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ABSTRACT

Ashok Bhatija, Khushal M.S., Purdue University, December 2019. Particles in a
Linearly Stratified Fluid. Major Professors: Arezoo Ardekani, Matthieu Mercier.

The settling of spherical and cylindrical particles in a linearly stratified fluid is

investigated using experiments. The double-tank method is used to generate a linear

stratification with a red colored dye homogeneously mixed in the heavy water tank.

As a result of feeding the stratification using dyed heavy water, the concentration of

dye varies with depth in the experiment tank. A powerful back-light and a digital

camera are used to record the events. Assuming the concentration of dye is directly

proportional to density of fluid, Beer-Lambert’s law is used to generate a calibration

between intensity of the light measured by the camera and density of the fluid. Using

this calibration, density is evaluated in all the images captured. In the parameter

space of this study, the spheres have three different wake patterns. The area of

fluid disturbed by a suspension of spheres increases with Re and Fr. As a result, the

amount of energy available for the mixing and the irreversible change of total potential

energy in the system increases with Re, Fr and number of particles. Cylinders drag

volumes of light fluid to larger depths in their wake than spheres and shed the light

fluid in the form of vortices. This results in lower volumes of fluid perturbed by

the cylinders. However, as the light fluid is dragged to larger depths, the amount of

energy generated for mixing and the change in total potential energy of the system

is higher. Spheres are thus more efficient in disturbing volumes of fluid but cylinders

are more efficient in causing irreversible changes to the state of the system.
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1. INTRODUCTION

Particles settling or rising in a fluid frequently occur in oceanography, chemical and

energy industry. In many situations the particles travel through regions of density

stratified fluids. Motion of translating particles is affected by the density stratifica-

tion as the hydrodynamic forces acting on the particle are modified. The translating

particles also affect the fluid domain by dragging light fluid to regions of heavy fluid

(and vice versa). An understanding of the effects of stratification on particle mo-

tion and those of the particle on the density field is necessary to understand many

environmental and industrial processes.

The ocean is made up of three primary layers namely the surface layer, thermocline

and the deep ocean. The surface layer (up to 200 m deep) actively interacts with the

atmosphere encountering winds from the air currents, heat fluxes from the sun’s

radiation resulting in turbulent mixing, evaporation and salinity gradients. The deep

ocean is the part of ocean far away from the surface interactions and thus is much

colder and denser. The thermocline is a stratified layer where the density of the ocean

transitions from the light fluid in the surface layer to the heavy fluid in the deep ocean.

Thickness of the pycnocline depends on the salinity and temperature of the surface

layer which is affected by factors like latitude and climate. The pycnoclines are also

hot spots where biological activity peaks, e.g., algae bloom formation occurs. The

phytoplankton, consume the dissolved carbon dioxide for photosynthesis, forming a

‘biological pump’ for carbon dioxide from the ocean surface to the bottom of the

ocean. The stable stratification through which these organisms move, affects the

direction and extent of their motion, finding implications in marine biology [1, 2].

Swimming of marine organisms can also generate local mixing around them, affecting

the nutrient consumption [3, 4].
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Rising bubbles are used across multiple engineering applications. In the extraction

of steel, bubbles rise through a thermally stratified melt to pick up non-metallic

impurities and transfer them to the slag at the top. Knowledge of constitutive models

estimating local, micro-scale mixing induced by these bubbles to the molten steel is

still incomplete. These models are also of relevance in chemical and biological reactors

which use the mixing caused by bubbles as an alternative to mechanical stirring [5].

Recent advances in geophysics [6] postulate that a possible trigger mechanism be-

hind volcanoes which are caused by mixing of acidic and basic magmas, could be the

mixing induced between these two layers of different density by the solid crystalline

particles settling through them. In astrophysics, the means of energy transport from

supermassive black holes and intracluster media is unknown. There exists a tempera-

ture stratification between the high-temperature intracluster medium which is at the

boundary of the galaxy and its relatively cold core. Recent work [7] suggests that the

transport of relativistic plasma bubbles from the galaxy core, through the stratifica-

tion is responsible for the energy transport. In all of the fore-mentioned applications,

information about the dynamics of particles travelling through a stratified fluid is

necessary to bring closure to the problems. Details of recent advances in the field are

given in these two review articles [1, 8]

1.1 Disturbances in stratified flows

Let us consider an initially static plane of fluid particles perpendicular to the

direction of motion of a settling object. As the object translates and moves across

the plane of fluid particles, it displaces them. The volume of fluid between the

envelope of displaced particles and the initial plane after the object has translated an

infinite distance is called the drift volume. The inertia of the drift volume is modeled

as an added mass to the system known as virtual mass. Darwin [9] showed that for

a cylinder and a sphere translating in a homogeneous fluid medium the ratio of the

virtual mass to the mass of the fluid displaced is equal to the ratio of the drift volume
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and the volume of the particle. Although it has been shown [10] that this equality

is valid only for an infinitesimal particle, initially located at an infinite distance from

the reference plane used to determine the drift volume, the existence of a relation

between the drift volume and added mass provides a tool to indirectly quantify the

hydrodynamic force exerted on the object by the fluid. The translating object also

drags in its wake, some amount of the displaced fluid . This phenomenon is called

entrainment. Unlike the case of homogeneous fluids, in stratified fluids, there exists a

difference in fluid density upstream and downstream of the object which also modifies

the hydrodynamic force experienced by the translating object.

Along with displacing and entraining fluid, a translating object also induces a

pressure field in the domain. An isopycnal is defined as a surface of constant fluid

density. In the case of a stratified fluid, apart from the pressure field, the body also

generates local density gradients as it distorts isopycnals. Misalignment between the

induced pressure and density gradients results in generation of vorticity. Equation

1.1 represents the vorticity equation for a stratified fluid where the first two terms

are due to the induced pressure field and the third term, called the baroclinic torque,

is induced by the density gradients [2]

Dω

Dt
= ω.∇u−∇×

(
µ

ρ
∇× ω

)
+
∇ρ
ρ2
×∇p, (1.1)

where ω is the vorticity, u is the velocity vector, D
Dt

is the material derivative, µ is the

viscosity of the fluid, ρ is the density of the fluid, p is the pressure. The discussion

of flow field using the baroclinic vorticity generation in the wake of a settling sphere

in a stratified fluid was first given by [2] in the case of a constant viscosity fluid.

Later, [11] compared the contributions of vorticity and buoyancy effects to the force

acting on the settling spherical particle.

When there are no external disturbances, the mode of mass transport in a strati-

fied fluid, is molecular diffusion from regions of high concentration to regions of low

concentration. The evolution of a system from an initially non-homogeneous state to

a state of homogeneity is called mixing. Stirring is the process by which the system is
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agitated to achieve mixing. Stirring aids molecular diffusion by increasing the concen-

tration gradients and surface area of diffusion. When an object translates through a

stratified fluid, stirs it, through the processes of fluid displacement, fluid entrainment

and generation of vorticity, thus aiding the mass transport. Quantifying the amount

of mixing caused by stirring due to translating bodies is the information necessary to

bring closure to above-mentioned problems.

1.2 Dimensionless parameters of interest

As discussed above, a particle translating in a stratified fluid results in momen-

tum transport due to inertia, buoyancy and viscous effects and mass transport by

enhancing diffusion. The dimensionless parameters characterizing mass and momen-

tum transport in stratified fluids are the Reynolds number, Re, which is a ratio of

inertial and viscous forces, the Froude number, Fr, which is a ratio of inertial and

buoyancy forces and the Prandtl number, Pr which is a ratio of momentum and

thermal diffusion.

In a stably stratified medium, when fluid is vertically displaced, it oscillates. If

the resulting changes in density are small, the Boussinesq approximation is valid. The

Brunt-Väisälä frequency, N , is a measure of the oscillations.

N =

(
−g
ρ0

dρ

dz

) 1
2

, (1.2)

where g is the acceleration due to gravity, ρ0 is the average density of the fluid, dρ
dz

is the stratification density gradient ( < 0 for stable). For a particle of characteristic

length a, moving with speed V in a stratified fluid with kinematic viscosity ν and

thermal diffusivity κ, we have

Re =
aV

ν
, (1.3)

Fr =
V

aN
, (1.4)

Pr =
ν

κ
. (1.5)
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Using Re, Fr and Pr, the flow dynamics can be divided into different regimes

discussed in [1, 8], and summarized in the next two sections.

1.3 Wake of a settling sphere in a linearly stratified fluid

The flow past a sphere in a stratified fluid (finite Fr) is inherently different from

the homogeneous case (Fr =∞). This is because stratification leads to a length scale

ls which is of significance in addition to the length scales in a homogeneous fluid. This

length scale ls is a function of Re, Fr and Pr. The additional forces introduced by

stratification alter the vertical motion of the fluid at this length scale ls and lead to

different flow regimes. Ardekani & Stoker [12] showed that in the absence of inertia

(Re = 0), the classical Stokeslet solution is not sufficient to describe the flow physics in

a stratified fluid and introduced a Stratlet formulation to solve for the flow structure.

The Stratlet captures the effect of the baroclinic torque in the fundamental solution

and introduces toroidal eddies. These eddies are centered along with the sphere and

their length scale ls is ( νκ
N2 )

1
4 . The toroidal eddies continue to exist for a finite Re

(0.05), irrespective of the Fr. The drift volume is high at this low Re due to viscous

effects, which leads to large deflections of the isopycnals. However, at this Re, for

strong stratification (Fr ≤ 1) and large Pr (700), the baroclinic torque acts on the

volume of light fluid dragged by the sphere and results in a structure of positive

upward velocity behind it. This is a consequence of conversion of positive radial

gradient in density in the wake of the sphere into positive vorticity. The structure

thus leads to an asymmetric velocity field about the horizontal axis of the sphere. As

Re is increased, the thickness of the dragged fluid column becomes smaller and the

vertical velocity in the wake of the sphere increases. When Re reaches a value of 100,

in a strongly stratified medium (Fr ≤ 1), a thin upward jet dominates the structure

of the wake (Figure 1.1 wake pattern ‘B’). At the centerline of this jet, the fluid speed

is several times larger than that of sphere itself [2, 11, 13–15]. In the far-field, for

Fr ≤ 1 and Re ≈ 100 , internal lee waves define the flow structure [16]. For a given
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Fig. 1.1. Wake patterns of a sphere settling in a stratified fluid. Figure
adapted from [17] with permission from Cambridge University Press

Re and Fr, increasing the Pr has a thinning effect on the jet and also increases the

upward velocity of the jet [14].

At very low values of Fr (≈ 0.3) and moderate Re (≈ 200), in addition to the jet

observed for Fr ≤ 1, a bell shape structure is observed downstream of the sphere in

both numerics and experiments (Figure 1.1 pattern ‘A’). [13,15,17,18]. The distance

between the rear-stagnation point and the start of the bell shape is a function of the

velocity of the sphere and N alone. In addition, the thickness of the jet in pattern

‘A’, ‘B’ in Figure 1.1 is also independent of Re and Fr and is controlled by N . The

independence of these structures from the size of the sphere and viscosity of the fluid

suggests that they are caused and controlled by internal lee waves in the far field. This

observation in experiments by [17] supports the claim in the numerical work of [13]

that the vertical distance separating lines of same phase in the vicinity of the sphere

is under-predicted by the linear internal wave theory proposed in [16]. Pattern ‘C’
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in Figure 1.1 shows a thicker jet in the wake of the sphere. This jet is different from

the one observed in pattern ‘A’. In pattern ‘C’, high Re (≈ 2000), leads to smaller

density gradients and weaker diffusion. As a result, the sphere continuously deforms

isopycnals dragging most of light fluid along in the jet. In pattern ‘A’, as the sphere

descends, the isopycnals are deformed but stronger diffusion restores the light fluid to

its original height earlier than pattern ‘C’. In other word, in pattern ‘A’, the sphere

cuts through the isopycnals as diffusion restores the light fluid being dragged.

A broad jet is also observed for weak stratification (Fr = 7.2) and moderate Re (=

678), pattern ‘D’. This jet is however unsteady and generates knots periodically with

the generation frequency directly proportional to Fr. Increasing the Fr (≈ 34.7, Re

= 567) introduces meandering to the shape of the jet while the knots are not present,

pattern ‘E’. Before the jet becomes fully turbulent at very high Re (2467, Fr =4.7)

as in pattern ‘G’, weakening the stratification results in a spiralling jet periodically

generating knots as observed in pattern ‘F’ (Re = 589, Fr = 40.6) [17].

1.4 Drag enhancement by stratification

As a consequence of the added toroidal vortex and entrained light fluid in the

wake of a moving sphere, the drag force experienced by it is modified, compared to

the homogeneous case. Torres et al. [13] investigated the effect of Fr on the drag

experienced by a sphere settling at Re = 200 in a linearly stratified fluid through

numerical simulations. As Fr decreased beyond 20, the value below which the ax-

isymmetric wake in a homogeneous environment vanishes and the upward jet appears,

an increase in both pressure and viscous drag was observed. Pressure contours accu-

mulated behind the sphere as Fr decreased resulting in large reduction of pressure

at the rear stagnation point. This low pressure region right behind the sphere is

the reason for increased pressure drag. The low pressure region not only increased

the pressure drag but also increased the vertical velocity of the fluid in the wake of

the sphere. As a result, the velocity boundary layer around the sphere decreased,
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increasing the viscous shear stress and thus the viscous drag. It is also important to

note that the increase in viscous drag due to faster moving fluid around the sphere

was larger than the increase in pressure drag for a given Fr ≤ 20. Yick et al. [19]

studied the effect of both Re and Fr at low Re and found that the drag enhancement

correlated better with viscous Richardson number Ri (the ratio of Re and Fr2) as

suggested by the theoretical work of Zvirin & Chadwick [20]. The range of Re covered

by Yick et al. was 0.05 to 2.1 across experiments and numerics. This complemented

earlier works at high Re. The dependency of the normalized drag coefficient (ratio

of drag coefficient in a stratified fluid and the one at the same Re in a homogeneous

fluid) was found to be of the form 1 + αdRi
β with αd and β varying by 2% and 33%

respectively in numerics from experiments. An increased pressure gradient due to

large deflections of isopycnals at low Re and increased shear stresses due to gener-

ation of baroclinic torque caused by the deflected isopycnals enhanced the pressure

and viscous drag, respectively. The third dimensionless parameter altering the flow

structure, Pr, also modifies the drag experienced by the settling sphere. The ob-

servations reported above correspond to a Pr value of 700 (for salt stratification in

water). As decreasing Pr weakens the characteristic downstream vortex at low Re

and broadens the jet at Re > 1 [14], the normalized drag coefficient decreases with

Pr. The decomposition of the enhanced drag force into a buoyancy induced drag (due

to drift and entrainment of light fluid) and vorticity induced drag (due to changes

in the flow structure) revealed that the latter has a larger effect for density stratified

fluids (Pr = 700). This leads to a conclusion that the baroclinic torque generates

more extra drag than the drift volume [11].

An increased drag force has direct implications on the steady-state settling velocity

of the spheres. The path taken by the sphere to reach the steady state velocity is

also different in a stratified fluid. At Pr = 700, Re = O(102) based on the Fr, the

settling velocity of sphere can either monotonically decelerate, oscillate and decelerate

or levitate. The frequency of oscillation is independent of the Fr and scales with N .

Levitation is observed when the stratification is strong and the difference between
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particle and local isopycnal density is small. An increase in Re increases the distance

taken by the particle to reach its steady state velocity and also increases the Fr up-to

which levitation is observed [2].

1.5 Effect of stratification on particle-particle interactions

When a suspension of particles settles in a stratified fluid, apart from the effects

of stratification, particle-particle interactions and hydrodynamics also affect the set-

tling and flow. Even in a simple situation of a pair of particles, the particle-particle

interactions are greatly modified in the presence of stratification. If the particles ini-

tially start next to each other (perpendicular to the stratification), the particles do

not repel each other and reach a distance of separation. Instead, they are attracted

to each other with their final separation distance decreasing with the stratification

strength (decreasing Fr) and increasing Pr. The mechanism behind this attraction

is the interaction between the downstream jets behind the spheres, which is absent in

homogeneous fluids. The downstream jets interact and form a stronger jet pushing

the fluid upward. Increasing Pr and decreasing Fr have a thinning effect on the jets

of individual spheres, the jet in between the spheres also thins out, pulling the spheres

together. The particles are not attracted to each other as soon as they are released.

Because of larger initial effect, the particles are initially repelled as in a homogeneous

fluid. After reaching a certain depth, once the downstream jets have developed, the

effect of attractive forces due to stratification kicks in. As it can be inferred, the

attraction of the spheres to each other is counteracted by inertia. In other words, for

a fixed Fr and Pr, if the Re is increased, the particles take longer to come in contact

with each other. In a tandem configuration, where the spheres are released one below

the other in the direction of stratification, the spheres undergo drafting, kissing and

tumbling (DKT) in a homogeneous fluid. The sphere downstream is pulled into the

wake of the leading sphere (drafting), the spheres come in contact with each other

(kissing) and they interchange their positions with the leading sphere now trailing
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(tumbling). In the presence of stratification, the interaction is altered. In weak strat-

ification, the extent of tumbling is reduced thus altering the particle positioning and

dynamics after kissing, the duration of which is also observed to increase. For mod-

erate stratification (Fr ≤ 12), DKT transitions to drafting, kissing and separation

where after kissing the particles maintain their positions (leading and trailing parti-

cle) and separate from each other in the direction of the stratification. On further

decreasing the Fr, the kissing stage is eliminated owing to strong buoyancy forces

(because of strong stratification). As a result, the trailing particle reverses direction

of its motion prior to touching the leading particle [21].

The time-average mean particle velocity, Up, of a suspension settling in a stratified

fluid has been observed to reduce in both experiments and numerics [22, 23].The

difference between Up and the volume averaged fluid velocity is called slip velocity.

For a single particle, the drag law proposed in [19] can be used to calculate the ratio

between slip velocity of a settling sphere in a stratified fluid to that in homogeneous

fluids. The ratio is of the form 1 − 10.3Fr−1.7. Doostmohammadi & Ardekani [23]

perform direct numerical simulations of a suspension of 8 spheres settling in a linear

stratified fluid. The slip velocity for the suspension in a linearly stratified fluid is

found to be 1 − 61.1Fr−2.07 times the slip velocity in homogeneous fluid. It can be

concluded from these two empirical relations that stratification has a larger effect

on reducing the slip velocity for a suspension than for an individual particle. This

reduction in slip velocity in suspensions, leads to aggregation and cluster formation.

The radial (angular) pair correlation function, g(r) (g(θ)), is the probability of finding

a second particle at a distance r (angle θ) from the center of a particle of interest. A

peak was observed in g(r) at r = 1.5d and g(r) diminished beyond r = 5d indicating

that the clusters are formed at short distances. Peaks were observed for g(θ) at θ = π
2

from the vertical axis indicating that the particles are mainly aligned in the horizontal

direction within the cluster. For stronger stratification, unstable vertical alignment

of the particles was also observed through unstable peaks at θ = 0 and θ = π. The

horizontal clustering of particles is a consequence of the attraction experienced by
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two particles released next to each other side-wise while the unstable nature of the

vertical clustering is a consequence of the drafting, kissing and separation that a pair

of particles would experience when released in tandem [1,23].

1.6 Energy transport and mixing

In a stratified fluid, the total energy of the system can be divided into background

or reference state potential energy and available potential energy. Background po-

tential energy is defined as the minimum amount of energy in the system attained by

adiabatic rearrangement of fluid in the system to a state of minimum potential energy.

Available potential energy is the amount of energy spent in the adiabatic rearrange-

ment of the system [24]. As a particle or a group of particles moves across a stratified

fluid, the deflection of isopycnals modifies the background potential energy of the sys-

tem. As the displaced fluid relaxes to its initial depth due to buoyancy, it stretches

the material interfaces over which diffusion occurs by altering local perturbations of

the density gradient. This leads to stirring of the system and enhances mixing. By

understanding and quantifying these energy budgets and their modification due to

particle settling, the questions unanswered in the fore-mentioned applications can be

addressed.

Blanchette [25] developed a phase diagram relating the extent of mixing caused

by a suspension of particles settling in temperature stratified air (low Pr) to volume

fraction. The diagram was based on qualitative classification of the temperature

map after time t = 5/N . Important takeaways from the study included evidence for

significant contributions to mixing of air around volcanoes and forest fires by settling

ash particles and water bodies near river beds by swarms of particles typically found.

Wang & Ardekani [4] quantified mixing induced by active suspensions swimmers in a

density stratified fluid with background turbulence. By evaluating mixing efficiency,

diapycnal eddy diffusivity and COX number, the interaction between the squirmers
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and background turbulence and the viscous dissipation of the swimming motions was

found to contribute to local mixing.

1.7 Scope of this thesis

The present work focuses on experimentally quantifying the mixing induced by

settling particles. Solid spheres and cylinders of different densities are used and

experiments are performed for different stratification gradients to cover a range of

Re and Fr. Experiments are performed for individual particles and for a groups

of particles to understand collective effects. The double-tank method is used to

setup a linear stratification [26]. The salt water used is marked using a dye. Hence

stratification in both dye and salt concentration is achieved. This serves as a tool to

track density throughout the experiment.

This thesis is organized in the following order. Chapter 2 introduces the exper-

imental setup, explains the measurement techniques used to extract raw data, the

data processing algorithms used to extract the variables of interest from raw data

and the uncertainty analysis. Chapter 3 presents the results of the experiments and

explains the physical reasoning behind the events and trends observed.
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2. EXPERIMENTAL METHODS

The experiments were performed at Institut de Mécanique des Fluides de Toulouse

(IMFT), France. A schematic of the experimental setup is shown in 2.1. The goal

of the study was to investigate 2D characteristics of particles settling in a confined

environment. A 0.75 m high glass tank with a rectangular section (0.36 m x 0.042 m)

is used. The tank has an opening at the bottom to feed the stratification. A double-

tank method is used to generate the stratification. Two tanks with a capacity of 6

litres each are interconnected at their bases using a horizontal pipe and a valve. The

first tank is filled with heavy water with homogeneously dissolved sodium chloride and

a dye. The second tank is filled with undyed fresh water to the same level as the first

tank. Fluid from the second tank is fed into the experimental tank using a peristaltic

pump keeping the valve between the tanks open and continuously stirring the second

tank using a mechanical stirrer. The feeding process is done at low flow rates to

minimize mixing at the inlet of the experimental tank. Stratification in the density

of fluid and concentration of dye is achieved. A dropping system (Figure 2.2) with a

spring attached gate is designed and used to release the objects. The dropping system

helps releasing multiple objects at the same instant in time in a given experiment and

ensures the object(s) to be released from the same height in different experiments.

The center plates of the dropping system are pulled away from each other to open

the gate and release the objects. The gate is made using a corrosion resistant sheet

of steel for longevity and to minimize contamination of the tank. Small holes are

drilled in the bent portion of the gate to allow any fluid pushed during the opening

of the gate to flow back horizontally. The dropping system is designed and mounted

to the tank such that the objects are immersed below the free surface of the fluid

and any surface bubbles on the objects are eliminated. Opening and closing of the

gate is done slowly to minimize any mixing caused by the release process. Objects
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Fig. 2.2. Dropping system used to release objects

of two different geometries, viz. spheres and cylinders, are used. Polished Airsoft

pellets with a 6 mm diameter are used for the spheres. The standard deviation of

the diameter of the high precision, ultra smooth spheres is ±0.01mm. Spheres of four

different densities are used to achieve different Re for a given density stratification.

The goal of the study is to investigate 2D characteristics of particle settling, thus,

the length of cylinders is chosen such that they remained aligned with y coordinate

during the entire experiment. Description of the objects used in settling experiments

are tabulated in Table 2.1. Once stratification is fed into the experimental tank,

experiments are performed for both single and multiple objects being released. For

experiments involving multiple spheres, the number of spheres is chosen such that

Table 2.1.
Size and density of objects used in settling experiments

Object Diameter, a (mm) Length, L (mm) Density, ρp (kg/m3)

Sphere 6 N/A 1037, 1405, 1805, 2091

Cylinder 10 41.1 1322, 1370

Cylinder 20 39.6 1335
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the total volume of the spheres is equal to the volume of one/two 10 mm diameter

cylinders. A significant delay between experiments ensures disturbances due the

preceding settling experiment have dissipated. This allows using the same density

stratification for multiple experiments. The delay between experiments is at least

5 min for individual spheres, at least 15 min for suspensions of spheres, single and

multiple cylinder experiments.

2.1 Flow visualization

The dye dissolved in the heaviest fluid is used as a tool to quantify density. A

digital camera along with a powerful back-light is used to capture the settling events.

The camera and back-light are placed as shown in Figure 2.1. The camera used has a

black and white scientific complementary metaloxidesemiconductor (sCMOS) sensor

Fig. 2.3. Length calibration grid used with circles identified
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with 2560 x 2160 pixels with each pixel saving 16 bits of data. The camera is placed

approximately 3 m from the tank to minimize parallax error. All recordings are done

with an exposure time of 2 ms at a frame rate of 49.997 Hz. A plumb line is recorded

and the camera tripod adjusted such that the longer edge of sensor is aligned with

gravity. The intensity of light that reaches the sensor of the camera is an average of

the events along the thickness of the tank. This means, the measurements performed

are 2D observations of the events in the tank. The field of view of the camera is

a 18.88 cm x 15.88 cm window, at least 30 cm below the point of release of the

objects and 15 cm above the base of the tank. This translates to 50 diameters and 25

diameters respectively for the spheres and 30 (15) diameters and 15 (7.5) diameters

for the 1 (2) cm cylinders A teleconverter is used to double the focal length of the

lens and the focus is adjusted such that an object is in-focus both at the front and

and rear face of the tank. In order to quantify the length of each pixel, a 30 x 30

grid of 2 mm diameter circles is placed inside the experiment tank while filled with

water. An average of 256 images is captured using the camera. By using the function

imfindcircles in MATLAB, the diameter of each circle in the grid is measured in pixel

units. The average pixel diameter of all the circles is used to convert from pixels to

length units. The length of a pixel varies by 0.2 µm over the depth of the tank, the

(a) Grid at back face of tank (b) Grid at front face of tank

Fig. 2.4. Histogram of radius of the circles identified
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average is used as the pixel-length scale for all calculations. A sample image used to

perform this operation is shown in Figure 2.3 and the distribution of radii calculated

is shown in Figure 2.4.

A calibration is performed to quantify density from the images captured. In order

to do so, the fresh water and dyed heavy water used to generate the stratification are

prepared in large quantities. For the purpose of calibration, at least five homogeneous

mixtures of fresh water and dyed water in different ratios are prepared. The density of

each mixture prepared is measured using an Anton Paar density meter. Images of the

homogeneous mixtures of different densities ranging from fresh water to the heaviest

water are captured using the camera back-light setup. Using this set of images, Beer

Lambert’s law is used to correlate the intensity of light sensed by the camera to the

density of the fluid (Equation 2.1). For the concentration of dye used, a quadratic fit

gives a good correlation.

ln

(
I

I0

)
= A(ρ− ρ0)2 +B(ρ− ρ0) + C (2.1)

where ρ is the unknown density of a pixel of interest, ρ0 is the density of fresh water

used during calibration, I is the intensity of pixel of interest, I0 is the intensity of

the pixel of interest during calibration with fresh water and A,B,C are coefficients

Fig. 2.5. Quadratic fit used to calibrate density as a function of intensity
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of the quadratic fit determined by calibration. An example of this calibration law is

shown in Figure 2.5.

2.2 Temperature-density probe

Apart from using the dye to measure density, a MicroScale Conductivity Temper-

ature (MSCT) probe is used (Figure 2.6). The probe consists of a rod mounted with

two electrodes at its bottom tip. One of the electrodes is a thermocouple and the

other electrode provides a voltage output based on the electrical conductivity of the

surrounding medium. As the electrical conductivity of water is directly proportional

to the density of ions present in it, the output of this electrode can be used as a

measure of density. The voltage gain of the conductivity electrode is adjusted to get

reliable output for the entire range of densities to be measured in the experimental

tank. By preparing solutions of known density in the range of interest, a calibration

curve is generated for voltage and density and voltage and temperature. The probe

is mounted to a motor actuated linear rail such that the probe can move inside the

experimental tank and can measure density as a function of depth (Figure 2.1). The

position of the linear rail can be measured continuously with a least count of 10−6

Fig. 2.6. MicroScale Conductivity Temperature probe
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mm. By using an electronic circuit, synchronized recording of the position of the

rail and electrode voltages is carried out. From the voltage output, using the voltage

calibrations, the temperature and density of the fluid is determined as a function of

depth. This density profile is used to estimate the amount of mixing induced.

2.3 Data processing

Rewriting Equation 2.1 in terms of density, we have

ρ = ρ0 +

(
−B ±

√
B2 − 4A(C − ln I + ln I0)

2A

)
(2.2)

Equation 2.2 is used to evaluate density from all images captured. The term in the

exponential is the quadratic root of Equation 2.1. The smaller value of the two roots

gives a physically acceptable value for density. Figure 2.7 shows the intensity as

sensed by the camera with homogeneous undyed fresh water in the experiment tank.

As it can be seen, the back-light used does not uniformly illuminate the field of view.

To account for non-uniformity of the back-light, the calibration images are divided

into overlapping grids and calibration coefficients are determined for each grid.

Fig. 2.7. Non-uniformity of the back-light
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Figure 2.8 shows the spatial variation in the calibration coefficients A,B and

C over the domain and the square of the residue for the quadratic calibration fit.

Another observation from Figure 2.7 is that near the edges of the image, strong

gradients in light intensity are present. In a strongly stratified fluid, disturbances

by the settling objects will cause strong local density gradients. The gradients due

to non-uniformity along with gradients in intensity due to change in local density

optically limit the reliability of measurements. In order to account for this optical

limit, density data near the edges of the image is discarded. The width of the discarded

region is 5 calibration window lengths and it is marked in Figure 2.8. Figure 2.9 shows

the spatial variation in calibration coefficients for another set of experiments with a

(a) Calibration coefficient A (b) Calibration coefficient B

(c) Calibration coefficient C (d) R2

Fig. 2.8. Spatial variation of calibration law
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different stratification. The maps being similar to those in Figure 2.8 confirms that the

spatial variation is indeed caused due to the non-uniformity of the back-light. When

dividing the image into calibration windows, a 50% overlap in both x and z direction

is used to eliminate discontinuity in data across grid boundaries. In regions where

multiple calibration laws are valid due to overlap in the calibration windows, average

of the density evaluated using all the valid laws is used. This process is illustrated in

Figure 2.10. A sample image is taken and a simple division into calibration windows

is considered. The size of all calibration windows in the figure is a quarter of the size

of the image. The density at each pixel in regions numbered 1, 4, 13 and 16 is equal

to the density evaluated using calibration laws I, III, VII and IX, respectively. In

(a) Calibration coefficient A (b) Calibration coefficient B

(c) Calibration coefficient C (d) R2

Fig. 2.9. Spatial variation of calibration law - Calibration 2
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Fig. 2.10. Density evaluation with overlapping calibration windows

regions 2, 3, 5, 8, 9, 12, 14 and 15 the density at each pixel is equal to the average

of density calculated using calibration laws (I,II), (II,III), (I,IV), (III,VI), (IV,VII),

(VI,IX), (VII,VIII) and (VIII,IX). Finally, the average of density calculated using

calibration laws (I,II,IV,V), (II,II,V,VI), (IV,V,VII,VIII) and (V,VI,VIII,IX) is used

in regions 6, 7, 10 and 11, respectively.

2.4 Uncertainty analysis

The uncertainty in density calculations can be attributed to three sources, noise

in the raw images captured by the camera, uncertainty in the density meter used to

measure density during density-intensity calibration and the uncertainty associated

with the coefficients determined by the quadratic fit. The density meter used to

measure ρ0 was a digital device with a least count of 0.1 kg/m3, thus giving an

absolute uncertainty ∆ρ0 = 0.1kg/m3. All experiments were conducted in a dark

environment with the back-light being the only source of illumination. To quantify the

uncertainty due to camera noise, images were captured in the same dark environment

as used during the experiments with the back-light turned OFF. As there is no other

source of illumination, any value read by the sensor of the camera would be because
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Fig. 2.11. Camera noise

of its own noise and other environmental noise (if any) present. Figure 2.11 is the

average of 256 images taken with the back-light OFF. The maximum intensity in

the image (Imax) is equal to 325.84. Imax is the absolute uncertainty associated with

the intensity of any pixel, i.e., ∆I = ∆I0 = 325.84. When concentration of dye

used is maximum, the pixel intensity sensed by the camera with the back-light ON

would correspond to the minimum value of signal in any experiment. This value of

pixel intensity was 8627.4 giving a maximum ∆I/I of 0.0377. MATLAB was used

to do all data processing and analysis. The quadratic fit for the calibration laws

was generated using the in-built function polyfit. Outputs of this function are the

coefficients of the fit (A,B and C), the Vandermonde matrix from the least square

fitting of the polynomial, degrees of freedom and norm of the residue. Using this

data, the standard deviation in A,B and C is calculated.

In any given image, because of the non-uniformity in the back-light and because of

the density stratification, I, and I0 vary with x and z. A,B and C also vary spatially

as a consequence of spatially varying calibration laws. Hence, uncertainty in density

is a function of x and z. This uncertainty is evaluated and used to separate noise from

data while evaluating density disturbance caused by settling objects and for calculat-
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ing parameters derived from density. Further details on uncertainty evaluation can

be found in Appendix A. A sample image, the calculated density and its uncertainty

are shown in Figure 2.12.

(a) Raw image (b) Density field

(c) Density change (d) Absolute uncertainty ∆ρ

Fig. 2.12. Density field and associated uncertainty
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3. RESULTS AND DISCUSSION

Experiments were performed for two different stratification strengths. For each strat-

ification strength, multiple sets of experiments were performed. A particle(s) was

released using the dropping system (Figure 2.2) and the events were recorded. By

allowing sufficient delay, the next experiment was performed without changing the

stratification. For each experiment, at least 25 images were recorded before the par-

ticle(s) entered the field of view to characterize the initial density field in the tank.

The initial density field was averaged along the x direction to get the initial ρ(z) for

the image. The slope dρ/dz and mean ρ0 were used to calculate the Brunt-Väisälä

frequency, N from Equation 1.2. The initial value of N before any experiment per-

formed was 0.37 s−1 and 1.22 s−1 for the two stratification strengths. The camera

recordings are 2D observations and the spheres and cylinders are used in experiments.

The cylinders are released such that their axis is aligned with the y direction. As a

result, all particles were captured as circles in the images recorded. The images are

processed using the function imfindcircles in MATLAB and the (x, z) location of

the centers of each particle is identified. A predefined intensity threshold was used

to separate the solid particles from the fluid in the image and by using the known

length of a pixel evaluated in Section 2.1, bounds were provided for the size of the

circles. Using the (x, z) location of each of the particle’s center, tracking features of

the open-source software prana were used to reconstruct the trajectory of the particle

and evaluate its speed. Using the time-averaged value of the speed, the Re and Fr for

the experiments are calculated (Equation 1.3, 1.4). Figure 3.1 shows the parameter

space for the study. The points in the figure correspond to the values of Re and Fr

based on the experiments with a single particle. The experiments with one released

sphere were repeated 5 times and those corresponding to a cylinder were repeated

thrice and the average Re and Fr are shown.
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Fig. 3.1. Experiment parameter space

3.1 Particle velocity

The density of the fluid increases with depth in the experiment tank. As a result,

the buoyancy force causing the particle to settle decreases with depth. Thus, the

particle continuously decelerates as it settles. The ratio between the velocity with

which a sphere enters the field of view and the velocity of the particle at a depth z is

denoted by Ur. Figure 3.2 shows the evolution of Ur as the particle settles through

the image. As the velocity of the spheres decreases linearly with z, it can be assumed

Fig. 3.2. Velocity reduction of a single sphere
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Fig. 3.3. Velocity reduction of a single sphere

that the particle reached quasi-steady state when it entered the field of view. As

Fr decreases, the relative strength of buoyancy over inertia increases. In Figure

3.3, the ratio of the velocity of the particle at the exit and entrance of the field of

view is plotted against Fr. Ur is found to be a logarithmic function of Fr given by

0.0682 lnFr + 0.6631 (29 ≤ Fr ≤ 196)

When groups of particles are released, the time-average mean particle velocity

decreases. Figure 3.4 shows the ratio of the time-average mean particle velocity of Np

Fig. 3.4. Ratio of time-average mean particle velocity
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number of spheres (Up) to the velocity of a single sphere (Us) settling in the tank with

same initial N . The values plotted are an average of three repetitions of the experi-

ment. It is observed that as Np increased, Up decreased in all the experiments. This

reduction in Up with increasing number of particles is consistent with the observations

in [22,23].

3.2 Density perturbations

3.2.1 Single particle

As it is seen in the previous section, stratification affects the transport of particles.

The particles also affect the stratification. The particles drag volume of light fluid in

their wake, deflect the isopycnals and perturb the density field. Figures 3.3 and 3.4

represent the maps of the disturbance in density field caused by a single sphere and a

single cylinder, respectively. The maps are contour plots of the difference between the

instantaneous density field and the initial density field. For the spheres, three distinct

patterns are observed. In Figure 3.5(a), a jet of light fluid appears to be dragged by

the sphere in its wake as it settles. The jet has a spiral nature, similar to pattern ‘E’

in [17] (Figure 1.1) for Re = 491 and Fr = 31. In Figure 3.5(b), another spiralling

jet is observed with knots being generated in the jet. This transition from a stable

jet to a jet with knots happens as the Fr increases and the effect of stratification is

reduced. A similar observation is made in [17] for Re O(100) as the wake pattern

changes from ‘E’ to ‘F’ in Figure 1.1.

The Re in Figures 3.5(c) to 3.5(f) is O(1000) and Fr increases from 59 to 196.

The wake is fully turbulent in all these cases with stratification having little to no

effect on the nature of the pattern similar to ‘G’ in Fig. 1.1. This is because the

buoyancy force is relatively weak when compared to inertia. In all the wake patterns

for the sphere, there is a region just behind the sphere where the amount of density

disturbance is large relative to other regions downstream. This is the signature of

weak stratification where buoyancy forces are not large enough to restore the light
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(a) Re=491,Fr=31 (b) Re=585,Fr=45 (c) Re=2257,Fr=59

(d) Re=3265,Fr=93 (e) Re=3907,Fr=104 (f) Re=2598,Fr=196

Fig. 3.5. Density disturbance field caused by a single settling sphere

fluid to its original height. The dominating inertial forces carry the light fluid in the

wake of the sphere and isopycnals are continuously deformed by the settling particle.
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(a) Re=2332,Fr=24 (b) Re=2716,Fr=28 (c) Re=7524,Fr=18

Fig. 3.6. Density disturbance field caused by a single settling cylinder

Figure 3.6 shows the wake patterns observed for three different cylinders settling

in a fluid with a similar initial density gradient. The dark blue region in the wake of

the cylinder corresponds to the light fluid dragged by the cylinder in its wake as it

settles. The cylinder sheds this light fluid in the form of vortices as it settles in the

stratification. The size of the dark region behind the particle and the magnitude of

the density disturbance increases with Re. This indicates that as the effect of inertia

increases, the light fluid dragged by the cylinder is trapped in its wake to larger depths

before being shed by the cylinder.

3.2.2 Suspension of particles

Figures 3.7 to 3.11 show the disturbance to the initial stratification caused by

suspension of spheres. Each figure represents the disturbance caused by a suspension

of spheres with the same ρp to the same initial stratification. The number of spheres,

Np, in the suspension is different in the top and bottom row. The left column of each

figure shows the disturbance in the density field at the instant when all the spheres
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(a) Np = 20, t = 0 (b) Np = 20, t = 5/N

(c) Np = 40, t = 0 (d) Np = 40, t = 5/N

Fig. 3.7. Density disturbance field, N=0.37 s−1, ρp=1037 kg/m3

have just passed the field of view and the right column shows the disturbance after a

time t = 5/N .

The strength of the initial stratification was the same in Figures 3.7 and 3.8 with

the density of the spheres being 1037 kg/m3 and 1405 kg/m3, respectively. The scale

used in the colorbars is consistent in these figures to allow for a direct comparison

of the disturbance caused. Figures 3.5(b) and 3.5(f) are the plots corresponding to

the disturbance caused by the same sphere (Np = 1). As Np of spheres increases,

the area of region with detectable disturbed density at t = 0 after the spheres have
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(a) Np = 20, t = 0 (b) Np = 20, t = 5/N

(c) Np = 40, t = 0 (d) Np = 40, t = 5/N

Fig. 3.8. Density disturbance field, N=0.37 s−1, ρp=1405 kg/m3

passed the field of view increases (left column in the figures). The disturbed area is an

indication of the volume of light fluid dragged by the spheres. It can thus be inferred

from these figures that the volume of light fluid dragged by the particles increases

with Np. This is primarily because of the total volume of the objects causing the

disturbance increases with Np. The magnitude of the disturbance increases with the

density of the sphere. Also, as the magnitude of the density disturbance increases

with Re and Fr, it can be inferred that the light fluid is carried to longer depths. The

extent of restoration of the stratification due to buoyancy forces after 5 characteristic
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(a) Np = 28, t = 0 (b) Np = 28, t = 5/N

(c) Np = 56, t = 0 (d) Np = 56, t = 5/N

Fig. 3.9. Density disturbance field, N=1.22 s−1, ρp=1405 kg/m3

time periods can be understood from the right column of the figures. The disturbance

in the system at this instant increases with Np and Re and Fr. This is a consequence

of larger volumes of light fluid being dragged in experiments with higher Np and the

magnitude of the disturbances being higher for higher Re and Fr.

Similar observations are made in Figures 3.9 to 3.11. These figures correspond to

the experiments with the initial N = 1.22 s−1. The same stratification is used in the

cylinder experiments. Hence, the number of spheres, Np for this set of experiments
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(a) Np = 28, t = 0 (b) Np = 28, t = 5/N

(c) Np = 56, t = 0 (d) Np = 56, t = 5/N

Fig. 3.10. Density disturbance field, N=1.22 s−1, ρp=1805 kg/m3

was chosen such that the total volume of the spheres was an integer multiple of the

solid volume of the 1 cm cylinders (Figures 3.6(a) and 3.6(b)).

3.3 Perturbed volume

Particles settling in the stratified fluid transfer a certain amount of kinetic energy

and drag the light fluid. After the particles have settled, the light fluid relaxes to

its neutrally buoyant depth. In order to understand this process, a perturbed fluid
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(a) Np = 28, t = 0 (b) Np = 28, t = 5/N

(c) Np = 56, t = 0 (d) Np = 56, t = 5/N

Fig. 3.11. Density disturbance field, N=1.22 s−1, ρp=2091 kg/m3

fraction (α) is defined. To calculate α at a given instant, the difference between

instantaneous density field and the initial density field is calculated. α is then cal-

culated by taking the ratio of the number of pixels with a non-zero value for the

density difference to the total number of pixels in the image. The evolution of α after

the particles have passed the field of view is plotted in Figures 3.12 and 3.14 for the

experiments with spheres and cylinders, respectively.

Relaxation of the disturbance caused by the spheres is similar to the damped

oscillation of a spring-mass system. α initially increases, reaches a maximum and
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(a) Np = 20, N=0.37 s−1 (b) Np = 40, N=0.37 s−1

(c) Np = 28, N=1.22 s−1 (d) Np = 56, N=1.22 s−1

Fig. 3.12. Area perturbed by suspension of settling spheres

then decreases to a minimum. α again increases but to a value less than the previous

peak and then decreases. This cycle continues with the peak decreasing in magnitude

in each cycle before reducing to zero as the fluid in the tank becomes stable again.

The time period of these oscillations is independent of Re and Fr. For both the

stratifications, the disturbance relaxes with a time period of 3.5/N . The first peak

in the relaxation curve corresponds to the maximum initial disturbed area. The

magnitude of this peak increases as Fr increases irrespective of N or Np. It can thus

be inferred that the spheres are able to disturb larger volumes of fluid with decreasing

effect of stratification.
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Fig. 3.13. Ratio of maximum perturbed area to the one corresponding
to single particle as a function of Np

In order to understand the effect of number of particles, fraction of the area of

perturbed fluid to the one for a single sphere is plotted for different Np number of

particles. For Np = 20 and Np = 28, the value of αNp is not equal to α1 times Np.

However, for a given Re and Fr, αNp for Np = 40 (56) is twice the αNp for Np = 20

(28).

(a) Np = 1 (b) Np = 2

Fig. 3.14. Area perturbed by cylinder(s), d=1 cm and N=1.22 s−1
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The relaxation of the disturbance generated by the cylinders is different from that

of the suspension of spheres. It is to be noted that a direct comparison in terms of

solid volume disturbing the fluid can be made between Figures 3.14(a), 3.12(c) and

Figures 3.14(b), 3.12(d). The spheres are able to disturb larger volumes of fluid when

compared to the cylinders which can be seen from the magnitude of first peaks in the

figures. Also, it can be seen from Figure 3.14 that the second peak in the relaxation

of the disturbance is almost non-existent for the cylinders. This is because the nature

of disturbance generated by the cylinders is different from the disturbance created

by the spheres. The cylinders drag volumes of light fluid in their wake and shed the

light fluid as vortices as they settle while the nature of the disturbance created by the

spheres is displacement of volumes of light fluid. The vortices of light fluid relax at

the depth they are shed by the cylinder resulting in local redistribution of the light

fluid followed by local relaxation. This is illustrated in Figure 3.15. Each frame in

the figure are contours of the density disturbance generated by a cylinder and are

separated by 1/N s.

(a) t=1/N (b) t=2/N (c) t=3/N

Fig. 3.15. Relaxation of vortices shed by cylinders Re = 2761 Fr = 29.6
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3.4 Potential energy and mixing

Settling spheres and cylinders push the initially stable stratification to a locally

unstable state. The resulting inertial and buoyancy forces cause motion and redistri-

bution of fluid in the tank. This leads to material surfaces of the fluid being stretched

causing an effect similar to stirring. The stirred fluid may completely reverse to its

original stable state through adiabatic processes or the restoration process could re-

sult in diabatic mixing of the tank. In order to quantify the extent of mixing induced

by the stirring, energetics associated with the flow are analyzed. The total potential

energy in the system, Et, is divided into background potential energy Eb and the

available potential energy Ea. Eb is the energy the system would have if all pack-

ets of fluid are rearranged by adiabatic sorting such that the system is reduced to a

state of minimum potential energy. Ea is the amount of energy spent to adiabatically

rearrange the system to this state. From this definition, when the density stratifica-

tion is statically stable, the value of Ea will be zero and Eb = Et. In other words,

in the absence of density perturbations, the system is at its reference state and all

the energy is in the form of background potential energy Eb. In the context of this

study, Ea can also be interpreted as the portion of Et in the system that is available

for mixing due to the disturbances in the density field caused by the particles. The

density disturbances are restored by buoyancy and during the restoration, Ea is the

energy available for any form of heat or mass transfer in the system.

The density evaluated using Equation 2.2 is used to calculate the energies. Tseng

& Ferziger [27] have shown that the process of evaluating a probability density func-

tion (p.d.f.) of the density of the system is equivalent to adiabatically rearranging the

packets of fluid. This argument is then used to establish that, if ρ(z) represents the

density profile of the system, the potential energy associated with a sorted density

profile ρ(Zr) calculated by evaluating the p.d.f. of ρ(z) is equal to the Eb of the

system. Note that Zr is the vertical location of a packet of fluid with density ρ after
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adiabatic sorting. Et is the potential energy of the system evaluated using the actual

density profile ρ(z).

Let ρ(x, z), H and Ac represent the density field in a given image, the height of

the imaging window and the area of cross-section of the tank, respectively. The image

is divided into 40 vertical strips along the x direction. This is done to account for the

effect of a crests and troughs in ρ(x) at a given z. A ρ(z) is thus obtained in each

strip by averaging ρ(x, z) along x in the domain. Eb and Et are calculated in each

strip and the sum of all Eb and Et is taken as the Eb and Et of the system at that

instant. The total potential energy, Et is calculated as,

Et =
Nx∑
n=1

(
gAc

∫ H

0

ρ(z)zdz

)
(3.1)

where Nx is the number of vertical strips. To obtain the sorted density profile ρ(Zr)

for a given strip, density calculated in each pixel in the strip is put into bins starting

from ρm to ρM where ρm and ρM are the minimum and value of density in the strip.

The number of pixels in each bin is then normalized using the total number of pixels

in the strip to give the p.d.f. P (ρ̃). P (ρ̃)dρ̃ is the probability of getting a pixel

with density ρ between ρ̃ and ρ̃ + dρ̃ in a fluid layer of thickness dZr and ρ̃ is the

independent variable in the probability analysis of ρ. The volume V occupied by the

fluid layer of thickness dZr can be related to P (ρ̃)dρ̃ as,

AcdZr|ρ = V P (ρ̃)dρ̃|ρ (3.2)

The sorted height Zr for a fluid layer of density ρ can now be calculated from the

p.d.f. by integrating Equation 3.2 from ρ to ρM .

Zr(ρ) = H

∫ ρM

ρ

P (ρ̃)dρ̃ (3.3)

Zr(ρ) can be rewritten as ρ(Zr), the sorted density profile. A sample unsorted and

sorted density profile is shown in Figure 3.16. Eb in the strip is the potential energy

calculated using this sorted density profile. The total background potential energy of

the fluid in the image is thus given by,

Eb =
Nx∑
n=1

gAs

∫ H

0

ρZr(ρ)dZr (3.4)
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Fig. 3.16. Sample sorted and unsorted density profile

The available potential energy is calculated from Et and Eb as,

Ea = Et − Eb (3.5)

The amount of total potential energy of the fluid converted to energy available for

diabatic mixing due to the disturbances generated by the particles is thus evaluated.

Figures 3.17 and 3.18 show the evolution of Ea after the particle(s) have passed the

field of view. For the spheres, an oscillatory pattern similar to the evolution of α is

observed. Ea generated in the system increases with decreasing Fr as the spheres

disturb larger volumes of the fluid and the buoyancy forces resisting the disturbances

are relatively weak. The change in Ea though does not double from Np = 28 to Np

= 56. This is because Ea depends not only on the volume of fluid disturbed by the

particles but also on the density of the disturbed volume. In Figures 3.7 - 3.11 it is

seen that the magnitude of disturbance in the density field at the instant the spheres

have left the field of view is 3 - 5% of the difference between the density at the top

and bottom layers of fluid in the stratification while the same is 10 - 15% for the

cylinders. As a result, although the cylinder does not disturb as much volume as the

spheres, Ea induced by the cylinders is higher than that of the spheres (same solid
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(a) Np = 20, N=0.37 s−1 (b) Np = 40, N=0.37 s−1

(c) Np = 28, N=1.22 s−1 (d) Np = 56, N=1.22 s−1

Fig. 3.17. Evolution of Ea for spheres

volume displaced by both geometries). The magnitude of the second peak in the

evolution of Ea is also relatively significant compared to the first peak in Ea (Figure

3.18) while the relative magnitude of the second peak for α was very low (Figure

3.14). This is again a consequence of light fluid being dragged by the cylinder in its

wake to longer depths. The transient dynamics of α and Ea provide insight to the

contrasting mechanisms of generation of Ea in the system. While the spheres disturb

large volumes of fluid, as the magnitude of the disturbances is smaller, Ea generated

is smaller than the cylinders which create large magnitude disturbances in smaller

volumes.
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(a) Np = 1 (b) Np = 2

Fig. 3.18. Evolution of Ea for cylinder(s), d=1 cm N=1.22 s−1

The Ea generated in the system by the particles continues to change as the dis-

placed light fluid oscillates and decreases to zero as the system relaxes to a stable

state. A portion of Ea could be used by the fluid for irreversible mixing. In order to

quantify the irreversible changes to the system caused by the particles, the difference

between the total potential energy of the system before and after the experiment is

evaluated and an efficiency η is defined (3.6). η is the ratio of the irreversible change

Fig. 3.19. η as a function of Np for spheres
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in potential energy caused by the particles to the total potential energy in the system

before the experiment.

η =
Et(t =∞)− Et(t = 0)

Et(t = 0)
(3.6)

Fig. 3.20. Variation of η with αmax for suspension of spheres

Fig. 3.21. Variation of η with αmax for spheres and cylinders

Figure 3.19 shows the variation of η for spheres with Np. The ratio of change in

Et in the system increases linearly with Np in all the cases. For any given Re and Fr,

η linearly increases with αmax (Figure 3.20). The volume disturbed by spheres thus

correlates with the amount of energy generated by the spheres which can be used for
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mixing and also correlates with the irreversible change of total potential energy in

the system. For cylinders with the same solid volume as spheres, the amount of Ea

generated is higher even though αmax is lower than the spheres. This can be seen

in Figure 3.21 where it is observed that η increases with αmax at a higher rate for

cylinders than for spheres.
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4. SUMMARY

Transport of particles in a stratified fluid is encountered in multiple environmental and

industrial systems. Understanding the effect of stratification on transport of particles

and the effect of particles on stratification is key to understanding these systems.

Interaction of two different geometries of particles with stratification is studied in

this work. It has been found that as the number of particles in a suspension of

spheres increases, the time-average mean particle velocity reduces. The volume of

fluid disturbed by the suspension increases with number of particles and Re and

Fr. The volume of fluid dragged by the spheres oscillates and most of the available

potential energy generated is reversibly returned to the system. The irreversible

effects of the suspension of spheres are directly proportional to the volume of fluid

disturbed. Hence, it can be said that for high Re and Fr, drift is a possible mechanism

of mixing caused by suspensions of spheres. The disturbance caused by a cylinder is

fundamentally different. The volume of fluid disturbed by the cylinder is less than

that of the spheres. The light fluid dragged by the cylinders is trapped in the wake of

the cylinder up-to larger depths and is released as vortices into the bulk fluid farther

away from its initial location. As a result, the cylinder has larger irreversible effects

to the energetics of the system. This is primarily because the rotational vortices of

light fluid shed by the cylinder are more efficient than the oscillatory disturbance

generated by spheres. It has been shown in the literature that the volume of fluid

drifted by a particle increases with decreasing Re. As mixing is found to scale with

the volume of fluid drifted by spheres, further investigation of these effects at low Re

and Fr could provide further insight into stratified systems of fluid. Also, there has

been little work done to characterize the wake generated by a cylinder for different

values of Fr. Doing so could be a possible supplement to this work as nature of the
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wake generated by cylinders plays an important role in stirring and mixing of the

fluid.
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A. UNCERTAINTY CALCULATIONS

If ∂ indicates partial derivative and ∆ρ0, ∆A, ∆B, ∆C, ∆I0 and ∆I are the absolute

uncertainties in ρ0A,B, C, I0 and I respectively, the relative uncertainty in density,

∆ρ/ρ can be estimated by applying Taylor’s formula for uncertainty on Equation 2.2.

∆ρ

ρ
=

{(
∂ρ

∂ρ0

)2(
∆ρ0
ρ

)2

+

(
∂ρ

∂I0

)2(
∆I0
ρ

)2

+

(
∂ρ

∂I

)2(
∆I

ρ

)2

+(
∂ρ

∂A

)2(
∆A

ρ

)2

+

(
∂ρ

∂B

)2(
∆B

ρ

)2

+

(
∂ρ

∂C

)2(
∆C

ρ

)2}0.5

(A.1)

Evaluating individual terms in Equation A.1 using Equation 2.2,

∂ρ

∂ρ0
= 1 (A.2)

∂ρ

∂I0
=

1

I0R̃
(A.3)

∂ρ

∂I
=
−1

IR̃
(A.4)

∂ρ

∂A
=

ln (I0)− ln (I) + C

AR̃
− −B − R̃

2A2
(A.5)

∂ρ

∂B
=
−B − R̃

2AR̃
(A.6)

∂ρ

∂C
=

1

R̃
(A.7)

where R̃ is
(√

B2 − 4A (C − ln I + ln I0)
)

. The absolute uncertainty in ρ is evaluated

by multiplying ∆ρ/ρ with the evaluated density field from Equation 2.2


