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(´¨´) of velocity, û, temperature, T̂ , and pressure, p̂, eigenfunctions of the

most unstable mode (indicated with downward arrow) with (a): <
!

T̂
)

,

(b): < tûu, (c): =
!

T̂
)
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ABSTRACT

Rahbari, Iman Ph.D., Purdue University, December 2019. Acoustic Streaming in
Compressible Turbulent Boundary Layers. Major Professor: Guillermo Paniagua,
School of Mechanical Engineering.

The growing need to improve the power density of compact thermal systems neces-

sitates developing new techniques to modulate the convective heat transfer efficiently.

In the present research, acoustic streaming is evaluated as a potential technology to

achieve this objective. Numerical simulations using the linearized and fully non-linear

Navier-Stokes equations are employed to characterize the physics underlying this pro-

cess. The linearized Navier-Stokes equations accurately replicate the low-frequency

flow unsteadiness, which is used to find the optimal control parameters. Local and

global stability analysis tools were developed to identify the modes with a global and

positive heat transfer effect.

High-fidelity numerical simulations are performed to evaluate the effect of the ex-

citation at selected frequencies, directed by the linear stability analysis, on the heat

and momentum transport in the flow. Results indicate that, under favorable condi-

tions, superimposing an acoustic wave, traveling along with the flow, can resonate

within the domain and lead to a significant heat transfer enhancement with mini-

mal skin friction losses. Two main flow configurations are considered; at the fixed

Reynolds number Reb “ 3000, in the supersonic case, 10.1% heat transfer enhance-

ment is achieved by an 8.4% skin friction increase; however, in the subsonic case, 10%

enhancement in heat transfer only caused a 5.3% increase to the skin friction. The

deviation between these two quantities suggests a violation of the Reynolds analogy.

This study is extended to include a larger Reynolds number, namely Reb “ 6000 at

Mb “ 0.75 and a similar response is observed. The effect of excitation amplitude and
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frequency on the resonance, limit-cycle oscillations, heat transfer, and skin friction

are also investigated here.

Applying acoustic waves normal to the flow in the spanwise direction disrupts the

near-wall turbulent structures that are primarily responsible for heat and momentum

transport near the solid boundary. Direct numerical simulations were employed to

investigate this technique in a supersonic channel flow at Mb “ 1.5 and Reb “ 3000.

The external excitation is applied through a periodic body force in the spanwise

direction, mimicking loudspeakers placed on both walls that are operating with a 180˝

phase shift. By keeping the product of forcing amplitude (Af ) and pulsation period

(T ) constant, spanwise velocity perturbations are generated with a similar amplitude

at different frequencies. Under this condition, spanwise pulsations at T “ 20 and

T “ 10 show up to 8% reduction in Nusselt number as well as the skin friction

coefficient. Excitation at higher or lower frequencies fails to achieve such high level

of modulations in heat and momentum transport processes near the walls.

In configurations involving a spatially-developing boundary layer, a computational

setup that includes laminar, transitional, and turbulent regions inside the domain is

considered and the impact of acoustic excitation on this flow configuration has been

characterized. Large-eddy simulations with dynamic Smagorinsky sub-grid scale mod-

eling has been implemented, due to the excessive computational cost of DNS calcu-

lations at high-Reynolds numbers. The optimal excitation frequency that resembles

the mode chosen for the fully-developed case has been identified via global stability

analysis. Fully non-linear simulations of the spatially-developing boundary layer sub-

jected to the excitation at this frequency reveal an interaction between the pulsations

and the perturbations originated from the tripping which creates a re-laminarization

zone traveling downstream. Such technique can locally enhance or reduce the heat

transfer along the walls.
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1. INTRODUCTION

The growing need to improve the power density of compact thermal systems necessi-

tates developing new techniques to modulate the convective heat transfer efficiently.

In the present research, acoustic streaming is evaluated as a potential technology

to achieve this objective. Numerical Simulations using the linearized and fully non-

linear Navier-Stokes equations are employed to characterize the physics underlying

this process.

1.1 Literature Review

Acoustic streaming is broadly referred to a steady flow field induced in the flow

passage by fluctuating acoustic waves. This process has been widely investigated

in the past few decades thanks to its abundant applications across the disciplines,

including microfluidics [1], ocean engineering [2], and thermoacoustics [3]. Extensive

reviews on different mechanisms driving the acoustic streaming are given in Riley

[4] and Boluriaan and Morris [5]. In the present research, we focus on the steady

streaming that appear in straight channels due to an external pulsation.

When an acoustic wave passes over a solid boundary, a thin region near the wall

is observed wherein the viscous effect on the wave decays exponentially. This layer

is known as the Stokes Layer, and its thickness reads δs “
a

2ν{ωf , where ν and ωf

indicate the kinematic viscosity and angular velocity of the wave, respectively. Under

favorable conditions, such acoustic waves can lead to the steady (acoustic) streaming.

Rayleigh [6] who studied the acoustic streaming between two parallel plates, as a

result of a longitudinal standing wave, found the outer-streaming velocity proportional

to M2
a , where Ma “ rU{c0 is acoustic Mach number, rU is the amplitude of velocity

oscillations at the source and c0 represents the speed of sound. Later, Schlichting [7]
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extended this work to analyze the streaming within an incompressible oscillating

boundary layer and suggested that the inner-streaming velocity is also of the order of

M2
a , OpM2

a q. These theoretical approaches were derived only for very small oscillation

amplitudes. To assess if the non-linear effects due to large oscillations are significant,

Menguy and Gilbert [8] introduced a non-linear Reynolds number Renl “ 2M2
a{Sh

2,

where Sh “ δs{
?

2δ is the shear number and δ represent the channel half-width

(half the distance between two parallel plates). The theoretical streaming velocity

equations mentioned above are only valid if Renl ăă 1. Therefore, in practical cases,

employing a direct simulation of Navier-Stokes equations may be necessary. Yano [9]

solved 2D compressible Navier-Stokes and energy equations to simulate the streaming

in a half wave-length standing wave resonator. He showed that unless at very high

frequency or in highly viscous fluids, the amplitude of oscillations initially grows at the

rate OpMatq and reaches a quasi-steady state with periodic shock-waves of amplitude

Op
?
Maq. In this case, streaming velocity is proportional to Ma.

Acoustic streaming has also been used for heat transfer enhancement. Vainshtein

et al. [10] considered a longitudinal standing wave formed between two parallel plates

kept at different temperatures and studied the effect of streaming on the heat transfer

in this gap. They observed that such mechanism can enhance the heat transfer up

to one order of magnitude compared to the case with only still air. Aktas et al. [11]

studied the heat transfer in a shallow enclosure where horizontal walls are adiabatic

and side walls are kept at different temperatures where one side-wall oscillates at the

resonant and off-design frequencies. Under the resonant conditions, the streaming

velocity becomes significant, and the time-averaged convective heat transfer coeffi-

cient (h) near the stationary wall increases by almost one order of magnitude. On

the contrary, off-design oscillations fail to create a sensible streaming velocity or a

considerable change in h, therefore indicating the significance of resonance in creating

time-averaged changes in the flow. Aktas and Ozgumus [12] extended this work to

higher Renl and observed shock-wave oscillations (similar to Yano [9]) in the channel.
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They also investigated how the formation of the streaming pattern can enhance the

heat transport between two fixed horizontal parallel plates.

All the aforementioned studies were carried out for the pure oscillatory cases, while

in pulsating flows, the Stokes layer interacts with the background hydrodynamics

and thermal boundary layers in a non-linear fashion. Two dimensionless parameters

are conventionally introduced to study such phenomenon; ratio of the external wave

amplitude to the bulk velocity of the background flow aw “ rU{Ub and normalized

wave frequency ωf
` “ ωfν{u

2
τ , where uτ “

a

τw{ρ is the friction velocity. As long as

aw is less than 1, parameter ωf
` mainly determines the flow regime [13], [14].

• Quasi-Laminar: At high frequencies (where 0.02 À ω` À 0.04), the edge of the

Stokes layer falls within the viscous sub-layer where turbulent mixing is min-

imum. In this regime, the acoustic waves interact with the flow only through

mean quantities. In other words, the period of oscillations is shorter than turbu-

lence timescales; therefore, these waves may not be modulated by such turbulent

structures.

• Quasi-Steady: At low frequencies pulsations (where 0.003 À ω` À 0.006),

Stokes layer’s edge may reside in the buffer layer where turbulent mixing is

important. As such, a portion of acoustic energy is extracted from the wave

and distributed among smaller turbulent structures [15]. This non-linear pro-

cess greatly impacts the oscillatory wave, and under specific conditions, may

alter the time-averaged velocity and temperature profiles [13].

• Very high-frequency: A very high-frequency regime (0.04 À ω`) has been iden-

tified where pulsations can make noticeable changes in time-averaged turbulent

flow properties. Several studies, including Tardu et al. [16] and Scotti and

Piomelli [14], attributed such behavior to the pairing of pulsation frequency

and bursting frequency of coherent structures in the inner-layer suggested by

Mizushina et al. [17]. This observation is supported by results of Havemann

and Rao [18], Habib et al [19] and Said et al [20].
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1.2 Research Objectives

The Stokes layer, formed as a result of passing a sound wave over a solid boundary,

interacts with the hydrodynamic and thermal boundary layers. This process, under

favorable conditions, creates the acoustic streaming, which modifies the near-wall

gradients and controls the heat and momentum transport through the boundary.

The first objective of this research is to develop adequate mathematical tools to

study acoustic wave-boundary layer interaction.

Utilizing these tools, the first target of this research is to achieve a heat transfer

enhancement using acoustic streaming and unveil its application in designing

compact thermal systems.

The next objective is to numerically demonstrate the heat transfer abate-

ment via applying acoustic waves and to identify the underlying mechanism.

Evaluation of acoustic streaming in a spatially developing boundary

layer and its impact on the heat and momentum transport in such configurations is

the other objective of the present research.

1.3 Research Methodology

In order to fulfill the above-mentioned objectives, the present research has been

divided into four work packages. In the first part, a Local Stability solver based

on the spectral method and a Global Stability solver based on compact

scheme are developed to obtain accurate information regarding the low-frequency

characteristics of the flow and a high-order compact finite difference solver is

employed for Direct and Large Eddy Simulation of the acoustic wave and

turbulence interaction.

In the second task, Linear Stability Analysis is used to identify the optimal con-

ditions where imposing streamwise acoustic waves can interact with the hydro-

dynamic and thermal boundary layers and result in a global increase in heat trans-

fer without substantial skin friction augmentation. Direct Numerical Simulation is



5

performed to assess this technique and extend the findings to the conditions where

non-linear interactions become dominant.

A similar procedure is pursued to utilize acoustic streaming in heat transfer abate-

ment across the boundaries. Unlike the previous section, acoustic waves are ap-

plied in the spanwise direction, and Direct Numerical Simulations are employed

to identify the conditions where an optimal reduction in heat transfer can be achieved.

In the last work element, Global Stability Analysis is used to characterize the

optimal frequency for acoustic excitation of a spatially-developing boundary

layer. Large Eddy Simulations are then performed based on these findings aiming

to investigate the effect of acoustic waves on heat and momentum transport in a

spatially-developing flow field.

1.4 Research Guideline

Chapter 2 introduces the numerical techniques employed in this research; high-

order spatial discretization and time-stepping methods utilized in solving the Navier-

Stokes equations are presented in section 2.2. Linearized Navier-Stokes equations are

presented in section 2.3 followed by the discussion on the employed numerical tech-

niques in sections 2.4 and 2.5. Chapter 3 proposes a methodology to superimpose the

acoustic waves parallel to the fully-developed compressible boundary layers with the

aim of enhancing the heat transfer with minimal skin friction losses. Linear Stability

analysis framework developed in this research is employed to find the optimum wave

frequency accompanied by a detailed non-linear analysis of acoustic wave-boundary

layer interaction. The role of resonance, excitation amplitude, Reynolds number, and

domain size in the streaming process is assessed by considering a comprehensive set

of simulations.

Chapter 4 explores the superposition of acoustic waves to the compressible bound-

ary layer, in the spanwise direction and its impact on the heat transfer reduction.
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Chapter 5 aims at extending the analysis conducted for the excitation of fully-

developed channel flow via resonating acoustic waves traveling along with the flow, to

include the spatially-developing boundary layer. Finally, the main conclusions drawn

from this study are summarized in chapter 6.
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2. NUMERICAL METHODS

In this chapter, numerical tools developed for the simulation of acoustic excitation

of compressible boundary layers are briefly explained. Fully non-linear Navier Stokes

and continuity equations are presented in section (2.1) followed by discussions, in

section (2.2), on the numerical scheme employed to solve these equations. Section 2.3

introduces the linearized Navier-Stokes equations and outlines the numerical tech-

niques considered to solve them.

The content of this chapter is, in part (Sections 2.3, 2.4, and 2.5), reproduced

with permission from:

Rahbari, I., & Scalo, C. (2017). Linear Stability Analysis of Compressible Channel
Flow over Porous Walls. In Whither Turbulence and Big Data in the 21st Century?
(pp. 451-467). Springer, Cham [21].

Rahbari, I., & Scalo, C. (2017). Quasi-Spectral Sparse Bi-Global Stability Analy-
sis of Compressible Channel Flow over Complex Impedance. In 55th AIAA Aerospace
Sciences Meeting (p. 1879) [22].

2.1 Fully-compressible Navier-Stokes Equations

Fully compressible continuity, momentum and energy equations in the Cartesian

coordinate system takes the non-dimensional form as:

Bρ

Bt
`

B

Bxj
pρujq “ 0 (2.1)

B

Bt
pρuiq `

B

Bxj
pρuiujq “ ´

Bp

Bxi
`

1

Re

B

Bxj
pτijq ` fiδ1i , where i, j P t1, 2, 3u

BE

Bt
`

B

Bxj
rpE ` pqujs “

1

Re

B

Bxj

ˆ

k
BT

Bxj

˙

`
1

Re

B

Bxk
pτjkujq ` fiuiδ1i
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where px1, x2, x3q “ px, y, zq represent streamwise, wall-normal, and spanwise direc-

tion and fiδ1i indicates a volume forcing in x-direction. Total energy (E) and viscous

stress tensor (τ ij) read:

E “
p

γ ´ 1
`

1

2
ρuiui, τij “ µ

ˆ

Bui
Bxj

`
Buj
Bxi

´
2

3

Buk
Bxk

δij

˙

(2.2)

where the molecular dynamic viscosity follows the exponential form µ{µw “ pT {Twq
0.7.

This set of equations is closed by considering the equation of state for the perfect gas.

In fully-developed channel flow simulations, wall temperature T ˚w, speed of sound

at wall temperature c˚w, bulk density ρ˚b , and channel half-width δ˚ are taken as the ref-

erence values for temperature, velocity, density and length scales, respectively. Viscos-

ity at the wall temperature, µw, is considered as the reference value for this quantity.

Equation of state in this case takes the form p “ 1
γ
ρT . This non-dimensionalization

is adopted following Coleman et al. [23].

For numerical simulations involving the spatially developing boundary layer, tem-

perature is scaled by pγ ´ 1qT ˚8, and velocity, density, and pressure with respect to

c˚8, ρ˚8 and ρ˚8c
˚
8

2 where subscript 8 represents the free-stream condition. For non-

dimensionalization purposes, in simulation of fluid flow at the entrance region of a

channel, center-line quantities, p qcl, replace the free-stream quantities. Therefore,

the dimensionless equation of state reads p “ γ´1
γ

ρT . This non-dimensionalization

follows Nagarajan et. al [24].

2.2 Numerical Methods for Navier Stokes Simulations

In the present study, the high-order compact finite difference scheme on a stag-

gered grid arrangement is utilized for spatial discretization of Navier-Stokes equations.

Time-advancement is carried out via an explicit Runge-Kutta or an implicit Beam-

Warming method. These numerical techniques are briefly introduced in this section;

however, a complete explanation can be found in [25].
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2.2.1 Compact Finite Difference Method

The governing system of equations is discretized in space using a high-order com-

pact finite difference scheme. Conventionally, the first derivative is approximated

by [26]:

pαf 1i´1 ` f
1
i ` pαf 1i`1 “ b

fi`2 ´ fi´2

4∆x
` a

fi`1 ´ fi´1

2∆x
(2.3)

where a “ 2
3
p2` pαq and b “ 1

3
p´1` 4αq. This formula leads to a sixth-order accurate

method by setting pα “ 1{3. The second derivative is given by

pαf 2i´1 ` f
2
i ` pαf 2i`1 “ b

fi`2 ´ fi´2

4∆x2
` a

fj`1 ´ fj´1

∆x2
(2.4)

where a “ 4
3
p1´ pαq and b “ 1

3
p´1` 10pαq. To achieve the formal sixth-order ac-

curacy, pα “ 1{3 should be considered. This family of high-order schemes is later

extended to the staggered grid arrangement by Nagarajan et al. [27] providing a sub-

stantially improved accuracy over the conventional technique. Following this method,

the first derivative is obtained by:

pαf 1i´1 ` f
1
i ` pαf 1i`1 “ b

fi`3{2 ´ fi´3{2

3∆x
` a

fj`1{2 ´ fj´1{2

∆x
(2.5)

where a “ 2
3
p2` pαq and b “ 1

3
p´1` 4pαq and the sixth-order accuracy is recovered

by assuming pα “ 9{62. This scheme requires interpolations between the nodal and

mid-points which, to retain the formal accuracy, is found via

pαf Ii´1 ` f
I
i ` pαf Ii`1 “ b

fi`3{2 ´ fi´3{2

2
` a

fj`1{2 ´ fj´1{2

2
(2.6)

where a “ 1
8
p9` 10pαq and b “ 1

8
p´1` 6pαq. Achieving the sixth-order accurate inter-

polation is possible by setting pα “ 3{10. One-sided differentiation and interpolation

formula for near boundary points are presented in [27].
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2.2.2 Explicit Time Advancement

A compact third-order Runge-Kutta method is employed for explicit time-advancement.

For a generic ODE of form:
dU

dt
“ fpy, tq (2.7)

Time-advancement from tn to tn`1 can be found following

Un`1{3
“ Un

` a11∆t fpUn, tnq (2.8)

Un`2{3
“ Un

` a21∆t fpUn, tnq ` a22∆t fpUn`1{3, tn`1{3
q

Un`1
“ Un

` a31∆t fpUn, tnq ` a32∆t fpUn`2{3, tn`2{3
q

where

ra11, a21, a22, a31, a32s
T
“

„

8

15
,
1

4
,

5

12
,
1

4
,
3

4

T

2.2.3 Implicit Time Advancement

Implicit time marching is performed according to the Beam and Warming formu-

lation [28]. System of equations (2.1) can be rewritten as:

BU

Bt
`
BF j

Bxj
`
BV 1j

Bxj
`
BV 2j

Bxj
“ 0 (2.9)

where F j and V j represent the viscous and inviscid fluxes and U is the vector of

flow variables. Following [28], a second-order A-stable implicit time-advancement is

employed in this study,

3Un`1 ´ 4Un ` Un´1

2∆t
“ ´G

`

Un`1, tn`1
˘

(2.10)

where

G “
BF j

Bxj
`
BV 1j

Bxj
`
BV 2j

Bxj
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Thereafter, Gn`1 is linearized considering:

Gn`1
“ Gn

`
BGn

BU

`

Un`1
´ Un

˘

`Op∆t2q

which leads to:

ˆ

I `
2

3
∆t
BGn

BU

˙

`

Un`1
´ Un

˘

loooooomoooooon

∆Un

“
1

3

`

Un
´ Un´1

˘

loooooomoooooon

∆Un´1

´
2

3
∆tGn

`Op∆t2q (2.11)

Although this system of equations can be solved directly for ∆Un, the computational

cost of the matrix inversion becomes prohibitive in practice. To overcome this issue,

following Beam and Warming [28], an iterative approach is adopted along with diag-

onalization of inviscid terms in x and z directions. For complete explanation on this

numerical technique, one may refer to Nagarajan [25] or Beam and Warming [28].

2.2.4 Large Eddy Simulation Technique

Turbulent flows at high Reynolds numbers contain eddies with time and length

scales that span over several orders of magnitude. Resolving all these scales, us-

ing Direct Numerical Simulation of Navier-Stokes equations, requires a substantial

computational effort. To alleviate this issue in high-Reynolds spatially developing

boundary layer, the Large-Eddy Simulation technique has been employed. Spatially

filtered form of the governing equations (2.1) and (2.2) are written as:

Bρ̌

Bt
`

B

Bxj
pqρtujuq “ 0 (2.12)

B

Bt
pqρtuiuq `

B

Bxj
pqρtuiutujuq “ ´

Bqp

Bxi
`

1

Re

B

Bxj
ptσijuq ´

1

Re

B

Bxj
pτ sgs
ij q ` fiδ1i

B qE

Bt
`

B

Bxj

”

pE ` pqtuju
ı

“
1

Re

B

Bxj

˜

k
B qT

Bxj

¸

`
1

Re

B

Bxk
ptσjkutujuq

´
1

Re

B

Bxk
pqsgs
k q ` fituiuδ1i
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whereq represents the spatial filtering and t u is defined as Favre-filtering tgu “|ρg{qρ.

The term tσiju refers to the resolved stress tensor, while τ sgs
ij and qsgs

k are under-

resolved stress tensor and heat fluxes:

τ sgs
ij “ qρ ptuiuju ´ tuiutujuq , and qsgs

j “ qρ ptTuju ´ tT utujuq (2.13)

Sub-grid stress terms are modeled via the Dynamic Smagorinsky model wherein

τ sgs
ij ´

1

3
τ sgs
kk δij “ ´2C2∆2

qρ|tSu|

ˆ

tSiju ´
1

3
tSkkuδij

˙

(2.14)

τ sgs
kk “ 2CIqρ∆2

|tSu|2

and

qsgs
j “ ´

qρC2∆2|tSu|

Prt

BtT u

Bxj
(2.15)

where |tSu| “
a

2tSijutSiju and Sij “ 1{2 pBui{Bxj ` Buj{Bxiq. Parameters C, CI ,

and Prt are found dynamically using Germano identity following Moin et al. [29]

together with modifications proposed by Lily [30]. These parameters are averaged

only in spanwise direction for stability purposes. A complete derivation of these

equations are presented in Nagarajan et al. [27].

2.3 Linearized Navier-Stokes Equations

Compressible Navier-Stokes equations (2.1) can be re-written in the following

form:
B

Bt
Mpqq ` Lpqq `N pq,qq “ 0 (2.16)

where q is a vector of primitive or conservative variables and L and N are respectively

linear and non-linear operators. A generic instantaneous quantity, qpx, y, z, tq, can be
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decomposed into a base state, qpx, y, zq, and a small fluctuation term εq1px, y, z, tq.

Applying this decomposition and retaining only the first order fluctuations yields

B

Bt
Mpεq1q ` Lpqq ` Lpεq1q `N pq,qq `N pq, εq1q “ 0 (2.17)

Considering Equation (2.16), mean flow (q) satisfies:

Lpqq `N pq,qq “ 0 (2.18)

Subtracting (2.18) from (2.17) yields Linearized Navier-Stokes Equations (LNSE):

B

Bt
Mpq1q `Nqpq

1
q “ 0 (2.19)

To analyze the asymptotically unstable modes of the base flow, one may assume

perturbations take the form:

q1px, y, z, tq “ q̂px, y, zq e´jωt (2.20)

where ω is the complex angular velocity of each mode, <tωu is the angular velocity

and =tωu shows the growth rate of each mode. Substituting this perturbation in

Equation (2.20) results in a generalized eigenvalue problem:

Aq̂ “ ωBq̂ (2.21)

where,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

AXu AXv AXw AXp AXT

AYu AYv AYw AYp AYT

AZu AZv AZw AZp AZT

ACu ACv ACw ACp ACT

AEu AEv AEw AEp AET

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

û

v̂

ŵ

p̂

T̂

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ω

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

BX
u BX

v BX
w BX

p BX
T

BY
u BY

v BY
w BY

p BY
T

BZ
u BZ

v BZ
w BZ

p BZ
T

BC
u BC

v BC
w BC

p BC
T

BE
u BE

v BE
w BE

p BE
T

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

û

v̂

ŵ

p̂

T̂

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.22)
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In A and B matrices, superscripts represent the equations used to derive the coefficient

and subscripts specify the quantity to which each coefficient belongs. For example, in

linearized x-momentum equation, all terms that include û are factorized into AXu . It

is worth noting that these matrix elements are essentially operators that may include

spatial derivatives and mean flow quantities.

If the base flow as well as boundary conditions are homogeneous in one or two

directions, spatial Fourier decomposition can simplify the fluctuation forms leading to

two common classes of linear stability analysis, i.e. local and global stability analysis.

The following sections, introduce these subjects along with the numerical methods

developed for each class.

2.4 Numerical Methods for Local Stability Analysis

In local stability analysis, the base flow is assumed to vary only in one direction,

for instance, y, and boundary conditions for perturbations are considered periodic in

the other two directions, namely x and z. Incorporating the spatial Fourier transform,

the perturbation form (2.20) is rewritten as

q1px, y, z, tq “ q̂pyq ejpkx`βzq e´jωt (2.23)

where k and β are wavenumbers in x and z directions, respectively. Considering

this form of perturbations in Equation (2.21) substantially reduces the size, and

subsequently, computational cost of the eigenvalue problem. A complete derivation

of the matrix elements in (2.22) for this type of stability analysis is presented in

Malik [31]. A Spectral collocation method is often used for spatial discretization of

Equation (2.21).
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2.4.1 Spectral Method

Spectral method is a common scheme to discretize the linear Navier-Stokes equa-

tions, especially in the local stability problems. This method approximates a variable

Φ by an N -th order polynomial:

Φpξq “
N
ÿ

k“0

akTk pξq (2.24)

where Tkpξq is the Chebyshev polynomial of order k defined in ξ P r´1, 1s whose zeros

(ξn) are calculated from

ξn “ cos pπn{Nq for n “ 0, 1, 2, ¨ ¨ ¨N (2.25)

Derivative of Φ with respect to ξ is found via

BΦ

Bξ

ˇ

ˇ

ˇ

ˇ

ξi

“

N
ÿ

k“0

akDi,k pξq (2.26)

where,

Dξ
0,0 “

2N2 ` 1

6
(2.27)

Dξ
i,i “ ´

ξi
2 p1´ ξ2

i q
i “ 1, ¨ ¨ ¨ , N ´ 1

Dξ
i,j “

ci
cj

p´1qi`j

ξi ´ ξj
i ‰ j, i, j “ 1, ¨ ¨ ¨ , N ´ 1

Dξ
N,N “ ´

2N2 ` 1

6
(2.28)

and

ci “

$

&

%

2 if n “ 0 or N

1 otherwise
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Higher derivative matrices can be found via matrix multiplication of the first deriva-

tive matrices, for example,

ρû`
Bû

By
`
B2û

By2
“

ˆ

ρ`
B

By
`
B2

By2

˙

û

can be written in the matrix form as

`

ρI `Dy `D
2
y

˘

û

This differentiation method is applied in Equations (2.21) and (2.22) and, therefore,

the unknown vector becomes:

û “ rû1, û2, ¨ ¨ ¨ ûns , v̂ “ rv̂1, v̂2, ¨ ¨ ¨ v̂ns , ŵ “ rŵ1, ŵ2, ¨ ¨ ¨ ŵns (2.29)

p̂ “ rp̂1, p̂2, ¨ ¨ ¨ p̂ns , T̂ “

”

T̂1, T̂2, ¨ ¨ ¨ T̂n

ı

where n is the number of grid points. The resulting eigenvalue problem (2.21) has a

5n ˆ 5n dimension, and since n is typically of the order of Op100q, it can be simply

solved by a QR algorithm.

2.4.2 Validation of the Local Stability Solver

Validation is first carried out against the Local Stability Analysis results for com-

pressible Couette flow by Hu and Zhong [32,33]. Iso-thermal conditions, T8 “ 1, and

the tangential velocity, U8 are imposed at the top wall as well as no-slip and adia-

batic conditions at the bottom wall. Reynolds number and Mach number based on

the top wall velocity are Re8 and M8. In this section, all quantities are normalized

with speed of sound based at the top wall temperature, bulk density and the total



17

wall-to-wall distance. To achieve a fair comparison with Hu and Zhong [32, 33], the

equation for dynamic viscosity is changed to:

µ “ T 1.5 1` C

T ` C
, where C “ 0.5 (2.30)

and Pr “ 0.72 (only for the sake of this comparison). Excellent agreement is found

as shown by the eigenvalue spectra and eigenfunctions (figures 2.1 and 2.2). A grid

convergence study of the eigenvalues is presented in table 2.1. This type of stability

cr/M∞

-0.5 0 0.5 1 1.5

c i
/
M

∞

-0.8

-0.6

-0.4

-0.2

0

T̂ , û
-0.4 0 0.4 0.8 1.2 1.6

y

0

0.2

0.4

0.6

0.8

1

p̂
0.01 0.03 0.05

(a)

(c)

(d)

(b)

(aa)

(bb)

Figure 2.1. Comparison of complex wave velocity spectrum for compress-
ible Couette flow at µ8 “ 2, Re8 “ 2 ˆ 105, k “ 1 using N=100 grid
points (˝) with results from Hu and Zhong [33] (İ). Real part (—) and
imaginary part (´ ¨ ´) of velocity, û , temperature, T̂ , and pressure, p̂ ,
eigenfunctions of the most unstable mode at M8 “ 5, Re8 “ 5 ˆ 105,

α “ 3 with (a): <
!

T̂
)

, (b): < tûu, (c): =
!

T̂
)

, (d): = tûu, (aa): < tp̂u,
(bb): = tp̂u.

analysis may be useful in some applications, however, if the base flow quantities

depend on more than one direction, or if the geometry cannot be represented by

periodic boundary conditions for perturbation, Local Stability Analysis may not the

ideal choice.
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Table 2.1.
Comparison of complex wave velocity, c, of the most unstable mode for
compressible Couette flow with the reference values taken from Hu and
Zhong [32] for several Re8, M8 and k. Grid convergence study shown for
N=100, N=200 and N=300, are respectively placed on the top, middle
and bottom rows for each case.

Hu and Zhong [33] Current Study
cr{M8 ci{M8 cr{M8 ci{M8

Re8 “ 5ˆ 106, M8 “ 5, α “ 2.1, Mode I

+0.972869314676 -0.003456356315 +0.972869280518 -0.003456323886
+0.972869272448 -0.003456466520 +0.972869272445 -0.003456466743
+0.972869272450 -0.003456466522 +0.972869272355 -0.003456466505

Re8 “ 5ˆ 106, M8 “ 5, α “ 2.1, Mode 0

+0.040730741952 +0.000876050503 +0.040730596292 +0.000874754264
+0.040722854287 +0.000885530891 +0.040722854373 +0.000885530566
+0.040722853034 +0.000885531421 +0.040722853032 +0.000885531421

Re8 “ 2ˆ 105, M8 “ 2, α “ 0.1, Mode I

+1.213965119859 -0.011585118523 +1.213965119851 -0.011585118547
+1.213965119817 -0.011585118448 +1.213965119852 -0.011585118547
+1.213965119854 -0.011585118558 +1.213965119852 -0.011585118547

Re8 “ 2ˆ 105, M8 “ 2, α “ 0.1, Mode 0

-0.291572925106 -0.013821128462 -0.291572925109 -0.013821128464
-0.291572925140 -0.013821128536 -0.291572925109 -0.013821128464
-0.291572925108 -0.013821128457 -0.291572925109 -0.013821128464

2.5 Numerical Methods for Global Stability Analysis

Global stability analysis focuses on the flow configurations where the base flow

is not periodic (sometimes referred to as three-dimensional or Tri-global Stability

Analysis) or can be assumed periodic only in one direction (Bi-global Stability Anal-
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-0.4 0 0.4 0.8 1.2 1.6

y

0

0.2
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p̂
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(bb)

Figure 2.2. Comparison of complex phase velocity spectrum for laminar
compressible Couette flow at M8 “ 5, Re8 “ 1 ˆ 105 and k “ 2.5
using N=100 grid points (İ) against Hu and Zhong [32]. Real part (—)
and imaginary part (´ ¨ ´) of velocity, û, temperature, T̂ , and pressure,
p̂, eigenfunctions of the most unstable mode (indicated with downward

arrow) with (a): <
!

T̂
)

, (b): < tûu, (c): =
!

T̂
)

, (d): = tûu, (aa): < tp̂u,
(bb): = tp̂u.

ysis) [34]. The former case is very computationally demanding and is not the focus of

the present work. In the latter, one may consider the perturbations to take the form:

q1px, y, z, tq “ q̂px, yq ejβz e´jωt (2.31)

assuming that the flow and boundary conditions are periodic in z-direction. For this

kind of stability analysis, the elements of A and B matrices in Equation (2.22) are

presented in Theofilis and Colonius [35].

2.5.1 Spectral Methods for GSA

Extending the one-dimensional formulation for the function estimation using the

spectral method (2.24) to multiple dimensions reads,

Φpξ, ηq “

Nξ
ÿ

k“0

Nη
ÿ

l“0

ak,l TkpξqTlpηq (2.32)
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where ξ and η are zeros of the Chebyshev polynomial of order Nξ and Nη (2.25).

The 1D-derivative matrix operators in each direction is found via Equation (2.27),

where D matrix has [Nξ ˆ Nξ] or [Nη ˆ Nη] dimension. Two-dimensional operators

are simply found via:

Dξ “ D b I and Dη “ I bD (2.33)

Dξξ “ D2 b I and Dηη “ I bD2 and Dξη “ Dξ ˆDη

It is worth noting that ξ and η are defined in r´1, 1s, therefore an appropriate trans-

formation may need to be considered if the physical domain does not conform with

this domain.

Applying this method to discretize the linearized Navier-Stokes equations leads to

the generalized eigenvalue problem of form (2.22) and the unknown vector becomes

similar to (2.29) where n “ Nξ ˆ Nη and, therefore, size of the eigenvalue problem

(2.21) becomes 5nˆ5n. A spy plot of the A and B matrices using this discretization

method are shown in figure 2.3. Given the computational cost of the QR algorithm,

A B

Figure 2.3. Spy plots of A and B matrices using dense implementation
of compact scheme for a grid of 10ˆ 10.

which scales with Opn3q, solving the Equation (2.21) soon becomes prohibitive. For
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example, if we use 100 grid points in each direction, size of matrices in Global Sta-

bility Analysis is 102 times larger, in the leading dimension, and subsequently cost

of the eigenvalue problem becomes Op106q times more expensive than Local Stability

Analysis. In the other hand, due to fully dense nature of the derivative matrix opera-

tors, iterative eigenvalue solvers, e.g. Arnoldi algorithm [36], are not very effective as

well, especially in terms of memory requirements. In order to have a sparse, and yet

high-order, derivative operators, compact finite difference method has been chosen

for this study.

2.5.2 Compact Finite Difference for GSA

Recall the first derivative approximation using compact finite difference method

(2.3):

pαf 1i´1 ` f
1
i ` pαf 1i`1 “

b

4∆x
pfi`2 ´ fi´2q `

a

2∆x
pfi`1 ´ fi´1q ((2.3) revisited)

Following the matrix notation, this equation is rewritten as:

L f 1 “ R f (2.34)

Where L and R are banded tri-diagonal and penta-diagonal matrices, respectively.

The discrete derivative matrix operator calculated explicitly using this scheme, D “

L´1R, is dense (see figure 2.4), therefore, demands the computational cost very simi-

lar to that of the spectral methods. In Global Stability Analysis, it is more convenient

to have spatial derivatives explicitly in terms of primitive (or conservative) variables

so that the unknown vector only contains the primitive variables (2.29). In the lit-

erature, whenever compact scheme is employed to discretize linearized Navier-Stokes

equations, D matrix is used to find the first and second derivatives, f 1 and f2, explic-

itly in terms of f , (for example in [37] and [38]). This method hereafter is referred to

as explicit implementation of compact finite difference. As such, sparsity patten of A



22

L R D “ L´1R

Figure 2.4. Spy plots of compact finite difference operators, L and R,
and explicit derivative matrix, D. As it is shown, L and R operators are
banded (tri- and penta-diagonal) matrices while the D matrix is dense.

and B matrices generated using this implementation becomes very similar to the one

of spectral method shown in figure 2.3.

The optimal approach to use the compact scheme is to incorporate L and R

matrices inside the system of equation without any inversion to keep the system as

sparse as possible. The new implementation proposed in this research is designed to

make this accomplished.

2.5.3 Sparse Implementation of Compact Finite Difference for GSA

As explained before, to fully exploit the advantages of compact schemes, one

should use the sparse form, incorporating both L and R matrices when setting up the

final matrices in the generalized eigenvalue problem. For this purpose, the first and
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second spatial derivatives of the primitive variables are also included in the eigenvector

q̂ so that, unlike Equation (2.29), the first block of unknowns, û, becomes:

û “

»

—

–

û0, ¨ ¨ ¨ ûn´1
looooomooooon

ûi

, ûx0 , ¨ ¨ ¨ ûxn´1
loooooomoooooon

ûxi

, ûxx0 , ¨ ¨ ¨ ûxxn´1
looooooomooooooon

ûxxi

, ûxy0 , ¨ ¨ ¨ ûxyn´1
looooooomooooooon

ûxyi

, (2.35)

ûy0 , ¨ ¨ ¨ ûyn´1
loooooomoooooon

ûyi

, ûyy0 , ¨ ¨ ¨ ûyyn´1
looooooomooooooon

ûyyi

fi

ffi

fl

T

Similarly, one can form the unknown blocks for v̂ and ŵ. The temperature vector,

T̂, will be similar except that cross derivative does not come into the calculation:

T̂ “

»

—

—

–

T̂0, ¨ ¨ ¨ T̂n´1
looooomooooon

T̂i

, T̂x0 , ¨ ¨ ¨ T̂xn´1
loooooomoooooon

T̂xi

, T̂xx0 , ¨ ¨ ¨ T̂xxn´1
looooooomooooooon

T̂xxi

, T̂y0 , ¨ ¨ ¨ T̂yn´1
loooooomoooooon

T̂yi

, T̂yy0 , ¨ ¨ ¨ T̂yyn´1
looooooomooooooon

T̂yyi

fi

ffi

ffi

fl

T

(2.36)

and p̂ will be:

p̂ “

»

—

–

p̂0, ¨ ¨ ¨ p̂n´1
looooomooooon

p̂i

, p̂x0 , ¨ ¨ ¨ p̂xn´1
loooooomoooooon

p̂xi

, ûp0 , ¨ ¨ ¨ p̂yn´1
loooooomoooooon

p̂yi

fi

ffi

fl

T

(2.37)

To set up A and B matrices, the linear stability equations are written at the first row

blocks associated with each variable, i.e., the x and y-momentum equations are writ-

ten in the rows associated with ûi and v̂i blocks and compact derivative formulation

(2.34) is incorporated in the newly appeared blocks, e.g., rows corresponding to ûxi ,

ûxxi . For better description of this approach, the structure of the first two blocks of

A matrix, AXu and AXv , are shown in figure 2.5 where Lx and Rx are compact finite

difference operators (2.34) in x-direction; similarly, Ly and Ry are these operators in

y- direction. The rest correspond to different terms in the linearized Navier-Stokes

equations. Finally, A and B matrices for a 10ˆ10 grid are shown in figure 2.6. Com-

paring figures 2.3 and 2.6 shows that using the new formulation, the final matrices
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AXu AXv

Figure 2.5. Sample structure of AXu and AXv as part of the A matrix
(2.22). Blocks having non-zero entries are shaded while the ones with
all zero elements are left white. The corresponding segments in the ar-
ray q̂ are shown in the right. Lx and Rx are compact finite difference
operators (2.34) in x-direction; similarly, Ly and Ry are these operators
in y- direction. The rest correspond to different terms in the linearized
Navier-Stokes equations.

A B

Figure 2.6. Spy plots of A and B matrices using the implicit(sparse)
implementation of compact scheme for a grid of 10ˆ 10
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are much sparser, however bigger in dimensions. The number of non-zero elements

in these matrices are shown in table 2.2. The advantages of this method become

more pronounced by increasing the number of grid points so that for a moderate grid

size (128ˆ 128), the new approach generates matrices that are more than 280 times

sparser. The generalized eigenvalue problem (2.21) is solved using SLEPc, Scalable

Table 2.2.
Comparison of number of non-zero elements, nnz(), in matrices A and
B (2.21), generated using implicit versus explicit compact scheme imple-
mentation for a model problem

Grid Size (Nx ˆNy) nnz(A) Implicit nnz(A) Explicit nnz(B) Implicit nnz(B) Explicit
16ˆ 16 46,680 263,073 5,610 1,530
32ˆ 32 182,807 3,684,908 22,506 6,138
64ˆ 64 740,565 54,590,571 90,090 24,570
128ˆ 128 2,980,309 840,071,345 360,426 98,298

Library for Eigenvalue Problem Computations [39]. The Arnoldi algorithm, based on

Krylov subspace iteration, is used to solve the eigenvalue problem. A brief description

of this algorithm is included in the following.

Arnoldi Algorithm

Let matrix M be a generic complex valued matrix for which the decomposition

M “ QHQ˚ holds where Q and H are unitary and upper Hessenberg matrices,

respectively. One can write this decomposition for the first m columns as:

MrnˆnsQ
1
rnˆms “ Q1rnˆpm`1qsH

1
rpm`1qˆms (2.38)

where prime denotes a portion of the original matrix.
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»

—

—

—

—

—

—

—

—

—

–

M

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

q1 q2 ¨ ¨ ¨ qm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

q1 q2 ¨ ¨ ¨ qm`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

h11 h12 ¨ ¨ ¨ h1m

h21 h22 ¨ ¨ ¨ h2m

. . .
...

. . .
...

hm`1,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The basic Arnoldi algorithm uses the stabilized Gram-Schmidt process to find

a sequence of orthonormal vectors, e.g. q1, q2, q3, ¨ ¨ ¨ , such that for every m and

starting from a random b vector, KmpM, bq “ spantq1, q2, ¨ ¨ ¨ qmu. This algorithm can

be summarized as:

Algorithm 1 Basic Arnoldi iteration algorithm
procedure Basic Arnoldi iteration algorithm

selecting b arbitrarily which gives q1 “
b
||b||

for m “ 1, 2, ¨ ¨ ¨ do
p “Mqm
for i “ 1, 2, ¨ ¨ ¨ ,m do

him “ q˚i p
p “ p´ himqi

end for
hm`1,m “ ||p||
qm`1 “

p
hm`1,m

end for
end procedure

Removing the last row of H 1
m`1ˆm gives H̃rmˆms which depending on m can be

much smaller than M matrix. Eigenvalues of H̃ are good approximations of those

of M matrix and q1 to qm are the eigenvectors. The algorithm implemented in this

study, through SLEPc, is a variant of the original Arnoldi algorithm called Explicitly

Restarted Arnoldi with locking. More information on this can be found in the SLEPc

user manual [40].
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Shift-and-Invert Technique

The generalized eigenvalue problem (2.21) can be transformed into a standard

eigenvalue problem:

Ãu “ Λ̃u (2.39)

where Ã “ pA ´ σBq´1B and Λ̃ “
1

ω ´ σ
. Using this transformation, the eigen-

values close to the σ become the largest in magnitude and will converge quickly in

the Krylov-based algorithms. All calculations in these algorithms that require Ã are

handled implicitly through PETSc so that all matrix inverse times vectors are viewed

as solution of a linear system of equation. At each Krylov iteration, one system of

equations should be solved, using direct scheme which is one of the most time con-

suming parts of the process of finding the eigenvalues. Direct solvers find the LU

decomposition of the matrix and then solve for the multiple right hand sides which

the later only requires a backward and forward substitutions. The distributed ver-

sion of the SuperLU package is used herein which employs Message Passing Interface

(MPI) to perform the Gaussian elimination in parallel [41, 42]. Matrices are parti-

tioned so that each processor reads one block-row. Factorized matrices (L and U)

are also distributed among several processors which necessitates performing the back-

ward/forward substitutions in the distributed form that causes difficulties when using

many processors.

2.5.4 Validation of the Global Stability Solver

In this section, we aim to study the accuracy of the developed Global Stability

Solver in the leading edge boundary layer problem which is originally studied by Lin

and Malik [43] using a spectral solver for an incompressible flow and then is extended

to the compressible regime by Theofilis et al [44]. One interesting fact about this

test case is the ease of calculating the base flow by solving a set of coupled Ordinary
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Differential Equations, presented in equations (2.40), with high accuracy and low

computational cost.

Vy “ ´U ` V
Ty
T

(2.40)

Uyy “
1

µ

ˆ

U2 ` V Uy
T

´ 1´
Bµ

BT
TyUy

˙

Wyy “
1

µ

ˆ

VWy

T
´
Bµ

BT
TyWy

˙

Tyy “
Pr

µ

ˆ

´
Bµ

BT

Ty
2

Pr
`
TyV

T
´ pγ ´ 1qM2µWy

2

˙

This set of ODEs, subjected to the boundary conditions (2.41), is solved using the

fourth-order Runge-Kutta scheme.

Up0q “ V p0q “ W p0q “ 0 and Up8q “ W p8q “ T p8q “ 1 (2.41)

Velocity components as well as temperature base fields are calculated after solving

the above-mentioned equations resulting in the base flow vector:

qpx, y, zq “ pu, v, w, ρ, T qT “

ˆ

xUpyq

Re
,
V pyq

Re
,W pyq,

1

T pyq
, T pyq

˙T

(2.42)

Linearized Navier-Stokes equations are solved at Re “ 800, M “ 0.02, based on span-

wise velocity at the boundary layer edge, and β “ 0.255. At the wall, all components

of the velocity fluctuations are set to zero pu1, v1, w1q “ 0 as well as temperature fluc-

tuation T 1 “ 0. Zero Neumann boundary condition is imposed for pressure at the

wall, Bp1{By “ 0. At the far-field, all perturbations are assumed to decay to zero.

Linear extrapolation is imposed at the left and right boundaries in x-direction.

For compact scheme, two consecutive grid transformations are used to map the

uniform grid (in wall-normal direction denoted by χ P r´1, 1s) to the one used

by Lin and Malik [43] in order to achieve a fair comparison. The first one, η “

tanhpγχq{tanhpχq with γ “ 2, provides a non-uniform grid with points clustered near
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the boundaries, while the second transformation places half of the points in a very

small distance adjacent to the wall (determined by yi):

y “ a
1` η

b´ η
where a “

yiy8
py8 ´ 2yiq

and b “ 1`
2a

y8
(2.43)

In the current study, yi “ 0.5 and y8 “ 100 are considered. In x direction, a

uniform grid is considered, x P r´100, 100s. Eigenvalues of the first and second most

unstable modes on a 48 ˆ 48 grid are presented in the table 2.3 which indicates the

accuracy of the developed code using compact scheme in Linear Stability Analysis.

Number of non-zero elements after LU decomposition and total memory highmark

Table 2.3.
Global stability analysis of leading edge boundary layer at Re “ 800,
M “ 0.02 and β “ 0.255 on a 48ˆ48 grid where ci “ ωi{β and cr “ ωr{β.
Subscripts GH and A1 represent the Görtler-Hämmerlin and first anti-
symmetric modes. Deviating digits are underlined.

Grid: 48ˆ 48 crGH ciGH crA1 ciA1

Lin and Malik [43] 0.35840982 0.00585325 0.35791970 0.00409887
Theofilis et al. [44] 0.35844151 0.00585646 0.35793726 0.00401330

Current Study: implicit 0.35844071 0.00585467 0.35795061 0.00410000
Current Study: explicit 0.35844457 0.00584620 0.35795353 0.00409183

for two different implementations of compact scheme are presented in figure 2.7.

Explicit (traditional) implementation, similar to the spectral method implementation,

demands much more memory such that the eigenvalue computations on the grids finer

than 80ˆ80 is not possible on our machines, however, computations on grid 200ˆ200

are easily done using the new implementation.
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Figure 2.7. Total number of non-zero elements (left) and total highmark
(right) for implicit and explicit implementations of compact scheme

2.6 Application of the Linear Stability Analysis in Turbulent Flow Sim-

ulations

Linear Stability Analysis involves approximation of flow quantities around an equi-

librium or base state. In case the background flow is laminar, finding the solution for

this state is straightforward and LSA is widely popular for identifying and control

of such patterns in various flow configurations [45, 46]. On the other side, turbulent

flows experience broadband fluctuations in all quantities. Under certain circumstances

where studying low-frequency events, for example due to separation, in turbulent flow

is the main target, Linear Stability Analysis based on ”time-averaged flow field” has

been successful [47,48].

In order to conduct such analysis for turbulent boundary layer flows, in the absence

of separation, considering time-averaged flow quantities as the equilibrium state solu-

tion, qpxq, should be justified by analyzing the timescale of different terms involved

in the equation for the evolution of turbulent fluctuations. As explained by Lee et.

al [49] and Jimenez [50], in the regions where the timescale of non-linear terms is much

larger than that of the linear terms, the effect of non-linear components would be min-

imal, and therefore Linearized Navier-Stokes equations can represent the dynamics of
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fluctuations. Timescale of the linear terms is O p1{Sq where S shows the mean shear

and timescale of the non-linear terms is O
´

lε{
`

u1iu1i
˘1{2

¯

where lε is suggested by Lee

et. al [49] as the dissipation length-scale, or the length-scale of the energy-containing

eddies of turbulence in equilibrium, lε “
`

u1iu1i
˘3{2

{ε and ε “ ν Bu1i{Bxj Bu1i{Bxj

is the dissipation rate of turbulent kinetic energy. The ratio of these two timescales

is defined as the shear parameter S˚ “ Su1iu1i{ε which should be large enough to

assume the linearization to hold. This condition is met near the wall pS˚ remains

around 10 up to y{δ À 0.6q, while by approaching the channel core where the shear

becomes weaker, this assumption may not be valid [50]. It should also be noted that,

in the present research, only the molecular viscosity has been included in L operator

of Equation (2.18). This assumption holds for modes with acoustic nature, but may

weaken the conclusions for the viscous modes.
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3. ACOUSTIC EXCITATION FOR HEAT TRANSFER ENHANCEMENT IN

HIGH-SPEED FLOWS

In the present chapter, acoustic excitation applied parallel to the flow direction, in the

streamwise direction, and its impact on heat and momentum transfer is investigated

using numerical simulations. In order to maximize the effect of pulsations on the flow,

we identify the specific conditions required for the external wave to acoustically res-

onate within the domain. This is achieved using the Linear Stability Analysis (LSA)

of the background flow without the excitation. Such information is used to select the

frequency and shape of the external acoustic field for making desirable changes in the

flow. This resonant frequency is close to the bursting frequency suggested to modify

the time-averaged Nusselt (Nu) and skin friction (Cf ) upon pulsation. Moreover,

the sensitivity of the flow response to the resonant frequency is assessed by apply-

ing external waves of identical amplitude and shape but at off-resonance frequencies.

The present research is the first study to achieve the ”acoustic streaming” in the

compressible flows, and it opens new avenues towards enhancing the heat transfer

without excessive skin friction losses.

3.1 Problem Formulation

The proposed test case comprises repeating identical sections of length Lx where

each one includes a duct with an array of acoustic drivers mounted on the side walls.

Figure 3.1 shows a schematic view of the setup. By exploiting the geometrical sym-

metry, we only simulate one unit and impose periodic boundary condition in the

streamwise direction. To avoid complexities associated with the corners and the

boundary layer formed on the side-walls, we focus on mid-span region and implement
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Figure 3.1. Schematic view of the proposed setup. The computational
domain is of size pLx, Ly, Lzq “ p4πδ, 2δ, 1.5πδq. The shaded area of width
Lf in each unit indicates the region where the effect of acoustic drivers
mounted on side-walls is modeled via forcing function of form (3.1)

the periodic boundary condition in the spanwise direction. The effect of acoustic

drivers is modeled with an external forcing following a bell-shape function:

~ff px, tq “ Af exp

˜

´
px´ xmq

2

L2
f

¸

sinpωf tq ~ex (3.1)

where Af is the forcing amplitude, Lf represents the thickness of the forcing region

with midpoint xm and ωf sets the frequency of excitation. This force is added to the

momentum equation as the source term, and the work performed by this source on

the flow is considered in the energy equation following ~ff .~u.

We first perform Direct Numerical Simulation of compressible channel flow with-

out any external excitation. The time-averaged flow profiles are used as the base

flow for the linear modal analysis. In search for the optimal excitation frequency, we

solve the linearized Navier-Stokes equations and identify the modes that possess a

large added heat-flux. In addition, the ideal mode should have a small decay rate,

to modify the flow globally. We use this mode’s frequency to operate the acoustic

drivers and apply the forcing function (3.1) in the computational setup.
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3.2 Results

In the section that follows, we first focus on the simulation of flow field with-

out considering the effect of acoustic drivers. Time-averaged flow quantities serve as

the base flow for the linearized Navier-Stokes analysis. Moreover, we compare these

results with available datasets in the literature to assess the accuracy of our compu-

tational tool. Thereafter, we investigate the effect of acoustic excitation in the same

flow configurations and analyze the modified boundary layer characteristics, including

the skin friction and heat transfer enhancement.

3.2.1 Base Flow

As mentioned before, the computational setup consists of two parallel isothermal

plates of size Lx ˆ Lz “ 4πδ ˆ 1.5πδ separated by a distance Ly “ 2δ. The forcing

term on the right hand side of momentum and energy Equation (2.1), fiδ1i, indicates a

volume forcing in x-direction. At each time-step, bulk velocity Ub is locally computed

following:

Ub px, zq “

şLy
0
ρu dy

şLy
0
ρdy

Then, spatially-averaged bulk velocity in the entire domain is calculated via,

Ub,tot “

şLz
0

şLx
0
Ub px, zq dx dz

LxLz

If Ub,tot is different from the target value Ub,target, a forcing uniform term is added

to the entire domain to retain the target value which corresponds to a constant mass

flow-rate. This is a common practice when simulating turbulent channel flow which

is followed by Coleman et. al [23] for compressible case, and Leveque et. al [51]

in incompressible case. Such forcing strategy allows the “pressure gradient” to take
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any non-uniform distribution within the domain (for example in the oscillatory case),

given that the overall mass flow rate is constant.

For non-dimensionalization purposes, the reference temperature, velocity, and

length scale are respectively wall temperature (Tw), speed of sound at wall tem-

perature (cw), and channel half width δ. Reynolds number based on bulk veloc-

ity Ub is Reb “ ρUbδ{µw “ 3000. To analyze the effect of flow compressibility on

the results, two Mach numbers corresponding to subsonic (Mb “ Ub{cw “ 0.75)

and supersonic (Mb “ 1.5) regimes are considered here. The later case is identi-

cal to the setup studied by Coleman et. al [23], therefore a comparison between

the present simulation’s results and data provided in [23] is shown here to demon-

strate the accuracy of the present solver. The computational domain is discretized

using Nx ˆ Ny ˆ Nz “ 144 ˆ 128 ˆ 96 cells resulting in a resolution of ∆x` „ 19,

∆y`min “ 0.24, and ∆z` “ 10.7 where superscript ` indicates the quantities normal-

ized with friction velocity, so that y` “ yuτ{νw. Time-averaged streamwise velocity

and temperature as well as RMS of the fluctuating velocity components are presented

in 3.2. Results show a promising agreement with Coleman et. al [23] both in terms of

first and second order statistics. Similar number of grid points lead to ∆x` “ 17.1,

∆y`min “ 0.21, and ∆z` “ 9.7 for the subsonic case. Time-averaged streamwise

velocity, density, and temperature profiles for the two aforementioned cases are il-

lustrated in figure 3.3. One significant effect of compressibility can be seen in the

temperature profiles, where the viscous heating increases the center-line temperature

proportional to Tc9Mb
2. As such, in the present study, core region of the flow is

approximately 8.7% and 37% hotter than the walls, in subsonic and supersonic cases,

respectively. This is expected to provide a proper contrast when analyzing the effect

of acoustic excitation on the heat transfer characteristics. It is also worth noting

that the pressure is almost constant across the channel which, in turn, yields a mean

density variation in wall-normal direction following the perfect gas law. These results

serve as the equilibrium state, or base flow, for the linearized Navier-Stokes analysis.
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3.2.2 Linearized Navier-Stokes Analysis

Linearized Navier-Stokes equations (2.21) and (2.23) are solved in order to inves-

tigate different families of modes present in this flow configuration and to identify the

ones that are expected to create an effective increase in wall heat transfer throughout

the channel. The streamwise wavenumber is considered k “ 0.5 corresponding to the

largest wave fitting in the domain of length Lx “ 4π.

Eigenvalue spectrum in both subsonic and supersonic cases are shown in figure

3.4. This figure focuses on the most unstable modes in the spectrum. The Operators

Rt.u and It.u return the real and imaginary parts of a variable. Horizontal axis rep-

resents the propagation speed of each mode and the vertical one shows the associated

growth rate. The dashed-line specifies the threshold of neutrally stable modes so that

modes closer to this line experience slower decay rate. All modes without external

forcing are stable. Similar results are also reported by Friedrich & Bertolott [52]

using the Parabolized Stability Equations. These findings are consistent with that of

Reynolds & Hussain [53] who observed that LSA of mean profiles corresponding to

an incompressible turbulent channel flow remains stable up to Reτ “ Op1000q. As

studied by [54] and Del Alamo & Jimenez [55], we can link the stable modes with the

largest temporal growth rates to the near wall coherent structures. Here, we use the

information provided by the LSA to decide which mode should be excited to create

changes in the flow consistent with our goals.

In the present configuration, four major families of modes are observed; ”Bulk

modes” form a hook shape and travel downstream with the bulk velocity of the flow.

”Fast acoustic” modes (e.g. R1) are positioned on the right and the ”slow” ones (e.g.

L1) are found on the left side of bulk modes. The other two isolated modes shown in

this figure represent the wall modes W1,2.
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Figure 3.4. Eigenvalue spectrum of compressible channel flow at Reb “
3000 and Mb “ 1.5 (left) and Mb “ 0.75 (right). Streamwise wavenumber
is k “ 0.5 corresponding to the largest mode that fits inside a domain
of size Lx “ 4π. R1 and all other modes located on the right side of the
hook-shape modes are fast acoustic modes, L1 and other modes appearing
on its left side are slow acoustic modes and Wi (i “ 1 on the left and i “ 2
is on the right) are wall modes

To further analyze these modes’ properties, two parameters are defined based on

their corresponding eigenfunctions:

xuv “
2

T

ż T

0

Rtu1u Rtv1u dt “ R tpupv˚u mode shear stress (3.2)

xTv “
2

T

ż T

0

RtT 1u Rtv1u dt “ R
!

pTpv˚
)

mode heat flux

where T represents the period, pu, pv and pT are streamwise velocity, wall-normal ve-

locity and temperature eigenfunctions and superscript ˚ denotes complex conjugate.

Figure 3.5 illustrates these quantities for three modes R1, W1 and L1 at two differ-

ent Mach numbers. Modes belonging to the same family, exhibit similar behavior,

however, near-wall changes are more pronounced in the supersonic case due to larger

mean flow gradients in this region.

Wall modes Wi, have a large decay rate and, in case of excitation, can only

affect the near-source region. Moreover, their corresponding added shear-stress is

significantly higher than the added heat flux, and therefore they cannot be the ideal
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Figure 3.5. The added shear stress xuv and added heat flux xTv for mode R1

(right), W1 (middle), and L1 (left). Top row corresponds to the supersonic
Mb “ 1.5 and the bottom row is associated with the subsonic case Mb “

0.75

mode for making a effective heat transfer enhancement. Applying an external forcing

activated only near the wall or modifying the wall boundary condition, for instance

by employing a darcy-type porous media [21, 56] or acoustic liners [22], often results

in excitation of this mode.

Slow acoustic (or left running) modes L1 experience faster decay rate than R1

modes, limiting their ability to make a global change in the flow. This mode’s heat

flux is still less than the shear stress while showing a 180˝ phase difference in this

case. Targeting the L1 modes can be challenging as well, since they travel upstream

in the subsonic case.

Mode R1, on the other hand, has the largest imaginary part which translates into

the lowest decay rate and therefore, if excited, can make a lasting change in the flow.

Moreover, the heat flux corresponding to this mode is comparable with the its shear

stress near the boundaries. Therefore, R1 mode is chosen as the ”resonant mode” for

acoustic excitation.

Estimation of mode R1 ’s velocity in the present test case may not be straightfor-

ward since the temperature raises up to 37% (at Mb “ 1.5) and 8.6% (at Mb “ 0.75)
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from wall to the center-line, and therefore, speed of sound changes considerably across

the channel. In the supersonic case, Ūcenter´line` c̄center´line “ 2.91 while the LSA gives

cR1 “ 2.73 and in the subsonic case, Ūcenter´line` c̄center´line “ 1.91, however, the LSA

shows cR1 “ 1.81.

The optimal wall-normal distribution of forcing term (Af in Equation (3.1)) can

be determined following the method of Lagrangian multiplier developed by Browne et.

al [57] in discrete framework. However, in the present study, Af is assumed uniform

along channel height for simplicity and ease of future experimental implementation.

3.2.3 Fully Non-linear Navier-Stokes Simulations

After selecting the excitation frequency, fully non-linear Navier Stokes equations

(2.1) are solved considering the forcing function of form (3.1). Given the reference

parameters described in section 3.2.1, amplitude of forcing is non-dimensionalized

with respect to ρc2
w{δ. According to the Equation (2.1), the periodic forcing acts

as a pulsating pressure gradient with a Gaussian distribution function applied only

in the forcing region, in which the max to min amplitude equals to twice Af . In

addition to the pulsation at the resonant frequency at each Mach number, C1 and

C2 respectively referring to the supersonic and subsonic conditions described before,

two more cases, labeled as C3 and C4, are also investigated to analyze the effect of

off-design excitation on the flow. We study three cases, namely A1 to A3, identical

to C2 but at different forcing amplitudes to reveal the relationship between the Af

and perturbations as well as their effect on the time-averaged flow quantities. D1

and D2 simulations show the impact of resonance at lower frequencies by considering

larger domain lengths, i.e. Lx “ 6π and 8π (corresponding to k “ 2{3 and k “ 1{4).

Extension of the results of case C2 to higher Reynolds number, namely at Reb “ 6000,

is presented in case I1.

Simulation parameters for all the aforementioned cases are summarized in table

3.1. Non-dimensional Stokes layer thickness in all cases is very close to the buffer
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Table 3.1.
Simulation parameters for the acoustically excited cases. Length of the
forcing region in all cases is set to Lf “ 0.0745Lx

Case Mb Reb Reτ Af ωf Lx Nx ˆNy ˆNz δ`s “ δsuτ{νw
C1 1.50 3000 215 0.50 2π{4.59 4π 144ˆ 128ˆ 96 4.30
C2 0.75 3000 197 0.25 2π{6.94 4π 144ˆ 128ˆ 96 4.23

C3 1.50 3000 215 0.50 2π{4.00 4π 144ˆ 128ˆ 96 4.01
C4 1.50 3000 215 0.50 2π{5.00 4π 144ˆ 128ˆ 96 4.49

I1 0.75 6000 363 0.25 2π{6.954 4π 288ˆ 256ˆ 192 6.04

A1 0.75 3000 197 0.125 2π{6.94 4π 144ˆ 128ˆ 96 4.23
A2 0.75 3000 197 0.0625 2π{6.94 4π 144ˆ 128ˆ 96 4.23
A3 0.75 3000 197 0.03125 2π{6.94 4π 144ˆ 128ˆ 96 4.23

D1 0.75 3000 197 0.25 2π{10.41 6π 216ˆ 128ˆ 96 6.34
D2 0.75 3000 197 0.25 2π{13.89 8π 288ˆ 128ˆ 96 8.46

layer threshold of y` « 5. This is the lowest ”resonant” frequency that fits in the

studied computational domain. In C1 to C4 and A1 to A3, a computational domain

identical to the unexcited case 3.2.1 is adopted. To assess the sensitivity of findings

to the computational grid, case C1 and C2 are repeated with grid size NxˆNyˆNz “

216ˆ192ˆ144 (1.5 times grid points in each direction compared to the initial setup)

and little to no variation is observed in temporal statistics. Similarly, the effect of

domain size on the results is studied by simulating a channel of length 2Lx with

two identical acoustic drivers separated by distance Lx. This case also reproduced

temporal statistics that closely follow those of C1 case, therefore indicating that the

box size is sufficiently long in this analysis.
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Mb “ 1.5 Mb “ 0.75

Figure 3.6. History of temperature perturbation δT “ Texc ´ Tunexc at
the center of the forcing region at Reb “ 3000 and two Mach numbers,
C1: Mb “ 1.5 (left) and C2: Mb “ 0.75 (right)

Temporal Evolution of the Perturbations

In order to analyze the system response to the external fluctuations, we need to

clearly differentiate the externally-induced perturbations from the background tur-

bulent field. To aim this, we perform two separate sets of simulations for each case,

one with the forcing (referred to as the ”excited” case) and the other without any

external fluctuations (”unexcited” case). Both cases are initialized with identical flow

fields and all other simulation parameters including the grid and time-step size are

kept unchanged. The perturbation field (δq) reads,

δqpx, tq “ qexcpx, tq ´ qunexcpx, tq (3.3)

where qexc represents a generic flow quantity in the excited configuration and qunexc

corresponds to the unexcited case. Figure 3.6 shows the temporal evolution of the

temperature perturbations at the channel center spatially averaged within the forcing

region. In the supersonic case, C1, (figure 3.6-left), external forcing is translated into

temperature perturbations of amplitude 2% of Tw in the first cycle. Thereafter, this

amplitude grows in three different stages. Initially, we observe an exponential growth.
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Dashed-lines show this trend and the detailed view of region (a) suggests the pure

sinusoidal form of the perturbations representing a linear (modal) process. In the

second stage, the growth rate decreases followed by a steepening in the acceleration

phase of the forcing period which indicates a weakly non-linear process. Distortions

in the pure sinusoidal form of the perturbations manifest higher frequency waves ap-

peared as a result of non-linear interactions. Finally, after 10 cycles, the perturbation

amplitude remains nearly constant which marks the limit-cycle region. In this section,

immediately after starting each period, temperature perturbation rises significantly

and dissipates gradually. This implies the broad-band response of the system to a

single-frequency force which, in turn, demonstrates the highly non-linear nature of

this region (see region (b)). Similar behavior is observed in subsonic configuration,

C2, (figure 3.6-right). Although the amplitude of δT in this case is always smaller

than that of the supersonic configuration, the limit cycle is achieved in fewer periods,

suggesting that the non-linear process is started earlier. suggesting a larger relative

forcing amplitude than the supersonic case.

The next step is to analyze the effect of acoustic excitation on the heat and

momentum transfer near the wall. Two parameters, Shear Enhancement Factor (SEF)

and Thermal Enhancement Factor (TEF) are defined based on the space-averaged

skin friction coefficient (Cf ) and Nusselt number (Nu) to quantitatively study this

process.

SEF “
Cf,exc

Cf,unexc

and TEF “
Nuexc

Nuunexc

(3.4)

where,

Cf “
µw

BU
By
|w

0.5ρU2
b

and Nu “

B

By
pT ´ Twq |w

pTb ´ Twq {δ

Considering the modified Reynolds Analogy (Chilton-Colburn equation),

Cf “
Nu

Reb Pr
1{3
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Figure 3.7. History of the space-averaged SEF and TEF at Reb “ 3000
and two Mach numbers, C1: Mb “ 1.5 (left) and C2: Mb “ 0.75 (right)

one may find the Nusselt number as a linear function of the skin friction (or vice versa).

In the unexcited condition, this relationship holds at Reb “ 3000 and Mb “ 1.5 with

less than 1% of error, and at a similar Reynolds number and Mb “ 0.75, with less

than 3% error. If we assume this analogy to be valid in the excited flow configuration,

as well:

Cf,exc “
Nuexc

Reb Pr
1{3

Hence, Cf,exc{Cf,unexc “ Nuexc{Nuunexc Given the definitions of Shear and Thermal

Enhancement Factors (3.4), this implies SEF “ TEF. Therefore, we expect SEF and

TEF closely follow each-other and comparing these two quantities is appropriate. In

regions where an offset is observed between these two quantities, one may conclude

that the Reynolds Analogy (or any simple linear relationship between Cf and Nu)

does not hold.

At different Mach numbers, we have different heat loads pTb ´ Twq9M
2
b . Essen-

tially, such load at Mb “ 0.75 is four times smaller than that of M“
b 1.5. Since the

amplitude of the excitation δT in both cases are similar, we expect the heat transfer

process at smaller Mb to experience stronger alteration due to the excitation. Figure

3.7 presents the history of SEF and TEF over 50 periods for both C1 and C2 cases.

These two quantities share similar trends; they both start from the unity (by defini-

tion), grow rapidly in time and finally oscillate around some mean values. Acoustic
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excitation leads to higher thermal enhancement compared to the skin friction aug-

mentation. The difference between SEF and TEF is significantly more pronounced

in the subsonic configuration (C2), although having smaller δT amplitude.

Averaging these quantities over 100 excitation periods shows TEF “ 1.101 and

SEF “ 1.084 for the supersonic (C1) and TEF “ 1.109 and SEF “ 1.053 for the

subsonic case (C2). Therefore, heat transfer enhancement due to the excitation is

20% higher than the skin friction augmentation in C1, while in C2 configuration,

acoustic excitation enhanced the heat transfer almost twice as much as the skin

friction.

Adiabatic wall temperature Taw is defined as “the temperature that a wall would

acquire in case it was thermally insulated”. Here, we estimate this quantity via Taw “

Tc
`

1` Pr1{3 γ´1
2
M2

c

˘

where Tc and Mc are static temperature and local Mach number

at the channel center [58]. This quantity for the supersonic case is approximately

Taw “ 1.91, and for the subsonic case is « 1.22 while the wall temperature in both

cases is constant at Tw “ 1. Upon finding Taw, one may calculate the heat transfer

coefficient as h “ q2{ pTaw ´ Twq. According to Maffulli & He [59], q2 is not a linear

function of Taw ´ Tw, instead, the slope Bq2{BpTaw ´ Twq decreases as pTaw ´ Twq

becomes smaller. Therefore, in response to a constant change in wall temperature

(δTw), one may observe larger change of heat flux in the supersonic case. On the

other hand, in case of a constant change in heat flux (δq2), for example due to the

excitation, variation of the slope, i.e. h, may be more pronounced in the subsonic

condition. Hence, we expect that acoustic pulsation with similar amplitude would be

more effective in modifying the TEF of the subsonic case compared to the supersonic

counterpart.

Near-wall Turbulent Structures

To investigate the effect of acoustic excitation on the heat transfer process near

the solid boundary, instantaneous temperature perturbation fields are analyzed here.
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Since subsonic and supersonic cases show similar behavior, discussion in this section

is limited to the supersonic setup. Figure 3.8 focuses on the response of the system

in the early stages of the excitation, i.e. region (a) in figure 3.6 (left), and illustrates

the instantaneous temperature perturbations near the bottom wall (on the xz-plane

at y` « 4) at four different instances of one excitation period. In overall, this figure

shows the passage of an acoustic wave with an amplitude of almost 4% of the wall tem-

perature. Weakly nonlinear interaction of the acoustic wave and near-wall streamwise

streaks is noticeable in form of fluctuations superimposed on the spatial sinusoidal

pattern and excessively hot or cold spots throughout the domain. Figure 3.9 shows
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Figure 3.8. Instantaneous temperature perturbation field for acoustic
excitation of supersonic turbulent boundary layer. A top view at the
bottom wall at y` « 4 for four instances of one period within region (a)
in figure 3.6 (left). The grey box indicates the region where forcing is
active.

the passage of an acoustic wave in the limit cycle region. The wave front creates a

strong spanwise structure travelling downstream with the speed cx “ 4π{Tf “ 2.74

(non-dimensionalized by cw) followed by a wake of weaker rollers. In this case, the

amplitude of perturbations increases up to 22%Tw with several locations experiencing

unusually high and low temperatures. Classic near-wall turbulent structures are more



47

evident in this figure by streamwise low speed streaks disrupting the wave front and

significantly modulating the region behind it.
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Figure 3.9. Instantaneous temperature perturbation field for acoustic
excitation of supersonic turbulent boundary layer. A top view at the
bottom wall at y` « 4 for four instances of one period within region (b)
in figure 3.6 (left). The grey box indicates the region where forcing is
active.

Vortical structures near the bottom wall, confined within the planes y “ 0 and

y “ 0.1 are plotted via iso-value contours of Q-criterion for the case C1 in figure

3.10. Each row represents the instantaneous field at a given instance of a period

in the limit-cycle region. The left column illustrates the near-wall structures of the

unexcited case where the long streamwise vortices can be easily observed. However,

in the excited case, the wave front creates the spanwise-uniform structures that roll

in the `z-direction and are convected downstream. In the wake of this wave front,

the spanwise structures are weakened and finally break up. The snapshot in the last

instance t{T “ 3{4, clearly shows that the impact of the wave front is completely

vanished in the second half of the channel.

Figure 3.11 displays the time-space temperature field averaged in spanwise di-

rection, once the perturbations are saturated, region (b) in Figure 3.6 (left). This

representation allows to identify the different speed at which perturbations evolve.
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t{T “ 0

t{T “ 1{4

t{T “ 2{4

t{T “ 3{4

Figure 3.10. Instantaneous Q-criterion confined between the bottom wall
and y “ 0.1 in the unexcited (left) and the excited condition of C1 (right)
for a supersonic turbulent channel flow at four instances of one period (T ).
The structures are colored by their corresponding wall-normal velocity
component from blue (negative) to red (positive values).
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Figure 3.11. time-x representation of the spanwise-averaged temperature
field near the bottom wall at y` « 4 (left) and at the channel center
(right), over one pulsation cycle in the limit-cycle region.

Near the bottom wall at y` « 4 (left), the wave front is clearly visible along with the

rollers that appear in the wake region retaining a constant speed across the domain.

At the channel center (right figure), after the passage of the wave front, one can

observe relatively strong waves that propagate downstream at very slow rates (high

slopes in tx-plane), and therefore over one pulsation period T , are confined within a

narrow region in x. This suggests formation of structures with time-scale ! T and

length-scale ! Lx which can drive the streaming.

Streaming velocity and Temperature, defined as Ust “ U exc ´ Uubnexc and Tst “

T exc ´ T ubnexc for case C1 are illustrated in figure 3.12. Time-averaging is performed

within t{T P r10, 90s to only include the limit-cycle oscillations. As a result of non-

linear interaction of perturbations with the background flow, and themselves, a peri-

odic pattern with k “ 4 has appeared in both Tst and Ust. In both plots, streaming

quantities regions with positive streaming values appear to take larger magnitudes

and stay closer to the wall, therefore, qualitatively, one may infer that Shear and

Thermal Enhancement Factors (spatially averaged along the channel length) should

be greater than unity. Larger TEF compared to SEF for this flow condition may also

be attributed to the location of positive Tst which resides in a shorter distance from

the wall.
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Figure 3.12. Contours of streaming velocity Ust (left) and temperature
Tst for an acoustically excited supersonic channel flow at Reb “ 3000 and
Mb “ 1.5 with Af “ 0.5 and ωf “ 2π{4.59 over t{T P r10, 90s

Data Reduction

Any instantaneous quantity can be decomposed into a ”steady” and an ”unsteady”

component. The latter can be further decomposed into ”harmonic” component and

”random fluctuation” term:

φpx, tq “ φpxq
loomoon

steady term

` Čφpx, tq
loomoon

harmonic term

` φ1px, tq
loomoon

random fluctuation

(3.5)

where the harmonic term is found following the phase-locked averaging of the instan-

taneous quantity:

xφpx, tqy “
1

N ` 1

N
ÿ

n“0

φpx, t` nT q (3.6)

and

Čφpx, tq “ xφpx, tqy ´ φpxq

where T “ 2π{ωf and ωf is the excitation frequency. Harmonic component of the

streamwise velocity field, at four different instances of one period, are presented in

figures 3.13 and 3.14 (top), for both supersonic and subsonic cases respectively. The

bottom row of these two figures represents the harmonic temperature fields at the

same instances. In supersonic case, the amplitude of harmonic component of stream-
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wise velocity has reached to more than 17% of the bulk velocity of the flow and the

amplitude of harmonic temperature component has raised to 15% of wall temperature.

These amplitudes in subsonic flows are respectively 29% and 11%.

Formation of new near-wall spanwise structures travelling downstream is evident

in both regimes. These rollers start with a circular shape right at the wave front and

then, as a result of non-linear interaction with the classic near-wall streaks, become

more inclined in the flow direction. Similar behaviour is observed in subsonic regime

as well. However, in this regime, the effects seem more confined to the wall.

As suggested by the linear analysis in figure 3.5 (right), A significant portion of

momentum and heat transfer is concentrated in the near-wall region of the harmonic

term at this frequency. Moreover, the effect of excitation at this frequency on the

heat transfer is more confined to the walls.

Following on the decomposition introduced in (3.5), second order statistics, such as

Reynolds stresses, can also be decomposed into a background and harmonic parts [60]:

xφ1iφ
1
jy “ φ1iφ

1
j `

Ąφ1iφ
1
j (3.7)

where the term on the left hand side is calculated via xφ1iφ
1
jy “ xφiφjy´xφiyxφjy. The

background stress is represented by φ1iφ
1
j and changes in the background by passing

the harmonic structures at each instance are indicated by Ąφ1iφ
1
j.

Second-order time-averaged statistics can also be written as:

φ1iφ
1
j|tot “ pφi ´ φiqpφj ´ φjq “ p

rφi ` φ1iqp
rφj ` φ1jq “

rφi rφj ` φ1iφ
1
j (3.8)

Following these equations, total values of the stress tensor (for brevity only u1u1|tot,

v1v1|tot, and u1v1|tot) as well as turbulent heat flux (T 1v1|tot) are decomposed to the back-

ground term and harmonic motion contribution. Results are plotted in figures 3.15

and 3.16 along with the profiles corresponding to the unexcited case. Contribution

of the harmonic motion is shown by the blue lines, and in some cases, can be better

visualized as the difference between total (green) and the background term (red).
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Figure 3.13. Harmonic component of streamwise velocity (top) and tem-
perature field (bottom) in supersonic configuration

Deviation of the background term from the profiles corresponding to the unexcited

case (dashed-line), indicates the presence of a non-linear process that spreads the en-

ergy from the eddies at the harmonic frequency (and corresponding sub-harmonics)

to other uncorrelated frequencies. Considering the top-left figure (u1u1), passage of

the harmonic structures promotes the total streamwise velocity fluctuations in both

bulk and near wall regions. This suggest that the oscillatory pressure waves can en-
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Figure 3.14. Harmonic component of streamwise velocity (top) and tem-
perature field (bottom) in subsonic configuration

hance the intensity of predominantly random fluctuations present away from the walls.

In the wall-normal direction, the excitation modifies the total turbulence intensity

mainly through non-linear interactions and at frequencies other than the excitation

frequency (and corresponding sub-harmonics).

Applying the acoustic excitation seem to have a limited effect on the skin fric-

tion. The background term is slightly increased near the wall and contribution of the
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harmonic term in the total skin friction is negligible. On the contrary, the excitation

leads to the considerable promotion of the background turbulent heat flux compared

to the unexcited case through non-linear interactions and, separately, the harmonic

motions (at the excitation frequency) show a positive effect on total turbulent heat

flux.
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Figure 3.15. Decomposition of total Reynolds stress terms as well as
turbulent heat flux into the background and harmonic terms for supersonic
configuration

In the subsonic configuration, the effect of acoustic excitation is more clear. Tur-

bulence intensity in streamwise and wall normal directions are promoted similar to

the supersonic case. Turbulent heat flux, and especially the relative contribution of

the harmonic motion, shows a significantly intensified response to the superposition

of the acoustic waves compared to the other configuration. In the other hand, relative

modifications on the skin friction stays the same.
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Figure 3.16. Decomposition of total Reynolds stress terms as well as
turbulent heat flux into the background and harmonic terms for subsonic
configuration

Therefore, the positive effect of acoustic excitation of this type on heat transfer

transfer enhancement with minimally increasing the skin friction can be observed in

second order time statistics as well.

3.2.4 On the Efficacy of the Linear Stability Analysis in Selecting the

Optimal Modes

In the first step, the eigenfunctions associated with the mode R1 in both super-

sonic (C1) and subsonic (C2) cases, in figure 3.4, are compared against the outcomes

of the fully non-linear simulations. Figure 3.17 (a) and (e) illustrate the harmonic

component of temperature rT at phase t{T “ 1{4 in both supersonic C1 and C2,

respectively. If no non-linear interactions were involved, either among the superim-
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Figure 3.17. Phase-locked averaged temperature contours (at t{T “ 1{4)
for supersonic (C1) and subsonic cases (C2) (a&e, respectively). Maxi-
mum and minimum values are truncated for better visualization. Spatial
DFT of this field is illustrated in (b&f). Amplitude of the dominant mode
(k “ 0.5) is shown in (c&g) along with the temperature eigenfunction of
the most unstable mode identified by LSA. Same procedure is repeated
for the streamwise velocity in (d&h).

posed waves or between the waves and background turbulent field, we would expect

to observe a single-frequency harmonic field, however, the present results suggest the

presence of higher-frequency changes. A spatial Discrete Fourier Transform (DFT)

is employed to extract the components corresponding to different wavenumbers. The

highest amplitude is associated with k “ 0.5, the wavenumber we set in the Linear

Stability Analysis (LSA). Higher frequency components possess several times smaller

amplitudes and are created as a result of non-linear interactions in the flow. We also

compare the amplitude of rT and rU (harmonic component of streamwise velocity)

corresponding to k “ 0.5 against the mode shapes predicted by the LSA (performed

on time-averaged unexcited flow quantities) in figure 3.17 (c&d) for C1, and (g&h)

for C2. Results show an excellent agreement between these two profiles suggesting

that the proposed technique resulted in exciting the specific mode identified by LSA.

In the second step, we consider two additional cases, C3 and C4, excited at off-

optimal frequencies, namely ω3 “ 2π{4.00 and ω4 “ 2π{5.00, in order to assess
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Time/Period Time/Period

Figure 3.18. History of SEF and TEF (left) as well as temperature
perturbation δT at the center of the forcing region (right) at Mb “ 1.5
subjected to off-design excitation frequencies, case C3 in table 3.1 with
ωf “ 2π{4.00 is represented by black and case C4 with ωf “ 2π{5.00
is shown as grey; on the left SEF (— ¨ ¨ —) and TEF (——) overlap
throughout the process.

the role of LSA in selecting the optimal excitation frequency. In both cases, the

Stokes layer thickness as well as forcing amplitude is similar to C1 case, however,

the acoustic resonance may not take place according to the LSA. Figure 3.18 reports

the history of SEF and TEF as well as temperature perturbations. Growth of δT in

these cases is significantly smaller than what observed in the corresponding resonant

condition C1. Following a few excitation periods, the larger amplitude fluctuations

interact non-linearly with the background flow which can either lead to the limit

cycle oscillations (in the optimal condition), or experience stabilization. The latter

is observed in the off-design frequencies through a periodic growth and decay in the

perturbation amplitude. Moreover, SEF and TEF (figure 3.18-left) are tightly coupled

and, although they both experience regions with values greater or smaller than unity,

time-averaging over 50 cycles shows a minimal modification (« 1%) in Cf and Nu.

This highlights the need for applying the acoustic forcing at the optimal ”resonant”

frequency determined by Linear Stability Analysis.
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3.2.5 Parametric Analysis of Acoustic Excitation for Heat Transfer En-

hancement

The Effect of Forcing Amplitude on the Resonance and Streaming Quan-

tities

Amplitude of acoustic forcing, i.e. Af in Equation (3.1), plays a critical role in

the formation of acoustic pulsations, their strength and possible interactions with the

background turbulence. Here, three additional scenarios are introduced, A1 through

A3, wherein the parameter Af is varied in r0.125, 0.0625, 0.03125s while keeping the

forcing frequency constant at ωf “ 2π{6.94. These simulations are performed at

Reb “ 3000 and Mb “ 0.75, starting from the same initial flow fields as the case

C2, and with the same time-step size. Figure 3.19 (right) illustrates the temperature

perturbations δT , in the first 25 excitation periods at center of the forcing region

(y “ 1). This quantity, similar to figure 3.6, is averaged in the forcing region x P

r1.87´2.37s and along the spanwise direction. Wave heights (crest to trough distance)

in the first pulsation period, as well as in the limit cycle oscillations, are reported in

all four cases. This quantity in the start-up phase is linearly correlated with the

forcing amplitude, e.g. Af in case A3 (shown in plot f) is twice the forcing amplitude

associated with case A2 (shown in plot h) and wave height in the start-up region

is also approximately twice as much as case A2. As such, at high values of Af , the

initial perturbation amplitude is larger and non-linear effects dominate the oscillation

dynamics faster and therefore, limit-cycle oscillation is reached in fewer pulsation

periods. In this phase, however, the wave height approximately scales with «
a

Af .

These results are in line with findings of Yano [9] regarding the formation of periodic

shock-waves and scaling of their amplitudes.

The overall effect of excitation amplitude on the near-wall heat and momentum

transport has been investigated by looking at the history of Thermal and Shear En-

hancement Factors, respectively shown by solid and dash-dotted lines in figure 3.19

(left). In case A3, with the smallest excitation amplitude Af “ 0.03125, SEF and
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TEF exhibit almost identical behavior in time which indicates that momentum and

heat transport processes, under the corresponding condition, are closely coupled. By

increasing the excitation amplitude (from bottom to top), these two parameters grad-

ually detach although following a similar trend. It suggests that such excitation can

effectively energizes the heat transfer process while affecting the momentum transport

to a lesser degree.

Figure 3.20 demonstrates the second-order turbulent statistics associated with

the abovementioned cases, as well as the unexcited flow, along the channel height.

Among all velocity fluctuation components, the prescribed acoustic excitation affects

the streamwise component the most, where both the maximum value of u1u1 and its

magnitude at the channel center increase sharply by amplifying the forcing ampli-

tude. This is expected as the forcing function (3.1) is only applied in the streamwise

direction. The impact of such forcing on v1v1 and w1w1 is mainly visible near the

peak-value and fades away closer to the channel center.

The most substantial impact of acoustic forcing is on the temperature fluctuations

(shown on the bottom left). Therefore, we expect the turbulent heat flux T 1v1 to be

more positively correlated with the amplitude of excitation than the Reynolds stress

term u1v1 and this is shown on the bottom-center and bottom-right plots. Both

figures in the near-wall region, magnified in the insets, show a kink visible at large

forcing amplitudes that is more pronounced in T 1v1 term and represents the dissipation

introduced by near-wall weak periodic shock waves.

Figure 3.21 looks into the acoustic excitation and its effect on the background

flow from a different perspective by considering the setting where, in case C1, the

forcing term is turned-off after reaching the limit-cycle oscillations. The bottom row

shows the temperature perturbation δT and top row presents the history of SEF and

TEF highlighting the impact of excitation on heat and momentum transport near the

wall. The vertical line at t{T “ 50 marks the instance where forcing is deactivated.

Prior to this line, these two plots are identical to figure 3.19 (a and b), whereas upon

crossing this point, the amplitude of perturbations decay exponentially. The inset
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Figure 3.19. Temporal evolution of temperature fluctuations (δT ) at the
center of the forcing region, y “ 1, at four different forcing amplitudes.
This quantity is spatially averaged within x P r1.87´2.37s and z P r0, 1.5πs
(right). Wave heights in the start-up as well as the limit-cycle regions are
reported on the plots. History of SEF (— ¨ ¨ —) and TEF (——) are
also presented as a function of pulsation period (left). Plots (a and b)
represent the case C2 with Af=0.25, and (c and d) refer to the case A1
with Af “ 0.125. (e and f) and (g and h) are respectively associated
with the cases A2 where Af “ 0.0625 and A3 where Af “ 0.03125. TEF
(¨ ¨ ¨ ¨ ¨ ¨) and SEF (¨ ¨ ¨ ¨ ¨ ¨) taken over the last 25 cycles along with the
offset between these two quantities are reported on the graphs.
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Figure 3.20. Second-order turbulent statistics at Reb “ 3000 and Mb “

0.75 subjected to excitation at different forcing amplitudes; unexcited
case (- - - -), A3 with Af “ 0.031 (‚), A2 with Af “ 0.062 (�), A1 with
Af “ 0.125 (N) and C1 with Af “ 0.250 (�). Time-averaging is taken
over the first 50 pulsation periods and spatially averaged in streamwise
and spanwise directions.

shows the level of temperature perturbations δT , 40 cycles after disabling the forcing

term. Although the amplitude of perturbations is significantly reduced, sharp jumps

at the starting instance of each cycle suggests the continuation of weak periodic shock

waves even after cutting off the external source of pulsation. In terms of Enhancement

Factors, there is a clear offset between SEF and TEF as long as excitation persists.

Even after setting Af to zero, there is a relaxation period where TEF remains larger

than SEF for approximately 5 cycles (highlighted with red shadow) indicating that

we can still obtain positive streaming effects by periodic activation of the external

source to minimize the energy input. After this period, heat and momentum transport

exhibit a strong pairing, similar to the case with low excitation amplitude, e.g. figure

3.19 (e and f), which theoretically approaches to unity for both quantities.
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Figure 3.21. Response of an acoustically excited channel flow at Reb “
3000 and Mb “ 0.75 to sudden de-activation of forcing source. The system
is initially subjected to the acoustic excitation at Af “ 0.25 and ωf “
2π{6.94. History of temperature perturbations δT (bottom) and SEF and
TEF (top).

Acoustic Resonance at Higher Reynolds Number

Although all the simulations presented before are performed at Reb “ 3000, the

conclusions drawn regarding the resonance and its impact on the heat and momentum

transport are not limited to this specific condition. To elaborate more on this, case I1

has been selected where the Reynolds number is increased to Reb “ 6000, and Mach

number is remained constant at Mb “ 0.75. The domain size is identical to the case

C2, and to keep the numerical resolution constant, number of grid points are increased

twice in each direction, i.e. Nx ˆ Ny ˆ Nz “ 288 ˆ 256 ˆ 192. Performing LSA on

time-averaged quantities identifies the optimal excitation frequency at ωf “ 2π{6.954

which is close to the value obtained for case C2 indicating that this mode is not too

sensitive to the Reb, unlike the Mb. Figure 3.22 displays the history of Enhancement

Factors as well as temperature perturbations resulted from applying a forcing identical

to the one used for C2. Time-averaging in the last 10 cycles shows TEF “ 1.105 and

SEF “ 1.033 suggesting a net positive heat transfer enhancement compared to the
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Figure 3.22. History of space-averaged Enhancement Factors (left) and
temperature fluctuations at the channel center within the forcing region
(right) at Reb “ 6000 and Mb “ 0.75. Forcing function is shown in
Equation (3.1) with Af “ 0.25 and ωf “ 2π{6.954. SEF (- - - -), TEF
(——), TEF (¨ ¨ ¨ ¨ ¨ ¨), and SEF (¨ ¨ ¨ ¨ ¨ ¨)

.

Figure 3.23. Instantaneous temperature field for an acoustically excited
subsonic turbulent channel flow at Reb “ 6000 and Mb “ 0.75. Top view
at the bottom wall y` « 4 at four instances of one period. Top and
bottom row respectively correspond to the unexcited and excited cases.

skin friction. Moreover, comparing the levels of δT in both start-up and limit-cycle

regions with case C2 (figure 3.19 b) shows that the behavior of perturbations has

remained mainly unchanged. Figure 3.23 shows the near wall turbulent structures,

by looking at the temperature field at y` « 4, in both excited and unexcited case at

four different instances of one period. Long streamwise streaks are clearly visible in

the unexcited case (top row). However, the strong wave front, created as a result of

resonance in the excited flow, followed by weaker waves, pass through these structures



64

and reshape them substantially. Between the passage of two wave trains there are

some instances wherein turbulent flow relaxes towards its original state.

Resonance in Longer Domains

We have considered two cases, namely D1 and D2 in table 3.1, to study the acoustic

resonance in longer domains. In these simulations, the operating conditions are similar

to C2, i.e. Reb “ 3000 and Mb “ 0.75, however, the domain length Lx is extended

to Lx “ 6π and 8π and the number of grid points in this direction is also increased

accordingly. The forcing function of form (3.1) is used with Af “ 0.25, similar to

the case C2, and ωf is found via the Linear Stability Analysis described in section

3.2.2. The history of temperature perturbations δT at the channel center, spatially

averaged within the forcing region is plotted in figure 3.24 (b and d). Both cases

show a transient growth in the amplitude of δT that quickly reaches the limit cycle

oscillations within 10 pulsation periods. Shear and Thermal Enhancement Factors

for these cases are plotted in figure 3.24 (a and c) where the solid line refers to the

TEF and dash-dotted line shows the SEF. For comparison purpose, time-averaging

is taken over the last 10 pulsation cycles for these two quantities and results are

shown with red and blue dotted-lines, respectively. A clear separation is observed in

both cases, suggesting a larger enhancement in Nu compared to the increase in Cf .

For case D1, TEF “ 1.100 and SEF “ 1.050 while for case D2, TEF “ 1.082 and

SEF “ 1.038. The offset in case D1 is slightly more pronounced, however, this may

fall within the time-averaging uncertainty. One may conclude that by increasing the

domain length, at least within the range studied in the present research, the impact of

acoustic pulsations on the near-wall heat and momentum transport remains relatively

intact, as long as the excitation frequency is adjusted accordingly.
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Figure 3.24. History of Shear and Thermal Enhancement Factors (a&c)
as well as temperature perturbations δT at the channel center within the
forcing region (b&c) for acoustically excited channels with length Lx “ 6π
(top) and 8π (bottom). On the left, solid line refers to the TEF and dash-
dotted line shows the SEF. Time-averaged value of these two quantities,
taken over the last 10 cycles, are plotted with red and blue dotted-lines,
respectively. Both cases show the resonance and a higher TEF compared
to SEF (color online).
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4. ACOUSTIC EXCITATION FOR HEAT TRANSFER REDUCTION IN

HIGH-SPEED FLOWS

In the previous chapter, acoustic excitation was applied in the streamwise direction,

where at relatively high forcing amplitudes, spanwise vorticities were formed that en-

hanced the heat transfer and skin friction. To alter the time-averaged flow variables,

acoustic perturbations were required to overcome high inertial forces in the stream-

wise direction. Perpendicular to the flow direction, however, such inertial forces are

negligible and therefore smaller perturbations may impact the flow more easily. The

focus of this chapter is to analyze the effect of spanwise periodic excitation on the

heat transfer and skin friction characteristics of wall-bounded compressible flow.

4.1 Problem Formulation

The proposed test case to explore the effect of spanwise acoustic excitation com-

prises repeating identical units of length Lx. Each unit includes a duct with an

array of acoustic drivers mounted on both side walls operated 180˝ out of phase. A

schematic view of this setup is shown in figure 4.1. Similar to the previous test case,

Figure 4.1. Proposed setup to analyze the acoustic excitation in the
spanwise direction. Acoustic drivers are active in the entire shaded area.
The effect of acoustic drivers mounted on side-walls operating 180˝ out of
phase is modeled via forcing function of form (4.1)
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only one unit needs to be simulated and given the geometrical symmetry present in

the setup, the periodic boundary conditions is imposed in the streamwise direction.

Complexities arising from the boundary layer formed on the side-walls are avoided

by limiting the scope of the present study to the mid-span region and implementing

the periodic boundary condition in the spanwise direction. Therefore, the simplified

computational setup includes two parallel plates of length Lx and width Lz separated

by distance 2δ. The effect of acoustic drivers is modeled with an external forcing

following:

~ff px, tq “ Af sinpωf tq êz (4.1)

where Af indicates the forcing amplitude and ωf is the excitation frequency. Due to

the out-of-phase operation of the speakers, the forcing only has one spanwise com-

ponent. In the absence of any forcing in the streamwise direction, the perturbations

decay rapidly upon leaving the affected region. Therefore, unlike the previous chap-

ter, the entire side-walls are covered with the speakers, while the amplitude of forcing

has been reduced. Moreover, it is assumed that all points along the spanwise direc-

tion instantly feel the perturbations. This is possible as a result of negligible ”mean

Mach number” in the spanwise direction. It should be noted that since the stream-

wise Mach number is relatively high, flow speed is comparable with the propagation

speed of perturbations and therefore, this assumption would not hold for streamwise

excitation.

Spatially uniform forcing allows for exploring smaller frequencies in a small domain

since there is no need to accommodate for one (or more) wavelength in the direction

of propagation within the domain. Therefore, studying the interaction of different

turbulent scales and the Stokes layer is more visible.
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Table 4.1.
Simulation parameters for the acoustic excitation normal to the flow in
spanwise direction for a supersonic channel flow at Mb “ 1.5

Case Reb Af ωf Nx ˆNy ˆNz δ`s “ δsuτ{νw
C1 3000 0.05 2π{20 144ˆ 128ˆ 96 10.5
C2 3000 0.05 2π{40 144ˆ 128ˆ 96 14.8
C3 3000 0.05 2π{80 144ˆ 128ˆ 96 21.0
C4 3000 0.05 2π{120 144ˆ 128ˆ 96 25.7

A1 3000 0.20 2π{5 144ˆ 128ˆ 96 5.2
A2 3000 0.10 2π{10 144ˆ 128ˆ 96 7.4
A3 3000 0.025 2π{40 144ˆ 128ˆ 96 14.8
A4 3000 0.0125 2π{80 144ˆ 128ˆ 96 21.0
A5 3000 0.00834 2π{120 144ˆ 128ˆ 96 25.7
A6 3000 0.00625 2π{160 144ˆ 128ˆ 96 29.7

4.2 Results

Direct Numerical Simulation is performed for seven different frequencies at differ-

ent forcing amplitude. These frequencies are chosen such that the resulting Stokes

layer falls at different heights of the channel interacting with different regions of the

near-wall turbulent boundary layer. Table 4.1 summarizes the simulation parameters

and the associated Stokes boundary layer thickness where δs “
a

2νw{ωf as well as

its corresponding non-dimensional form δ`s “ δsuτ{νw in wall units.

In all the above-mentioned cases, a computational domain of size LxˆLy ˆLz “

4πδ ˆ 2δ ˆ 1.5πδ is discretized by Nx ˆNy ˆNz “ 144ˆ 128ˆ 96 elements and fully

compressible Navier-Stokes equations (2.1) are solved using the sixth-order compact

finite difference scheme for spatial derivatives and a third-order Runge-Kutta method

for time-advancement. Volume mass flow rate, and subsequently bulk Mach number

Mb, by adjusting a forcing term in momentum and energy equations following the

approach described in section 3.2.1.
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One other simulation is also conducted without applying the additional forcing,

which serves as the reference unexcited solution. Comparing this case with the acous-

tically excited simulations helps isolate the effect of the perturbation on the flow. All

simulations are initialized with the same flow field obtained from the base flow calcu-

lations 3.2.1 and by keeping all other parameters, including time step size, constant.

4.2.1 Temporal Evolution of Perturbations

Since the boundary layer excitation is applied via imposing an external forcing of

form (4.1), monitoring the resulting spanwise velocity perturbations, δw “ wexcited ´

wunexcited can give a better understanding on how this forcing is translated into sensible

flow quantities. Figure 4.2 (right column) plots the history of the spatially-averaged

spanwise velocity perturbations at the channel center, y` « 215. In all these cases,

velocity perturbation amplitude starts with oscillatory, but purely positive values,

and eventually leads to zero-mean oscillations in the limit cycle, achieved around

t « 480. Wave-height (min-to-max value) in each case is reported on 4.2 (right)

which is inversely proportional to the excitation frequency. To analyze the effect

of the prescribed excitation on the heat and momentum transport, history of Shear

Enhancement Factor (SEF) and Thermal Enhancement Factor (TEF) are plotted in

figure 4.2 (left column). Recall the Equation (3.4),

SEF “
Cf,exc

Cf,unexc

and TEF “
Nuexc

Nuunexc

((3.4))

where,

Cf “
µw

BU
By
|w

0.5ρU2
b

and Nu “

B

By
pT ´ Twq |w

pTb ´ Twq {δ
.

Utilizing these two quantities, Cf and Nu of the excited case at each point in time

is compared against the corresponding values in the unexcited setup at the exact

same time. The overall trend of both quantities shows an oscillatory yet decreasing
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Figure 4.2. History of the space-averaged SEF (— ¨ ¨ —) and TEF (——)
(3.4) (left) and spanwise velocity perturbations (δw) at the channel centers
for cases C1 to 4; (a&b): ωf “ 2π{20, (c&d): ωf “ 2π{40, (e&f): ωf “
2π{80, (g&h): ωf “ 2π{120 at Reb “ 3000, Mb “ 1.5. In all the cases
studied here, the forcing amplitude is constant Af “ 0.05. Time-averaged
TEF taken during the limit-cycle oscillations is shown on all plots via a
dashed-line (- - - -) and the changes in this quantity due to excitation is
reported on the graphs. Moreover, the wave height corresponding to δw
in each case is also denoted on the right column.

behavior. As discussed in the previous chapter, if the Reynolds Analogy, or any

other linear relationship between Cf and Nu holds, SEF and TEF must remain equal

in the entire process. This is valid in figure 4.2 (a) corresponding to the case C1

with the highest frequency, ωf “ 2π{20. As the excitation frequency decreases, the

amplitude of spanwise velocity fluctuations increases and the Stokes layer becomes

thicker. Therefore, the resulting Stokes layer formed normal to the flow direction
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interacts with the turbulent background flow more strongly and disrupts the near wall

structures responsible for heat transfer and drag. This is visible from the deviation

of SEF from TEF in plot (g). Time-averaged TEF, taken in the limit cycle region is

reported on each plot of figure 4.2. The largest heat transfer reduction is achieved

in the first two cases with T “ 20 and 40, where Nu reduced by 8% as a result of

acoustic excitation.

4.2.2 Near-wall Instantaneous Flow Fields

Near-wall coherent structures can be used to describe the main characteristics

of a turbulent field and, herein, the instantaneous temperature field is employed to

identify these structures. Figure 4.3 displays the temperature fields near the bot-

tom wall (at y` « 4) in the excited (C1, ωf “ 2π{20) and unexcited conditions

Tunexcited. Temperature perturbations, δT , as a result of excitation has also been re-

ported at four instances of a period. The unexcited case shows a pack of low-speed

streamwise-oriented streaks, indicating the classical pattern of a low-Reynolds near-

wall turbulent flow field. In this high-frequency case, a small distortion is seen in

the near-wall structures, streaks are not completely streamwise, and some are slightly

tilted up or downwards. Overall, the density of hot regions is shown to be decreased,

which suggests a reduction in the near-wall heat transfer. Figure 4.4 and 4.5 illus-

trate these three quantities for case C2 and C3 where ωf “ 2π{40 and ωf “ 2π{80,

respectively. In these figures, the interaction between the main and cross-flow is more

accentuated due to larger spanwise velocity perturbation amplitude, δw. At t{T “ 0

and t{T “ 2{4, the streaks create a more acute angle with the streamwise direction

and t{T “ 1{4 and t{T “ 3{4 instances, clearly mark the transition from negative to

positive spanwise pulsations. Looking at the δT fields, one may observe that case C2

experiences an overall reduction in the concentration of the hot regions while drawing

a similar conclusion from the outcomes of case C3 is less obvious. Essentially, large

modifications in the skin friction and heat transfer characteristics of the flow can be
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Figure 4.3. Temperature fields near the bottom wall at y` « 4. Sim-
ulations are performed at Reb “ 3000 and Mb “ 1.5; excited case at
Af “ 0.05 and T “ 20, corresponding to case C1 (right), unexcited case
(middle), and temperature perturbation, δT (left). Each row corresponds
to one instance within the first period of the limit cycle oscillations; from
top to bottom t{T “ 0, t{T “ 1{4, t{T “ 2{4, and t{T “ 3{4

attributed to the alteration of these near-wall structures. To have a clear look at

the near-wall vortical structures, the iso-value contours of Q-criterion for the case C1

are plotted in figure 4.6 at four instances of a period (T ). These graphs only focus

on a sub-domain confined within the planes y “ 0 and y “ 0.05 and are acquired

in a period after the transition phase is passed, namely t P r480, 485, 490, 495s. The

distortion in the near-wall streamwise structures is visible in all instances, especially

in t{T “ 0 where a slit is formed from the bottom-left to top-right. Large structures

are broken into less-organized and smaller ones which results in disrupting the cycle

of turbulence generation.



73

0

2

4

z

δT Tunexc Texc

0

2

4

z

0

2

4

z

0 2 4 6 8 10 12

x

0

2

4

z

0 2 4 6 8 10 12

x
0 2 4 6 8 10 12

x

1.000

1.050

1.100

1.150

1.200

1.235

Figure 4.4. Temperature fields near the bottom wall at y` « 4. Sim-
ulations are performed at Reb “ 3000 and Mb “ 1.5; excited case at
Af “ 0.05 and T “ 40, corresponding to case C2 (right), unexcited case
(middle), and temperature perturbation, δT (left). Each row corresponds
to one instance within the first period of the limit cycle oscillations; from
top to bottom t{T “ 0, t{T “ 1{4, t{T “ 2{4, and t{T “ 3{4

4.2.3 Time-averaged and Phase-Locked Averaged Statistics

The impact of spanwise pulsations on the first-order time statistics of the flow

quantities is illustrated in figure 4.7. This figure displays the streaming velocity

components in the spanwise and streamwise directions as well as the temperature,

following

qst “ qexcited ´ qunexcited (4.2)

for C1 to C4 cases, where q is a generic quantity and q represents the time-averaged

quantity calculated during the limit-cycle oscillations (where t ą 480). All the con-

sidered cases result in a similar distribution of Ust along the channel height; a non-

zero streaming velocity appears near the wall, opposite to the flow direction, whose

magnitude decreases by approaching the channel center and may take small positive

values. The magnitude and location of the peaks in Ust are similar in case C1 and
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Figure 4.5. Temperature fields near the bottom wall at y` « 4. Sim-
ulations are performed at Reb “ 3000 and Mb “ 1.5; excited case at
Af “ 0.05 and T “ 80, corresponding to case C3 (right), unexcited case
(middle), and temperature perturbation, δT (left). Each row corresponds
to one instance within the first period of the limit cycle oscillations; from
top to bottom t{T “ 0, t{T “ 1{4, t{T “ 2{4, and t{T “ 3{4

C2. At larger excitation periods, namely, case C3 and C4, the peak’s location moves

slightly towards the channel center, and the near-wall slope slightly decreases. This

can also be verified in terms of SEF in figure 4.2. Spanwise component of the stream-

ing velocity, Wst, peaks near y « 0.25, where its magnitude increases by reducing

the excitation frequency. In high-frequency cases, the viscous effects are more con-

fined near the wall, and the magnitude of Wst near the channel center remains small.

At lower frequencies with larger perturbation’s amplitudes and thicker Stokes layer

thicknesses, the distribution of Wst is more complicated and involves multiple peaks.

Streaming temperature Tst associated with high-frequency excitation, takes negative

values near the boundary implying that the wall is cooled due to the excitation, while

temperature profile near channel center is unchanged (at T “ 20) or slightly increases

(at T “ 40). Results at lower frequencies indicate that the excitation contributes to

heating the flow across the channel.
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Figure 4.6. Instantaneous Q-criterion in a sub-domain confined between
the bottom wall and y “ 0.05 in the excited condition of C1 for a su-
personic turbulent channel flow at four instances of one period (T ). The
structures are colored by their corresponding wall-normal velocity com-
ponent from blue (negative) to red (positive values).
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Figure 4.7. Streaming velocity components in both streamwise (left)
and spanwise (middle) directions along with the streaming temperature
(right). Simulations are performed at Reb “ 3000 and Mb “ 1.5 subjected
to the spanwise forcing of form (4.1) at Af=0.05 for C1: ωf “ 2π{20 (‚),
C2: ωf “ 2π{40 (�), C3: ωf “ 2π{80 (N), and C4: ωf “ 2π{120 (�)
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Decomposition of instantaneous flow quantities into the time-averaged, harmonic,

and random terms is carried out following the Equation (3.5), repeated here:

φpx, tq “ φpxq
loomoon

steady term

` Čφpx, tq
loomoon

harmonic term

` φ1px, tq
loomoon

random fluctuation

((3.5))

where the harmonic term is found from the phase-locked averaging at the excitation

frequency:

xφpx, tqy “
1

N ` 1

N
ÿ

n“0

φpx, t` nT q ((3.6))

where,

Čφpx, tq “ xφpx, tqy ´ φpxq

This formulation is employed to extract the harmonic component of spanwise velocity

at cases C1 to C3 depicted in figure 4.8. The viscous penetration length lvisc “

2π
a

2νw{ωf , calculated based on the viscosity at the wall is also marked on the plots.

Since a large temperature gradient exists along the channel height, the fluid viscosity

increases from the walls to the channel center, and therefore the presented relation

for lvisc denotes the lower limit of this parameter. One should note that the y´axis
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Figure 4.8. Phase-locked averaged spanwise velocity ĂW at five different
instances of one period (T ); (right) excitation at ωf “ 2π{80, (middle)
ωf “ 2π{40, and (left) ωf “ 2π{20. The vertical dashed line (- - - -)
represents the viscous penetration length lvisc “ 2π

a

2νw{ωf , (‚) shows
the starting phase of a period, i.e., t{T “ 0{5, (�) t{T “ 1{5, (N) t{T “
2{5, (�) t{T “ 3{5, and (§) t{T “ 4{5
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in figure 4.8 is doubled consecutively from right to left. We observe that the viscous

effects are propagated further towards the channel center by increasing the period of

excitation. This can be assessed by comparing the ĂW at t{T “ 2{5 and t{T “ 3{5

(positioned equally around the instance t{T “ 1{2). The closer these two profiles are,

the less dissipation is present in the pulsations. Moreover, the overshoot observed at

t{T “ 4{5 of T “ 20 is smoothed out in cases with lower frequency pulsation.

In all the simulations discussed above, cases C1 to C4, the forcing amplitude is kept

constant while changing the excitation’s frequency. This resulted in spanwise veloc-

ity perturbations with different amplitudes and also different Stokes layer thickness.

These two factors affect the flow simultaneously, which complicates drawing a con-

clusion about the impact of each parameter on the heat transfer, drag, and turbulent

statistics. Considering the figure 4.2, which suggests an inversely linear relationship

between δw at the channel center and the forcing frequency ωf , the parameter Af{ωf

is kept constant in cases A1 to A6 in order to obtain a similar perturbation amplitude

in the spanwise velocity and isolate the effect of forcing frequency on the results. Case

C2 with Af “ 0.05 and ωf “ 2π{20 is chosen as the reference, due to achieving the

highest reduction in Nu as a result of the excitation corresponding to AfT “ 1.

4.2.4 Temporal Evolution of the Perturbations Resulted from Different

Forcing Amplitudes Af91{T

Temporal evolution of spanwise velocity perturbations in cases A1 to A6 along

with case C1, (figure 4.9 e & f) as the reference case, are illustrated in figure 4.9.

Min-to-max value of δw in the limit cycle is reported on each plot which for all

cases lies P r0.318, 0.356s while the reference value, corresponding to case C1 is 0.336.

This implies the level of spanwise perturbation is similar in all cases by keeping AfT
constant at unity. Analogous to figure 4.2, the oscillations begin as purely positive

sinusoidal waves and after a transition region, at t « 480, δw oscillates around zero.
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In these simulations, SEF and TEF closely follow each other, and therefore, only

TEF is plotted in figure 4.9 along with the time-averaged TEF calculated during the

limit-cycle oscillations reported in each case. Results suggest an optimum frequency

for heat transfer (and drag) reduction around ωf “ 2π{10 and ωf “ 2π{20, corre-

sponding to cases A2 and C1, respectively, with approximately 8% decrease in time

and space-averaged Nu. According to Jung et al [61], the excitation period can be

non-dimensionalized with T ` “ T u2
τ{ν, and its optimal value for drag reduction in

an incompressible channel is T ` “ 100. Dimensionless excitation period for A2 and

C1 cases, as the optimal cases of the present work, are respectively T `A2 « 173 and

T `C1 « 346 where the ν is calculated at the wall.

4.2.5 Time-averaged and Phase-Locked Averaged Statistics at Different

Forcing Amplitudes Af91{T

The harmonic component of spanwise velocity for three cases at AfT “ 1 is

plotted in figure 4.10. One should note that here, all cases share the same y ´ axis,

unlike figure 4.8, since the level of perturbations is kept the same in all cases. The

theoretical value for the viscous penetration length lvisc, marked with the dashed lines,

seems reasonable for high and medium frequency (ωf “ 2π{5 and ωf “ 2π{20), but

is not as accurate in the low frequency case (ωf “ 2π{80). The spanwise velocity

perturbation near the Stokes layer thickness δs “
a

2νw{ωf or lvisc{2π overshoots

the value at the channel core. This overshoot is most visible in the high-frequency

case and becomes less effective as the excitation period increases. To better visualize

the unsteady flow features, space-time correlations are illustrated in figure 4.11 for

harmonic components of streamwise, spanwise, and temperature. Strong coupling

is observed between these quantities. ĂW has a simple sinusoidal oscillation, with

wavenumber k “ 1 in time (horizontal axis). Sharp changes near the boundaries are

also visible for the high-frequency cases. The second row of figure 4.11 represents the

time evolution of harmonic streamwise velocity rU . A pattern with the wavenumber



79

0.8

0.9

1.0

1.1

E
F 0.04

(a)

SEF

TEF

−0.2

0.0

0.2

δw

0.318

(b)

0.8

0.9

1.0

1.1

E
F 0.08

(c)

0.0

0.2

δw

0.337

(d)

0.8

0.9

1.0

1.1

E
F 0.08

(e)

0.0

0.2

δw

0.336

(f)

0.8

0.9

1.0

1.1

E
F 0.03

(g)

−0.2

0.0

0.2

δw 0.346

(h)

0.8

0.9

1.0

1.1

E
F 0.02

(i)

−0.2

0.0

0.2

δw 0.356

(j)

0.8

0.9

1.0

1.1

E
F 0.01

(k)

−0.2

0.0

0.2

δw 0.353

(l)

0 200 400 600 800 1000

t

0.8

0.9

1.0

1.1

E
F 0.01

(m)

0 200 400 600 800 1000

t

−0.2

0.0

0.2

δw 0.347

(n)

Figure 4.9. History of the space-averaged TEF (3.4) (left) and spanwise
velocity perturbations (δw) at the channel centers for cases A1: T “ 5
(a&b), A2: T “ 10 (c&d), C1: T “ 20 (e&f) as the reference, A3: T “ 40
(g&h), A4: T “ 80 (i&j), A5: T “ 120 (k&l), and A6: T “ 160 (m&n)
at Reb “ 3000, Mb “ 1.5. In all cases forcing amplitude for each case is
constant Af “ 1{T . The wave height (min-to-max value) corresponding
to each case is also denoted on each plot. Time-averaged TEF taken
during the limit-cycle oscillations is reported on all plots via dashed-line
(- - - -) and the changes in this quantity due to excitation is printed on
the graphs.
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Figure 4.10. Phase-locked averaged spanwise velocity ĂW at five differ-
ent instances of one period (T ); (right) excitation at ωf “ 2π{80 and
Af “ 0.0125, (middle) ωf “ 2π{20 and Af “ 0.05, and (left) ωf “ 2π{5
and Af “ 0.2. The vertical dashed line (- - - -) represents the viscous
penetration length lvisc “ 2π
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t{T “ 4{5

k “ 2 can be clearly found in T “ 10 and T “ 20, while in the low-frequency

case, the non-linear interaction with the background turbulent flow dissipates these

perturbations and the dominant wave number remains at k “ 1. Compared to the

low and high-frequency cases, rU at T “ 20 is mostly concentrated near the walls,

and oscillations vanish near the channel center at all instances of t{T . Harmonic

temperature component, rT , has a similar behavior as rU in time, while the effect

of pulsation is more confined to the wall. Exposed to the prescribed perturbations,

acoustic streaming appears in the flow that modifies the time-averaged velocity and

temperature field. Streaming velocity in the spanwise and streamwise directions, as

well as the streaming temperature profiles, are plotted in figure 4.12 for four different

excitation frequency at AfT “ 1. Similar to figure 4.7, profiles of U∫t reveal the

formation of the steady streaming in opposite to the main flow’s direction effectively

reducing the skin friction. By keeping the forcing amplitude (Af ) constant (in cases

C1 to C4 shown in figure 4.7), the value of local minima near the wall is of the same

order for all cases. However, we observe a non-monotonic behavior by increasing the

Af while keeping AfT constant suggesting an interplay between these parameters
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yŨ

0.0 0.2 0.4 0.6 0.8 1.0

t/T
0.0

0.5

1.0

1.5

2.0

yT̃

0.0 0.2 0.4 0.6 0.8 1.0

t/T
0.0 0.2 0.4 0.6 0.8 1.0

t/T

−0.17

0.00

0.17

−0.0012

0.0000

0.0012

−0.00045

0.00000

0.00045

−0.17

0.00

0.17

−0.004

0.000

0.004

−0.00045

0.00000

0.00045

−0.17

0.00

0.17

−0.01

0.00

0.01

−0.002

0.000

0.002

Figure 4.11. Space-time correlation in the spanwise velocity, ĂW (top row),

streamwise velocity, rU (middle row), and temperature, rT (bottom row)
for three different excitation frequencies; T “ 10 (first column), T “ 20
(second column), T “ 80 (third column).

0.0 0.2 0.4 0.6 0.8 1.0

y

−0.04

−0.02

0.00

Ust

T = 5

T = 10

T = 20

T = 120

0.0 0.2 0.4 0.6 0.8 1.0

y

0.000

0.002

0.004

0.006

0.008

0.010

Wst

0.0 0.2 0.4 0.6 0.8 1.0

y

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

Tst
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which leads to an optimal condition at T “ 0.05 and T “ 20. A similar pattern is

observed in streaming temperature; the local minima reaches its highest magnitude

at T “ 0.05. It is worth noting that the location of this local minima point in Ust

slightly moves towards the channel center with increasing the excitation frequency

(it is also seen in the local maxima location), while in Tst it remains constant and

is more confined to the wall. This shows that, under a specific condition, one can

control the thermal and hydrodynamic boundary layer to respond differently to the

pulsations. Streaming velocity in the spanwise direction, Wst, takes a similar form

in all cases suggesting that the location of first overshoot is relatively independent of

the excitation frequency.

Streamwise, wall-normal, and spanwise normal Reynolds stress terms at different

pulsation periods, namely T “ 5, 10, 20 and 120 are plotted in figure 4.13 (top).

Profiles corresponding to the unexcited case, as the reference values, are also reported

with dashed-lines. The most visible difference due to the pulsation appears in the

w1w1; the peak values in all cases are more than twice larger than the unexcited

value. The location of this peak monotonically moves closer to the channel center by

increasing the pulsation period. Wall-normal component, v1v1, decreases by applying

the spanwise excitation. Low-frequency case (at T “ 120), minimally deviates from

the unexcited case and the optimal reduction is achieved at T “ 10 and T “ 20.

The streamwise component, u1u1, remains nearly unchanged as a result of pulsation,

except the peak value which again reaches the minimum at T “ 10 and T “ 20.

Similar behavior is observed in T 1T 1. Therefore, considering these four terms, it is

expected that the turbulent heat flux, T 1v1, and Reynolds shear stress, u1v1, would

also experience a negligible change due to the low-frequency excitation. By tuning

the ωf to the optimal range, an effective reduction is achieved in both quantities.

Instantaneous temperature fields near the bottom wall at y` « 4, in both excited

and unexcited conditions, as well as the temperature perturbations, δT , are displayed

in figure 4.14 for case A4 that shows a small reduction in TEF. Comparing this plot

against case C3 in figure 4.5 that is excited at the same frequency, but with four times
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Figure 4.13. Second-order turbulent statistics at Reb “ 3000 and Mb “

1.5 subjected to the spanwise excitation at AfT “ 1; unexcited case
(- - - -), A1: ωf “ 2π{5 and Af “ 0.2 (‚), A2: ωf “ 2π{10 and Af “ 0.1
(�), C1: ωf “ 2π{20 and Af “ 0.05 (N), and A5: ωf “ 2π{120 and
Af “ 0.00834 (�)

larger forcing amplitude, reveals that in phases t{T “ 0 and t{T “ 2{4, the deviation

of near-wall streamwise streaks from their original orientation is directly proportional

with the forcing amplitude. In the other two instances where the spanwise velocity

perturbation changes direction; at t{T “ 1{2, case A4 has similar or even hotter

streaks, while at t{T “ 3{4, case C3 contains streaks with higher intensities. It can

also be seen that compared to this condition, case C1 (with Af “ 0.05 and T “ 20)

shown in figure 4.3 resulted in less organized streaks which can explain a higher shear

and heat transfer reduction in C1.
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5. ACOUSTIC EXCITATION OF A SPATIALLY DEVELOPING BOUNDARY

LAYER

A new computational setup is proposed to concentrate on the entrance region of

the channel. In this case, the boundary layer undergoes the laminar to turbulent

transition and grows thicker in the streamwise direction. The computational setup is

schematically drawn in figure 5.1(right). Non-dimensionalization, in this case, is based

on the free-stream (for flat-plate simulation) or channel center quantities (for channel

flow simulation). Free-stream density, ρ8, speed of sound, c8, and viscosity, µ8,

are respectively taken as the reference parameters for density, velocity, and dynamic

viscosity. Parameter pγ ´ 1qT8 is the scaling factor for the the static temperature

and 1{ pγρ8c
2
8q represents the reference static pressure. As such, the dimensionless

form of the Equation of State reads p “ pγ ´ 1qρT {γ.

To overcome the excessive computational cost associated with resolving all turbu-

lent flow scales at high-Reynolds numbers, such as the one studied here, Large-Eddy

Simulation technique with the dynamic Smagorinsky sub-grid scale modeling, intro-

duced in section 2.2.4, has been employed here. Equations (2.12) to (2.15), along with

the complementary equations discussed in [27], are advanced in time via the implicit

Beam and Warming formulation (2.9)-(2.11).

The present section is focused on the acoustic excitation of the spatially-developing

boundary layer and characterizing its impact on the momentum and heat transfer

near the boundaries. A procedure similar to chapter 3, has been adopted here. After

validating our computational tool for the present flow configuration, base flow calcu-

lations are performed without any extra acoustic forcing. Time-averaged flow quan-

tities are used as the equilibrium case for the Global Stability Analysis. One of the

least stable modes that resemble the optimal mode identified for the fully-developed
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Figure 5.1. The schematic view of the computational setup for the val-
idation study (left) and the present test case for acoustic excitation of
spatially-developing boundary layer (right). The blue shaded area repre-
sents the region where the sponge layer is active in the streamwise direc-
tion, recycling the outlet to the inlet condition and the red shaded area
shows the wall-normal sponge-layer enforcing the free-stream condition.
The gray planes illustrate the walls and thick black lines

flow is selected for the acoustic excitation. Fully-nonlinear numerical simulations are

conducted to study the interaction of acoustic wave and turbulent flow in detail.

5.1 Validation Study

Large-Eddy Simulation of H-type transition to turbulence in a spatially developing

boundary layer over an adiabatic flat plate is chosen to assess our computational tool.

Figure 5.1 (left) illustrates the computational setup for this study, following Sayadi

et al [62], where the free-stream mach number M8 “ u8{c8 “ 0.2 and Reynolds

number per unit length is Rel “ ρ8u8{µ8 “ 105. Along the computational domain,

Rex varies P r1ˆ 105, 10.6ˆ 106s. The computational setup therefore corresponds to

Lx ˆ Ly ˆ Lz “ 10.6 ˆ 1 ˆ 0.6 discretized using Nx ˆ Ny ˆ Nz “ 960 ˆ 160 ˆ 64.

Transition to turbulence is triggered via a blowing and suction on the wall following:

vpx, z, tq “ A1fpxq sinpωtq ` A1{2fpxqgpzq cospωt{2q (5.1)
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where A1 “ 3 ˆ 10´4 and A1{2 “ 1 ˆ 10´6 are respectively the amplitudes of funda-

mental and sub-harmonic perturbations. Frequency of the suction and blowing is set

to ω “ FU2
8{ν where F “ 1.24ˆ 10´4. Function fpxq is defined as

|fpxq| “ 15.1875ξ5
´ 35.4375ξ4

` 20.25ξ3 (5.2)

where

ξ “

$

’

&

’

%

x´x1
xm´x1

, if x1 ď x ď xm.

x2´x
x2´xm

, if xm ď x ď x2,

and xm “ px1 ` x2q{2. In the present study, the start and end point of the tripping

region are chosen such that Rex1 “ 1.6555 and Rex2 “ 1.815 and function gpzq is

explicitly written as gpzq “ cosp2πz{0.15q.

To avoid the reflections from the boundaries, a numerical sponge layer is imple-

mented wherein the following source term is added to the equations for conservation

of mass, momentum, and energy (2.12):

Sq “ ´σpq ´ qrefq, where σ “ Asponge

ˆ

x´ xsponge,0

Lsponge ´ xsponge,0

˙n

(5.3)

where qref is the vector of reference variables, Asponge and n are two constant parame-

ters, and xsponge,0 and Lsponge are respectively, the location of the first point and total

length of the sponge layer. Hence, the effect of this source term gradually increases

inside the sponge zone; from zero at the beginning (xsponge,0) to Asponge at the end.

The red shaded region of figure 5.1 (left) shows the sponge zone wherein the

Equation (5.3) is applied to enforce the free-stream condition at ysponge,0 “ 0.7 and

with the length Lsponge,0 “ 0.3. The blue shaded area represents the sponge zone

active in the streamwise direction, recycling the outlet to the inlet condition. This

technique allows for applying a periodic boundary condition to simulate a flow that

is spatially developing in nature. Spalart and Watmuff [63] verified a similar ap-
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Figure 5.2. Comparison of skin friction coefficient, Cf , calculated in the
present study against the DNS results of Sayadi et al [62] (left). Our Large
Eddy Simulation is performed on a grid of size NxˆNyˆNz “ 960ˆ160ˆ
64, while the DNS of Sayadi et al [62] has NxˆNyˆNz “ 4096ˆ550ˆ512
grid points. Time averaged streamwise flow velocity scaled with the free
stream speed of sound calculated using LES (right)

proach, known as the fringe method, for simulating a turbulent boundary layer,

by comparing against the experimental data, and Sayadi et al. [62] employed this

methodology to study the laminar-turbulent transition. At the inlet, xsponge,0 “ 1.5

and Lsponge,0 “ 0.5, while at the outlet, xsponge,0 “ 9.1 and Lsponge,0 “ 1.5. In both

cases, the parameters Asponge “ 20 and n “ 4 have been adopted. Skin friction coef-

ficient, Cf “ τwall{0.5ρ8U
2
8, calculated in the present study is compared against the

reference values taken from Sayadi et al [62] (with more than 1.15 billion grid points)

in figure 5.2 (left). An excellent agreement is observed between the two studies in

both laminar and turbulent regimes. The minor deviation in the transition section

may be attributed to assuming slightly different values in the blowing and suction

form in Equation (5.1) as well as possible modeling errors. Similar observations are

also reported when employing different numerical techniques [64]. Figure 5.2 (right)

shows the time-averaged streamwise velocity normalized with the speed of sound in

free stream c8. The growth of boundary-layer thickness in the laminar and turbulent

regime is clearly visible along with the sudden change appearing at the transition

point.
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5.2 Base Flow Calculation

Upon validating our computational tool for a test case that involves a late tran-

sition to turbulence, we define a new flow configuration to study the implications of

acoustic excitation on the heat and momentum transport. In the present test case,

schematically shown in figure 5.1 (right), the inlet condition is calculated according

to

T0,in “ 400K, p0,in “ 150kPa, and Mc “ 0.2 (5.4)

where T0,in and p0,in are, respectively, total temperature and pressure at the inlet, and

Mcl represents the Mach number at the channel center-line. Top and bottom walls

are no-slip and isothermal at Twall “ 300K. Following the non-dimensionalization

described in previous sections, and the given the working condition (5.4), Reynolds

number per unit length is Rel “ ρclUcl{µcl “ 4, 645, 412. The computational setup is

Lx ˆ Ly ˆ Lz “ 0.3 ˆ 0.03 ˆ 0.03 discretized using Nx ˆNy ˆNz “ 960 ˆ 160 ˆ 64.

Therefore, Rex in the domain varies within « r0.7ˆ 105 ´ 14.6ˆ 105s.

Flow quantities at the inlet are calculated using the self-similar solution for the

compressible laminar boundary layer [65]. It is assumed that at the inlet location,

the boundary layer thickness is minimal and therefore, the center-line can be treated

as the free-stream p q8 conditions.

p
ρµ

ρ8µ8
f2q1 ` f f2 “ 0 (5.5)

ˆ

ρµ

Pr ρ8µ8
g1 `

ρµ

ρ8µ8

U2
8

ρ8CpT8

ˆ

1´
1

Pr

˙

f 1f2
˙1

` fg1 “ 0

where f 1 “ Upx, yq{U8, g “ ρpx, yqT px, yq{ρ8T8. Spatial derivatives in wall nor-

mal direction is shown by p q1 “ d{dη where dη “
`

ρpx, yqU8{
?

2ζ
˘

dy and ζ “



90

0.05 0.10 0.15 0.20 0.25

x

0.0015

0.0020

0.0025

0.0030

0.05 0.10 0.15 0.20 0.25

x

0.000

0.005

0.010

0.015

0.020

0.025

0.030

y

0.00

0.05

0.10

0.15

0.20

Figure 5.3. Skin friction coefficient, Cf , along the bottom wall where
Rex P« r0.7 ˆ 105 ´ 14.6 ˆ 105s using LES on a Nx ˆ Ny ˆ Nz “ 960 ˆ
160 ˆ 64 grid (left). Time averaged streamwise flow velocity scaled with
the free stream speed of sound in the spatially developing channel (right).
Operating conditions are reported in (5.4).

ρ8µ8U8xin. These coupled equations are solved using a fourth-order Runge-Kutta

method subjected to the boundary conditions:

fp0q “ f 1p0q, and gp0q “ gwall (5.6)

f 1p8q “ 1, and gp8q “ 1

From these quantities, all conservative variables are calculated at x “ r0.015´ 0.024s

and set as qref in Equation (5.3) applied to the blue-shaded area of figure 5.1 (right).

In this case, xsponge,0 “ 0.024 and Lsponge “ 0.009 at the inlet and xsponge,0 “ 0.265

and Lsponge “ 0.05 at the outlet. Sponge constants in Equation (5.3), for this configu-

ration, are set to Asponge “ 40 and n “ 4. To trigger the laminar-turbulent transition,

the periodic suction and blowing of form (5.1) and (5.2) is employed considering

gpzq “ cosp2πz{0.0075q, Rex1 “ 1.36 ˆ 105 and Rex1 “ 1.56 ˆ 105. This tripping

is applied at frequency ω “ 55 where the amplitude of harmonic and sub-harmonic

waves are A1 “ 2.25 ˆ 10´3 and A1{2 “ 2.4 ˆ 10´5. Results of the skin friction coef-

ficient, Cf , along the bottom wall as well as the spanwise-averaged mean streamwise

velocity are plotted in figure 5.3.
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Figure 5.4. Schematic view of the computational setup for the Linear Sta-
bility Analysis as well as the imposed boundary conditions. The shaded
blue region represents the sponge zone implemented in the base flow cal-
culations. Vertical dashed lines (- - - -) indicate the location where the
LSA’s boundary conditions are applied and the red dot is the starting
point of the suction and blowing in the base flow calculations.

5.3 Linear Stability Analysis

Time-averaged flow quantities calculated in section 5.2 are taken as the base flow

for the two-dimensional global stability analysis 2.5. Spectral method is used on

the grid of size Nx ˆ Ny “ 128 ˆ 72 subjected to the boundary conditions shown

in figure 5.4. The inlet boundary condition is applied at the location of tripping

used in base flow calculations. Velocity and temperature perturbations are assumed

zero and dp̂{dx “ 0. The outlet boundary condition is imposed slightly into the

sponge layer implemented in the base flow computational setup where all quantities

are extrapolated from the interior points. All perturbation quantities vanish at the

solid boundary, except the pressure where dp̂{dy “ 0. The eigenvalue spectrum,

inside the domain bounded by Rpωq P r0, 9s and Ipωq P r´1.25, 0.5s, is plotted in

figure 5.5. In this configuration, different unstable modes are observed. Eigenvalues

appearing around the line Rpωq “ 0, like M0, represent a stationary mode which

may appear due to the irregular changes in the base flow field, especially near the

tripping region, reflections from the boundaries, or insufficient convergence of time

statistics. Mode M1, and other more unstable modes on its right side, resemble the

Tollmien–Schlichting waves that are unstable for a high-Reynolds turbulent boundary
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section 5.2 subjected to the boundary conditions shown in figure 5.4. Due
to the symmetric nature of eigenspectrum aroundRpωq, only the right side
is shown. Three modes are highlighted here; M0 representing a stationary
mode, M1 belonging to a family of unstable modes, and M2 as the least
stable mode.
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Figure 5.6. Mode shear stress, xuv, (——) and heat flux, xTv, (- - - -) for
M0, M1, and M2 identified in figure 5.5. Profiles are plotted along the
channel height at the mid-plate x “ 0.151.

layer. On the other hand, M2 indicates the least stable mode. Two quantities of

mode shear stress and heat flux, respectively, xuv and xTv, are calculated according

to (3.7) and are plotted for these three modes in figure 5.6. M0 looks somewhat

jagged, which also suggests that this mode may appear due to numerical errors,

M1 experiences substantial variations near the boundary, however, the associated



93

0.05 0.10 0.15 0.20 0.25

x

0.000

0.005

0.010

0.015

0.020

0.025

0.030

y

û
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Figure 5.7. Streamwise velocity and temperature eigenfunctions, respec-
tively pu and pT associated with mode M2 in figure 5.5.

shear stress is significantly higher than the heat flux. Among all, Mode M2 is the

most similar to the mode R1 studied in chapter 3. Therefore, we pick this mode

for the acoustic excitation in the remainder of this work. The streamwise velocity

and temperature eigenfunctions corresponding to M2 are illustrated in figure 5.7.

Eigenfunction associated with the streamwise velocity pu is minimally affected by the

growth of the boundary layer suggesting that it can be classified as the acoustic mode.

Due to the significant temperature difference between the wall and the boundary layer

edge, which corresponds to a significant viscosity and thermal conductivity variations,

the effect of boundary layer growth is clearly visible on the temperature eigenfunctions

pT .

To limit the impact of inaccuracies in prescribing the exact boundary conditions,

one can use multiple forcing regions operating with the exact phase shift calculated

from the eigenfunctions of the selected mode. However, this technique has not been

included in the present study.

5.4 Fully Non-linear Calculations

Mode M2 has been selected for the acoustic excitation of the spatially-developing

boundary layer in a channel. An external periodic forcing term, ~ff , is added to the



94

right-hand side of the x-momentum Equation (2.12) and the work performed on the

flow by this forcing is considered in the energy equation by ~ff .~u.

~ff “ Af exp

˜

´
px´ xmq

2

L2
f

¸

sinpωf tq~ex (5.7)

where Af is the amplitude of forcing, assumed to be Af “ 1 in the present case, Lf

represents the length scale of the forcing Lf “ 0.01, xm is the center of the forcing

region xm “ 0.105, and ωf indicates the forcing frequency which is taken from the

previous section corresponding to the mode M2, ωf “ 7.985. Time-averaged skin

friction coefficient (Cf ) in the excited and unexcited conditions are plotted in figure

5.8 (left). The excited Cf has an overall smoother transition to turbulence. In the

laminar part and early stages of transition, the skin friction increases due to the

excitation, but this trend is reversed from x « 0.07 to x “ 0.15, and after that

slightly overshoots Cf of fully turbulent region corresponding to the unexcited case.

Figure 5.8 (right) illustrates the Shear and Thermal Enhancement Factors for the

excited case following the definition in (3.4).

SEF “
Cf,exc

Cf,unexc

and TEF “
Nuexc

Nuunexc

((3.4))

where,

Cf pxq “
µw

BUpx,yq
By

|w

0.5ρclU2
cl

and Nupxq “

B

By
pT px, yq ´ Twq |w x

Tbpxq ´ Tw

We observe that SEF and TEF are closely coupled. Both quantities start from the

unity and increase in the early stages of transition where TEF takes larger values than

SEF. This is followed by a steep decrease in both quantities, down to less than 0.8,

right before the forcing region begins. Thereafter, both quantities approach towards

unity and overshoot this line by « 1.2to1.5% averaged in the magnified region. Figure

5.9 shows the temporal evolution of the temperature perturbations (δT ) scaled by

the static temperature at the channel center Tcl. A spatial averaging is taken over
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Figure 5.8. Skin friction coefficient Cf in the excited (— ¨ ¨ —) and
unexcited (´) cases along the channel (left). Shear Enhancement Factor,
SEF, (— ¨ ¨ —) as well as Thermal Enhancement Factor, TEF, (´) for
the acoustically excited spatially developing boundary layer. The gray
shaded areas show the region where the forcing amplitude ą 0.01Af

the first half of the forcing region x P r0.084 ´ 0.105s. Results indicate a limit

cycle is achieved in very few cycles and has a sinusoidal form without involving any

clear and substantial non-linearity at the channel core. History of both enhancement

factors, time-averaged over the entire bottom wall bounded by the sponge zones,

x P r0.024, 0.265s, are reported in figure 5.9. Both quantities oscillate around a value

smaller than unity, where the SEF possesses a larger oscillation amplitude. Although

the time-averaging of these two values are very similar, as also shown in figure 5.8, in

the first half of a pulsation period, TEF (highlighted by red) is larger than the SEF

(highlighted by blue), which can be used in scenarios where a significant heat load

is expected to enter the domain only in some specific frequencies, e.g., by passing a

rotor vane.

Streaming temperature (Tst “ T exc´T unexc) and streaming velocity in streamwise

direction (Ust) are shown in figure 5.10. To get a clearer picture, we have focused

on the near-wall region. Both quantities are scaled with the corresponding channel

centerline value. The streaming flow field is dominated by the interaction of external

forcing and the unstable wave groups coming from upstream, generated due to the

blowing and suction, manifested in the form of a steady vortex. Analyzing the un-

steady flow properties ωf is necessary to understand the flow physics in the excited



96

0 1 2 3 4 5 6 7 8

t/T

−0.002

0.000

0.002

δT
/T

cl

0 1 2 3 4 5 6 7 8

t/T

0.90

0.95

1.00

1.05

E
F

SEF

TEF

Figure 5.9. Temporal evolution of temperature perturbation at the chan-
nel center scaled by the local static temperature, Tcl (left). The dashed
line (- - - -) tracks the maximal and minimal values of each cycle. His-
tory of SEF (— ¨ ¨ —) and TEF(´) averaged over the entire bottom wall,
excluding the sponge zones, for eight pulsation periods (right). Segments
highlighted with red represent the phases in one period where TEF is
larger than SEF, highlighted in blue

Figure 5.10. Streaming temperature,Tst, (left) and streaming velocity in
streamwise direction, Ust (right) normalized by the center-line values. The
gray shaded region shows the area where forcing amplitude ą 0.01Af .

conditions. Following the equations discussed in section 3.2.3, Phase-locked averaged

component of streamwise velocity, pU , and temperature, pT , are calculated at the exci-

tation frequency ωf . Figure 5.11 displays Cf and Nu along the bottom wall at four

different instances of one period (T “ 2π{ωf ). At the beginning of the pulsation cy-

cle, the acoustic source acts as an expansion wave travelling upstream, which triggers

the transition to turbulence earlier compared to the unexcited case. However, since

it accelerates the flow in the streamwise direction, and the acceleration is known to
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Figure 5.11. Phase-locked averaged skin friction coefficient,Cf , (left)
and Nu (right) at four different instances of one excitation period (T ).
The reference values corresponding to the time-averaged Cf and Nu of
the unexcited case are plotted with dashed-lines (- - - -). The gray-shaded
area indicates the region where the forcing amplitude ą 0.01Af . Each row
corresponds to one instance; top row: t{T “ 0{4, second row: t{T “ 1{4,
third row: t{T “ 2{4, and the bottom row: t{T “ 3{4.

have a stabilizing effect, a re-laminarization is spotted considering the sudden drop

of Cf and Nu after the initial rise due to early transition. The positive pressure

gradient decreases in the streamwise direction, and eventually, the inertial forces lead

to secondary transition and turbulence. In the next instance, t{T “ 1{4 (the second

row in figure 5.11), the re-laminarization is traveled downstream. From this point

onward, the first transition point appears even later than the unexcited point, and

the re-laminarization is convected downstream.

To have a clear look at the near-wall vortical structures, the iso-value contours of

the Q-criterion for the present case at four instances of a period (T ) are plotted in

figure 5.12. The Tollmien–Schlichting waves originated from the suction and blowing
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in the upstream are observed as the rollers in the far-left. Turbulent zone is marked

by the forest of near-wall vortices (spotted from x « 0.15) and the area appearing

in between is attributed to the transitional zone. Instance t{T “ 0 (figure 5.12 top),

shows a substantial level of perturbations early in upstream followed by early stages

of break-down to turbulence. The re-laminarization is then clearly observed as a

”gap” in the density of vortical structures near the bottom wall. The impact of such

phenomenon was detected on the Cf and Nu in figure 5.11 This gap is weakened and is

convected downstream in the following instances. At the instance t{T “ 3{4, shown

on the fourth row of figure 5.12, transition to the fully-turbulent zone is delayed,

although the perturbations on the T-S waves are significant.

Future work will study the effect of sponge layer strength and length as well

as the location of forcing region on the results. The next effort will also consider

different forcing amplitudes and will include mode M1 and other unstable family of

modes for the acoustic excitation. As mentioned earlier, utilizing multiple external

source terms operated with the exact phase shift calculated from the selected mode’s

eigenfunctions can significantly alleviate the effect of uncertainties at the boundaries

and help targeting that specific mode.
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Figure 5.12. Instantaneous iso-value contours of Q-criterion in the ex-
cited condition at four instances of one period (T ). The structures are
colored by their corresponding wall-normal velocity component from blue
(negative) to red (positive values).
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6. CONCLUSIONS

Passage of a sound wave over a solid boundary creates the Stokes Layer which interacts

with the hydrodynamic and thermal boundary layers. Under favorable conditions, this

process leads to the acoustic streaming which modifies the near-wall flow gradients

and controls the heat and momentum transport through the boundary.

Detailed analysis of the streaming phenomenon required developing adequate

mathematical tools to characterize acoustic-wave turbulence interaction. Lin-

earized Navier-Stokes equations can accurately replicate the fluid flow response to

small and low-frequency perturbations. In this research, Local and Global Linear

Stability solvers were developed in order to identify the modes with positive heat

transfer characteristics. In situations where the interaction of the turbulent bound-

ary layer and the external acoustic wave involves the non-linear processes, accurate

solution of fully non-linear Navier-Stokes equations is necessary. In the present re-

search, we employed a solver that uses high-order compact finite difference method

for Direct and Large-Eddy Simulation of turbulent flows.

The developed numerical tools were then used to study heat transfer enhance-

ment using acoustic streaming created by superimposing acoustic waves in the

streamwise direction. The external acoustic wave was designed to acoustically res-

onate within the selected configuration, according to the Linear Stability Analysis of

the unexcited base flow. We observed an initially exponential growth in perturba-

tion’s amplitude which eventually leads to the limit cycle oscillations. The non-linear

mechanism driving such oscillations creates a steady streaming within the background

flow which enhances the heat transfer with minimal skin friction losses. Applying the

external waves of similar strength at off-design frequencies did not make any measur-

able modifications to time-averaged flow quantities, emphasizing the role of resonance

in giving rise to non-linear interactions. DNS conducted at the optimal frequency, but
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with different excitation amplitudes illustrate that acoustic forcing with amplitudes

higher than a minimum threshold can enhance the heat transfer up to 10.9% by only

5.3% increase in the skin friction. Violation of Reynolds Analogy in this configura-

tion has been discussed in detail. Similar conclusions were also observed at higher

Reynolds numbers or at lower resonance frequencies (due to using large domain sizes).

Direct Numerical Simulations were carried out to demonstrate the heat trans-

fer abatement via applying acoustic waves in the spanwise directions. As a

result of such pulsations, large near-wall structures are diverted towards the positive

and negative directions. By adjusting the forcing amplitude (Af ) according to the

pulsation period (T ) such that parameter AfT remains constant, spanwise velocity

perturbations are generated with similar amplitudes. Under this condition, an optimal

excitation frequency was observed where 8% heat transfer reduction was achieved. In

the majority of the cases involving spanwise external acoustic waves, Reynolds Anal-

ogy is valid and therefore, skin friction also decreases accordingly. The impact of

turbulent flow on the velocity and temperature perturbations was also characterized

at different excitation frequencies.

In the last analysis, we expanded the scope of numerical investigations to include

the evaluation of acoustic streaming in a spatially-developing boundary

layer. Global Stability Analysis was used to identify the optimal excitation frequency,

that resembles the mode chosen for the fully-developed case. Due to high-Reynolds

number in this configuration, Large-Eddy Simulation with a Dynamic Smagorinsky

sub-grid scale modeling was employed to assess the effect of enforcing this mode

in the domain via a detailed fully non-linear numerical simulations. The acoustic

pulsations interact with the perturbations originated from the boundary layer tripping

and modulate the transition to turbulence process. As a result, time-averaged local

enhancement and reduction were observed in the heat and momentum transport near

the boundaries.

The present study introduces a new technique, employing acoustic streaming, to

improve the heat transfer efficiency of the existing thermal systems. Such processes
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can be initiated by incorporating the external sources (like a loudspeaker or a horn),

or by utilizing the pressure fluctuations readily available due to blade-row interaction

in order to modulate the time-averaged heat transfer in both external turbine surfaces

and internal cooling passages.
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2006.

[41] Xiaoye S. Li and James W. Demmel. Superlu dist: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math-
ematical Software, 29(2):110–140, June 2003.

[42] X.S. Li, J.W. Demmel, J.R. Gilbert, iL. Grigori, M. Shao, and I. Yamazaki. Su-
perLU Users’ Guide. Technical Report LBNL-44289, Lawrence Berkeley National
Laboratory, September 1999.

[43] Ray-Sing Lin and Mujeeb R Malik. On the stability of attachment-line boundary
layers. part 1. the incompressible swept hiemenz flow. Journal of Fluid Mechan-
ics, 311:239–255, 1996.



106

[44] V Theofilis, AV Fedorov, and SS Collis. Leading-edge boundary layer flow
(prandtl’s vision, current developments and future perspectives). In IUTAM
Symposium on One Hundred Years of Boundary Layer Research, pages 73–82.
Springer, 2006.

[45] Peter J Schmid and Dan S Henningson. Stability and transition in shear flows,
volume 142. Springer Science & Business Media, 2012.

[46] Olivier Marquet, Denis Sipp, and Laurent Jacquin. Sensitivity analysis and
passive control of cylinder flow. Journal of Fluid Mechanics, 615:221–252, 2008.

[47] Mahesh Natarajan, Jonathan B Freund, and Daniel J Bodony. Actuator selection
and placement for localized feedback flow control. Journal of Fluid Mechanics,
809:775–792, 2016.

[48] Joseph W Nichols, Johan Larsson, Matteo Bernardini, and Sergio Pirozzoli. Sta-
bility and modal analysis of shock/boundary layer interactions. Theoretical and
Computational Fluid Dynamics, 31(1):33–50, 2017.

[49] Moon Joo Lee, John Kim, and Parviz Moin. Structure of turbulence at high
shear rate. Journal of Fluid Mechanics, 216:561–583, 1990.
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A. EQUATIONS FOR GLOBAL STABILITY ANALYSIS

In the global stability analysis, as discussed in chapter 2, the decomposition

qpx, y, z, tq “ qpx, y, zq ` pqpx, yq ejβz e´jωt

is applied to the linearized Navier-Stokes equations which eventually leads to the

generalized eigenvalue problem

Aq̂ “ ωBq̂ (2.21)

where,
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(2.22)

Matrices A and B are block-structured and the detailed mathematical description

of each block is adopted from Theofilis and Colonius [35] as follows,
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where Dx and Dxx are first and second derivative operators in x direction and

Dy and Dyy are their counterparts in y direction, respectively. Mixed derivatives

are represented by Dxy. These operators are calculated via numerical techniques

discussed in section 2.5.
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