), the occupant is asked to vote for the preference between the current condition 

𝐸𝒗𝑡 and the previous condition 𝐸𝒗𝑡−1 before the last change (when the last survey is completed), 

and the sensor measurements of the current visual condition are taken at the same time of the 

survey. The model is trained and updated with the collected preference vote and measurement data 

(including the measurement of the previous condition). The occupant is allowed to override the 

shading position once finishing the survey.  

If there is no action taken in half interval (4 minutes), override is disabled temporally when 

learning framework starts working – a set of feasible 𝐸𝒗  values are predicted according to the 

weather conditions and the elicitation method will select the next condition 𝐸𝒗𝑡+1 based on the 

elicitation framework principle and the decision of last step (whether it is TS step or UL step). The 

control system then communicates with the device (roller shades) to achieve the determined 

condition 𝐸𝒗𝑡+1  with feedback control. The occupant will have 4 minutes to adapt to the new visual 

condition 𝐸𝒗𝑡+1  until the next step starting with the preference survey comparing 𝐸𝒗𝑡 and 𝐸𝒗𝑡+1. 
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Figure 17 One-step learning flowchart.  

If the occupant takes an action when override is enabled, on the other hand, the learning 

framework will not determine the condition but translate the action into a preference vote at the 

end of the step (8 minutes since last survey): 𝐸𝒗𝑡 ≺ 𝐸𝒗𝑡+1 . 

Figure 18 shows the overall flowchart of the experiment procedure in each loop. During 

the iteration, whether an override action is taken or not is the judgement criterion to activate 

elicitation learning framework. A detected action will bypass the learning framework to serve as a 

passive exploitation step and reset the choice of next elicitation learning step into UL. Learning 

framework starts working when no action is detected in the previous interval, by selecting TS or 

UL step depending on the last learning step or action and disabling override. The next visual 

condition is determined by the selected learning algorithm and achieved through the shading and 

lighting control system as shown in Figure 15. Then the framework queries preference after 

adaptation and enables override once preference data is collected.  
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Figure 18 Learning flowchart in each loop (T=8 min).  
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4.3.2 Experiment results 

4.3.2.1 Data 

Figure 19 summarizes the number of data collected for all 13 subjects under different 

weather conditions. Assuming active occupants with the ratio of action data to total data larger 

than 10%, most subjects were active and interacted with shades in both sunny and cloudy days 

(subject 2, 4, 5, 6, 8, 9, 11) -mainly for the reason that UL step tends to explore visual conditions 

away from the satisfying ones as the uncertainty of maximum of the utility becomes smaller, as 

learning goes on. A few subjects were willing to interact even when the conditions are satisfying. 

Subject 1 was active in sunny days but inactive in cloudy days as the subject was more sensitive 

to bright conditions. Other subjects (subject 3, 7, 10, 12, 13) were inactive in both days for different 

reasons – some subjects were insensitive to any change in visual environment; some subjects were 

mostly satisfied or very tolerable with unsatisfied conditions; some subjects were unwilling to 

interact with the system. 

 

Figure 19 Data summary.  

Table 5 shows the data of first 10 learning steps for subject 5 in a sunny day. The first duel 

conditions were generated with a fixed (initial 20%) and a random SP. This subject was mostly 

consistent in his/her own visual preference in these steps (with a maximum satisfaction in a range 

of 600-1000 lux). Two actions were taken following a UL step to lower 𝐸𝒗  and a TS step to 

increase brightness respectively. The decisions of TS steps adapting and exploiting on the 
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preference votes in previous steps could be observed in step 2 and 4. The exploring ability of TS 

endued from randomness is reflected in step 8, where TS decision moves opposite from the 

dominating estimation of maximum, which results from a distinctive (minority) utility sample with 

maximum around 300 lux, possibly capturing the preference uncertainty inherited from step 4. 

And this uncertainty was “corrected” right away in the next step by the subject’s override (step 9). 

The UL steps explored over the feasible 𝐸𝒗  space and tended to search the tails of utility because 

the center part is more and more certain as TS steps hovered around the maximum. 

Table 5 Representative data (Pref 1: preferring current; 2: preferring previous; 3: no preference ) .  

Step Time 
Learning step / 

Action 
𝐸𝒗  (lux) 𝐸𝒗𝒑𝒓𝒆 (lux) Pref 

SP 

(ShadeOpen %) 

0 13:35  630   20 

1 13:39 Random 285 630 2 0 

2 13:45 TS 1495 285 1 52 

3 13:53 UL 410 1495 2 10 

4 14:01 TS 438 410 2 6 

5 14:09 UL 1428 438 1 58 

6 14:13 Action 794 1428 1 45 

7 14:23 UL 284 794 2 0 

8 14:31 TS 272 284 2 0 

9 14:35 Action 692 272 1 42 

10 14:51 UL 276 692 2 0 

 

4.3.2.2 Learning results 

Figure 20 and Figure 21 show the example visualization of the learning results.  

For the learned satisfaction utility, the first 100 estimation samples (out of 2000) are plotted 

to reveal the distribution of maximums and the overall uncertainty as shown on the left of Figure 

8, and the distribution of maximum of all the samples form the probability density function (PDF) 

as shown on right of Figure 20, which illustrates how certain the model is of where the most 

satisfying 𝐸𝒗  is – wider and flatter PDF indicates uncertain maximum – and is used to calculate 

the entropy of maximum distribution (number displayed in the plot).  

The preference profile is visualized using a contour plot (Figure 21) in the condition duels 

space (𝐸𝑣1-𝐸𝑣2 space), where the mean probability of the subject preferring 𝐸𝑣1 to 𝐸𝑣2 is indicated 

by color, and the red dots on the plot represent all the condition duels used for the model (𝐸𝑣1 =
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𝐸𝑣𝑡, 𝐸𝑣2 = 𝐸𝑣𝑡−1). The preference contour plot is linked with the utility plot in the way that the 

intersection part of the X-shape color pattern corresponds to the maximum of utility. 

 

 

Figure 20 Representative results – utility samples plot (left) and PDF of maximum 𝐸𝒗
∗ 

(right).  

 

Figure 21 Representative results – contour plot of mean preference probability 𝑝(𝐸𝑣1 ≻ 𝐸𝑣2).  

Given the plots above, the learning progress could be investigated by visualizing the pattern 

of evolution of the learning results by steps. Figure 23 is an example of the learning progress of 

subject 5 in sunny day, with utility sample plot and PDF of maximum plot in four selected steps. 

As can be seen, utility samples in early steps have different shapes and maximums, which looks 
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messy, but gradually transitions to unifying shapes and converging maximums in a narrower and 

more certain range, and the uncertainty is higher with the utility going away from the near-

maximum area due to the exploiting efficacy. Correspondingly, the PDF of maximum changes 

from flat bumps to a sharp peak and the calculated entropy (Figure 23) becomes lower than the 

“stop” criterion (H=6.4 indicated with the horizontal red dash-line). 

 

Figure 22 Representative learning evolution in four steps (subject 5, sunny day).  

 

Figure 23 Entropy evolution of maximum estimation.  

Figure 24 shows the final preference models learned in the experiments for all the subjects. 

Similar and distinct profiles could be observed among different subjects. Some subjects have 

consistent preference patterns for sunny and cloudy days (subject 1, 2, 3, 4, 6, 11, 12, 13), while 

others have different preferences with changing weather. Similar conclusions could be drawn from 

Figure 25, which shows the distribution of estimated maximums of all the subjects in the final step. 
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Moreover, the uncertainty of final estimation could be observed intuitively – flat PDFs such as the 

ones of subject 2 and 7 for both sunny and cloudy days indicate that the most satisfying 𝐸𝑣  remains 

uncertain. The axis labels of these figures are omitted as all the axes are consistent with the 

example ones in Figure 21. 

 

Figure 24 Preference profiles of 13 subjects in the final step.  
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Figure 25 PDF of maximums of 13 subjects in the final step.  

4.3.2.3 Learning efficiency 

By investigating the evolution of entropy of maximum distribution, we could evaluate the 

learning efficiency of the preference elicitation framework for each subject, as shown in Figure 26. 

The axis labels are omitted to make the plots clear, and all the axes are consistent in range and 

scale (x-axis: 1 – 45 step; y-axis: 4.5 – 7.5 entropy). Most of the (Figure 26) models are converging 

below the criterion of H=6.4 except for subject 2 both sunny and cloudy models, subject 5 cloudy, 

subject 7 both sunny and cloudy models, subject 9 sunny model, subject 10 cloudy model and 

subject 11 cloudy model. There are several possible reasons. First, some subjects have complicated 

preference with other significant environmental factors not related to the brightness preference. 

For example, desire of outside view might have a conflict with darker preference. Second, 
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variations or change of preference of some subjects took place in the middle of learning process 

and the learning framework needed to re-adjust model for more steps. For example, subject 5 

participated in two cloudy half-day session, and at the first few steps of the second session the 

learning curve had a deep turning-back (middle part of the curve) due to preference changes in two 

different days, which could be related to other factors (the first reason). Actually, similar 

phenomenon appeared in a few subjects’ learning curves (subject 1 cloudy, subject 4 cloudy, 

subject 13 sunny), but the learning process re-adapted the model fast enough to again achieve 

converging results before the final step. Third, some subjects were insensitive to brightness, and 

answered preference survey randomly, especially with cloudy weather. Last but not least, some 

subjects had emotion-driven preference driven by the psychological effects brought from the 

controlled environment –these cannot be measured or observed easily. 

 

Figure 26 Learning curves of entropy evolution with steps (red dash line: “stop” criterion 

H=6.4).  
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Figure 26 also illustrates the learning speed and robustness for the proposed learning 

framework with different subjects. For those that learned model that has reached the “stop” 

criterion (and kept below), the fastest learning took less than 10 steps while the slowest took more 

than 30 steps. Nevertheless, these results demonstrate that the developed learning framework is 

able to learn a one-variable preference profile within one day (less than 45 steps) for most of the 

subjects. Note that these results are only applicable for this specific model (with one variable 𝐸𝑣 ) 

– when more variables are considered, more learning steps are required to collect enough data for 

higher-dimensional model, and the criterion will change according to the desire distribution of 

maximum in higher dimension space. 

4.4 Summary and discussion 

This chapter presents the design of an online visual preference elicitation learning 

framework for efficiently learning and eliciting occupants’ visual preference profiles and hidden 

satisfaction utilities. A set of experiments were designed and conducted to implement the proposed 

learning algorithm with human subjects in order to validate the feasibility and evaluate the 

performance. To determine the visual condition duel for preference query with most information 

gain, a combination of Thompson sampling method and pure exploration (uncertainty learning) 

method was used, addressing the balance of exploration and exploitation when targeting the near-

maximum area of utility during the learning process. The experimental results demonstrated the 

feasibility and efficiency of the proposed visual preference learning framework. Distinctive visual 

preference profiles of 13 subjects were learned and studied under different weather conditions. 

Entropy of the distribution of the most preferred visual condition is computed for each learned 

preference profile to quantify the certainty, and used to evaluate the learning outcomes. Most of 

the subjects could be learned to an acceptable certainty level within one day with stable weather 

for visual preference model using 𝐸𝑣 , and the preference profiles and learning speeds vary with 

different subjects. 

Although the developed learning framework could be generalized with any visual 

preference model using sampling modeling methods, it is sensitive and dependent on selected 

visual environment variables and the performance of the visual preference model. In this study, 

specifically, vertical illuminance is the only variable used for demonstration purpose, and some of 

the learning results are limited by the one-variable model because other factors play more 

important roles in the subjects’ visual preference. Similarly, due to limitations of the modeling 
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approach, this study requires stable weather conditions, either sunny or cloudy, but could easily 

fail to learn visual preferences that are affected by weather (e.g. subject 5, 7, 8, 9, 10) with mixed 

or fluctuating weather conditions (when sunny model is intruded by cloudy model and vice versa), 

indicating that weather should be quantified by variable(s) (e.g. sky luminance distribution) and 

included in the visual preference model other than being a binary classifier for different modes of 

model. On the other hand, for practical considerations, including more variables to describe all 

possible environmental factors would increase the complexity of the visual preference model and 

thus the cost of learning, in terms of different aspects of implementation – computational efforts, 

time efficiency, large data requirement and advanced and non-intrusive sensing instruments. Some 

variables are even not quantifiable with current research or sensing techniques. Therefore, in real 

application, a proper visual preference model should be selected carefully considering the trade-

off of accuracy and efficiency, as well as practical limitations. 
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5. PERSONALIZED DAYLIGHTING CONTROLS – AN OPTIMIZATION 

FRAMEWORK TO DYNAMICALLY BALANCE VISUAL 

SATISFACTION AND LIGHTING ENERGY USE IN DAYLIT 

OFFICES  

5.1 Overview 

In this chapter, a personalized shading control framework is developed to maximize 

occupant satisfaction while minimizing lighting energy use in daylit offices with roller shades. An 

integrated lighting-daylighting simulation model is used to predict lighting energy use while it also 

provides inputs for computing personalized visual preference profiles, previously developed using 

Bayesian inference from comparative preference data. The satisfaction utility and the predicted 

lighting energy use are then used to form an optimization framework. We demonstrate the results 

of: (i) a single objective formulation, where the satisfaction utility is simply used as a constraint to 

when minimizing lighting energy use and (ii) a multi-objective optimization scheme, where the 

satisfaction utility and predicted lighting energy use are formulated as parallel objectives. Unlike 

previous studies, we present a novel way to apply the MOO without assigning arbitrary weights to 

objectives: allowing occupants to be the final decision makers in real-time balancing between their 

personalized visual satisfaction and energy use considerations, within dynamic hidden optimal 

bounds. Essentially, we present the first method to incorporate personalized visual preferences in 

optimal daylighting control, with energy use considerations, without using generic occupant 

behavior models or discomfort-based assumptions. 

5.2 Methodology 

Figure 27 shows the overall flowchart of the methodology. The framework is based on a 

combination of model-based control and optimization schemes. First, models are required to 

compute the control objectives: lighting energy use (f) is predicted by an integrated daylight -

electric lighting model, while the personalized satisfaction level is quantified by a satisfaction 

utility function (u) inferred from preference data. In our case, u was determined from comparative 

preference experiments (Xiong et al. 2018) described in Chapter 3. Both functions are multivariate 

and x in the figure refers to a vector of variables affecting energy use and/or satisfaction utility. 
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The modeling results then formulate the objectives towards optimal personalized 

daylighting (shading) control, following two application paths. In the single-objective optimization 

(SOO) path, the satisfaction objective is converted into a constraint when minimizing lighting 

energy use, resulting in a unique optimal set of conditions, x*, achieved through shading operation, 

at each time step. In the multi-objective optimization (MOO) path, both objectives are used to 

provide a set of optimal solutions on a Pareto front at each time step. The optimal points are used 

to provide a pool of options to the users, who are then the decision makers in the final balancing 

between their personalized satisfaction limits and energy use. The entire process is discussed in 

the following sections.  

 

Figure 27 Overall methodology flowchart.  
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5.2.1 Models 

5.2.1.1 Integrated Daylighting and Lighting Energy Use Model 

A validated hybrid ray-tracing and radiosity daylight model (Chan and Tzempelikos 2012) 

was used for daylight simulation. The model combines the accuracy of forward ray tracing for 

direct light with the computational efficiency of radiosity for diffuse light entering the space and 

interior reflections. Angular direct-direct and direct-diffuse light transmission through windows 

and complex fenestration systems is enabled; for roller shades, an expanded semi-empirical model 

by Kotey et al. (2009) is employed, which has been repeatedly validated using integrated sphere 

measurements and full-scale experiments (Chan et al. 2015). 

At each time step, incident beam and diffuse illuminance on the window (calculated or 

measured with sensors for real-time control, or using processed TMY3 data for an annual analysis) 

are used to compute transmitted beam and diffuse daylight. For real-time control, readings of 

transmitted illuminance and direct-diffuse portions of incident or horizontal solar radiation are 

needed as inputs. Xiong and Tzempelikos (2016) showed how this approach can be used for real -

time, model-based shading control, which is used in this work. Interior daylight distributions are 

calculated along with vertical illuminance on the eye of the observer and dynamic glare metrics 

such as DGP (Wienold and Christoffersen 2006) as required. Note that vertical illuminance is an 

input to the visual preference models, described in the next section. Electric lighting is controlled 

based on work plane illuminance levels, using a set point (e.g., 300 lux based on IESNA 

recommendations (ref standard)), and mapping between horizontal (and vertical) illuminance and 

light dimming levels. Lighting energy use is then directly computer from light dimming levels at 

each time step.   

For a given set of exterior conditions, the integrated daylighting and lighting energy model 

at each calculation step can be mathematically expressed as: 

[𝑃, 𝐸𝑣] = 𝑓(𝑆𝑃) (58) 

where P is the predicted lighting power (in W or W/m2 of floor area); Ev is the vertical 

illuminance and SP is the roller shade position. Therefore, SP becomes the control variable. 

5.2.1.2 Personalized Visual Satisfaction Model 

The developed personalized visual satisfaction profiles described in Chapter 3 was adopted. 

Two inferred personalized satisfaction utility functions from previous results, reflecting different 
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overall visual preference characteristics discovered for each person, are used in this study. To 

demonstrate optimization results considering both reliability and efficiency, the two variable 

function with Ev and SP are selected, and sky condition is also used as a binary variable (cloudy 

vs sunny).  

The normalized posterior medians of the two inferred satisfaction utilities (subject 1 and 4 

from previous chapter, namely profiles A and B from now on), plotted as a function of Ev and SP 

in 3D space, are shown in Figure 28.  

 

 

Figure 28 Posterior median of two inferred satisfaction utilities (Ev-SP model).  

Under given outside conditions, Ev is determined by the shading position using the 

predictive lighting model. Therefore, the satisfaction utility eventually is a function of SP: 
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𝑢(𝐸𝑣, 𝑆𝑃) = 𝑢(𝑆𝑃) (59) 

5.2.2 Optimization 

The inferred personalized utility functions and the modeling results are used in an 

optimization framework to maximize visual satisfaction while reducing lighting energy use. Here 

we present two approaches as outlined in Figure 27. The first approach is to formulate two 

objectives (occupant satisfaction and lighting energy use) and use them in a multi -objective 

optimization scheme. The second approach converts one of the objectives (occupant satisfaction) 

into a constraint with certain tolerance, and formulates a single-objective optimization problem 

with the other objective (energy). The control variable of the optimization problems is the shading 

position (SP), ranging from 0 (fully open) to 1 (fully closed). 

5.2.2.1 Multi-Objective Optimization (MOO)  

The two objective functions (satisfaction utility and lighting power) are derived based on 

the daylighting/lighting energy model and the inferred satisfaction model at each time step. Figure 

29 shows the transfer flowchart of variables between daylighting, lighting and satisfaction models, 

and the formulation of objectives. Note that Ev is an intermediate shared variable (output from the 

daylighting-lighting models and input to the satisfaction model), also used to formulate a glare 

constraint: Ev ≤ 2700 lux. This value is based on the simplified daylight glare probability (DGPs, 

Wienold 2007) and it is a valid discomfort glare criterion when the sun is not within the field of 

view of the occupant (Konstantzos et al. 2016); otherwise, glare is bound to occur, and in the case 

of roller shades further indices have been proposed (Konstantzos et al. 2017). By controlling SP 

under specific sky conditions, we can predict light dimming levels and move across the 3-D utility 

curves. 
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Figure 29 Models and variables transfer flowchart in optimization.  

For ease of illustration, the objective of maximizing visual satisfaction is converted to 

minimizing the negative utility function. Note that the entire process runs as a function of time, to 

account for changing sky conditions. 

min
𝑆𝑃

{
−𝑢(𝑆𝑃)

𝑓(𝑆𝑃)
 (60) 

5.2.2.2 Single-Objective Optimization (SOO)  

In the single-objective optimization scheme, the objective is to minimizing lighting energy 

(power) while maintaining the occupant satisfaction level near the maximum of the utility function. 

Therefore the satisfaction objective is converted into a constraint, using the personalized visual 

preference profiles and a relative tolerance (ε) of the maximum utility value. In addition, the 

randomness factor 𝜎 is considered in the satisfaction constraint in order to investigate the impact 

of sensitivity of individuals on energy savings potential. In this way, the “true” utility is reflected 

instead of the “standard” or unit utility, as inferred in the preference learning phase. The objective 

is then formulated as: 

min
𝑆𝑃

𝑓(𝑆𝑃)  subject to:    
𝑢(𝑆𝑃)

√2𝜎
≥ 𝑚𝑎𝑥

𝜉

𝑢(𝜉)

√2𝜎
− 휀𝑚𝑎𝑥

𝜉
𝑢(𝜉) (61) 

Weather    
(Sensor Input 
or modeled)

Shading 
position (SP)

Ewp set-point  
(pre-defined)

Daylighting 
Model

Vertical 
illuminance on 

eye (Ev)

Visual 
Satisfaction 

Model

Satisfaction Utility
Light Dimming levels

Energy Use

Comfort 
constraint (Ev)

Intermediate 
Variables

Work plane 
illuminance 

(Ewp)

Constraints

Objectives

Lighting Model

Control 
Variable



 

 

109 

The tolerance 휀 is selected as 0.1 in this study, representing 10% of the unit max utility, 

which equals to 1 based on the Gaussian bell form structure. The glare constraint is still required 

for the SOO at every time step. 

5.2.2.3 Optimization Algorithm 

The integrated lighting and personalized visual satisfaction models, as well as the multi -

objective optimization formulation, were implemented in Matlab. Although several toolboxes with 

different algorithms are available, the optimization objectives in this study are dependent because 

of the shared variable (Ev): the satisfaction model requires this input from the lighting model as 

shown in Figure 29, and dependent objectives are not supported by most algorithms. Therefore, a 

simple enumeration method, fast and efficient, was adopted to solve both optimization problems. 

As enumeration aims at discrete variable problems, the shade position (our continuous control 

variable) needs to be approximated by dividing the full range into a specific number of discrete 

positions, without making a noticeable difference with respect to energy consumption and 

occupant preference perception. 

The controlled variable can be pre-defined with discrete options as a feasible set (e.g., 21 

positions with every 5% increments). The discretization depends on the continuity requirement of 

shading control and efficiency demand of the optimization algorithm. For example, 11 shade 

positions (10% increments) result in short computational time, while 101 positions (1% increments) 

simulate the continuous change of roller shade position perfectly. To compromise between 

computation efficiency and accuracy, 11 shade positions are pre-defined in this study with 10% 

increments from 0 to 1: SP {0, 0.1, 0.2…1}.  

In the multi-objective optimization process, the two objective models run with all possible 

shade positions at each time step, and objective values are provided through the discretized feasible 

region. The optimization solutions are determined by comparing the feasible objectives in the way 

of Pareto optimality (if there exists no feasible solution that minimizes two objectives 

simultaneously): at each time step, SP does not belong to a Pareto solution if there is SP* for which:  

−𝑢(𝑆𝑃∗) ≤ −𝑢(𝑆𝑃)   and   𝑓(𝑆𝑃∗) < 𝑓(𝑆𝑃) + 𝜏 (62) 

where {SP, SP*} are values of the controlled variable within the feasible region. Since 

perimeter offices with large window areas and daylight-linked controls result in low lighting 

energy use, differences in resulting lighting power between similar shading positions can be quite 

small. To address this problem, a tolerance () was set to compare power objectives while 
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searching for the Pareto optimal. In this way, points with negligible differences in power 

consumption but lower visual satisfaction would be filtered out –as not part of Pareto solutions. In 

this study we just use a small tolerance of 0.1 W/m2 (lighting power per floor area) since such 

difference is almost insignificant for lighting control and will not affect optimal points for lighting 

energy use. With these margins, the overall model runs as a function of the control variable (SP) 

to form real-time optimal solutions on a Pareto front, which describes the dynamic trade-off 

between the objectives, at each time step. 

In the single-objective optimization process, the optimal at each time step is found from 

the minimum lighting power consumption among all the feasible points, given the visual 

satisfaction constraint. In rare occasions where no feasible point exists to meet satisfaction and 

comfort constraints, the visual satisfaction constraint is ensured, since it is a priority in optimal 

visual environments.   

5.3 Results and Discussion 

The effectiveness of the developed optimization strategies was studied through annual 

simulation for both SOO and MOO, using the two personalized satisfaction profiles (for real-time 

control, the model-based control strategy described in Xiong et al. (2016) can be used in 

conjunction with the optimization framework). For consistency reasons, the lighting models were 

applied to the same private offices used to experimentally derive the inferred satisfaction models. 

The offices information is described in section 3.2.1. The interior surface reflectivities are 80% 

(ceiling), 50% (walls) and 30% (floor). Light dimming levels are mapped to work plane 

illuminance levels on a specified grid at the desk height. The offices are located in West Lafayette, 

Indiana and TMY3 data for that location were used. A 15-minute time step was used for both 

lighting and the satisfaction models, as well as for the optimization algorithm, from 8:00am to 6:00 

pm during weekdays, to consider working hours only. Shorter time steps are not realistic for 

practical shading control applications. The following section present representative optimization 

results for specific times, days, as well as annual evaluation. 

5.3.1 Representative optimization results – single point in time 

Figure 30 shows the MOO feasible points (dashed line) for a single representative time 

step (winter sunny day at 5:30 pm) with satisfaction Profile A. The units of the satisfaction utili ty 
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(-u, plotted on the y-axis) are relative and not important, since the utility function is personalized 

and depends on the subject’s sensitivity, . The lower the value on the plot, the higher the 

satisfaction utility value. The units of the lighting power (x-axis) are real.  

For ease of understanding, the corresponding shading positions (the control variable) are 

shown next to the feasible points. The feasible points form a v-shaped curve, and theoretically the 

Pareto front should be the lower-left convex part of the feasible curve (SP=0, 0.1, 0.2, 0.3, 0.4). 

However, due to the tolerance added in the power objective and the discretization of SP, the actual 

Pareto optimals limit SP between 0.2 and 0.5, marked with solid dots in the graph.  

 

Figure 30 A representative Pareto front with optimal points (satisfaction profile A, single time 

step).  

5.3.2 Time-varying Pareto fronts and optimal points  

The optimization is based on dynamic lighting models; therefore, as the outside (sky) and 

interior (vertical and horizontal illuminance) conditions change, the shape of the feasible region in 

the objective space, the objectives’ values, and the number of Pareto optimals will vary with time 

(computed every 15-min). Figure 31 shows the transition of the feasible region and the optimal 

points for two representative days, for both profiles. The solid dots are the Pareto optimals obtained 

from MOO, while the X marks are the optimal solutions obtained from the SOO at the same time 

steps.  
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The graphs show that the solutions are dynamic and depend on both the profile and real-

time sky conditions. In both examples, the feasible region becomes narrower from 11:30am-

3:30pm, and in some cases only a single Pareto optimal could be achieved with MOO –due to the 

shape of feasible curve and the tolerance in the power objective. The single optimization results 

are sometimes one of the Pareto optimals (e.g., at 9:30am and 5:30pm). In other time steps, 

searching for the maximum energy savings near the maximum satisfaction does not necessarily 

lead to one of the Pareto solutions, as the tolerance added in the SOO satisfaction constraint relaxes 

the satisfaction objective compared to the MOO strategy. Also note that transition from cloudy to 

sunny conditions during the same day (not shown in this graph) could also affect the results, since 

the satisfaction utility depends on the sky type.  

 

Figure 31 Transition of MOO feasible region (dashed lines) and Pareto optimals (solid dots), as 

well as single-objective optimals (marked with X) during representative winter days for 

satisfaction profile A (top) and B (bottom). Different optimal points correspond to different 

shading positions and interior lighting conditions.  
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5.3.3 MOO daily and annual results with different visual satisfaction profiles 

The impact of weather conditions and different visual preference profiles on the multi -

objective optimization results is shown in Figure 32. The optimal SP range is plotted for four days 

(8am to 6pm) of representative weather types– winter sunny (WS), winter cloudy (WC), summer 

sunny (SS), summer cloudy (SC) –for the climate of West Lafayette, Indiana. The results show a 

wider range of optimal SP during cloudy days, especially in winter time. During early morning 

and late afternoon hours, the glare constraint is more evident due to lower sun positions. Also, the 

optimal shade positions are seldom fully closed (SP=1), indicating the energy savings potential.  

The differences between the two visual satisfaction profiles are clear: Profile B, who is satisfied 

with a wider range of illuminance, allows a broader range of optimal shading positions compared 

to profile A, especially in the summer. The differences are more evident around the middle of the 

day, when the sun is higher in the sky and Ev can be modulated through shading control without 

significant glare constraints. The resulting optimal lighting power density does not exceed 2 W/m2, 

except when it's nearly dark outside.  

 

Figure 32 Daily range of optimal SP for the two visual satisfaction profiles under four different 

weather conditions.  
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Different preference profiles lead to different Pareto optimal patterns (number of optimal 

solutions and range of optimals) under various weather conditions through the year as shown in 

Figure 33. Closed shades appear occasionally in winter for both profiles, due to the glare constraint 

or due to lower illuminance preference at these times. As a result, lighting power is higher in winter 

(also because of darker days). The range of annual lighting energy use based on the MOO results 

is 3.9-29.7 kWh for profile A and 4.0-28.4 kWh for profile B. For reference, the annual lighting 

energy use for the same office without lighting control is 386 kWh. In the case of smaller or less 

transparent windows, the differences between the two profiles would be more evident.  

 

Figure 33 Histogram of optimal solutions (top) and optimal SP range (bottom) during the year 

with the two visual satisfaction profiles.  

5.3.4 SOO daily and annual results with different visual satisfaction profiles 

The impact of weather conditions and visual preference profiles on the single-objective 

optimization results is shown in Figure 34. The same daily weather profiles are used as before, and 

the optimal SP daily variations are plotted along with optimal lighting power and satisfaction 

utility. For the last two, the ranges between the optimal values and the values corresponding to 
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maximum satisfaction are also shown. The range of lighting power illustrates the potential energy 

savings when following the 10% satisfaction tolerance, while the range of optimal-to-maximum 

satisfaction level indicates the actual loss of relative satisfaction.   

The graphical results are clearer compared to MOO since there are single optimal points in 

this case: optimal SP is clearly determined by the different personalized satisfaction profiles under 

the same sky conditions. As a result, the optimal lighting power is different between the two 

profiles, and allowing a 10% relative tolerance in satisfaction utility can save a noticeable amount 

of energy during daytime, especially for profile A. For profile B, who prefers brighter conditions, 

the maximum satisfaction aligns with minimum lighting power, particularly in the summer.    

 

Figure 34 SOO daily results for the two visual satisfaction profiles under four different weather 

conditions: optimal shading position (top) and range between optimal lighting power and power 

corresponding to maximum satisfaction (bottom).  

The annual SOO results are presented in Figure 35 for each visual satisfaction profile. The 

optimal SP for profile B allows significantly higher outside view (less shaded window fractions) 
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compared to profile A as expected, and thus the corresponding optimal vertical illuminance levels 

are higher and wider. With the glare constraint, optimal Ev values are always maintained below 

the threshold. The optimal Ev graphs are also useful to evaluate the consistency of optimization 

results with respect to the personalized profiles. Lighting power consumption is higher in the 

winter for both profiles, and the optimized annual lighting energy use is 7.6 kWh for profile A and 

5.1 kWh for profile B.  

 

Figure 35 SOO annual results for the two visual satisfaction profiles: optimal shading position 

(top), optimal vertical illuminance (middle) and range between optimal lighting power and 

power corresponding to maximum satisfaction (bottom).  
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5.3.5 Effects of occupant’s sensitivity (𝝈) 

The personalized satisfaction utility functions include the parameter , which represents 

how sensitive each individual is to the utility function. This parameter has an effect on the utility 

curves, which in turn influence the optimal shading position and lighting energy use at every time 

step. An example of how the sensitivity variable impacts SOO results in shown in Figure 36. A 

representative satisfaction utility (profile A) is plotted as a function of shading position, for a 

typical winter sunny day at 5:30 pm. A virtual utility representing an occupant who has a same 

satisfaction profile but is less sensitive to the utility – with doubled 𝜎 –is plotted in the same graph. 

With smaller sensitivity, the 10% satisfaction constraint results in a wider range of feasible shading 

positions compared to the original utility. Following the 10% shading position increments, the 

optimal SP for that time (corresponding to the minimum lighting power), changes from 0.8 to 0.7. 

Therefore, more daylight is admitted and further lighting energy savings are realized for occupants 

who are less sensitive to the utility function. The dashed shows the corresponding lighting power 

consumption (right y-axis) as a function of SP for this specific time step. The additional annual 

lighting energy savings simulated with the virtual satisfaction utility (2𝜎) vs actual utility for 

profile A is 12% for the studied space and climate.  

 

Figure 36 Effect of sensitivity to the satisfaction utility function on optimal shading position and 

energy savings.  
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5.4 Potential Application of Multi-Objective Optimization 

The multi-objective optimization scheme is designed for application in perimeter offices 

with personalized shading and lighting controls. As the optimization usually provides a set of 

Pareto solutions, there are no standard rules for selecting a single “optimal” point for the control 

system from the solution set. Selecting one of the Pareto front points is equivalent to transforming 

the problem into a single-objective optimization with assigned weights for the objectives: 

min
𝑆𝑃
{−𝜔 ⋅ 𝑢(SP) + (1 −𝜔) ⋅ 𝑓(SP)}, (63) 

where 𝜔 ∈ [0,1]. This approach has been followed in previous studies; however, any ad-

hoc weighting of objectives by the control system is questionable when considering the trade-off 

between energy and comfort. Especially for personalized control, where the level of satisfaction is 

one of the objectives, and it changes with exterior and interior conditions, fixing arbitrary weights 

for individuals is meaningless. 

To overcome this problem and implement personalized preferences in optimal controls, we 

propose a solution that comes from the MOO application, where variable weights determined by 

the occupants themselves are introduced. The optimal points found by the MOO at every time step 

are used to provide a pool of options to the users, who then become the final decision-makers in 

the real-time balancing between their personalized visual satisfaction limits and energy use. In this 

way, the users are able to adjust the trade-off between the two objectives, but always within their 

dynamic, personalized, optimal satisfaction bounds. 

The MOO results provide a set of Pareto front points at each time step. Absolute energy 

and satisfaction numbers have no practical meaning to the occupants; therefore, the set of non-

dominated points could be transformed into a set of sorted options ranging from “most satisfied” 

(corresponding to maximum satisfaction utility) to “highest energy-savings” (corresponding to 

minimum lighting energy use). These sorted points need to be provided as possible control options 

to the occupants using a simple, intuitive user interface.  

A slider (Figure 37) can serve that purpose well: different points on the slider can be 

mapped to each optimal solution; in addition, the two ends of the slider will be mapped to the two 

extreme values of the Pareto front points (maximum satisfaction and minimum energy), and other 

intermediate points can be evenly sorted corresponding to their relative locations on the Pareto 

front between the two ends. In that way, override actions would fit into the optimal conditions 

range. Communication between the web interface and the building management and control 
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system is of course required for this application. Sliders “work best when the specific value does 

not matter to the user” (Aurora Harley) – the trade-off between personalized satisfaction and 

energy objectives influence the user decision, while the actual values do not. Therefore, the actual 

values on the bar are hidden to users; by sliding in any direction (changing shading and lighting 

controls), they will reflect the balance between objectives intuitively, within their personalized 

satisfaction limits, without being overwhelmed with information about different optimal points.  

 

 

Figure 37 Example of a slider with hidden mapped optimal points within energy and satisfaction 

ends.  

Since the number of Pareto front points varies with time, the number of options on the 

slider (possible control options) is variable –changes at every time step. At the extreme, there could 

even be only one option when there is a single global optimal from the MOO results. For that 

purpose: (i) the application needs to be updated in real-time, so that new optimal points are 

calculated and (ii) in each time-step, the new Pareto front points need to be sorted, mapped and 

evenly distributed on the slider, and (iii) dynamic snapping features should be enabled on the slider 

to select the Pareto optimal closest to the current bar position every time, always hidden to the 

users. 

An example is shown in Figure 38 for profile A during a winter sunny day. Suppose that 

we have run the MOO through this day and obtained the Pareto fronts for several time steps ( two 

shown here for ease of illustration). The Pareto points correspond to different shading positions 

(also marked on the graph), which are “mapped” on the slider at each time step (different positions 

are mapped each time, and their order and number can change with time). This information is 

hidden to the user.  

At 11:30 am, optimal results can be obtained with two shading positions: 90% and 100%. 

In this case, the two ends of the bar automatically correspond to these two positions, mapped to 

the Pareto points corresponding to maximum savings and maximum satisfaction respectively. If 

the user moves the slider anywhere towards the satisfaction end, the shades will move to fully 

closed (SP=1); otherwise, they will move to 90% position to minimize energy use. At 5:30 pm, 
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optimal results can be obtained with four shading positions, from 20% to 50% closed. In this case, 

the bar will have 4 hidden points mapped to these conditions, evenly distributed on the slider, 

ranging from minimum energy to maximum satisfaction Pareto point. When the user moves the 

slider, the shades will move to the position closest to the mapped corresponding optimal on the 

bar, using a snapping feature. If the user does not change the position of the slider, the shades will 

still automatically move at each time step to achieve optimal conditions (since these change with 

outside conditions). In this example, if the user selects to keep the position of the slider as shown 

from 11:30 am to 5:30 pm, the shades would automatically move to 100% at 11:30am and 40% at 

5:30 pm.  

 

Figure 38 User-enabled application of MOO in personalized shading and lighting control. 

Example of mapped optimal conditions on the user interface for two different times, with the 

slider bar ends corresponding to maximum energy savings and maximum satisfaction 

respectively, at each time step.  

This application can also be used for learning user preferences through interactions with 

the slider interface. Previous studies have shown that personalized feedback can positively affect 

individuals towards energy savings. Therefore, providing some indicative information, i.e., 
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relative “gains” between the two extreme Pareto front points, as illustrated in Figure 39, might 

help in understanding how occupants are influenced towards energy conservation using this 

interface that considers their satisfaction. In this case, they would know that all possible positions 

on the slider still correspond to optimal solutions, and the relative increment for each objective can 

be provided by comparing the objectives’ values at the slider ends (extreme Pareto points).  

 

 

Figure 39 Possible indicative information provided in the optimization application to study the 

influence of feedback on users. 

The implementation of the proposed control framework could be challenging: the real-time 

learning and actual control intervals should be coordinated. Therefore, adaptive and online 

learning methods should be applied for updating the personalized models with occupant feedback 

during the optimization implementation –this is the next phase of this work. 
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6. FUTURE WORK 

6.1 Improving the Personalized Visual Preference and Satisfaction Model 

Improving the preference model is a fundamental and long-term work. First, the variables 

used in the personalized visual preference and satisfaction model in chapter 3 are still limited. 

More data from different buildings should be collected for training personalized visual preference 

and satisfaction models, and data with new variables should be measured at the same time with 

improved sensing networks. New variables will include: 1) luminance distribution measured by 

HDR camera installed on window that captures the real-time weather conditions (diffuse/direct 

light components, sky cover), 2) electric lighting variable with two options – electric light dimming 

level provided by control system and ratio of electric light to day light calculated by daylighting 

and lighting model, 3) detailed luminance distribution in the field of view (FOV) using a HDR 

camera with a fisheye lens near subject’s eyes or in other non-intrusive locations. 

The model will be improved in several aspects: 1) by using more flexible model structure 

for the satisfaction utility function such as Gaussian process model; 2) by including the new 

variables; 2) by introducing auto-selecting techniques for selection of significant variables; 3) by 

adding hidden variables to account for unmeasurable and/or uncertain variables. 

 

6.2 Integration of Learning and Control 

A more prominent question is how to embed the visual preference learning into daylighting 

and/or lighting control systems, for real-world practical applications. The flowchart in Figure 40 

presents a potential implementation of integration of the proposed visual preference learning 

framework and any optimal daylighting control framework utilizing visual preference model. It’s 

not realistic to simultaneously run both frameworks as the objectives of learning and control could 

be conflicting – the iterative exploring-exploiting feature of the proposed learning framework 

requires achieving unsatisfying visual conditions as satisfying conditions region has lower 

uncertainty with exploitation, contradicting optimal controls that attempt to satisfy occupant. 

Therefore, the idea of the integration is to design a “switch” that links the frameworks and is able 

to (i) turn the system to learning mode, when the preference model is not available or has high 

uncertainty, and (ii) switch to control mode to satisfy the occupant when the preference model is 
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adequate. The basic principle is to use the “stop” criterion as a threshold to switch the working 

framework. In the control framework, an override option should always be provided to the 

occupant, not only to meet any personal demand, but also to adapt the preference model based on 

the new preference data translated from the actions. By updating the preference, the control 

framework could evaluate the performance of the model in the same way of the learning 

framework, by calculating the entropy (of the PDF of utility maximum). When the calculated 

entropy is higher than the “stop” criterion – a tolerance is added (𝐻 > 6.4 + 𝜏) to reduce the 

random effects of modeling approach (sampling method), and consecutive steps (e.g. 3 steps) 

exceeding the criterion are required to avoid the random effects from occupant and learning 

method – the optimal control is paused and learning framework starts working. In each learning 

step after model updating, the entropy is compared to the criterion – again with a tolerance and 

successive violation judgement – and the optimal control takes over visual environment tuning if 

the criterion is met (𝐻 < 6.4 − 𝜏 for 3 consecutive steps), or continues to the next learning step if 

the entropy is still high or not converging yet. 
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Figure 40 Integration of visual preference learning framework and optimal daylighting control 

framework.  
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6.3 Implementation and Evaluation of the Proposed Optimal Personalized Daylighting 

Controls  

Future experiments should be conducted to investigate the feasibility and to evaluate the 

effectiveness of the proposed control application of MOO introduced in Chapter 5 and its 

integration with learning framework presented in Chapter 4. The whole system-level framework 

including a non-intrusive, low-cost sensing network, online learning and updating, optimal control 

and interface will be carefully designed and integrated, and then implemented in test offices with 

human subjects. Improved visual preference models will be adopted in the learning framework 

and the optimization process. Decision of control intervals in sensing, learning, optimization and 

control will be studied and tested. A friendly and understandable user-interface will be designed 

and deployed for preference acquisition from subjects, access to override, decision making of 

personalized optimal by subjects and providing valuable feedback to subjects. 

6.4 Integrated Optimal Control for Coordinated Daylighting, Lighting and HVAC 

Systems Operation Considering Personalized Visual and Thermal Preferences and 

Energy Use  

Although this dissertation focuses on visual preference and satisfaction and lighting energy 

use, the complete learning, modeling and control framework could be extended to involve thermal 

preferences and HVAC energy consumption. The integration of different satisfaction models, 

physical and/or energy models can be challenging when more variables (that might be inter-

dependent) are involved. Moreover, the increase of dimensions in both controlled variables and 

objectives requires more complex optimization algorithms and more comprehensive control 

decision considerations. For that purpose, simulation studies should be conducted with all the 

above models plus a building model related to thermal dynamics, HVAC energy use and thermal 

preference model, using synthetic data, followed by experimental studies and implementation.  
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APPENDIX A. SURVEYS 

Survey for preference modeling experiment 

 

Survey for preference learning experiment 
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APPENDIX B. PREFERENCES AND UTILITY THEORY 

Classical decision theory deals with making optimal decisions taking into account 

uncertainty in the outcomes. It is based on the assumption that complete user preferences are 

known to us (Berger, 2013). Therefore, it is essential to understand user preferences in order to 

make optimal decisions. Due to difficulty in working with human preferences, a utility function is 

introduced over it. This utility function maps each instance/state or item to a real value and 

compares different instances/states/items based on their utility function values (Guo, 2011). Von 

Neumann and Morgenstern (2007) show that if one has preferences defined over outcomes that 

have uncertain consequences, there is a utility function that assigns a utility to every outcome that 

represent these preferences. Therefore, utility functions allow us to directly compare arbitrary 

states/items and reduce the complexity of preference learning framework. In order to formally 

define preferences and several axioms/theorems related to it, we follow the review examples given 

in Guo (2011) and Sanders (2015). 

 

Preference Relations  

In our problem, preference relations are an intuitive way of thinking about how people rank 

different visual conditions inside an office. We talk about preferences by mainly using three binary 

relations: ≻ (strictly preferred to), ∼ (indifferent between) and ≽ (preferred to or indifferent 

between). Reviewing Von Neumann and Morgenstern’s (2007) axioms related to preference 

relations: 

 Completeness: it implies that given two states of visual conditions in the room (p,q), our 

preference relation can compare and rank them as either p≽q or p≼q. 

 Transitivity: If a user prefers p to q, and prefers q to r in the meantime, then it holds that 

the user prefers p to r, i.e.  p≽r. 

 Continuity: Given strict preferences over any three states, i.e. p≻q≻r, there exists a linear 

combination of the most and least preferred states such that ap+(1-a)r≻q and r≻bp+(1-b)q 

where a,b ϵ [0,1]. 

 Independence: Preference relation between two states p and q remains unchanged when 

they are combined in the same way with a third state. 
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Provided that the preference pairwise comparison dataset satisfies these four axioms, Von 

Neumann and Morgenstern’s (2007) main existence theorem states that there exists a utility 

function that represents preferences (over different visual states in the room for our problem). 

 

Utility Functions and Monotonic Transformations 

As we stated in the previous section, preferences can be easily described with the help of 

utility functions. A utility function assigns scalar values to all states so that, if we have a preference 

relation between p and q state as 𝒑 ≻ 𝒒 then we have 𝑢(𝒑) > 𝑢(𝒒). For drawing inferences from 

the utility function values, all that matters is ordinal ranking, and not cardinal ranking. In 

Economics, an ordinal ranking is a function representing the preferences of a consumer on an 

ordinal scale. The ordinal utility theory claims that it is only meaningful to ask which option is 

better than the other but it is meaningless to ask how much better it is (Calhoun, 2002). Put simply, 

the scalar numerical utility function values we obtain only matter in the context that we can say 

one utility level is higher than the other, but the actual values do not mean much. For example, if 

𝑢(𝒑) = 100 and 𝑢(𝒒) = 500, we cannot say that 𝒒 is five times as good as 𝒑 (cardinal statement). 

We can only say that 𝒒 is preferred to 𝒑. 

Utility function 𝑢(⋅) is affine i.e. there can be multiple utility functions that describe the 

same set of preferences. One property of utility functions is that if 𝑢(𝒑) is a valid utility and 𝑓(⋅) 

is a monotonically increasing transformation (e.g. exponential functions), then 𝑓(𝑢(𝒑)) is also a 

valid utility function. 

In summary, it is useful to operate on preference relations with the use of utility function. 

It assigns a scalar value to a state as a representation of its utility. Consequently, utility functions 

allow a mathematical framework for preference learning. In addition, one can handle uncertainty 

associated with preferences by introducing Bayesian models for practical problems (Guo, 2011).  
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APPENDIX C. OTHER PREFERENCE ELICITATION METHODS 

Based on the relationship between utility function and preference probability, the original 

PI is equivalent to: 

𝑃𝐼 = 𝑝(𝑢(𝒙𝑡
∗) < 𝑢(𝒙)). 

To account for exploration, previous studies tried to modify the acquisition function by 

adding a trade-off parameter 𝜉 ≥ 0: 

𝑃𝐼 = 𝑝(𝑢(𝒙𝑡
∗) + 𝜉 < 𝑢(𝒙)). 

Higher 𝜉  leads to more exploration to help avoiding local maximum. However, the 

selection of tuning of 𝜉 is arbitrary and sensitive to the objective, which requires expertise and 

excessive effort to balance between efficacy (finding global maximum) and efficiency.  

An alternate acquisition function, the expected improvement (EI). EI, is more promising 

as it captures both the probability and the magnitude of improvement (Mockus et al. 1978):  

EI(𝒙) ≔ 𝔼(max{0, 𝑢(𝒙|𝜃𝑡 , 𝒟𝑡) − 𝑢(𝒙𝑡
∗|𝜃𝑡 , 𝒟𝑡)}) 

However, the formulation of EI does not support bounded utility function with fixed scale, 

while the adopted utility (Eq. (34)) always has a maximum value of 1 (𝑢(𝒙𝑡
∗|𝜃𝑡, 𝒟𝑡) ≡ 1), which 

would trap the exploitation at a fixed 𝒙 after the first step. 
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