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ABSTRACT

Power, Rolfe J. MSAAE, Purdue University, December 2019. Characterization of
Lunar Access Relative to Cislunar Orbits. Major Professor: Kathleen C. Howell.

With the growth of human interest in the Lunar region, methods of enabling

Lunar access including surface and Low Lunar Orbit (LLO) from periodic orbit in

the Lunar region is becoming more important. The current investigation explores

the Lunar access capabilities of these periodic orbits. Impact trajectories originating

from the 9:2 Lunar Synodic Resonant (LSR) Near Rectilinear Halo Orbit (NRHO)

are determined through explicit propagation and mapping of initial conditions formed

by applying small maneuvers at locations across the orbit. These trajectories yielding

desirable Lunar impact final conditions are then used to converge impacting transfers

from the NRHO to Shackleton crater near the Lunar south pole. The stability of

periodic orbits in the Lunar region is analyzed through application of a stability

index and time constant. The Lunar access capabilities of the Lunar region periodic

orbits found to be sufficiently unstable are then analyzed through impact and periapse

maps. Using the impact data, candidate periodic orbits are incorporated in the the

NRHO to Shackleton crater mission design to control mission geometry. Finally, the

periapse map data is used to determine periodic orbits with desirable apse conditions

that are then used to design NRHO to LLO transfer trajectories.
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1. INTRODUCTION

Recent years have seen an explosion in interest pertaining to operations on and around

the Moon. Manned missions seek to establish a permanent presence in the Lunar re-

gion, enabling scientific discovery for decades to come. Many of these mission concepts

leverage multi-body orbits presenting complex dynamical environments within which

mission design and operations must take place. Furthermore, fundamental to many

of these applications is access to the Lunar surface or Low Lunar Orbit (LLO) for

sample recovery, surface operations, and observation. NASA’s Gateway mission will

leverage a Near Rectilinear Halo Orbit (NRHO) to establish a human outpost in cis-

lunar space and a key mission objective for the program is Lunar surface and LLO

access [1, 2]. Consequently, design methodologies for Lunar access from the NRHO

are required including access to both the Lunar surface and LLO. The highly dy-

namic multi-body environment in the Lunar region presents challenges to the design

process in developing low-cost transfers with geometries that meet mission criteria.

The current analysis is performed within the Circular Restricted Three Body Model

(CRTBP) enabling the incorporation of the Earth’s gravitational influence. This in-

vestigation explores the Lunar access capabilities of the periodic orbits in the vicinity

of the Moon both in general as well as in the context of facilitating transfer design

from the NRHO to the Lunar surface or LLO. Such transfer design scenarios are

explored leveraging intermediate periodic orbits to for NRHO to Lunar surface/LLO

transfers.

1.1 Previous Contributions

In 1609, Johannes Kepler published Astronomia Nova defending the heliocentric

model of the solar system and refuting the previously dominant Ptolemaic system [3].



2

In this book, Kepler presented the first two of his three laws of planetary motion with

the third law published in 1619. Later in the 17th century, Newton published Principia

in 1687 presenting the foundation of classical mechanics, proving the phenomena

observed by Kepler [4], and giving a solution to the two-body problem using the

newly postulated laws of motion. Thus, the analytic study of the N -body problem,

i.e., the motion of N massive bodies moving under the influence of their mutual

gravitational attractions, was ignited. The analysis of a restricted three-body problem

first gained traction with Euler’s formulation using a synodic coordinate system in

1772 leading to the Jacobi integral of the motion [5]. The same year, Lagrange

discovered the five equilibrium solutions aptly denoted the Lagrange points. In 1878,

Hill demonstrated the forbidden regions created via the Jacobi integral allowing for

the bounding of motion without explicitly solving for particular solutions. One of

the greatest contributions in the study of the restricted three-body problem was the

completion of Poincaré’s Méthodes Nouvelles in 1899 emphasizing the “qualitative

aspects of celestial mechanics” [5]. Poincaré’s work in the three-body problem marked

a new era in the analysis of dynamical systems and gave rise to Dynamical Systems

Theory (DST) and led to the study of chaos theory.

1.2 Document Overview

The Lunar access characteristics of periodic orbits in the Lunar vicinity are deter-

mined in the context of a mission design scenario. The motivation for Lunar access

and the incorporation of intermediate periodic orbits is developed. Periodic orbits in

the Circular Restricted Three Body Problem are characterized by stability and the

Lunar access capabilities of the unstable periodic orbits are determined. These Lunar

access capabilities are the impact locations on the Lunar surface, impact conditions

such as speed and angle, and the altitudes and inclinations of the apse conditions.

The obtained access characteristics are then used to design Lunar impact trajectories

and transfers to Low Lunar Orbit (LLO). The current investigation is organized as
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• Chapter 2: This chapter presents the necessary background information re-

garding the Circular Restricted Three Body Problem (CRTBP), corrections,

and dynamical systems theory. The equations of motion for the CRTBP are de-

rived and the resulting integral of the motion is determined. Forbidden regions

leveraging the integral of the motion are described and visualized. Linear vari-

ational equations are investigated with respect to the equilibrium solutions of

the CRTBP. Furthermore, parallel shooting corrections methods are introduced

along with numerical continuation schemes for the construction of families of

solutions. Finally, periodic solutions within the CRTBP are detailed along with

their associated manifold structures.

• Chapter 3: This chapter presents a motivating example for the investigation of

the Lunar access characteristics of periodic orbits in the Lunar region. The 9:2

Lunar Synodic Resonant (LSR) Near Rectilinear Halo Orbit (NRHO) planned

for use in NASA’s Gateway program is introduced along with Shackleton crater

presenting a possible impact destination. Impact characteristics of trajectories

originating from the 9:2 NRHO are obtained via application of small maneuvers

across the orbit are analyzed graphically. Trajectories impacting at Shackleton

crater at epochs spanning 2023 are designed using the obtained impact data.

• Chapter 4: This chapter presents the stability and Lunar access characteristics

of periodic orbits in the lunar region. The Lunar periodic orbits of interest are

identified and displayed. Furthermore, the stability index and time constant

are introduced as methods of assessing the stability of a periodic orbit and the

speed that manifold structures depart. These metrics are used to determine

periodic orbit families with unstable manifold structures and which of these

structures present sufficiently fast departure rates. The impact locations and

characteristics of these manifold structures are determined as well as the apse

altitudes and inclinations with respect to the Moon.
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• Chapter 5: This chapter revisits the application presented in Chapter 3, i.e.,

the impact trajectory design from the 9:2 LSR NRHO to the Shackleton crater

locations. However, the design is performed using the unstable intermediate

periodic orbits analyzed in Chapter 4. Candidate intermediate orbits are de-

termined based on the impact characterization determined in Chapter 4 and

transfers to the intermediate orbit from the NRHO are found via Poincaré

maps. Additionally, transfers are found to a 100 km polar LLO using interme-

diate orbits between the NRHO and LLO leveraging the apse characterizations

with respect to the Moon developed in Chapter 4.

• Chapter 6: This chapter presents a summary of this investigation including the

usage of intermediate periodic orbits to facilitate NRHO to the Lunar surface

and LLO as well as the general characteristics of Lunar access among periodic

orbits in the Lunar region. Furthermore, recommendations regarding future

work are offered.
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2. BACKGROUND

Fundamental to any investigation into the motion of spacecraft is the establishment

of a dynamical model that allows for the mathematical representations describing the

motion. Various models have been developed in the gravitational problem that differ

in terms of the number of primary bodies, the restrictions on the motions of those

bodies, and the gravitational force fields. A low-fidelity but fundamental model is the

two-body model. The two-body model predicts the movement of a point mass relative

to another point mass and influenced by their mutual gravitational interaction. The

relative formulation delivers an analytical solution that has been extensively studied

and applied successfully for preliminary analysis in many spacecraft missions. While

effective in many cases, the two-body model does not accurately predict motion in

regions of space where the influence of a third body cannot be ignored nor represented

by a small perturbation. Unfortunately, the incorporation of even a single additional

body into the model precludes any known closed-form analytical solutions. Multi-

body models that include three or four gravitational bodies require numerical analysis

but benefit from application of dynamical systems theory. The N -Body problem

incorporates as many bodies as may influence the behavior in the Newtonian gravity

model. However, due to the complexities in the N -Body problem, the analysis offers

fewer general conclusions than simpler models. The Circular Restricted Three-Body

Problem (CRTBP), however, provides significant insight given a set of reasonable

assumptions. A simplified multi-body formulation enables the application of powerful

concepts from Dynamical Systems Theory (DST) to the mission design problem.
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2.1 The N -Body Problem

In the Principia, Isaac Newton introduced the relationship between the force

applied to a body and the resulting change in the body’s state [4]. The law of motion

from Newton stated, in modern terms, that the force applied to a particle is equal to

the time rate of change of its momentum, i.e.

F =
d

dt
(MR′) (2.1)

where F is the net force applied to the particle, M is the mass of the particle, R is

the particle’s position vector, and the prime symbol represents the time derivative

with bold symbols denoting vector quantities. Assuming that the mass is constant,

Equation (2.1) becomes the familiar

F = MR′′ (2.2)

where R′′ is the generic acceleration of the particle as viewed by an inertial observer.

This inertial derivative may also be expressed in the more descriptive Leibniz notation

as

R′′ =
d2R

dt2

I

where the superscript I denotes a derivative with respect to an inertial observer. The

explicit notation for the frame of differentiation as well as the dependent variable

becomes valuable as multiple frames and independent variables are incorporated.

In the Principia, Newton also introduced the Universal Law of Gravitation de-

scribing two massive particles that interact gravitationally. Using this law, the force

exerted on a particle with mass M2 by a second particle with mass M1 is expressed

as

F12 = −GM1M2

R3
12

R12 (2.3)
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where G is the universal gravitational constant (approximately 6.674 × 10−11 m3 ·

kg−1 · s−2) and R12 is the position vector locating M2 with respect to M1. Equations

(2.1) and (2.3) are combined to develop the set of ordinary differential equations

describing the motion of N particles (or bodies that are centrobaric such that they can

be represented as particles for modeling the gravity force) interacting gravitationally.

Formally, given N centrobaric masses Mi where i = 1, 2, 3, . . . , N the differential

equations describing the motion of the bodies are

MiR
′′ +G

N∑
j=1,j 6=i

MiMj

R3
ji

Rji = 0 where i = 1, . . . , N. (2.4)

For every body added to the general N -body problem, as described in Equation (2.4),

six dimensions are added to the phase space. Therefore, the closed-form analytical

solution to Equation (2.4) requires 6N first integrals of the motion. However, in

1890, Poincaré proved that no more than 10 algebraic integrals – with respect to the

time, position, and velocity coordinates only – exist [6]. Therefore, even with only two

bodies, no closed-form solution is available as 12 first integrals are required. A solution

does exist as an infinite series, but is impractical to apply to spacecraft mission

design [6]. While the all-encompassing nature of the N -body problem offers a higher-

fidelity model for gravitational interactions at the scale of interest for spaceflight,

it fails to yield the rich analytical insight offered by models with fewer bodies and

more assumptions. Therefore, a trade-off exists between the fidelity of the model

and the ease of the analysis. The Circular Restricted Three-Body Problem (CRTBP)

provides a middle ground in this trade offering higher fidelity analysis while possessing

desirable structure.

2.2 The Circular Restricted Three-Body Problem

In terms of the multi-body problem, the fidelity scale ranges from two to N bodies.

Both extremes are employed extensively to great effect, but a satisfactory model offers
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the ability to leverage dynamical structures not obviously available in the ephemeris

model and predict motion with greater accuracy than the two-body model. The

Circular Restricted Three-Body Problem (CRTBP) yields significant structures and

insight while representative of a common configuration for the bodies.

2.2.1 Assumptions in the CRTBP

In the gravitational problem, when N = 2, a relative formulation yields a Kep-

lerian solution, but no closed-form analytical solution to the N -body problem exists

when N ≥ 3. Therefore, to explore more complex motion beyond the two-body

problem, one more body is added to offer new behaviors. Yet, the motion of three

bodies under Newton’s Law of Universal Gravitation delivers a system representing an

18-dimensional phase space; with only 10 known integrals, the differential equations

are not solvable. The complexity is reduced, however, by introducing two additional

assumptions to yield the circular restricted three-body problem.

The first of the fundamental assumptions in the CRTBP pertains to the relative

masses of the three bodies. For spaceflight applications, the three-body problems

of interest most often involves Sun-Planet-Spacecraft (e.g., Sun-Earth-Spacecraft) or

Planet-Moon-Spacecraft (e.g., Mars-Phobos-Spacecraft) configurations. Therefore, a

reasonable assumption for many applications is a third body (the spacecraft) with a

mass that is negligible in comparison to the masses of the other two bodies, labelled

primaries. Thus,

M3 << M1,M2 (2.5)

where M3 is the mass of the spacecraft and M1 and M2 are the masses of the pri-

maries. The validity of this assumption is dependent on the system, of course. The

consequence of this assumption is that the third body does not affect the motion of

the two primary bodies. The two primary bodies form an isolated two-body system

whose solution for motion is a conic orbit.
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The second fundamental assumption constrains the motion of the two primary

bodies. The systems of interest include primaries that are commonly in elliptical or-

bits with respect to one another (in the two-body approximation). For convenience,

the two primary bodies are assumed to be moving on circular orbits about their

mutual barycenter. A key outcome of this assumption is the removal of time from

the equations of motion forming an autonomous dynamical system. Various eccen-

tricities for primary bodies in the solar system are listed in Table 2.1. Most of the

planetary systems possess relatively low eccentricities with the obvious exception of

Sun-Mercury. Furthermore, the Moon, as well as Phobos and Titan, moves in rela-

tively circular orbits about their respective primaries. Therefore, the assumption of

circular orbits for many primary systems is representative for numerous scenarios in

modern spaceflight.

Table 2.1.: Eccentricities of Common Systems

System Eccentricity
Sun-Mercury 0.2056
Sun-Venus 0.0068
Sun-Earth 0.0167
Sun-Mars 0.0934
Sun-Jupiter 0.0483
Sun-Saturn 0.0560
Sun-Uranus 0.0473
Sun-Neptune 0.0086
Sun-Pluto 0.2482
Earth-Moon 0.0549
Mars-Phobos 0.0151
Saturn-Titan 0.0288

The circular restricted three-body problem balances the relative simplicity of the

two-body problem and the higher fidelity of the complete N -body problem. Dynam-

ical structures unavailable in either the two-body or ephemeris models arise and are

successfully leveraged for trajectory design in multi-body regimes.
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2.2.2 Derivation of the Equations of Motion

The derivation of the equations of motion originates with the application of New-

ton’s Law of Motion, Equation (2.2), or an equivalent form (e.g., Lagrangian or

Hamiltonian treatments). The CRTBP assumptions are then applied to the resulting

equations of motion to yield a dimensional set of the governing equations of motion

in the CRTBP. The dimensional equations of motion are then nondimensionalized to

produce a set of equations of motion characterized by a single system parameter.

Newton’s Law of Universal Gravitation is applied to the three bodies constructing

second order differential equations governing their motions that are simplified through

the CRTBP assumptions. Application of Equations (2.2) and (2.3) to the general

three body problem yields

R′′1 = −GM2

R3
21

R21 −G
M3

R3
31

R31,

R′′2 = −GM1

R3
12

R12 −G
M3

R3
32

R32,

R′′3 = −GM1

R3
13

R13 −G
M2

R3
23

R23.

However, the assumption that M3 << M1,M2 eliminates the M3 terms from the

equations governing the acceleration of M1 and M2 producing

R′′1 = −GM2

R3
21

R21, (2.6)

R′′2 = −GM1

R3
12

R12, (2.7)

R′′3 = −GM1

R3
13

R13 −G
M2

R3
23

R23. (2.8)

Notice, Equations (2.6) and (2.7) decouple from Equation (2.8) and form an isolated

two-body problem. This decoupling renders the barycenter of M1 and M2 an inertially

fixed point. Because the assumption of circular motion has not been applied, the

inertial nature of the M1-M2 barycenter holds in the case of elliptical motion as well.
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However, assuming the initial conditions of the system are such that M1 and M2 are

in circular orbits about their mutual barycenter, the system is depicted in Figure

2.1. The primaries, P1 and P2, are in circular orbits about their mutual barycenter,

B. The differential equation for the motion for the third body (Equation (2.8)) is,

therefore, analyzed independently. Figure 2.1 also demonstrates the addition of a

rotating reference frame with the x̂ axis oriented along the P1-P2 line. Because the

primary system orbit is assumed to be circular, this rotating reference frame will

rotate with θ̇ = N̄ where N̄ is the mean motion of the system.

R13

R23

BP1

P2

X̂

Ŷ

θ

x̂
ŷ

R1

R2

R3

P3

Figure 2.1.: Schematic of CRTBP System Configuration

While a particular system is the focus for a specific application, generalization

of the equations of motion to multiple systems proves to be beneficial for analy-

sis. As formulated in Equation (2.8), the equations of motion are parameterized

by the masses of the three primaries and the radius of the circular paths for the

primaries P1 and P2. Additionally, the problem has three fundamental dimensions:
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mass, length, and time. Therefore, the system is nondimensionalized to yield a set of

differential equations with a single nondimensional parameter. To achieve this nondi-

mensionalization, three characteristic quantities are introduced; m∗, l∗, and t∗ are the

characteristic mass, characteristic length, and characteristic time, respectively. These

characteristic quantities are defined as

m∗ = M1 +M2, (2.9)

l∗ = R1 +R2, (2.10)

t∗ =

√
l∗3

Gm∗
. (2.11)

Additionally, as R3 is the vector quantity of interest, the definition R = R3 simplifies

the notation. To nondimensionalize Equation (2.8) with dimension
[
length/time2

]
,

both sides are multiplied by a factor t∗2/l∗ yielding

t∗2

l∗
· d

2R

dt2

I

= −GM1

Gm∗
· l
∗3

R3
13

· R13

l∗
− GM2

Gm∗
· l
∗3

R3
23

· R23

l∗
. (2.12)

In the current form, Equation (2.12) is dimensionless. However, further notational

simplification aids practical application. Let a nondimensional time, τ , be defined as

τ =
t

t∗
, (2.13)

so a kth order derivative with respect to dimensional time, t, is written in terms of τ

as
dkx

dτ k
= t∗k

dkx

dtk
. (2.14)
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Furthermore, let r, r13, and r23 be the nondimensional forms of R, R13, and R23,

respectively, i.e.,

r =
R

l∗
, (2.15)

r13 =
R13

l∗
, (2.16)

r23 =
R23

l∗
. (2.17)

Combining the definitions of τ , r, r13, and r23 with Equation (2.12) yields

d2r

dτ 2

I

= −M1

m∗
· r13
r313
− M2

m∗
· r23
r323

. (2.18)

Defining the nondimensional mass parameter, µ, as µ = M2/m
∗ further simplifies the

equation to

d2r

dτ 2

I

= −(1− µ) r13
r313

− µr23
r323

. (2.19)

Equation (2.19) is a nondimensonal set of ordinary differential equations that are

parameterized by a single nondimensional parameter, µ, allowing for the analysis of

different CRTBP systems simultaneously on the condition that they share a common

µ value.

Due to the introduction of a rotating reference frame, the kinematic expression for

the inertial acceleration is derived incorporating the angular velocity of the working

frame with respect to the inertial frame. The position vector, r, is written in terms

of the rotating coordinate frame formed by the orthonormal triad x̂, ŷ, and ẑ:

r = xx̂ + yŷ + zẑ (2.20)

where the measure numbers x, y, and z are nondimensional lengths. This frame

rotates with respect to the inertial frame with a constant dimensional angular velocity,

N̄ , equal to the mean motion of the P1-P2 two-body system. The mean motion has
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dimensions of [1/time], and is, therefore, transformed into the nondimensional mean

motion, n, as

n = N̄t∗ =

√
Gm∗

l∗3
·
√

l∗3

Gm∗
= 1. (2.21)

Because the application of Newton’s Laws of Motion require the acceleration to be

inertial, a kinematic expansion on the left side of Equation (2.19) is performed to write

the equation in terms of the dependent variables x, y, and z and their derivatives.

Consequently, the inertial derivative of r is then

dr

dτ

I

=
dr

dτ

R

+ nẑ× r

= (ẋ− ny) x̂ + (ẏ + nx) ŷ + żẑ

where the superscript R denotes the derivative taken with respect to the rotating

frame and the dot above a variable represents the derivative with respect to the

nondimensional time, τ . The second derivative again yields the kinematic expression

for acceleration:

d2r

dτ 2

I

=
(
ẍ− 2nẏ − n2x

)
x̂ +

(
ÿ + 2nẋ− n2y

)
ŷ + z̈ẑ. (2.22)

The circular orbits of the two primaries allow simple expressions for r13 and r23 in

the rotating frame. A key advantage of the rotating frame application is that the

quantities r13 and r23 have no explicit dependence on time. This property allows the

CRTBP equations of motion to be autonomous. Specifically, r13 and r23 are expressed

as

r13 = (x+ µ) x̂ + yŷ + zẑ, (2.23)

r23 = (x− 1 + µ) x̂ + yŷ + zẑ. (2.24)
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The nondimensional equations of motion for the Circular Restricted Three-Body

Problem (CRTBP) are, therefore, written

ẍ− 2nẏ = n2x− (1− µ) (x+ µ)

r313
− µ (x− 1 + µ)

r323
, (2.25)

ÿ + 2nẋ = n2y − (1− µ) y

r313
− µy

r323
, (2.26)

z̈ = −(1− µ) z

r313
− µz

r323
. (2.27)

Numerical integration of Equations (2.25) - (2.27) results in trajectories reflecting the

motion of P3 in the rotating frame under the assumptions of the CRTBP. Importantly,

Equations (2.25) - (2.27) are autonomous and independent of a particular epoch.

Coupled and nonlinear, the equations of motion for the CRTBP lack a closed form

analytical solution but do possess useful properties such as a first integral.

The equations of motion in the CRTBP from Equations (2.25) - (2.27) expose

multiple symmetries to be exploited in the analysis. Given a solution to the equations

of motion, Γ0(τ), where

Γ0(τ) =
[
x(τ) y(τ) z(τ) ẋ(τ) ẏ(τ) ż(τ)

]T
,

the trajectory Γ1(τ) is also a solution where

Γ1(τ) =
[
x(τ) y(τ) −z(τ) ẋ(τ) ẏ(τ) −ż(τ)

]T
.

This relationship indicates that the CRTBP possesses symmetry across the xy plane.

Additionally, if τ ′ = −τ , the trajectory

Γ2(τ) =
[
x(τ) −y(τ) z(τ) −ẋ(τ) ẏ(τ) −ż(τ)

]T
also satisfies the CRTBP equations of motion. This time-invariance symmetry prop-

erty implies that for every solution to the CRTBP, there exists another solution
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reflected across the xz plane in negative time. These forms of symmetry offer oppor-

tunities when constructing families of periodic orbits.

Introduction of a pseudopotential function, Ω, allows for a more succinct repre-

sentation of the CRTBP equations of motion. The pseudopotential is defined as

Ω =
1

2
n2
(
x2 + y2

)
+

1− µ
r13

+
µ

r23
. (2.28)

The pseudopotential, therefore, is a function only of the position. The equations of

motion are written in terms of Ω as follows,

ẍ− 2nẏ = Ωx, (2.29)

ẍ+ 2nẋ = Ωy, (2.30)

z̈ = Ωz (2.31)

where

Ωx =
dΩ

dx
= x− (1− µ) (x+ µ)

r313
− µ (x− 1 + µ)

r323
, (2.32)

Ωy =
dΩ

dy
= y − (1− µ) y

r313
− µy

r323
, (2.33)

Ωz =
dΩ

dz
= −(1− µ) z

r313
− µz

r323
. (2.34)

The formulation of the equations of motion in terms of the gradient of pseudopotential

in Equations (2.29), (2.30), and (2.31) display similarities with the application the

gravitational potential function in the inertial formulation. The equations of motion

accommodate the gradient of Ω, but require addition of several terms because of the

formulation in the rotating frame. Therefore, total mechanical energy is not conserved

in the CRTBP. The lack of energy conservation is due to the assumption that the

motion of P3 does not affect that of P1 or P2 because M3 << M1,M2; this produces

a noncoherent system allowing for total mechanical energy to vary.
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2.2.3 Equilibrium Solutions

A fundamental step in the analysis of nonlinear differential equations is the search

for equilibrium solutions. The CRTBP possesses five equilibrium points denoted

Lagrange or libration points. These points are located by solving the equations of

motion for r when ṙ = r̈ = 0. This substitution yields

xeq =
(1− µ) (xeq + µ)

r313,eq
+
µ (xeq − 1 + µ)

r323,eq
, (2.35)

yeq =
(1− µ) yeq
r313,eq

+
µyeq
r323,eq

, (2.36)

0 =
(1− µ) zeq
r313,eq

+
µzeq
r323,eq

. (2.37)

Equations (2.35) - (2.37) are coupled through the r13,eq and r23,eq terms complicating

their solution. However, a key observation appears in Equation (2.37), i.e., both

terms will have the same sign, thus, all equilibrium solutions will be in the xy plane

(zeq = 0). If the position of P3 includes an out-of-plane component, then the net force

in the z direction is always directed towards the plane prohibiting any equilibrium

fixed state.

By inspection, Equation (2.36) is satisfied if yeq = 0. This condition restricts the

search to points along the straight line connecting the two primaries and extending in

both directions. Thus, the search for Lagrange points on this line simplifies Equation

(2.35) to

xeq =
(1− µ) (xeq + µ)

|xeq + µ|3
+
µ (xeq − 1 + µ)

|xeq − 1 + µ|3
. (2.38)

The existence of the absolute values in the denominator of Equation (2.38) prevents

cancellation of terms. To remedy this complexity, the coefficients A1 and A2 are

introduced such that

A1 = sgn (xeq + µ) , (2.39)

A2 = sgn (xeq − 1 + µ) . (2.40)
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Therefore, Equation (2.38) is rewritten as

xeq =
A1 (1− µ)

(xeq + µ)2
+

A2µ

(xeq − 1 + µ)2
. (2.41)

Figure 2.2 displays the search space, divided via the signs of A1 and A2. Convention-

P1 P2

B

A1 < 0
A2 < 0

A1 > 0
A2 < 0

A1 > 0
A2 > 0

x axis

Figure 2.2.: Collinear Lagrange Point Search Regions

ally, the Lagrange point to the left of P1 is labeled L3, the Lagrange point between

the two primaries is labeled L1, and the Lagrange point to the right of P2 is labeled

L2. Polynomial approximations for the location of the Lagrange points are presented

by Szebehely [5], in consistent notation, as

xL1 = 1− µ− ν
(

1− 1

3
ν − 1

9
ν2 − 23

81
ν3 +

151

243
ν4 − 1

9
v5
)

+O(ν7), (2.42)

xL2 = 1− µ+ ν

(
1 +

1

3
ν − 1

9
ν2 − 31

81
ν3 − 119

243
ν4 − 1

9
ν5
)

+O(ν7), (2.43)

xL3 = −µ− 1 + ν̃

(
1 +

23

84
ν̃2 +

23

84
ν̃3 +

761

2352
ν̃4 +

3163

7056
ν̃5 +

30703

49392
ν̃6
)

+O(ν̃)8,

(2.44)

where

ν =
(µ

3

) 1
3
, (2.45)

ν̃ =
7µ

12
(2.46)
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The resulting approximations are then further refined to the desired tolerance using

a Newton-Raphson or similar root-finding algorithm.

Beyond the three equilibrium solutions present on the x-axis, two additional equi-

librium solutions exist off of the x-axis. Returning to Equation (2.36), if r13,eq is

equivalent to r23,eq, i.e., the point is equidistant from the primaries, then this equa-

tion is satisfied. Let r13,eq = r23,eq = r̃ be the distance to the primaries in this special

configuration, then Equations (2.35) and (2.36) become

xeq
(
r̃3 − 1

)
= 0,

yeq
(
r̃3 − 1

)
= 0.

Hence,

r̃ = 1.

Therefore, the two remaining equilibrium solutions are determined through the inter-

sections of the two unit circles centered at P1 and P2. The value of xeq is evaluated

by equating the respective equations for a circle as

(xeq + µ)2 + y2 = (xeq − 1 + µ)2 + y2

⇒ xeq =
1

2
− µ.

Substituting back into the original circle equation yields the corresponding yeq values

of ±
√
3
2

. Conventionally, the equilibrium point in the upper half plane is denoted L4

while the equilibrium point in the lower half plane is denoted L5, i.e.

L4: xL4 = 1
2
− µ yL4 =

√
3
2
,

L5: xL5 = 1
2
− µ yL5 = −

√
3
2
.

Figure 2.3 displays the location of the Lagrange points in the CRTBP. The two

equilibrium solutions off of the x-axis, L4 and L5, form two equilateral triangles along

with P1 and P2 and are, therefore, labelled the triangular or equilateral points. The
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triangular points are located on the circular orbit of P2 but phase shifted 60◦ in either

direction. This behavior is most obvious in observations of the Trojan asteroids near

L4 and L5 in the Sun-Jupiter system.

x̂

ŷ

P1

P2

L1 L2L3

L4

L5

Figure 2.3.: CRTBP Lagrange Points

2.2.4 The Jacobi Integral

No closed-form analytical solution exists for the CRTBP as six first integrals of

the motion do not exist. However, one constant of integration is available. This single

integral of the motion is an energy-like quantity and is determined, similar to most

energy integrals, by first using a dot product between the velocity and acceleration

vectors, i.e.

ṙ · r̈ = ẋẍ+ ẏÿ + żz̈. (2.47)

The expression in Equation (2.47) is also written in terms of the pseudopotential

function as

ẋẍ+ ẏÿ + żz̈ = ẋΩx + ẏΩy + żΩz. (2.48)
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The left side is straightforwardly transformed into the derivative of the square of

velocity with respect to τ . The right side is the total derivative of the pseudopotential

function with respect to τ . Therefore, both sides of this equation are rewritten in

terms of derivatives with respect to τ as

d

dτ

(
ẋ2

2
+
ẏ2

2
+
ż2

2

)
=
dΩ

dτ
. (2.49)

Integrating yields

J = 2Ω− v2 (2.50)

where J is the constant of integration, labelled the Jacobi constant or Jacobi integral

and v is the velocity magnitude of P3 as viewed in the rotating frame. Note that as

the velocity of P3 increases in magnitude, the Jacobi integral decreases. This negative

relationship implies that a spacecraft travelling at higher velocities possesses a lower

value of J than a spacecraft at the same position with a lower velocity. The negative

relationship of Jacobi and speed is contrary to the relationship between speed and

the classical definition of mechanical energy.

The Jacobi integral is the only integral available in the CRTBP, but offers sig-

nificant information, both analytical and numerical. For example, as a constant of

integration, the Jacobi integral remains fixed over any ballistic arc, so variations in

J observed in a computer-generated numerical solution provide insight into the error

present along the integrated path. Additional applications of the Jacobi constant

include dimension reduction of the CRTBP and regions of exclusion.

2.2.5 Zero Velocity Surfaces

The existence of the Jacobi integral does offer some insight into the behavior in

the CRTBP. Solving Equation (2.50) for velocity yields

v =
√

2Ω− J. (2.51)
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Because the velocity of P3 must be real, the quantity 2Ω − J is necessarily non-

negative. Therefore, given P3 at a particular value of J , regions of space that are not

available are identifiable. These regions satisfy the inequality

Ω(r) <
J

2
(2.52)

where the position dependence of Ω is emphasized. The unavailable, or forbidden,

regions are bounded by the loci of positions satisfying J = 2Ω; this equality along

with Equation (2.50) also mandate v = 0 along these bounding loci, so the loci are

denoted Zero Velocity Surfaces (ZVSs).

If analysis is restricted to the xy plane, the points bounding the forbidden regions

are labelled the Zero Velocity Curves (ZVCs) and are formed from the cross section of

the corresponding ZVSs. The ZVCs, like the ZVSs, are functions of µ, the parameter

defining the system, and the value of J . Sample ZVCs in the Earth-Moon system for

various values of J are plotted in Figure 2.4. The regions of exclusion are shaded in

gray and are bounded by the ZVCs in black. As the Jacobi constant drops, the ZVCs

shrink until disappearing from the plane. The fundamental structure of the ZVCs

changes as J passes through the values of the Jacobi constant corresponding to each

Lagrange point. For example, Figure 2.4(a) illustrates the ZVC when P3 is at a Jacobi

constant value that is higher than the values corresponding to all 5 Lagrange points

and at this energy level 3 different regions of motion exist: motion around P1, motion

around P2, and motion external to the system. It is not possible for P3 to move

between these regions of motion because entering an excluded region is not possible

as any change to the boundaries requires a maneuver, i.e., energy change. However,

if J is sufficiently reduced, then a gateway opens at L1 as apparent in Figure 2.4(b).

The sufficiently higher energy of P3 allows movement between the region surrounding

the Earth and that near the Moon. Figure 2.5 demonstrates that when J = JL1 the

ZVC forms a cusp at L1. When the Jacobi constant is further reduced the gateway

at L1 expands. Further reducing the Jacobi constant below JL2 , a gateway opens
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beyond the Moon. The ZVCs then shrink further until J = JL3 when the gateway at

L3 opens and the ZVCs split forming regions around L4 and L5. These regions shrink

until disappearing from the plane at J = JL4 = JL5 as observed in Figure 2.4(e).

The relationship between Jacobi constant and regions of exclusion provides infor-

mation on necessary conditions for certain mission applications. For example, given

a spacecraft departing from Low Earth Orbit (LEO) enroute to the Moon, the initial

Jacobi constant must be less than JL1 to allow the existence of an open L1 gateway.

At larger values, no feasible transfer exists between the Earth and Lunar regions.

Similar logic is applied to mission concepts that exit the system. Alternatively, to

remain in the Earth or Lunar region, reducing energy such that J > JL1 ensures

remaining in their desired region.
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(a) J > JL1
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(b) JL1 > J > JL2
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(c) JL2 > J > JL3
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(d) JL3 > J > JL4/L5
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(e) JL4/L5 > J

Figure 2.4.: Zero Velocity Curves (ZVCs) in the Earth-Moon System at Various
Jacobi Constant Values
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Figure 2.5.: ZVC in the Earth-Moon System When J = JL1

As previously mentioned, the ZVC reflects a cross section of the Zero Velocity

Surface (ZVS). The conclusions from inspection of the ZVCs hold for the ZVSs as

well. Figure 2.6 displays the ZVS for the same Jacobi constant value as the ZVC in

Figure 2.4(a). Two spheres surround the Earth and Moon bounding isolated regions of

motion. Additionally, the ZVS prevents objects exterior to the system from entering.



26

Earth

Moon

Figure 2.6.: ZVS in the Earth-Moon System when J > JL1

Figure 2.7 displays ZVSs at Jacobi constant values that are less than that of L4

and L5 ;the ZVCs disappear in the plane, but the ZVS continue to exist beyond the

xy-plane. In this scenario, observe that there is one region of motion, that is P3

may move between the region relatively closely surrounding P1 and P2 or depart the

system without any change in energy, however inaccessible regions of space still exist

above and below the plane that P3 can never reach at the current energy. These

regions of inaccessibility persist until J ≤ 0 at which the spacecraft may reach any

finite location in three dimensional space.

Earth

Moon

Figure 2.7.: ZVS in the Earth-Moon System when J < JL4/5
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2.2.6 Linear Variational Equations Relative to the Collinear Lagrange

Points

First-order linear variational equations approximating motion near the collinear

Lagrange points are analytically solvable and characterize the motion in the near-

vicinity surrounding these Lagrange points. The results obtained from the linear

system provide a good first approximation for the behavior. The linear variational

equations offer critical insight into the stability characteristics of the Lagrange points.

In addition to providing stability information, the solutions to the linear variational

equation also offer good first guesses for targeting algorithms in the full nonlinear

model.

The linear equations are derived by expanding a set of variational equations in

the vicinity of the collinear Lagrange points. The first-order form of the equations of

motion are written as

f(x) =



ẋ

ẏ

ż

2ẏ + Ωx

−2ẋ+ Ωy

Ωz


. (2.53)

Let xLi
be defined as the six-dimensional state of the Lagrange point and let δx

represent a six-dimensional variation from xLi
. Therefore, the state of P3 is expressed

as

x = xLi
+ δx. (2.54)

The vector δx is six-dimensional to reflect the displacement in both position and

velocity of P3 from the Lagrange point of interest. A Taylor series expansion relative
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to the Lagrange point enables the formulation of the variational equations of motion

for δx. This Taylor expansion is

ẋLi
+ δẋ = f (xLi

) +
df

dx

∣∣∣∣
xLi

δx +O
(
|δx|2

)
. (2.55)

By definition ẋLi
= f (xLi

) = 0, so ignoring terms of order 2 and higher, the linear

variational equations are

δẋ ≈ df

dx

∣∣∣∣
xLi

δx. (2.56)

Note that the relationship in Equation (2.56) is approximate due to the removal of the

higher order terms. The matrix df
dx

is the symmetric Jacobian matrix corresponding

to the equations of motion and is constructed as

df

dx
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ωxx Ωxy Ωxz 0 2 0

Ωyx Ωyy Ωyz −2 0 0

Ωzx Ωzy Ωzz 0 0 0


(2.57)
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where the second order partial derivatives of the pseudopotential function, Ωij, are

Ωxx = 1− 1− µ
r313

− µ

r323
+

3 (1− µ) (x+ µ)2

r513
+

3µ (x− 1 + µ)2

r523
, (2.58)

Ωyy = 1− 1− µ
r313

− µ

r323
+

3 (1− µ) y2

r513
+

3µy2

r523
, (2.59)

Ωzz = −1− µ
r313

− µ

r323
+

3 (1− µ) z2

r513
+

3µz2

r523
, (2.60)

Ωxy =
3 (1− µ) (x+ µ) y

r513
+

3µ (x− 1 + µ) y

r523
= Ωyx, (2.61)

Ωxz =
3 (1− µ) (x+ µ) z

r513
+

3µ (x− 1 + µ) z

r523
= Ωzx, (2.62)

Ωyz =
3 (1− µ) yz

r513
+

3µyz

r523
= Ωzy. (2.63)

Because df
dx

is evaluated at each Lagrange point, each constant equilibrium solution

presents a different linear system and potentially different qualitative stability char-

acteristics. However, for each libration point, the variational equations (Equation

(2.56)) form a linear homogeneous system with constant coefficients and, therefore,

a closed-form analytical solution exists.

The locations of the Lagrange points in the CRTBP offers further simplifications

to the variational equations. Specifically, because all Lagrange points are on the xy

plane, Ωxz = Ωzx = Ωyz = Ωzy = 0 simplifying the Jacobian to

df

dx

∣∣∣∣
xLi

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ωxx Ωxy 0 0 2 0

Ωyx Ωyy 0 −2 0 0

0 0 Ωzz 0 0 0


xLi

. (2.64)
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Clearly, the matrix now decouples the linear in-plane and out-of-plane modes effec-

tively forming two isolated linear systems:δżδz̈
 =

 0 1

Ωzz 0


xLi

δzδż
 (2.65)

and 

δẋ

δẏ

δẍ

δÿ


=


0 0 1 0

0 0 0 1

Ωxx Ωxy 0 2

Ωyx Ωyy −2 0


xLi



δx

δy

δẋ

δẏ


. (2.66)

This decoupling allows the two modes of motion to be analyzed separately and their

resulting solutions may be superimposed to generate more complex types of motion.

Analyzing the out-of-plane motion, the equation is solved analytically resulting in

a description of simple harmonic motion. The scalar out-of-plane variational equation

is written simply in second order form as

δz̈ − Ωzzδz = 0. (2.67)

Furthermore, at each Lagrange point, Ωzz < 0, thus, Equation (2.67) is equivalent to

a harmonic oscillator with frequency ωz =
√
−Ωzz. (Additionally, at L4 and L5, the

expression for Ωzz is always unity and therefore the out-of-plane frequency for L4 and

L5 is always 1.) In general, the scalar solution to the out-of-plane equation is

δz(τ) = δz0 cosωzτ +
δż0
ωz

sinωzτ (2.68)

where δz0 = δz(0) and δż0 = δż(0). The accuracy of this result is consistent with

Lyapunov stability analysis.
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The in-plane variational equations reduce to a fourth order coupled system of

linear differential equations. Following the analysis of Szebehely [5], the matrix de-

terminant,

det


λI −


0 0 1 0

0 0 0 1

Ωxx Ωxy 0 2

Ωyx Ωyy −2 0


xLi


= 0 (2.69)

yields the characteristic polynomial

λ4 + (4− Ωxx − Ωyy)λ
2 +

(
ΩxxΩyy − Ω2

xy

)
= 0. (2.70)

At the collinear points, y = 0 and therefore Ωxy = 0; in addition, Ωxx > 0 and

Ωyy < 0. Furthermore, defining Λ = λ2 allows the characteristic polynomial in the

following form:

Λ2 + 2K1Λ−K2
2 = 0 (2.71)

where

K1 =
1

2
(4− Ωxx − Ωyy) , (2.72)

K2
2 = −ΩxxΩyy. (2.73)

Solving this quadratic equations yields the solutions

Λ1,2 = −K1 ±
√
K2

1 +K2
2 . (2.74)
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Given the signs on the quantities Ωxx and Ωyy, K
2
2 is always positive. Therefore,

Λ1 > 0 and Λ2 < 0. Subsequently,

λ1,2 = ±
√

Λ1 ∈ R1, (2.75)

λ3,4 = ±j
√
|Λ2|. (2.76)

(2.77)

Therefore, λ1 and λ2 correspond to the unstable and stable modes of the system,

respectively, while λ3 and λ4 correspond to a two-dimensional center subspace pro-

ducing periodic motion.

The solution for in-plane motion is determined through reduction of the general

solution to the solutions containing only center mode behavior. The general solution

for the in-plane system of equations corresponding to the collinear Lagrange points is

δx(τ) =
4∑
i=1

aie
λiτ , (2.78)

δy(τ) =
4∑
i=1

bie
λiτ , (2.79)

δẋ(τ) =
4∑
i=1

aiλie
λiτ , (2.80)

δẏ(τ) =
4∑
i=1

biλie
λiτ . (2.81)

Substituting this general form into Equation (2.66) produces

4∑
i=1

aiλ
2
i e
λiτ = Ωxx

4∑
i=1

aie
λiτ + 2

4∑
i=1

biλie
λiτ . (2.82)

Because this relationship must hold for any value of τ , the coefficients of eλiτ must

be the same on both sides. Therefore, this equation yields the expresion

bi = aiγi (2.83)
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where

γi =
(λ2i − Ωxx)

2λi
. (2.84)

Replacing the bi coefficients with this functional dependence on ai allows the expres-

sion of the general solution in terms only of ai, λi, γi, and τ :

δx(τ) =
4∑
i=1

aie
λiτ , (2.85)

δy(τ) =
4∑
i=1

aiγie
λiτ , (2.86)

δẋ(τ) =
4∑
i=1

aiλie
λiτ , (2.87)

δẏ(τ) =
4∑
i=1

aiγiλie
λiτ . (2.88)

As previously noted, the variations relative to the collinear Lagrange points include

both hyperbolic and center modes. Initial conditions may be selected such that only

the center mode is excited. To do so, select a1 = a2 = 0. The solution is then

constrained to be

δx(τ) = a3e
λ3τ + a4e

−λ3τ , (2.89)

δy(τ) = a3γ3e
λ3τ − a4γ3e−λ3τ , (2.90)

δẋ(τ) = a3λ3e
λiτ − a4λ3e−λ3τ , (2.91)

δẏ(τ) = a3γ3λ3e
λ3τ + a4γ3λ3e

λ3τ . (2.92)
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The implementation of this restriction, however, means that only 2 of the 4 initial

conditions are variables. Assuming that δx0 and δy0 are specified as the variables,

expressions for a3 and a4 are then

a3 =
δy0 + γ3δx0

2γ3
, (2.93)

a4 = −δy0 − γ3δx0
2γ3

. (2.94)

From these expressions, the initial velocity components are then determined to be

δẋ0 =
λ3δy0
γ3

, (2.95)

δẏ0 = γ3λ3δx0. (2.96)

Let

s =

√
K1 +

√
K2

1 +K2
2 , (2.97)

then δẋ0 and δẏ0 are written

δẋ0 =
2s2

s2 + Ωxx

δy0, (2.98)

δẏ0 = −s
2 + Ωxx

2
δx0. (2.99)

Finally, the solution for in-plane motion near the collinear Lagrange points is evalu-

ated from

δx(τ) = δx0 · cos(sτ) +
2s · δy0
s2 + Ωxx

sin(sτ), (2.100)

δy(τ) = δy0 · cos(sτ)− (s2 + Ωxx) · δx0
2s

sin(sτ). (2.101)

Equations (2.100) and (2.101) offer an approximate solution for in-plane motion near

the collinear Lagrange points. They represent elliptical motion where the Lagrange

point is at the center, not at a focus, with frequency ωxy = s. A similar process
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is repeated for the selection of different combinations of initial conditions such as

(δx0, δẋ0), (δẋ0, δẏ0), or (δy0, δẏ0).

The in-plane and out-of-plane solutions are superimposed to produce expressions

of the general spatial variational behaviors. Combining the in-plane and out-of-plane

solutions for the collinear points, and restricting motion to the central mode, supplies

the set of solutions

δx(τ) = δx0 · cos(sτ) +
2s · δy0
s2 + Ωxx

sin(sτ) (2.102)

δy(τ) = δy0 · cos(sτ)− (s2 + Ωxx) · δx0
2s

sin(sτ) (2.103)

δz(τ) = δz0 cosωzτ +
δż0
ωz

sinωzτ . (2.104)

for the case where δx0 and δy0 are selected as the free variables. These variational

expressions produce linear approximations for periodic motion in the vicinity of these

equilibrium points to seed nonlinear targeting algorithms for construction of the non-

linear periodic motion.

2.2.7 The State Transition Matrix

The linear variational analysis is also applicable for targeting general reference

solutions in the CRTBP. The development of these linear approximations provides

information on the region surrounding a particular solution arc via a mapping of

initial perturbations from the reference to perturbations at other times, past and

future. These mappings are critical in the differential corrections process.

The mapping is constructed through variation from a reference trajectory. Given

a solution to the CRTBP, x∗ (τ), and denoting the variation from this solution as

δx (τ), a nearby perturbed solution is expressed as

x (τ) = x∗ (τ) + δx (τ) . (2.105)
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The relationship between these quantities appears graphically in Figure 2.8. Consis-

Reference Solution

Perturbed Solution

δx(τ0)

x∗(τ0)

x(τ0)
δx(τf )

x∗(τf )

x(τf )

Figure 2.8.: Schematic for a Mapping of the Variations for a General Trajectory in
the CRTBP

tent with the process to model variations relative to the equilibrium solutions, the

linear variational equations with respect to the general trajectory arc are generated

via an application of a first-order Taylor series expansion. The first-order Taylor

approximation for the right side of Equation (2.105) is

ẋ∗ (τ) + δẋ (τ) ≈ f (x∗ (τ)) +
∂f

∂x

∣∣∣∣
x(τ)

δx (τ) . (2.106)

Cancelling terms yields the variational equations for the deviation with respect to the

reference solution,

δẋ (τ) ≈ ∂f

∂x

∣∣∣∣
x(τ)

δx (τ) . (2.107)

Equation (2.107) is a linear time-varying homogeneous system of differential equa-

tions. Therefore, the general solution to this set of equations is

δx (τ) = Φ (τ, τ0) δx (τ0) . (2.108)
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The matrix Φ in Equation (2.108) is denoted the State Transition Matrix and contains

information on the sensitivity of the perturbation at time τ to the initial perturbation

at time τ0. Let

A =
∂f

∂x

∣∣∣∣
x(τ)

(2.109)

then the STM is equally defined as the matrix exponential

Φ (τ, τ0) = eA(τ)(τ−τ0). (2.110)

Subsequently, the STM satisfies the linear differential equation

Φ̇ (τ, τ0) = A (τ) Φ (τ, τ0) . (2.111)

Therefore, the STM is computed by integrating (2.111) along with the standard

equations of motion in the CRTBP resulting in 42 coupled differential equations.

However, the STM may alternatively be numerically approximated through forward,

reverse, or central difference methods applied to the standard CRTBP equations of

motion. While both are valid methods for constructing a useful STM, the appropriate

strategy is determined by computational capabilities and implementation complexity

among other factors. The STM is, of course, a first-order linear approximation, thus,

only first-order accuracy is delivered in the nonlinear model.

Even as a linear approximation, the structure of the STM offers significant insight

for various types of applications. The STM is split into four quadrants, i.e.

Φ =

Φrr Φrv

Φvr Φvv

 (2.112)
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where

Φrr =


∂xf
∂x0

∂xf
∂y0

∂xf
∂z0

∂yf
∂x0

∂yf
∂y0

∂yf
∂z0

∂zf
∂x0

∂zf
∂y0

∂zf
∂z0

 Φrv =


∂xf
∂ẋ0

∂xf
∂ẏ0

∂xf
∂ż0

∂yf
∂ẋ0

∂yf
∂ẏ0

∂yf
∂ż0

∂zf
∂ẋ0

∂zf
∂ẏ0

∂zf
∂ż0



Φvr =


∂ẋf
∂x0

∂ẋf
∂y0

∂ẋf
∂z0

∂ẏf
∂x0

∂ẏf
∂y0

∂ẏf
∂z0

∂żf
∂x0

∂żf
∂y0

∂żf
∂z0

 Φvv =


∂ẋf
∂ẋ0

∂ẋf
∂ẏ0

∂ẋf
∂ż0

∂ẏf
∂ẋ0

∂ẏf
∂ẏ0

∂ẏf
∂ż0

∂żf
∂ẋ0

∂żf
∂ẏ0

∂żf
∂ż0


are the submatrices representing different types of sensitivities. The submatrix Φrr

reflects the sensitivity to the position components at time τ to the initial position

components, Φrv represents the sensitivity of the position components at time τ to

the initial velocity components, Φvr depicts the sensitivity of the velocity components

at time τ to the initial position components, and Φvv contains sensitivity information

of the final velocity components with respect to the initial velocity components. The

State Transition Matrix also possesses several important properties that are frequently

leveraged, specifically

Φ (τ2, τ0) = Φ (τ2, τ1) Φ (τ1, τ0) , (2.113)

Φ (τ0, τ1) = Φ−1 (τ1, τ0) , (2.114)

det (Φ) = 1, (2.115)

Φ (τ0, τ0) = I. (2.116)

These properties demonstrating the composability of the STM is vital for the imple-

mentation of complex targeting architectures.

The state transition matrix provides a valuable tool for quantifying the sensitiv-

ities of state components along a trajectory with respect to the initial conditions.

This mapping of initial deviations to final deviations is leveraged extensively during

differential corrections processes, orbital stability analysis, and manifold calculation.
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2.3 Differential Corrections

During the trajectory design process, a trajectory is sought that satisfies a set of

constraints. Due to the lack of an analytical solution, numerical analysis is employed

to determine the initial conditions that satisfy the constraints. Fundamentally, this

scenario presents a boundary value problem (BVP) and, while various methods exist

to solve BVPs, differential corrections provides a particularly powerful method of

solving this problem.

Corrections strategies can be implemented using many different numerical schemes.

For this investigation, the general corrections problem is abstractly defined by its de-

sign variables and constraints. Let X represent the vector of n design variables and

F serves as the vector of m constraints written algebraically as

X =



X1

X2

...

Xn


(2.117)

and

F (X) =



F1 (X)

F2 (X)
...

Fm (X)


. (2.118)

In the design variable vector, X, the variables, Xi, are commonly state components,

times of flight, or thrust parameters. The solution is achieved, i.e., X = X∗, when a set

of design variables is found that forces the constraint vector to zero, i.e., F (X∗) = 0.

If F is an affine function of X and n = m, the root X∗ is computed trivially by

X∗ = −
(
dF

dX

)−1
F (0) . (2.119)
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However, affine constraint vectors rarely arise in trajectory design. Therefore, a

corrections algorithm iteratively arrives at the solution, X∗.

The iterative process determining X∗ is based on a Taylor series expansion of

F (X). Given a reference free-variable vector, Xk, the Taylor series expansion of

F (X) relative to Xk, to first-order, is

F (X) ≈ F (Xk) +
dF (X)

dX

∣∣∣∣
Xk

(X−Xk). (2.120)

Thus, the constraint function evaluation at X∗ is

F (X∗) ≈ F (Xk) +
dF (X)

dX

∣∣∣∣
Xk

(X∗ −Xk). (2.121)

By definition F (X∗) = 0, so, ignoring higher-order terms, Equation (2.121) is sim-

plified to first-order

0 = F (Xk) +
dF (X)

dX

∣∣∣∣
Xk

(X∗ −Xk). (2.122)

The linear approximation in Equation (2.122) is essentially a root-finding problem and

generates iterative update equations for determining X∗. Solving Equation (2.122)

depends on the shape and rank of the Jacobian of the constraint vector, dF(X)
dX

. As-

suming a full rank Jacobian, i.e.,

rank

(
dF (X)

dX

)
= min (n,m) (2.123)

where dF(X)
dX

is an m×n matrix, three cases exist for the shape of the Jacobian: m > n

(tall), m = n (square), and n > m (wide). The solution of each case is different and,

thus, they are examined separately.

As one possibility, if the Jacobian matrix is tall, i.e., m > n, then there are more

constraints than free variables. The result of this configuration is the existence of

either 1 or 0 solutions. The general procedure for solving these types of systems is
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the least-squares approach. However, trajectory design problems often incorporate

time, position, and velocity continuity in the constraint equations. Consequently,

least-squares solutions are rarely applicable to these problems as tolerances must be

met absolutely for results to be dynamically coherent.

If the Jacobian matrix is square (m = n) and nonsingular, then Equation (2.122)

is solved via a typical Newton update. Therefore, the equation is rearranged to solve

for the zero as

X∗ = Xk −
[
dF (X)

dX

]−1
Xk

F (Xk) . (2.124)

The linear approximation in Equation (2.124) ignores the nonlinear dynamics of the

problem due to the truncation of higher-order terms and, therefore, requires the

implementation of an iterative procedure. The iteration equation is determined from

Equation (2.124) as

Xk+1 = Xk −
[
dF (X)

dX

]−1
Xk

F (Xk) . (2.125)

Equation (2.125) is seeded with an initial guess, X0, and iterated until a stopping

condition is met. The iteration stopping condition varies based on the application but

often requires the Euclidean norm of F (Xk) to be below a predetermined absolute or

relative tolerance.

In the wide case where the Jacobian matrix contains more columns than rows, i.e.,

n > m, then there are more free variables than constraints and the problem is under-

determined. Under-determined problems possess either zero or an infinite number of

solutions to Equation (2.122). Assuming the Jacobian matrix has full rank, the zero-

solution case is ignored. Various options exist for selecting the “best” solution from

among the infinite possibilities, but one of particular interest is the minimum-norm

solution. The minimum-norm solution allows the solution of Equation (2.122) while

minimizing the deviation from the initial guess. This solution is especially useful for

preserving some desired properties of the initial guess, e.g., geometry. To determine

the form of the minimum norm solution, the problem is reformulated and the method
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of Lagrange multipliers is applied. The minimum-norm solution is the solution to the

optimization problem

min
X∗

||X∗ −Xk||22

s.t.
dF (X)

dX

∣∣∣∣
Xk

(X∗ −Xk) + F (Xk) = 0.
(2.126)

Therefore, the Lagrangian of the optimization problem is written

L (X∗, λ) =
1

2
(X∗ −Xk)

T (X∗ −Xk) + λT

(
dF (X)

dX

∣∣∣∣
Xk

(X∗ −Xk) + F (Xk)

)
.

(2.127)

Differentiating with respect to X∗ and λk and setting the expression to zero yields

∂L (X∗, λ)

∂X∗
= (X∗ −Xk) +

(
dF (X)

dX

)T

Xk

λ = 0, (2.128)

∂L (X∗, λ)

∂λ
=
dF (X)

dX

∣∣∣∣
Xk

(X∗ −Xk) + F (Xk) = 0. (2.129)

Equations (2.128) and (2.129) reflect the conditions for the minimum-norm solution

to the root finding problem in Equation (2.122). Solving for X∗ in Equation (2.128)

produces

X∗ = Xk −
(
dF (X)

dX

)T

Xk

λ (2.130)

that is substituted into Equation (2.129) to render the expression for λ

λ =

[
dF (X)

dX

(
dF (X)

dX

)T
]−1
Xk

F (Xk) . (2.131)

Combining Equations (2.131) and (2.130) results in the final result for X∗,

X∗ = Xk −
(
dF (X)

dX

)T

Xk

[
dF (X)

dX

(
dF (X)

dX

)T
]−1
Xk

F (Xk) . (2.132)
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Similar to the case involving a square Jacobian matrix, Equation (2.132) ignores the

nonlinear dynamics of the problem and requires iterations to deliver a solution to the

desired accuracy. Thus, the iterate form of the minimum-norm solution is

Xk+1 = Xk −
(
dF (X)

dX

)T

Xk

[
dF (X)

dX

(
dF (X)

dX

)T
]−1
Xk

F (Xk) . (2.133)

The result from iterating Equation (2.133) is a root of the differential corrections

problem that remains close to the initial guess. An alternative method of solution

may be necessary to deliver other characteristics of a solution.

Equations (2.125) and (2.133) detail iterative differential corrections methods.

However, neither approach guarantees convergence. Therefore, generally, initial guesses

must be sufficiently close to the solution for such procedures to converge. Additionally,

because both approaches rely upon the Jacobian matrix information in the constraint

vector, these algorithms may require substantial analytical partial differentiation or

computational power to numerically determine the partial derivatives. Despite these

challenges, the techniques in Equations (2.125) and (2.133) offer effective methods of

converging nonlinear trajectories in the CRTBP, given reasonable initial guesses.

2.3.1 Single Shooting

Leveraging the multi-dimensional Newton-Raphson algorithm to solve for initial

states over a single propagated segment is denoted here as Single Shooting. Single

shooting schemes are some of the simplest forms of differential corrections used in

trajectory design. The surface-level simplicity of a single shooting method should

not be mistaken for inferiority, however. Single shooting algorithms are frequently

effective in quickly solving boundary value problems, particularly in the absence of

highly nonlinear dynamics.
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A demonstrative example of a single shooting strategy applied to trajectory design

is a simple planar position targeter. The design problem is stated as the following:

given a initial state

x0 =



x0

y0

ẋ0

ẏ0


, (2.134)

an initial velocity adjustment is sought such that the final position is

rd =

xdyd
 . (2.135)

This problem is envisioned graphically in Figure 2.9 with the initial nondimensional

states

x0 =
{

0.6 0 −0.1 0.3
}T

(2.136)

and the position target location is

rd =
{

0.15 0
}T

. (2.137)

Furthermore, the integration time, τf , for the problem is fixed at 10.25 days. The

trajectory propagated using these initial states and integration time serves as a refer-

ence trajectory, x∗, and the basis for the variations evaluated by the STM. Because

no analytical solution to the CRTBP exists, it is not possible to write the initial con-

ditions as a closed form function of the desired final states. Therefore, the shooting

algorithm is leveraged. Transforming the problem definition into the free-variable

constraint notation yields

X =

ẋ0ẏ0
 and F (X) =

xf − xdyf − yd

 .
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The problem as formulated is described by two variables and two constraints yielding a

square Jacobian matrix. Consequently, it is solved via the standard Newton-Raphson

update algorithm. The constraints are not explicit functions of the free-variables so

the Jacobian is written abstractly as

MoonEarth Target

Initial Position

Figure 2.9.: Initial guess for planar single shooting problem

dF (X)

dX
=

∂xf∂ẋ0

∂xf
∂ẏ0

∂yf
∂ẋ0

∂yf
∂ẏ0

 . (2.138)

The elements of Equation (2.138) are sensitivities of the final position components

along the trajectory to the initial velocity components. This relationship is encapsu-

lated in the state transition matrix, STM. In fact, the elements of Equation (2.138)

are the planar components of Φrv. Therefore, using the propagated STM, evaluated
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along the reference path, the sensitivities along the trajectory are assessed, and the

update equation for the single shooting algorithm is implemented as

ẋ0ẏ0

k+1

=

ẋ0ẏ0

k

−

∂xf∂ẋ0

∂xf
∂ẏ0

∂yf
∂ẋ0

∂yf
∂ẏ0

−1xf − xdyf − yd

 . (2.139)

Iterating Equation (2.139) until |F| < 1e-12 yields the corrected trajectory plotted

in Figure 2.10. The geometry of the updated trajectory arc remains qualitatively

similar to that of the initial guess (or reference) but the initial velocity is noticeably

different.

MoonEarth

Fixed Time
Initial Guess

Figure 2.10.: Updated trajectory for fixed-time single shooting algorithm

To reduce the initial velocity deviation between the initial guess and the converged

fixed time transfer, time-of-flight is allowed to vary. Incorporating time-of-flight as a

design variable provides a greater solution search space and, in some cases, reduces
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the initial variation with respect to the initial condition. Adding time of flight, T , as

a free variable produces the free-variable and constraint vectors

X =


ẋ0

ẏ0

τf

 and F (X) =

xf − xdyf − yd


resulting in the Jacobian matrix

dF (X)

dX
=

∂xf∂ẋ0

∂xf
∂ẏ0

∂xf
∂τf

∂yf
∂ẋ0

∂yf
∂ẏ0

∂yf
∂τf

 . (2.140)

Note that the matrix is not square. Intuitively, the scalar partials
∂xf
∂τf

and
∂yf
∂τf

rep-

resenting the sensitivity of the final position to the integration time are the ẋf and

ẏf evaluated at the end of the trajectory arc, respectively. Therefore, the Jacobian

matrix simplifies to

dF (X)

dX
=

∂xf∂ẋ0

∂xf
∂ẏ0

ẋf
∂yf
∂ẋ0

∂yf
∂ẏ0

ẏf

 . (2.141)

Using the minimum-norm solution, the adjusted variable-time shooting trajectory

that reaches the target position is plotted in Figure 2.11. Similar to the result in the

fixed time case, the overall structure of the transfer is similar in shape to the initial

guess. However, the variable time solution displays a reduction in the initial velocity

variation relative to the reference solution. This reduction does not hold generally,

but demonstrates the greater freedom available to the corrector if time is allowed to

vary.

The addition of time as a free variable also enables the implementation of another

constraint without producing an overdetermined system. A frequent constraint in

the CRTBP is a perpendicular x-axis crossing that is used extensively in the correc-
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MoonEarth

Fixed Time
Variable Time

Initial Guess

Figure 2.11.: Corrected trajectory for fixed-time and variable-time single shooting
algorithms

tions process to produce periodic orbits. In the planar problem, this constraint is

implemented by simply requiring ẋf = 0 and expanding the constraint vector to

F (X) =


xf − xd
yf − yd
ẋf

 . (2.142)

Consequently, the constraint Jacobian matrix is updated to

dF (X)

dX
=


∂xf
∂ẋ0

∂xf
∂ẏ0

ẋf
∂yf
∂ẋ0

∂yf
∂ẏ0

ẏf
∂ẋf
∂ẋ0

∂ẋf
∂ẏ0

ẍf

 , (2.143)

facilitating the new constraint. The existence of a second-order derivative, ẍf , in

the Jacobian matrix demands that the equations of motion are evaluated at the final

time as the acceleration information is not available directly in the final state vector.
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Given that the number of constraints and free-variables is three in both cases, the

new formulation returns the Jacobian to a square matrix and the Newton-Raphson

update equation again returns a single solution. Figure 2.12 displays the resultant

transfer that delivers a perpendicular x-axis crossing at the final time.

MoonEarth

Fixed Time
Variable Time
Variable Time Perpendicular

Initial Guess

Figure 2.12.: Corrected trajectory for fixed-time and variable-time single shooting
algorithms

Single shooting methods provide fast numerical solutions to the nonlinear tra-

jectory design processes in the CRTBP. By leveraging the linear approximations for

motion near a reference solution and the state transition matrix, initial conditions are

updated to meet the nonlinear constraints. However, attempts to implement single

shooting methods in regions of space where highly nonlinear dynamics dominate can

be challenging. Convergence in these regions usually requires alternative corrections

strategies. One such numerical option is a multiple shooting scheme.
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2.3.2 Multiple Shooting

Trajectories passing through highly sensitive regions often exhibit unpredictable

changes in final states in response to small variations in the initial states. Alternative

corrections, beyond single shooting, are frequently necessary for successful design

processes. By segmenting a reference trajectory and correcting these segments in

parallel, the corrections process is less sensitive to chaotic dynamics. This method,

denoted multiple shooting, reduces the time interval over which a linear approximation

is applied allowing for more accurate predictions of the design variable sensitivities

in the nonlinear model.

Figure 2.13 displays a simplified depiction of a multiple shooting problem prior to

corrections. The initial guess is formed by a possibly discontinuous set of arcs. The

multiple shooting iteration adjusts the free variables to achieve the desired continu-

ity between segments and satisfy additional constraints on the trajectory. The free

variables are typically a subset of the initial conditions along each segment (x1,0, x2,0,

x3,0, . . . , xN,0) and the integration times τ1, τ2, τ3, . . . , τN . The multiple shooting

problem also requires the addition of continuity constraints to enforce state and time

continuity between the segments represented by the red arrows in Figure 2.13. For

a ballistic trajectory, full state and time continuity is required; if the spacecraft pos-

sesses impulsive capabilities, the constraints on velocity continuity between segments

is removed to simulate an impulsive maneuver.

x1,0

x1,f

x2,0

x2,f

x3,0

x3,f

τ1 τ2 τ3

Figure 2.13.: Multiple Shooting Schematic
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Consider a trajectory comprised of N segments with an initial state, xi,0, and

duration τi. The general free variable vector for this trajectory would, therefore, be

written

X =



x1,0

x2,0

...

xN,0

τ1

τ2
...

τN



(2.144)

and would include 7N free variables. Furthermore, enforcing full state continuity

along the trajectory yields a continuity constraint vector written as

Fcont. (X) =



x2,0 − x1,f

x3,0 − x2,f

...

xN,0 − xN−1,f


(2.145)

containing 6 (N − 1) scalar constraint equations. Consequently, the Jacobian matrix

for the continuity constraints is the 6 (N − 1)× 7N matrix

dFcont.

dX
=


−Φ1 I6×6 0 0 0 −ẋ1,f 0 0 · · · 0

0 −Φ2 I6×6 0 0 0 −ẋ2,f 0 · · · 0
...

...
. . . . . . 0 0 0

. . . · · · ...

0 0 0 −ΦN−1 I6×6 0 0 0 −ẋN−1,f 0

 .
(2.146)

The Jacobian matrix given in Equation (2.146) is not square and has a (N + 6)-

dimensional null-space. Therefore, the update is performed using a minimum-norm

solution. However, it is often advantageous to reduce this null-space dimension prior
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to construction of a solution. A significant amount of the flexibility present is due

to the fact that the times of flight of each segment are allowed to vary, thus, a given

solution geometry is recreated through any combination of the times, τi, that yields

a constant total time,
∑
τi. Therefore, a common method of reducing the dimension

of the null-space is restricting the segment times of flight such that τ1 = τ2 = . . . = τ

removing N − 1 degrees of freedom. This restriction reduces the free-variable vector

to

X =



x1,0

x2,0

...

xN,0

τ


. (2.147)

The corresponding Jacobian matrix is, therefore, a 6 (N − 1)× (6N + 1) matrix that

is formed by collapsing the time partial components of Equation (2.146) into a single

column, i.e.

dFcont.

dX
=


−Φ1 I6×6 0 0 0 −ẋ1,f

0 −Φ2 I6×6 0 0 −ẋ2,f

...
...

. . . . . . 0
...

0 0 0 −ΦN−1 I6×6 −ẋN−1,f

 . (2.148)

The resulting system delivers a 7-dimensional null-space consistent with an uncon-

strained single shooting problem. The fundamental continuity constraints are then

be augmented or modified according to the corrections problem requirements. Spe-

cific components of velocity continuity constraints may be removed from the prob-

lem by deleting the corresponding rows in Equation (2.145) and (2.148). Additional

constraints are incorporated into the multiple shooting algorithm similarly to the

single shooting algorithm, i.e., by appending the constraints to the F vector and

their corresponding partials to the Jacobian matrix. Common additional constraints

include state components, periapses/apoapses, two-body elements, and perpendic-



53

ularity constraints. However, any equality constraint can be incorporated into the

current formulation given that an analytical expression in terms of the state variables

is available.

2.4 Continuation Methods

Any trajectory resulting from a shooting algorithm or procedure offers a single

solutions to the targeting problem; but it is often desired to produce a family of

solutions. Families of solutions share a common qualitative or quantitative charac-

teristic and offer a larger design space. The continuation of a single solution into a

family is accomplished in various ways, each offering advantages in different scenarios.

Two common approaches are Natural Parameter Continuation and Pseudo-Arclength

Continuation. Both are flexible and successful in this investigation; numerous other

strategies are available as necessary.

2.4.1 Natural Parameter Continuation

Natural parameter continuation builds a family of solutions by evolving a physical

parameter such as a state component, energy, or time-of-flight. By evolving through

a physical parameter, it is often possible to leverage a priori knowledge about the

shape and characteristics of a family in the continuation process.

The natural parameter continuation process begins with an initial guess for a

solution. Following a successful convergence process, the natural parameter is incre-

mented and the corrections process is repeated using the previously converged family

member as an initial guess for the new shooting iteration. This iterative process

continues until the family of solutions ends, a predetermined condition is met, or the

convergence process fails.

While often effective, natural parameter continuation can face difficulties arising

from the parameter not evolving in a monotonic fashion and the necessity for intu-

ition on the characteristics of a family. If the parameter varies monotonically across
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a family, then each step in the parameter yields a new family member. Therefore,

a solution in the family is identified by the evolution parameter. Families with this

characteristic are labelled single parameter families. In general, however, this prop-

erty does not hold and multiple members of a family possess the same parameter

value. The algorithm must then be adapted by adding a second continuation pa-

rameter, using a nonlinear update function for the continuation parameter, or risk

“jumping over” family members possibly failing to converge.

2.4.2 Pseudo-Arclength Continuation

Pseudo-arclength continuation allows solutions to evolve using a non-physical pa-

rameter; solutions are then continued without knowledge or intuition concerning the

shape of the family. Given a differential corrections problem with

X =



x1

x2
...

xn


, and F (X) =



F1 (X)

F2 (X)
...

Fm (X)


(2.149)

and assuming n−m = 1, the dimension of the kernel for the Jacobian matrix dF(X)
dX

is 1. Therefore, there is 1 degree of freedom in the linear update equation along the

line defined by the kernel. Let Xi be the previously converged member of the family

and, thus, F (Xi) = 0. Furthermore, let

ξ = ker

(
dF (Xi)

dX

)
∈ Rn (2.150)

then Xi + sξ is a solution to the linear constraint equations around Xi for any s ∈ R.

This property is leveraged in the nonlinear corrections process by forcing the step



55

from the previous to next converged family member, Xi+1, to be in the direction of

ξ. This constraint is written

G (X) = 〈Xi+1 −Xi, ξ〉 − s = 0 (2.151)

where s is the scalar continuation parameter. The differential corrections constraints

are then augmented as

H (X) =



F1 (X)

F2 (X)
...

Fm (X)

G (X)


(2.152)

with

dH (X)

dX
=


dF(X)
dX

ξT

 . (2.153)

The augmented corrections process defined in Equation (2.152) and (2.153) incor-

porates a square Jacobian matrix and allows for converging the next family member

without any intuition concerning the shape of the family. While often very robust, the

application of the pseudo-arclength continuation process requires the construction of

an initial corrections scheme with a one-dimensional null-space limiting the space of

applications for which it can be employed. Furthermore, the generation of families of

solutions using a pseudo-arclength continuation process does not permit families to be

grown in a specific fashion, e.g., with increasing period or initial x value. However, in

contrast to natural parameter continuation, pseudo-arclength continuation does not

suffer if the parameter does not vary strictly monotonically along a family.

2.5 Periodic Solutions in the CRTBP

Perfectly periodic motion provides many additional particular solutions beyond

the Lagrange points. Linearization about the collinear Lagrange points demonstrates
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the existence of a four-dimensional center subspace in the linear model. The resul-

tant linear approximations can be corrected in the full nonlinear model and produce

nonlinear periodic trajectories.

The validity of the linear approximation is dependent on the initial perturbation

from the central Lagrange point. Figure 2.14 displays three linear approximations

and their corresponding nonlinear propagations for three initial conditions defined on

the x-axis and derived from the linear model centered at Earth-Moon L1. The linear

approximation holds moderately well for a single revolution for an initial position

perturbation of one half kilometer from the Lagrange point, but the trajectory at 10

kilometer perturbation in position already demonstrates a substantial inaccuracy in

the linear approximation. The proximity to P2 greatly influences the small bound on

which the linear approximation is accurate.
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Figure 2.14.: Linear Approximation Versus Nonlinear Propagation for Planar Periodic
Orbits Around Earth-Moon L1 for a) 0.5 km, b) 10 km, and c) 25 km

A single shooting algorithm is used to converge the nonlinear orbit at a 10 kilome-

ter deviation from L1. While targeting directly for periodicity directly is feasible, the
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targeting is successfully accomplished by leveraging the Mirror Theorem as presented

by Roy and Ovenden [7].

Theorem 2.5.1 (Mirror Theorem) If n point-masses are moving under their mu-

tual gravitational forces only, their orbits are periodic if, at two separate epochs, a

mirror configuration occurs [7].

For the CRTBP, mirror conditions occur at perpendicular crossings of the xz-plane.

Therefore, with an initial condition that is perpendicular to the xz-plane, a corrections

scheme targets another perpendicular crossing to determine a periodic orbit. Essen-

tially targeting a half-period, reducing the required propagation time and, therefore,

therefore inaccuracy of the linear STM approximation. The corrections process is,

therefore, defined by the free-variable formulation as

X =

ẏ0τ
 , F =

yfẋf
 , and dF

dX
=

 dyf
dẏ0

ẏf
dẋf
dẏ0

ẍf

 . (2.154)

The straightforward application of the single shooting formulation yields the corrected

nonlinear periodic orbit plotted in Figure 2.15. Due to the proximity to the Lagrange

point, the linear initial guess is sufficient to achieve convergence using the Newton-

Raphson model in two iterations. The availability of initial conditions, as well as the

low iteration count, is a demonstration of the advantage afforded by leveraging the

linear approximation.

Correcting the linear approximation is a strategy applied to the generation of

planar periodic orbits about L1, L2, and L3 at larger initial displacements from the

Lagrange points. However, eventually, the initial condition from the linear approxi-

mation fails to yield a sufficiently accurate guess to the nonlinear periodic orbit initial

state due to the dominance of higher-order terms. Therefore, an approach is required

to continue the nonlinear orbit(s) and produce a family. The periodic orbit fami-

lies generated from the linear approximations at L1, L2, and L3 are continued with a

natural parameter scheme. Figure 2.16 displays this continuation of the nonlinear pe-
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Figure 2.15.: Converged Periodic Orbit Around Earth-Moon L1 Compared to the
Initial Guess from Linear Variational Equations

riodic orbits. These periodic orbits around L1, L2, and L3 are denoted the Lyapunov

orbits. The members of the L1, L2, and L3 Lyapunov families in Figure 2.16 do not

constitute the entirety of each family but are indicative of the general form. Similarly,

the out-of-plane motion is isolated to generate the Vertical orbits at L1, L2, and L3

in the Earth-Moon system in Figure 2.17. The Lyapunov and Vertical orbit families

represent the nonlinear extensions of the in-plane and out-of plane approximations

developed in Section 2.2.6.

2.6 Invariant Manifold Theory

Periodic orbits and equilibrium solutions represent two types of motion in the

CRTBP. Lagrange points and periodic orbits exhibit some instability and are distin-

guished by their stability characteristics. Any unstable solutions imply flow toward
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Figure 2.16.: Lyapunov Orbit Families for Earth-Moon L1, L2, and L3

Figure 2.17.: Vertical Orbit Families for Earth-Moon L1, L2, and L3
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or away from the reference solution. These flows can be understood in the context of

dynamical systems theory.

2.6.1 Hyperbolic Manifolds Associated with the Collinear Lagrange Points

Linearization of the nonlinear differential equations of motion for the CRTBP

relative to the collinear libration points yields four purely imaginary eigenvalues and

two real non-zero eigenvalues of opposite sign. These Real eigenvalues also represent

flow to and from the Lagrange point. Therefore, the linear system possesses both a

one-dimensional stable subspace, ES, and a one-dimensional unstable subspace, EU .

The relationship between the linear system subspaces and the invariant manifolds in

the nonlinear system is characterized by the Stable Manifold Theorem [8]:

Theorem 2.6.1 (Stable Manifold Theorem) Let E be an open subset of Rn con-

taining the origin, let f ∈ C1 (E), and let φt be the flow of the nonlinear system.

Suppose the f (0) = 0 and that df(0)
dt

has k eigenvalues with negative real part and

n − k eigenvalues with positive real part. Then there exists a k-dimensional differ-

entiable manifold S tangent to the stable subspace Es of the linear system at 0 such

that for all t ≥ 0, φt (S) ⊂ S and for all x0 ∈ S,

lim
t→∞

φt (x0) = 0;

and there exists an n−k dimensional differentiable manifold U tangent to the unstable

subspace EU of the linear system at 0 such that for all t ≤ 0, φt (U) ⊂ U and for all

x0 ∈ S,

lim
t→−∞

φt (x0) = 0.

Due to the tangency condition in the Stable Manifold Theorem, the invariant mani-

folds associated with the nonlinear system are approximated by small perturbations

from the equilibrium point in the direction of the linear stable and unstable subspaces,

EU and ES. The perturbed state is numerically integrated to generate a representa-
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tion of the global stable or unstable subspace to some acceptable level of accuracy.

The accuracy to which the representation approximates the invariant manifold de-

pends on the length of the step in the linear subspace directions. However, due to

the growth of error in numerical integration of the equations of motion, small steps

result in large integration times yielding greater error. Figure 2.18 demonstrates a

numerically integrated approximation to the global stable and unstable manifolds for

Earth-Moon L1. Note that the true dynamical manifolds exist at the same value of

Jacobi constant as L1 as the true manifolds asymptotically approach or depart L1.

L2
L1

Moon

Unstable Manifold

Stable Manifold

Figure 2.18.: Global Invariant Manifolds for Earth-Moon L1

2.6.2 Poincaré Maps for Dynamical Systems Analysis

The Poincaré map serves as a tool to reduce the dimensionality of the nonlinear

flow by sampling trajectories as they cross through a surface of section. Lowering the

dimension of the problem allows the visualization of the flow for both chaotic and

structured motion over long intervals in a single map and, as a consequence, adds
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clarity. The Poincaré section is defined by a surface of section, Σ. The surface of

section, Σ, can be geometrical in phase space, e.g., x = 0, or reflect other functions

of the state such as periapse locations. Given a state, x∗ on Σ, the state is evolved

through the flow and the next return to the map is identified and plotted on the

map. The characterization of the motion, therefore, is moved from the continuous-

time dynamical system evolving over the full phase-space to a discrete-time system

evolving on the map.

The general structure of a Poincaré map is illustrated in Figure 2.19. Given a

point x and a surface of section Σ transverse to the flow at x, x is evolved through

the flow until it returns to the map at P (x). Furthermore, if an orbit is periodic,

then it returns to the map at the same location, i.e., x∗ = P (x∗). Therefore, periodic

orbits appear as fixed points on the surface of section while chaotic orbits appear as

a ”dusting” of the surface after many returns.

Figure 2.19.: Schematic of Poincaré Map Adapted from Palis et. al [9] and Perko [8]

The surface of section, Σ, is a hyperplane and thus possesses codimension 1 to

the ambient space leading to a 3-dimensional hyperplane in the planar problem and

a 5-dimensional hyperplane in the general spatial CRTBP. The dimension of the map
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is further reduced by intersecting the map with a system constant; in the CRTBP,

it is reduced to states evolving all with a fixed Jacobi constant value. Therefore,

given an initial set of points on the hyperplane at the same Jacobi constant value,

the dimension of the resulting map is reduced by two. For the planar problem this

dimension reduction yields a two-dimensional map that is typically visualized in a

standard planar plot. One such plot is plotted in Figure 2.20; each point in Figure

2.20 is fully characterized in a two-dimensional plot due to the reduction of dimension.

One caveat to the full representation is an ambiguity in the sign of the velocity

component due to the v2 term in the Jacobi constant equation. This ambiguity is

removed by displaying a one-sided map that limits the points on the map to those

where ẏ > 0. Chain-of-islands structures are observed demonstrating multi-revolution

periodic orbits as well as the quasi-periodic orbit structure surrounding them. Several

fixed points are observed on the x-axis corresponding to planar periodic orbits. In
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Figure 2.20.: One-Sided (ẏ > 0) Planar CRTBP Poincaré Map at J = 3.44 in the
Earth-Moon System

the 6-dimensional spatial CRTBP, a fixed Jacobi constant Poincaré map reduces the
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dimensionality to 4. Therefore, alternative visualization aspects such as color or

glyphs are often included to compensate for the inability to successfully visualize 4

spatial dimensions [10].

2.6.3 Stability and Invariant Manifolds for Periodic Orbits

The idea of a Poincaré map is fundamental to the determination of stability prop-

erties and, therefore, invariant manifolds associated with periodic orbits. The stability

of a periodic orbit requires a generalization of the techniques employed to assess the

flow to and from the equilibrium solutions. The stability of the equilibrium solutions

is evaluated in terms of the eigenvalues of the linear motion with respect to the La-

grange point. Similarly, the stability of a periodic orbit is evaluated in terms of it’s

characteristic multipliers [11].

Following the method of Parker and Chua, the dynamics are linearized about the

fixed point, x∗, on the Poincaré map. This linearization provides the discrete time

dynamical system

δxk+1 = DP (x∗) δxk (2.155)

where DP (x∗) is the sensitivity of the return state on the map with respect the

departure state and is analogous to the constant coefficient matrix resulting from the

linearization around the equilibrium solution. The eigenvalues of the matrix DP (x∗)

are called the characteristic multipliers, mi [11]. The stability of the system described

in Equation (2.155) depends on the magnitude of the characteristic multipliers, i.e.

for any particular multiplier mi the corresponding stability follows

|mi| > 1 Unstable

|mi| < 1 Stable

|mi| = 1 Center.

(2.156)

Any periodic orbit with an unstable periodic orbit is itself called unstable. Addition-

ally, if a periodic orbit possesses no multiplier on the unit circle it is called hyperbolic.
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The characteristic multipliers are independent of the position of Σ intuitively making

them a property of the periodic orbit.

The matrix DP (x∗) defines the stability properties of the orbit. Parker and Chua

demonstrate that for a periodic orbit in an autonomous system the eigenvalues of

DP (x∗), the characteristic multipliers, are a subset of the eigenvalues of the state

transition matrix evaluated over the period of the orbit, Φ (T, 0), called the mon-

odromy matrix. Furthermore, the only eigenvalue of Φ (T, 0) not present in DP (x∗)

is the unity eigenvalue in the direction of f (x∗).

The stability characteristics determined from the monodromy matrix are lever-

aged to build the stable and unstable manifolds of periodic orbits. States around

the orbit are perturbed in the stable and unstable manifold directions to generate

trajectories on the stable and unstable manifold surfaces, respectively. Figure 2.21

demonstrates manifold generation for an L2 Lyapunov orbit in the Earth-Moon sys-

tem. The trajectories shown are example paths along the two-dimensional manifolds

associated with the stable and unstable subspaces of the periodic orbit.

Unstable

Stable

L1 L2

Figure 2.21.: Stable (blue) and Unstable (red) Manifolds for L2 Lyapunov Orbit
(black) in the Earth-Moon System
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3. MOTIVATING APPLICATION: LUNAR IMPACT

CHARACTERISTICS OF 9:2 LSR NRHO

NASA’s Gateway will operate as a staging location for missions beyond Earth orbit

as well as missions destined for Low Lunar Orbit (LLO) and the Lunar surface [12].

Consequently, various objects will be departing Gateway such as modules, cubesats,

and debris. Within this general departure trajectory space, lunar impact trajectories

are one group of particular interest and understanding of the characteristics associ-

ated with these impacting trajectories is important for disposal applications, science

missions, ejecta study, and heritage site avoidance. However, the behavior of the

trajectories departing Gateway vary greatly with the location, magnitude, and direc-

tion of the departure maneuver. Furthermore, the chaotic nature of the Lunar region

makes general prediction of the impact conditions difficult. The 9:2 Lunar Synodic

Resonant (LSR) Near Rectilinear Halo Orbit (NRHO) that the Gateway will orbit in

is a nearly stable orbit without well defined manifolds The investigation by Davis et

al. of departure and recontact behavior from the 9:2 Lunar Synodic Resonant (LSR)

Near Rectilinear Halo Orbit (NRHO) demonstrates general increase in impacts with

corresponding maneuver magnitudes and significant variations in behavior as depar-

ture location changes along the NRHO [12]. The current investigation expands on

this analysis to include the Lunar locations, velocities, and angles of these impacts to

characterize available trajectories for mission applications. The resulting information

is then applied to finding impact trajectories from the 9:2 LSR NRHO impacting at

the Shackleton Crater on the Lunar surface.
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3.1 Background and Definitions

Prior to investigation, the 9:2 LSR NRHO and various parameters are defined to

enable further analysis. The L2 9:2 LSR NRHO, pictured in Figure 3.1, completes 9

revolutions for every two Earth-Moon-Sun synodic periods (each approximately 29.5

days). Consequently, the period of the 9:2 LSR NRHO is P ≈ 6.5 days with a Jacobi

Figure 3.1.: 9:2 LSR NRHO in the Earth-Moon System

constant around 3.05. The periapse and apoapse radius of the 9:2 LSR NRHO are

approximately 3, 200 km and 70, 000 km, respectively.

Because useful manifold arcs do not exist for the 9:2 LSR NRHO [13], departure

directions are parameterized by the location around the orbit, magnitude of the de-

parture maneuver, and the direction of departure. Consistent with the methodology

of Davis et al., the NRHO is discretized by osculating true anomaly, θ∗, and the ma-
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neuver directions are defined in terms of the Velocity-Normal-Binormal (VNB) frame.

The frame is constructed as

V̂ =
v

|v|
, (3.1)

N̂ =
r

|r|
× V̂, (3.2)

B̂ = V̂× N̂. (3.3)

Yaw and pitch with respect to this frame are used to orient the maneuver direction.

Note, because the VNB frame is dependent on the base point along the orbit, it

varies continuously and periodically repeating every period. Figure 3.2 provides the

definition of the yaw and pitch with respect to the VNB frame where ∆v is the

maneuver vector. Figure 3.3 presents the locations of the VNB unit vectors in the

V̂

N̂

B̂
∆v

yaw

pitch

Figure 3.2.: Latitude, Longitude, and Range Definition with Respect to P2 in CRTBP
Rotating Frame

yaw-pitch plane. This plane is used to color departure directions based on impact

criteria and is defined consistent with the yaw and pitch definitions given by Davis

et al..
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Figure 3.3.: Location of VNB Unit Vectors in Yaw-Pitch Grid

3.1.1 Definition of Lunar Impact Characteristics

To investigate Lunar impact capabilities, trajectories are integrated until a Lu-

nar impact condition or a maximum integration time is reached. Several important

characteristics regarding the impacting trajectory are then recorded; these character-

istics are the Jacobi constant value, impact longitude (ϕ), impact latitude (λ), speed

at impact, angle of impact, and time of flight after departing the periodic orbit.

Knowledge of the longitude and latitude of impact offers the capability for selecting

candidate trajectories that impact desired Lunar surface locations or that avoid cer-

tain locations due to mission constraints, e.g., heritage sites. Impact speed and angle

are used in lunar ejecta study as well as determining valid trajectories for kinetic

impactors [14, 15]. The TOF of the impacting trajectories provides information on

whether a particular arc is congruent with mission time of flight requirements. Given

the set of impact characteristics identified, candidate trajectories can be filtered and

incorporated into a mission design process.

The latitude, longitude, and range definitions used in this investigation are defined

with respect to the rotating inertial axes shown in Figure 3.4 and are denoted λ, ϕ,

and %, respectively. The definition used is fixed within the CRTBP rotating frame;
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therefore, values obtained are independent of epoch. For a given point in space, q,

the longitude is defined as the angle between the position vector relative to P2 and

the positive x-axis with the ẑ direction defining the positive rotation. Longitudes

are defined to take on values between −180◦ and 180◦. Furthermore, the latitude is

defined as the angle between the position vector with respect to P2 and the xy-plane,

thus, taking on values between −90◦ and 90◦. The range is simply defined as the

distance from the center of the Moon (x = 1− µ), but, for Lunar impacts, the range

will be always equal to the mean Lunar radius, RMoon ≈ 1737.4 km. In the xy-plane,

x̂

ŷ

ẑ

%

q

ϕ

λ
P2

Figure 3.4.: Latitude, Longitude, and Range Definition with Respect to P2 in CRTBP
Rotating Frame

the definition of longitude in Figure 3.4 allows for the definition of four quadrants

around P2 shown in Figure 3.5. These definitions are congruent with those presented

by Davis [16]. Locations on P2 opposite P1 are, therefore, in quadrants I and IV

while locations on the near side of P2 with respect to P1 are in quadrants II and III.

In addition to the latitude, longitude, and range definitions, the Lunar impact

speed and angle are defined to avoid ambiguity. The velocity important for impact
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Figure 3.5.: Quadrant Definitions Around P2 in xy-Plane

analysis is the velocity of the impacting spacecraft viewed by an observer on the

Lunar surface. This velocity is equivalent to the velocity in the CRTBP rotating

frame, i.e. [ ẋ ẏ ż ]T. Therefore, the impact speed value desired is v. The impact speed

is bound by the Jacobi of the impacting trajectory as described by Davis et al. [12].

The velocity at impact is written in terms of the Jacobi constant, J , and position as

vimpact =

√
2

(
1− µ
r13

+
µ

r23
+

1

2
(x2 + y2)

)
− J. (3.4)

At impact with the Moon, the position variables are bounded by corresponding ex-

trema on the Lunar surface, i.e,

1− RMoon

l∗
≤ r13 ≤ 1 + RMoon

l∗
,

r23 = RMoon

l∗
,(

1− µ− RMoon

l∗

)2 ≤ (x2 + y2) ≤
(
1− µ+ RMoon

l∗

)2
.

(3.5)
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Therefore, the minimal and maximal impact speeds for a given Jacobi constant are

vmin =

√√√√2

(
1− µ

1 + RMoon

l∗

+
µ

RMoon

l∗

+
1

2

(
1− µ− RMoon

l∗

))
− J, (3.6)

vmax =

√√√√2

(
1− µ

1− RMoon

l∗

+
µ

RMoon

l∗

+
1

2

(
1− µ+

RMoon

l∗

))
− J, (3.7)

respectively. The minimum and maximum values across a range of Jacobi constants

are shown in Figure 3.6(a). The curves representing the minimum and maximum are

difficult to distinguish and, thus, the differences between the two curves are shown

in Figure 3.6(b). The extrema curves monotonically decrease until vmin/max = 0 at

J ≈ 8.35 where the ZVC passes through the Lunar surface and no valid impacting

trajectories exist. Over the entire range of Jacobi constants shown, the difference

between the two curves is small, as a result, a small range of impact velocities will be

observed for a given Jacobi constant. Therefore, given a trajectory with a particular

Jacobi constant, the impacting speed is known to 100 m/s (in the worst case) without

integration assuming an impact occurs. For the majority of Jacobi constants observed

in current analysis, the impact velocities are expected to be between 2 and 3 km/s.
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Figure 3.6.: (a) Minimum and Maximum Theoretical Impact Speeds and, (b) the
Difference Between The Maximum and Minimum Values
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The impact angle, ϑ, is defined as the angle between the local surface normal and

standard CRTBP rotating frame velocity vector at impact as depicted in Figure 3.7.

Therefore, the impact angle is defined between 0◦ and 90◦ representing an impact

normal to the surface and an impact “skimming” the surface, respectively.

•
Moon Center

RMoon

Surface Normal

• Impact Location

ϑ
v

Figure 3.7.: Impact Angle Definition Diagram

3.2 Lunar Impact Trajectories

Lunar impact trajectories are found through propagation of initial conditions gen-

erated by applying ∆v maneuvers at points along the 9:2 LSR NRHO. Two maneuver

magnitudes are selected: 1 and 15 m/s. These magnitudes are congruent with those

investigated by Davis et al. and demonstrate characteristic geometries originating

from the 9:2 LSR NRHO. The NRHO is discretized into 180 true anomaly values, i.e.

steps are taken in increments of 2◦, and a sphere of initial conditions around each

point is formed by applying the maneuver at various yaw and pitch values. These

initial conditions are propagated for 130 days, until Lunar impact, or until the tra-

jectory departs the Lunar region. The Lunar region departure is specified as the x

coordinate along the trajectory moving outside the range xL1 ≤ x ≤ xL2 where xL1

and xL2 are the x-coordinates of the L1 and L2 Lagrange points, respectively. The

impact velocity, angle, location, and time-of-flight are recorded for the trajectories

yielding Lunar surface impacts.
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Impact Conditions for 15 m/s Maneuver Magnitudes

A 15 m/s magnitude maneuver is applied at 180 points around the 9:2 LSR NRHO.

At each point, the pitch is varied between −90◦ and 90◦ and the yaw is varied between

−180◦ and 180◦. Figure 3.8 displays the time-of-flight to impact for these initial con-

ditions for those conditions that yield Lunar impacts colored. As the yaw angle is

Figure 3.8.: Impacting Departure Conditions for ∆v = 15 m/s Colored by Time of
Flight

cyclic, the conditions at a yaw of −180◦ are identical to those at 180◦; similar logic

applies for the true anomaly. Two major spheres of impacting initial conditions are

observed centered around yaw angles of 0◦ and ±180◦. These maneuver directions

correspond to maneuvers in the velocity and anti-velocity directions, thus, equate

to larger increases and decreases in Jacobi constant, respectively. Importantly, the

sphere in the anti-velocity direction (yaw of ±180◦) is filled, i.e. solid, while the sphere

in the velocity direction is a spherical shell. Consequently, variations in departure

location or maneuver direction in the anti-velocity sphere will still yield an impacting

trajectory while similar variations applied in the velocity direction may fail to result
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in a Lunar impact. Thus, the anti-velocity direction maneuvers possess a decreased

sensitivity to maneuver direction perturbations. Outside of these two main lobes of

impact conditions, conditions are found at many location and maneuver direction.

A majority of the impact conditions occur at times-of-flight below 60 days as most

trajectories depart the Lunar region at times beyond this. A large portion of the

impacting initial conditions outside of the main lobes occur at times-of-flight around

60 days. While the time-of-flight in the velocity-direction sphere is relatively con-

stant in the 40 day range, a gradient is observed in the anti-velocity sphere. Figures

3.9(a) and 3.9(b) display trajectories from the interior and exterior of the anti-velocity

direction sphere, respectively. The outer, higher time-of-flight conditions yield im-

pact trajectories with four revolutions around the Moon prior to impact while the

inner, lower time-of-flight conditions yield two revolution impact trajectories. This

geometry holds for all the initial conditions in the anti-velocity sphere. Figure 3.9(c)

demonstrates a trajectory from the spherical shell of initial conditions in the velocity

direction and is representative of the geometry across the entire shell. Clearly, this

impacting trajectory is larger than those presented in Figures 3.9(a) and 3.9(b), an

observation consistent with the lower Jacobi constant. The final trajectory given in

Figure 3.9(d) presents a common impact geometry found outside of the two main

initial condition spheres. The trajectories depicted in Figure 3.9 represent the most

common forms of impact geometries found across all maneuver magnitudes.

In addition to the times-of-flight, the impacting speeds are also investigated. Fig-

ure 3.10 plots the same impact conditions as those found in Figure 3.8 but colored

corresponding to the speed at impact. A significant relationship is observed between

the departure maneuver direction and the impact speed. This relationship is a direct

result of the bounds established for the impact speed as a function of the Jacobi con-

stant of the trajectory in Equations (3.6) and (3.7). Because the departure directions

nearer zero pitch and zero yaw represent maneuvers in the velocity direction, they

correspond to the greatest increase in Jacobi constant. Therefore, these trajectories

will yield the highest impact velocities and the opposite holds true for the maneu-
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(a) (b)

(c) (d)

Figure 3.9.: Sample Impact Trajectories for 15 m/s Magnitude Departures Corre-
sponding to Marked Locations in Figure 3.8

vers closest to zero pitch and a yaw of ±180◦. However, impact speed varies by less

than 20 m/s across all the impacting initial conditions. Note, the theoretical bounds

predict minimal and maximal impact speeds of 2.34 and 2.37 km/s, respectively.

The impact angles associated with the impacting initial conditions are given in

Figure 3.11. In general, very little predictable structure is observed for the impact

angles. However, in the anti-velocity sphere, a smooth gradient of impact angles is

observed. This gradient starts with angles around 25◦ at conditions near the center

of the sphere and progresses to higher impact angles before dropping back down to

0◦ and again progressing higher until the sphere boundary. This progression occurs

as the impact location moves from nearly equatorial latitudes to northern latitudes
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Figure 3.10.: Impacting Departure Conditions for ∆v = 15 m/s Colored by Impact
Speed

Figure 3.11.: Impacting Departure Conditions for ∆v = 15 m/s Colored by Impact
Angle
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and the sudden drop occurs when the additional revs are added as the impact loca-

tion moves beyond the Lunar surface. This connection with latitude is observed in

Figure 3.12. Similar to the impact angle, impact latitude displays little predictable

Figure 3.12.: Impacting Departure Conditions for ∆v = 15 m/s Colored by Latitude
At Impact

structure for initial conditions outside of the anti-velocity sphere. However, in both

cases, the sphere centered around the velocity direction demonstrates higher overall

impact angles and latitudes. In fact, for all impact conditions, lower latitudes are less

common indicating potential difficulty in reaching southern locations on the Moon.

The impact longitudes corresponding to the initial conditions are given in Figure

3.13. Both the velocity and anti-velocity spheres present a majority of the impacts

in the fourth quadrant. This is consistent with the impact geometries observed as

well as the geometry of the 9:2 LSR NRHO itself. Outside of the main spheres of ini-

tial conditions, other impact longitudes are available but present substantially more

sensitivity to departure location as well as maneuver direction.
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Figure 3.13.: Impacting Departure Conditions for ∆v = 15 m/s Colored by Longitude
At Impact

Impact Conditions for 1 m/s Maneuver Magnitudes

An identical analysis as that performed for the 15 m/s maneuver magnitude is

performed for a maneuver magnitude of 1 m/s. The impacting initial conditions are

plotted in Figure 3.14 colored by the time-of-flight to impact. Clearly, the 1 m/s ma-

neuver magnitude yields fewer and less well structured impacting initial conditions.

Spherical groups of initial conditions yielding impacting trajectories still exist sur-

rounding the velocity and anti-velocity maneuver directions. However, these groups

are smaller than their 15 m/s counterparts and demonstrate greater variability in the

time of flight across the group. Furthermore, the anti-velocity direction sphere is not

solid meaning maneuvers in directions very close to the anti-velocity direction fail to

yield impacts. For yaw values between −50◦ and −180◦ a group of impacts occur

at true anomalies near apoapsis appearing as a outgrowth of the normal spherical

shell; this geometry is demonstrated in Figure 3.15(b). The geometry of the velocity-

direction departure maneuver trajectories is similar to those of the 15 m/s case; the
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Figure 3.14.: Impacting Departure Conditions for ∆v = 1 m/s Colored by Time of
Flight

anti-velocity direction maneuvers, however, display the geometry shown in Figure

3.15(a), different than what is observed in the 15 m/s departure case. Overall, the

(a) (b)

Figure 3.15.: Sample Impact Trajectories for 1 m/s Magnitude Departures Corre-
sponding to Marked Locations in Figure 3.14
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impacting initial conditions and geometries observed are similar to those found in the

15 m/s case but with greater variations between nearby conditions.

The impact speeds of the initial conditions yielding impacting trajectories for the

1 m/s magnitude departure maneuver case are shown in Figure 3.16. Consistent

Figure 3.16.: Impacting Departure Conditions for ∆v = 1 m/s Colored by Impact
Speed

with the 15 m/s ∆v case and the theoretical extrema derivation, the impact speed

varies directly with the departure maneuver direction. The higher impact speeds

occur when the maneuver direction is oriented towards the velocity direction and the

converse holds for the lower impact speeds. However, due to the small departure

magnitude, the total variation in impact velocity over the 1 m/s impact conditions

is less than 2 m/s despite the theoretical impact speed bounds allowing for impact

speeds from 2.35 to 2.36 km/s.

The impact angles for the 1 m/s case are shown in Figure 3.17. The impact angles

are predominantly higher resulting in warmer colors appearing more often in the

figure. Despite the dominance of higher impact angles, little consistency is observed
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between neighboring points in general. Consequently, it is difficult to predict the

impact angle of a trajectory as a function of the departure angle direction.

Figure 3.17.: Impacting Departure Conditions for ∆v = 1 m/s Colored by Impact
Angle

The impact latitudes and longitudes given in Figures 3.18 and 3.19, respectively,

demonstrate similar unpredictability to that observed in the impact angle. However,

the 1 m/s departure magnitude presents a significantly higher percentage of southern

hemisphere impact locations that that observed in the 15 m/s case evident by the

cooler overall color of Figure 3.18. Despite the consistent general color, large vari-

ations in impact latitude are observed between nearby points. A similar feature is

observed for the longitudes in Figure 3.19. Overall, the majority of impacts occur in

the fourth quadrant (similar to the 15 m/s case), but large variations are observed

between neighboring points.

In general, the lower maneuver magnitude amplifies the variations observed in im-

pact angle and location compared to the higher magnitude departure maneuver. Fur-

thermore, the decrease in maneuver magnitude provides a smaller range of achievable
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Figure 3.18.: Impacting Departure Conditions for ∆v = 1 m/s Colored by Latitude
At Impact

Figure 3.19.: Impacting Departure Conditions for ∆v = 1 m/s Colored by Longitude
At Impact
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impact velocities and limits the number of maneuver directions yielding impacting

trajectories. However, the lower maneuver magnitude presents a greater amount of

southern hemisphere access and, obviously, a reduced maneuver cost.

3.2.1 Application: Impact Trajectories at the Shackleton Crater

While no specific Lunar landing locations have been selected for NASA’s Lunar

surface activities, areas in and around Shackleton crater are potential candidates for

these missions [17,18]. Therefore, trajectories impacting in Shackleton crater from the

9:2 LSR NRHO present mission candidates for future operations from Gateway to the

Lunar surface. Locations of Shackleton crater over the year 2023 are determined in

the CRTBP rotating frame and nearby impacting orbits are identified and corrected.

The Shackleton crater sits at a latitude and longitude of −89.66◦ and 129.17◦, re-

spectively [19]. However, the coordinates describing the location of the crater are fixed

in Lunar fixed frames, not in the Earth-Moon rotating frame used for the CRTBP.

While the Moon is “tidally locked”, small angular deviations are observed between

the Moon-fixed and Earth-Moon rotating frames. Consequently, the position in the

Earth-Moon rotating frame of Shackleton crater is dependent on the epoch selected.

Epochs are spaced across 2023, selected because it is the year following Gateway’s

planned launch [20], at 16 regularly spaced intervals. Figure 3.20 presents the lati-

tudes and longitudes as defined in Figure 3.4 of Shackleton crater over 2023 deter-

mined via the SPICE toolkit provided by NAIF [21]. Additionally, Figures 3.21(a)

and 3.21(b) show the longitudes and latitudes at each of the selected epochs. From

all three figures, it is clear that greater variations are observed in longitude than

latitude as latitudes range from −89◦ to −76◦ while longitudes span values from

132◦ to 278◦. Furthermore, as expected, the motion demonstrates periodicity with a

dominant period of 27 days consistent with the Lunar period.

Using data from the 15 m/s impact analysis performed, impacts from the NRHO

departure are found that are close in position space to the identified Shackleton
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Figure 3.20.: Latitudes and Longitudes of Shackleton Crater at Selected Epochs in
2023

crater locations over the year 2023. The 15 m/s ∆v magnitude is used due to the

increased number of impact conditions and reduced time of flight of the impacting

trajectories. Figure 3.22 displays the identified locations of Shackleton crater in 2023

overlaid on the impact conditions for the 15 m/s departure magnitude case. Clearly,

many impact conditions occur near the Shackleton crater locations demonstrating

the existence of potential transfers from the NRHO to the crater. However, little

variation is observed in the times-of-flight yielding potential transfers; most impact

conditions near the crater locations impact at around 50 days. Figures 3.23(a) and

3.23(b) display the speeds and impact angles of the surface impact conditions shown

in Figure 3.22. While the impact speeds display little variation in the times-of-

flight, the impact angles demonstrate greater variety as both low (ϑ < 10◦) and

high (ϑ > 80◦) impact angles are observed. Figure 3.24 demonstrates examples of

the representative low and high impact angle geometries impacting nearby the crater

locations. The low impact angle trajectory maintains the general southern behavior of

the NRHO while high impact angle flips into a northern type motion before impacting

the Lunar surface. The times-of-flight of the two trajectories are similar with the low

impact angle trajectory taking 47 days and the high impact angle trajectory taking 61
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(a)

(b)

Figure 3.21.: Longitudes and Latitudes of the Shackleton in 2023 with Selected
Epochs Marked

days to impact the surface. These two geometries are representative of all impacting

trajectories with times-of-flight below 100 days in the crater region.

The two impacting trajectories presented in Figure 3.24 do not impact exactly

at any of the positions. Therefore, the initial maneuver direction and magnitudes
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Figure 3.22.: Locations of Shackleton Crater in 2023 (in Red) Overlaid on Latitude
and Longitude of Impact Conditions Originating from the 9:2 LSR NRHO with a 15
m/s Departure Maneuver

must be corrected for each of the impact locations to converge trajectories impacting

exactly at the Shackleton crater locations. The free variable constraint multiple

shooting formulation is used to determine the initial departure locations, maneuver

magnitudes, and maneuver directions required to impact the Shackleton crater. Thus,

the free variables are defined as

X =
[
τN ∆v x0

1 x0
2 · · · x0

M τ1 τ2 · · · τM

]T
, (3.8)

where τN is the time-of-flight along the NRHO before the maneuver is performed,

∆v is the maneuver vector, and x0
i and τi are the initial state and time of flight
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(a)

(b)

Figure 3.23.: Locations of Shackleton Crater in 2023 (in Red) Overlaid on Latitude
and Longitude of Impact Conditions Originating from the 9:2 LSR NRHO with a 15
m/s Departure Maneuver
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(a) Low Impact Angle

(b) High Impact Angle

Figure 3.24.: Example Low and High Impact Angle Trajectories from 9:2 LSR NRHO
to Shackleton Crater Area
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along the ith trajectory segment for i = 1, . . . ,M , respectively. The constraints are

straightforwardly

F (X) =



rτN0 − r01

vτN0 + ∆v− v0
1

x0
2 − xτ11

x0
3 − xτ22

...

x0
M − x

τM−1

M−1

rτMM − rS


, (3.9)

where rS is the position of the Shackleton crater obtained from the latitude and

longitude at the specified epoch. More specifically, when an epoch is selected and the

latitude, λ, and longitude, ϕ, of Shackleton crater in the CRTBP rotating frame are

determined, the corresponding position components are calculated as

x = RMoon cos (λ) cos (ϕ), (3.10)

y = RMoon cos (λ) sin (ϕ), (3.11)

z = RMoon sin (λ). (3.12)

Using the free variables and constraints specified, the two geometries are converged

to all 16 of the locations determined for Shackleton crater in 2023.

Using the impacting initial conditions from the locations in Figure 3.23, the cor-

rected trajectories are generated and displayed in Figure 3.25. Converged solutions

are obtainable for both types of transfer geometries to all Shackleton crater locations

included in the analysis. Evident in both families of transfers, the underlying ge-

ometry of the converged trajectories varies little from the initial guess. This lack of

departure from initial geometry indicates that the geometries selected provide suffi-

ciently flexible initial guesses for crater transfers. Therefore, in the current context,

the 9:2 LSR NRHO provides Lunar access to the Shackleton crater for all epochs

analyzed given freedom of phasing in the NRHO. The times-of-flight for the NRHO
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(a) Low Impact Angle

(b) High Impact Angle

Figure 3.25.: Corrected Trajectories from NRHO to Shackleton Crater for All Selected
Epochs

to crater transfers at each arrival date are given in Figure 3.26. Clearly, very little

variation in the TOFs is observed across all dates. This result is congruent with the
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Figure 3.26.: TOF Values for Corrected Transfers from NRHO to Shackleton Crater

lack of major variation in the transfer geometries seen in Figure 3.25 as the transfer

geometry and TOF are tightly coupled in general. The low impact angle trajectory

remains around 47 days while the high impact angle trajectory hovers around 62 days

over 2023. The maneuver magnitudes for the corresponding epochs are shown in Fig-

ure 3.27. The required ∆v for the NRHO to crater transfers displays slightly greater

variation that that observed for the time-of-flight. The low impact angle geometry

oscillates with a 6 m/s amplitude while the high impact angle geometry has a range of

around 3 m/s. While the variations observed are large in relative terms, the absolute

variations are small.

The use of step of maneuvers to determine candidate geometries to correct into

desired impact trajectories offers a valid way to design missions from the NRHO to

the Lunar surface in the CRTBP. However, due to a large number of impacts not

reaching the Lunar surface and the chaotic flow surrounding the NRHO, the number

of available geometries and transfer types is limited. As a result, a large number of

candidate maneuver directions and magnitudes must be integrated to generate enough
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Figure 3.27.: ∆v Magnitudes for Corrected Transfers from NRHO to Shackleton
Crater

data points for the design process (over 72,000,000 in this analysis) to overcome the

low number of impacts. This limitation reduces the ability to determine trajectories

with desired impact locations and impact conditions with desired or predictable ge-

ometry. This is observed in the limited number of speeds and angles available for

the Shackleton crater transfers. Consequently, alternative methods for determining

desirable geometry and impact conditions is sought for mission design from periodic

orbits to the Lunar surface and Low Lunar Orbit (LLO).
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4. LUNAR ACCESS CHARACTERISTICS OF PERIODIC

ORBITS IN THE LUNAR REGION

Invariant manifolds associated with periodic orbits in the Lunar region provide struc-

tures that are beneficial to Lunar access trajectory design. Manifold structures leading

to desirable Lunar altitudes or likely impacts offer predictable and structured path-

ways for mission design applications. Therefore, an understanding of the available

manifold structures is a key element for efficiency and flexibility in design proce-

dures. The stability index for associated periodic orbit family members is defined

and leveraged to determine orbits possessing stable and unstable manifolds providing

theoretically zero-cost arrivals and departures. Finally, the Lunar access characteris-

tics of the unstable manifolds of these periodic orbits are evaluated.

4.1 The Stability Index

The stability of periodic orbits is assessed via the characteristic multipliers derived

from the monodromy matrix, Φ (T, 0). The monodromy matrix possesses 6 eigenval-

ues and a periodic orbit possesses stable and unstable manifolds if and only if the

modulus of one or more of these eigenvalues is greater than 1. It is beneficial to define

a stability index for every periodic orbit that supplies a scalar valued that indicates

the existence of unstable and stable manifolds for a periodic orbit.

Grebow and Zimovan each offer a definition of a stability index leveraging the

complex conjugate nature of the eigenvalue pairs from the monodromy matrix [22,23].

These definitions allow for the isolation of unstable orbits with purely real eigenvalues.
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However, a modification of the definition allows for the detection of orbits possessing

unstable spiral manifolds. The stability index, ς, is thus defined as

ς :=
∣∣∣∣λ̄T ∣∣∣∣∞ (4.1)

where λ̄T is the vector of eigenvalues of Φ (T, 0) and λ̄T ∈ C6. A stability index greater

than 1 indicates that a periodic orbit is unstable. Furthermore, because det Φ (T, 0) =

1, the minimum possible stability index is 1. The definition of the stability index,

therefore, allows determination of the periodic orbit stability characteristics via the

inspection of a single scalar-valued quantity.

Associating periodic orbits with their corresponding stability indices identifies

members of periodic orbit families that possess unstable and stable manifolds. A pe-

riodic orbit family may have no unstable members, all unstable members, or a bands of

unstable members separated by periodic orbits with no stable or unstable subspaces.

As an example, Figure 4.1 displays the stability indices for a large region across the

Earth-Moon L2 northern halo family of periodic orbits. Four distinct regions are

observed: two bands of unstable family members with stability indices greater than

1 and two bands of family members possessing no stable or unstable subspaces with

unit stability indices. This figure further demonstrates that leveraging the stability

index enables the visual inspection of stability properties within a family of periodic

orbits without requiring numerical inspection of all the characteristic multipliers of

individual orbits. The L2 northern halo family corresponding to the hodograph in

Figure 4.1 is displayed in Figure 4.2 and colored based on the stability properties

predicted by the stability index, ς. Congruent with Figure 4.1, four distinct bands of

motion are observed. The region of this family highlighted in the figure is unstable at

its planar bifurcation with the L2 Lyapunov orbits and remains unstable until near its

maximum z-amplitude where the orbits become stable. Two more stability changes

occur as the periapse radius continues below the Lunar radius.
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Figure 4.1.: Stability Indices for Earth-Moon L2 Northern Halo Family

The application of Lyapunov stability methods to periodic orbits result in binary

notions of stability, i.e., periodic orbits possessing characteristic multipliers of mod-

ulus greater than one are unstable and are otherwise stable with no mixed option.

However, in application, periodic orbits with stability indices “slightly” greater than

one possess unstable manifold structures that diverge slowly from the underlying

periodic orbit. Furthermore, the stability index is coupled with the period of the

underlying periodic orbit; a higher stability index does not indicate that a manifold

departs faster if the period of the orbit is also longer. Therefore, a time constant, κτ ,

quantifies the slow divergence of unstable behavior, that is,

κτ =
T

ln (ς)
, (4.2)

where T is the period of the orbit, thus, the time required for the divergence to

grow by a factor of e [23]. As the stability index approaches 1, therefore, the time

constant tends towards infinity indicating no divergence of the initial perturbations
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from the periodic orbit. Additionally, because the stability index is never less than

1, the time constant is always non-negative. The time constants computed for the

Figure 4.2.: Earth-Moon L2 Northern Halo Family where Red Orbits Possess Unstable
Manifolds and Blue Orbits Possess a Four-Dimensional Center Manifold

L2 northern halo family are displayed in Figure 4.3 in a manner similar to that by

Zimovan [23]. The time constants for the higher-period band of unstable orbits (those

closer to the L2 Lyapunov bifurcation orbit) possess much lower time constants than

the shorter-period group of unstable orbits. Physically, a lower time constant cor-

responds to manifold structure that grows away from the underlying periodic orbit

at a faster rate. Periodic orbits with large time constants (stability indices close to

unity) possess unstable manifold structures that require many revolutions before sig-

nificant deviation is observed. Figures 4.5 and 4.4 demonstrate the difference between

high and low time constants associated with an unstable periodic orbit. The trajec-

tory arc on the unstable manifold of the low-time-constant orbit departs the periodic

orbit after a single revolution while the trajectory on the unstable manifold of the

high-time-constant orbit remains close to the originating orbit after 13 revolutions.
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Figure 4.3.: Time Constants of Earth-Moon L2 Northern Halo Family

Therefore, while both orbits are unstable from a Lyapunov stability theory perspec-

tive, the time constant provides information on whether the manifold structures offer

practical departure (or arrival) characteristics.

Figure 4.4.: Trajectory Arc on Unstable Manifold Originating from Periodic Orbit
with Low Time Constant (κτ = 0.8) Propagated for 2 Revolutions
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Figure 4.5.: Trajectory Arc on Unstable Manifold Originating from Periodic Orbit
with High Time (κτ = 1.8) Constant Propagated for 13 Revolutions

No analytical prediction exists for a value of κτ that constitutes a “fast” departure;

therefore, the application of the time constant is evaluated within the context of

a heuristic. The current investigation limits “fast” departure characteristics to a

value such that κτ ≤ 1.5. This critical time constant corresponds to growth that is

consistent with two orders-of-magnitude at around 30 days in the linear model and

anecdotally demonstrates desirable characteristics in the full nonlinear model.

4.2 Stability of Periodic Orbit Families in the Lunar Region

Invariant manifold structures associated with unstable periodic orbits provide low-

cost transfer opportunities to and from the underlying periodic orbit. However, not

all families of periodic orbits possess unstable members. Therefore, the availability of

unstable periodic orbits in a subset of Lunar region periodic orbits is explored. This

subset of Lunar-Region periodic orbits is described and the stability characteristics

associated with each family are investigated.



100

4.2.1 Definition of Lunar Region Periodic Families of Interest

Within the Circular Restricted Three Body Problem (CRTBP) model, a significant

variety of periodic orbit families exist in the Lunar Region. Diversity in orbital

geometry, range of Jacobi constant values, period, and stability characteristics is

observed between families. The subset of the Lunar-Region periodic orbits in Table

4.1 is selected that reflects a significant span across the variation observed in these

quantities. While not included, alternative families to those specified in Table 4.1

may offer additional transfer structures. The table is divided into the planar and

spatial families. While offering a smaller phase space and, thus, easing analysis, the

unstable and stable manifold structures associated with the planar orbits are also

planar limiting the available LLOs and Lunar impact sites to those intersecting the

Earth-Moon orbital plane.

Table 4.1.: Investigated Subset of Lunar Region Periodic Orbits

Planar Orbit Families Spatial Orbit Families
Distant Retrograde Orbits (DROs) L1 and L2 Halo Orbits
Low Prograde Orbits (LPOs) L1 and L2 Axial Orbits
L1 and L2 Lyapunov Orbits L1 and L2 Vertical Orbits

Butterfly Orbits
Period 4 Halo Orbits

4.2.2 Earth-Moon Distant Retrograde Orbits

The Distant Retrograde Orbits (DROs) are essentially retrograde Lunar circular

orbits viewed and computed in the CRTBP. A large subset of the Distant Retrograde

Orbits is displayed in Figure 4.6, and includes the corresponding stability indices.

The stability index for every distant retrograde orbit is unity; therefore, there exists

no period-1 planar DRO with an unstable (and therefore stable) subspace. The DROs

possess four-dimensional center subspaces, i.e., the non-trivial eigenvalues all lie on the
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unit circle. The stability of the DRO family of orbits has led to the incorporation of

DROs into mission concepts such as the Asteroid Redirect Mission [24], but provides

no unstable manifolds for low-cost lunar access.

Figure 4.6.: Simply Symmetric Planar Distant Retrograde Orbits (DROs) and Cor-
responding Stability Indices

4.2.3 Earth-Moon Low Prograde Orbits

Low Prograde Orbits (LPOs) are similar to the DROs but with velocities such that

the periodic motion is in the prograde direction, i.e., counter-clockwise as viewed in

the CRTBP rotating frame. Representative orbits from across the LPO family appear

in Figure 4.7.

The LPO family contains members with Lunar periapse radii well within the Moon

radius and extending to approximately 22,000 km. In Figure 4.8, the Jacobi constant

is plotted as a function of Lunar periapse radius across the LPO family. The Jacobi

constant varies significantly ranging from around 3.172 to 9.016. Therefore, at the

lowest Jacobi value, the L1 gateway is open, allowing transportation between the Lu-
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Figure 4.7.: Low Prograde Orbits (LPOs)

nar and Earth regions. The stability index across the LPO family is plotted in Figure

2 4 6 8 10 12

4

5

6

7

8

9

Figure 4.8.: Jacobi Constant as a Function of Lunar Periapse Radius for Earth-Moon
Low Prograde Orbits

4.9(a) and is characterized by initially high values at low periapse radii and Jacobi

constants followed by a nearly-instantaneous drop to unity for the remainder of the

family except for a small section around rp = 0.6RMoon. The unstable members of

the LPO family are located at a rp near and below 5,200 km (approximately 3,500

km altitude); the corresponding Jacobi constant values all fall below 3.184. In Fig-
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ure 4.10, the LPOs are colored by stability index. The unstable periodic orbits are

observed as extending to relatively high lunar altitudes, thus, the possibility exists

for Lunar orbit insertion at altitudes commonly required for Lunar missions. The

existence of unstable family members in the LPO family differs from observations in

the DRO family. This instability indicates possible utility of the invariant manifolds

associated with the family members. However, as discussed in Section 4.1, the rate

at which trajectories on the stable and unstable manifolds approach and depart the

periodic orbit, respectively, must be sufficiently high such that the departure mechan-

ics are aligned with mission criteria. Therefore, the time constants associated with

the unstable LPOs are explored. The time constant values across the LPO family

are plotted in Figure 4.9(b). Periodic orbits with time constants near and below 1.5

exist indicating the existence of unstable orbits with manifold structures departing

at sufficiently fast rates. Furthermore, as apparent in Figure 4.9(b), many of these

advantageous periodic orbits exist with periapse radii between 1 and 2.5 Lunar Radii

offering ideal altitudes for Low Lunar Orbit mission applications.
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Figure 4.9.: Stability Characteristics of Earth-Moon Lunar Prograde Orbit Family

The Low Prograde Orbit (LPO) family possesses unstable orbits with desirable

time constants at altitudes beneficial for Low-Lunar operations. The manifold struc-

tures associated with these orbits provide opportunities for low-cost transfers to the
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Figure 4.10.: Low Prograde Orbits (LPOs) Where Red Indicates Unstable Orbits and
Blue Indicates Stable Orbits

Lunar surface, Low-Lunar Orbit, and other orbits in the Lunar vicinity. Furthermore,

due to the relatively low Jacobi constant values, given the proximity to the second

primary, the LPO family presents a promising intermediate step for spacecraft at

higher energies to enter the Low-Lunar space.

4.2.4 Earth-Moon Lyapunov Orbits

The final planar orbit families included in the investigation are the Lyapunov

orbit families. In Figure 4.11, both the L1 and L2 families appear; while an additional

Lyapunov family exists around L3, none of the family members extend into the Lunar

region and, therefore, it is not included in the current study.

Both the L1 and L2 Lyapunov families grow to large y amplitudes, approaching

the Moon at arbitrarily low periapse radii. Intuitively, as the size of the Lyapunov

orbit expands and the periapse radius drops, the Jacobi constant value drops as well.

The relationship between the Jacobi constant and the Lunar periapse radius is plotted
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(a) L1 Lyapunov Orbits (b) L2 Lyapunov Orbits

Figure 4.11.: Earth-Moon Lyapunov Orbit Families

in Figure 4.12. At low lunar periapse radii, the Jacobi constant is also low indicating

high periapse velocities. These orbits defined by low Jacobi constant values reflect

high-energy members that, in conjunction with their sub-surface Lunar radii, present

challenges to incorporation for cislunar mission designs. However, both the L1 and

L2 families possess members with higher Jacobi constant values and Lunar altitudes

ideal for Low-Lunar operations.
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Figure 4.12.: Jacobi Constant Value Versus Lunar Periapse Radii for Earth-Moon L1

and L2 Lyapunov Orbit Families
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The stability properties of the Lunar-Region Lyapunov families are characterized

in Figure 4.13. Every member of both the L1 and L2 Lyapunov orbit families possesses

unstable and stable subspaces with a minimum observed stability index of ς = 107

for L1 and ς = 99 for L2. Furthermore, the time constants, plotted in Figures 4.13(c)

and 4.13(d), are on the order of 1.0 indicating “fast” departure and arrival mechanics.

The L2 family does posses orbits with time constant values κτ = 1.6, i.e., above the

pre-defined critical time constant value; but for a significant portion of the family,

κτ lies below the 1.5 value. Therefore, the Lyapunov families in the Lunar region
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Figure 4.13.: Stability Characteristics of Earth-Moon Lyapunov Orbit Families

include unstable periodic orbits across a large span of Lunar radii and values of

Jacobi constant with sufficiently low time constants and, consequently, a significant
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opportunity for incorporation into mission designs leveraging the Lyapunov manifold

structures.

4.2.5 Earth-Moon Halo Orbits

The L1 and L2 halo orbit families are three-dimensional periodic orbit families

that bifurcate from the L1 and L2 Lyapunov families, respectively. Sections of the

northern halves of the L1 and L2 halo orbit families are displayed in Figure 4.14.

Due to the symmetry across the xy-plane in the CRTBP, the southern L1 and L2

northern halo orbit families also exist with opposite signs on z and ż, effectively

appearing as mirror images of the orbits as observed in Figure 4.14 across the xy-

plane. Furthermore, due to this symmetry, the stability characteristics of the northern

half-families are equivalent to those of the southern half-families.

(a) L1 (b) L2

Figure 4.14.: Northern Halo Orbit Families in the Earth-Moon System

The stability characteristics of the northern halo families are summarized in Figure

4.15. Both the L1 and L2 families possess four bands of unstable and stable periodic

orbits with regions of stable orbits at rp ≈ 10RMoon (17,400 km). At periapse radii

beyond this 10 RMoon distance, both families possess unstable orbits with increasing

value of the stability index as the families evolve towards the planar bifurcation

point in their corresponding Lyapunov families. The time constants for the unstable
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periodic orbits with rp > 10RMoon shrink consistent with the growth of ς and the

family then enters regions of desirable values, i.e., near and below 1.5. However, at

periapse radii less than rp ≈ 10RMoon, more notable stability structure is observed.

Both the L1 and L2 families include regions of instability below the stable region at

10RMoon and then returns to ς = 1 as the periapse radius is decreased further. For

the L1 halo orbit family, the central unstable region contains a subset of periodic

orbits with desirable time constants however, for the L2 halo orbit family this central

region displays time constants at and above 1.6 indicating slow manifold departure.
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Figure 4.15.: Stability Characteristics of Earth-Moon Northern Halo Orbit Families

The unstable bands near the planar bifurcation orbit in both the L1 and L2 halo

orbit families along with the central unstable band in the L1 Halo family suggest
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manifold structures with low time constants that may be leveraged for Lunar access.

In Figures 4.16 and 4.17 the L1 and L2 families are colored by stability. In both

families, the bands of unstable orbits near the Lyapunov bifurcation orbits extend

significantly out of plane and represents a “large” portion of the family geometry.

These structures offer candidate orbits for cost-free departures and arrivals from LLOs

or the Lunar surface.

Figure 4.16.: L1 Halo Orbit Family Colored by Stability where Red Indicates Unstable
and Blue Indicates Stable
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Figure 4.17.: L2 Halo Orbit Family Colored by Stability where Red Indicates Unstable
and Blue Indicates Stable
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4.2.6 Earth-Moon Vertical Orbits

The Earth-Moon Vertical Orbits are generated from the out-of-plane center mode

present in the linear variational analyses relative to the collinear libration points.

These orbits are, thus, denoted vertical orbits because, in the neighborhood of the

Lagrange points, they approach the harmonic oscillation described in Equation (2.68).

Orbits across both the L1 and L2 vertical families are plotted in Figure 4.18. Charac-

teristic of the vertical orbit families is a large out-of-plane component and figure-eight

motion centered above and below the xy-plane. Because of the large out-of-plane

component of certain members along the family, the Jacobi constant values are neg-

ative values near -1 for both the L1 and L2 families as observed in Figure 4.19. The

members with low Jacobi constant values may be intractable for mission applications,

however, the vertical orbits with smaller out-of-plane components evolve to higher Ja-

cobi values, i.e., near 3, and, therefore, may present opportunities at energies closer

to those of other orbits in the Lunar region.

(a) L1 (b) L2

Figure 4.18.: Vertical Orbit Families in the Earth-Moon System

The stability characteristics of the L1 and L2 vertical orbit families appear in

Figure 4.20. Obviously, every orbit across both families is unstable. Furthermore,

at Lunar periapse radii beyond rp ≈ 16RMoon the vertical orbits demonstrate low

time constants congruent with fast departure mechanisms. Because fast departures
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Figure 4.19.: Jacobi Constant Versus Lunar Periapse Radius for Earth-Moon Vertical
Orbit Families

correspond to the high Jacobi constant values, they offer manifold structures possibly

accessible from other Lunar region orbits. The Earth-Moon L1 and L2 vertical orbits

include unstable periodic orbits with low time constants across a wide range of Jacobi

constant values and geometries. Noticeably, significantly unstable orbits are observed

at Jacobi constant values near 3, a Jacobi constant value repeated in every family

investigated. These instability characteristics indicate that the Vertical families’ in-

variant manifold structures associated with the vertical family likely provide desirable

pathways for moving through Lunar space.
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Figure 4.20.: Stability Characteristics of Earth-Moon Vertical Orbits
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4.2.7 Earth-Moon Axial Orbits

The Earth-Moon L1 and L2 axial orbit families are, like the halo orbits, evolve

from bifurcations with the L1 and L2 Lyapunov orbit families, respectively. Each

axial orbit possesses two perpendicular crossings with the x-axis but not necessarily

at perpendicular crossings of the xy and/or xz-planes. Both axial families are plotted

in Figure 4.21. The perpendicular crossings with the x-axis are observed leading to the

appearance of an axle passing through the center of both families. In Figure 4.22, the

(a) L1 (b) L2

Figure 4.21.: Axial Orbit Families in the Earth-Moon System

Jacobi constant values versus Lunar periapse radius are plotted across both the L1 and

L2 axial families. Very little variation in the Jacobi constant value is observed through

the axial families as compared to variations observed in other periodic orbit families.

This small variation is congruent with the geometry in the axial orbit families; the

periodic orbits in both families possess similar geometry but are rotated around the

x-axis leading to the largest contribution to the Jacobi constant variation across a

family from changes in the z amplitude. Note, the axial families evolve down then

back up curves present in Figure 4.22 as both families close on themselves forming

closed hodographs.

The axial orbit families, like the vertical families, possess all unstable members

as observed in Figure 4.23. Similar to Jacobi constant, little variation is observed



115

10 15 20 25

2.97

2.98

2.99

3

3.01

3.02

Figure 4.22.: Jacobi Versus Lunar Periapse Radius for Earth-Moon Axial Families

in the values of ς across each axial family. The L1 axial orbits are slightly more

unstable on average than the L2 Axial orbits but the stability indices are on the

same order of magnitude. In Figures 4.23(c) and 4.23(d), the L1 axial orbits possess

time constants near 0.656 and the time constants evaluated for the L2 axial orbits

possess values near 0.770 predicting fast departure mechanisms for both families.

The stability characteristics along the axial families indicate that both the L1 and L2

families exhibit valid unstable structures to explore access for the Lunar region.



116

15 20 25

420

440

460

480

500

(a) L1 Axial Orbits

10 15 20 25

260

280

300

320

(b) L2 Axial Orbits

15 20 25

0.654

0.656

0.658

(c) L1 Axial Orbits

10 15 20 25

0.765

0.77

0.775

(d) L2 Axial Orbits

Figure 4.23.: Stability Characteristics of Earth-Moon Axial Orbit Families
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4.2.8 Earth-Moon Butterfly Orbits

The Earth-Moon butterfly orbits emerge from a period-doubling bifurcation along

the L2 halo orbit families. The general geometry in a section of the northern butterfly

orbit family in the Lunar region is plotted in Figure 4.24. Similar to the halo orbit

families, the Butterfly orbits possess northern (shown in Figure 4.24) and southern

families. Likewise, the stability characteristics are the same for both. The Jacobi

Figure 4.24.: Northern Butterfly Orbit Family in the Earth-Moon System

constant values appear as a function of the Lunar periapse radius in Figure 4.25. The

butterflies in Figure 4.24 span Jacobi constants from J ≈ 1.5 to J ≈ 3.0. These

Jacobi constant values are similar to those commonly observed in the other periodic

orbit families indicating connection opportunities. Also apparent in Figure 4.25, the

butterfly orbits span a wide range of Lunar periapse radii. This proximity to the

Moon at higher Jacobi constant values suggests that manifold structures may be

leveraged for transfers to low-Lunar regimes.
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Figure 4.25.: Jacobi Versus Lunar Periapse Radius for Earth-Moon Northern Butter-
fly Orbits

The butterfly orbit family stability characteristics are plotted in Figure 4.26. Sim-

ilar to the axial and vertical orbits, all members of the butterfly orbit family are

unstable. However, the butterfly orbits exhibit linear instability at lower periapse

altitudes than observed for both the axial and vertical families. The time constants

associated with the butterfly orbits are below 1.5 for several sections across the fam-

ily members presented. One section of sufficiently low time constants occur below

10RMoon and another section occur above this cut-off. Therefore, similar to the L1

Lyapunov family, while all orbits are unstable, sections appear to decay too slowly.

However, the low-altitude instability in the Butterfly orbit offers the opportunity for

transfer into regions with Low-Lunar altitudes.
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Figure 4.26.: Stability Characteristics of Earth-Moon Butterfly Orbit Families
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4.2.9 Earth-Moon Period-4 Halo Orbits

The final set of spatial periodic orbit families that are included in this analysis

are the orbit families formed from the period-quadrupling bifurcations with the L2

Halos presented by Zimovan-Spreen and Howell [25]. These period-four halo orbits

are denoted the P4HO1 and P4HO2 families observed in Figures 4.27 and 4.28, re-

spectively. Note, the geometry apparent in the P4HO2 represents a subset of the

complete family formed by removing the significantly out-of-plane and high energy

members. Both families display complex geometry quite different as compared to the

halo orbits from which they originated via the bifurcation. The Jacobi constants as a

Figure 4.27.: P4HO1 Family in the Earth-Moon System

function of Lunar periapse radius for both period-four halo orbit families are plotted

in Figures 4.29 and 4.30. Both families display only slight variations in Jacobi con-

stant values centered around J = 3.0 indicating compatibility with Jacobi constant

values observed for the other families in this analysis. The P4HO1 family includes

members with extremely low periapse radii extending well below the lunar surface;

but the family does not include members whose periapse radii extend beyond 7RMoon.

This range of periapse radii offers significant advantage to low Lunar operations. The

P4HO2 family does not reach the low periapse radii observed in the P4HO1 family
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Figure 4.28.: P4HO2 Family in the Earth-Moon System

but does not extend beyond approximately 10RMoon, again in the range of low Lunar

operations.
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Figure 4.29.: Jacobi Constant Versus Periapse Radius for the P4HO1 Family in the
Earth-Moon System

The stability characteristics in the P4HO1 and P4HO2 families are apparent

in Figure 4.31. Evident from the figure, most orbits belonging to the P4HO1 or

P4HO2 families are unstable with the exception of small groups of stable orbits.
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Figure 4.30.: Jacobi Constant Versus Periapse Radius for the P4HO2 Family in the
Earth-Moon System

The P4HO1 family possesses a very brief section of stable orbits with periapse radii

around rp ≈ 3RMoon and the P4HO2 Family possesses two small bands of unsta-

ble orbits between the periapse radii of 7RMoon and 9RMoon. However, apart from

these stable members, all other orbits in both families present unstable and stable

subspaces. The P4HO2 family demonstrates a greater overall instability when com-

pared to the P4HO1 family. This distinction is consistent with the time constants

observed. Nearly all of the time constants are below 1 for the P4HO2 family while

only a small section at low Lunar periapse radius in the P4HO1 orbits display de-

sirable time constants. The low time constants in the P4HO1 family are reconciled

with the apparently high stability indices by recalling that the P4HO1 family forms

as a period-four bifurcation, thus, its period is four times greater than the originating

bifurcating Halo orbit. Therefore, while the stability index is high, the deviation it

predicts (in the linear sense) is distributed over the long period. Consequently, the

stability index must be much greater than that of a lower period orbit to observe

the same contemporaneous deviations from the reference. Because the P4HO2 fam-

ily incorporates much greater stability indices, the extended period is overcome by
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the instability in the orbit yielding fast departure characteristics. While the P4HO1

family fails to yield time constants below 1.5 for a majority of the family, members

with desirable time constants do exist at and below rp ≈ 0.2RMoon.
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Figure 4.31.: Stability Characteristics of Earth-Moon Period-Four Halo Orbit Families

In summary, the P4HO1 and P4HO2 families of periodic orbits each offer can-

didate members yielding unstable invariant manifold structures with sufficiently low

time constants. The P4HO1 family yields fewer of these members, but contains them

at altitudes potentially beneficial for low-Lunar operations. The P4HO2 family, alter-

natively, is comprised of many unstable members, but at higher altitudes with respect

to the Lunar surface.
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4.2.10 Summary of Earth-Moon Periodic Orbit Stability Characteristics

Every Lunar-region orbit family in Table 4.1 offers unstable manifold structures

except the Distant Retrograde Orbits (DROs). The Jacobi constant values observed

for the unstable orbits among these families varies, but all include values around 3.0

for each family. The LPO, halo, P4HO1, and P4HO2 families include regions of stable

orbits while the Lyapunov, axial, vertical and butterfly orbit families are comprised

completely by unstable members for the sections included in this analysis. Time

constant analysis demonstrates that not all unstable orbits yield desirable manifold

departure rates. The L1 halo, L2 halo, and P4HO1 orbit families include orbits

with time constants greater than the 1.5 critical value. The families in Table 4.1

include substantial manifold structure for Lunar trajectory design. The manifold

paths originating from the periodic orbits demonstrating fast manifold departure

rates are now explored to determine available Lunar access geometry.

4.3 Lunar Access Characteristics

The invariant manifolds associated with the unstable periodic orbits yielding low

time constants are investigated to determine their Lunar access characteristics. For

the purpose of investigation, Lunar access is divided into two classes: (1) Lunar

impact, and (2) insertion into Low Lunar Orbit (LLO).

4.3.1 Definition of Lunar Orbit Insertion Characteristics

Alongside the Lunar surface access capabilities, characteristics of the trajectories

on the invariant manifolds regarding the insertion into Low Lunar Orbits (LLOs) are

also desired. The surface of the Moon served as the surface of section for the Lunar

impact analysis, but, for the LLO insertion investigation, a periapse surface of section
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will be defined [16]. A periapse with respect to the Moon is defined as a state, xp,

with position, rp, and velocity, vp, satisfying

(rp − rMoon) · vp = 0, (4.3)

v2
p + (rp − rMoon) · r̈p > 0. (4.4)

Given the set of periapses corresponding to a trajectory on the invariant manifold

associated with the unstable periodic orbit, the apse radii with respect to the Moon,

inclination (i), and Jacobi constant values are determined. The radii and inclinations

of the periapse points provide information on the possible two-body Lunar orbits a

velocity-direction burn at that particular apse the spacecraft can insert into. There-

fore, given the set of apse conditions available from a given periodic orbit family for

a given integration time, the achievable two-body orbit altitudes and inclinations are

known.

4.3.2 Lunar Impact Characteristics of Planar Orbit Families

Given the existence of unstable members in the Lyapunov and LPO families of

periodic orbits, Lunar impact characteristics are sought for both families. As these

families are planar, the impact latitude is fixed at 0◦. Therefore, the remaining non-

zero quantities are determined for the unstable members of the LPO and Lyapunov

families. The unstable members of the planar orbit families with κτ ≤ 1.5 are depicted

in red in Figure 4.32. The time constant restriction removes candidate orbits from

the LPO and L2 Lyapunov orbit families. The large amplitude L2 Lyapunov orbits,

while unstable, have prohibitively low time constants removing the L2 Lyapunov

orbits with sub-surface Lunar periapse radii. Conversely, the L1 Lyapunov orbits

retain sufficiently low time constants throughout. However, for the current analysis,

trajectories are ignored that contain Lunar periapse radii less than the radius of the

Moon. Trajectories on the unstable manifolds from the low time constant periodic
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orbits are propagated forward in time for 10 nondimensional time units equivalent to

approximately 43 days. The impact conditions of the trajectories are recorded.

(a) Low Prograde Orbits (b) L1 Lyapunov Orbits

(c) L2 Lyapunov Orbits

Figure 4.32.: Planar Orbit Families where Red Indicates Unstable Orbits with κτ ≤
1.5 and Blue Indicates κτ > 1.5

The Lunar impact characteristics of interest for the planar families are the lon-

gitude of impact, impact angle, impact speed, TOF, and Jacobi of the impacting

trajectory as the impact latitude, λ, will always be 0◦ for planar trajectories. Recall,

Lunar impact is defined as r13 = RMoon where RMoon = 1737.4 km.

Low Prograde Orbits

Beginning with the LPO family of periodic orbits, the time-of-flight to impact for

the LPOs as a function of ϕ is shown in Figure 4.33. The data points are further

colored by the Jacobi constant of the corresponding trajectory. From the plot, it is



127

clear that the LPO orbits do not present impact locations at all possible longitude val-

ues within the time frame investigated. Figure 4.34 presents trajectories appearing to

reach the Lunar surface at 0 days. These points correspond to the LPO family mem-

Figure 4.33.: Time of Flight Versus Impact Longitude for Unstable Manifolds Associ-
ated with Earth-Moon Low Prograde Orbits Colored by Jacobi Constant Value with
Selected Points

bers that have periapse radii approximately equal to the Lunar radius and, therefore,

have manifolds that nearly instantaneously impact the Moon after departure. At low

times-of-flight, i.e., within 30 days, LPO manifold impact are restricted to longitudes

in quadrant IV (270◦ ≤ ϕ ≤ 360◦). This fourth quadrant behavior is consistent

with the orbit geometry observed in Figure 4.32(a); the LPO family members are

descending in quadrant IV before reaching a perilune at ϕ = 0◦, thus, perturbations

along the trajectory lowering periapse radius will lead to quadrant IV impacts. At

higher TOFs, impacts are observed at around 135◦ longitude. However, no impacts

are found in the large sections on the ranges ϕ ∈ [0◦, 125◦] or ϕ ∈ [145◦, 270◦] at

any time investigated. These ranges correspond roughly to the first and third quad-

rants. For impact in the first and third quadrants, apoapses mainly occur in the

fourth and second quadrants, respectively, but, as discussed by Davis, apoapses in
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.34.: Selected Trajectories from Figure 4.33 where the Blue Trajectories are
the Periodic Orbits and the Red Trajectories are on the Manifolds
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the even-numbered quadrants lead to an increase in periapse radius, in general, due

to tidal effects [16]. Therefore, fewer impacts at low times-of-flight in the first and

third quadrants are expected. Several points representing different geometry types

are selected in Figure 4.33 and the corresponding trajectories are plotted in Figure

4.34. The trajectories in Figures 4.34(a), 4.34(b), and 4.34(c) perform 0, 1, and 2

revolutions about the Moon before impact, respectively. These revolution counts cor-

respond to the lobes observed at 10, 20, and 25 days in Figure 4.33, respectively.

At TOFs beyond 25 days, more complex geometry is observed as evident in Figure

4.34(d) where an additional high periapse-radius revolution emerges. Again, revolu-

tions are added in the geometries seen in Figures 4.34(e) and 4.34(f). The unstable

manifold trajectories in Figures 4.34(a) to 4.34(f) all impact in the fourth quadrant

congruent with the baseline geometry of the LPO family; however, the trajectory

observed in Figure 4.34(g) presents a departure from this trend and impacts in the

second quadrant around ϕ = 150◦. The trajectory in Figure 4.34(g) performs several

revolutions about the Moon, reaches a final apoapse in quadrant one before impacting

in quadrant two. The multi-revolution characteristic of this geometry indicates why

it is only observed at higher TOF values, as the trajectory requires time to evolve

to reach the quadrant one apoapse. Furthermore, this hints that more quadrant two

impacts may exist at even higher times of flight. While only a small range of Jacobi

constants are observed in the unstable LPO family members, stratification in impact

locations is observed. Lower Jacobi constant values present a greater number of im-

pacts as well as a greater range in available impact longitudes particularly at lower

times-of-flight.

In addition to the Jacobi constant coloration observed in Figure 4.33, plots colored

by impact speed and impact angle are presented in Figures 4.35(a) and 4.35(b),

respectively. As predicted by the impact speed bounds, the impact speeds show

little variation and lie between 2.324 and 2.325 km/s. Additionally, the lower Jacobi

constant trajectories yield higher impact velocities, as expected. No impacts are

observed with impact angles below 50◦ indicating most trajectories are impacting
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(a) Impact Speed

(b) Impact Angle

Figure 4.35.: Impact Speed and Angle for Unstable Manifolds Associated with Earth-
Moon LPO Family

with large velocity components nearly tangent to the Moon’s surface. This behavior

is congruent with the fact that most impacts occur in quadrant IV resulting from

periapse lowering maneuvers; as periapse is lowered, a tangency condition is reached

with the lunar surface and many of the LPO impact trajectories do not drop much

further than this condition. Figure 4.36 demonstrates this evolution from near tangent

impacts at high longitudes evolving into more vertical impacts at the higher-energy
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lower-latitude impacts. The trajectory impacting at a high impact angle (yellow) is

Figure 4.36.: Impact Evolution for LPO Unstable Orbit Manifolds Example

close to the tangency at periapse and this angle increases as the periapse drops farther

below the surface and the point moves toward the darker blue color.

The Low Prograde Orbits (LPOs) present low time of flight impact trajectories

for impacts in quadrant IV and several higher TOF impacts for quadrant II im-

pacts. However, the LPOs do not offer impacts in quadrants I or III for the time

interval investigated. Furthermore, the LPO manifold structures only present impact

angles greater than 50◦ and speeds around 2.32 km/s. However, the low time-of-flight

transfers may offer ideal conditions for a staging orbit with fast access to the lunar

surface.
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Lyapunov Orbit Families

A similar process to that of the LPO family is followed in the analysis of the L1

and L2 Lyapunov orbit families in the Earth-Moon system. Inspecting the L1 family

first, Figure 4.37 presents the impact condition TOFs versus longitudes colored by

Jacobi constant for unstable manifolds associated with the L1 Lyapunov orbit fam-

ily. The impact conditions presented in Figure 4.37 represent a departure from the

Figure 4.37.: Time of Flight Versus Impact Longitude for Unstable Manifolds Asso-
ciated with Earth-Moon L1 Lyapunov Orbits Colored by Jacobi Constant Value

behavior observed in the LPO family. The dark streak around 180◦ longitude and ex-

tending from TOF ≈ 0 days to TOF ≈ 33 days originates from the large amplitude,

high energy L1 Lyapunov orbits with periapse radii approximately equal to the Lunar

radius. The low TOF impacts on this streak represent the trajectories departing very

near periapsis and the high TOF impacts represent those that depart farther back

along the orbit. Impacts are observed starting around 13 days at Jacobi constant
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values exceeding 3.1 covering all longitudes. Therefore, unlike the LPO family, the

L1 Lyapunovs present candidate trajectories impacting in all four quadrants at all

longitudes. Furthermore, the spanning of longitudes occurs at nearly all Jacobi con-

stants greater than 3. A gap is observed in the Jacobi constant values around 2.8

spanning quadrant III from approximately 33 days and higher. This gap shows up

for the low Jacobi constant orbits as the geometry leads to impacts in the second

and fourth quadrants as shown in Figure 4.38. The two trajectories plotted in Figure

(a) Impacting Trajectories with Orbits (b) Close-Up on Impact

Figure 4.38.: Example Demonstrating Quadrant III Avoidance of Large Lyapunov
Impacting Manifolds

4.38 represent points around 35 day TOF on either side of the gap observed in Figure

4.37. While the gap exists for low Jacobi constant orbits, Figure 4.37 demonstrates

that the orbits with Jacobi constants greater than 3 span all TOF values and Longi-

tudes of impact. This span of available impact longitudes for orbits with high Jacobi

constant values stems from these orbit being farther away from the Moon and high

TOF tolerances. Trajectories originating from these orbits are allowed to evolve and

develop complex geometry allowing for impacts at a large number of longitudes. Fig-

ure 4.39 demonstrates an example of this complex geometry; the trajectory impacts

in quadrant III at a similar TOF to the trajectories shown in Figure 4.38.

The impact speeds and angles for the L1 Lyapunov family are additionally in-

vestigated. Figures 4.40(a) and 4.40(b) display the impact data colored by impact
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Figure 4.39.: Example of Complex Geometry from L1 Earth-Moon Lyapunov Orbit
Unstable Manifold Impacting at ϕ = 225◦ After 37 Days

speed and angle, respectively. Similar to the LPO investigation and predicted by the

(a) Impact Speed (b) Impact Angle

Figure 4.40.: Impact Speed and Angle for Unstable Manifolds Associated with Earth-
Moon L1 Lyapunov Family

theoretical bounds, the impact speeds are directly correlated to the Jacobi constant

of the impacting trajectories. The L1 Lyapunov impacts possess impact speeds from

approximately 2.33 km/s to 2.5 km/s, slightly higher than those of the LPO orbits.
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Unlike the LPO family, the L1 Lyapunov impacts span impact angles from 0◦ to 90◦.

Clear bands are observed in the impact angle plot demonstrating smooth evolution

across impact longitudes in impact angle. At low TOFs, minimal impact angles are

observed near 135◦ impact longitude while maximal impact angles are observed near

360◦. Example trajectories from these two impact longitudes are shown in Figure

4.41.

Figure 4.41.: Impacting Trajectory Examples for 15 Day TOF from Earth-Moon L1

Lyapunov Orbits

The L1 Lyapunov orbit family presents a large number of impacting trajectories

spanning all impact longitudes for all times of flight investigates. Furthermore, while

orbits at a lower Jacobi constant do not possess impacting trajectories at all longitudes

for the TOFs investigated, orbits at and above a Jacobi constant of 3.0 do span the

longitudes at all TOFs greater than 15 days. Therefore, the L1 Lyapunov family

presents a large amount of opportunities for impacting trajectories at Jacobi constants

common in Lunar region orbits.

The impact conditions of the Earth-Moon L2 Lyapunov orbits are shown in Figure

4.42. Similar to the L1 Lyapunov family, the L2 Lyapunovs display stratification in

the Jacobi constant as trajectories with higher Jacobi constants constitute a larger

percentage of the the low TOF impacts. Because the large amplitude L2 Lyapunovs

possess low time constants and are excluded from the analysis, the streak of low TOF,
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Figure 4.42.: Time of Flight Versus Impact Longitude for Unstable Manifolds Asso-
ciated with Earth-Moon L2 Lyapunov Orbits Colored by Jacobi Constant Value

high Jacobi constant impact points is absent from the L2 Lyapunov plot, unlike the

L1 Lyapunov graph in Figure 4.37. Gaps appearing at lower Jacobi constant values

in quadrant 1 for the L2 Lyapunov orbits are similar in nature to the gaps observed in

quadrant 3 for the L1 Lyapunovs. Figure 4.43 demonstrates two example orbits from

either side of the gap. The larger amplitude L2 Lyapunov orbits impact in quadrants

II and IV generating the sparsity pattern observed in Figure 4.42. This sparsity,

however, declines as the TOF is increased. Overall, the L2 Lyapunov orbits present

impacts with similar TOFs to the L1 family at all longitudes.

The impact speed and impact angle plots for the L2 Lyapunov orbits are shown in

Figures 4.44(a) and 4.44(b), respectively. The impact speed of the unstable manifolds

associated with the L2 Lyapunov orbits center around 2.36 km/s, lower than those of

the L1 Lyapunov family congruent with the relative Jacobi constant values. Further-

more, the impact speeds vary less than the L1 Lyapunov family. The impact angles in
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(a) Impacting Trajectories with Orbits (b) Close-Up on Impact

Figure 4.43.: Example Demonstrating Quadrant I Avoidance of L2 Lyapunov Im-
pacting Manifolds

(a) Impact Speed (b) Impact Angle

Figure 4.44.: Impact Speed and Angle for Unstable Manifolds Associated with Earth-
Moon L2 Lyapunov Family

Figure 4.44(b) demonstrate vertical stratification with minimal impact angles occur-

ring around 50◦ and 250◦. Due to the vertical stratification of the impact speeds and

the horizontal stratification of the impact angle, combinations of any nearly observed

impact angle and speed exist.

The impact characteristics of the L2 Lyapunov orbits are similar to those of the

L1 Lyapunov orbits in most respects. At TOFs larger than ≈ 15 days, all longitudes
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are covered at nearly all Jacobi constants. The impact speeds are tightly coupled

to the Jacobi constants and therefore both quantities present similar plots. The L2

Lyapunov orbits, like the L1 family, present impacts at all impact angles at any time

of flight. However, impact angle and longitude are not independent and therefore

cannot be constrained independently. Ultimately, the L2 Lyapunov orbits offer an

abundance of impact opportunities to be leveraged in Lunar access mission design.

4.3.3 Low Lunar Orbit Access Characteristics of Planar Orbit Families

The low Lunar orbit access characteristics of the planar orbit families are inves-

tigated via the periapse locations (as defined in Equations (4.3) and (4.4)) of the

unstable manifolds associated with the unstable members of the LPO, L1 Lyapunov,

and L2 Lyapunov orbit families. The unstable manifolds of the unstable orbits shown

in Figure 4.32 are propagated for approximately 43 days and locations of periapses

with respect to the Moon are recorded and, similarly to the impact analysis, orbits

with sub-surface periapse radii are ignored. Because the LPO, L1 Lyapunov, and L2

Lyapunov families are planar, all periapses will occur with λ = 0 and, thus, latitude

is not presented.

Low Prograde Orbits

The locations of periapses on the unstable manifolds associated with the LPO

family near to the Moon are shown in Figure 4.45. By inspection, it is evident

that the LPO family presents periapse locations at all altitudes extending to around

50,000 km. Furthermore, the Jacobi constant coloring indicates the existence of

periapses at nearly all available altitudes for all Jacobi constant values. The various

“arms” of the periapse locations shown in Figure 4.45 represent different trajectory

geometries; several of these geometries are highlighted in Figure 4.46. Figures 4.46(a),

4.46(b), and 4.46(c) are the 3, 2, and 1 revolution members of a similar trajectory

evolution, respectively, while Figure 4.46(d) presents a departure from this geometry
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Figure 4.45.: Lunar Periapse Locations for Unstable Manifolds Associated with the
LPO Family in the Earth-Moon System

and resembles the impact trajectory observed in Figure 4.34(g). The existence of

groups of geometry indicates that the flow is less sensitive to the initial condition

for these apse trajectories, i.e, the existence of nearby orbits demonstrating similar

behavior provides possible slack for initial conditions to yield similar geometry.

The time of flight is visualized as a function of the altitude with respect to the

Moon at the periapse locations in Figure 4.47(a) with a closer inspection of lower

altitudes in Figure 4.47(b). The nearly vertical sections of low TOF apse locations

near altitudes of 0 km and 50, 000 km correspond to the left and right apses of

the periodic orbit family members. As time of flight increases, a greater amount of

variation and unpredictability is observed in the periapse altitudes. Periapses are

observed at all times of flight for altitudes less than 3000 km, but, at altitudes above

3000 km, times of flight must exceed around 17 days for the orbits investigated. As

time of flight is increased further, higher periapse altitudes are possible with values

of approximately 25, 000 km becoming available after 43 days. The higher Jacobi

constants dominate lower altitudes at higher times of flight due to the tendency of
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(a) (b)

(c) (d)

Figure 4.46.: Sample Geometries of LPO Unstable Manifold Periapses from Figure
4.45

(a) (b)

Figure 4.47.: Lunar Periapse Locations for Unstable Manifolds Associated with the
LPO Family in the Earth-Moon System

lower Jacobi constant orbits to depart the Lunar region as the propagation time is

increased. However, as the variation in Jacobi constant across the LPO family is
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small, candidate trajectories at all available altitudes exist for the range of Jacobi

constants spanned by the family.

The LPO apse analysis demonstrates extensive altitude range across all Jacobi

constants for the orbits analyzed. This range indicates that the LPO family may

provide desirable LLO insertion characteristics to a mission design profile. For in-

sertion altitudes less than 3000 km altitude, low TOF transfers are available for all

Jacobi constant values represented in the LPO family. At higher altitudes, longer

TOF transfers are available, again, at all Jacobi constants in the family.

Lyapunov Orbit Families

Similar to the LPO investigation, the locations of apses originating from the un-

stable manifolds of the L1 Lyapunov orbits are shown in Figure 4.48. The apses near

Figure 4.48.: Lunar Periapse Locations for Unstable Manifolds Associated with the
L1 Lyapunov Family in the Earth-Moon System

the Moon are dominated by higher Jacobi constant values as evident by the larger

number of yellow points. The trajectories with Jacobi constants less than 3.0 tend to
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depart the Lunar region as observed in the LPO investigation. However, periapses at

all low altitudes are observed for the Jacobi constants represented in the L1 Lyapunov

family. Figure 4.49 presents the TOF versus periapse altitude for the L1 Lyapunov

manifold trajectories. Noticeably, L1 Lyapunov orbits present a denser covering of

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

(c) Altitude < 5, 000 km, J > 3.0

Figure 4.49.: Lunar Periapse TOF Versus Altitude for the Unstable Manifolds Asso-
ciated with the Earth-Moon L1 Lyapunov Family

TOFs and altitudes compared to the LPO family. Nearly all TOF and altitude com-

binations are represented except for a gap at 60, 000 km altitude for TOF < 10 days.

In the sub-5000 km altitude plot in Figure 4.49(b), low Jacobi constant trajectories

provide periapses at all altitudes and TOF values. Figure 4.49(c) removes the tra-

jectories with J < 3.0 from Figure 4.49(b) to allow inspection of the high Jacobi
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constant periapses. This filtering demonstrates that, while apses at all the Jacobi

constant values greater than 3.0 exist for all altitudes investigated, transfer times of

greater than approximately 12 days are required. These large TOF values are pri-

marily a result of the high Jacobi constant orbits being farther in position space from

the Moon than the lower Jacobi constant orbits as observed in Figure 4.12.

The apse locations presented by the L1 Lyapunov family offer substantial LLO

insertion opportunities. At all Jacobi constant values included in the analysis, these

opportunities exist at all low altitudes and indicate usefulness for a wide variety of

low Lunar operations.

The L2 Lyapunov orbit periapse locations are shown in Figure 4.50. Similar to

Figure 4.50.: Lunar Periapse Locations for Unstable Manifolds Associated with the
L2 Lyapunov Family in the Earth-Moon System

the L1 Lyapunov family figure, periapses are observed spanning a large range of

Lunar radii and Jacobi constant values. Furthermore, a larger amount of low Jacobi

constant apses are observed in the low Lunar vicinity compared to the apses of the

invariant manifolds associated with the L1 Lyapunov family. The time-of-flight to

periapse versus the periapse altitude plots for the L2 Lyapunov manifold apse states
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are shown in Figure 4.51. Periapse conditions are observed at nearly all altitudes for

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

(c) Altitude < 5, 000 km, J > 3.0

Figure 4.51.: Lunar Periapse TOF Versus Altitude for the Unstable Manifolds Asso-
ciated with the Earth-Moon L2 Lyapunov Family

all times-of-flight, similar to the characteristics observed in the L1 Lyapunov family.

Because of the low time constants of the large amplitude L2 Lyapunov orbits, low

time-of-flight periapses with low altitudes are not found, contrary to what is observed

in the L1 Lyapunov family. Therefore, for insertions into LLOs with Altitude < 1200

km required TOFs greater than 15 days. Beyond this 15 day mark, apse conditions

are observed at all Jacobi constant values, but lower Jacobi constant trajectories

demonstrate higher TOFs to reach the same altitude of the lower Jacobi constant

conditions.
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Ultimately, the periapse portrait provided by the unstable manifolds associated

with the L2 Lyapunov orbits is similar qualitatively to that of the L1 Lyapunov

family. A large number of periapse conditions are available spanning Lunar altitudes

exceeding 100, 000 km. These conditions, furthermore, occur at Jacobi constants

ranging from 2.8 to 3.16.

4.3.4 Lunar Impact Characteristics of Spatial Orbit Families

The Lunar impact characteristics of the spatial orbit families are investigated sim-

ilarly to the planar families. However, while the planar nature of the Lyapunov and

LPO families allows for the removal of impact latitude as a quantity of interest, the

spatial parameters permit no such simplification. Therefore, trajectories on the un-

stable manifolds associated with each periodic orbit in the spatial families presenting

a sufficiently small time constant are propagated through 10 nondimensional time

units (≈ 43 days) or until an impact condition is reached, similar to the planar in-

vestigation, but unlike the planar investigation, the latitude of impact is recorded in

addition to the longitude, impact angle, and impact speed.

Halo Orbit Families

The L1 and L2 halo orbit families each contain unstable members with sufficiently

low time constants, i.e. κτ < 1.5. These periodic orbits are pictured in Figure 4.52

colored corresponding to the stability characteristics. In both families, the sections

of orbits with κτ > 1.5 arise as the sections of unstable orbits, as seen in Figures

4.16 and 4.17, surrounded by a band of unstable orbits with high time constants.

However, as evident in Figure 4.52, both families present a substantial number of

unstable periodic members with time constants indicating potentially useful unstable

manifold structures. Trajectories on these manifolds associated with the unstable

L1 and L2 halo orbits are propagated for approximately 43 days and the impact

conditions are determined.
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(a) L1 (b) L2

Figure 4.52.: L1 and L2 Halo Orbit Families where Red Indicates Unstable Orbits
with κτ < 1.5 and Blue Indicates κτ > 1.5

Not all sufficiently unstable L1 halo orbits yield Lunar impacting manifold struc-

tures. Figure 4.53 presents the L1 halos colored by the presence of unstable manifolds

that impact the Moon. Noticeably, many of the orbits near the Moon fail to yield

(a) (b)

Figure 4.53.: Unstable L1 Halo Orbits with Manifold Structures Impacting the Moon
Within 43 Days

impacting manifolds. However, a large portion of the halo orbits near the planar

bifurcation with the L1 Lyapunov orbits present impacting manifolds. The times-

of-flight and longitudes, ϕ, of the impact conditions associated with these impacting
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manifolds are presented in Figure 4.54. The impacts span Jacobi constant values

Figure 4.54.: Time of Flight and Longitude of Impact Conditions for Unstable Man-
ifolds Associated with L1 Halo Orbits

from J ≈ 2.97 to J ≈ 3.16 presenting a limited range, but this range spans the Jacobi

constants most commonly observed in the Lunar region periodic orbits of interest. A

column of low Jacobi impacts is observed at longitudes from ϕ = 0◦ to ϕ = 80◦; this

column represents impacts originating from the large z-amplitude orbits observed in

Figure 4.53(a). These impacts occur in the first quadrant congruent with the ge-

ometry of the orbits observed and, thus, require little deviation from the reference

periodic orbit. Near the 15 day time-of-flight mark, a band exists covering all im-

pact longitudes and includes impacts at Jacobi constants ranging from J = 3.08 to

J = 3.16 Smaller groups occur at higher TOF values, but, beyond 35 days, scattering

is observed indicating less structured motion. Figure 4.55 presents several example

geometries corresponding to those marked in Figure 4.54. Clearly, due to the large

variation in geometry across the halo family, many different transfer geometries are

observed. Interestingly, the simple geometry present in Figure 4.55(b) corresponds

to the band observed near 15 days in Figure 4.54 providing simple access to all Lu-
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(a) (b)

(c) (d)

Figure 4.55.: Example Impacting Trajectories from L1 Halo Orbits Corresponding to
Marked Points in Figure 4.54

nar longitudes at a large range of Jacobi constants. As time-of-flight is increased

beyond that of this simple geometry, the complexity of the observed impact geom-

etry increases as well with Figures 4.55(c) and 4.55(d) presenting examples of the

multi-revolution geometry present at higher integration times. Figure 4.56 presents

the latitudes of the impact conditions displayed in Figure 4.54. Similar stratification

by TOF is observed with the largest group forming again at 15 days. Furthermore,

this group spans longitudes spanning all values between the poles. The group of low

Jacobi constant impacts cluster at values in the southern hemisphere with available

latitudes increasing with TOF and reaching a maximum at λ = 0◦. At higher times
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Figure 4.56.: Time of Flight as a Function of Latitude of Lunar Impact Conditions
of Unstable Manifolds Associated with L1 Halo Orbits

of flight, latitudes are spanned by higher Jacobi constant impacts. The latitude and

longitude data for the impact is combined in Figure 4.57 to display accessible Lunar

impact locations. Overall, a significant portion of the Lunar surface is covered. Low

Figure 4.57.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the L1 Halo Orbit Family
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Jacobi constant impacts are primarily restricted to the bottom southern latitudes in

the first quadrant while higher Jacobi constant impacts span a greater range of the

Lunar surface concentrating at λ = 0◦, ϕ = 0◦. Recall, because the impacts shown

represent the northern halo family, a reflection across λ = 0◦ presents the southern

halo data. In this case the lower Jacobi constant impacts would occupy the first

longitude quadrant of the northern hemisphere. This data is alternatively colored

in terms of the impact angle and speed in Figures 4.58(a) and 4.58(b), respectively.

Outside of the low Jacobi constant cluster in the bottom left and the high Jacobi

constant cluster in the center of Figure 4.58(a), little general prediction is available

for the impact angle. Impact angles are lower in the northern hemisphere, especially

at central longitudes. Both the low and high Jacobi constant clusters present near

tangential impacts The impact speed is directly correlated to the Jacobi constant of

the impacting orbit. As a result, Figure 4.58(b) presents very similar structure to

Figure 4.57 with low speed impacts occurring in the center of the plot and high speed

impacts existing in the bottom left section corresponding to the low Jacobi constant

manifolds. The range of impact speeds is only approximately 40 m/s across all the L1

halo impacts consistent with the low variation predicted by the theoretical extremes.

A similar analysis is conducted for the northern L2 halo orbits. Figure 4.59

presents the L2 northern halos colored by the possession of impacting unstable man-

ifolds. Similar to the L1 halo orbits, the orbits possessing impacting manifolds are

those closer to the planar bifurcation with the L2 Lyapunov orbits. However, unlike

the L1 halo orbits, none of the orbits closer to the Moon yield impacting manifolds.

Inspecting the impact conditions of the L2 halos, the TOFs and longitudes are shown

in Figure 4.60. The first impact is observed at 16 days, similar to the 15 day grouping

observed for the L1 halo orbits with the time of flight for impacts in the third and

fourth quadrants slightly higher than those for the first and second. Figure 4.61(a)

demonstrates and example trajectory from this group and is similar to that observed

for the L1 halos in Figure 4.55(b). Furthermore, the first and second quadrants are

populated by the higher Jacobi constant impacts for the 15 day TOF grouping, while
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(a) Impact Angle

(b) Impact Speed

Figure 4.58.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the L1 Halo Orbits

the third and fourth quadrants contain mainly lower Jacobi constant impacts. Figure

4.61(b) presents an example impact stemming from the higher time-of-flight impact

demonstrating the increased complexity in the geometry. The latitudes of the im-

pact locations are presented in Figure 4.62. Very similar structure is observed in
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Figure 4.59.: Unstable L2 Halo Orbits with Manifold Structures Impacting the Moon
Within 43 Days

Figure 4.60.: Time of Flight and Longitude of Impact Conditions for Unstable Man-
ifolds Associated with L2 Halo Orbits

the L2 halo TOF versus latitude plot as is observed in the L1 halo case except the

lower Jacobi constant impacts present in the southern hemisphere of the L1 halo im-

pacts diagram. Impacts at all latitudes are observed with higher Jacobi constants

concentrating in the center while Jacobi constants near J = 3.1 present the great-
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(a) (b)

Figure 4.61.: Example Impacting Trajectories from L2 Halo Orbits Corresponding to
Marked Points in Figure 4.60

Figure 4.62.: Time of Flight as a Function of Latitude of Lunar Impact Conditions
of Unstable Manifolds Associated with L2 Halo Orbits

est range in impact latitude. At large times-of-flight lower Jacobi constants present

spread out impacts appearing as a “dusting”. Figure 4.63 presents the combination

of latitude and longitude information for the L2 halo impact conditions. Opposite

the L1 case, higher Jacobi constant impacts dominate the first and second quadrants

while lower Jacobi constant impacts dominate the third and fourth. In both cases,
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Figure 4.63.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the L2 Halo Orbit Family

the extreme Jacobi constant impacts tend toward the equator. Overall, the L2 halos

provide a significant Lunar coverage with impacts extending to a significant portion

of longitudes and latitudes across the Lunar surface. These impact conditions are ad-

ditionally colored corresponding to the angle and speed of impact in Figures 4.64(a)

and 4.64(b), respectively. As is observed in the L1 halo impact conditions, the impact

angles in Figure 4.64(a) present high amounts of variation between consecutive im-

pacts. However, in general, impacts in the southern hemisphere tend toward higher

impact angles compared to those in the northern hemisphere. The impact speeds,

again, vary only by around 20 m/s with lower impact speeds occurring in the first

and second quadrants consistent with the Jacobi constants of the observed impacts

presented in Figure 4.63,

Overall, the L1 and L2 halo families present many lunar impact conditions covering

the Lunar surface at Jacobi constants between J ≈ 3.04 and J ≈ 3.15. Furthermore,

due to the symmetry with their respective southern families, the data presented addi-

tionally possesses a reflected set over λ = 0◦ presenting additional candidate impact
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(a) Impact Angle

(b) Impact Speed

Figure 4.64.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the L2 Halo Orbits

trajectories. This reflection as well as the large number of impact points presented

yield considerable opportunity for Lunar impact.



156

Vertical Orbit Families

Both the L1 and L2 vertical orbit families present unstable members with suffi-

ciently low time constants. Figure 4.65 displays the members of the L1 and L2 vertical

orbit families with coloring indicating whether a fast departure manifold exists for the

specific orbit. Evident from the figure, both families possess a large amount of orbits

(a) L1
(b) L2

Figure 4.65.: L1 and L2 Vertical Orbit Families where Red Indicates Unstable Orbits
with κτ < 1.5 and Blue Indicates κτ > 1.5

with fast departure characteristics extending to large z amplitudes. The unstable

manifolds associated with these orbits are propagated for ≈ 43 days to determine

Lunar impact conditions.

Beginning with the analysis of the L1 vertical orbit family, the members of the

family with unstable manifolds impacting the Moon are shown in Figure 4.66. Of the

1003 vertical orbits investigated, only 37 were found possessing manifolds impacting

the the Lunar surface. This sparsity in impact conditions severely limits the Jacobi

constants available; the Jacobi constants of the impacting orbits only span the range

from J = 3.051 to J = 3.105 (the fast departure orbits spanned Jacobi constants

from J = −0.057 to J = 3.188). Therefore, while the vertical orbits demonstrate

high levels of instability, the manifold structures of these orbits do not venture close

to the Lunar surface. However, the L1 vertical orbits that do impact the surface span
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Figure 4.66.: Unstable L1 Vertical Orbits with Manifold Structures Impacting the
Moon Within 43 Days

a range of Jacobi constants common in the Lunar region families indicating possible

utility.

The longitudes of the impact conditions are explored in Figure 4.67. The first im-

pact appears at approximately 21 days; therefore, low TOF transfers are not available

from the L1 vertical orbits resulting from the distance of the identified vertical orbits

from the Moon. Inspecting Figure 4.67, the impact conditions span all longitudes

(from 0◦ to 360◦) and occur in groups corresponding to their times-of-flight. The

impact occurring in the first and second quadrants possess a higher average Jacobi

constant value than those impacting in the third and fourth quadrants with a rel-

atively smooth gradient apparent for the lower TOF impacts. The lower two TOF

groups at approximately 22 days and 31 days contain relatively consistent geometry

across the group shown in Figures 4.68(a) and 4.68(b), respectively. At higher TOF

values, the geometry for a given TOF ceases to remain consistent. Figure 4.68(c)

presents an example trajectory corresponding to the designated point in Figure 4.67.

The trajectories in Figures 4.68(b) and 4.68(c) display southern-dominant motion,
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Figure 4.67.: Time of Flight and Longitude of Impact Conditions for Unstable Man-
ifolds Associated with L1 Vertical Orbits

i.e. the trajectories spend a larger amount of time below the xy-plane, while the tra-

jectory in Figure 4.68(a) displays northern-dominant motion. However, each impact

point on Figure 4.67 is two points on top of each other. This doubling of points is

due to the symmetry of the vertical orbits with respect to the xy-plane and the ±z

symmetry in the CRTBP equations of motion. Because this symmetry is across the

xy-plane, it is not visible on the longitude plot. To display this difference, Figure

4.69(a) presents the TOF versus latitude plot for the L1 vertical orbits. Mirror sym-

metry of the impact points is observed over the λ = 0 axis. Figure 4.69(b) presents

two orbits impacting at the same longitude but at λ = ±83◦, i.e. at opposite lat-

itudes. This mirror condition, obviously, exists at all times of flight and latitudes.

Consequently, the vertical manifolds demonstrate a large range of available of lati-

tudes; latitudes extending to ±87◦ are observed indicating the vertical orbits present

polar impact conditions. Furthermore, the maximal latitudes are observed for Jacobi

constants around 3.07 with higher Jacobi constants presenting a significantly smaller

range. Lower Jacobi constants, however, present a similar range of available lati-
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(a) (b)

(c)

Figure 4.68.: Example Impacting Trajectories from L1 Vertical Orbits Corresponding
to Marked Points in Figure 4.67

tudes. Figure 4.70 presents the latitude as a function of the longitude of the impact

conditions. Again, the symmetry over the λ = 0◦ line is observed. Furthermore, the

gradient of Jacobi constant over the longitude is observed with higher Jacobi con-

stants near ϕ = 90◦ evolving to lower Jacobi constants around ϕ = 270◦. Overall,

the vertical manifolds present a large range of longitudes despite the low number of

orbits with impacting manifolds.

Figure 4.70 is also colored corresponding to impact angle and impact speed in

Figure 4.71. The impact angles range from 1◦ to 87◦ with the lower and higher impact

angles occurring at more extreme latitudes and higher impact angles and the moderate

impact angles occurring near the Lunar equator. This result hints that vertical orbits
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(a)

(b)

Figure 4.69.: Latitude of Impact for L1 Vertical Impacting Manifolds

will rarely deliver impacts normal or tangent to the surface near the equator. The

impact speeds, as previously observed, are closely tied to the Jacobi constant of the

impacting trajectory. Consequently, due to the limited range in Jacobi constant of the

L1 vertical orbits possessing manifolds that impact the Moon, the observed impact
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Figure 4.70.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the L1 Vertical Orbit Family

speeds are correspondingly limited. Higher impact speeds are observed in the first

and third quadrants consistent with the tidal acceleration presented by Davis [16].

The symmetry and variation of the unstable manifolds associated with the L1

vertical orbits present equal access to northern and southern latitudes and enable a

large range of available impact locations despite the low percentage of orbits with

impacting manifolds. However, due to this sparsity, little variation is observed in

impact velocity, all impacts require long times-of-flight, and selection of an impact

location greatly restricts the TOF values available.

Similarly to the L1 vertical orbits, the L2 vertical orbits present only a small

percentage of members with manifolds structures impacting the Moon within the

43 day propagation horizon. These members are displayed in Figure 4.72. Starting

with 921 L2 vertical orbits, 29 are found with impacting manifold structures giving

a similar impacting percentage as the L1 vertical orbit family. Also similar to the L1

family, the restricted Jacobi constant range, therefore, spans values from J = 3.039

to J = 3.140.



162

(a) Impact Angle

(b) Impact Speed

Figure 4.71.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the L1 Vertical Orbits

The TOFs and longitudes of the unstable manifold impact conditions for the L2

vertical orbits are shown in Figure 4.73. Like the L1 conditions, grouping by TOF

is observed with groups forming near 26, 35, 40, and 45 days. While impacts are

observed at all longitudes, a larger proportion of the impacts are seen in the first and

second quadrants (0◦ ≤ ϕ ≤ 180◦). The first observed impact takes place at 24.5 days
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Figure 4.72.: Unstable L2 Vertical Orbits with Manifold Structures Impacting the
Moon Within 43 Days

Figure 4.73.: Time of Flight and Longitude of Impact Conditions for Unstable Man-
ifolds Associated with L2 Vertical Orbits

and impacts are observed extending to the 43 day integration limit. The low time-

of-flight impacts are dominated by mid-to-low Jacobi constant values with no high

(J > 3.12) Jacobi constant impacts occurring before 41 days, a trend not observed
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in the L1 vertical orbits. Sample trajectories corresponding to the indicated points

in Figure 4.73 are provided in Figure 4.74. Similar to the L1 verticals, northern

(a) (b)

(c) (d)

Figure 4.74.: Example Impacting Trajectories from L2 Vertical Orbits Corresponding
to Marked Points in Figure 4.73

and southern motion is apparent with more complex motion occurring at higher

TOFs. The symmetry between the northern and southern motion is observed in the

latitude versus longitude plot in Figure 4.75. Again, a symmetry across the λ = 0◦

axis is apparent showing identical access properties for the northern and southern

hemispheres of the Moon. The high Jacobi constant impact are restricted to the

0◦ ≤ ϕ ≤ 180◦, evident as well in Figure 4.75. Furthermore, lower Jacobi impacts are

also observed in the first and second quadrants with the moderate Jacobi constant
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Figure 4.75.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the L2 Vertical Orbit Family

values populating the third and fourth. Overall, the L2 vertical orbits demonstrate

considerable Lunar surface coverage given the low number of impacting orbits. The

extreme latitudes reached are λ = ±87.4◦ at J = 3.08 and the longitudes span the

entire range with extreme longitudes occurring for Jacobi constant values around

J = 3.08.

The latitude and longitudes of the impact locations are presented colored corre-

sponding to impact angle and impact speed in Figure 4.76. Nearly all impact angles

are observed with mid-range angles occurring closer to λ = 0◦ and more extreme

impact angles occurring at latitudes farther from the equator. However, impact angle

behavior presents greater unpredictability than impact location or speed as is ob-

served in the L1 vertical case as well. The impact speed plot shown in Figure 4.76(b)

reflects the Jacobi constant of the impact condition and therefore presents the ex-

treme speeds in the first and second quadrants and the moderate speeds in the third

and fourth. However, overall variation in impact speed is minimal due to the low

variation in Jacobi constants across the impacting L2 vertical manifolds.
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(a) Impact Angle

(b) Impact Speed

Figure 4.76.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the L2 Vertical Orbits

The L1 and L2 vertical orbit families each present very few members whose unsta-

ble invariant manifolds yield Lunar impact conditions. Despite this sparsity, however,

a large range of impact locations is observed for each family; impacts are found at

all longitudes spanning latitudes between λ ≈ −87◦ to λ ≈ 87◦ in each case. How-

ever, due to the few impacting manifolds and the tight coupling of impact speed
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and Jacobi constant, impact speeds for both the L1 and L2 families sit around 2.34

km/s with variations less than 15 m/s. As previously noted, impact speed and angle

are relatively difficult to predict across the vertical orbit impact conditions based

on characteristics of the initial condition, but knowledge of similar nearby geometry

yields decent estimates for the impact angle. Overall, the vertical orbit families in

the Earth-Moon system present a substantial amount of impact possibilities across

the Lunar surface in a small range of Jacobi constant values with relatively consistent

impact angles.

Axial Orbit Families

As explored in Section 4.2.7, all members of both the L1 and L2 axial orbit fam-

ilies present unstable manifolds with sufficiently low time constants. Therefore, the

unstable manifolds associated with every L1 and L2 axial orbit are propagated for

approximately 43 days to determine Lunar impact conditions.

The L1 axial orbits are shown in Figure 4.77 colored according to the presence of

impacting unstable manifolds. The majority of the impacting orbits are those near

to the xy-plane. Only several small bands of orbits with impacting manifolds are

observed outside of the large group surrounding the planar bifurcation from the L1

Lyapunov orbits. Of the 818 axial orbits in Figure 4.77, 376 present impacting mani-

fold structures; thus, the axial orbits present a greater percentage of impacting orbits

than the vertical families but still yield a large number of orbits without impact-

ing manifolds. However, because the Jacobi constant range across the axial family is

small, the restriction to impacting orbits yields a significantly reduced range of Jacobi

constants for impacts. The impacting orbits span Jacobi constants from J = 3.001

to J = 3.021. The TOFs versus impact longitudes of the integrated trajectories on

the unstable manifolds associated with the L1 axial orbits are shown in Figure 4.78.

The minimal TOF observed is 22.5 days, the TOFs extend to the 43 day limit, and

all impact longitudes are achieved. The higher Jacobi constants, i.e. the near planar
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Figure 4.77.: L1 Axial Orbits Where Red Indicates Axial Orbits with Impacting
Manifolds and Blue Indicates Axial Orbits without Impacting Manifolds

Figure 4.78.: Time of Flight as a Function of Longitude of Lunar Impact Conditions
of Unstable Manifolds Associated with L1 Axial Orbits

orbits, dominate the impact points across all times-of-flight. Higher Jacobi impact

conditions are not observed until 34 days of propagation and are restricted to lon-
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gitudes around 45◦ until 37 days. Thus, the axial orbits with a larger out-of-plane

component fail to yield short TOF transfers to the Lunar surface and present lim-

ited impact locations. Groups of transfers stratified by TOF are observed in Figure

4.78 similar to those observed in the vertical orbit families. Several example impact

trajectories are marked in Figure 4.78 and displayed in Figure 4.79. The depicted tra-

(a) (b)

(c) (d)

Figure 4.79.: Example Impacting Trajectories from L1 Axial Orbits Corresponding
to Marked Points in Figure 4.78

jectories demonstrate that the TOF groups associated with Figure 4.79(a), 4.79(b),

and 4.79(c) represent trajectories with three different geometries originating from the

nearly-planar axial orbits. Conversely, Figure 4.79(d) presents an impact trajectory

not originating from a nearly-planar axial orbit impacting around ϕ = 45◦. At higher
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TOFs than those shown in Figure 4.79, trajectories exist across all the represented

Jacobi constants spanning all longitudes. Therefore, while the axial orbits present a

restricted range of Jacobi constants at low times-of-flight, higher times-of-flight yield

greater flexibility. Similar to the vertical orbit families, the axial impact conditions

display a large amount of symmetry; to explore this symmetry, the TOF versus lati-

tude plot is displayed in Figure 4.80. A line of symmetry is observed across λ = 0◦.

Figure 4.80.: Time of Flight as a Function of Latitude of Lunar Impact Conditions
of Unstable Manifolds Associated with L1 Axial Orbits

However, unlike the vertical orbits, the symmetry is not perfect as depicted in Figure

4.80. This imperfection is a result of the symmetry occurring between two orbits in

the family rather than a single orbit. Figure 4.81 demonstrates two trajectories yield-

ing symmetric impact conditions and geometry with respect to the xy-plane. Where

the vertical displayed symmetry between two trajectories on the same manifold, the

axial orbits possess symmetry between two trajectories on the manifolds of the two

axial family members with xy-symmetry. Because the symmetry exists between two

family members, if the members calculated are not exactly the correct pair, then the

resulting conditions will be slightly off true symmetry. This effect is the cause of
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(a) (b)

Figure 4.81.: Example Impacting Trajectories from L1 Axial Orbits Corresponding
to Marked Points in Figure 4.80

the approximate symmetry observed in Figure 4.80. However, if the infinite number

of members were plotted, then perfect symmetry would be observed. Beyond the

symmetry, Figure 4.80 demonstrates a large span of available latitudes with extreme

latitude reaching λ = ±89.9◦ at several different TOFs.

The latitudes and longitudes for the impact conditions associated with the L1

axial orbits are shown in Figure 4.82. Congruent with the observations of Figures

4.78 and 4.80, a large range of available impact locations is observed and the im-

pact conditions are dominated by the high Jacobi constant orbits. Furthermore, the

symmetry across λ = 0◦ is clearly apparent in Figure 4.82. The low Jacobi constant

orbits are concentrated at ϕ = 45◦ with sporadic impacts elsewhere. Impacts occur

over the entirety of the Lunar surface extending from the northern to southern poles;

continuous line structures are observed corresponding to the impacting manifolds.

The latitude versus longitude diagram is repeated in Figures 4.83(a) and 4.83(b) col-

ored corresponding to impact angle and impact speed, respectively. The maximal

and minimal impact angles are observed occurring near the equator in the first and

third quadrants. Impacts in the second and fourth quadrants present moderate im-

pact angles centered around ϑ = 45◦, thus, impacts normal to the surface are not

found near the Lunar poles, a condition desirable for Lunar ice investigations. As
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Figure 4.82.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the L1 Axial Orbit Family

expected, the Lunar impact velocities are dominated by lower values corresponding

to the prevalence of impact conditions with higher Jacobi constants. However, due

to the low Jacobi constant variation, the absolute difference between the “low-speed”

and “high-speed” impact amounts to less than 5 m/s.

The L2 axial orbit family is presented in Figure 4.84 colored according to the

existence of impacting manifolds, similar to the L1 axial orbit diagram in Figure

4.77. Congruent with behavior observed for the L1 family, the bulk of L2 axial orbits

with impacting unstable manifolds surround the xy-plane. Several smaller groups

are observed farther out of plane, but the majority exist near the bifurcation from

the L2 Lyapunov family. Of the 1080 orbits presented in Figure 4.84, 308 possessed

manifolds with impacting conditions. Therefore, the L2 axial orbits present a smaller

percentage of impacting orbits when compared to the L1 family. Additionally, the

Jacobi constants of the L2 axial impact conditions are lower than those of the L1

family ranging from J = 2.979 to J = 3.014, but are similarly restricted in the length

of values spanned. The times-of-flight and impact longitudes, ϕ, for the manifolds

associated withe the L2 axial orbits are given in Figure 4.85. Similar TOF stratifi-
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(a) Impact Angle

(b) Impact Speed

Figure 4.83.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the L1 Axial Orbits

cation to that observed in the L1 family is shown. However, the minimum TOF is

25.7 days, several days longer that that of the L1 axial orbit family. Furthermore, no

low Jacobi constant impacts are observed until nearly 40 days of propagation. This

increased TOF provides reasoning for the reduced number of impacting orbits discov-

ered. The sample trajectories from Figure 4.85 are displayed in Figure 4.86. Similar
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Figure 4.84.: L2 Axial Orbits Where Red Indicates Axial Orbits with Impacting
Manifolds and Blue Indicates Axial Orbits without Impacting Manifolds

Figure 4.85.: Time of Flight as a Function of Longitude of Lunar Impact Conditions
of Unstable Manifolds Associated with L2 Axial Orbits

to the L1 case, Figures 4.86(a), 4.86(b), and 4.86(c) present geometry groups for the

nearly-planar members at lower TOFs and Figures 4.86(d) and 4.86(e) demonstrate
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(a) (b)

(c) (d)

(e)

Figure 4.86.: Example Impacting Trajectories from L2 Axial Orbits Corresponding
to Marked Points in Figure 4.85
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transfers from the more out-of-plane members at high TOFs. Notably, the availability

of transfers originating from these out-of-plane members is limited with the transfers

demonstrated in Figures 4.86(d) and 4.86(e) providing the bulk of geometry observed.

The latitude values of the L2 axial impact conditions displayed in Figure 4.87

demonstrate the λ = 0◦ symmetry observed in the L1 axial orbits as well as the

vertical families. Similar to the L1 axial orbits, the discretization of the family mem-

Figure 4.87.: Time of Flight as a Function of Latitude of Lunar Impact Conditions
of Unstable Manifolds Associated with L2 Axial Orbits

bers limits the perfection of the observed symmetry. Consistent with observations

in Figure 4.85, low Jacobi constant impacts are not observed until around 40 days

of propagation; these low Jacobi constant impacts do, however, span latitudes from

λ = −86◦ to λ = 86◦ with no clearly preferred hemisphere. The higher Jacobi con-

stant impacts in yellow, span latitudes until both the northern and southern poles at

25.5 days. The latitude versus longitude relation is demonstrated in Figure 4.88 for

the L2 axial orbits. Similarly to the L1 axial family, the impact conditions span the

full surface. However, the L2 axial conditions demonstrate a sparsity of low Jacobi

constant impacts with no clumped structure forming. Therefore, these low Jacobi
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Figure 4.88.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the L2 Axial Orbit Family

constant trajectories, while nearby in energy and initial condition to each other, yield

significantly varied impact locations. Conversely, the high Jacobi constant impacts

near λ = 0◦ yield tightly grouped impacts. Figures 4.89(a) and 4.89(b) display the

data colored by angle and speed, respectively. The impact angles are minimize in the

third quadrant and maximize in the first quadrant with smooth evolution between

these extrema occurring in the second and fourth quadrants presenting relatively well

structured angle behavior. The impact speeds vary only slightly throughout the im-

pact conditions demonstrating the dominance of the lower Jacobi constant impact

conditions.

The L1 and L2 axial orbits present substantial impact location opportunities but

at significantly restricted Jacobi constant values and times-of-flight. The primary

driver of this restriction is the lack of impacting conditions for the members of both

families with greater out-of-plane components similar to the behavior observed in

the vertical orbit families. Impacts are not observed until at least 23 days for either

family and approaching 40 days for the lower Jacobi constant trajectories. The axial

manifolds demonstrate similar symmetry properties to the vertical orbits, and thus
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(a) Impact Angle

(b) Impact Speed

Figure 4.89.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the L2 Axial Orbits

yield impacts spanning a large range of latitudes. The axial orbits, therefore, yield

rich candidate trajectories for Lunar impact mission design.
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Butterfly Orbit Family

Like the vertical and axial orbit families, the butterfly orbits maintain an unstable

subspace throughout the family. However, the time constants of many butterfly orbits

are greater than the 1.5 critical value cutoff point. Therefore, only a subset of the

butterfly orbits are included in the Lunar surface access analysis; 125 of the 1000

orbits analyzed possess sufficiently fast manifold structures. Recall that analysis of

the northern butterfly family yields identical results to that of the southern save a

reflection over the xy-plane. Figure 4.90 presents representative orbits from the 125

Earth-Moon butterfly orbits with κτ < 1.5. The unstable butterfly orbits span Jacobi

(a) (b)

Figure 4.90.: Earth-Moon Northern Butterfly Orbits with Sufficiently Fast Manifold
Departure

constants from 3.0 to slightly greater than 3.08. This range of Jacobi constants has

been observed consistently across many of the unstable families analyzed. Trajectories

on the unstable manifolds associated with these orbits are propagated for a maximum

of approximately 43 days to determine impact characteristics.

Figure 4.91 presents the fast departure butterfly orbits colored by the existence of

manifold structures impacting the Moon within the 43 day integration. A considerable

number of these fast departure butterflies fail to yield impact conditions, indicated by



180

Figure 4.91.: Unstable Northern Butterfly Orbits with Manifold Structures Impacting
the Moon Within 43 Days

the large number of blue orbits in the figure. Two main bands of impacting orbits are

observed: a thick band in the section of butterfly orbits with smaller periapse radii

and a thinner band in the high-periapse-radii butterfly orbits. Several other smaller

groups exist as well, however. Of the 125 sufficiently unstable orbits analyzed, 49 are

found with impacting unstable manifolds. The impacting orbits span Jacobi constants

from J = 3.058 to J = 3.090 representing the upper end of Jacobi constants observed

for the entirety of the butterfly orbits presented in Figure 4.90.

The impact longitudes and times-of-flight for the northern butterflies are shown

in Figure 4.92. No impact are observed until after 30 days of propagation despite

the proximity of the butterfly orbits to the Moon. Furthermore, the impact observed

lower times-of-flight appearing as nearly vertical lines around 135◦ and 0◦ originate

from the larger rp butterfly group shown in Figure 4.90(a). These lines break near

34 days before beginning again around 36 days and continuing until the 43 day limit.

Figures 4.93(a) and 4.93(b) demonstrate sample trajectories from these structures.

All impacts from these linear groups present very similar geometry. Notably, these

structures are the only locations where impacts from the larger rp butterfly orbits are
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Figure 4.92.: Time of Flight and Longitude of Impact Conditions for Unstable Man-
ifolds Associated with Northern Butterfly Orbits

observed; all remaining impact conditions in Figure 4.92 originate from the smaller

rp group of sufficiently unstable butterfly orbits. Figure 4.93(c) presents an exam-

ple of these low rp impact trajectories. While the impact locations of these low rp

trajectories span a wide range in Figure 4.92, the geometrical structure does not

deviate greatly from that observed in Figure 4.93(c). Apparent in Figure 4.92, at

TOFs less than 35 days, impacts are constrained to the first and second quadrants

and not until approximately 40 days do a large number of impacts arise in the third

and fourth quadrants congruent with the observed geometry of the butterfly orbits.

Figure 4.94 displays the impact condition latitudes with the large rp impact condi-

tions highlighted. The large rp impact conditions appear in the latitude figure as

vertical lines at λ = 30◦ and λ = 45◦. Thus, the impact conditions originating from

the higher periapse radius butterfly orbits present a very limited set of Lunar im-

pact conditions despite impacting at slightly lower TOFs. The lower periapse radius

impact conditions present impacts at all latitudes beyond 38 day TOF but present

impacts at and below λ = 45◦ at TOFs around 35 days. Therefore, as observed in

Figures 4.92 and 4.94, the lower periapse radius butterfly orbits present a wide range
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(a) (b)

(c)

Figure 4.93.: Example Impacting Trajectories from Northern Butterfly Orbits Corre-
sponding to Marked Points in Figure 4.92

of impact locations at higher times-of-flight despite the limited number of orbits with

impacting manifolds. The latitude and longitude of the impact conditions appear in

Figure 4.95. The impact conditions appear most often in the northern hemisphere

of the Lunar surface with southern extensions around ϕ = 0◦ and ϕ = 180◦. The

large rp impacts appear as an arc in the first and second quadrants with the rest of

the impact conditions originating from the lower periapse radius orbits. The higher

Jacobi constant conditions yield impacts in the first two quadrants with an evolution

to lower Jacobi constant impacts in the third and fourth quadrants. Two large gaps

appear centered around ϕ = 90◦ and ϕ = 270◦ at the equator. Even considering
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Figure 4.94.: Time of Flight as a Function of Latitude of Lunar Impact Conditions
of Unstable Manifolds Associated with Northern Butterfly Orbits

Figure 4.95.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the Northern Butterfly Orbit Family

the southern family, these gaps indicate that near equatorial impacts are not possible

around these longitudes. Figure 4.96 presents the latitude and longitude colored by

impact angle and speed. The butterfly impact display strong correlation between
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(a) Impact Angle

(b) Impact Speed

Figure 4.96.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associated
with the Northern Butterfly Orbits

impact latitude, λ, and the impact angle, ϑ. Lower latitude conditions yield nearly

tangent impacts while those at high latitudes yield impacts normal to the surface.

Furthermore, all impact angles between 0◦ and 90◦ are found. Reflecting the impact

conditions over λ = 0 to represent the southern butterfly presents the inverse case

where high latitude conditions yield high impact angles. The impact speeds show
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similar quadrant dependence to that observed in the vertical and axial families, but

the significantly reduced Jacobi constant range of the impacting butterflies yields

total variations not exceeding 7 m/s.

Period-Four Halo Orbit Families

The period-four halo families present multi-revolution periodic orbits near the

Moon and both contain unstable members with sufficiently low time constants. How-

ever, the P4HO1 family possesses significantly fewer of these sufficiently low time-

constant orbits and, furthermore, all those that the P4HO1 does possess have peri-

apse radii less than that of the mean Lunar radius evident in Figure 4.31. As a result,

the manifolds associated these fast departure P4H01 orbits simply impact the Moon

when the trajectories pass near the periapse of the underlying periodic orbit. Conse-

quently, the P4HO1 orbits are not included in the impact analysis. Conversely, the

P4HO2 family presents sufficiently unstable orbits with Lunar periapse radii above

the Lunar surface.

The P4HO2 orbits are presented in Figure 4.97 colored corresponding to the bi-

nary indication of departure speed obtained through the time constant. Clearly, the

majority of the P4HO2 family possesses sufficiently low time constants. Only a small

section of the P4HO2 family near the bifurcation with the L2 northern halo orbits

yields “slow” manifold departures. The unstable manifolds associated with the fast

departure orbits in Figure 4.97 are propagated for approximately 43 days and impact

conditions are determined. Figure 4.98 displays the P4HO2 orbits colored based on

the existence of impacting manifolds. Noticeably, many large members of the family

fail to yield impact conditions due to the limitation of the TOF to 43 days. How-

ever, a large number of the P4HO2 family orbits do present impact conditions. The

longitudes and times-of-flight of these impact conditions are shown in Figure 4.99.

The TOFs for impacts originating from the manifolds associated with the P4HO2

orbits are higher than those observed for other Lunar region periodic orbits as the
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Figure 4.97.: P4HO2 Orbits where Red Indicates κτ < 1.5 and Blue Indicates Other-
wise

Figure 4.98.: Unstable P4HO2 Orbits with Manifold Structures Impacting the Moon
Within 43 Days

first impact occurs at 25.6 days. However, impacts at all longitudes are observed.

The higher Jacobi constant impacts are generally focused in the third quadrant and

the lower Jacobi constant impacts are similarly focused in the first quadrant. As
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Figure 4.99.: Time of Flight and Longitude of Impact Conditions for Unstable Man-
ifolds Associated with P4HO2 Orbits

observed in the impact patterns of other periodic orbit families, at higher TOFs, the

impact conditions are less structured than those at lower times-of-flight. Figure 4.100

presents two sample impacting geometries identified in Figure 4.99. Figure 4.100(a)

depicts a higher Jacobi constant impacting trajectory and, thus, is smaller than than

the lower Jacobi constant orbit shown in Figure 4.100(b). The geometry of the high

Jacobi constant impacts varies substantially more across impact conditions compared

with the low Jacobi constant impacts. This geometry variation permits the higher

Jacobi constant orbits to yield more varied impact locations as evident in Figure

4.99. The latitudes corresponding to the impact conditions in Figure 4.99 are given

in Figure 4.101. The lower latitude values are dominated by the higher Jacobi con-

stants congruent with the impact geometry shown in Figure 4.100(b). Nevertheless,

impacts across all Jacobi constant values are found at all latitudes between the poles.

However, the structure of the impact conditions shown in Figure 4.101 restricts the

Jacobi constants available at a given TOF for a given latitude. Both the latitude and

longitude are shown in Figure 4.102 colored by Jacobi constant. This figure further

emphasizes the dominance of higher Jacobi constant impacts at low latitudes. How-
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(a) (b)

Figure 4.100.: Example Impacting Trajectories from P4HO2 Orbits Corresponding
to Marked Points in Figure 4.99

Figure 4.101.: Time of Flight and Latitude of Impact Conditions for Unstable Mani-
folds Associated with P4HO2 Orbits

ever, given the symmetry of the southern version of the family, a southern P4HO2

orbit at a low Jacobi constant may be used to achieve southern hemisphere impacts.

However, even without incorporation of the southern family, impact conditions are

found for nearly all locations on the Lunar surface. Finally, the angles and speeds of

the P4HO2 impacts are investigated in Figure 4.103. As observed for the other peri-
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Figure 4.102.: Latitude Versus Longitude of Impact Conditions of Unstable Manifolds
Associated with the Northern P4HO2 Orbit Family

odic orbit families, the impact speed shown in Figure 4.103(b) directly correlates to

the Jacobi constant of the impacting trajectory. Consequently, lower impact speeds

are observed in the far southern latitudes and conversely for the high latitudes. Im-

pact angles decrease as latitude increases with nearly normal impacts occurring near

λ = 90◦. This behavior is evident in the impact trajectory shown in Figure 4.100(b).

Similarly, Figure 4.100(a) presents an example of the high impact angles observed at

low latitudes.

The P4HO2 family presents a substantial amount of impacts on the Lunar sur-

face ranging in Jacobi constant from J = 2.95 to J = 3.03. These impacts span a

significant portion of latitudes and longitudes and the existence of the southern and

northern families presents a large variety of options for (J, ϕ, λ) combinations.

4.3.5 Low Lunar Orbit Access Characteristics of Spatial Orbit Families

Understanding of the LLO access capabilities of the spatial orbit families provides

insight into the design of missions moving between periodic orbits in the Lunar re-
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(a) Impact Angle

(b) Impact Speed

Figure 4.103.: Latitude Versus Longitude for Impacts of Unstable Manifolds Associ-
ated with the P4HO2 Orbits

gion and Keplerian orbits near the Moon. Therefore, periapse locations along the

same unstable manifolds investigated in Section 4.3.4 are found to determine transfer

geometries from Lunar region periodic orbits to LLO. Unlike the planar case, the

apse conditions along the unstable manifolds associated with spatial periodic orbits

contain out-of-plane components. Subsequently, the inclinations associated with the

periapse locations are also determined.
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Halo Orbit Families

The unstable manifolds of the halo orbits with κτ < 1.5 are propagated to find

periapse conditions with respect to the Moon and the inclination and altitude of

these periapse conditions are recorded. As both the L1 and L2 halo orbits possess

sufficiently fast manifold structures, both families will be investigated. Note, because

of the symmetry, the northern and southern families will yield apses with the same

inclinations but differing right ascensions. Figure 4.104 presents the periapse altitudes

and the propagation times required to reach those apses for the L1 Northern halo

family. While gaps exist at higher altitudes, the L1 halo orbits present periapses at

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.104.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L1 Halo Orbit Family

all altitudes less than approximately 8600 km. However, the low time-of-flight and

low Jacobi constant periapse conditions result from periapses along the low periapse

orbits themselves. Higher Jacobi constant periapses do not occur until around 12 days

as observed in Figure 4.104(b). At higher times of flight, periapses across all altitudes

are observed for nearly all Jacobi constant values indicating a significant amount of

LLO access. Figure 4.105 provides the inclinations and altitudes of the periapses at

altitudes less than 5000 kilometers. Clearly, a majority of low inclinations periapse

conditions occur at high Jacobi constant values. This relationship makes sense as
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(a) (b)

Figure 4.105.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L1 Halo Orbit Family

the higher Jacobi constant halo orbits possess less of an out-of-plane component.

Importantly, all inclinations below approximately 120◦ are feasible to reach from the

L1 halos for the given altitude range. Figure 4.106 demonstrates the times-of-flight

and altitudes for the L2 halo orbit family periapse conditions. The overall structure

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.106.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L2 Halo Orbit Family

is similar to that of the L1 halo orbits. However, due to the slow manifolds of the L2

halo orbits near the Moon, the low time-of-flight periapses observed in the L1 case
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are not found in Figure 4.106(b). As a result, below 18, 000 km altitude, no apses are

found until after approximately 16 days. The inclinations and altitudes colored by

Jacobi constant and time-of-flight for the L2 halo orbits are shown in Figures 4.107(a)

and 4.107(b), respectively. The behavior present in these figures is similar to that

of the L1 halo orbits. All inclinations below approximately 120◦ are available at all

altitudes shown.

(a) (b)

Figure 4.107.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L2 Halo Orbit Family

Vertical Orbit Families

Similar to the halo orbit families, the unstable manifolds of the sufficiently unsta-

ble members of the vertical orbit families are propagated to determine periapse con-

ditions. The times-of-flight and altitudes of the L1 vertical orbit manifold periapses

are shown in Figure 4.108. The vertical orbit manifolds yield a substantial amount of

apses at high altitudes but yield very few low altitude periapses with periapses below

1000 km not occurring until after 20 days echoing behavior observed in the impact

conditions. As observed in Figure 4.108(b), all of the low altitude periapses occur at

high Jacobi constant values, beneficial for access from other Lunar-region orbits. The

corresponding inclinations and altitudes are shown in Figure 4.109. Clearly, a band
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(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.108.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L1 Vertical Orbit Family

(a) (b)

Figure 4.109.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L1 Vertical Orbit Family

is observed centered around i = 90◦ inclination consistent with the vertical nature of

the orbits. Periapses are observed between i = 75◦ and i = 115◦ for all the altitudes

given. An additional grouping occurs around i = 50◦ at altitudes beyond 1000 km.

Continuing for L2, the periapse altitudes and times-of-flight for the L2 vertical orbits

are given in Figure 4.110. The L2 results are very similar to those of the L1 vertical

orbits, but do demonstrate slightly higher times of flight across the board. Similarly,

for the inclination and altitudes given in Figure 4.111, the band around 90◦ is again
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(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.110.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L2 Vertical Orbit Family

observed with another grouping occurring at altitudes beyond 2000 km. Overall, the

vertical orbits present a more constrained set of periapse characteristics than the halo

orbit families.

(a) (b)

Figure 4.111.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L2 Vertical Orbit Family
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Axial Orbit Families

The altitudes and times-of-flight of the periapses along the unstable manifolds of

the L1 axial orbits are shown in Figure 4.112. Similar to the observations regard-

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.112.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L1 Axial Orbit Family

ing the Lunar impacts, the axial orbits require longer times-of-flight to reach lower

altitudes. The first L1 axial periapse below 5000 km does not occur until after 20

days of propagation. However, after 20 days several groups are observed that span

all altitudes below 5000 km. These bands are dominated by higher Jacobi constant

periapses and very few low Jacobi constant conditions are observed at low altitudes.

The inclinations and altitudes plotted in Figure 4.113 demonstrate that the L1 axial

orbit manifolds provide an exceptional amount of inclination and altitude coverage at

low altitudes. The behavior observed indicates that manifolds exist that offer trans-

fers to all inclination and altitude combinations below 5000 km altitude presenting

a divergence from the capabilities observed in the halo and vertical orbit families.

The L2 axial altitudes and TOFs shown in Figure 4.114 appear very similar to that

observed for L1. Furthermore, like the L1 axial orbits, the L2 axial family presents

complete coverage of altitudes and inclinations below 5000 km as observed in Figure

4.115. The L1 and L2 axial families present significant coverage of periapse locations
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(a) (b)

Figure 4.113.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L1 Axial Orbit Family

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.114.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L2 Axial Orbit Family

at low Lunar altitudes. However, these conditions occur at lower Jacobi constants

than those of the vertical and halo orbits and required longer times-of-flight. These

trajectories may serve, however, as intermediate arcs between lower Jacobi constant

orbits and high Jacobi constant LLOs.
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(a) (b)

Figure 4.115.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L2 Axial Orbit Family

Butterfly Orbit Family

A similar analysis is performed for the northern butterfly orbits, but recall that the

number of sufficiently unstable Butterfly orbits was small. Therefore, the resulting

conditions are more limited than the other Lunar region periodic orbit families. Figure

4.116 depicts the altitudes and times-of-flight of the periapse conditions. A large gap

(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.116.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the L2 Butterfly Orbit Family

is observed at periapse altitudes below approximately 2100 km; periapses do not
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occur at these altitudes for TOFs less than nearly 30 days. Additionally, the lower

altitude impacts are all at higher Jacobi constants as the low Jacobi constant orbits

depart the Lunar region. Figure 4.117 demonstrates the inclinations and altitudes

of these periapse conditions. Clearly, the inclinations at which the periapses occur

(a) (b)

Figure 4.117.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the L2 Butterfly Orbit Family

are severely limited to a thin band around 90◦. While these bands do extend across

all altitudes, they present a significant restriction on available insertion inclinations.

Overall, the northern butterflies present higher Jacobi periapses at low altitudes, but

are severely limited in the times-of-flight and inclinations available.

Period-Four Halo Orbit Families

Finally, the periapse investigation is performed for the period-four halo orbit fam-

ilies. As discussed in Section 4.3.4, the P4HO1 family does not yield fast manifold

departures at periapse radii above the Lunar radius and, thus, is not included in the

periapse investigation. Figure 4.118 presents the times-of-flight and altitudes for the

P4HO2 family. While a large number of periapses are observed at high altitudes, a

gap is observed at low times-of-flight for low altitudes. No periapses are observed

below 5000 kilometers until after 22 days, congruent with the long periods of the un-
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(a) Altitude < 100, 000 km (b) Altitude < 5, 000 km

Figure 4.118.: Time of Flight and Altitude for Periapse Conditions on Manifolds
Associated with the P4HO2 Orbit Family

derlying periodic orbits. However, after 22 days, many periapses are found at higher

Jacobi constants across all altitudes. Figure 4.119 shows the inclinations and alti-

tudes of the periapse conditions. Similar to the butterfly orbits, a band is observed

(a) (b)

Figure 4.119.: Inclinations and Altitudes of Periapse Conditions on Manifolds Asso-
ciated with the P4HO2 Orbit Family

around i ≈ 90◦ but extends farther to i ≈ 60◦ and i ≈ 120◦. Despite the restric-

tion on the inclinations of the periapses, a large number of low-altitude periapses are

observed. Additionally, those at lower altitudes demonstrate higher Jacobi constant

values indicating utility for transfers from other Lunar region orbits.
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5. APPLICATION: LUNAR ACCESS FROM 9:2 LSR

NRHO USING INTERMEDIATE PERIODIC ORBITS

The utility of intermediate periodic orbits as a method of designing transfers to the

Lunar surface and LLO is investigated through the design of trajectories from the

9:2 LSR NRHO introduced in Section 3.1. Impulsive transfers are determined from

the NRHO to the Shackleton crater locations in 2023 as well as from the NRHO to a

circular LLO with i = 90◦.

5.1 Shackleton Crater Impact Trajectories

A key drawback of the method presented in Section 3 is lack of variation in the

types of the impacting trajectories. This bottleneck reduces the availability of tra-

jectories with desirable impact conditions and geometries. Both types of motion in

Section 3 present complex behavior. One desirable aspect for an impact trajectory is

a constant line-of-sight from the impacting spacecraft to the Earth. This line-of-sight

allows for the monitoring of a landing spacecraft or a view of ejecta post-impact for

an impactor. The methodology offered in Section 3 does not provide a manner of

obtaining trajectory geometry satisfying this line-of-sight constraint. In fact, only

the low impact angle example in Figure 3.25(a) offers these desired line-of-sight char-

acteristics, but with very little margin. Therefore, as an example, the periodic orbit

information developed in Section 4 is used to determine impact trajectories with un-

obstructed line-of-sight to the Earth. Periodic orbits with impacting trajectories that

do not violate the line-of-sight constraint are determined, then connecting transfers

from the 9:2 LSR NRHO are found. Finally, impact trajectories are converged for all

epochs investigated in Section 3.
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The first step in design of impacting trajectories is the determination of periodic

orbit families satisfying the line-of-sight requirement with impacting manifolds struc-

tures. Clearly, the L2 axial, displayed in Figure 4.84, and vertical, displayed in Figure

4.72, families violate the line-of-sight constraint due to their passing behind the Moon

as observed from the Earth and are, therefore, removed from the search space. Fur-

thermore, because the crater locations do not cross the xy-plane, no planar families

are included. Thus, the remaining families included in the analysis are the northern

and southern halo orbits, the northern and southern P4HO2 families, the L1 axial

orbits, the L1 vertical orbits, and the northern and southern butterfly orbits. The

impact latitudes and longitudes of the manifolds associated with these families are

shown in Figure 5.1 colored by impact angle. The figure is grouped into the northern

families (e.g., northern L1 halos), the southern families (e.g., southern P4HO2), and

the axial and vertical families which lack northern and southern halves. An important

observation in Figure 5.1 is the obvious trend in impact angle between the northern

and southern groups. The northern families present low latitude impacts with nearly

all high impact angles, i.e., nearly tangent to the surface. Consequently, due to the

symmetry of the northern and southern half-families, the southern orbits present

southern latitude impacts with nearly all low impact angles, i.e., nearly normal to

the surface. This observation is consistent with the behavior observed in Section 3

where the trajectories with high impact angles “flip” to a northern-like motion before

impacting while the low impact angle trajectories maintain their southern character-

istic. Therefore, to obtain both low impact angle and high impact angle trajectories,

both southern and northern family members must be leveraged. Both the axial and

vertical orbit families do not present a substantial number of impacts in the ϕ = 200◦

area required for Shackleton crater. Additionally, as transfers are more readily found

between the southern 9:2 LSR NRHO and other southern orbits, the search space is

limited to the southern orbit families.

To begin, impact trajectories to the Shackleton crater leveraging the southern orbit

families are determined. As demonstrated in Figure 5.1(b), the majority of southern
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(a) Northern Orbits (b) Southern Orbits

(c) Vertical and Axial Orbits

Figure 5.1.: Latitude and Longitude of Impacts for Spatial Periodic Orbits in the
Lunar Region Excluding L2 Vertical, L2 Axial, and P4HO1 Families Separated Into
Northern, Southern, and Axial/Vertical Groups

hemisphere impacts occur at a lower impact angle; however, several higher impact

angle points do exist at λ < 0◦. Figure 5.2 presents the impact conditions of the

manifolds associated with the southern orbits near the Shackleton crater region. Very

few high impact angles are observed. Figure 5.3 displays the two selected trajectories

in Figure 5.2 from the southern family impact conditions near the Shackleton crater

locations. Figure 5.3(b) displays an impact trajectory with a higher impact angle at

ϑ ≈ 60◦. This impact is characteristic of the highest angle impact found reasonably

close to the Shackleton crater to use as an initial condition. Additionally, a low impact

angle candidate trajectory, depicted in Figure 5.3(a), is selected based on its proximity

to the Shackleton crater and because it possesses a Jacobi constant of J ≈ 3.03, close
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Figure 5.2.: Shackleton Crater Locations Overlaid on Unstable Manifold Impact Lo-
cations Associated with the Southern Lunar Region Orbits

to that of the 9:2 LSR NRHO (J ≈ 3.05). The low impact angle trajectory originates

from a P4HO2 orbit while the high impact angle trajectory originates from an L2

halo orbit. Figure 5.4 demonstrates that both geometries satisfy the line-of-sight

requirement. The trajectory originating from the halo orbit does, however, pass in

(a) (b)

Figure 5.3.: Candidate Trajectories Selected from Southern Family Impact Conditions
in Figure 5.2
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between the Earth and Moon slightly. Neither of the trajectories in Figure 5.3 impact

any of the Shackleton crater locations exactly. As a result, a corrections process is

(a) Low Impact Angle (b) High Impact Angle

Figure 5.4.: Views Down x-Axis of Candidate Trajectories Selected from Southern
Family Impact Conditions in Figure 5.2

used to target these locations shown as black dots in Figure 5.2. The process is

identical to that presented in Section 3.2.1 with free variable vectors of

X =
[
τN ∆v x0

1 . . . x0
M τ1 . . . τM

]T
(5.1)

and

F (X) =



rτN0 − r01

vτN0 + ∆v− v0
1

x0
2 − xτ11

x0
3 − xτ22

...

x0
M − x

τM−1

M−1

rτMM − rS


, (5.2)

respectively. However, unlike the case in Section 3.2.1, the starting condition from

which τN is referenced is on one of the two unstable orbits selected rather than the

9:2 LSR NRHO. The corrections process is run for all Shackleton crater locations and
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the impacting trajectories are determined. Figures 5.5 and 5.6 display the converged

results for the low and high angle impact trajectories, respectively. Clearly, the

Figure 5.5.: Converged Transfers from P4HO2 Orbit To Shackleton Crater Locations
in 2023 Yielding Low Impact Angle Trajectories

Figure 5.6.: Converged Transfers from L2 Halo Orbit To Shackleton Crater Locations
in 2023 Yielding High Impact Angle Trajectories

geometry of the initial guess is well preserved through the corrections process as

neither group of transfers presents any drastic change. Furthermore, neither group

of transfers violates the line-of-sight constraint. The small variation in geometry
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observed is reinforced by the low required ∆v magnitudes given in Figure 5.7. Neither

Figure 5.7.: Required Departure ∆v of Impact Trajectories at Epochs Associated
with Shackleton Crater Locations

transfer geometry requires more than 9.5 m/s to depart the periodic orbit on the

desired impacting trajectory. The times-of-flight and impact angles given in Figures

5.8 and 5.9, respectively, similarly show little variation. Both the low and high

impact trajectories have times-of-flight around 30 days. Comparing these values with

the 47 and 61 day transfers found in Section 3.2.1, a difference of 20 to 30 days exists,

but a transfer trajectory to the intermediate periodic orbit from the 9:2 LSR NRHO

is still required.

The transfers to the selected P4HO2 and L2 southern halo orbits are found via

a y = 0 Poincaré map. The stable manifolds of the periodic orbits are propagated

in negative time and the y = 0 crossings are found. Additionally, maneuvers in the

velocity direction at points along the 9:2 LSR NRHO are applied and the resulting

trajectories are propagated forward in time and the y = 0 crossings are found. The

magnitudes of these maneuvers are such that the Jacobi constant of the resulting

trajectory is equal to that of the targeted periodic orbit. Following the determination

of a sufficiently close connection, the arcs are converged through a multiple shooting
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Figure 5.8.: Time of Flight Along Impact Trajectories at Epochs Associated with
Shackleton Crater Locations

Figure 5.9.: Impact Angle of Trajectories at Epochs Associated with Shackleton
Crater Locations

algorithm. Three maneuvers are permitted along the transfer: a maneuver to depart

the NRHO, a maneuver at the connection of the arc departing from the NRHO and

the arc arriving at the target orbit, and a maneuver at the insertion point along the

target orbit. These maneuvers are modeled as impulsive burns and are, therefore, in-
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corporated into the shooting scheme via the removal of velocity continuity constraints

at the burn locations. Therefore, the free variable vector is

X =



τ0

x0
1

x0
2

...

x0
M

x0
M+1

x0
M+2

...

x0
M+N

τ1

τ2
...

τM

τM+1

τM+2

...

τM+N

τf



, (5.3)

where τ0 and τf are the times-of-flight along the 9:2 LSR NRHO and the target

periodic orbit, respectively, and there are M segments along the arc departing the

NRHO and N segments along the arc arriving at the target periodic orbit. The
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constraint vector is updated to take into account the allowed velocity discontinuities

and the second periodic orbit arrival as

F (X) =



rτ00 − r01

x0
2 − xτ11

...

x0
M − x

τM−1

M−1

r0M+1 − rτMM

x0
M+2 − x

τM+1

M+1

...

x0
M+N − x

τM+N−1

M+N−1

r
τf
f − r

τM+N

M+N



. (5.4)

Finally, the total required ∆v is calculated as the sum of the velocity discontinuity

magnitudes at each of the specified maneuver locations.

Beginning with the low impact angle trajectory, the y = 0 Poincaré map is dis-

played in Figure 5.10. The selection, shown in Figure 5.10(b), represents the two

map points with the minimal velocity discontinuity. The trajectories associated with

(a) Entire Lunar Region (b) Close Up On Selected Points

Figure 5.10.: Poincaré Map For Connections Between the 9:2 LSR NRHO in Red and
the Selected P4HO2 Orbit in Blue
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these points are corrected using the multiple shooting algorithm outlined. The re-

sulting corrected transfer is given in Figure 5.11. The time-of-flight of the converged

Figure 5.11.: Corrected Transfer from 9:2 LSR NRHO to P4HO2; ∆v = 140.4 m/s,
TOF = 60.6 days

transfer is high, but the line-of-sight constraint is not violated due to the transfer

geometry remaining close to the geometries of the NRHO and P4HO2 orbits. This

geometry is similar to that obtained by Zimovan-Spreen et al. in [25], but requires a

higher time-of-flight to achieve a lower transfer cost as Zimovan-Spreen et al. present

transfers requiring 260 m/s but taking only 16 days. The converged transfer in Fig-

ure 5.11 is combined with the impact transfers to build the complete mission design,

displayed in Figure 5.12. The transfer from the NRHO to the P4HO2 orbit inserts

into the orbit approximately 22 days behind the impact trajectory resulting in the

higher time-of-flight given in Figure 5.12. The result given in Figure 5.12 presents a

NRHO to Shackleton crater transfer geometry without violating the line-of-sight con-
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Figure 5.12.: Complete Transfer From 9:2 LSR NRHO to Shackleton Crater Location
Using Intermediate P4HO2; ∆vmax = 145.9 m/s, TOFAvg = 115.0 days (Maneuver
Locations Marked with Red Dots)

straint and is obtained without requiring explicit implementation of the line-of-sight

constraint.

A similar process is followed for the determination of transfer geometry to the

L2 halo orbit yielding the high impact angle conditions, given in Figure 5.6. The

corrected transfer geometry is shown in Figure 5.13. The required ∆v magnitude

is around 200 m/s larger than the P4HO1; however, the Jacobi constant of the L2

halo (J = 3.13) is significantly farther from that of the NRHO compared to the

P4HO1 orbit. It is likely that the transfer cost would be reduced significantly if an

optimization algorithm was applied. However, the time-of-flight of the NRHO to halo

orbit transfer is nearly 30 days shorter than that of the P4HO1. Similarly to the low

impact angle case, the NRHO to halo transfer is combined with the halo to Shackleton
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Figure 5.13.: Corrected Transfer from 9:2 LSR NRHO to L2 Halo; ∆v = 307.0 m/s,
TOF = 34.5 days

crater transfer results to obtain the full mission design. Thus, the full mission design

using the high impact angle L2 halo intermediate orbit is given in Figure 5.14. Like

the P4HO1 intermediate orbit, the L2 halo intermediate orbit mission does not violate

the line-of-sight constraint. While the required ∆v is greater than that of the P4HO1

case, the time-of-flight is around 30 days shorter, putting the transfer in a similar

range to those given in Section 3.2.1.

5.2 Transfers from 9:2 LSR NRHO to LLO

In addition to leveraging intermediate periodic orbits for impact missions, the apse

conditions of the unstable manifolds associated with the periodic orbits may be used

to find transfers to Low Lunar Orbit (LLO). Polar (i = 90◦) 100 km altitude LLOs

are of particular interest for Lunar south pole operations [2]. Therefore, a transfer
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Figure 5.14.: Complete Transfer From 9:2 LSR NRHO to Shackleton Crater Location
Using Intermediate L2 Halo; ∆vmax = 316.8 m/s, TOFAvg = 82.3 days (Maneuver
Locations Marked with Red Dots)

from the 9:2 LSR NRHO to a 90◦ inclination polar orbit is sought. Whitley et al.

present step-off methods for determining these transfers; intermediate periodic orbits

are used in this investigation to determine possible advantages and disadvantages

in comparison. Periodic orbits are determined with the desired apse condition with

respect to the Moon (i = 90◦, Altitude = 100 km). A transfer from the 9:2 LSR

NRHO is then determined similarly to the process in Section 5.1.

Potential intermediate orbits are determined via the inclinations, altitudes, and

Jacobi constants of the apse conditions along their associated periodic orbits. Clearly,

apse conditions are desired that have inclinations and altitudes close to 90◦ and 100

km, respectively. However, transfers are also desired that are at Jacobi constants near

that of the 9:2 LSR NRHO to reduce the required energy change at the maneuver
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location. In order to determine trajectories yielding these desirable conditions, the

nondimensional quantity Λ is introduced as

Λ =

√(
Alt− 100 km

100 km

)2

+

(
i− π/2
π/2

)2

, (5.5)

where i is written in radians. Therefore, a condition where Λ = 0 produces a 90◦

apse at 100 km altitude. The relative differences in Jacobi constant, J̃ between the

9:2 LSR NRHO and the apse conditions, i.e.

J̃ =
J − J9:2
J9:2

, (5.6)

are plotted against the corresponding Λ values in Figure 5.15 for all of the spatial

periodic orbits included in the analysis. Note, only the region near (0, 0) is pictured.

The indicated point in Figure 5.15 presents a condition on the Pareto front that

Figure 5.15.: Difference in Jacobi Constant from 9:2 LSR NRHO Versus Λ for Periodic
Orbit Apse Conditions

favors the energy differential chosen in an attempt to reduce the transfer cost from

the NRHO. Figure 5.16 displays the geometry corresponding to this selected point.

Clearly, the underlying periodic orbit is an L2 northern halo orbit. The time-of-flight
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Figure 5.16.: Manifold from L2 Northern Halo Yielding Apse Condition Selected in
Figure 5.15. TOF = 37.3 Days

of the manifold transfer to the apse condition is approximately 37 days displaying a

similar time to that required by the impact transfer from the L2 southern halo orbit

observed in Figure 3.26. The depicted trajectory does not provide an exact 100 km

altitude, 90◦ inclination apse condition, however. Therefore, a corrections process

is applied to determine the required maneuver at the halo departure to achieve the

desired apse condition. A single maneuver is allowed at the halo departure and the

final inclination and altitude are fixed while also ensuring the final location is an
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apse. The free variable vector includes the initial time-of-flight along the orbit and

the initial states and times-of-flight of the departure trajectory segments, i.e.,

X =



τ0

x0
1

x0
2

...

x0
N

τ1

τ2
...

τN



, (5.7)

where N is the number of segments used on the departure trajectory. Constraints

on the final inclination, altitude, and apse condition are applied in addition to the

continuity constraints. The constraint vector is, thus, written,

F =



rτ00 − r01

x0
2 − xτ11

...

x0
N − xτ11

if − 90◦(
rf23 − RMoon

l∗

)
− 100 km

l∗

rf23 · vFN


, (5.8)

where rf23 is the position vector of the spacecraft at the final time with respect to

the Moon and if is the inclination in the inertial frame with respect to the Moon at

the final state. The trajectory in Figure 5.16 is corrected using this scheme and the

resultant trajectory is shown in Figure 5.17. Some noticeable change in the geometry

is observed in Figure 5.17 compared to Figure 5.16. The majority of this variation is
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Figure 5.17.: Manifold from L2 Northern Halo Yielding Apse Condition Selected in
Figure 5.15 Corrected to i = 90◦, Altitude = 100 km. ∆v = 77 m/s, TOF = 37.4
Days

caused by the forcing the trajectory to reach an apse at exactly 90◦, the sensitivity

of the solutions to desired inclination is also noted by Whitley et al. [2]. Along

with the slight variation in geometry, the required maneuver magnitude is around 77

m/s compared with the 0 m/s required in the unconstrained case; this increase in

maneuver cost is caused similarly by the inclination constraint. Despite the geometry

and ∆v changes, the time-of-flight observed changed by only a tenth of a day from

the original uncorrected trajectory.

Given the selected L2 northern halo with desired apse conditions, a transfer from

the 9:2 LSR NRHO is required. The transfer is determined in the same manner as the

impact cases, i.e. a Poincaré map is determined using stable manifolds originating

from the halo orbit and step-off trajectories from the NRHO. The corresponding map

is shown in Figure 5.18(a) with a closer view on the selected conditions in Figure

5.18(b). A large number of potential connections are found, but the connection with
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(a) Entire Lunar Region (b) Close Up On Selected Points

Figure 5.18.: Poincaré Map For Connections Between the 9:2 LSR NRHO in Red and
the Selected Halo Orbit in Blue

minimal velocity discontinuity is selected (shown in Figure 5.18(b)). This connection

is corrected with the same methodology as used in the impact connections, i.e. using

the free variable and constraint vectors in Equations (5.3) and (5.4), respectively.

The resulting transfer from the 9:2 LSR NRHO to the L2 halo is depicted in Figure

5.19. The ∆v magnitude determined for this transfer is 164 m/s with a time-of-flight

of 65.6 days. These quantities are similar to those required to transfer from the 9:2

LSR NRHO to the P4HO2 orbit identified in the impact trajectory design.

The transfer to the L2 halo from the NRHO is combined with the halo to apse

transfer to form the full mission design from the NRHO to the apse condition. Ad-

ditionally, because the final location occurs at an apse, the circularization maneuver

magnitude, ∆vcirc is determined as

∆vcirc = vInert −
√

GMMoon

rf23
, (5.9)

where vInert is the final velocity magnitude in the inertial frame. As described by

Whitley et al., the minimal transfer cost between the NRHO and the LLO can be
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Figure 5.19.: Transfer from NRHO to L2 Northern Halo. ∆v = 164.0 m/s, TOF =
65.6 Days

calculated via the difference in Jacobi constants and noting that the minimal maneu-

ver magnitude to change between two Jacobi constants is

∆v =
√

(2Ω1 − J1)− (2Ω0 − J0), (5.10)

where J0 and Ω0 are the initial Jacobi constant and pseudopotential and J1 and Ω1

are the final Jacobi constant and pseudopotential [2]. The minimal transfer cost

between the 9:2 LSR NRHO and the 100 km altitude polar LLO is, thus, calculated

to be approximately 655 m/s. The cost of insertion into the LLO for the transfer

in Figure 5.19 is 673.8 m/s. Therefore, the insertion ∆v is 20 m/s greater than the

theoretical minimum due to the maneuvers performed. Combining the NRHO to

halo orbit transfer, the departure from the halo, and the LLO insertion, the complete
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design is shown in Figure 5.20. This unoptimized trajectory is around 250 m/s more

expensive than the optimal results obtained by Whitley et al. [2]. However, because

the intermediate halo is used, the geometry is restricted to the Lunar region.

Figure 5.20.: Transfer from NRHO to LLO with i = 90◦, Altitude = 100 km. ∆v =
914.8 m/s (Including 673.8 m/s Insertion into LLO), TOF = 110.2 Days
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6. CONCLUDING REMARKS

6.1 Summary

The current investigation seeks to understand the Lunar access characteristics of

periodic orbits in the Lunar region including the access to the surface of the Moon

and Low Lunar Orbit (LLO). These access characteristics of departure trajectories

at various maneuver magnitudes from the 9:2 Lunar Synodic Resonant (LSR) Near

Rectilinear Halo Orbit (NRHO) determined and used to design NRHO to Shackleton

crater impact transfers as a motivating example for the incorporation of intermedi-

ate periodic orbits in the design process. A selection of planar (low prograde orbits,

distant retrograde orbits, and Lyapunov orbits) and spatial (halo orbits, vertical or-

bits, axial orbits, butterfly orbits, and period-four halo orbits) periodic orbit families

in the Lunar region are identified. The stability index and time constant are intro-

duced to quantify stability and manifold departure rate. These metrics are used to

determine suitably unstable members of the identified periodic orbit families. Impact

and apse conditions including impact location, impact speed, impact angle, apse al-

titude, and apse inclination of the unstable manifold structures associated with these

unstable periodic orbits are determined through explicit propagation. These access

characteristics are then used in the design of two different impulsive propulsion ac-

cess transfer scenarios from the NRHO. First, periodic orbit manifold structures that

impact at the Shackleton crater locations are determined and two separate families

of geometries are converged yielding impact trajectories at various epochs. Transfers

from the NRHO to the underlying periodic orbits associated with these structures

are found and end-to-end feasible mission designs leveraging impulsive maneuvers are

then presented. Second, periodic orbits with manifold structures yielding desirable

apse conditions are determined and a selected orbit and manifold structure are cor-
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rected for transfer design into a circular polar 100 km altitude LLO. Similar to the

impact design, a transfer from the NRHO to the selected orbits is then corrected and

a complete NRHO to LLO impulsive mission design is established. Fundamentally

the conclusions of the current work are:

1. Lunar access trajectories from periodic orbits without fast departure manifolds

such as the 9:2 LSR NRHO can be effectively obtained by applying a series of

impulsive maneuvers around the orbit and determining the impact conditions of

the resulting trajectories. However, this method of transfer generation does not

offer a large amount of control over the geometries obtained especially when

constraints are applied to impact conditions due to the limited variation of

impact trajectories. Conversely, this method of trajectory generation often pro-

duces lower ∆v requirements and requires fewer maneuvers due to the reduced

complexity.

2. Many of the Lunar region periodic orbit families present periodic orbits with

sufficiently fast departing manifold structures yielding impact conditions over

the Lunar surface and apse conditions in the LLO region. The planar families

present Lunar impacts spanning all locations in the xy-plane at Jacobi constant

values near that of the NRHO as well as many other periodic orbits in the Lu-

nar region. Furthermore, the apse conditions of the Lunar region periodic orbits

present apses at all altitudes close to the Moon. Similarly, the manifolds asso-

ciated with the spatial orbits present considerable Lunar access characteristics.

However, in any particular families, trades exist between the impact location

and the speed, time-of-flight, and Jacobi constant. Additionally, northern and

southern families present large variations in the impact location with southern

Lunar latitudes impacted primarily by northern orbits and vice-versa. The apse

conditions are closely connected with the Jacobi constant of the underlying pe-

riodic orbit as higher Jacobi constants yield a greater number of low altitude

apses but require larger times-of-flight.
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3. The Lunar access characteristics of the Lunar region periodic orbits provide

baseline geometry that can effectively be included in mission design applica-

tions regarding transferring from stable (as well as unstable) periodic orbits

to the Lunar surface and LLO. The primary advantage of this methodology is

the ability to influence the geometry of the resulting transfers. However, the

incorporation of intermediate periodic orbits is shown to increase the required

∆v and TOF required for a mission in the cases analyzed. These increases in

cost may be further reduced with optimization routines.

The current investigation demonstrates the significant amount of Lunar access ca-

pability presented by the Lunar region periodic orbit families. While increases in

maneuver cost and TOF are observed, these unstable periodic orbits can be lever-

aged as intermediate steps in a trajectory design process to influence geometry of the

resulting mission in the context of an impulsive propulsion spacecraft.

6.2 Recommendations for Future Work

The current investigation produces transfers to LLO and the Lunar surface us-

ing propulsion systems modeled with impulsive ∆v maneuvers. However, the long

times-of-flight observed indicates that the transfers may benefit from analysis in the

context of a low thrust propulsion system. Low thrust transfers could more efficiently

leverage the multi-revolution geometry and Lunar flybys. Finally, the incorporation

of the non-spherical Lunar gravity, solar gravity perturbations, and solar radiation

pressure in the dynamical model could further refine the results in the low Lunar

region. Transferring the resultant solutions into a higher-fidelity ephemeris model

and optimizing may further indicate the usefulness of the obtained solutions. These

additional avenues of investigation may provide more complete understanding of the

Lunar access characteristic in the region.
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