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ABSTRACT

One of the most important aspects of visual perception is the inference of 3D shape from a 2D

retinal image of the real world. The existence of several valid mapping functions from object to

data makes this inverse problem ill-posed and therefore computationally difficult. In the human

vision, the retinal image is a 2D projection of the 3D real world. The visual system imposes

certain constraints on the family of solutions in order to uniquely and efficiently solve this inverse

problem. This project specifically focuses on the aspect of minimization of standard deviation of

all 3D angles (MSDA) for 3D perception. Our goal is to use a Deep Convolutional Neural

Network based on biological principles derived from visual area V4 to solve 3D reconstruction

using constrained minimization of MSDA. We conduct an experiment with novel shapes with

human participants to collect data and test our model.
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CHAPTER 1. INTRODUCTION

The basis of perceptual reconstruction of 3D objects in the human visual system is a long

studied problem. The problem of 3D perception from a projected image in 2D by the early visual

system has been formulated as an ”inverse problem” (Pizlo, 2001b; Poggio & Koch, 1985;

Tikhonov & Arsenin, 1977). An inverse problem is defined as a mapping from measurements

(data from visual perception) to model parameters (objects in consideration). The inverse problem

is the inverse of the forward problem - a mapping from the object to the measurements or data.

Solving an inverse problem amounts to finding the estimations of parameters (of objects) from

knowledge of the data. The existence of several valid mapping functions from object to data

makes this inverse problem ill-posed and therefore computationally difficult. In human vision, the

retinal image is a 2D projection of the 3D real world. It has been postulated in Pizlo (2001b) that

the visual system imposes certain constraints on the family of solutions in order to efficiently

solve this inverse problem.

1.1 A Typical Formulation of Ill-posed Inverse Problem

A typical formulation of the ill-posed inverse problem in 3D vision as depicted in Pizlo

(2001b) is shown in Equation 1.1. Here, I2D is the 2D retinal image, η3D is the actual object,

Fpro jection is a function that projects 3D object onto a 2D surface and ε2D is the error in measuring

I2D. It is to be noted that the image is erroneous with error ε2D embedded in its measurement and

the inverse function F−1
pro jection has to take this into account. η ′3D in Equation 1.2 is the estimate of

the 3D object as obtained by the inverse of projection function F−1
pro jection. In order to solve this

problem as a constrained optimization problem, one way to formulate the cost function is

presented in Equation 1.3.

I2D = Fpro jection(η3D)+ ε2D (1.1)

η
′
3D = F−1

pro jection(I2D) (1.2)

10



Etotal = ||Fpro jection(η
′
3D)− I2D||2 +λ ||econstraint(η

′
3D)|| (1.3)

The first term in the cost function Equation 1.3 for Etotal evaluates how consistent the

projected image of η ′3D is with the retinal image I2D. The second term evaluates how well η ′3D

satisfies some a-priori constraints. Recovering a 3D shape that best satisfies both these

requirements is equivalent to finding the global minimum of Etotal(η
′
3D,ε2D) in the space of all

valid 3D shapes. Sometimes there are two (or more) local minima of the cost function.
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1.2 Alternative Approaches

Several ideas have been explored to understand how human vision is able to derive 3D

structure of objects from the 2D retinal images. For example, an interpretation scheme for

deriving 3D structure from motion using rigidity principle has been proposed in Ullman (1979).

The spatial-temporal integration of retinal information can be used to decipher various object

properties (or cues) to approximate depth and shape information in Landy, Maloney, Johnston,

and Young (1995). These properties include texture as proposed in Aloimonos (1988), perceived

color as proposed in Cavanagh (1987), motion as proposed in Richards (1985), shading as

proposed in Clark and Yuille (1990) and so on. The perceived depth information from these cues

is probabilistic and contextual. None of these approaches will be discussed in the current work as

these approaches for measurement of depth from image cues are different from the 3D shape

perception approach in a significant way. All of these approaches are generally considered to be a

part of the early visual processing system as categorized in Poggio and Koch (1985). In contrast,

3D shape reconstruction as inverse problem approach can be positioned at the next stage in

processing where surface contours, edges and vertices have already been extracted from the

image. The problem then remains to combine these sub-structures using what Pizlo, Sawada, Li,

Kropatsch, and Steinman (2010) described are ’built-in’ mechanisms of simplicity principles that

automatically apply certain constraints without using any contextual information from the 2D

scene. Apart from the use of regularization method discussed above, Bayesian methods have been

used in augmenting missing information from 2D projection to infer depth and shape information

Pizlo (2001a).

It is to be noted that in the inverse problem approach, there may even be a complete loss of

depth information. The lost depth information may not be recovered by making assumptions and

using constraints to approximate the 3D shape. In such degenerate cases, human vision often fails

to achieve any shape constancy. This means that the 3D shape reconstruction is unreliable in

those cases. Shape constancy is also difficult to achieve with irregular and unstructured 3D

objects because application of simplicity constraints (discussed below) becomes difficult in case

of completely unstructured 3D objects.
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1.3 3D Perception and the Role of Visual Constraints

The main motivation behind this work is to design and test a biologically inspired network

based mechanism to study 3D perception of object shape from their 2D projections. In order to

understand how human vision perceives the 3D structure of objects from the 2D retinal images,

the use of certain constraints is essential. This is because, the inverse formulation of 3D percept is

not enough to solve for a unique shape perception. The visual system may impose one or more of

these constraints on the set of solutions in order to uniquely solve this inverse problem (Pizlo,

2001b).

1.3.1 Visual Constraints

The visual constraints of standard deviation of 3D angles, symmetry, planarity and

compactness of volume in models of 3D shape recovery are derived mathematically from the

principles of traditional Gestalt approach based on ’Law of Prägnanz’ or simplicity principle (the

principles of closure, good continuation, regularity, symmetry, simplicity and so forth). These

constraints are chosen specifically due to their demonstrated effectiveness in generating reliable

3D percepts in models of 3D vision (Li et al., 2009a).
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1.3.2 Minimization of standard deviation of angles (MSDA Principle)

The principle of minimization of standard deviation of all the angles in the reconstructed

object was first proposed in Marill (1991). Marill described this principle conceptually as

considering the orthographic extension of a given two dimensional object (line drawing) as the

input. For such an input, all three dimensional angles in the orthographic projection have to be

determined and their standard deviation needs to be computed. Then, the 3D object for which the

standard deviation of all 3D angles is minimum, is the acceptable interpretation. This means that

regular, symmetric and simple 2D shapes such as regular polyhedrons which have a small

standard deviation of angles are more preferred shapes than skewed irregular polygon. The same

is true according to the Law of Prägnanz. Therefore the former will have a higher likelihood of

achieving shape constancy by human subjects than the latter (Pizlo, 2001b). There have been

several variants of the MSDA principle since Marill (1991) which include minimization of the

standard deviation of the segment magnitudes of edges (MSDSM) (Brown & Wang, 1996) and

minimization of entropy of angle distribution between line segments in a 3D wire-frame (MEAD)

(Shoji et al., 2001). An illustration of the use of entropy of angle distribution for reconstruction

of 3D shapes from 2D line drawings as presented in Shoji et al. (2001) is shown in Figure 1.

1.3.3 Symmetry

Symmetry can be present in the 3D structure of an object in several orders. The most

simple symmetry is perhaps bilateral symmetry. Bilateral symmetry is also understood as plane

symmetry as there exists a plane that divides the object into mirror image halves. This can also be

referred to as mirror symmetry. A large majority of animals (almost 99%)(Finnerty (2005))

exhibit this type of symmetry. It has been shown by Vetter (1994) that for symmetry of higher

orders (existence of more than one symmetry plane) the entire 3D Euclidean structure of the

object can be recovered. Several computational models of 3D shape reconstruction from single

2D image (Pizlo, 2001b; Vetter, 1994)) restrict their inputs to having at least one plane of

symmetry since shape constancy is limited in case of asymmetric 3D shapes as discussed earlier.

In our case, the stimuli are generated with one plane of symmetry in order to achieve a reliable

shape constancy by human subjects as well as our computational model.
14



Figure 1. Example 3D objects reconstructed from 2D line drawings using a modified
version of the MSDA principle that uses entropy minimization in angle distribution
(Shoji et al., 2001). For every 2D line drawing presented in horizontal XY plane, a

3D interpretation is shown using vertical Z axis. The 3D interpretation that minimizes
entropy in angle distribution is the preferred interpretation.
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Bilateral symmetry can be used to restrict the family of 3D shapes recovered from a 2D

model. The family of shapes are further restricted in Li et al. (2009a) using other priors such as

compactness and surface area. A 2D model of the object can be represented as a set of point-wise

feature vector X = (x1,y1,x2,y2...xn,yn). Assuming mirror symmetry (based on known class of

the object) one can find corresponding symmetric pairs of points across the symmetric plane:

(xL,yL) and (xR,yR) as shown in Figure 2. A computational model to recover full 3D shape using

this approach is presented in Li, Pizlo, and Steinman (2009b).

Figure 2. Image from Li et al. (2009a) showing original (left) and virtual (right) views
of a symmetrical object. The corresponding vertices in the virtual view are named as
H ′ for vertex H in the real image and so on. All pairs of visible vertices are shown in
solid dots. The vertices that can be reconstructed using both symmetry and planarity
constraint are shown by open dots. The symmetric counterpart of a vertex is obtained

by reflecting that vertex on a symmetry plane. By assuming a planar surface, some
vertices such as U can be reconstructed using the symmetric reflection operation.

1.3.4 Planarity

Planarity is also a simplicity constraint in a sense that a planar curve is simpler than a

non-planar curve because there is more uncertainty of information in a non-planar curve than a

planar curve. The constraint pf planarity has been applied mostly in conjunction with other

constraints such as the MSDA constraint (Leclerc & Fischler, 1992; Liu, Cao, Li, & Tang,

2008). In certain cases, where all symmetric vertices are hidden from view, the assumption of

planarity can help in the interpretation of the 3D shape by prioritizing the simplicity of shape over

other more complex possibilities (Pizlo, 2001b).
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1.3.5 Compactness

Typically defined as the ratio of a surface area to the perimeter of a given 2D object,

compactness also maximizes what Gestalt psychologists called ’simplicity’ of a shape. For a 3D

case, Gestalt psychologists offered a physical model of a soap bubble since it minimizes surface

area to volume ratio due to physical forces of surface tension. It has been quite challenging to boil

down the concept of compactness or simplicity for a given solid into a physical, measurable

parameter but several models in psychophysics have used regularization theory to make this task

viable (Pizlo et al., 2010). This constraint has been used in conjunction with other constraint to

create unique 3D percept in a situation where there are more than a single interpretation of 3D

shape from 2D line drawing (Li et al., 2009a).

1.4 Summary

In this section, a brief overview of the principle of inverse problem formulation of 3D

shape reconstruction by the human vision is presented. This formulation requires the use of

various constraints to solve the inverse problem. A brief introduction to some of these visual

constraints is presented using a few examples. In this work, the constraint of minimization of

standard deviation of 3D angles (MSDA) will be used to solve the inverse problem of 3D shape

reconstruction in a deep neural network based model. The reason for using this particular

constraint is that, using this constraint is a good starting point for this line of research.

Additionally, computing 3D angle pairs from 2D input is computationally simpler to do in a

network than computing the other constraints. The details involving the computations required in

a network for this constraint are discussed in the next chapter.
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CHAPTER 2. MODELING PRINCIPLES

In order to build a computational model that is based on biological principles of

information processing, areas in the visual cortex especially the computational anatomy of the

striate cortex and some functional properties of the visual area V4 are taken into account. The

goal is to demonstrate how a computational approach based on biological principles may perform

constraint optimization in a network. The reason for emphasis on computation in a network is

simply because the brain itself is a network. The choice of Deep Neural Network substrate

(DNN) for our computational model is based on the recent discovery of interesting properties of

DNNs embedding general purpose visual computations while displaying extraordinary

task-trained accuracy on visual tasks. Dekel (2017) has shown that trained DNNs exhibit general

purpose computations that are computationally similar to biological visual systems. They found

that perceptual sensitivity to image changes has mid-computational correlates in DNN and

sensitivity to segmentation, crowding and shape has DNN end-computation correlates. It has also

been shown (Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014)

that when the same images are processed by trained DNN and by humans and monkeys, the final

DNN computation stages are strong predictors of human fMRI and monkey electrophysiology

data collected from visual areas V4 and IT. This is not to say that DNNs are the only

computational tools for studying properties of human vision as different learning algorithms and

different physical implementations may converge to the same computation when sufficiently

general problems are solved near-optimally (Dekel, 2017). However, DNNs present a wide array

of functional architecture and algorithmic choices that serve as a flexible mechanism to simulate

certain visual computations due to their generalization capabilities.
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2.1 Properties of visual area V4

Area V4 is a mid-tier visual cortical area in the ventral visual pathway that has been

studied for its role in shape perception among other sensory functions such as properties of

surface of objects, motion, visual attention and depth (Roe et al., 2012). Studies (Desimone &

Schein, 1987; Mountcastle, Motter, Steinmetz, & Sestokas, 1987) have shown prominent

orientation selectivity in this area suggesting its role in shape perception.

In order to encode complex 3D shape representations, this area specializes in encoding the

relative coordinates of object features such as edges and curvatures (Pasupathy & Connor, 2001).

The V4 cells are found to be extremely sensitive to the relative position of contour fragments

within objects rather than absolute coordinates of features. This area is critical to structural shape

coding scheme and also carries sufficient information for reconstruction of moderately complex

shape boundaries. This insight is relevant because the proposed computational model uses

stimulus object’s relative coordinates to compute the edges in the stimulus. The edges are then

used to extract properties about the overall shape of the object using matrix based operations.
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2.2 Computational and functional architecture of Striate Cortex

In order to inform the architecture of our model with regard to encoding and processing of

2D spatial coordinates and 3D z-coordinates computed from 2D spatial coordinates, the

functional and computational architecture of the striate cortex is studied. It is known from several

studies (Finlayson, Zhang, & Golomb, 2017; J. Fischer, Spotswood, & Whitney, 2011;

Grill-Spector & Malach, 2004) that 2D spatial location information is encoded in several visual

areas but it’s magnitude or sensitivity decreases along the visual hierarchy. On the other hand, 3D

perceived position in depth can be tracked inversely to 2D spatial position in the sense that

magnitude of depth decoding gradually increases from intermediate to higher visual hierarchy. As

one goes up the visual hierarchy, visual areas become increasingly tolerant of the 2D location

coordinates and increasingly become more sensitive to depth information. Finlayson et al. (2017)

have explored the nature of spatial position-in-depth representations and the interactions of the

three spatial dimensions. They presented various stimuli spatially in horizontal (X), vertical (Y)

and depth (Z) coordinates to explore how 2D and depth information may be organized and how

they interact throughout the visual cortex. As per their findings, there was a gradual increase in Z

information encoding in later visual areas and Z dimension information was found highly

overlapped with XY information in later areas. Such findings confirm that depth information is

gradually computed and stored with 2D information as one goes up the visual hierarchy. It makes

sense for the model to take the 2D coordinates as inputs and compute depth information in stages

across successive layers in the network.
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Another important consideration for the network model is the type of computational layers

that can best approximate the computation of depth dimension from lower dimensional inputs

(including 2D coordinates) in the visual hierarchy. It was postulated in Schwartz (1980) that one

way to encode higher dimension features such as depth using lower dimensional components such

as 2D spatial coordinates of a scene can be demonstrated by the functional architecture of striate

cortex. The columnar structures in striate cortex can allow encoding of higher dimensions such as

depth and color using spatial difference based mappings computed over lower dimensional

columnar structures (an algorithm for a possible mapping was also presented in Schwartz (1980)).

These type of mapping algorithms present a way in which the computational architecture of

striate cortex may allow multiple different dimensions to be multiplexed using something like a

spatial frequency channel for each dimension. Several computational models have since been

proposed for encoding schemes and differential mapping algorithms to accomplish such tasks (an

extensive review of these is presented in Fischer (2014)). Accordingly, in the model presented,

the lower dimensional inputs reside in separate channels for each of the different dimensions.

Computationally, convolutional layers in DNN provide enough flexibility to create a mapping

from lower layer to layers up in the hierarchy and apply filters to carry out computations

necessary to extract visual constraint of MSDA. The model successively computes a differential

mapping of the previous layer to extract higher order properties of the stimuli for the next layer.

The detailed computation involved in each layer of the model will be covered in Chapter 3.

2.3 Computations required to minimize MSDA constraint

If 3D shape perception is solved at least in part by using constraints as described in

Chapter 1, a network should consistently and correctly estimate the value of the missing depth

dimension by optimizing that value based on these constraints. The scope of this work is limited

to embedding the first constraint in the network - the minimization of standard deviation of angles

(MSDA) principle. This constraint is the most interesting because the key set of computations to

satisfy the MSDA constraint (such as edge computations using coordinates of the object) are most

closely related to the area V4 functional architecture discussed in this chapter.
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In the past, several computational approaches have been suggested to extract the missing

depth information using the MSDA constraint. We take some time to describe them in detail

while also making a case of our proposed approach.

• Strategy 1: Hill climbing algorithm (originally proposed in Marill (1991))

This is a search based algorithm that finds an optimal set of depth coordinates for every

vertex in the 3D structure so that the standard deviation of 3D angles between every pair of

intersecting edges on all vertices is minimized. At each stage of the search, the SDA

(standard deviation of angles) of the current vector is computed. Based on an arbitrary

step-size, a number of new vectors (called child nodes) are computed. If s is the step-size

and the current vector is~z≡ (z0,zl,zn−1, .,zn), then the children are:

(z0 + s,zl, ...),(z0− s,z1, ...),(z0,z1 + s, ...),(z0,zl− s, ...,zn−1). These children are vectors

that are one step-size away from the current vector. The value of SDA is computed for each

of these 2n children, and the child with minimum SDA is selected as the new current vector.

(If there is more than one, the first of these is selected.) The process then repeats, until no

further improvement in SDA is obtained. The vector with the smallest SDA of those

inspected is the result of the process.

• Strategy 2: Plane based optimization (originally proposed in Liu et al. (2008))

Instead of minimizing the standard deviation of angles between all pairs of edges at every

single vertex, one can use the faces of a 2D object to be the variables in the optimization

process. The SDA principle can be applied indirectly in the form of geometric constraints.

Suppose faces f1, f2, f3 pass through a given vertex v1 = [x1,y1,z1]
T . If all faces meet at

this vertex, they all share a common point z1. Using this point we re-write the equations of

the faces: z1 = a1x1 +b1y1 + c1, z1 = a2x1 +b2y1 + c2 , z1 = a3x1 +b3y1 + c3. Now,

eliminating z1 and re-writing the same equations in matrix form:

P f = 0

where P is a projection matrix of size M x (3N) and
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f = [a1,b1,c1,a2,b2,c2...an,bn,cn]
T is called a face parameter vector. The objective

function to minimize here can be written as:

Ψ( f ) = ψ
′(z1( f ),z2( f ), ...,zN( f ))

The task now is to find a face parameter vector f that minimizes the objective function

Ψ( f ) subject to the condition that f ∈ NULL(P). Where NULL(P) is the null space for

matrix P which is the set of all vectors v such that P.v = 0.

• Strategy 3: Gram Matrix based optimization (adapted from Boyd and Vandenberghe

(2004))

As in the case of the hill climbing based approach, this approach computes the 3D angles

between all pairs of intersecting edges on a vertex so that the standard deviation of all

angles in the 3D polyhedron is minimized. To this end, first a set of 3D edge vectors

v1,v2, ...,vn ∈ R3 are computed using an initial estimate of z. Each set of 3D vectors based

on a given estimate of z is referred to as a configuration. Each configuration has a set of

geometric properties that can be expressed in terms of a Gram Matrix given by:

G =V TV, V = [v1,v2, ...,vn],

so that, Gi, j = vT
i v j. The diagonal entries of G are given by:

Gii = l2
i , i = 1, ...,n, l1 = ||a1||, ..., ln = ||an||

The correlation coefficient between vi and v j is given by

ρi, j =
vT

i v j

||vi||2||v j||2
=

Gi, j

lil j

so that Gi, j is a linear function of ρi, j. The angle θi, j between vi and v j is given by

θi, j = cos−1
ρi, j = cos−1(Gi, j/(lil j))
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where cos−1ρ ∈ [0,π]. This Gram matrix representation is invariant under orthogonal

transformation. The Gram matrix is also symmetric and positive semidefinite. Since cos−1

is a monotonic function in [0,π], one can minimize any particular angle θi, j by minimizing

Gi, j. In order to minimize the SDA of all the angles, one can minimize the SDA of the

matrix G itself.

2.4 Summary

Out of the three approaches discussed, the Gram matrix based approach is the most

biologically realistic based on the discussion about computational and functional architecture of

area V4. This approach allows for successive differential computation in the network based on 2D

coordinates inputs of the stimuli. All the accompanying computations related to finding the 3D

edge vectors and Gram matrix can be embedded into the network using a series of convolutional

filters that emulate differential maps approach as discussed in Section 2.1.1. These computations

will be discussed in further details in the next chapter. It is to be noted that the convolutional

network based model learns to minimize SDA using gradient descent so, the best it can perform

after training may be equal to or lower than the performance of an exact MSDA finding algorithm.
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CHAPTER 3. MODEL DESCRIPTION

A DNN (Deep Neural Network) based model using Pytorch programming framework was

developed based on the ideas developed in Chapter 2. The model attempts to use the MSDA

constraint to estimate the missing depth parameter. The model does not attempt a full 3D

reconstruction of the image but estimates the angles for the most plausible 3D structure based on

the ideas in Chapter 1. The input for the model is a 2D canvas wherein coordinates of visible

vertices are presented to the model. The model then computes the 3D angles from these vertices

by learning to estimate the depth parameter that minimizes the standard deviation of all angles. In

this chapter, the inputs and outputs of the model and the computations within the successive

layers of the network is presented. The performance of this model was then compared to the

performance of human subjects in a 3D shape perception experiment described in the next chapter.

3.1 Model Inputs

The input to the model consists of 2D coordinates of a stimulus object along with a

connection vector representing edges existing between visible vertices. The model can process a

batch of such objects at a time with variable number objects in the batch. There is no

programmatic limit to the number of objects in a batch. All the input stimuli to the model are

created programmatically in the fixed coordinate system, so the 2D coordinates system is

consistent across all stimuli. For each stimulus, the following information is extracted: a) (x,y)

coordinates of the vertices and b) list of edges between each pair of vertices. Figure 3 shows a

sample of the input stimulus and a 3D voxel based rendering of the estimated object shape from

the model.
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Figure 3. Left: Picture of a sample stimulus in 2D with some vertices hidden in
orthogonal view; Right: A 3D voxel grid representing an estimated object shape by

adding an estimated depth to each of the visible vertex in the 2D stimulus.

The 2D coordinates of vertices is in the order of vertex numbers starting from 0 to (Nv−1)

where Nv is the total number of vertices. This order is preserved during the processing of the input

in the model. The list of pairs of vertices connected by an edge is encoded using a simple scheme

as shown in Algorithm 3.1. This algorithm encodes the edge connections in the same order that

the DNN computes edges from vertices using convolutional layers. So the edge connection vector

generated by the algorithm can be directly used inside the network to identify which connection

to drop and which ones to keep while computing 3D angles of connected vertices.
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Algorithm 3.1 Create Edge Connection Vector for a Stimulus
Require: V0 . . .VNv−1 . All visible vertices in current view.

Require: 3D Mesh object containing all vertices and connections.

Ensure: ConnVec (An array of all possible connections between every vertex pair in the stimulus.

An existing connection carries value of 1 at the appropriate position in the array while

non-existing connections have the value 0.)

1: function SEARCHEDGES(V0 . . .VNv−1)

2: ConnVec← [ ]

3: for step← 1 to (Nv−1) do

4: i← 0

5: for j← (i+ step) to Nv do

6: if Vi is connected to Vj then

7: ConnVec← [ConnVec,1]

8: else

9: ConnVec← [ConnVec,0]

10: end if

11: i← i+1

12: end for

13: end for

14: return ConnVec

15: end function

Since the approach to using constraints is geometric, no other cues are fed into the model

apart from the coordinate locations and a connection vector as shown above. This approach is in

line with the discussion about visual area V4 where translation from retinal position to some

reference coordinate system takes place and edges are computed before depth information is

estimated.
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3.2 Dimension Scaling

The model can be configured to process a fixed maximum number of vertices at any given

time. This is a limitation imposed by memory constraints in the simulation environment. When

the model is presented a stimulus input with fewer than the maximum number of possible

vertices, padding is used to fill up the unused matrix cells. This operation allows the model to

process a variable number of vertices per input object, even within a single batch of input. The

process of padding unused cells in the computation is straightforward for the convolution

operation. However, the edge connection vector in the input needs to be re-structured to comply

with the higher dimension of vertices. An algorithm that restructures a given connection matrix to

a different dimension is presented in Algorithm 3.2. The maximum number of vertices is set to be

twenty in our simulations.
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Algorithm 3.2 Create Edge Connection Vector for a Stimulus
Require: Nt . Total number of vertices, non-visible vertices are just 0.

Require: Nv . Number of visible vertices.

Require: ConnV . Connection vector of visible vertices.

Ensure: ConnVnew (An new array of connections between existing vertex pairs in the total list of

vertices.)

1: function EXPANDCONNVEC

2: ConnVnew← [ ]

3: for i← 1 to (Nt−1) do . Here i represents the ith convolution operation in the network.

4: t← length(ConnV ) . Total length remaining in original connection vector for

processing.

5: Li← (Nt− i−1) . The vector length for ith convolution operation.

6: N0← (Nt−Nv) . The maximum number of empty cells in any given pass.

7: pad ← min(Li,N0) . Minimum zero padding needed to expand to the required length

in this pass.

8: Ni← (Nv− i−1) . Number of units in original vector eligible to be copied into new

vector.

9: n1← max(Ni,0) . n1 units to be copied should always be non-negative.

10: n2← (t−n1) . n2 units remain in original vector for the next pass.

11: C1,C2← split ConnV [n1,n2] . Connection vector is split into two parts of length

n1 and n2. Part n1 is expanded for extra vertices. Part n2 is the remaining vector for the next

iteration.

12: ConnVnew← [C1, pad]

13: ConnV ←C2

14: i← i+1

15: end for

16: return ConnVnew

17: end function
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3.3 Visible Vertex Extraction

The model only processes information visible in the 2D projected view of the input

stimulus. This implies that the input parameters include only the vertices visible in that projected

view of the object. The stimulus generation process takes care of this requirement while

generating input files for a given stimulus. The connection matrix only includes vertices visible in

the current view of the object. The model estimates the depth parameter for the object by making

an assumption about the missing or hidden vertices. For all vertices that are not complete, that is,

all three edges are not visible, it is assumed that the number of hidden vertices are equal to number

of incomplete vertices. This assumption is based on the work of Cao, Liu, and Tang (2008) where

psychophysical constraints are used to extract hidden structure from a partially visible object.

3.4 Model Output

The network computes the standard deviation value of all 3D angles for each training

object and minimizes this value to learn the best z parameters for given objects. The shape

information has to be extracted from the network separately since the model does not directly

output the missing z-parameters for all vertices of the given object. The model only outputs SDA

measures related to the cost function of how closely the constraints are met by the current

z-coordinate estimation. The z-coordinates themselves are not accessible owing to the

architectural limitations of deep convolutional networks. We will therefore need to use specific

techniques to extract z-coordinate data from the model. The implementation details of these

techniques will be discussed later in this chapter.

3.5 Overview of Model’s Computations

The model receives the input containing 2D coordinates of the visible vertices along with

the connection matrix. It has to estimate an initial depth z∗i , i ∈ 0 . . .(Nv−1) for each of the Nv

vertices. It is to be noted that the edge vectors can be obtained using x,y,z coordinates of the

vertices V0 . . .VNv−1 by taking the difference in coordinates as shown in Equation 3.1.
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Figure 4. A sample stimulus with 5 vertices

Ei, j =Vj−Vi (3.1)

Since the edge computations in each of the three dimension are identical operations, the

model can work on the three dimensions in parallel as shown in Equation 3.2. Here, z∗ represents

the estimated z coordinates for vertices Vi and Vj.

Exi, j = x j− xi, Eyi, j = y j− yi, Ez∗i, j = z∗j − z∗i (3.2)

Figure 5. The sample stimulus (Figure 4) encoded into model inputs.
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Figure 6. Identically divided computations across three separate channels of the
network using the sample stimulus shown in Figure 4

Figure 4 shows a simple stimulus for illustration. The vertices in the sample stimulus and

their coordinates in three dimensions are shown in Figure 5. Only the X and Y dimension is input

into the model. The edge vector as shown in Figure 5 encodes the information about existing

connections in the stimulus. The edges that exist correspond to the value 1 and the ones that do

not exist have the value 0. Figure 5 also shows the connection between vertices that each edge

represents. This relationship was established in Algorithm 3.1. It is to be noted that the last table

in Figure 5 is shown only for illustration, the model input consists of the left and the middle tables

in the figure. Figure 6 illustrates how the computation is distributed on three separate and

identical channels as the input is processed in the model.

32



The edges are computed using a series of convolutional layers with differing dilation

values as illustrated in Figure 7. As depicted in the illustration, the first convolution operation

computes the edge between vertices which are adjacent, the second convolution computes edges

which have 1 vertex between them and the last convolution computes edges for vertices that are

most further apart. All possible combination of vertices are covered in this process. This process

computes edges in the same order as they are computed in Algorithm 3.1. An example showing

the final set of computed edges for an object with 5 vertices is shown in Figure 8. After all edges

are computed by the series of convolution layers, the connection matrix denoting vertices

connected by an edge is used to drop out the edge that does not exist in the object. Given our

sample input stimulus in Figure 4 and corresponding edge vector table in Figure 5, the edges

which do not exist in the stimulus have been marked with a * in the edge vector computed by the

network in Figure 6. These edges will be dropped from all further computations. All the edges are

then normalized so as to make it simpler to keep track of computations and intermediate results

generated. Figure 8 illustrates the overall relationship between computations of edges by

convolutional layers and the different channels for the three dimensions.
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Figure 7. Illustration of edge computation operation in Convolutional layer for a
particular channel (X in this case) (a) Dilation of 1 (b) Dilation of 2 (c) Dilation of 3

(d) Dilation of 4. The same operation is repeated in Y and Z dimensions on the
second and third channel respectively.

Further details regarding specific values used to configure the convolutional layers along

with details of mathematical operations involved in a typical convolution are presented in

Appendix Section I.1.
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Figure 8. Table showing edges computed as a result of convolution operation in the
network.

In the next step, the model forms a Gram1 matrix for the edge vectors. This is done by

taking the outer product of the entire set of computed edges with itself as shown in the matrix of

Figure 9. In the matrix shown in this figure, the pair of numbers on the row and columns represent

the edges between those vertices. Each cell corresponds to a combination of any two edges. The

binary sequence on top of the rows and columns depicts the connection vector. The vertices are

numbered in the figure starting from one for convenience.

The angle between a pair of edges is defined as:

θi, j = cos−1 ET
i E j

||Ei||2||E j||2
= cos−1(Gi, j/(lil j)) = cos−1Gi, j

given : li = l j = 1(normalized edge vectors)

1Given a set V of m vectors, the Gram matrix G is the matrix of all possible inner products of V
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where Gi, j is the gram matrix cell for normalized edges Ei,E j. Since cos−1 is a monotonic

function, minimizing the angle between the edges Ei,E j corresponds to minimizing Gi, j.

Minimizing SDA amounts to minimizing the variance of the Gram matrix itself.

3.5.1 Removal of Spurious Connections from Gram Matrix

The Gram matrix contains cells corresponding to all possible pairs of edges in the 3D

object. For an object with N vertices, taking any two vertices at a time, there are

Ne = (N ∗ (N−1))/2 possible edges. Each cell in the Gram matrix represents an inner product

between Ei ∗E j where i, j ∈ 0 . . .Ne. So there are Ne x Ne angles represented in the Gram matrix.

However, if there is no common vertex between any two given pair of edges, no angle can

possibly exist between them. An illustration depicting all valid and invalid angles represented in

cells of the Gram matrix for a cuboid object is shown in Figure 9. Since the Gram matrix is

symmetric, it is sufficient to processes the information contained in the upper (or lower) triangular

matrix. In order to remove the effect of these spurious connections from the computation of

MSDA, Algorithm 3.3 is used to compute a filter matrix. This filter matrix is used to zero-out all

invalid connections from the Gram matrix before it is used for computing the MSDA constraint.
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Figure 9. A sample Gram matrix for a cuboid object (eight vertices). The color
coding is used to depict valid and invalid connections in the matrix for the cuboid
object. Red colored cells depicts an invalid connection because no vertex is shared
between the edge pairs in the corresponding row and column. A green colored cell

depicts that a connection is possible.
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Algorithm 3.3 Compute a Filter Matrix to Remove Spurious Connections.
Require: NC: Total number of convolutional layers in a network.

Ensure: FilterMat (A filter matrix has same dimension as Gram matrix. It zeroes out cells that

have no common vertex between the pairs of edges. The inner product of Gram matrix with

Filter matrix gives only the viable angles in the object.)

1: function CREATEFILTERMAT(Nv)

2: FilterMat← [ ]

3: for r← (NC) to (1) do . For each convolutional layer, a row containing NC smaller

matrices is computed.

4: RowMat← [ ] . Stores NC smaller filters.

5: for n← r to 1 do

6: fMat← r×n matrix of ones . Nc×n filters units.

7: for row← 1 to r do

8: for col← 1 to n do

9: Erow← [row,row+(NC− r+1)]

10: Ecol ← [col,col +(NC−n+1)] . Identify vertex pairs represented in row

and col of the filter units.

11: if Erow[0] /∈ Ecol or Erow[1] /∈ Ecol then

12: fMat[i, j]← 0

13: end if

14: end for

15: end for

16: fMat← Transpose(fMat) & fMat . Mirror the matrix diagonally.

17: end for

18: RowMat← vstack(fMat) . Vertically stack all fMats.

19: end for

20: FilterMat← hstack(RowMat) . Horizontally stack all rowMats.

21: return FilterMat
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3.5.2 Layer Architecture

The architecture can be seen as composed of two parts - the first part computes 3D

vertices using an estimate of z-coordinates and the second part minimizes the SDA (minimization

of standard deviation of angles) constraint by improving on the z-coordinate estimates as shown

in Figure 10 and Figure 11.

Figure 10. Model computes 3D edges from 2D inputs consisting of: 1) (x,y)
coordinates of the vertices 2) a vector encoding connection between vertices that are

connected via an edge

Figure 11. Model computes Gram Matrix and minimizes the SDA
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3.5.3 Z parameter extraction

In order to retrieve z-parameter values from the model, a reverse learning technique is

implemented where a set of fully connected layers learn to extract estimated z* information from

the layers computing the final estimate of SDA.

As shown in Figure 12, a series of hidden layers are added to learn the backward mapping

from edges to vertices. The layers encoding the edges have the optimal SDA for the given stimuli.

The reverse mapping layers are trained using the actual X and Y values of the 2D vertices from

edges values obtained after convolution operation. The architecture of full model using this

technique is shown in the same figure (Figure 12).

Figure 12. Complete network model to additionally compute missing z parameters
using fully connected layers. The reverse mapping layers are highlighted using a

darker box frame within the Figure.

Extracting the value of the z-parameter from the network amounts to learning a

reverse-mapping operation from edges that minimize the SDA constraint back to their

corresponding z-coordinates configuration. This means that as the network trains on minimizing

the SDA constraint, it needs to simultaneously learn the reverse mapping for each of the training

example. Since our training is based on stochastic gradient descent method, the model has two

parallel and nested learning paths for each set of training example in each epoch as shown in

Figure 13.
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Figure 13. The model has two separate learning mechanisms in the same network.
Here, MSDA represents the part of the network the computes the Gram matrix and

minimizes the standard deviation of the matrix.

3.6 Summary

In this chapter, a high-level overview of the model and its architecture is presented. This

model was trained to estimate missing depth from a set of 2D training stimuli. The stimuli

generation process is discussed in the next chapter. The model was finally tested on the same

stimuli that are used in the experiment. The model results are presented in Chapter 7.
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CHAPTER 4. STIMULUS GENERATION

The shape perception experiment requires subjects to consistently identify objects

presented from more than one viewing angle. For a reliable test of consistent 3D perception from

different viewing angles, it was necessary that subjects used no previous knowledge about the

shape but only the information presented to them in the experiment. Therefore, a set of novel and

unfamiliar stimuli were constructed for the purpose of testing reliable shape perception in the

experiment.

It has been hypothesized in Chan, Stevenson, Li, and Pizlo (2006) that 3D perceptual

representation is reliable in case of structured 3D objects but not in the case of unstructured

objects. Pizlo and Stevenson (1999) showed that shape constancy from novel views can only be

achieved if structured novel objects obey some regularity constraint (such as symmetry).

Therefore all the novel shapes were constructed so that they had a pronounced regular structure

for unique shape perception. These stimulus objects displayed mirror symmetry along one axis

only. The entire set of these objects are presented in the Appendix Section I.2. The selection of

these specific shapes was based on the results from several iterations of pilot versions of the

experiment. It was observed that without any regularity in the stimuli, there was no consistent

shape recovery as measured by our previous experiment. Some examples of objects in the pilot

test that failed to be recovered above chance level are shown in Appendix Section I.3. It was

observed from the pilot tests that objects with fewer number of vertices were more difficult to

recover. Based on this finding, sufficiently complex but regular and novel set of shapes were

created. These set of shapes were then divided into Blocks based on their level of complexity for

the final version of the experiment. The set of stimuli used for training and testing the model and

those used to test human subjects were the same. This requirement was imposed in order to make

direct comparison between the performance of the model and the experiment outcome.

42



Figure 14. Stimuli example: Same object shown from 3 different projection
viewpoints

An open source 3D graphic rendering tool called Blender was used to create 3D models of

the novel structured stimuli objects. Since this software allows for python based programmatic

creation, manipulation and extraction of data, object parameters can be extracted in the form of a

text file along with images from a variety of rotation viewpoints and projections as shown in

Figure 14. The stimulus parameters exported from the software can be used as input into the

model and the corresponding images can be used for the experiment.

Each novel stimulus object is created programatically by applying a set of transformations

on an original cuboid object. The set of transformations applied in order are:

1. Randomization: This transformation operation randomly displaces the location of selected

vertices. The amount of displacement along an axis can be specified. A random offset is

added to the given displacement value to obtain a randomized transformation. A seed value

is used to control this random transformation by controlling the offset. A different seed will

produce a new result whereas the same seed will result in the same output every time.

2. Mirroring: Mirrors the geometry of an object along an axis. The resulting geometry is

joined together using a merge distance parameter. Pairs of original and newly mirrored

vertices can be welded together using the merge distance parameter, which defines the

minimum distance for the welding operation to happen.
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Figure 15. Table showing parameters used to generate objects used in Experiment
Blocks.

3. Symmetrizing: Makes the mesh object symmetrical. Unlike mirroring, it only copies in one

direction, as specified by the “direction” parameter. The edges and faces that cross the plane

of symmetry are split as needed to enforce symmetry. Just like mirroring, this opertation

takes a minimum distance parameter to enforce symmetry from the central pivot point.

Novel, partly symmetric and structured objects are created from a cuboid by choosing the

amount of randomization and pivot points and merging distances for mirroring and symmetry

operation. In general, fewer randomization operations lead to simpler shapes. However, the final

number of vertices in a transformed object depends on the mirroring and symmetrizing operations.

These operations are controlled by the merge distance parameter. A table containing objects used

in the experiment blocks and configuration parameters for each of them is presented in Figure 15.
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The obtained stimulus object from these operations is then rotated a fixed number of times

on Y and Z axes. All these views are then rendered in 3D for the different rotation angles. The

output consists of a set of images for each object and a text file containing object properties

including the 3D coordinates of its vertices and a connection matrix that encodes the pairs of

vertices that are connected via an edge in the object. The code used to generate our stimuli is

made available at https://palmishr.github.io/3DStimuliBlender/.
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CHAPTER 5. EXPERIMENT

5.1 Experiment objectives

A shape constancy experiment was designed to estimate consistent shape perception from

a group of human participants in order to test the following:

1. Isolate and identify cases where human subjects can perceive shapes of novel stimuli

consistently.

2. Isolate and identify cases where our model succeeds in achieving a consistent 3D shape

estimation measured by angular estimation on same stimuli with different rotations.

3. Compare the outcomes of points 1 and 2 - are the success and failure cases of shape

perception between human subjects and our model’s estimates similar?

5.2 Experiment details

Stimuli: The previous chapter discussed the structure of the stimuli in detail. Appendix

Section I.2 shows all the stimuli used in the experiment. Each stimulus object was rendered from

eight different projection viewpoints. The set of these eight projections were used in the

experiment.

Number of subjects: Twenty-five subjects, all students at Purdue University were recruited

for the experiment. All subjects were students in the Department of Psychological Sciences.

Twenty of them took the experiment for credit and five of them were volunteers. The experiment

lasted for about an hour.

Number of trials per subject: The total number of trials for each subject in the experiment

was 272. The trials were distributed across seven experimental blocks. Each stimulus object in an

experiment block was presented to the subject from eight different projection angles.
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Design of Experiment Blocks: The total number of blocks in the experiment were seven.

Blocks were designed in a way that they contained similarly shaped objects with similar

complexity. The numbers associated with blocks had no ordinal meaning. Blocks 1, 2 and 7

contained three objects while the rest contained two objects. There were unequal number of

objects in blocks to rule out the case where subjects can only discriminate between objects at a

time but do not perceive them uniquely. All blocks except Block 7 contain similar but distinct

shapes. Block 7 contains objects from other blocks (2, 3 and 4). Since Block 7 has objects of

dissimilar shapes, it was used to test whether subjects only discriminated between objects instead

of perceiving them individually. In case the former is true, the performance of this block should

be above all the other blocks.

Task: Within each block, every object (A) was shown either paired with itself (A) at a

different rotation angle or with another object (B) with a different rotation angle. The subject was

to decide if the two objects were the same or different by answering a ’YES/NO’ question at the

end of the display. The ’YES’ response was mapped to the ’f’ key and ’NO’ response was mapped

to ’j’ key on the keyboard. There was no feedback given to the subjects on their responses.

The sequence of display was:

1. Blank Screen (1 sec)

2. Object (A) (4 sec)

3. Blank Screen (1 sec)

4. Object (A) or Object (B) (4 sec)

5. Are the objects shown same? YES/NO
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All stimuli were symmetrical in X axis with a pronounced structure for shape perception

so that subjects can achieve shape constancy for these unfamiliar but structured objects. There

were four rotations per stimulus in Y and Z axis each (eight rotated versions per stimulus). Each

object was shown a total of sixteen times - eight times against its own rotated version and eight

times with another object’s rotated version. Figure 16 shows all stimuli shown to subjects in

Block 4. A total of eight stimuli are created by four rotations of an object on Y and Z axis

respectively. There were two objects in this particular block so the total stimuli presented was

sixteen. Block 1 has three objects leading to a total of twenty-four stimuli as shown in Figure 17.

Figure 16. Block 4: Object 1 in left 8 images, Object 2 in right 8 images

Figure 17. Block 1: Object 1 in left 8 images, Object 2 in middle 8 images, Object 3
in right 8 images
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CHAPTER 6. EXPERIMENT RESULTS

For each participant, whether or not a given stimulus is correctly categorized was

recorded. If the two stimuli shown back to back were the same object and the participant

answered ’yes’ then a correct response was recorded. If the two stimuli were different objects and

the subject answered ’no’ then also, a correct response was recorded. In other cases, an incorrect

response was recorded.

The first step of the analysis was to select the subjects who were able to perform the task

above chance level. This chance level cutoff was computed based on the number of successes in

272 independent trials with the probability of success equal to 50% per trial with a confidence

interval of 95%. The accuracy cutoff calculated using this binomial distribution was found to be

55%. The accuracy of response for a given object was obtained by counting all the correct

responses against the total number of times the object was shown to the subject. The overall

performance of a subject in the experiment was their accuracy on all the objects combined. In

pilot tests, it was noted that engaged subjects could perform considerably above chance (up to

80% accuracy overall). Out of total twenty-five subjects, five were eliminated based on this cutoff.

It is to be noted that the experiment was not designed to measure the perceptual

reconstruction of the stimulus, only whether shape constancy is achieved when accuracy of

response is above chance. A suitable method to compare experiment outcome against the model

was to compare their performances at the block level. The model’s output across several iterations

could be aggregated at the block level. In this way, the individual variations for object consistency

from the experiment and the variation of model’s output across different simulations were both

aggregated at the same level. Since blocks contained similar objects with similar complexity,

blockwise comparison was more appropriate than comparing individual stimuli one by one.
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Figure 18. Experiment result: Plot showing the average accuracy statistics for each
block.
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6.1 Accuracy Analysis

The next step was to determine whether the accuracy of performance on the task as

measured by correct (or incorrect) response per trial was affected by factors specifically, the block

and the rotation angle. The overall accuracy per block is shown in Figure 18. In order to test for

the effect of block and rotation angle in Y and Z axis on the binary response outcome (correct or

incorrect), a generalized linear model based on maximum likelihood estimate was fit to the data.

The generalized linear mixed affects model used a logit link function for the binomial distributed

dependent variable. There were three generalized linear models fit to the data. The first one

contained both the blocks and the rotation angles as individual predictors. The other two models

were fitted to the data by dropping one of these two predictor at a time. Table 1 summarizes the

coefficients, their significance level and standard errors for the particular blocks and rotation

angles from the first model. A test of significance of the block and the rotation angle on response

accuracy was carried out by comparing the two corresponding nested models one with and other

without these predictors. The results of the significance test on blocks is presented in Table 2. It

was observed that blocks had a significant effect on the outcome (correct or incorrect) using

analysis of deviance statistic (Chisq(6) = 79.49, p < 0.001). The effect of rotation on either Y or

Z axis on the outcome was also significant (Chisq(7) = 50.4, p < 0.001) as seen in Table 3. A

simple linear regression was done on the estimates (beta) for Y and Z versus the angle of rotation.

The plots are presented in Figure 19 show the relationship between the betas for Y and Z and the

angle of rotation for each (R2 = 0.95 for Y and R2 = 0.97 for Z). It may be concluded that as the

rotation in Y and Z axis increases, the accuracy of performance in the task decreases.
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Figure 19. Experiment result: Plot showing the relationship between Y and Z
rotation angles on GLMz model estimates for Y and Z respectively.

The accuracy for individual objects within each block is presented in Appendix Section

I.4. Since the effect of blocks was found to be significant, not all blocks should have the same

accuracy. Based on this result, Block 4 and Block 5 can be categorized as higher difficulty. Block

1, 2, 3 and 6 are easier blocks. As a reminder, Block 4 contains objects with the least complexity

i.e. fewer number of vertices and simpler shapes compared to Block 1, 2 and 6. This suggests that

it may be easier to consistently perceive the shape of a more complex, structured object compared

to a less complex or less structured object. It should be noted that Block 7 is not categorized

because it was used to test whether the novel objects were uniquely perceived on their own or not.

Since Block 7 did not outperform other blocks, there was no evidence to conclude that comparing

more distinct objects made the task substantially easier for subjects. It can therefore be ruled out

that this task was only a discrimination based task rather than a perceptual task.
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Table 1. Experiment result: Tables showing the results from Generalized Linear
Model. Each independent variable is displayed with its coefficient and standard error

along with significance.

Dependent variable:

Correct

Block1 1.095∗∗∗ (0.123)

Block2 1.238∗∗∗ (0.124)

Block3 0.988∗∗∗ (0.131)

Block4 0.479∗∗∗ (0.128)

Block5 0.721∗∗∗ (0.129)

Block6 1.325∗∗∗ (0.135)

Block7 0.980∗∗∗ (0.122)

rotY36 −0.163 (0.120)

rotY54 −0.232∗ (0.121)

rotY72 −0.392∗∗∗ (0.119)

rotZ18 0.178 (0.117)

rotZ36 −0.042 (0.115)

rotZ54 −0.150 (0.115)

rotZ72 −0.281∗∗ (0.113)

Observations 5,440

Log Likelihood −3,417.652

Akaike Inf. Crit. 6,865.304

Bayesian Inf. Crit. 6,964.327

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2. Experiment result: The ANOVA table is displayed for the block significance
test by comparing two nested models, one with blocks as predictor of response

accuracy and other without blocks as the predictor of response accuracy.

Df AIC BIC logLik deviance Chisq Chi Df

bmod no blocks 9 6932.79 6992.20 -3457.39 6914.79

bmod 15 6865.30 6964.33 -3417.65 6835.30 79.48 6

Pr(>Chisq)

4.567e-15***

Table 3. Experiment result: The ANOVA table is displayed for the rotation
significance test by comparing two nested models, one with rotation (4 rotations on Y
axis and 4 rotations of Z axis) as predictor of response accuracy and other without

rotation as the predictor of response accuracy.

Df AIC BIC logLik deviance Chisq Chi Df

bmod no rot 8 6901.70 6954.51 -3442.85 6885.70

bmod 15 6865.30 6964.33 -3417.65 6835.30 50.40 7

Pr(>Chisq)

1.208e-08***

6.2 Signal Detection Theory Analysis

The discrimination sensitivity measure related to the performance within each block is

shown in Figure 20 where

d′ = [z(H)− z(F)]

H is proportion of hits, F is proportion of false alarms. z(H) denotes the z score for

fraction of hits and z(F) denotes the z scores for fraction of misses. Since higher discriminability

should lead to higher accuracy on task, the plot for discrimination sensitivity for blocks should

match the one for accuracy. This is indeed the case as the order of blocks based on both these

measures are the same.
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Figure 20. Experiment result: Plot showing the average discriminability for all
objects within each block.

Due to the nature of the task involving a forced choice a yes/no response, it makes sense

to test if the responses were biased in one way or the other. That means, if subjects were more

likely to say ’yes’ when stimuli presented were different objects than ’no’ when they were same

objects. The criterion location of 0 means that the responses are unbiased. Criterion location was

obtained using the formula:

C =−[z(H)+ z(F)]/2 (6.1)
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where z(H) denotes the z score for fraction of hits and z(F) denotes the z scores for fraction of

misses. The aggregate response bias for each block is shown in Figure 21. A sign test on the

criterion locations for blocks (s = 2, p-value = 0.4531) reveals that there is no evidence for bias

being different than zero. The 95% confidence interval for location of criterion is (-0.2627309,

0.2174412). A similar test for location of criterion for all valid test subjects (s = 10, p-value = 1)

revealed that there was no evidence of bias being different than zero as well.

Figure 21. Experiment result: Plot showing the response bias measured in terms of
criterion location for each block.

Figure 22. Experiment result: Plot showing the average error rate (measured in terms
of incorrect responses) statistics for each block.
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6.3 Summary

In this Chapter, the block-wise performance in the experiment was analyzed by two

separate measures. First, by aggregating the overall accuracy of response for all subjects within

that block. The second analysis is done using sensitivity as measured by D′ using signal detection

theory. Figure 20 shows the aggregate discriminability of all stimuli within each block. Both

analysis lead to the same ordering of blocks - Blocks 6, 2, 1 and 3 show better performance (in

that order) than Blocks 4 and 5. This result was then used to compare the model performance in

the following Chapter. In order to facilitate this comparison, a conversion from average accuracy

to average error rate was found to be useful. The error rate plot is shown in Figure 22.

It has been shown that the blocks have a significant effect on the performance of the task

as different blocks contain a different level of object complexity. The performance of the model

on blocks would be measured using consistency of 3D angle reconstruction for each stimulus in

the block from different viewpoints. The same rotations of the object would be used to test the

model as in the experiment. The comparison of the model’s performance on different blocks

should help answer questions posed in Chapter 5. Therefore the order of blocks based on the

performance of subjects in each block is a crucial result to compare the model performance. If the

model and the experiment outcome agree on the shapes that are more consistently perceived than

others, then the model achieves the objective of using the constraint of MSDA to recover shapes.

At the same time, if the model’s performance on shapes is inconsistent, then perhaps the

constraint of MSDA is not enough to recover those shapes.
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CHAPTER 7. MODEL RESULTS

The model computes a Gram matrix using an estimate of z values that minimizes the

standard deviation of all 3D angles in the reconstructed shape. The experiment on the other hand

measures the consistency of shape perception under various rotations of a given object. Since the

actual reconstructed shape by human participants is never available to compare with the model

estimate, a new metric was devised to quantify the performance of the model. The consistency of

shape recovery by the model is measured by quantifying the similarity in the 3D angles estimated

for different rotated views of a given object. The 3D angles are contained in the Gram matrix

generated for all rotations of a given object. The standard deviation of euclidean distances

between these Gram matrices is used as a proxy for measuring consistency of 3D shape recovery.

A network to process up to twenty vertices at a time was trained on a set of randomized

cuboid based shapes using respective SDA values. The output of the network is the SDA value

per stimulus. Since the network learns to minimize the SDA value, the error rate of the network is

measured in terms of the mean SDA value per batch of input. The network was then tested on the

new set of unseen stimuli. The table shown in Figure 23 shows the configuration parameters used

to generate training samples for the model. The average SDA as measured by the stimuli

rendering software was around 0.03 for the training and test stimuli set. In the training phase, the

model starts with a high error rate of 0.2 then gradually goes to 0.01 over 10 epochs of training

with 1000 stimuli with the batch size of 5. Figure 24 shows the graph of network error rate over a

training sequence of first 1000 objects.

Figure 23. Table showing parameters used to generate objects used in training and
testing phase of the model.
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Figure 24. Top: Error plot during the first epoch of training samples; Bottom: Error
rate showing model minimizing SDA values during 10 epochs of 1000 training

samples each.

Figure 25. Model’s performance for 100 unseen randomly generated cuboid based
stimuli.
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The network was finally tested with all the objects in the experiment blocks. In order to

test for shape constancy using the model, each of the eight rotation of the experiment object was

presented to the model for comparison. The model estimated missing depth (z coordinates) for

each of these eight views of the object by minimizing the SDA value in the estimated 3D object.

For each of these eight views, the Gram matrix of 3D angles is obtained from the model. To test

the consistency of estimated 3D shapes across different rotation angles, the l2 norm of the

Euclidean distance between matrix for a rotated view and the original view is computed. Since

there is no access to the perceived 3D shapes from the experiment, this metric helps in comparing

the model’s performance and the experiment outcome. It is to be noted that object constancy is

achieved only when it is perceived consistently across different rotational viewpoints. The

experiment results therefore demonstrate the performance consistency at the block level for all

tested stimuli. The standard deviation of this metric from the model signifies the extent to which

estimated 3D shapes are deviant from the original estimate. Lower values of the standard

deviation means that the shape recovery is more consistent across different viewing angles by the

model.

Figure 26. Performance of the model on the experiment blocks - the best performing
block is Block 6, Block 1 and Block 2 while the worst performing blocks are Block 4

and Block 5. The error bars denote the standard deviation of the computed metric
across 20 different simulations of the trained model.
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7.1 Summary

The performance of the model corroborated that with the results from the experiment as

shown in Figure 26. The criteria of success was proposed to be how closely the reconstruction

consistency from 2D input by the model matches the ordering of block difficulty in human

subjects. The analysis of experiment outcome and the output from the model show similar results.

As for the experiment, the blocks which contained high complexity objects outperformed those

with lower complexity objects. Blocks with lower difficulty - Block 1, Block 2 and Block 6

showed better performance than blocks with higher difficulty - Block 4 and Block 5. Block 3

which was moderate difficulty in the Experiment performed better than difficult blocks but worse

than easier blocks in the model.

There are however some differences in the performance of the model on some blocks

compared to the experiment outcome. For instance, although Blocks 4 and Block 5 are the worst

performing blocks in both the experiment as well as the model, the order of performance is not

the same. These differences can be expected because the human visual system uses several

constraints at once to perceive a unique 3D structure. In that aspect, the model is highly limited

because it uses only one constraint. However, the constraint that the model is used shows

considerable effectiveness in modeling human performance.
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CHAPTER 8. SUMMARY AND CONCLUSION

The goal of this research was to develop a biologically principled network for 3D

perception of object shape from 2D inputs. The architecture of the network was inspired in part

by the ideas derived from the computational structure of visual areas such as the V4 and the

striate cortex. The goal of the model was to demonstrate a computational approach to optimize

psychophysical constraints within a network. The model used only the constraint of minimization

of standard deviation of all angles in the estimated 3D structure. All computations required to

compute and minimize this constraint were embedded within the network itself.

An experiment to test human subjects for 3D perception of novel and unfamiliar objects is

described and the results are presented. The goal was to use the results from this experiment to

test the validity of the proposed model. Based on the output of the model on the objects from the

experiment, it may be concluded that the model may predict shape constancy for human subjects

on a similar set of novel stimuli. The degree of accuracy to which the model can do this can vary

significantly since the human visual system uses several other constraints for 3D perception of

object’s shape. Since the model and subjects from the experiment fail on the same type of

stimulus (at the block level), the analysis of these failures show that the MSDA constraint is

effective for a reliable shape perception. The similarity of outcome of the model with the

experiment results shows that a network based model can implement visual constraint of MSDA.

The results also demonstrate a proof of concept for this biologically inspired network to compute

the required constraint.
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The results presented in this work are based on the validity of the chosen metric to test

model performance. Since the perceived 3D structure by human subjects is never available for

comparison, the model was tested for shape constancy separately. In general shape comparison is

a computationally difficult problem to solve (Biasotti, Cerri, Bronstein, & Bronstein, 2014),

comparing the z coordinate estimate of the model with the actual shape was out of scope for this

work. A future extension of this work can be to implement more constraints into the model to

generate 3D shapes for rotated views of a 2D stimulus. These 3D shapes can then be used to test

whether human observers agree with the reconstruction by designing a similar experiment. The

observers can be shown different valid reconstructions for the 2D stimuli to gauge if their

preference agrees with the model or not. Computationally, embedding more than one constraint in

the same network can show new insights about how networks can achieve 3D shape recovery

using psychophysical principles.

8.1 Future Extensions

There are several other constraints as discussed in Chapter 1 that have been found to be

useful for consistent 3D perception. A future extension of the model can be adding these

constraints into the network to work in tandem with the existing MSDA layer. An important

constraint besides MSDA is symmetry. The determination of plane of symmetry and

measurement of variation of symmetry from the determined symmetry plane is a complex

problem. Since MSDA is a mechanism to increase symmetry of the object in general, one can

re-purpose another measure from shape analysis called shape circularity in place of symmetry.

The advantage of using this measure is that inherently this measure maximizes the number of

symmetry planes for a 3D object i.e. for a perfect sphere with infinite number of symmetry

planes, circularity measure is maximum. This may be a sufficiently good measure of overall

symmetry in 3D object. The constraint of compactness can also be incorporated into the network.
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Montero and Bribiesca (2009) describe how shape circularity and shape compactness may

be measured for pixelated digital objects. In order to measure compactness, one needs to estimate

volume to surface area ratio. Compactness has been used extensively in several domains of

engineering and psychophysics to describe shape in shape analysis tasks. It has been associated

with ratio of (perimeter)2/area. In fact 3D shape compactness is the same concept extended in

third dimension. There have been several ways to calculate compactness on a 2D regions and

most of them can be extended for 3D shapes but in order to keep the formulation as simple as

possible mathematically, a method called normalized discreet compactness (Bribiesca, 2000) that

has been successfully applied to 3D shapes. Another important consideration in choosing this

method of computing compactness is that this measure is invariant under translation, rotation and

scaling. A mathematical description of measuring compactness and symmetry based on these

ideas is presented in Appendix Section I.5.

In conclusion, embedding the constraint of MSDA in a network is shown to be effective in

predicting human performance on a set of novel shapes. The model provides a proof of concept

for how a biologically-inspired network may achieve such a task. It will be an interesting future

research path to explore whether embedding other psychophysical constraints into the network

sheds more light on how the human visual systems uses build-in constraints to understand our

three-dimensional environment.
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APPENDIX I. APPENDIX

I.1 Convolutional Layer Configuration

This section explains the operational details of convolutional layers including the values

of key parameters set in our model.

I.1.1 Configured Parameters:

Channels: 3

Different channels allow for parallel operations on the set of inputs. We have 3 separate

channels for 3 different coordinates: [x,y,z]. The operations across channels are fully independent

but identical.

Filter size: 2

Filter or kernel size describes the size of the smallest matrix operation in the convolution

layer. The filter or kernel is convolved with the input to produce the output. Since we work with a

pair of vertices at a time to compute the edge vector, our filter size is set to 2.

Stride: 1

The rate at which the kernel passes over the input. A stride of 1 moves the kernel in

increments of 1 unit.

Dilation: 1,2,,..Number of Edges

Distance between two consecutive units in a layer to be considered in the convolution

operation. In order to compute all possible list of edges, successive convolution layer compute

distance d dilation apart where d is the dilation value.

Weights:
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Each convolution layer is initialized with these weight matrices. Each 3x2 matrix

represents an input channel. The filter of [1,-1] is used to compute difference between the x, y and

z coordinates in successive channels.

I.1.2 Mathematical Details

Figure 27 (b) shows the computation involved per batch for the convolution. Here W is the

weight matrix associated with the layer. Figure 27 (c) visually depicts how the weight matrix is

related to input and output channels based on the equation shown in part (b). The parameters of

batch size, layer size, channels, kernel size and weight matrix are that are utilized in the

convolution operation are individually described in Chapter 3 along with the values set for these

in our model.

Lout =
Lin +2∗padding−dilation∗ (kernelsize - 1 )−1

stride
+1 (I.1)

Figure 27. The relationship between input layer parameters to output layer
parameters in Convolutional layer
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Figure 27 (a) shows the high level relationship between input and output layer size (L) of a

convolution operation given the number of channels (C), number of batches processed (N). The

way Lout is related to Lin is shown in Equation I.1.

I.2 Novel Stimuli

The novel, unfamiliar and structured stimuli objects are presented in this section.
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Stimulus Object 1
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Stimulus Object 2
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Stimulus Object 3
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Stimulus Object 4
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Stimulus Object 5
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Stimulus Object 6
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Stimulus Object 7
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Stimulus Object 8
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Stimulus Object 9
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Stimulus Object 10
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Stimulus Object 11
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Stimulus Object 12
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Stimulus Object 13
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I.3 Stimuli from Pilot Versions of Experiment

Figure 28. Stimulus objects lacking regularity and enough complexity failed to be
consistently recovered during the pilot versions of our experiment. Complexity is

related to the number of vertices and faces in the object. Objects with eight vertices
were not recovered consistently during pilot tests.
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I.4 Experiment Results

I.4.1 Block-wise Task Performance by Subjects

For each of the blocks, the accuracy of response for all objects is presented below:
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Block 1

Object 1 Object 2 Object 3
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Block 2

Object 1 Object 2 Object 3

88



Block 3

Object 1 Object 2

89



Block 4

Object 1 Object 2
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Block 5

Object 1 Object 2
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Block 6

Object 1 Object 2

92



Block 7

Object 1 Object 2 Object 3
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I.5 Future Extensions - Mathematical Discussion

Circularity measure: First proposed in Haralick (1974), a simple way to calculate

circularity of a shape is by using shape centroid and measuring all Euclidean distances from the

centroid to each boundary pixel. With this set of distances, the median µ and standard deviation

σ can be calculated. These statistical parameters can then be used to calculate a ratio that

measures the circularity C of a shape. This measure is defined as:

C = µR/σR

C is measured lowest (0) for a perfect sphere and would increase continuously for more

skewed shapes.

Compactness measure: As proposed in Bribiesca (2000) and reviewed in Montero and

Bribiesca (2009), compactness can be computed for a solid composed of voxels, area A of the

enclosing surface of a rigid solid composed of finite number n of voxels corresponds to the sum of

areas of pixels which form the visible faces of the solid. The contact surface area Ac of a rigid

solid composed of a finite number of voxels corresponds to the sum of voxels which are common

of two faces. The contact surface area can be computed as the following:

AC = (Fan−A)/2

where F is the number of faces. The minimum and maximum contact areas:

Acmin = a(n−1)

Acmax = (aFn−6a(n)2/3)/2

where a is the area of a voxel.

The measure of discrete compactness is defined as:

CD = (Ac−Acmin)/(Acmax−Acmin)

94



The measure of discrete compactness if maximized by a cube and values vary from 0 to 1

continuously.

After computing the first estimate of missing z-values, the model can then optimize

circulairty and compactness measures (C and CD) further using constrained optimization. At each

layer, the objective function is the minimization of one particular constraint while keeping the

z-values within the limits of two other constraints. Here is an example:

fSY M(z∗) = argminz(µR/σR)

s.t.
(AC−Amin)

(ACmax−ACmin)
− e = 0

Now, after finding the z∗ value that satisfies these constraints, the gradients of the

parameters G,A are also computed wrt z∗ and these gradients are used to back-propagate

gradients back to the previous layers. After several iterations, the values of the parameters

A,µRσR should converge. This is a point where all three major constraints in the model are

satisfied for a particular set of training inputs. In order to test if these learned parameters are

generalizable or not, the estimates from the model can then be used to test against human

perception at object level as obtained from our experiment.

Figure 29. Model minimizes each constraint and computes gradients for other
constraints for backward pass
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