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ABSTRACT

Tang, Ziting Ph.D., Purdue University, December 2019. Robust A-optimal Subsampling
for Massive Data Robust Linear Regression. Major Professors: Fei Tan, Hanxiang Peng.

This thesis is concerned with massive data analysis via robust A-optimally efficient
non-uniform subsampling. Motivated by the fact that massive data often contain outliers
and that uniform sampling is not efficient, we give numerous sampling distributions by
minimizing the sum of the component variances of the subsampling estimate. And these
sampling distributions are robust against outliers. Massive data pose two computational
bottlenecks. Namely, data exceed a computer’s storage space, and computation requires
too long waiting time. The two bottle necks can be simultaneously addressed by selecting
a subsample as a surrogate for the full sample and completing the data analysis. We develop
our theory in a typical setting for robust linear regression in which the estimating functions
are not differentiable. For an arbitrary sampling distribution, we establish consistency for
the subsampling estimate for both fixed and growing dimension( as high dimensionality
is common in massive data). We prove asymptotic normality for fixed dimension. We
discuss the A-optimal scoring method for fast computing. We conduct large simulations to
evaluate the numerical performance of our proposed A-optimal sampling distribution. Real

data applications are also performed.



1. INTRODUCTION

In the past years, there is a huge growth in sample size and dimensions of the data which is
called big data. Big data bring not only opportunities but also challenges to statisticians and
data scientists. Specifically, big data has more information to be used to discover population
patterns compared to small or medium-size data. But big data can have storage bottleneck,
high computational cost and statistical challenges because of the exceptionally large sample
size and very high dimensionality. Fan, et al. (2014) described about the impact of big data
on statistical methods and computing architectures in details. The challenges caused by
two features of big data can result in misleading statistical inferences and conclusions.

In big data analysis, the inaccuracy of an estimator arises mainly from random error,
computing error and rounding error. Problems also will arise for large data set when we
use bootstrap to estimate asymptotic distribution of the estimators. Due to the large sample
size, the computation cost is large. It will be difficult and needs longer time to get the full
sample estimates, especially to obtain thousands of estimates when the bootstrap method
is used. It becomes more difficult for high dimensional data set. Subsampling method
is one solution to solve the problems in big data analysis. It reduces substantially the
sample sizes, improves errors and speeds up computation. Among the subsampling methods
we have known, the uniform sampling is commonly used due to its simplicity and fast
computation. Peng and Tan (2018) studied about uniform subsampling in a linear model.
However, uniform sampling is not efficient in extracting information in data and sampling
important observations. There are plenty of non-uniform subsampling methods can be
found in the literature. Ma, et al. (2015) derived a non-uniform subsampling distribution
by minimizing the trace of central part of a specific variance-covariance matrix. Peng and
Tan (2019) derived the A-optimal probability distribution in linear regression and discussed

the asymptotic expansion and normality of the subsampling estimator.



Another problem in big data is outliers. This is because outliers are common in mas-
sive data. For uniform sampling, all the data points including outliers in the sample have
the same chance to be selected. This will have a great effect on the estimates in the lin-
ear regression. Many existing optimal sampling distributions are extremely not robust.
Even a very small amount of outliers in data will ruin the subsampling estimates based
on A-optimal on non-roubst sampling distributions. This is because A-optimality seeks
“outliers” in the spirity of the Design of Experiements. For example, Ma, et al. (2015)
derived a non-uniform subsampling distribution which sample influential data points with
high probabilities. Moreover, there is problem about the outlier proportions in the boot-
strap samples. They may have the same or even higher percentage of outliers than that in
the original dataset. As a result, the estimates calculated based on the bootstrap samples
will be affected by the outliers.Singh (1998) discussed bootstrap quantiles and calculated
its breakdown point which is very low for some robust estimates. Salibian-Barrera and Za-
mar (2002) introduced how to approximate the distribution of weighted estimates in robust
linear regression by applying a reweighted representation of the estimates. The decreas-
ing functions are used as weights to deal with outliers in the data. They obtained higher
breakdown points than those calculated from the bootstrap.

In linear regression, the ordinary least squares estimator is the optimal regression es-
timator under a set of assumptions. But in regression analysis, OLS estimates have bad
performance when the error distribution is not normally distributed or if there exist outliers.
That means, the least squares method is not appropriate on data sets containing outliers. As
a result, we can get very misleading results. So, when the linear regression can’t perform
well on the data with outliers, we will use robust linear regression to deal with this prob-
lem. Three methods (M-estimation, S-estimation and MM-estimation) are the most often
used in robust linear regression. In this dissertation, we study M estimation which was
extended from the maximum likelihood estimation and introduced by Huber (1964) with
subsampling methods. The optimal non-uniform subsampling in robust linear regression
is derived from the criterion of A-optimality. That is, we seek the sampling distribution

that minimizes the trace of certain dispersion matrix. We use approximated A-optimal



subsampling distribution to calculate the subsampling estimator in robust linear regression
when the sample size of the data is extremely large. We also study the robustness of the
subsampling estimators through their breakdown points.

In the robust linear regression, bisquare, Huber and Hampel functions are often used
as the objective function. But Huber and Hampel functions are not differentiable at some
points. Portnoy (1984) discussed the consistency of full sample estimator B for all objec-
tive functions 1) including non-differentiable ones. They established the condition that p is
allowed to be increased under a weaker condition plog p/n — 0 compared to p*/n — 0.
After that, Portnoy (1985) discussed the asymptotic normality of the full sample estimator
for all ¢ functions. Our theory is established in a typical framework for robust linear re-
gression. Specifically, we have proved the consistency and asymptotic normality when the
estimating functions are not differentiable. Since massive data usually has high dimension,
when we study the consistency of the subsampling estimate in this dissertation, we consider
the situation in which the dimension grows with the increasing sample size. When we dis-
cuss the asymptotic normality of the subsampling estimate, we consider random covariates
and fixed dimension p.

For future work, we will study the bias of the subsampling estimates and investigate
the asymptotic distribution of the subsampling estimate for growing dimension p. We will
establish the asymptotic normality when covariates are non-random. Besides that, we will
investigate more robustness properties. Finally, we will apply our method in real data
applications such as in astromical data.

The dissertation includes five chapters. Chapter 1 contains the introduction of the re-
gression estimates of linear regression and robust linear regression. Chapter 2 presents the
asymptotic distribution of subsample estimator when ¢ function is differential. Chapter 3
illustrates consistency and asymptotic normality of subsampling estimator when ) func-
tion is non-differential. Chapter 4 presents some simulation results. In chapter 5, we study
about the real data sets on Beijing Multi-Site Air-Quality and which include outliers and

compare the performance between different methods.



1.1 Linear Regression and Classical Estimation

Consider linear regression below which is used to model the linear relationship between

dependent variables y; and explanatory variables x;(i = 1,--- ,n):
ylzw:/8+62a izl?"'an

where ¢; ~ N(0, 0?) are independently and identically distributed.
The regression coefficients parameters are estimated from the data by ordinary least
square method. Then the least squares estimator (LSE) B can be obtained by minimizing

the residual sum of squares (RSS), i.e.,
3 = arg min E s — z8)%. 1.1
) B (y i3) (I.1)

Taking the partial derivatives of the expression in (1.1) with respect to the regression
coefficients 3 and letting them equal to 0, we get

n

> (i - xiB)x; = 0. (1.2)

i=1
Then solve the normal equations in , we can get LSE B

To check the fit of the estimated regression model to the data, we can look at the size of
the residuals ’/’Z(,é> =y — a:;,é in residual plot. A point which has a large residual and is
far from the horizontal line in the residual plot is called an outlier. Such points may be due

to data entry errors. We can use studentized residuals to detect outliers.

1.2 Robust Linear Regression and M-estimation

Ordinary least squares estimates can perform badly, i.e. not robust when the normality
of error distribution is violated or there are outliers. We can remove influential observations
before fitting the linear regression model. Another way to solve this problem is using robust
linear regression. That is, we use a different criterion which is less affected by unusual data

than a quadratic function. A common method of robust linear regression was introduced



by Huber (1973). This method is generalized from maximum-likelihood estimation. So, it
is called M-estimation.

When we replace the square function of residules used in OLS estimation by another
function, we will get the M-estimators. That is, the estimates ,é can be obtained by mini-

mizing a objective function p over all 3 in M-estimation.
B = arg mﬁin i p(ri(B)), (1.3)
i=1
where 7;(3) = y; — 3. Usually, the objective function p will satisfy:
1. The function p is always nonnegative, i.e., p(r) > 0 for all residuals r.
2. The function p is zero if the residual is zero, i.e., p(0) = 0.
3. The function p is symmetric, i.e., p(r) = p(—r).
4. The function p is monotone in |r;|, i.e., p(r;) > p(r;) for |r;| > |r;|.

If p is differentiable, then we take the partial derivatives of expression (I.4]) with respect to

the regression coefficients 3 and letting them equal to 0. Then we get

Zw(nw))wi =0, (1.4)

where 1) = p'. Solving this estimating equation, we can obtain the M-estimator.
Although M-estimators are regression equivariant, they are not scale equivariant. We

have to standardize the M-estimators by a robust scale estimate ¢:

or solve

One common choice for the scale estimate ¢ is median absolute deviation (MAD):

c=C*«MAD =C mediam<|m - medianj(rjﬂ),



where C' is a correction factor which is determined by the distribution. For data following
normal distribution N (s, ), we have median(|r — p|) =~ 0.67450. So, C = ;o7 =
1.4826.

There are many examples for M-estimators. For example, all MLEs including OLS
estimator are M-estimators. The linear regression loss function for OLS estimator is p(t) =
t? (¢(t) = t) which increases dramatically as the size of the residual is increasing. Another
example is L1 estimator which uses the absolute value as a loss function: p(t) = |t| (¢(t) =
sgn(t)). This cab achieve robustness.

For many functions p and 1), equation has no closed form solution. In such cases,

we can perform an iteratively reweighted least squares method to solve for M-estimators.

Let w; = w (ﬂ> =1 <ﬂ) / (ﬂ) Then we can rewrite the estimating equation:

o I o

i¢(rigﬁ>)mi=iwi(rigﬂ))wi:0. (1.5)

i=1
Solving the estimating equation (|1.4) becomes a weighted least-squares problem. By def-

~

inition, the weights w; are functions of residuals r; which are calculated from 7;(3) =
Y — w{B and depend on B But B are calculated from l| and depend on the weights

w;. Then the iteratively reweighted least squares method is performed to get an iterative

solution of (1.5)).

1.2.1 Two criteria for robustness

Breakdown point is used as a criterion for global robustness. Donoho and Huber (1983)
introduced the breakdown point for finite sample.

Let z = (21, ..., 2,) be an sample, where z; = (x;,y;). Denote T'(z) as the estimate
of a parameter 3 based on the sample z. If we replace any m data points in the sample
z by arbitrary outliers, then we get the estimate 7°(z/,) based on a new sample z/ . The

maximum difference between 7'(z) and 7'(z],) for such replacement is defined as bias.

bias(m; T, ) = sup | T(,,) - T(2)]|

Zm

where || - || is Euclidean norm.



If there exist some m outliers such that the difference ||T(2/,) — T(z)|| is arbitrary
large, then bias(m; T, z) = oco. That means, the estimator breaks down when m outliers
have very large influence. Then, the breakdown point (BP) * of the estimator @ for finite
sample is defined as

e*(m;T,z) = min {@ sbias(m; T, z) = oo}

1<m<n L n

A higher BP value indicates higher robustness of the estimator to outliers. And the highest

breakdown point is 0.5. Below are some examples:

1. The finite sample BP of sample mean is % This is because one unusual observation
can result in arbitrarily large sample mean. Since % — 0 as n — oo, the asymptotic

BP of sample mean is 0.

2. The finite sample BP of median is 0.5. This is because median can tolerate 50%

outliers.
3. The finite sample BP of a-trimmed mean is a.

4. In OLS regression, The finite sample BP of coefficient estimates B is % This is
because one outlier is enough to affect B The asymptotic BP of coefficient estimates

Bis 0.

5. Redescending M-estimators in robust linear regression have very high breakdown

points.

To introduce the measurement of local robustness influence function, the sensitivity
curve which is used to estimate the effect of one outlier on the estimator is defined as
below. If a new observation z, is added to the sample, then we get a new sample. The
sensitivity curve (SC) of the estimate for this sample is defined as the difference between

two estimates.

SCw (20, T) = Tri1(z1, s 20, 20) — Th(21, -+, 2n)



Since there are #1 outliers in the new sample, the standardized sensitivity curve (SC)

is defined as

Tn+1(zl> o 7zn7z0) - Tn(zb e 7zn)
1/(n+1)

= (Tl+ 1)<Tn+1(z17 T >zn>z0) - Tn(zla T 7zn))-

SCn(Z(), T) =

The influence function (IF) of an estimate 7" is an asymptotic form of SC. It is a criterion
for the local robustness. Suppose F' is a distribution of sample in which identical outliers
are included. Let ¢ denote the fraction of outliers and ¢ be the point mass of outlier. Then

the IF is defined as

IFy(20, F) = lim M = 9F + edz) = T(F)
€e— €

0
= ET((l — E)F + 660>‘e~>o+-

If o is known, then the IF of an M-estimator is
o (2L )
E(' (28 za’)

g

1.2.2 Examples of loss function

In robust linear regression, Huber function, Tukey’s bisquare function and Hampel

function are often used as the objective function.

Huber function

One popular choice was proposed by Huber in 1964 and known as Huber functions. It

is constructed by loss functions of OLS and L1. It is given by:

z if 2] < &

k|x| —% if |z| > k

with derivative ¢(z), where

x if |z] <k
(r) =
sgn(x)k if |x| > k



k = 1.3450 is a good choice, where o is the SD of the error distribution. If the errors
have a normal distribution, then it is 95% as efficient as least squares asymptotically. In
many other cases, it is also much more efficient.

We can see that p;, is quadratic in the central part [—k, k] and increases linearly to
infinity. The M-estimators in robust linear regression are the OLS and L1 estimators when

k — oo and k — 0, respectively. ¢ is constant outside [—k, k|.

20 30
r/‘
.
AN
,

rho

0.0

psi
00 0.5 1.0
.

1.0
Y

Fig. 1.1.: Huber p- and ¢ -functions

Tukey’s bisquare function

Another popular objective function was introduced by Tukey and known as Tukey’s

bisquare or Tukey’s biweight. It is given by:

B () iffel <k

plx) =
k if 2| > &
) S se i iflal<k
e if |z > k

6
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with derivative (), where

o) = 21 - (%)Q] 2] < k).

Similarly, the value k = 4.6850¢ is usually used for Tukey’s bisquare function, where o
is the SD of the error distribution.

We can see that ¢ is differentiable everywhere and becomes 0 outside [—k, k.

< — —eee
[:+]
o
o
0 ©
c \
£ 4 .
o
N /
S \ J/
o) \\-\ 4
2 —
-5 -4 -2 0 2 4 6
X
N
o
o <
ao
o
: \
-6 -4 -2 0 2 4 6

Fig. 1.2.: Tukey bisquare p- and 1)-functions

Hampel function

Another redescending function is Hampel function. It is very similar to bisquare func-
tion except that it is not differentible at some points. It is given by

(

%xQ if |z] <a
alz| — %aQ ifa <l|z[ <

pla) = S drl=pe® et g < g < ¢
a(b+c—a) ] > ¢
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with derivative (), where

x if |[z| <a
a * sgn(zx) ifa<|z|<b

a“ w sgn(z) ifb<|z]<c

0 lz| > ¢

Similarly, the values a = 20, b = 40 and ¢ = 8¢ are usually used for Hampel function,
where o is the SD of the error distribution.
We can see that ¢ has a non-zero constant value inside [—b, —a] or [a, b] and becomes

0 outside [—c¢, ¢].

rho

psi

Fig. 1.3.: Hampel p- and 1)-functions
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2. A-OPTIMAL SUBSAMPLING METHOD

In this section, we draw a subsample and construct a subsampling estimator to approximate
the robust regression estimator. Cheung(2019) has derived the asyptotic property for the
general estimating equations. Assume the 1) function in robust linear regression is differen-
tiable, then it becomes a specific situation in Cheung(2019). Hence, we will omit the proof

in this section.

Consider
ylzw;/8+62a izl?"'vn
where ¢; follows a symmetric distribution. Suppose random sample (1, y1), - , (Tn, Yn)
are ii.d. Let # = (m,---,m,) be a sampling distribution for the i.i.d sample points.

Draw a subsample of size » < n randomly from original sample with replacement ac-

*

cording to corresponding probabilities 7w* = (w],--- , 7). Then we get a subsample
(wikv yik)a T ("Bi? y:)
Let B be the M-estimator obtained by the full sample, which is unknown and to be

estimated by the subsampling method. It is the solution of equation

" - alp

Let w = (wy,- -+ ,w,) have the scaled multinomial distribution with parameter vector

7 = (m, -+ ,m,) and number of trials 7, that is

k k 7! - "
P(w1:—1,~--,w = n): ' ik >0,) k=
rm " orm, [T, k! H ! Zzl ‘

It is easy to prove that

E* (w;) = 1, 2.1)

and
1 1 ) ) ;(;—)—{—1, fOI'Z:]

I(i=j) = ' (2.2)
reorm 1-1 fori # j
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Let B* be weighted subsample estimator. We minimize weighted objective function on

the subsample to get the weighted subsample estimator ,é*

B —argmme p< i *Tﬁ>

o
i=1

If p is differentiable, let p’ = 1), then we get B* by solving

Zw oS~

If p(z) = %zz, then we can get the ordinary least square estimator.

Denote ) )
o (o (22T (B
i =g ()
W — dzag{rjri } H=XXT¥Xx)'XxT
Let
w;(8) = %ﬁ;w;w(yf S
Then

Z (u>m;‘ =0.

Assume 1) is a differentiable function. Then expand W (3) into a Taylor series about E

and evaluating it at ﬁ* we have
0=U}B) =T} (B)+ (BB -B)+R

where W is the derivative of ¥*, R, = (¥7(3,) — ¥*(8))(8* — B) and 3, lies between

B* and B Solve above equation, we can get
B =B-¥(8)(¥;(B) + R,).

For fixed p, choose function v,,; in Cheung(2019) as ¢,,;(3) = a1 ( #), then we

get specific conditions for below theorem from Cheung(2019).
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Theorem 2.1. With certain conditions, the following expansion holds,

A ~

B =pB— (XTUX)H(XTWp(B)) +op(r™),

The bias of B* about ﬁ can be expanded as

A

E*(3*) — B = ——(XT\IIX) 1XT¢'Diag<%>¢(,é)+0p(r_l),

where h is the vector composed of the diagonal elements of H.

Moreover, the variance-covariance matrix of B* can be expressed by
3 T LyT 1, ¥*(8) T ~1 -1
Var*(3*) = (X \IIX) X" Diag X(X'¥X) " +op(r ),
™

Theorem 2.2. Under same conditions of Theorem 2.1, then these is a sequence of subsam-

ple estimates B* such that as r — o0,
V7E(BT —B) = N(0.T)
in probability, where
V= (XT\I!X) 1XTDzag<¢2('B ) ) X(XT¥x)!
Minimize the variance-covariance matrix Var*(3*) of subsampling estimator 3* in the
sense of minimizing trace of the main term of covariance matrix

T(?T)ZTT(V&I'*[<iZ Z@D( a:ﬂ) > (iw:@/}(y—

S ey e a9

n n _ 273 - 273
:Z 1 <ij¢/(yj xjﬁ){[;f) 1mi 2¢2<y2 x; ,8) (23)
T — o o
By the Lagrange multiplier method, we get the A-optimal subsampling probability
2T - i—xT 3
N [0 1w]~w'<%)w$ - o (20|
S (S (S )al) e - e (22
I€ XT‘I'X )] e (20|
i [(XTX) | - W(%)‘
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where ¥ = diag{y’ (@) " . When ¢(x) = x, this becomes the situation for linear

regression discussed by Peng and Tan (2018).

Theorem 2.3. Assume that (X7 W X))~ is invertible such that a; = (XTWX)'z; # 0.
Then there exists a unique A-optimal distribution 7 for B* to approximate B which is given

by

el (2B

T = 1=1,---,n.

S flagl] - [ (B=22))|

In big data analysis, the sample size of the data is usually large and calculation is dif-

ficult. Below is the weighted estimation algorithm by A-optimal subsampling method in

Peng and Tan(2019).

1. Subsample(size ry) with replacement from the data by uniform distribution. Use the
robust scale estimate ¢ to construct the approximate A-optimal subsampling proba-

bility w = {m; }1" ;.

2. Draw a subsample of size » < n randomly according to the sampling distribution of

7v* with replacement. Then we get a subsample (x3,v7), - - , (, y).

3. Solve weighted estimating equation below using the subsample to get the weighted

subsample estimator B*
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3. ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS WHEN ¢ IS
NOT DIFFERENTIABLE

3.1 Consistency

Consider a linear regression model in which the response y; and covariate ; € R?
satisfy
T .
ylzwz/6+Rl7 Zzlv"'7n

where 3 is an unknown parameter and R;(i = 1,2,--- ,n) are i.i.d. random errors. In this
section, we consider non-random X.

Consider the case that n is extremely large and the full-data estimator B is not available
either due to the physical limitation of computer’s memory or too long waiting time.

Let 7, -+ ,m, be a sampling distribution on the data points (x1,41), - , (Tn, Yn)-
Using 7 = (7, -+ ,m,), we draw a subsample (z},y7), -, (x},y}) with r << n from
the full sample so that y; = :c;fTBO + R, where By is the true parameter. Let w* =

*

(7}, , ) be the corresponding sampling probabilities. We now approximate ,é by the

»or

sampling estimator B* which solves the equation
r * «T

> L (15 ) <o

Jj=1J
where ¢ is some nuisance parameter, which can be estimated before/after the estimate of 3
is obtained. For convenience, we assume o — 1. We are interested with robust estimation
of By. Let ¢ be a function on reals. Our choice of ¢ includes the commonly used Huber
function. So it is not differentiable in general.

Portnoy(1984) established the consistency results for growing dimension p of parameter

B when 1 is not differentiable. He obtained the results under the growth condition that

p — oo but plogp/n — 0, a weaker condition than p?/n — oo in literature. We shall
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develop our consistency result using his framework. Below we quote his conditions P1-
P2 and X1-X4. To this end, following Portnoy’s assumption. We assume 3¢9 = 0.Then

For conditions X1 and X2, let
10,c)={i=1,2,--- ,n: lzl'g| < c}

andlet N(§) ={x € R? : ||z|| <} and S = {x € R?: ||x| = 1}.
P1: 1 is an absolutely continuous function with ¢’ bounded satisfying E¢(R) =
0, E¢’(R) > 0, and E¢p?(R) < B < +00. Let ¢ be a constant and define for r real

H(c;r) =inf {¢' (r —v) : |v] < ¢} (3.1)

P2: There exist positive constants b and ¢ such that H(c;-) is measurable (hence,
H;(c) = H (¢; R;) is a random variable) and EH;(c) > b .
X1: For any constant ¢ > 0, there are positive constants a, d, and C' such that for all
BeN,0cS andn=1,2,---
Z (:ciTB)2 > an
=
where J = I(B,¢) N 1(0,C).
X2: For any ¢ > 0 and ¢ > 0 there are constants ' > 0, and C' > 0 such that for all
BeN,decS andn=1,2,---

Z (w?9)2 <en

igJ
where J = I(8,¢) N 1(0,C).

X3: There exists a constant B such that forn =1,2,---
max {||z;|*, i=12--,n}<B.

X4: There exists a constant B such that for: = 1,2, - - -

S lla]l” < Bpn.
=1
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We need the following A1-A3.
A1l: For sampling distribution {7 }, there exists a constant 1 such that v, = min,<;<,,(nm;) >
Vo > O uniformly inn =1,2,---

A2: Let

n s 2
1 2 P /
bn:%;nwiﬂ (/0 W (Rz-—v)dv> = Op(1).
Remark 3.1. A sufficient condition for A2 is that ¢/’ is bounded and that
LS = 001
rn ! '

A3: Ford > 0,

n

sup sup o 5" (@l ) (R, — 27 8) = Op(1).

n?
IB8II<é [lyll=1 """ =

Remark 3.2. A sufficient condition for A3 is that ¢/’ is bounded and that
. Z 2l _ g,
Definition 3.3. A sequence of events { A%, r = 1,2, -- - } satisfies
P*(A7) =1+ o0p(1)
asr —ooifforVe >0,Vn>0,dr > rgs.t.
P(P*(A))>1—¢€)>1—n.
Below is the Theorem 3.2 from Portnoy’s paper (1984).

Theorem. Assume conditions P1,P2,X1,X2, X3, X4, and that (plogn)/n — 0. Let
v, : RP — RP be defined by

1 n
LS au(r - alB). (32)
i=1
Then there is a root (3 of the equation U,.(B) = 0 satisfying

1BI* = 6,(p/n).
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We have similar consistency result for subsample estimator B* below. In this chapter,

the same B may denote different constants.

Theorem 3.4. Assume conditions P1, P2, X1, X2, X3, X4, Al and A2, and that (plogn)/n —
0. Let ¥} : RP — RP be defined by

r

1<~ 1
vi(B) = - Z; — z (R —278) . (3.3)
p

If p/r — O, then there exists a root B* of the equation V*(3) = 0 satisfying
18° = BI* = Op(p/r).

Proof. By result 6.3.4 of Ortega and Rheinholdt (1970, page 163), it suffices to show that
rBTW:(3) < 0 for ||3]|> = Bp/r in probability where B is a constant. Noting

r

* * 1 * *
rBTV(B) = Z (#'8) s (7 = 257 6)
. * 1 * . * 1 w;TB / *
=3 (@8) o () = X (&78) = [0 (R =)
j=1 J j=1 J
=: A] — AS.
We have
1
AT <8I D —a5Tw (R))]
j=1 "7




and

2
"1
E' Zm ="y (R))
j 1 J
>}<T *
i=1 j=1
:i J=il e +ZE* :Tm;w(R*)w(R*)
i=1 (nrf)? 7T27TJ ’
_]‘ 17 * *
) L (ry + “Cﬂ ey () (1)
- —|| e Ry + 7D ey o] [ % (my)
nQ v n2 ﬂ.r 1 71'; 2
2
-1 n
:ﬁ —H i w2<Ri>+T<rn2 : 3 z(R)
=1
=:An + A

It follows that
E*|A;[* < 18117 (Awr + Ara).

Since v, = min(nm;) > vy > 0 by assumption A1, then
r n
A, < L1 202 (R
sy ;H‘DH V* (Ry)
By assumptions P1 and X4, we know
> llwsl** (Ri) = Op(pn).
i=1

Therefore,

.
An = EVElOP(pn) Op ( p)

n

By X4,

Z ;|| *B?(R;) < B*np.
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So,

2

Ay = T(Tn_ 1)Op(pn) =0Op <%) .

Fix 3 with ||3]| # 0. Using Chebychev’s inequality,

P {4y > By/rp||B][}

* *2
E A

SBmIEIE = B

1 rp r%p
- Bxrp (OP <V_n> TOr <7>)
1 1 r

Then we have that for any € > 0, there exists a constant B such that for all r

Ay + Avg)

Pr{A} < Byrp||Bll} = 1= op(1). (3.4)

By the definition of A3,

T w;Tﬁ
E*A; =E* ) (x;"8) 1,‘6 /0 W (R —v) dv

=1 Tlﬂ']
r - T Z?B /
i=1
::ZAQ.
n

By (3.8) in Portnoy (page 1303), there is an event F,, with P(E,) — 1 such that on E,,,
Az > agn| B,
where q is a positive constant. Hence,
E* AL = %AQ > aor|| ]I (3.5)

Suppress 3 and let

1 [=e
6= (@8 [ (m =

*
mrj
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Then A; = 37", aj.aj,--- ,a; areiidand

Jj=1"3"

T
= 1 N 2
2. -1 2 !
<l8IPv; E;Hmiu (/ ¥ (Ri—v)dv)

ZHBHQVﬁlrbm

where b,, is given in A2. Hence,

2

D _(a; ~ E'a))

E*| A5 — E*A}* = E* = rE*(a} — E*a})? < rE*a}* = r?||8|*v; b

j=1
By Al and A2,

. (A3 — ErA3) E* A5 —E* A2 _ [1B1°y, 'bs 1
P(sz < Ve < e =0Op I — 0, as M — oc.

Since (3.5)) and
A5 EA|A5 - E Ay

r - r r

on E,, it follows that there exists some constant a and event E/, with P(E!) — 1 such that
on £/,

A*
—2>a|B]?

for all 3 with ||3]| < 6. Thus, there is N such that for » > N on E,
P*{A; — A3 < Byl B — arl|8 for all B with [|8] < 0} > 1 2¢

Choose N’ > N so that Bp/r < 6> whenr > N’ . Let By = a\/E/Q.Then

aBp aBp

Byl — arl|? = 22 —apy— TP <

It follows that for r > N’

P*{rB"w:(B) < 0 forall B with ||3]|* = Bp/r}
>P* {A} — Ay < —1/2Bap for all 3 with || 3||> = Bp/r} > 1 — 2e.
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Hence, according to the result in Ortega and Rheinboldt, we have

18°11> = Op(p/7)

By Theorem 3.2 of Portnoy’s result, there exists event £ with P(E!) — 1 such that on
o
181> = O (p/n).
Thenon E/, N EY,
18° = BIl < 18711 + 18Il = Or(v/p/r)-

18" = BI* = Op(p/r).

We cite Portnoy’s result below (Corollary 3.3 in Portnoy’s paper(1984)).

Corollary. Under the hypotheses of Theorem 3.2(in Portnoy’s paper), ,B is unique on
{18l : 18Il < 6} in probability. If in addition v is nonnegative (everywhere ), then 3

is unique on RP in probability.
We have similar result for subampling method below.

Corollary 3.5. Under the hypotheses of Theorem 3.2, 3* is unique on {1181l = 18] < o}

in probability. If in addition ' is nonnegative (everywhere ), then B* is unique on RP

inprobability.
Proof. Let
F*(B8) = nV7(B),
then
* - 1 * * *
F'(B)=> I (7] — ;" B) .
j=1 "

Then the p x p derivative matrix F™*(3) satisfies
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Thus, for any y € RP with y # 0,

VB = -3 (T (1 - 28) = - L
j=1 ' "J j=1
where
z = F—;(wZ‘TyW’ (R} —=3'B)
Accordingly,

L@y (R, - 278).

Zi =
Bz =E% = =) (¢]y)* (R — 2] B) = y"F(B)y.
i=1
Now F(B) = 3" | @zl (R; — =l B). Then by assumption A3, we have
1 * T 1% T r 2
—E (y F'(B)y -y F(ﬁ)y>

2
1 * 1 * X %k

J=1

=— > (% — yTF(/B>y)27Ti

=1

LH,Q_LanzL/Q T
Srﬁgm%_rnQ;M(wiw@D <Rl miﬁ)

:Op<1).
It follows that
. . 1 ... 1 ..
y U By —y 'V, (B)y = EyTF*(B)y - ﬁyTF(ﬂ)y = op(1).

From the proof of Corollary 3.3 of Portnoy (1984), F (B) is strictly negative definite on
{18l : 18] < &} For any y # 0, we have y" ¥,,(8)y = Ly" F(8)y < 0. Since

y Ui (B)y = y' U, (B)y as r — oco.

It follows that
y U (B)y < 0.
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Hence, U*(3) is strictly negative definite on some {||3|| : ||8]| < 6}. Thus, 3 is unique
on this set. If ¢ is nonnegative, then \Ifjf(,B) is nonpositive definite everywhere. Since it is

negative definite on a neighborhood of B;‘ ) B;f is unique on R?P.

]

Remark 3.6. When {x;} are i.i.d., Portnoy(1984) showed that conditions X1, X2, X3, and
X4 hold in probability when below conditions are satisfied.

(1) Assume (plogr)/r — 0.

(2) Exxz}; < By <oo(foralli=1,--- ,nandj=1,--- ,p).

(3) For conditions X1 and X2 define

Ui(c,C) = 1 (jaT 8] < ¢, |7 0] < C) («76)
For any positive constants ¢ and ¢, there exist positive constants d and C' such that for all
B €. and @ € .S,
EUZ‘(C, C) >1—c.

3.2 Asymptotic Normality

In this section, we will consider the situation in which dimension p is fixed. We further

assume X7, - - , X, are i.i.d random vectors with E||X;||* < oo, although the result will
typically hold for non-random vectors. We shall use capital X;(i = 1,--- ,n) for x;(i =
1,---,n) toremind that X; are i.i.d random vectors.

Let

pp(x,y) =v(y—a'B)xz for xR’ yeR.

Let P, be the empirical measure with probability mass % at (X;,Y;)fori =1,---  n. Then
Z Y(Y; - X'B)X; = Puog.

Also denote ¥(83) = E(V; — X[ 8)X; = Pog.
Let P, be the empirical measure with probability mass # at (XJ*,YJ*) for 5 =

1.+, 7. Let
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T X*TIB)

ﬁl»—t
1]
@

j=1 m
Then U} (8) = B,¢5 and E*W:(8) = U,,(8) = P, ¢
Below A4 is part of P3 in Portnoy(1985).

A4: For u and v real, define

Q(u,v) = —d. (3.6)
where d = E¢'(R). Q(u,v) = 0 when v = 0. Then Q(u, v) is uniformly bounded.
Remark 3.7. If A4 holds, then there is a constant C' such that for any 3;, 3, € R?

Wy —a'By) — vy —a' By)| < Cll|l[|B — B, z€R"yeR

A5: Assume E(||9(Y — XT3)X||?) < oo and that the map B — E[¢(Y — X73)X]
is continuously differentiable at a zero 3, with nonsingular derivative matrix Dg, .

A6:

LS

T
=1 v

Remark 3.8. A6 is a sufficient condition for A3. Under assumption Al, if

1 n
2 PGl = 0p1),

then A6 exists.

A7: There exist constants b and B such that

(VY = X)X (Y, XTﬁ) T
Zn(ﬁ) =E ( 77,27'(;72 - n2 Z XzXz
satisfies
O S b S )\min(zn</80)) S )\max<2n(/80)) S B < oo, vn
AS:

logr
ax || X;[|* = Op(1).

TL

By Theorem 5.21 in A.W. van der Vaart(1998), we have the following result.
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Theorem 3.9. Consider a neighborhood of 3, let 1(x) be a measurable vector-valued
function. Assume A4 and A5. If an estimate 3 of B satisfy Wn(é) = OP(n_%) and 3 =

Bo + op(1), then we have the expansion
3 RIS T
V(B — Bo) = —Dg, 7 > (Y — XIBo)X; + op(1).
i=1
As a result, \/ﬁ(,é — Bo) has a asymptotic normal distribution with mean zero and covari-
ance matrix D[;OlZDIgOT, ie.
V(B — Bo) = N(0, D5/ =D,
where ¥ = E(?(Y — XT8) X X7T).

Below is the corollary from Yurinskii on page 491. This is an extension of the vector

Beinstein inequality.

Corollary (Yurinskii). Let &1, - -+, &, be independent random vectors with EE; = O for

each i. Suppose there exist constants by, - - - , b, and H such that
|
E|&|" < <m7) RH™ 2, m =23,

Let B2 = b} + -- - + b2. Then for x > (,

x? .CCH —1
P{[&x4 -+ &l > 2By} < 2exp —(5> (1+1.62(B—>) .

Remark 3.10. Suppose E¢; = 0 and ||§;]| < M,i = 1,--- ,n for some constant M > 0.
Then the conditions in Yurinskiio’s corollary are satisfied withb; = H = M (i =1,--- ,n).

In this case, forany ¢t > 0,

n ltg
P A=t <2 — 2 . 3.7
{ 2135 } eXp{ nM2+1.62tM} G-7)

Let G, = /n(P, — P) and G, = /7(P, — P,). The following result constitutes the

main part of our proof for asymptotic normality.

1

Lemma 3.11. Assume 3* — 8 = Op(r—2) and 3 = Op(n™2). Under conditions for the

theorem, we have the following result Gr¢,@* — Grqbg = op(1).
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Proof. Let A*(b) = G, (¢p — Ps)-
Since B* — B = Op(?"_%), it then suffices to show that for any B > 0, and € > 0,

P | sup [|[A*(D)|| > €] =op(1).
Il< 2

By definition of G,,

©r¢é* = (P, — Pn)os-
(L0 = XTEXG 1S e
=V (; * —ngm—xiﬁ >XZ->

Since ,@* is random due to sampling method, we consider function

r x «T * n
Gotn =3 <in AL o X?b))@-) .

=\ v Virn

- (¥( Tb) — ( 78))

ey WG = X5b) — (V) — X7 B)) X

§(b) = NG - (33)
Then X
WY = Xb) =Y - X[ B)X;

§i(b) = T : (3.9)

From (3.8), we get
E€5(b) = —— 3" (0(¥; — X7b) — (Y, — X B)X,.

\/Fn i=1

Let éj* (b) = &;(b) —E*¢;(b). Then A*(b) is a sum of conditionally i.i.d zero mean random

vectors given the data, that is
A*(b) =) & (b).
j=1

Let )
(V(Yi = Xi'b) —o(Y; = X' B)X;

T A —d.
Xi(b-0)

Qi =
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By (3.9), we get
\/;n%‘ffz(b) = (Qi + d)XiXiT(b B B)

From assumptions Al and A4, @); is uniformly bounded by a constant, say go. Then we

have

(q0+) | X:|1* 0B <

nm; TVp

165 (B) [} < max [|&;(B)]] < max (go+-d) | b—B|| max |L.X||.

Then
2

Vv,

Since 3* — 3 = Op(\/i;), then for any € > 0, there exists a constant B such that P*(||3* —

1€ (®)] <

(g0 + d)||b — B max || X

8l < \%) > 1 — e. Hence,
* Ek (A% 2B 2
P& B < 767(610 +d)max [ Xl | > 1 —e.
Let B be an arbitrary fixed constant. Partition the ball B, = {b € R? : ||b| < \%}
into cubes with equal sides of length %. Then the ball can be covered by K? cubes
Cr(k = 1,--- , KP). Let by, be a point in Cy. Then {b;} consists a grid on B,,, and for

be Ck, ||b — ka S \/ﬁx}TBK Then

1
P swp ATB)| > €| <k7P? (HA*(bk)uz—e)
Il <2 2
v

1
+P* (maxsup |A*(b) — A*(bg)|| > —e) (3.10)
E ¢ 2

By Beinstein’s inequality in (3.7)), for any € we have

* * 1 * - Cx 1
P A (be) ]| > 3¢ =P ;fj(bk) > 5€

<2 — 8
=2 { r M2 + O.816M} ’

where M = %(qg + d) max; || X; 2.
Choose K such that log K/ logr — 0. Then by condition A8,

,log K logr

rM?log K = 4B*(qo + d) max || X;||* = op(1).

2
logr rv?



Hence,
—plog K =log K — .
M2 108l PO ©8 (810g K (rM? + 0.81eM) p) e
Hence, as K — oo but log K/logr — 0,
* * 1
P (HA (b)|| > 56) = op(1).
Noting
A*(b) — A™(b )
1 " X*Tb | X*Tb
= (( )~ v DY —Z = X{'b) —u(Y; - X?bk»Xi) :
r ni.
Jj=1 J
we have

2

(VY7 = Xi7b) — (V) — X77hy)) X7
nmy
<L N0 = XTb) - uYi = X)) i

T

E[|A*(b) — A" (by)||* <E*

=1
_ 2 14
o= b s C)lxi|

2
n T
i=1 v

4B% K O|IX; ||
<

K2rn2 — e

By Markov’s inequality, we have

1
* * _ * > _
P (m]?xsgfm (b) — A*(by)|| > 26)

1
<K P (sup |A°(B) = A*(B0)] = 5¢)

AE*[|A*(br) — A" (by) ||*

<KP

4KP2 IS O X |y4
<

rn2e2 Z T

=1

From assumption A6, then we get

1
pP* (maxsup I|A*(b) — A*(bg)|| > —e> = op(1).
ko 2

30
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Hence, from (3.10), we proved

A*(B) = G,¢5. — Grdp = op(1).

O
Lemma 3.12. Let ¢5. 5 = [(Y — XT3*) — (Y — XTB3)|X. Assume
5 _1 S A _1
1Bl = Op(n=2), |I8" =Bl = Op(r~>). (3.11)
Under conditions for the theorem, we have the following result
« 1
An = Pn¢ﬁ*,ﬁ — ]E]Pncbﬁ*ﬁ = Op(’l“ 2).
Proof. Since (3.11)), it suffices to show
P(sup sup |8 (b, B) = r~2e])) = o(1),
lb< B 1< S
where
An = ]Pn¢bﬁ - EPn¢b,B-
Let B, C be arbitrary fixed constants. Partition the ball B, = {b € R? : ||b]| < %}
and C,, = {B e R : ||B]] < %} into cubes with equal sides of length }TBK and %

respectively. Then B, and C,, can be covered by K? and L” cubes By(k = 1,--- , K?) and
Ci(l=1,---,LP). Let by € By, B; € C;. Then {b;} and {3} are grids on B, and C,,
and for b € B, and 3 € (},

2B 2C
|b — b < \/]_QW’ 18 =B < \/ﬁm

Since



for any € > 0, we have

P( sup  ||An(b,B)|| > er?)
beBy,B€C,;
1 1
<P(max || A (be, )| > ger™2)
1 1
+Pmax  sup[|A4(6,8) = Ay(bi, B)I| > er?)

L breBy,BieC

1 1
< ; ; P(||An(br, 8| > 567“_5)

br€By,Bi1€C;

1 s
DD P sup [[Au(b.B) — A(br, B > Ger )

k l

Suppress b, and 3;, let

&= — X b)) — oY — X]B))X

Then

n

Anlbr B1) = = (6 ~ BE:).

i=1
For any «, we do truncation and define

X = X1 X[ <m], X" = X1[|IX]| > m]

Then we have below decomposition X = X (™ 4 X(m) and &; = ¢™ 4 &™)

n

Aulbe, Brm) = - S~ BE™),

=1

Since
2
m
||Xz~||2 < B— =: M.
VT VT

By Beinstein’s inequality in (3.7)), for any € > 0, choose K = L, we have

23 P80 B | > zer )

B -1
<2KPI[Pexp< — 1 ne'r T 1
(Bim?r=2)2 4+ Bym?r~zer™2

B 2
—2exp{— ne —i—plogK}.

l&™l < 20—

Bim* + Bym?Ze

. Then

32

(3.12)

(3.13)
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If we choose %4 log K — 0, then
1
P([|An(br, Br,m)l| > Jer™2) = 0. (3.14)

By the definition, we have

n

Bu(bg, Brm) = S ()~ BE™)

i=1

By assumption A4, then
A ]' ~(m ~(m B v(m
E|| A, (bs, B, m)[[* < ~EJIE™ ~ EE™|* < —— B[ X"
n ramn
By Markov’s inequality,
P([[An(br, B, m)l| > Jer™2) < — B X1 X]| > m].
Since E|| X ||* < oo, we have

E|X|*1[|X|| >m] =0 as m — oo.

Then
_ 1 1
P(||A,(bg, Bi,m)|| > Zer_i) =0 as m— 0. (3.15)

Since we have below decomposition
A (bi, Br) = An(br, B1,m) + Ay (by, By, m),
then
1 1
P([[An(bi, Bl > 5er™2)
1 1 - 1
<P(|Au(br, B m)l| > Jer™2) + P(|Bu(by, Brm)| > ger™2)  (3.16)
If we choose m which satisfies %4 log K — 0 asn — oo, m — co, K — o0, then we get
1 1
P(||An(by, B)] > €7 2) — 0. (3.17)

We get
4

|AL(b, B)]| = OP(’T’_%> as mFlogK — 0,n — 00, m — 00. (3.18)



Since b € By, 3 € (), if we choose K = L, then

1/ B C \?
E[|A,(b, B) — Au(b *<B——=++—= | E[IX;||*
120.8) = Auon 1P < (57 + 7= ) EIX
B 1
< ——FE|X;|*
<2 Lgx

By Markov’s inequality, we have

SN P( s [Ab) -~ Aub B > Lo
k l

b €B,3:€C
E|A —A 2

1 1
S€ET 2

E[IX|*

K2R
ne2

<

Choose k such that 222 3 (), then

n

|AL(b,B) — Au(bk, B)]| 0 as n— oo.
Then we proved
P( sup [[Ay(b,B)] > er’%) —0 as n— oco.

beBy,B€C)

Hence,

AL =Py 5 — EPudg 5= 0p(r72).

Lemma 3.13. Under conditions for the theorem, we have

Proof. By assumption A4,

WY — XTB)| < [b(Y — XTBy)| + CX |18 — Boll.

It follows that

WY — XTB) + (Y — XTBy)| < 2[(Y — XTBy)| + C|X||1B - Boll.

34

(3.19)

(3.20)
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By A4, (3.20) and Cauchy-Schwartz inequality, we get

||2 (A)—E (Bo)l
|¢2< XTﬁ) W( XTBO)|||X||2
n2 = e ’
(2 - XT X118 — cIxi8 -
< Z WY — Xi Bo)| + C| H7|r|,~ﬁ BolD(C1 X118 5°||)||Xz-||2
CIXi)1? 21 (Y; = XTFBo)l + CIXIB = BolDIXill 5
gﬁ; N NG (I8 = Boll)
ClXil* | 1 = (2u(Y; — XT CIIXNB = Bol)2IIX12 4
\ i=1 v \n i=1 i
CIXil* | 1 & @2y = X7 CIX 218 = Bol) I Xal?
\ i=1 v \n i=1 i
From assumption A7,
XT
Z VX))
¢2 (Y, — X'B) T
—tr (ﬁ; - XiX; )
:tr(2n> < p)\max(zn(ﬂ())) < pB <0 (3.21)

From assumption A6, 3.21 and the consistency of ,@ we have
"~ (402 (Y; — X[ Bo) + CIXl* 18 = Bl Xl

n2 i=1 i
— AP - XTBo)lIXGP 1 - Ol 2
3 . +M; —l8= 5l
:Op(l).

It follows that

IZ0.(8) = a(Bo)ll = Op(1).
Then there exist integer /N and constant B such that if n > N then

Amax(Zn(B)) < B < 0. (3.22)
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According to Markov’s inequality and (3.22), we have

P*(|G1d5ll = M)
_EG (YT — XTB)X)?

M?2
B G = XX G (0 — XT)X )
M?2
U (1m0 = X80\ (1 0 - XA
37" (‘Z o ) (‘Z o )

2

WY - XT84 X

*

n 1 R
T O Il = XIB)X P

Thus for fixed p,

We have the following asymptotic normality result.

Theorem 3.14. Consider a neighborhood of 3, let 1) (z) be a measurable vector-valued

function. Assume P1-P2, XI1-X4 and Al-A7. Assume the map 3 — E <w> =

'I'L’TT,L-

E)(Y —XTB)X =: u(B) € R? is continuously differentiable at B almost everywhere with

respect to Lebesgue measure, with nonsingular derivative matrix V. If U3 (8") = Op(’/’_%)
, B = Op(n_%) and ,é* = B + op(1), then

. . 1 (Y — X TR)X*
vﬁﬁw*—ﬂ):—ﬁzle RS
=

1).
mr;‘ +0P< )

Asa consequence,

A A

(VB‘lzn(B)VB‘T)‘%\/F(ﬂ* — B) = N(0,1), in probability.
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Proof. For every 3, and 3, in a neighborhood of 3,
VY —XTB)X oYY - XTBy)X C||X||2

nim nm

181 = B2,

According to the assumption A6,

XA2\?2 1 N4
E*(H 1||) _ 11X _ 0p(1).

nm*

By definition of G, and

we can rewrite @Tqb ;4 as follows

G’I‘¢B* :\/F(Pn - ]P)n)gbﬁ

X*T
(N S )
:0P<1) - \/Fpnqbﬁ*
=VrPu(¢g — ¢5.) +op(1) (3.23)
By Lemma 3.7, we have
Grdg. — Grig = op(1). (3.24)

Combining (3.23)) with (3.24), we obtain that

Grog +op(1) = VIPu(d5 — d3.) + op(1),

that is
Gros = ViPu(ds — d5.) + op(1), (3.25)
Denote
Proge g = Pulop. — dp) = %f}wm - X['8%) —v(Yi - X[B)X
pa
Then equality (3.25]) becomes

Grds = —VTPudp. 5+ op(1). (3.26)
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From Lemma 3.9,
A =Py 5 — EPudg. 5= 0p(r72).
Then combine this with P,,¢5. 5 = (Pndy. 5 — EPuds. 5) + EP,4. 5. From lb we
get that
Grop = —VrEPu4. 5+ op(L). (3.27)
Since Ey)(Y — X7 8)X is differentiable at 3, then let

9
Rz

By the continuity of the derivative, we have

Vs (Ep(Y — X7B)X).

n

BB,65.5 = O (E0(Y; ~ X7 B")X: ~ By (¥~ XIA)X)

=1
=V,5(8" = B) + (V3. — V3)(B" - B)
=V5(8" = B) +op(lB" - Bl|) (3.28)

From and (3.28)), we find that
Groy = —Vr(Va(B" = B) + op(|8" = BII)) + op(1). (3.29)

From Lemma 3.10,

~

It follows that
VIVs(B* = B) = op(V7l|B" — BI|) + Op(1).
By the invertibility of V,é, we have
VIl (B° = B)|l < op(VTIIB* = Bl) + Op(1).
Then
V(8" = B)II(1 = op(1)) = Op(1).
V(8" = B)| = Op(1). (3.30)
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This implies that B* is \/T consistent. Inserting || into 1| we obtain that

R R X*Tﬁ)X*
ViVa(B' = B) = =G5 +op(1) = Z +op(1).
By simple calculation, we have
* 7 * 7 2 1 - w ( XTB) T
E'Gids =0, Var'Gros=Tu(B) = — ; - X X!
Then
(V3'Sa(B)V, ") 2V/r(B" = B) = N(0,1)  in probability,
where
Vi = ~on(B) = ~LE((Y — XTH)X)
s 98" o '
[
Consider minimizing the trace of %VB_lEn(B)VB_T which is the asymptotic covariance
matrix of the subsampling estimator /3, that is, we seek to minimize 7(7) = tr (%VB’IEn(B)VB’T)

over all samping distribution @ = (7, - ,7,) on the data points. This is referred to as

A-optimality in the literature. Using algebra, we get
7(w) = Tr Lyos BT
r B8 " B
1 1 (Y, — X7
=Tr (_VA—I <_ 1/} ( g )XZXT> VA_T>

r B8

B Zn: 7"7r1-n2 <VB_1Xi>T (Vﬁ_lXi> Y = XTB)

_ZTT[‘ n? HV

Using the Lagrange multiplier method, we obtain the A-optimal probabilities below.

2(v; — XTB). (3.31)

(Y; — X7B)]
(Y; — XT3)|

~

)

Sia|vs
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Theorem 3.15. Assume that V[:} is invertible such that a; = VB_IXi =% 0. Then there exists

a unique A-optimal distribution 7 for B;f to approximate Bn which is given by

el pi- X7
= —, 1=1,---,n, (3.32)
S il - [y — X78)|

where Vg = ZE(W(Y — XTB)X).

Proof. To find the minimizer of 7(7r) in (3.31), we use the Lagrange multipliers,
Lim, A\ =71(m) + AN(m + -+ 7, — 1).

Setting
2 .
o |vaxi| vri—xrg)

om; rn’m?

+A:07 7i:17"'7n
we find

(Y — X' B)|

nvri ’

As i + .-+ m, = 1, we solve for n/r\ and get the critical point

laill - [0 - XT8)|
= —, 1=1,---,n.
iy llall - [o(v; - X7 8)|
Since the second partial derivatives are given by
2 .
VY — XTB)

3
%

B Hvﬁ X,

T

027 () B 2 HVB_IXZ-

aﬂ_laﬂ_}“ n [?/ J]? Z?j Y ) 7n7

27

where 1[i = j] denotes the indicator of event {¢ = j}, the matrix of the second par-
tial derivative of () is positive definite as it is diagonal with positive diagonal entries
[ (VB_IXZ) 12402(Y; — XT3) by assumption. Therefore, the critical point 7; is the unique
minimizer of the trace 7(7). O

A

Remark 3.16. We approximate numerically p(3) by

~

i = g8 = 5o 0% = KT (B b)) (Y= XT(B —n~heew)

where e, € R? with all components zero except the kth component equals to 1 and c is a

constant.
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Remark 3.17. From li we can see that the (Y — X TB) can be 0 for some data
points. When we apply this A-optimal sampling method, we will truncate the probability

distribution 7r by a fixed positive constant by assumption Al.

Remark 3.18. When we do simulations and real data analysis, we apply A-optimal scoring

method in Peng and Tan(2019), Cheung(2019).
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4. SIMULATION STUDY

4.1 Outlier Inclusion in Subsamples

We will compare outlier ratios in subsamples selected based on A-optimal probabilities
calculated from robust linear regressions(using bisquare function, Huber function, Hampel
function), A-optimal probabilities calculated from linear regression and Uniform probabil-
ities.

Let n = 1000,000, p = 50, 7o = 1%n. We consider y = X3 + €, where 3 =
(1%,,0.1-12)7, X; ~ N(0,1) are ii.d.,i = 1,--- ,50. Consider the error density of e:

e ~ N(0,1) with outliers in y direction generated from ¢ ~ Unif(1000,2000). The
percentage of outliers varies among 5%, 10%, 20%.

To introduce outliers, we first generated errors from N (0, 1) distribution for n observa-
tions, then errors were replaced by realizations from Unif(1000, 2000) distribution

We apply A-optimal and Uniform subsampling methods to the data set with subsample
size r = 1000(0.1%mn), 3000(0.3%n), 5000(0.5%n), 10000(1%n), 30000(3%mn), 50000(5%n).
The function ¢ is chosen from bisquare function, Huber function, Hampel function and the
identity function.

For every subsample size r and each sampling distribution (A-optimal sampling dis-
tributions from robust linear regressions, linear regression, and uniform sampling distri-
bution) 1000 subsamples were generated. The average outlier ratio was calculated and
compared.

We can see that for each subsample size, A-optimal sampling distribution calculated
from robust linear regression using bisquare function and Hampel function selects the least
outliers among five methods( A-optimal probabilities calculated from robust linear regres-
sion with bisquare function, Huber function, Hampel function, A-optimal probability cal-

culated from linear regression, and Uniform probability). This is because both of them
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are redescending functions. A-optimal sampling distribution for these two functions will
give a 0 weight for extreme outliers. The proportion of outliers selected by A-optimal

probabilities calculated from linear regression is highest.

Table 4.1.: n = 1000, 000 and p = 50. Comparison of outlier ratio in subsamples selected
using A-optimal sampling distributions from robust linear regressions (Bisquare, Huber,
and Hampel), linear regression, and uniform sampling distribution. ¢ ~ N (0, 1) when 5%
outliers included.

o]

RIm Bisquare Rlm Huber Rlm Hampel LM  Uniform
1000 0.000000  0.092850 0.000000 0.513529 0.050151
2000 0.000000  0.092456 0.000000 0.513020 0.050376
3000 0.000000  0.092761 0.000000 0.513241 0.049901
4000 0.000000  0.092682 0.000000 0.513704 0.050102
5000 0.000000  0.092527 0.000000 0.513775 0.050120

10000 0.000000  0.092718 0.000000 0.513377 0.049960

20000 0.000000  0.092655 0.000000 0.513369 0.049901

30000 0.000000  0.092598 0.000000 0.513518 0.049919

40000 0.000000  0.092699 0.000000 0.513375 0.050030

50000 0.000000  0.092719 0.000000 0.513423 0.050016

O© 0 9 O »n Bk~ WD =

p—
S
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2 A —=— A-optimal Prob for RLM using Bisquare
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Fig. 4.1.: Comparison of outlier ratio in subsamples. ¢ ~ N(0, 1) when 5% outliers in-
cluded.
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Fig. 4.2.: Comparison of outlier ratio in subsamples. ¢ ~ N(0,1) when 10% outliers
included.
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Table 4.2.: n = 1000,000 and p = 50. Comparison of ratios of outliers selected us-
ing A-optimal sampling distributions from robust linear regressions (Bisquare, Huber, and
Hampel), linear regression, and uniform sampling distribution. ¢ ~ N(0,1) when 10%
outliers included.

r Rlm Bisquare Rlm Huber RIm Hampel LM  Uniform

1 1000 0.000000  0.182923 0.000000 0.516029 0.100037
2 2000 0.000000  0.183008 0.000000 0.516196 0.100102
3 3000 0.000000  0.183114 0.000000 0.516465 0.099824
4 4000 0.000000  0.183094 0.000000 0.516172 0.099929
5 5000 0.000000  0.182589 0.000000 0.516115 0.100050
6 10000 0.000000  0.182832 0.000000 0.516385 0.099857
7 20000 0.000000  0.182836 0.000000 0.516383 0.100054
8 30000 0.000000  0.182879 0.000000 0.516359 0.100070
9 40000 0.000000  0.182946 0.000000 0.516275 0.100062
10 50000 0.000000  0.182846 0.000000 0.516231 0.099960

3 N —&— A-optimal Prob for RLM using Bisquare
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Fig. 4.3.: Comparison of outlier ratio in subsamples. ¢ ~ N(0,1) when 20% outliers
included.
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Table 4.3.: n = 1000,000 and p = 50. Comparison of ratios of outliers selected us-
ing A-optimal sampling distributions from robust linear regressions (Bisquare, Huber, and
Hampel), linear regression, and uniform sampling distribution. ¢ ~ N(0,1) when 20%
outliers included.

lon]

RIm Bisquare Rlm Huber RIm Hampel LM  Uniform
1000 0.000000  0.359059 0.000000 0.495605 0.199241

—

2 2000 0.000000  0.359244 0.000000 0.495684 0.199610
3 3000 0.000000  0.359180 0.000000 0.495395 0.200426
4 4000 0.000000  0.359510 0.000000 0.495500 0.200277
5 5000 0.000000  0.359455 0.000000 0.495322 0.200071
6 10000 0.000000  0.359348 0.000000 0.495426 0.199954
7 20000 0.000000  0.359421 0.000000 0.495248 0.199906
8 30000 0.000000  0.359484 0.000000 0.495094 0.199966
9 40000 0.000000  0.359378 0.000000 0.495270 0.199924
10 50000 0.000000  0.359521 0.000000 0.495176 0.200005

4.2 Subsampling of Moderate Data

Now we consider moderate data and compare A-optimal subsampling robust estima-
tor, uniform subsampling robust estimators, A-optimal subsampling linear model estima-
tor, and uniform subsampling linear model estimator. For robust estimators we used the
Bisquare function. Let n = 10,000, p = 50, rg = 3000. Consider y = X3 + €, where
B = (11,,0.1-12)7, X; ~ N(0,1) are i.i.d., i = 1,---,50. We consider the following

three cases for the error distribution:
1. € ~ t5 distribution,
2. € ~ t; distribution (Cauchy distribution),

3. € ~ N(0, 1) with 20% observations replaced by those generated from ¢ ~ N (0, 50?).

We apply A-optimal and Uniform subsampling methods to the simulated data with sub-
sample size » = 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000. For each r, we repeatedly



47

apply the following below weighted estimation algorithm for M = 1000 times to get the

weighted subsample estimators 3 =1,---, M.

rm’

The weighted estimation algorithm by A-optimal subsampling method:

1. Subsample(size ry) with replacement from the data by uniform distribution. Use the
robust scale estimate ¢ to construct the approximate A-optimal subsampling proba-

bility w = {m; }1;.

2. Draw a subsample of size » < n randomly according to the sampling distribution of

7* with replacement. Then we get a subsample (x},v7), - - , (X, y).

3. Solve weighted estimating equation below using the subsample to get the weighted

subsample estimator B;‘

1y — 2B
Y (s =0
— T o

First, for robust regression with psi = Bisquare in weighted estimating equation we
compare the effect of A-optimal subsampling using the same 1) to that of uniform subsam-

pling. Specifically, we calculate the mean squared error (MSE) and bias? as follows:

MSE(S MZHBrm—ﬁnHQ bias®(B)) = H_Z/Brm_/BnH2

For comparison of subsampling methods under robust regression, we also calculate the
MSE ratio and bias? ratio of A-optimal subsampling method to uniform.

To compare the effect of robust regression under subsampling to that of linear regression
under subsampling we consider Bisquare and identify functions for ¢. We calculate the
mean squared error (MSEQ) and the median absolute deviation (MADO ; You, 1999) as

follows:
MSEO(B; Z 18;,, — Boll?, MADO(B;) = median(||B;,, — Boll)

where 8y = (0,1%,,0.1 - 11,)”. We include MADO as it is a robust measure w.r.t. outliers.

Below are simulation results for these three error distributions.
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Table 4.4.: n = 10,000 and p = 50. Comparison of Bias? and MSE using A-optimal and
Uniform subsampling methods with different subsample size r for € ~ ¢3 distribution.

A-opt Unif Bias®> A-opt Unif MSE

r Bias® Bias® Ratio MSE MSE Ratio
1000 0.00 0.00 9.75 0.07 0.09 0.84
3000 0.00 0.00 16.14 0.02 0.03 0.79
5000 0.00 0.00 30.25 001 0.02 0.77
7000 0.00 0.00 3522 001 0.01 0.76
9000 0.00 0.00 5522 001 0.01 0.78
10000  0.00 0.00 43.64 0.01 0.01 0.79

Table 4.5.: n = 10, 000 and p = 50. Comparison of MADO and MSEO using A-optimal and
Uniform subsampling methods with different subsample size r and different /() function
for € ~ t3 distribution.

A-opt  A-opt Unif  Unif A-opt A-opt Unif  Unif

RLM RLM RLM RLM LM LM LM LM

r MADO MSE0O MADO MSE0O MADO MSEO MADO MSEO
1000 0.28 0.08 0.30  0.10 0.31 0.10 040  0.16
3000 0.17  0.03 0.19  0.04 020  0.04 0.25 0.06
5000 0.15 0.02 0.16  0.02 0.17  0.03 0.21 0.04
7000 0.13 0.02 0.14  0.02 0.16  0.02 0.18  0.04
9000 0.12  0.02 0.13 0.02 0.15 0.02 0.17  0.03
10000 0.12  0.01 0.13 0.02 0.15 0.02 0.17  0.03
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Fig. 4.4.: Comparison of Bias? and MSE for € ~ t; distribution.
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Table 4.6.: n = 10,000 and p = 50. Comparison of Bias? and MSE using A-optimal and
Uniform subsampling methods with different subsample size r for € ~ ¢; distribution.

A-opt Unif Bias®> A-opt Unif MSE

r Bias® Bias® Ratio MSE MSE Ratio
1000 0.00 0.00 928 0.13 0.16 0.82
3000 0.00 0.00 2247 0.04 0.05 0.77
5000 0.00 0.00 5565 0.02 003 0.79
7000 0.00 0.00 48.10 0.02 0.02 0.80
9000 0.00 0.00 10341 0.01 002 0.82
10000  0.00 0.00 9445 001 0.01 0.83

Table 4.7.: n = 10, 000 and p = 50. Comparison of MADO and MSEOQ using A-optimal and
Uniform subsampling methods with different subsample size r and different /() function
for € ~ t; distribution.

A-opt  A-opt Unif  Unif A-opt A-opt Unif Unif

RLM RLM RLM RLM LM LM LM LM

r MADO MSE0O MADO MSEO0 MADO MSE0O MADO MSEO
1000 0.37 0.14 0.41 0.17 10.23 10847 12.83 909.30
3000 0.23 0.05 0.25 0.06 911 83.64 11.61 33582
5000 0.20  0.04 0.21 0.04 8.88 79.45 1221 226.46
7000 0.18 0.03 0.19 0.04 877 T77.02 10.66 194.92
9000 0.17 0.03 0.17 0.03 870 7594 10.09 156.82
10000 0.17 0.03 0.17 0.03 8.67 7555 10.08 148.89




51

©
2 —+— A-optimal RLM MSE
A --- Uniform RLM MSE
Y ~e A-gptimal RLM biasq
k -=€- Uniform RLM biasq
g |
o
gy
@
@ by
5 2
w ° Y
] \
= N
o T
2~ S
o e
\\"nk,j“
o K‘\’A’-——w_
—— T A R
T o
S+ % * * e
T T T T T
2000 4000 6000 8000 10000

T

Fig. 4.7.: Comparison of Bias? and MSE for € ~ t; distribution.
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Table 4.8.: n = 10,000 and p = 50. Comparison of Bias® and MSE using A-optimal
and Uniform subsampling methods with different subsample size r for ¢ ~ N (0, 1) when
outliers included.

A-opt Unif Bias®> A-opt Unif MSE

r Bias® Bias® Ratio MSE MSE Ratio
1000 0.00 000 6.84 0.05 0.07 0.71
3000 0.00 0.00 860 0.02 0.02 0.65
5000 0.00 0.00 873 001 0.01 0.64
7000 0.00 0.00 1057 0.01 0.01 0.64
9000 0.00 0.00 1747 000 0.01 0.64
10000 0.00 0.00 14.86 0.00 0.01 0.64

Table 4.9.: n = 10,000 and p = 50. Comparison of MADO and MSEQ using A-optimal and
Uniform subsampling methods with different subsample size r and different /() function
for e ~ N(0, 1) when outliers included.

A-opt  A-opt Unif  Unif A-opt A-opt Unif  Unif

RLM RLM RLM RLM LM LM LM LM

r MADO MSE0O MADO MSEO MADO MSEO MADO MSEO
1000.00 0.25 0.06 029  0.08 3.62 1344 540 29.62
3000.00 0.15 0.02 0.18  0.03 224 5.1 329 1097
5000.00 0.13 0.02 0.15 0.02 1.97 3.92 2.73 7.52
7000.00 0.12  0.01 0.14  0.02 1.85 3.48 2.45 6.10
9000.00 0.12  0.01 0.13 0.02 1.80  3.26 2.29 5.30
10000.00 0.12  0.01 0.12  0.01 1.77 3.16 221 4.96

From the previous results, the Bias® of A-optimal subsampling estimate is significantly
less than the corresponding MSE, which means that the variance plays the main role in

MSE of A-optimal subsampling estimate.
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Fig. 4.10.: Comparison of Bias® and MSE for ¢ ~ N(0, 1) when outliers included.
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Fig. 4.11.: Comparison of log(MADO) Fig. 4.12.: Comparison of log(MSEO)
for e ~ N(0, 1) when outliers included. for e ~ N(0, 1) when outliers included.
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The MSE ratio of A-optimal method to uniform method is less than one for all cases.
This implies that A-optimal subsampling method outperforms Uniform subsampling method.
And the benefit of A-optimal subsampling under robust regression is the largest for normal
error with outliers compared to the other error distributions.

For each 7 function, MADO and MSEQ for A-optimal subsampling method are less than
corresponding values for Uniform subsampling method. For each subsampling method,
MADO and MSEQO for robust regression with ¢)(x) = bisquare are less than corresponding
values for linear regression with ¢)(x) = x. This means A-optimal subsampling estimate in
robust regression outperforms that in linear regression and uniform subsampling estimates
in robust or linear regression. The benefit of A-optimal subsampling in robust regression is
especially evident in cases of Cauchy distribution and normal distribution with outliers.

When the error distribution is a heavy-tailed distribution or is contaminated with out-
liers, the MSEO and MADO of uniform and A-optimal linear model estimators become
much larger than those of A-optimal robust estimator. This means in these situations uni-
form and A-optimal linear model estimators are unstable, while the A-optimal robust esti-

mator is still stable.

4.3 Subsampling of Big Data

Now we consider big data and let n = 1000,000, p = 50, 1o = 1%n. Consider
y = X3+ €, where B = (11,,0.1 - 1Z1))T. Consider different combinations of distribution

of X and distribution of ¢:

l. X; ~N(0,1)areiid.,i=1,---,50. ¢ ~ N(0, 1) with 10% observations replaced
by outliers in y direction generated from e ~ Uni f(1000, 2000).

2. X; ~ N(0,1)areiid.,i=1,---,50. ¢ ~ Laplace(0, \/Li) with 10% observations

replaced by outliers in y direction generated from ¢ ~ Uni f(1000, 2000).

3. X;~LN(0,1)areiid.,i=1,---,50. € ~ N(0, 1) with 10% observations replaced
by outliers in y direction generated from e ~ Uni f(1000, 2000).
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For each of robust and regular linear regressions, we apply A-optimal and Uniform subsam-
pling methods to the simulated data with subsample size = 100(0.01%n), 300(0.03%n),
500(0.05%mn), 1000(0.1%n), 3000(0.3%n), 5000(0.5%n). Bisquare function was used as
1 for robust linear model, and identify function was used as ¢ to obtain linear model re-

sults. For each r, we repeatedly apply weighted estimation algorithm for M = 1000 times

*
r,m?

to get the weighted subsample estimators 3 , m = 1,---, M. For each subsampling
method and each subsample size, we calculate the mean squared errors (M SE, M SEO)

and the median absolute deviation (MADO; You, 1999) as follows:

M
* 1 * 2
MSE(/BT) = M Z H/Br,m - /BnHzﬂ
m=1

M

MSEO(3) = 15 3 185, — Bl
m=1

MADO(B)) = median(8;,, ~ )

where 8y = (0,11,,0.1- 12))T.

For above simulations, we consider two situations. We use the original sampling dis-
tribution or the truncated sampling distribution in these two types of simulation. When we
do truncation, we use the number which is the smallest positive probability in the sampling
distribution as the truncation level.

Below are the MSEs for different cases when sampling distribution is the original one:
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Table 4.10.: n = 1000, 000 and p = 50. X ~ GA, ¢ ~ GA. MSE comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.4559 1.886  524307.6988 222963.4042
0.02% 200 0.4095 0.419 73301.1613  73010.6801
0.03% 300 0.2199 0.2382 30459.5966  43443.9554
0.04% 400 0.1452 0.1657 18426.1498  30905.6841
0.05% 500 0.1072 0.1264 13145.0717  24098.1943

0.1% 1000 0.0460 0.0586 4895.6266  11263.0165
0.2% 2000 0.0211 0.0290 2166.3241 5487.0712
0.3% 3000 0.0135 0.0191 1396.4656 3633.6931
0.4% 4000 0.0100 0.0142 1009.5619 2749.7793
0.5% 5000 0.0079 0.0115 806.0514 2206.1708
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Fig. 4.13.: log(MSE) for X ~ G A, e ~ GA.
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Table 4.11.: n = 1000,000 and p = 50. X ~ GA, ¢ ~ Laplace. MSE comparison
of robust linear regression with bisquare function and linear regression using A-optimal

probability and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.0309 1.4632  558711.6302 226143.1565
0.02% 200 0.3588 0.3306 77191.8446  73185.7533
0.03% 300 0.1823 0.1834 31901.1288  42881.2060
0.04% 400 0.1173 0.1277 18926.9967  30910.1512
0.05% 500 0.0873 0.0943 132327310  23801.3658

0.1% 1000 0.0358 0.0417 5118.0037  11258.7311
0.2% 2000 0.0157 0.0204 2194.1005 5566.0605
0.3% 3000 0.0097 0.0134 1389.4948 3601.6806
0.4% 4000 0.0073 0.0100 1018.0993 2758.0216
0.5% 5000 0.0057 0.0079 808.7604 2152.1429
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Fig. 4.14.: log(MSE) for X ~ GA, € ~ Laplace.
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Table 4.12.: n = 1000,000 and p = 50. X ~ LN, ¢ ~ GA. MSE comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 2.9086 1.9188  373130.2141 224315.2776
0.02% 200 0.2945 0.3817 61749.0496  71024.1589
0.03% 300 0.1458 0.2176 24317.4139  38977.8965
0.04% 400 0.0953 0.1444 13816.3780  29166.4494
0.05% 500 0.0692 0.1118 9834.1094  20453.9124

0.1% 1000 0.0301 0.0504 3263.1361 9319.8513
0.2% 2000 0.0128 0.0242 1480.4045 4382.3974
0.3% 3000 0.0082 0.0157 896.9277 2985.0254
0.4% 4000 0.0062 0.0117 659.8395 2213.4370
0.5% 5000 0.0048 0.0092 529.8405 1757.3076
—e—  A-optimal RLM
© - &y Uniform RLM
% +- A-optimal LM
X === Uniform LM
° %6!‘
8;';',;&
c 0— o %
0 1000 2000 3000 4000 5000

Fig. 4.15.: log(MSE) for X ~ LN, e ~ GA.



Below are the MSEs for different cases when sampling distribution is truncated:
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Table 4.13.: n = 1000,000 and p = 50. X ~ GA, ¢ ~ GA. MSE comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers when truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.4595 1.8671  556735.8074 225598.3397
0.02% 200 0.4143 0.4125 78248.2859  72720.6866
0.03% 300 0.2182 0.2385 32006.2891  43340.4611
0.04% 400 0.1443 0.1683 18906.525  30956.5055
0.05% 500 0.1077 0.1269 13176.5226  23921.2265

0.1% 1000 0.0465 0.0601 4996.4308  11344.4441
0.2% 2000 0.0208 0.0291 2114.717 5511.4154
0.3% 3000 0.0133 0.0193 1374.5657 3627.252
0.4% 4000 0.0099 0.0143 1007.814 2717.039
0.5% 5000 0.0079 0.0114 796.2953 2168.8922
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Fig. 4.16.: log(MSE) for X ~ G A, ¢ ~ GA when truncated.
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Fig. 4.17.: log(MSE) for X ~ G A, € ~ Laplace when truncated.
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Table 4.14.: n = 1000,000 and p = 50. X ~ GA, ¢ ~ Laplace. MSE comparison
of robust linear regression with bisquare function and linear regression using A-optimal
probability and Uniform probability for different subsample sizes r with 10% outliers when
truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.0347 1.4913  531724.0245 222591.4705
0.02% 200 0.3493 0.3322 74933.0404  73813.1314
0.03% 300 0.1828 0.1833 30631.5534  43524.4599
0.04% 400 0.117 0.1253 18504.9972  30637.0618
0.05% 500 0.0873 0.0943 12835.5122  24118.2255

0.1% 1000 0.0349 0.0415 4981.6428  11347.1171
0.2% 2000 0.0156 0.0201 2188.953 5572.4994
0.3% 3000 0.0099 0.013 1377.5359 3662.9044
0.4% 4000 0.0072 0.0098 1000.5944 2742.2095
0.5% 5000 0.0057 0.0079 795.1459 2176.8212

—&—  A-optimal RLM
-4~ Uniform RLM
------ A-optimal LM
== Uniform LM

e

Xx,

Mool

log(MSE)
2
|

0 1000 2000 3000 4000 5000

Fig. 4.18.: log(MSE) for X ~ LN, ¢ ~ GA when truncated.
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Table 4.15.: n = 1000,000 and p = 50. X ~ LN, ¢ ~ GA. MSE comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers when truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 2.7654 1.9563 396810.48 218181.6004
0.02% 200 0.2863 0.3915 66830.3188  68020.8447
0.03% 300 0.1421 0.2312 27335.3013  38027.5165
0.04% 400 0.0986 0.1502 15814.4264  28184.7247
0.05% 500 0.0676 0.1085 11231.7084  21243.1748

0.1% 1000 0.0289 0.0487 3825.4982 9810.8458
0.2% 2000 0.0131 0.0236 1500.7429 4756.3997
0.3% 3000 0.0085 0.0157 939.1146 2907.8552
0.4% 4000 0.006 0.0113 661.7802 2256.9189
0.5% 5000 0.0048 0.0098 540.8007 1713.0251

Below are the MSEOs for different cases when sampling distribution is the original one:
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Table 4.16.: n = 1000, 000 and p = 50. X ~ GA, ¢ ~ GA. MSEO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability

and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.4561 1.8861  618364.8658 245005.9778
0.02% 200 0.4096 0.419  120314.7306  94812.1887
0.03% 300 0.22 0.2383 67067.7088  66169.5902
0.04% 400 0.1453 0.1658 50930.6015  53253.5515
0.05% 500 0.1073 0.1265 43769.7656  46493.3224

0.1% 1000 0.046 0.0586 30991.8895  33774.3911
0.2% 2000 0.0212 0.029 26508.1618  28071.1771
0.3% 3000 0.0136 0.0191 25082.6306  26166.3174
0.4% 4000 0.01 0.0143 24396.9124  25292.9472
0.5% 5000 0.0079 0.0115 24019.0855  24789.3175
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Fig. 4.19.: log(MSEQ) for X ~ GA,e ~ GA
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Table 4.17.: n = 1000,000 and p = 50. X ~ GA, ¢ ~ Laplace. MSEO comparison
of robust linear regression with bisquare function and linear regression using A-optimal
probability and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.0311 1.4634  657535.4989 249880.7805
0.02% 200 0.3589 0.3307  125711.7982  95514.9263
0.03% 300 0.1824 0.1835 69211.4169  65095.5737
0.04% 400 0.1174 0.1278 51920.1796  53625.5132
0.05% 500 0.0874 0.0944 43893.3555  46342.3444

0.1% 1000 0.0358 0.0418 31512.8781  33803.7404
0.2% 2000 0.0158 0.0204 26546.4572  28048.9484
0.3% 3000 0.0098 0.0134 25048.6392 26133.188
0.4% 4000 0.0074 0.01 24375.747  25316.6427
0.5% 5000 0.0057 0.008 24023.3109  24575.6695
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Fig. 4.20.: log(MSEOQ) for X ~ G A, ¢ ~ Laplace
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Table 4.18.: n = 1000, 000 and p = 50. X ~ LN, ¢ ~ GA. MSEO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 2.9088 1.919 347158.9787 246074.5653
0.02% 200 0.2945 0.3817 54211.2317  92855.1134
0.03% 300 0.1458 0.2177 29599.6497 61401.625
0.04% 400 0.0953 0.1444 23826.6701 51543.8083
0.05% 500 0.0692 0.1118 22017.3926  41899.1074

0.1% 1000 0.0301 0.0505 20845.5627 30621.328
0.2% 2000 0.0128 0.0243 20754.0602  26496.0392
0.3% 3000 0.0083 0.0158 20804.6139  24668.2576
0.4% 4000 0.0062 0.0118 21214.9839  23683.2772
0.5% 5000 0.0048 0.0092 21369.3344 23370.714
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Fig. 4.21.: logMSEQ) for X ~ LN, e ~ GA.



Below are the MSEOs for different cases when sampling distribution is truncated:
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Table 4.19.: n = 1000,000 and p = 50. X ~ GA, ¢ ~ GA. MSE comparison of robust

linear regression with bisquare function and linear regression using A-optimal probability

and Uniform probability for different subsample sizes r with 10% outliers when truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.4596 1.8671  653951.0926  248152.453
0.02% 200 0.4145 0.4126  127075.6281  95272.0855
0.03% 300 0.2183 0.2385 69715.9953  65809.1992
0.04% 400 0.1444 0.1683 52006.0305  53745.8345
0.05% 500 0.1078 0.127 43922.2971  46236.6371

0.1% 1000 0.0466 0.0602 31366.2393  34118.0196
0.2% 2000 0.0209 0.0291 26238.5678  28065.5655
0.3% 3000 0.0134 0.0193 25002.863  26154.0752
0.4% 4000 0.0099 0.0144 24386.5436 25176.338
0.5% 5000 0.0079 0.0114 24012.336  24669.0117
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Fig. 4.22.: log(MSEQ) for X ~ GA, ¢ ~ GA when truncated
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Fig. 4.23.: log(MSEOQ) for X ~ G'A, ¢ ~ Laplace when truncated
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Table 4.20.: n = 1000,000 and p = 50. X ~ GA, ¢ ~ Laplace. MSEO comparison
of robust linear regression with bisquare function and linear regression using A-optimal
probability and Uniform probability for different subsample sizes r with 10% outliers when
truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 3.0348 1.4914  625893.2047 244737.5811
0.02% 200 0.3494 0.3322  122831.7439  96597.0051
0.03% 300 0.1829 0.1834 67516.909  66564.3792
0.04% 400 0.1171 0.1253 51230.4463  52700.1743
0.05% 500 0.0873 0.0943 43183.624 467979115

0.1% 1000 0.0349 0.0415 31286.3997  33972.1779
0.2% 2000 0.0157 0.0201 26517.7118  28017.0515
0.3% 3000 0.0099 0.0131 25101.3981  26342.9539
0.4% 4000 0.0073 0.0099 24392.1154  25272.0501
0.5% 5000 0.0057 0.008 24074.5701  24796.5678
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Fig. 4.24

.: log(MSEOQ) for X ~ LN, ¢ ~ GA when truncated.
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Table 4.21.: n = 1000, 000 and p = 50. X ~ LN, € ~ GA. MSEO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers when truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 2.7656 1.9562  350483.4742 239614.7534
0.02% 200 0.2863 0.3915 56581.0183  92155.8212
0.03% 300 0.142 0.2312 27748.2745  63786.3042
0.04% 400 0.0986 0.1502 23420.9437  54931.9447
0.05% 500 0.0676 0.1085 22750.7615  46088.2339

0.1% 1000 0.0289 0.0487 212449044  34443.5018
0.2% 2000 0.0131 0.0236 22478.2676  28325.2434
0.3% 3000 0.0085 0.0157 22436.3124  27458.8191
0.4% 4000 0.006 0.0113 23098.0652  25738.4723
0.5% 5000 0.0048 0.0098 23447.0138  24976.7101

Below are the MADOs for different cases when sampling distribution is the original

one:
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Table 4.22.: n = 1000, 000 and p = 50. X ~ GA, ¢ ~ GA. MADO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability

and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM Uniform LM
0.01% 100 1.8442 13011 757.7214 478.6533
0.02% 200 0.6313 0.6394 333.3065 300.6756
0.03% 300 0.4621 0.4821 252.8117 252.8283
0.04% 400 0.377 0.4034 222.8302 229.5451
0.05% 500 0.3241 0.3528 207.0961 213.3701

0.1% 1000 0.2125 0.2417 175.1075 182.2686
0.2% 2000 0.1447 0.1697 162.7017 166.707
0.3% 3000 0.1155 0.1371 158.2276 161.6124
0.4% 4000 0.0993 0.1186 156.1016 158.6157
0.5% 5000 0.0883 0.1066 154.718 157.2894
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Fig. 4.25.: log(MADO) for X ~ GA, e ~ GA
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Table 4.23.: n = 1000,000 and p = 50. X ~ GA, € ~ Laplace. MADO comparison
of robust linear regression with bisquare function and linear regression using A-optimal
probability and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM Uniform LM
0.01% 100 1.6987 1.1626 790.3447 490.9932
0.02% 200 0.5875 0.5653 341.2833 302.7485
0.03% 300 0.4216 0.4225 257.5121 252.0195
0.04% 400 0.3374 0.3549 2247738 230.0359
0.05% 500 0.2919 0.3042 207.4624 212.4139

0.1% 1000 0.1875 0.2019 176.5912 182.5629
0.2% 2000 0.1245 0.1411 162.437 166.7376
0.3% 3000 0.0983 0.1154 157.918 161.48
0.4% 4000 0.0846 0.0991 156.0095 159.02
0.5% 5000 0.0753 0.0885 154.8397 156.5871
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Fig. 4.26.: log(MADO) for X ~ GA, € ~ Laplace
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Table 4.24.: n = 1000,000 and p = 50. X ~ LN, ¢ ~ GA. MADO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability

and Uniform probability for different subsample sizes r with 10% outliers.

r/n r A-optimal RLM Uniform RLM A-optimal LM Uniform LM
0.01% 100 1.3558 1.0927 485.2207 381.8553
0.02% 200 0.4417 0.4766 193.6196 233.4021
0.03% 300 0.3183 0.3648 142.3177 187.5426
0.04% 400 0.2514 0.2974 130.2304 171.902
0.05% 500 0.2151 0.2621 130.3351 165.124

0.1% 1000 0.139 0.1823 137.5611 153.7263
0.2% 2000 0.0929 0.1208 139.6707 150.4054
0.3% 3000 0.0731 0.0978 141.9885 148.2635
0.4% 4000 0.0646 0.0837 144.2572 147.2651
0.5% 5000 0.0564 0.0736 144.2851 149.5901
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Fig. 4.27.: log(MADO) for X ~ LN, e ~ GA.
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Below are the MADOs for different cases when sampling distribution is truncated:

Table 4.25.: n = 1000, 000 and p = 50. X ~ GA, ¢ ~ GA. MADO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers when truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 1.8197 1.2959 786.5195 480.6537
0.02% 200 0.6362 0.633 344.6008 303.1818
0.03% 300 0.4629 0.4838 257.5532 254.1804
0.04% 400 0.3755 0.4063 225 228.407
0.05% 500 0.3267 0.3543 206.786 213.1039

0.1% 1000 0.214 0.2437 176.4543 183.8921
0.2% 2000 0.1431 0.1697 161.9544 167.0787
0.3% 3000 0.1151 0.1383 157.8499 161.7436
0.4% 4000 0.0984 0.1193 155.773 158.2788

0.5% 5000 0.0881 0.106 154.7489 156.8343
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Fig. 4.28.: log(MADO) for X ~ G A, ¢ ~ GA when truncated
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Fig. 4.29.: log(MADO) for X ~ G'A, ¢ ~ Laplace when truncated
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Table 4.26.: n = 1000,000 and p = 50. X ~ GA, € ~ Laplace. MADO comparison
of robust linear regression with bisquare function and linear regression using A-optimal
probability and Uniform probability for different subsample sizes r with 10% outliers when
truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM  Uniform LM
0.01% 100 1.7026 1.1591 762.4678 484.7652
0.02% 200 0.5803 0.5693 339.0357 304.3177
0.03% 300 0.4217 0.4206 253.3356 254.9008
0.04% 400 0.3369 0.3501 221.9994 227.2923
0.05% 500 0.2928 0.3031 205.2161 213.9226

0.1% 1000 0.1842 0.2013 175.7962 183.7532
0.2% 2000 0.1242 0.1405 162.5825 167.0774
0.3% 3000 0.0987 0.1137 158.0078 161.7805
0.4% 4000 0.0845 0.0987 156.0212 159.0116
0.5% 5000 0.0751 0.0886 154.8971 157.2947
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Fig. 4.30.: log(MADO) for X ~ LN, ¢ ~ GA when truncated.
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Table 4.27.: n = 1000,000 and p = 50. X ~ LN, ¢ ~ GA. MADO comparison of robust
linear regression with bisquare function and linear regression using A-optimal probability
and Uniform probability for different subsample sizes r with 10% outliers when truncated.

r/n r A-optimal RLM Uniform RLM A-optimal LM Uniform LM
0.01% 100 1.3554 1.0929 480.6763 373.2731
0.02% 200 0.4451 0.4887 196.7637 224.5882
0.03% 300 0.3088 0.3716 139.4373 194.5681
0.04% 400 0.2552 0.3008 128.1133 192.3649
0.05% 500 0.2151 0.2562 129.4284 174.928

0.1% 1000 0.1345 0.1735 137.9613 162.8741
0.2% 2000 0.0935 0.1205 146.4575 157.0033
0.3% 3000 0.0741 0.0976 147.9493 158.3002
0.4% 4000 0.0644 0.0815 150.8639 155.451
0.5% 5000 0.0569 0.0734 151.9705 153.4914

We can see that, for MSEs, MSEOs and MADQOs, in almost all the situations, the values
calculated from robust linear regression with bisquare function using A-optimal sampling
distribution are the smallest among all four different methods. In most cases these values
are smaller than those from robust linear regression with bisquare function using Uniform
probability, linear regression using A-optimal probability, and linear regression using Uni-
form probability. Linear regression with Uniform probability performs worst. In the pres-
ence of outliers, the linear model subsampling estimators consistently generate huge MSE
values in all simulation scenarios compared to robust regression subsampling estimators.
Hence they are not as stable as the robust regression subsampling estimators when outliers

are included. The A-optimal robust estimator outperforms the uniform robust estimator.
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4.4 Breakdown point

Next we study how tolerant the methods are to outliers via breakdown point. Let n =
100,000, p = 50, 79 = 5%n. Consider y = X3 + €, where 3 = (1%,,0.1 - 11)T,
X; ~ N(0,1) are iid., ¢ = 1,---,50. We consider the following case for the error
distribution:

e ~ N(0,1) with a varying percentage of observations replaced by outliers in y direc-
tion generated from e ~ Uni f (1000, 2000).

Apply A-optimal and Uniform subsampling methods to simulated data with subsam-
ple size r = 100(0.1%n), 300(0.3%n), 500(0.5%n), 1000(1%n), 3000(3%n), 5000(5%n).
The percentage of outliers is chosen from 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45%, 49%, 50%. The number of repetition is M = 500. For A-optimal subsampling
method, we calculate the mean squared errors (M SE, M SE0) and the median absolute de-
viation (MADO; You, 1999) for each subsample size and one of the ¢/ functions(bisquare,
Huber, Hampel). In the plot, the logarithm with base 10 is taken for MSEs, MSEOs,
MADOs.

Below are the MSEs, MSEQOs, MADOs for bisquare function:
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Fig. 4.31.: log(MSE) for weighted robust linear regression with bisquare function using
A-optimal probability for different subsample sizes r and different proportions of outliers
in y direction.
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Fig. 4.32.: log(MSEO) for weighted robust linear regression with Bisquare function using
A-optimal probability for different subsample sizes r and different proportions of outliers

in y direction.
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Fig. 4.33.: log(MADO) for weighted robust linear regression with Bisquare function using
A-optimal probability for different subsample sizes r and different proportions of outliers
in y direction.
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Table 4.30.: n = 100, 000 and p = 50. MADO comparison of robust linear regression with
Bisquare function using A-optimal probability for different subsample sizes r and different

proportions of outliers in y direction.

r 0.1%n 0.3%n 0.5%n 1%n 3%n 5%n
outlier (100) (300) (500) (1000) (3000) (5000)
1% 1.83 0.4649 0.3306 0.2151 0.1186 0.0908
5% 1.8109 0.4668 0.3258 0.2177 0.1193 0.0913
10% 1.8542 0.4668 0.3249 0.2135 0.118 0.0908
15% 1.825 0.4588 0.3279 0.2127 0.1165 0.0901
20% 1.8494 0.4654 0.3319 0.2168 0.1194 0.0924
25% 1.8405 0.4662 0.3311 0.215 0.1197 0.0927
30% 1.8522 0.4616 0.3241 0.2174 0.1184 0.0923
35% 1.8577 0.4692 0.3294 0.2168 0.1192 0.0934
40% 1.8468 0.4702 0.3308 0.2197 0.1213 0.0925
45% 1.9019 0.4688 0.3285 0.2171 0.1211 0.094
49% 13.4581 0.7859 0.5354 0.351 0.1934 0.148
50% 1426.0666 830.6151 792.3451 770.9764 752.4168 750.1542

We can see that for MSEs, MSEOs and MADOs, there is a huge increase near 49% or

50% outliers. The breakdown point of weighted subsample estimator for A-optimal robust

linear regression with bisquare function for this case is close to 0.5 which is the largest

possible value for breakdown point.

Below are the MSEs, MSEOs, MADOs for Huber function:
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Fig. 4.34.: 1og(MSE) for weighted robust linear regression with Huber function using A-
optimal probability for different subsample sizes r and different proportions of outliers in 'y
direction.
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Fig. 4.35.: 1og(MSEOQ) for weighted robust linear regression with Huber function using A-
optimal probability for different subsample sizes r and different proportions of outliers in 'y
direction.
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Fig. 4.36.: log(MADO) for weighted robust linear regression with Huber function using
A-optimal probability for different subsample sizes r and different proportions of outliers
in y direction.
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Table 4.33.: n = 100, 000 and p = 50. MADO comparison of robust linear regression with
Huber function using A-optimal probability for different subsample sizes r and different
proportions of outliers in y direction.

r 0.1%n 0.3%n 0.5%n 1%n 3%n 5%n
outlier (100) (300) (500) (1000) (3000) (5000)
1% 1.3504 0.4692 0.3343 0.2159 0.1228 0.0951
5% 1.8349 0.5911 0.421 0.296 0.1998 0.1787
10% 4252898  0.9042 0.6641 0.4944 0.3857 0.3673
15%  716.595 2.0289 1.2765 0.9235 0.751 0.709
20% 883.4018  450.7754 376.049  297.1991 2.6409 2.2458
25%  996.5681  554.0115 489.3197 434.1895 396.798  387.4063
30% 1039.0285 591.7994 531.1281 489.9046 461.2415 456.8651
35% 1078.7758 647.7022 597.6204 560.4974 535.6253 531.1443
40% 1114.4489 714.7719 666.5069 631.6665 610.1478 606.9513
45% 1155.0599 768.1869 728.0054 703.8719 684.3247 680.0259
49% 1170.5752 818.8342 780.6631 757.9019 742.5983 739.2662
50% 1172.2103 828.5515 791.9249 772.293  757.2967 753.3127

We can see that for MSEs, MSEOs and MADOs, there is a huge increase between 10% or
25% outliers. The breakdown point of weighted subsample estimator for A-optimal robust
linear regression with Huber function for this case is between 0.1 and 0.25 approximately.

Below are the MSEs, MSEOs, MADOs for Hampel function:
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Fig. 4.37.: log(MSE) for weighted robust linear regression with Hampel function using A-
optimal probability for different subsample sizes r and different proportions of outliers in 'y

direction.
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Fig. 4.38.: log(MSEOQ) for weighted robust linear regression with Hampel function using
A-optimal probability for different subsample sizes r and different proportions of outliers

in y direction.
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Table 4.35.: n = 100, 000 and p = 50. MSEO comparison of robust linear regression with
Hampel function using A-optimal probability for different subsample sizes r and different
proportions of outliers in y direction.

r 0.1%n 0.3%n 0.5%n 1%n 3%n 5%n
outlier (100)  (300)  (500)  (1000) (3000) (5000)
1% 1.5096 0.1966 0.0981 0.0421 0.0129 0.0076
5% 1.5496 0.2011 0.0992 0.0428 0.0128 0.0076
10% 1.5194 0.1994 0.1006 0.0425 0.0132 0.0079
15% 1.5428 0.2011 0.099  0.0425 0.0129 0.0079
20% 1.556 0.1978 0.0983 0.0432 0.0131 0.008
25% 1.4878 0.202  0.0977 0.043  0.0129 0.008
30% 1.5417 0.201 0.0984 0.0428 0.0131 0.0078
35% 1.5135 0.2008 0.1012 0.0426 0.013  0.008
40% 1.5392  0.2015 0.1002 0.0422 0.0133 0.0081
45% 1.5684 0.2051 0.1021 0.0443 0.0138 0.0084
49% 1.5813 0.2069 0.1034 0.0444 0.0139 0.0086
50% 1.5614 0.2033 0.1009 0.0446 0.0139 0.0085
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Fig. 4.39.: log(MADO) for weighted robust linear regression with Hampel function using
A-optimal probability for different subsample sizes r and different proportions of outliers
in y direction.
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Table 4.36.: n = 100, 000 and p = 50. MADO comparison of robust linear regression with
Hampel function using A-optimal probability for different subsample sizes r and different
proportions of outliers in y direction.

r 0.1%n 0.3%n 0.5%n 1%n 3%n 5%n
outlier (100)  (300)  (500)  (1000) (3000) (5000)
1% 1.1952 0.4369 0.3085 0.205 0.1136 0.0867
5% 1.2134 0.4405 0.3132 0.2044 0.1119 0.0864
10% 1.2085 0.4421 03146 0.204 0.1142 0.0888
15% 1.2076 0.4438 0.3102 0.2053 0.112  0.0886
20% 1.2172  0.4398 0.3108 0.2061 0.1143 0.0893
25% 1.1845 0.4444 0311 0.2046 0.1131 0.0884
30% 1.2124 0.4398 0.3095 0.2045 0.1137 0.0881
35% 1.1967 0.4436 0.315 0.2044 0.1133 0.088
40% 1.2182 0.4435 0.3131 0.2028 0.1137 0.0896
45% 1.2232  0.4447 03146 0.2088 0.1161 0.0904
49% 1.2175 0.4481 0.317 0.2079 0.1179 0.0918
50% 1.2205 0.4449 0.3123 0.2082 0.1168 0.0917

Hampel function is similar to bisquare function. The outliers with extreme residules
will receive a 0 weight. We can see that, for MSEs, there is a huge increase near 49%
or 50% outliers. But for MSEOs or MADOs, There’re not so much change near 49% or
50% outliers. It doesn’t perform stable when the percentage of outliers is close to 50%.
This is because we can’t distinguish between outliers and data points from original distri-
bution. The breakdown point of weighted subsample estimator for A-optimal robust linear

regression with Hampel function for this case is close to 0.5.
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5. REAL DATA ANALYSIS
5.1 Beijing Multi-Site Air-Quality Data

We found this data on UCI Machine Learning Repository. This is a hourly air pollu-
tants data set for 12 air-quality monitoring sites in Beijing. The data was collected from
03/01/2013 to 02/28/2017. ’NA’ in the data set indicates missing values. There are 4 time
variables(year, month, day, hour), 6 air pollutants(PM2.5: PM2.5 concentration, PM10:
PM10 concentration, SO2: SO2 concentration, NO2: NO2 concentration, CO: CO concen-
tration, O3: O3 conce) and 6 relevant meteorological variables, where units of concentra-
tion are (pg/m?). We use PM2.5 as the response variable and it measures the atmospheric
PM, or fine particles, that are smaller than 2.5 pm in diameter. Due to their small size and
light weight, fine particles in the air have a higher chance of being inhaled by humans and
can enter deep into the lung or even the circulatory system. Fine particles are associated
with many adverse health outcomes such as asthma, heart attack, bronchitis, lung cancer,
premature death, birth defects, and ect.

There are 420768 observations in total. We removed 8739 observations due to missing
value of the response variable PM2.5. The final sample size is 412029. For variables
PM10, SO2, NO2, CO, O3, TEMP, PRES, DEWP, RAIN and WSPM, the missing values
are imputed by the corresponding medians. For the categorical variable wind direction
which has 16 levels, 7 levels including west(W) direction are combined to a new level
“west” while the rest levels are combined to the other level “non-west”. Variable station is
the air-quality monitoring site with 12 levels, and dummy variables were created for it in
analysis. Finally, the number of variables is p = 26.

After the application of the linear regression, the studentized residual plot is used to
show outliers in y direction. Observations with standardized residuals beyond +/-4 are

outliers.
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Fig. 5.1.: Studentized residual plot for linear regression

We apply A-optimal and Uniform subsampling methods to the data set with subsample
size r = 412(0.1%n), 1236(0.3%n), 2060(0.5%n), 4120(1%n), 12361(3%mn), 20601 (5%n).
Number of repetitions is M/ = 1000. For each subsampling method and each subsample

size, we calculate MSE and the approximated MAD as follows:
| M
MSEB) =57 D 187 = Bull®
m=1

MAD(B;) = median(||B;,,, = Ball).

For robust linear regression with bisquare function, we have the following MSE results.
We can see that the A-optimal subsampling method in robust linear regression has the
smallest MSEs for each subsample size r for this dataset. It performs the best in reducing
MSE in the presence of outliers among the four different methods. Uniform subsampling
distribution in linear regression has the largest MSEs for each subsample size r for this
dataset. It performs the worst, for this data, in reducing MSE in the presence of outliers

among the four different methods.
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Fig. 5.2.: log(MSE) for linear regression and robust linear regression with Bisquare func-
tion using A-optimal and Uniform subsampling distributions for different subsample size

T.

Table 5.1.: Comparison of MSEs for linear regression and robust linear regression with
Bisquare function using A-optimal and Uniform subsampling distributions for different
subsample size r.

/m r A-optimal RLM  Uniform RLM  A-optimal LM Uniform LM
0.1% 412 2588817.1724  4114827.7885 3852783.6636 9063634.956
0.3% 1236  742696.2441 1463885.6896 1191795.308  3735844.5322
0.5% 2060  409862.4359 772042.6982  659470.0363  2272993.9797

1% 4120  188448.3827 386179.655 282806.6555  1207047.354

3% 12361 65302.6586 133343.6885  91751.8475 454005.487

5% 20601 38740.7249 79852.6902 53939.6756 255814.2036

For bisquare function, we have the following MAD results. We can see that the A-

optimal subsampling method in robust linear regression has the smallest MAD for each
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subsample size r for this dataset. It is better in the presence of outliers compared to the

other 3 methods.
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Fig. 5.3.: log(MAD) for linear regression and robust linear regression with Bisquare func-
tion using A-optimal and Uniform subsampling distributions for different subsample size

T.

Table 5.2.: Comparison of MADs for linear regression and robust linear regression with
Bisquare function using A-optimal and Uniform subsampling distributions for different

subsample size r.

/m r A-optimal RLM  Uniform RLM A-optimal LM  Uniform LM
0.1% 412 1100.4583 1413.255 1326.2759 1799.5802
0.3% 1236  574.3529 774.77698 742.1133 1183.6729
0.5% 2060 428.1704 584.8767 530.5962 1003.5927

1% 4120  298.9066 404.7682 354.1132 716.205

3% 12361 170.0925 246.2049 199.4815 437.2804

5% 20601 132.3733 194.9058 158.5105 342.1061




100

For robust linear regression with Huber function, we have the following MSE results.
We can see that the A-optimal subsampling method in robust linear regression has the
smallest MSE for each subsample size r for this dataset. It performs slightly better than
A-optimal subsampling method in linear regression. This is because that Huber function

has a constant value for large residuals.
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Fig. 5.4.: log(MSE) for linear regression and robust linear regression with Huber function
using A-optimal and Uniform subsampling distributions for different subsample size r.
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Table 5.3.: Comparison of MSEs for linear regression and robust linear regression with
Huber function using A-optimal and Uniform subsampling distributions for different sub-

sample size r.

r/n r A-optimal RLM  Uniform RLM  A-optimal LM  Uniform LM
0.1% 412 3347061.5583  4658950.4226 3879368.2803 9816507.1163
0.3% 1236  1028945.1942 1408661.1826 980506.6688  3543168.0893
0.5% 2060  558384.7192 848506.0863  573216.2391  2343346.1903

1% 4120 239141.5048 388542.4508  265183.1937  1140838.7643

3% 12361 79349.4698 127805.9036  87159.7014 368142.7116

5% 20601 55773.9716 79441.4473 58223.5929 262954.3229

For Huber function, we have the following MAD results. We can see that the A-optimal
subsampling method in robust linear regression has the smallest MAD for each subsample
size r for this dataset. It is slightly better in the presence of outliers than A-optimal sub-

sampling method in linear regression.
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Fig. 5.5.: log(MAD) for linear regression and robust linear regression with Huber function
using A-optimal and Uniform subsampling distributions for different subsample size r.

Table 5.4.: Comparison of MADs for linear regression and robust linear regression with
Huber function using A-optimal and Uniform subsampling distributions for different sub-
sample size r.

/m r A-optimal RLM  Uniform RLM A-optimal LM  Uniform LM
0.1% 412 1216.0778 1439.3713 1268.9915 2036.7866
0.3% 1236  709.7398 808.8446 719.242 1150.7702
0.5% 2060 515.9131 636.9039 531.3388 1018.8622

1% 4120  360.1655 423.4923 360.552 687.4179

3% 12361 183.8277 234.5416 205.7784 420.2502

5% 20601 161.2337 203.1769 166.0725 318.9157

For Hampel function, we have the following MSE results. We can see that the A-

optimal subsampling method in robust linear regression has the smallest MSE for each

subsample size r for this dataset. Although Hampel function is also a redescending func-



103

tion, the outliers in this dataset are not so extreme. So the performance of Hampel function

is similar to the performance of Huber function. It performs slightly better than A-optimal

subsampling method in linear regression.
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Fig. 5.6.: log(MSE) for linear regression and robust linear regression with Hampel function
using A-optimal and Uniform subsampling distributions for different subsample size r.

Table 5.5.: Comparison of MSEs for linear regression and robust linear regression with
Hampel function using A-optimal and Uniform subsampling distributions for different sub-
sample size r.

/m r A-optimal RLM  Uniform RLM  A-optimal LM Uniform LM
0.1% 412 3478805.0519  5217878.3421 4075391.6164 10666064.9054
0.3% 1236  907763.7299 1507597.2494  1022587.2296  3464293.4163
0.5% 2060  534597.3838 988622.8781  613061.0375  2616301.9548

1% 4120  253989.0098 432827.1309  286397.4529  1256585.9568

3% 12361 79203.8428 137700.8033  95914.5405 392234.6145

5% 20601 47652.4684 96064.9148 51456.0577 250922.7751
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For Hampel function, we have the following MAD results. We can see that the A-
optimal subsampling method in robust linear regression has the smallest MAD for each
subsample size r for this dataset. It is slightly better in the presence of outliers than A-

optimal subsampling method in linear regression.
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Fig.5.7.: log(MAD) for linear regression and robust linear regression with Hampel function
using A-optimal and Uniform subsampling distributions for different subsample size r.
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Table 5.6.: Comparison of MADs for linear regression and robust linear regression with
Hampel function using A-optimal and Uniform subsampling distributions for different sub-
sample size r.

r/n r A-optimal RLM  Uniform RLM A-optimal LM  Uniform LM
0.1% 412 1280.1732 1541.1313 1371.0452 2023.5457
0.3% 1236 615.9271 840.268 648.0935 1209.7804
0.5% 2060 499.9069 652.1511 538.9018 993.3874

1% 4120 341.0216 424.5177 358.9226 752.3638

3% 12361 193.3214 261.0656 198.0421 432.3086

5% 20601 144.872 199.7202 156.8613 313.2319

The MSE and MAD of A-optimal subsampling estimate in robust linear regression are
the smallest among the four methods. So, the A-optimal subsampling method in robust

linear regression is a good candidate for analyzing big data with outliers in real world.

5.2 Gas Sensor Array Data Set

We found this data on UCI Machine Learning Repository. In this data set, values from
16 chemical sensors were measured when gas mixture Ethylene and Methane in air varies
at different concentration levels randomly. The 16-sensor array signals were obtained con-
tinuously for 12 hours. This data set contains variables time (seconds), Methane or Ethy-
lene concentration set point (ppm), and 16 readings of the chemical sensors. Here we use
Methane concentration (ppm) as the response variable and recordings from 16 chemical
sensors as independent variables. There are n = 4,178, 504 observations in total in this
data set. p = 16.

After the application of the linear regression, the studentized residual plot is used to
show outliers in y direction. Observations with standardized residuals beyond +/-4 are

outliers.



106

Studentized Residuals
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Fig. 5.8.: Studentized residual plot for linear regression

We apply A-optimal and Uniform subsampling methods to the data set with subsam-
ple size r = 418(0.01%n), 836(0.02%n), 1254(0.03%n), 1671(0.04%n), 2089(0.05%n).
Number of repetitions is M/ = 1000. For each subsampling method and each subsample

size, we calculate MSE and the approximated MAD as follows:

1« ;
MSE(B) = 57> 185 = Bull®.

m=1
MAD(B;) = median(||;,,, - Bull).

Here we use bisquare function as the objective function in robust linear regression. We
have the following MSE results. We can see that the A-optimal subsampling method in
robust linear regression has the smallest MSEs for each subsample size r for this dataset
among the four different methods. It performs the best in reducing MSE when outliers
are included in this data set. Uniform subsampling distribution in linear regression has the
largest MSEs for each subsample size r for this dataset among the four different methods.

It performs the worst in reducing MSE when outliers are included in this data set.
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Fig. 5.9.: log(MSE) for linear regression and robust linear regression with Bisquare func-
tion using A-optimal and Uniform subsampling distributions for different subsample size
L.

Table 5.7.: Comparison of MSEs for linear regression and robust linear regression with
Bisquare function using A-optimal and Uniform subsampling distributions for different
subsample size r.

/m r A-optimal RLM  Uniform RLM  A-optimal LM Uniform LM
0.01% 418 1.9044 18.996 13.6011 71.8033
0.02% 836 1.0786 8.8036 4.6873 33.715
0.03% 1254 0.8535 5.4304 2.9869 18.9454
0.04% 1671 0.6731 3.4345 2.0191 12.2017
0.05% 2089 0.58 3.1152 1.7514 10.541

For bisquare function, we have the following MAD results. We can see that the A-

optimal subsampling method in robust linear regression has the smallest MAD for each
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subsample size r for this dataset among the four different methods. It has the best perfor-

mance in the presence of outliers for this dataset.
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Fig. 5.10.: log(MAD) for linear regression and robust linear regression with Bisquare func-
tion using A-optimal and Uniform subsampling distributions for different subsample size
.

Table 5.8.: Comparison of MADs for linear regression and robust linear regression with
Bisquare function using A-optimal and Uniform subsampling distributions for different
subsample size r.

/m r A-optimal RLM  Uniform RLM  A-optimal LM Uniform LM
0.01% 418 0.9362 2.5665 2.2622 5.2854
0.02% 836  0.7338 1.6352 1.4171 3.6547
0.03% 1254 0.6742 1.3103 1.1096 2.6551
0.04% 1671 0.6545 1.0281 0.9694 2.1381
0.05% 2089 0.585 1.0133 0.8266 2.0703




109

The MSE and MAD of A-optimal subsampling estimate in robust linear regression are
the smallest among the four methods. So, the A-optimal subsampling method in robust

linear regression is a good candidate for analyzing big data with outliers in real world.
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