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ABSTRACT

Luo, Qiaoen Ph.D., Purdue University, December 2019. Motion-based Sensing and
Imaging in Scattering Media Using Speckle Intensity Correlation. Major Professor:
Kevin J. Webb Professor.

Optical sensing and imaging inside heavily scattering media are of intense interest

because of their importance in biomedical, environmental, and material inspection

applications. When coherent light interacts with scatterers, bright and dark intensity

regions form, a phenomenon known as speckle. Often viewed as being detrimental,

speckle can be exploited to yield useful information with a correlation analysis.

A coherent method is presented for the imaging of a hidden object moving within

thick and randomly scattering media using speckle intensity correlations over object

position, with the possibility of accessing super-resolution information. With prior

information about the moving object’s motion, spatial speckle intensity correlations

as a function of object position can reveal the hidden object’s relative refractive index

distribution. Our experimental evidence shows that it is feasible to image complex

aperture-type moving objects and circular patches inside scatter that is a magnitude

of order heavier than other comparable imaging modalities. Images of the moving

object were obtained from speckle intensity correlation data using phase retrieval.

Biological tissue was used to demonstrate the possibility of in vivo deep-tissue imag-

ing. Speckle intensity correlations are shown to be sensitive to both the scattering

strength of the embedded object and the environment, both of which are useful for

sensing. We present a general theory that describes this influence of the background

scattering medium and allows for imaging a hidden moving object. Additionally, we

present a method to improve the sensitivity of speckle correlography in remote opti-

cal metrology. By placing a scattering slab in front of the detector, we demonstrate
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enhanced sensitivity, detecting the subwavelength in-plane displacement of a remote

diffuse object.
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1. INTRODUCTION

Speckle phenomena are the result of the constructive and destructive interference

between wavefronts. It been long perceived as detrimental yet inevitable for most

conventional coherent optical sensing and imaging approaches when random scat-

ter is involved [1]. Speckle is seen in situations spanning the entire electromagnetic

spectrum and other wave types, for example, acoustic waves [2]. While suppression

methods can be introduced to alleviate the undesirable random noise associated with

speckle [3], researchers have also explored the useful statistical properties of speckle

to obtain information previously thought to be lost. Specifically, the correlation over

change in laser frequency can be used to image hidden inhomogeneities [4]; the local

speckle contrast ratio can be a quantitative indicator of the velocity distribution of

blood flow close to the surface [5]; and the temporal decorrelation of speckle patterns

forms the basis of diffusing wave spectroscopy, useful for characterizing various dy-

namic scattering media [6]. The intensity interferometer pioneered by Hanbury Brown

and Twiss used correlated intensity measurements with two detectors to access an

object’s spatial frequency spectrum [7, 8]. The underlying principle can be extended

to intensity measurements through a 2D detector array: the van Cittert-Zernike theo-

rem [9] enables the imaging of diffuse object illuminated coherently through averaging

intensity correlations and phase retrieval [10], and imaging of an illumination pattern

through diffuse surface was achieved using a similar analysis [11]. The memory ef-

fect [12, 13] theorizes that the object’s spatial information can be retained within a

small range of incident angles while the scattering medium is thin. Thus, the auto-

correlation of a single speckled measurement can be used to obtain the image of the

obscured intensity pattern from fluorescence and patterned apertures [14, 15].

Zero-mean Gaussian field statistics describe a fully developed speckle pattern [3],

as shown in Fig. 1.1. A fully developed speckle pattern occurs when light is multiply
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scattered. Under such field statistics, Reed’s moment theorem can be used to access

second-order field correlations using the fourth-order field correlations obtainable from

speckled intensity measurements [16]. This enables the study of speckle correlation

over different parameters, yielding interesting information about the unknown system,

such as the temporal response of a random medium [17].

For a moving field incident on a heavily scattering static medium, speckle patterns

taken at different incident field positions differ solely due to the moving field. If the

relative locations of the moving field are known, we can access the hidden incident field

from the speckle decorrelation averaged over different scatterer configurations [18,19].

Similarly, speckle intensity correlations over object position can lead to the sensing

and imaging of an object moving inside heavily scattering medium with no theoretical

limitation of the amount of scatter. This is the focus of this thesis.

Chapter 2 presents the theory for accessing the hidden moving object’s relative

refractive index and provides the simulated reconstruction of a pinhole experimentally

translated between two scattering slabs [20]. In Chapter 3, it is shown that speckle

correlations over object position can be used in combination with phase retrieval for

practical image reconstruction of complex aperture-typed objects and an obstructing

circular patch, inside fresh chicken breast tissue and thick acrylic slabs [21]. In Chap-

ter 4, it is shown that our approach can be used to image optically absorptive and

small objects, and is sensitive to the scattering strength of the surrounding environ-

ment as well, which is useful for sensing. Chapter 5 details the general mathematical

framework that describes speckle intensity correlations as a function of object position

for sensing and imaging moving objects embedded in heavily scattering random me-

dia, and its various applications in different length scales and scattering strengths are

discussed. Equipped with this understanding, our framework points to the possibility

of super-resolution sensing and imaging applications in areas such as semiconductor

defect detection.

As an extension of our speckle spatial intensity correlation studies, a simple ap-

proach for improving speckle correlography [22,23], a well-established optical metrol-
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Fig. 1.1. A typical speckle image from an experiment with fully de-
veloped speckle statistics. No information about the imaging system
is apparent in the image. However, collections of speckle images can
be used by correlation analysis to obtain information about the scat-
tering medium, the illumination source, and the objects embedded
within the scattering medium.
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ogy approach, is presented in Chapter 6. By adding a static scattering material in

front of the detector as an analyzer, enhanced sensitivity of speckle correlation to

remote subwavelength translation of a diffuse object is observed. The cause of the

enhanced sensitivity is discussed in relation to random matrix theory [24]. This simple

modification has broad impact and can improve various coherent optical metrology

applications, and facilitate temperature sensing and defect detection.
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2. REFRACTIVE INDEX DISTRIBUTION OF OBJECT

HIDDEN INSIDE HEAVILY SCATTERING MEDIA†

The ability to image through scattering media with light has garnered immense in-

terest throughout the last several years [14,19,25–29]. However, randomly scattering

inhomogeneities in the imaging environment interact with the object of interest and

the illumination source and, with sufficient scatter, can completely obscure the ob-

ject [3]. We provide a new method to coherently image a moving object hidden in

heavily scattering media.

The memory effect permits imaging through thin randomly scattering media

[12, 14, 30]. Also, using wavefront control, it has been possible to focus through a

scattering domain [29], hinting at the future promise with, for instance, ultrasonic

guide stars [31]. Wavefront control has been combined with the memory effect to

image through thin scattering media [14,15,32]. Also, measurement of the transmis-

sion matrix for the random medium provides information that can allow for imaging

through random scatter [33], but this requires suitable characterization data.

A number of localization methods has been developed. For example, with a sta-

tionary point scatterer of interest in a background of moving scatters, the average in-

tensity transmission can yield the position of the stationary scatterer, and transverse

localization information exists in the average of the difference of speckle patterns

(with and without the stationary scatterer) [34]. Localization can also be accom-

plished in a diffusion framework, with weakly interacting scatterers, [35,36]. Control

of the coherence in speckle pattern difference images can reveal the presence of hidden

inhomogeneities [4].

† This work is published as J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with
spatial speckle intensity correlations over object position,” Phys. Rev. Lett., 116, 073902, 2016
(Ref. [20])
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Sophisticated imaging methods have been developed for diffuse optical tomogra-

phy to achieve geometrical features roughly defined by the transport length, l∗ [37,38].

Greater accuracy can be achieved with high energy photons, where ballistic informa-

tion (that allows back-projection, for instance) provides tracking data in X-ray phase

contrast imaging [39] with use of geometrical optics [40]. However, beyond the physics

related to multiply scattering light, use of visible infrared light can be desirable to

allow various forms of spectroscopy, and for cost, safety and technology reasons.

The aforementioned and related prior work leads to the position that imaging

with wavelength scale resolution in multiply scattering media has been limited to the

degree of scatter where wavefront control (with a guide star) or the memory effect can

be applied. We show a means to achieve high resolution optical images with multiply

scattered coherent light through essentially arbitrarily thick scattering media, limited

only by signal-to-noise requirements at the detector, when speckle images are captured

as a function of object position.

2.1 Theory

We demonstrate a method for imaging moving objects embedded within thick,

randomly scattering media that applies provided there is enough scatter to have

randomized fields that are zero-mean circular Gaussian [1]. In this scattering regime,

our method is not limited by the thickness of the scattering medium, making it

complementary to existing speckle imaging approaches [41]. The approach, illustrated

in Fig. 2.1(a), provides a description of the spatial speckle intensity correlation as a

function of object position for a moving object hidden inside of a scattering medium,

and allows for the moving hidden object to be imaged. We describe the environment

as a static random scattering medium with an embedded object at some position

inside the random medium. However, in reality, the randomly scattering medium

only needs to be static during a particular span of time. We define the normalized

intensity for polarized light exiting a random medium as Ĩ = (I − 〈I〉)/σI , where 〈I〉
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Fig. 2.1. (a) Conceptual for imaging a moving object hidden within a
scattering medium by collecting speckle intensity images as a function
of object position. (b) Experiment with an 850 nm laser illuminating
a pair of scattering slabs. An object was placed between the slabs and
scanned using a set of linear stages. Speckle images were collected at
each object position using a 4-f spatial filter, magnifying optics, and
a polarizer.
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is the mean intensity and σI is the standard deviation of the intensity. The speckle

contrast ratio [3], σI/〈I〉, is unity for polarized coherent light and fully developed

speckle statistics. In this case, the intensity statistics are negative exponential and

the underlying field statistics, assuming weakly interacting scatterers, are zero-mean

circular Gaussian, a property of the field statistics that we will use.

We write the spatial speckle intensity correlation as 〈Ĩ(r; ro)Ĩ(r; ro+∆ro)〉, where
Ĩ(r; ro) is the normalized intensity at position r with an object embedded inside the

random scattering medium at a reference position described by ro, and the object’s

movement is described by ∆ro. Assuming zero-mean circular Gaussian statistics,

we can express the normalized intensity correlation in terms of the normalized field

correlation using a moment theorem as [16]

〈Ĩ(r; ro)Ĩ(r; ro +∆ro)〉 =
∣

∣

∣
〈Ẽ(r; ro)Ẽ

∗(r; ro +∆ro)〉
∣

∣

∣

2

, (2.1)

where Ẽ = E/σE is the normalized scalar field and σE is the standard deviation of the

field. With zero-mean circular Gaussian fields, σE = 〈|E|2〉1/2 = 〈I〉1/2 = √
σI [16,42].

In developing an expression for the imaging problem, we use a scalar wave equation

to describe the interaction of the speckled optical field with the object of interest (that

is being translated). This corresponds to the physical optics approximation, so that

the vector field problem associated with the moving scatterer can be treated by the

scalar wave equation. This treatment can be generalized for an arbitrary sized object

through use of the vector wave equation.

We write the total field, E(r; ro), as

E(r; ro) = Ei(r) + Es(r; ro), (2.2)

where Ei(r) is the field in the scattering medium without the object and Es(r; ro) is

the field scattered by the object. The wave equation for the electric field, assuming

constant permeability, can be written as

∇2 [Ei(r) + Es(r; ro)] + k2
0ǫi(r) [Ei(r) + Es(r; ro)] + k2

0ǫs(r; ro) [Ei(r) + Es(r; ro)] = 0,

(2.3)
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where k2
0 = (2π/λ0)

2, λ0 is the free-space wavelength, ǫi(r) is the spatially-dependent

dielectric constant of the random medium, and ǫs(r; ro) is the difference with and

without the embedded object centered at ro. Knowing that ∇2Ei(r)+k2
0ǫi(r)Ei(r) =

0, moving all of the terms containing ǫs(r; ro) to the right hand side, and using (2.2),

we write (2.3) as

∇2Es(r; ro) + k2
0ǫi(r)Es(r; ro) = −k2

0ǫs(r; ro)E(r; ro). (2.4)

Using the Green’s function solution to (2.4), G(r′, r; ro), we write the scattered field

as

Es(r; ro) =

∫

dr′E(r′; ro)k
2
0ǫs(r

′; ro)G(r′, r; ro). (2.5)

With (2.5), the total field at some point, r, becomes

E(r; ro) = Ei(r) + k2
0

∫

dr′E(r′; ro)ǫs(r
′; ro)G(r′, r; ro). (2.6)

We use (2.6) to write the electric field correlation over object position, at detector

position rd, as

〈E(rd; ro)E
∗(rd; ro +∆ro)〉 =

〈[

Ei(rd) + k2
0

∫

dr′E(r′; ro)ǫs(r
′; ro)G(r′, rd; ro)

]

×
[

E∗
i (rd) + k2

0

∫

dr′′E∗(r′′; ro +∆ro)ǫ
∗
s(r

′′ +∆ro; ro +∆ro)G
∗(r′′, rd; ro +∆ro)

]〉

.

(2.7)

At this point, we recognize the statistical independence of the various terms in (2.7),

such as the field without the scattering object and the scattered field, and use this to

separate the averaging. In addition, the final term of the expansion of (2.7) is reduced
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to a single integral using the assumption that the contributions to the correlation

occur only over the joint support [18], giving

〈E(rd; ro)E
∗(rd; ro +∆ro)〉 = 〈|Ei(rd)|2〉

+ k2
0〈Ei(rd)〉〈

∫

dr′′E∗(r′′; ro +∆ro)ǫ
∗
s(r

′′ +∆ro; ro +∆ro)G
∗(r′′, rd; ro +∆ro)〉

+ k2
0〈E∗

i (rd)〉〈
∫

dr′E(r′; ro)ǫs(r
′; ro)G(r′, rd; ro)〉

+ k4
0

∫

dr′〈E(r′; ro)E
∗(r′; ro + ro)G(r′, rd; ro)G

∗(r′, rd; ro +∆ro)〉

× ǫs(r
′; ro)ǫ

∗
s(r

′ +∆ro; ro +∆ro). (2.8)

The second and third terms in (2.8) are zero because 〈Ei(rd)〉 has zero mean. These

observations allow us to write (2.8) as

〈E(rd; ro)E
∗(rd; ro +∆ro)〉 = 〈|Ei(rd)|2〉

+ k4
0

∫

dr′〈E(r′; ro)E
∗(r′; ro +∆ro)G(r′, rd; ro)G

∗(r′, rd; ro +∆ro)〉

× ǫs(r
′; ro)ǫ

∗
s(r

′ +∆ro; ro +∆ro). (2.9)

With sufficient scatter, the average of the field and Green’s function in the last term

in (2.9) can be reduced to a slowly varying function of space, C, leading to

〈E(rd; ro)E
∗(rd; ro +∆ro)〉 =〈|Ei(rd)|2〉+ C

∫

dr′ǫs(r
′; ro)ǫ

∗
s(r

′ +∆ro; ro +∆ro),

(2.10)

with

C = 〈E(r′; ro)E
∗(r′; ro +∆ro)G(r′, rd; ro)G

∗(r′, rd; ro +∆ro)〉. (2.11)

With C in (2.10) constant, the statistics are stationary over object position, such

that the field mean and variance are independent of embedded object position, ro.

The field variance at the detector, σ2
E = 〈|E|2〉, with E from (2.6), becomes

σ2
E =

〈
∣

∣

∣

∣

Ei(rd) + k2
0

∫

dr′E(r′; ro)ǫs(r
′; ro)G(r′, rd; ro)

∣

∣

∣

∣

2〉

. (2.12)
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Expansion of the terms in (2.12) leads to

σ2
E =〈|Ei(rd)|2〉

+ k2
0〈Ei(rd)〉〈

∫

dr′E∗(r′; ro)ǫ
∗
s(r

′; ro)G
∗(r′, rd; ro)〉

+ k2
0〈E∗

i (rd)〉〈
∫

dr′E(r′; ro)ǫs(r
′; ro)G(r′, rd; ro)〉

+ k4
0〈
∫

dr′E(r′; ro)ǫs(r
′; ro)G(r′, rd; ro)

∫

dr′′E∗(r′′; ro)ǫ
∗
s(r

′′; ro)G
∗(r′′, rd; ro)〉.

(2.13)

Using the same joint support argument that was used to arrive at (2.9), recognizing

that the middle two terms in (2.13) are zero, due to 〈Ei(rd)〉 having zero mean, and

again treating the average over the field and Green’s function to be slowly varying,

(2.13) is reduced to

σ2
E =〈|Ei(rd)|2〉+ C

∫

dr′ |ǫs(r′; ro)|2 . (2.14)

The normalized electric field autocorrelation, at detector position rd, is written as

〈Ẽ(rd; ro)Ẽ
∗(rd; ro +∆ro)〉 =

1

σ2
E

〈E(rd; ro)E
∗(rd; ro +∆ro)〉. (2.15)

We use (2.9) and (2.14) in (2.15) to obtain an expression for the normalized electric

field spatial correlation in terms of the object’s autocorrelation as

〈Ẽ(rd; ro)Ẽ
∗(rd; ro +∆ro)〉 =

〈|Ei(rd)|2〉+ C
∫

dr′ǫs(r
′; ro)ǫ

∗
s(r

′ +∆ro; ro +∆ro)

〈|Ei(rd)|2〉+ C
∫

dr′ |ǫs(r′; ro)|2
.

(2.16)

Equation (2.16) shows that information about the object is available in the mea-

sured speckle intensity correlation, obtained from (2.15) using a moment theorem [16].

In the case of no embedded moving object, the second terms in both the numerator

and the denominator of (2.16) are zero, leaving us with, as expected, a constant cor-

relation of 1. The mean intensity without the object gives 〈|Ei(rd)|2〉, and this can be

obtained using a model or a prior measurement without the object. The unknowns
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in (2.16) are then two constants, C, as given in (2.11), and
∫

dr′ |ǫs(r′; ro)|2, and the

autocorrelation of the object’s spatially dependent dielectric constant. With suffi-

cient measurement data, the two constants and the object (defined by its dielectric

constant) can in principle be determined. We consider a special case to simplify and

demonstrate the result in (2.16).

With a strongly interacting moving embedded object, the second terms in the

numerator and denominator in (2.16) will be much larger than the first term. The

resulting complete decorrelation of the speckle image occurs when the difference in

dielectric constant of the object and the background, ǫs, is much greater than zero

and/or the object is large, both resulting in large contrast [43]. When the second

term is sufficiently large, (2.16) can be reduced to

〈Ẽ(rd; ro)Ẽ
∗(rd; ro +∆ro)〉 ≈

∫

dr′ǫs(r
′; ro)ǫ

∗
s(r

′ +∆ro; ro +∆ro)
∫

dr′ |ǫs(r′; ro)|2
. (2.17)

We use (2.17) in (2.1) to write the normalized intensity correlation in terms of the

field correlation as

〈Ĩ(rd; ro)Ĩ(rd; ro +∆ro)〉 ≈
∣

∣

∫

dr′ǫs(r
′; ro)ǫ

∗
s(r

′ +∆ro; ro +∆roy)
∣

∣

2

∣

∣

∫

dr′ |ǫs(r′; ro)|2
∣

∣

2 . (2.18)

Equation (2.18) describes the spatial speckle correlation in terms of the normalized

autocorrelation of an embedded moving object, where the object is described in terms

of its dielectric constant. The averaging can be assumed to be over the scatterer con-

figuration or, due to the statistical independence of the speckle spots, over detectors

at different points, such as pixels in a CCD camera. The use of a CCD camera allows

a very large number of independent measurements to be made simultaneously while

the embedded object moves.

2.2 Simulated Reconstruction

An inversion of (2.18) allows for the imaging of moving objects hidden within

scattering media in terms of the object’s optical properties. We emphasize that the

resolution of the image is then about one wavelength, dictated by use of propagating
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waves. This inversion requires a phase retrieval to determine ǫs from its correlation.

This phase retrieval could be achieved through various means, such as an iterative

phase retrieval where known constraints are applied in the real and Fourier domains

[44] or even through the use of the bispectral phase obtained from a third-order

correlation over space as a dual variable application of previous frequency correlations

[17, 45].

Equation (2.18) was experimentally verified for a special case using the setup

shown in Fig. 2.1(b). An 850 nm laser diode with a linewidth less than 10 MHz

illuminated a 3 mm thick slab placed between the laser source and the object and a

9 mm thick randomly scattering slab was placed between the camera and the object

of interest. The two slabs were separated by 3.5 cm. Both slabs, clear acrylic with

embedded 50 nm diameter TiO2 particles, had a reduced scattering coefficient, an

inverse measure of the mean free path, of 4 cm−1. A 4-f spatial filter and magnifying

lens were used to control the size of the speckle pattern imaged by a CCD camera.

The object of interest was a circular hole in an absorbing sheet. The hole was moved

in the plane between the scattering slabs and speckle images were taken as a function

of position. The imaging arrangement resulted in a spot about 1 mm in diameter on

the back of the scattering medium being imaged to the camera, and the heavy scatter

resulted in the measured mean intensity being independent of scan position. These

speckle images were then used to calculate the spatial speckle intensity correlation

as a function of object position. The data from each of the 480,000 pixels were

averaged to form an estimate of the spatial speckle correlation. The experimental

results for 500 µm and 1000 µm diameter circular apertures along with the expected

correlation using (2.18) (assuming that ǫs(r; ro) was zero at the hole and large and

imaginary everywhere else) are shown in Fig. 2.2(a). Excellent agreement between

the experimental results and theory is shown, forming a strong basis for the validity

of (2.18). Note that l∗ = 2.5 mm for this scattering medium and that the distance

scale in Fig. 2.2 makes it clear the accuracy of the inverted image is very high relative

to l∗ and should be on the order of the optical wavelength. Figure 2.2(b) shows
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Fig. 2.2. (a) Spatial speckle intensity correlation for a 1000 µm and
a 500 µm diameter circular aperture placed between two scattering
slabs, a 3 mm thick slab between the laser and aperture and a 9 mm
thick slabs between the aperture and camera, with µ′

s = 4 cm−1. Our
theoretical result for the correlation, (2.18), matches very well to the
experimental results. (b) 2D spatial intensity correlation from mea-
sured speckle patterns as a function of object position the 500 µm
diameter aperture moving between the two scattering slabs. (c) Re-
constructed image of the hidden 500 µm circular aperture using the
experimental intensity correlation data over object position in (b).
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the measured spatial speckle intensity correlation for a 500 µm diameter aperture

moving inside the scattering medium. We inverted the measured data to reconstruct

an image for the object, as described in (2.18), and obtained the result shown in

Fig. 2.2(c). Because the discrete sampling of the correlation was quite coarse in

the experiment, the reconstruction selected zero crossings from simulated data. The

Fourier domain data was filtered using a 2D Hamming window before the final inverse

Fourier transform to arrive at the spatial image shown.

We investigated a set of square cylindrical scattering rods, 8 mm on each side,

that were scanned between the same two scattering slabs (3 mm thick on the source

side and 9 mm on the detector side, referring to Fig. 2.1(b), with µ′
s = 4 cm−1),

with camera intensity images captured at each scan position. One rod had the same

scattering properties as the slabs, one had a larger reduced scattering coefficient of

µ′
s = 14 cm−1, and the other was an absorbing black rod. The rods were moved a

total distance of 5 mm and speckle images were taken every 40 µm. An additional

twenty images were taken at 0.1 µm steps. The normalized intensity correlations

were calculated from the measured data and the results are shown in Figs. 2.3(a) and

(b). The long range correlations in Figure 2.3(a) go to zero at 8 mm, correspond-

ing to the moving object’s size. The short range results in Figure 2.3(b) decorrelate

on the far-subwavelength scale. This rapid decrease is due to edge movement and

the sub-wavelength scale structure of the scattering rods, which are 50 nm diame-

ter TiO2 spheres. The black rod effectively lets no light pass, so its rough surface

movement is the primary contributor to the small decrease, while the µ′
s = 14 cm−1

and µ′
s = 4 cm−1 rods are increasingly more transmissive, leading to a more signifi-

cant wavelength-scale decorrelation due to the embedded scatterers. On both length

scales, the scatter from the object dictates the decorrelation rate. These correlations

are independent of the scattering background because the scatter is heavy enough

that the mean intensity measured is independent of object motion over the range

used in these experiments. Despite each rod having the same physical dimensions,

the spatial speckle correlations are clearly different. This allows us to not only deter-
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Fig. 2.3. Speckle correlations measured through a total of 12 mm of
scattering material with µ′

s = 4 cm−1, a 3 mm thick slab between
the rod and the laser and a 9 mm slab between the object and the
camera, for three square rods, 8 mm on each side: µ′

s = 4 cm−1, µ′
s =

14 cm−1, and a black absorbing rod. The spatial speckle correlation
is able to clearly show their movement and distinguish them one from
another. (a) For large movement, the correlation corresponds to the
physical size of the objects. (b) For wavelength-scale movement, the
decorrelation is primarily due to the sub-wavelength features of the
embedded scatterers.
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mine that there is an object moving between the slabs, but also to identify the object.

For example, these correlations could be used in the classification and identification

of objects moving through naturally occurring scattering environments such as tis-

sue, clouds, or other cluttered background. A library of object correlations could be

assembled which would allow for the rapid identification of objects without requiring

computationally expensive inversions.

2.3 Conclusion

In the imaging method we have described based on the inversion of (2.18) with

measured intensity data as a function of object position, the movement of the object

does not necessarily have to be controlled and can be due to natural motion. The

effective step size would then be determined by the object’s velocity and image acqui-

sition time. If the object’s motion is not known, then an analogous problem can be

described where, assuming that the object is known, the object’s motion can be deter-

mined and tracked. The speckle intensity correlation can be rewritten in terms of the

object’s time dependent velocity, v(t) and time, t, where r = r0+∆r = r0+
∫ t1
t0

v(t)dt.

This allows for sensing and tracking of hidden objects. Alternatively, if the object’s

velocity is considered uniform over a time-frame of interest, the resulting correlation

could be used to identify the object. We should note that such information related

to correlations over object position is distinct from the temporal correlations related

to diffusing-wave spectroscopy [6], where a large number of scatterers are producing

the decorrelation.

We have presented a theory that allows for imaging (through the inversion of

the spatial speckle correlation) moving objects embedded within scattering media

at wavelength resolution. This allows for new sensing and imaging opportunities at

wavelengths and in scattering regimes that were previously inaccessible. The use of

speckle images and various types of correlations, such as the spatial correlations pre-

sented here alongside frequency and temporal correlations [14,17,27,28,46], comprise
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a powerful set of tools for the analysis of scattering environments and the ability to

sense, track, and image in scattering environments. In tissue, blood cells or contrast

agents in vessels could move quickly relative to surrounding tissue that dominates

the scatter, conforming to the arrangement assumed. Another relevant situation is a

moving object under sea ice or snow, with both the light source and detector above.

The work should also impact imaging in various aerosols. Our method applies across

a broad range of the electromagnetic spectrum and even for other field-based imaging

methods where there is vulnerability to random scatter. All of these applications re-

quire methods that can compensate for the subject of interest being embedded inside

of a thick scattering environment.
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3. MOTION-BASED COHERENT OPTICAL IMAGING

IN HEAVILY SCATTERING RANDOM MEDIA†

Coherent optical imaging in opaque and randomly scattering material offers the

promise of high spatial resolution as well as spectroscopic information. When the

scattering medium is thin, the memory effect [12], in which the speckle pattern trans-

lates with the incident light angle over a small range, has provided a basis for imaging

using fluorescence [14]. Mapping of the field transmission matrix of the scatter-

ing medium and its inversion allow contrast-enhanced focusing [47] and point-wise

imaging [27]. Wavefront shaping has allowed focusing inside scattering media using

measurements with photoacoustic [48] and ultrasound [49] guidestars. Despite such

progress, these methods generally become less effective as the amount of scatter or the

medium’s thickness increases, a consequence of the underlying principle and increas-

ing experimental and computational complexities. We propose an approach in which

heavy scatter is not prohibitive and can actually simplify the theory. Using a physi-

cal model combined with phase retrieval, we demonstrate the imaging of absorptive

targets and intensity patterns hidden inside a thick scattering domain.

Speckle forms because of the constructive and destructive interference that occurs

when coherent light interacts with a random medium. The polarized field statistics

due to sufficient scatter with mean scatterer separation large relative to the wave-

length, of relevance here, contract to zero-mean circular Gaussian [1,50]. Previously,

with a transmitted field defined by an aperture and a transmission speckle measure-

ment as a function of aperture position, the imaging of a circular aperture scanned

between two scattering slabs was demonstrated [20]. We now present a means to im-

age an arbitrary object moving within a scattering medium and show that complex

† This work is published as Q. Luo, J. A. Newman, and K. J. Webb, “Motion-based coherent optical
imaging in heavily scattering random media,” Opt. Lett., 4(11), 2716-2719, 2019 (Ref. [21])
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Fig. 3.1. (a) A coherent 850 nm laser diode illuminates a scanned ob-
ject located between two scattering slabs. A small spot on the back
of the right-hand scattering slab was imaged by the camera through a
4-f system, a magnifying lens (so that speckle spots are larger than a
pixel), and a polarizer (to provide zero-mean circular Gaussian fields).
Speckle patterns were collected as a function of object position in the
x − y plane. (b) The normalized speckle correlation for the hidden
circular patch is shown as a function of object translation (∆x,∆y),
along with central regions of actual speckle patterns taken at three po-
sitions along the y-direction (y1, y2, y3). Using all camera pixels, pairs
of normalized speckle patterns taken at different object positions such
as (0, y1) and (0, y2), are used to compute cross-correlation coefficients
with displacements of the object (0, dy). The cross-correlation coeffi-
cients having the same displacement are averaged, then interpolated
in a 2D space for reconstruction.

geometries can be imaged in heavy scatter using phase retrieval, further demonstrat-

ing the practical utility of the approach.
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(b) (c) (d)

Fig. 3.2. (a) A photograph of a black 7.5 mm diameter patch in front
of a scattering slab. Each slab is 6 mm thick with µ′

s = 4 cm−1. (b)
The two scattering slabs are separated by a distance of 5 cm. (c) The
object cannot be seen through the slab.

Figures 3.1(a) and (b) illustrate our approach. Speckle intensity images taken at

different object positions in between two scattering slabs constitute the dataset. The

spatial scan steps are large relative to the wavelength and short-range correlations

are neglected. Cross-correlation coefficients between pairs of speckle patterns are

computed as a function of object displacement. Changes in the speckle pattern are

due to motion of the object. The averaged and interpolated correlation coefficients,

such as in Fig. 3.1(b), contain deterministic information about the object, which is

useful for object reconstruction.

3.1 Theory

In the temporal frequency domain, the complex scalar field (detected through a

polarizer) at detector position rd is written as Φ(rd; r,∆r) = Φd(r,∆r) = Φdb +

Φds(r,∆r), where Φdb is the background field without the object of interest and

Φds(r,∆r) is the scattered field due to the object, with reference position r and

displacement ∆r. With the object at a reference position represented by a point
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location r and translated by a movement described by ∆r, we write the normalized

average correlation of the scattered field at rd as

g(1)ss (r,∆r) = 〈Φ∗
ds(r)Φds(r+∆r)〉〈Ids(r)〉−1/2〈Ids(r+∆r)〉−1/2

= 〈
∫

dr′O(r; r′)Φ(r; r′)G(rd, r′)
∫

dr′′

×O(r+∆r; r′′)Φ(r+∆r; r′′)G(rd, r′′)〉

〈Ids(r)〉−1/2〈Ids(r+∆r)〉−1/2, (3.1)

where 〈·〉 indicates averaging over scatter configuration for a point detector at rd. In

(3.1), Ids = |Φds|2, O describes the object contrast (regulating the scattered field from

the moving object) with the reference object position r, and G is an unknown scalar

Green’s function accounting for the scattering medium (assumed to be representative

for the wave equation describing all scatterers other than the object of interest, with

a Dirac delta function source at r′ or r′′), relating the scattered field from the object

of interest at the two positions (r and r+∆r) to that at rd.

We write the intensity at rd with the object undergoing a variable translation ∆r

as I(rd; r,∆r) = Id, where in the latter compact notation the argument dependency

is implied, and use the normalized intensity Ĩ = (I − 〈I〉)/〈I〉. Because a small spot

is imaged by the camera (and the background scatter is significant), the intensity

statistics within the speckle images are stationary. This allows us to use a pair of

speckle images that correspond to given r and ∆r to form an estimate of the scatterer

reconfiguration average 〈·〉 for a point detector at rd. Our approach uses multiple pairs

of speckle patterns sharing a given offset. Thus, with the appropriate normalizations,

we obtain an improved estimate of the average by averaging over the multiple reference

positions represented by different r. Our approach results in cross-correlation images

such as that in Fig. 3.1(b) for a circular patch object. From (3.1), this additional

averaging step results in

〈g(1)ss (r,∆r)〉 = ḡ(1)ss (∆r), (3.2)

where only dependence on the displacement of the object is retained. Consequently,

we write all subsequent physical quantities with 〈·〉 as being dependent only on ∆r.
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The average correlation of Ĩd over object scan position is

〈Ĩd(r)Ĩd(r+∆r)〉 = |〈Φ∗
d(r)Φd(r+∆r)〉|2

〈Id(r)〉〈Id(r+∆r)〉 , (3.3)

where we have assumed the fields measured are zero-mean circular Gaussian [1] and

hence can apply a theorem to write the fourth-order field moment in terms of the

second order moments [16]. The numerator of (3.3) can be expanded as

|〈Φ∗
d(r)Φd(r+∆r)〉|2

= |〈[Φ∗
db + Φ∗

ds(r)] [Φdb + Φds(r+∆r)]〉|2 . (3.4)

Substituting (3.4) into (3.3) and with (3.1) and (3.2), we can write

〈Ĩd(r)Ĩd(r+∆r)〉

=C0(∆r) + ℜ
{

C∗
1(∆r)ḡ(1)ss (∆r)

}

+ C2(∆r)
∣

∣ḡ(1)ss (∆r)
∣

∣

2
, (3.5)

where C0(∆r), C1(∆r), and C2(∆r) are spatially-dependent coefficients obtained

when grouping terms in the expansion by order of ḡ
(1)
ss . The cross correlation terms

involving the unknown Φdb and Φds are retained in the expansion of (3.4), and the

mean intensities in (3.3) are incorporated into C0 and C1.

Referring to Fig. 3.1, macroscopic imaging requires that the scan distance be

greater than the size of the object. From our experiments with various circular patches

(3.5 - 7.5 mm diameter), with a sufficiently heavily scattering medium on either side,

we find 〈Id(r + ∆r)〉 ≃ 〈Id(r)〉. Therefore, C0, C1 and C2 can be approximated as

constants over ∆r. Therefore, in this heavy scatter regime, (3.5) can be approximated

as

〈Ĩd(r)Ĩd(r+∆r)〉 = C0 + ℜ
{

C∗
1 ḡ

(1)
ss (∆r)

}

+ C2

∣

∣ḡ(1)ss (∆r)
∣

∣

2
. (3.6)

For an aperture-type object, where the aperture forms the source of detected

intensity, 〈Ibd〉 = 〈Φ∗
dbΦdb〉 = 0, so C0 = 0 and C1 = 0. Also, by the definitions of the

normalized intensity and normalized averaged scattered field correlation, C2 = 1. We

thus have
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〈Ĩd(r)Ĩd(r+∆r)〉ap =
∣

∣ḡ(1)ss (∆r)
∣

∣

2
. (3.7)

Our experimental data for circular absorptive patches of various sizes in a back-

ground bright field consistently indicated that 〈Ĩd(r)Ĩd(r+∆r)〉 is quadratic in
∣

∣

∣
ḡ
(1)
ss

∣

∣

∣
.

Using the known object function in these cases suggests that C1 in (3.6) is sufficiently

small to allow the second term to be neglected, giving

〈Ĩd(r)Ĩd(r+∆r)〉pa = C0 + C2

∣

∣ḡ(1)ss (∆r)
∣

∣

2
. (3.8)

The minimum of the measured intensity correlation not only indicates the value of

C0 but also reveals the size of the object, allowing us to remove the data points outside

the joint spatial support. From (3.1) and (3.2), given that |∆r| is large compared to

the wavelength, assuming heavily scattering environment so that we have Gaussian

field statistics and only the joint spatial support of the object and the translated

object contributes to the average second-order field moment, we have

ḡ(1)ss (∆r) =

∫

drÕ∗(r)Õ(r+∆r), (3.9)

where Õ is the object function from (3.1) normalized so that
∫

drÕ∗(r)Õ(r) = 1.

From (3.7), and upon subtracting C0 from (3.8) and rescaling, we can write

〈Ĩd(r)Ĩd(r+∆r)〉 =
∣

∣ḡ(1)ss (∆r)
∣

∣

2
=

∣

∣

∣
F

−1
{

|Õ(k)|2
}
∣

∣

∣

2

, (3.10)

where in the second equality we use the Wiener-Khinchin theorem. With ḡ
(1)
ss (∆r) =

F−1
{

|Õ(k)|2
}

, we recognize that ḡ
(1)
ss can be a complex quantity. For our experi-

ments, the continuous nature of the intensity correlation data and the positive and

symmetric properties of |Õ(k)|2 for a real object function indicate that ḡ
(1)
ss is contin-

uous, positive and symmetric. Hence, we can directly obtain |Õ(k)| and subsequently

carry out iterative phase retrieval [51] to reconstruct the embedded object.

3.2 Experiments

We designed three experiments with different objects and scattering materials that

used the setup shown in Fig. 3.1(a). A 59-mW 850-nm laser diode with a linewidth
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less than 10 MHz was used for illumination. The beam diameter at the scattering

material was approximately 0.4 mm. As shown in Figs. 3.2(a)-(c), we used two layers

of scattering material separated by a small distance (about 5 cm) and a pair of stages

to move the objects of interest in the transverse plane between the layers. An area

of approximately 1.8 mm by 1.8 mm on the back of the second scattering layer was

imaged by the camera through a polarizer (to obtain Gaussian field statistics) using

magnifying optics. A PRIME sCMOS (for ”LUX”, 500 ms integration time, and for

the circular patch, 300 ms) and a CoolSNAP HQ CCD (for ”π” with 3 s integration

time) were used in the experiment. The intensity statistics of the speckle patterns

used were measured to be negative exponential, indicating Gaussian field statistics.

Figure 3.3(a) shows a 7.5-mm-diameter circular absorbing patch object that was

placed on a transparent plastic window (10 cm × 13 cm). This object was translated

along the y-axis, referring to Fig. 3.1(a), between two 6-mm-thick acrylic scattering

slabs. The scattering slabs (14 cm × 14 cm) were made of commercial acrylic with

negligible optical absorption, embedded with TiO2 scatterers having a mean diameter

of 50 nm. The reduced scattering coefficient (µ′
s = 4 cm−1) of the scattering acrylic

slabs is comparable to that of human breast tissue in vivo [52]. This is the scattering

material shown in Figs. 3.2(a)-(c), and the very heavy scatter is evident. As Fig. 3.2(c)

illustrates, it is not possible to see the small circular patch behind a 6 mm thick

acrylic scattering slab. The background intensity and the object scatter are both

significant in this situation. The object was moved in a 1D uniformly-spaced scan

of 40 points over 13.16 mm. Averaged intensity correlations were computed using

the 40 speckle patterns obtained at these object locations. We extracted C0 in (3.8)

from the minimum of the measured intensity correlation, along with the renormalizing

constant C2. In Fig. 3.3(b), we compare the speckle intensity correlation over object

position with a prediction using (3.8). Note the excellent agreement. The measured

correlation increases after the minimum because the speckle patterns become similar

to the bright background when the object is displaced farthest away from the center.

To reconstruct the circular patch object, we discarded measured data points for ∆r >
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Fig. 3.3. (a) Photograph of a circular black vinyl patch object having
a diameter of 7.5 mm that was hidden between two 6 mm-thick acrylic
scattering slabs having µ′

s = 4 cm−1. (b) Measured (blue) and sim-
ulated (green, using (3.8)) normalized intensity speckle correlations,
with data collected in the experiment described by Fig. 3.1. (c) The
reconstructed image of the circular patch, showing a geometry true
to the object size.

7.5 mm, beyond the minimum of the measured intensity correlation and the joint

spatial support, and took advantage of rotational symmetry, using the 1D data to form

a 2D map. Inversion of (3.10) was achieved using iterative phase retrieval to form the

object function [53]. Specifically, 2000 iterations of the hybrid input-output method

with a varying spatial frequency filter implemented outside the support area was used

to obtain Fig. 3.3(c) [51], which is true to the object size. The inversion procedure

conforms to a well-defined phase retrieval problem where the spatial support can be

determined by the global minimum of the decorrelation data. We used a loose support

about 15 mm × 15 mm. The near-perfect prediction of the correlation suggests that

imperfect smoothing at ∆r = 7.5 mm and a local minimum may be responsible to

the noise in phase reconstructing the symmetric object in Fig. 3.3(c).

We describe two experiments and demonstrate the reconstruction of small and

complex apertures in Fig. 3.4. In the experiment to image the character ”π”, we

used fresh chicken breast that was 2 mm thick on the source side and 7 mm on the

detector side, held between two microscope slides. For the ”LUX” aperture, 3-mm

and 9-mm-thick acrylic scattering slabs (µ′
s = 4 cm−1) were used on the source and

detector side, respectively. The two aperture objects were fabricated as reflective

metal coatings on rectangular glass substrates, forming the apertures ”LUX” and
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”π” shown in Figs. 3.4(a) and (d). The apertures were scanned over 20 diagonal

lines having a uniform angular increment (π/10) within a circular region. Each line

scan had a length at least 1.5 times the maximum spatial support of the object.

Cross-correlation coefficients of speckle images that share the same displacement are

averaged if the speckle images involved are acquired on the same line scan. This

data was interpolated onto a square 2D Cartesian grid using the gridfit function

in MATLABTM. The central regions of the interpolated correlations are shown in

Figs. 3.4(b) and (e) for the ”LUX” and ”π” objects, respectively. Note that the

correlations approach a minimum when ∆r is about the object’s size, consistent with

the picture of the joint support of the object contributing to the measured correlations.

This provides a convenient way to select the data set used in reconstruction, and we

did so using a threshold (about 0.05 of the maximum). A Cartesian 2D-tapered

cosine (Tukey) window (twice the object’s size, selected by αN/2, with α = 0.45 and

N the number of samples along a given dimension), was applied to the data. The

filtered data set was zero-padded to four times the object’s size before the inversion

of (3.10). The reconstructed images are shown in Figs. 3.4(c) and (f). Notice that

the ”LUX” and ”π” can be clearly identified despite being completely hidden inside

the equivalent of 9 mm of tissue (”LUX”) and 7 mm of chicken breast (”π”).

The reconstruction quality is inevitably affected by instability associated with data

acquisition: variations in temperature, illumination, and sample mechanical stability

all play a role. We, therefore, expect that the reconstruction quality will be improved

by a larger dataset with higher scanning precision, although a larger data set may

require faster acquisition to derive full benefit. However, the matching of theoreti-

cal and measured intensity correlations, and our investigation of the reconstruction

process, suggest that the primary contributor to reconstructed image artifacts is the

influence of the spatial windowing of the intensity correlation raw data before the

Fourier transform. We thus expect the reconstruction to be improved by employing

a windowing method that is based on the minima of the speckle decorrelation (in a

2D space in our case).
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Fig. 3.4. Aperture objects reconstructed from speckle intensity cor-
relations over object position. (a) Photograph of the ”LUX” object.
(b) Interpolated measured speckle intensity correlation for the LUX
object between 3-(source side) and 9-mm (detector side) scattering
acrylic slabs (µ′

s = 4 cm−1). (c) Reconstructed image for the ”LUX”
object. (d) Photograph of the ”π” object. (e) Interpolated measured
intensity correlation for the ”π” aperture located between two fresh
chicken breast slices, 2 mm thick on the source side and 7 mm thick
on the detector side. (f) Reconstructed image for the ”π” object.
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3.3 Conclusion

The experimental results presented represent special cases of the broader imaging

domain where absorption/scatter representing the object are obtained. Of particular

note, we have presented a means to image an object in a coherent bright-field regime

that is representative of many applications, and the approach applies to thick and

very heavily scattering media and is simplified by operating in this regime. This is

distinctly different from recent applications of the memory effect, where fluorescence

was used [14], which requires a thin scattering medium, and a windowed autocorre-

lation of speckle image was used, representing a small range of angles [14]. We also

note that a generalization for more weakly scattering media can be implemented,

where the approximation of the mean intensities in (3.3) as constants is relaxed.

The resolution limit is beyond one wavelength, because the short-length correlations

have been neglected. However, the resolution is practically limited by the quality

of the measurement data and the robustness of the reconstruction approach. While

we have neglected short-range correlation, evidence suggests speckle cross-correlation

data over object position is sensitive to the microstructure [20].

We have demonstrated that speckle intensity correlations as a function of object

position can be used to coherently image arbitrary objects (patches and apertures

of various sizes and shapes) moving inside heavily scattering media at a resolution

commensurate with the object size. Only the position change of the object is needed.

This can be estimated using velocity with established methods. For example, by mak-

ing measurements as a function of time, one can determine velocity information from

either temporal decorrelation or the Doppler shift [54]. Moreover, localization based

on the diffusion model [55] can be performed using the mean intensity to estimate the

positions of the hidden moving object, including with fluorescence. In the situation

we considered, the time frame for the object of interest to move by its dimension

needs to be small compared to its rotation and the movement of the environment, or

these effects need to be calibrated. Blood cells and labeled biomolecules in capillaries
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could satisfy our requirements, where the local velocity is approximately linear and

the cell, for example, needs to move a distance equal to its dimension, about 10 µm.

Our method suggests the possibility to identify and even image circulating melanoma

cells [56]. Movement could also be induced by an acoustic wave in tissue to produce

controlled motion, and motion of tens of microns has been achieved [57]. Other pos-

sible applications include detecting and imaging fast-moving objects through clouds,

fog, or other obscuring environments. More generally, spatial speckle correlations

allow new sensing, imaging, and communication opportunities in scenarios in which

traditional methods are not feasible.
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4. SPECKLE INTENSITY CORRELATIONS OVER

OBJECT POSITION FOR SENSING AND IMAGING IN

A HEAVILY SCATTERING MEDIUM

4.1 Introduction

Coherent optical sensing and imaging methods are desirable because they offer

high spatial resolution as well as spectroscopic information. When coherent light

interacts with random scattering structures inherent in a myriad of applications,

the resultant constructive and destructive interference between the wavefronts of the

differently scattered fields forms speckle. While speckle intensity patterns appear

random, statistical information can be accessed through correlations over appropri-

ate variables. The intensity interferometer pioneered by Hanbury Brown and Twiss

used correlated intensity measurements with two detectors to access an object’s spa-

tial frequency spectrum [7, 8]. The underlying principle can be extended to intensity

measurements through a 2D detector array where the autocorrelation of an intensity

pattern is related to the spatial spectrum of a diffuse object under coherent illumi-

nation [10] (in accordance to the van Cittert-Zernike theorem [9]) and the recovery

of an illumination pattern through a diffuse surface becomes possible [11]. A corre-

lation over laser frequency can be used to image hidden inhomogeneities [4] and to

characterize the scattering medium [58]. The memory effect preserves information of

the incident wavefront within a limited range of incident angles [12], and this enabled

a series of recent imaging experiments through a physically thin medium [14, 15, 59].

Directly mapping and inverting the transmission matrix [47, 60] and optimizing the

incident wavefront [29] have also allowed focusing inside a scattering medium, which

can be used for other imaging modalities such as two-photon microscopy [61]. Re-

cently, focusing methods that use the phase conjugate of the field from an embedded
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guidestar have become prominent [48]. Notably, field perturbation from a moving

object can be used as the guidestar [62, 63]. Another widely utilized application of

speckle measurements is speckle contrast imaging [64], and near-surface blood flow

images have been obtained [65] by tracking changes in the local temporal speckle

contrast ratio. Some of the aforementioned studies have demonstrated focusing or

imaging through an amount of scatter typically on the order of one millimeter of

biological tissue [15, 62, 63, 65]. When a change in the speckle pattern is only due

to the movement of a strongly-interacting object hidden inside a scattering medium,

imaging of the object is possible, and an approach suitable for imaging apertures has

been presented [20]. Recent results suggest that it may be possible to develop this

concept into a general method [21]. However, to date there has not been a general

theory nor an evaluation of the relevant parameters.

We present a theory for imaging a moving object in a heavily scattering back-

ground and support development this with an experimental study with varying object

and background scattering properties. The theory for the speckle intensity correla-

tions over object position is introduced with a practical emphasis necessary for its

application to sensing and imaging situations with heavy background scatter. By

interpreting the detected field as a superposition of the background scattering field

without the moving object and the scattered field due to the object, the spatial in-

tensity correlation can be written in terms of the cross- and auto-correlations of the

background and the scattered fields, applicable due to the Gaussian field statistics.

With experimental evidence, we show that by grouping terms by the order of power

of the scattered field autocorrelation, one can access the object autocorrelation func-

tion. It is also shown that the parameters obtained from intensity correlations can

also be used to compare the scattering strengths of the object and its surrounding

environment, useful for sensing.
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Fig. 4.1. Concept figure for imaging and sensing a moving object in
a scattering environment.
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4.2 Theory

With reference to Fig. 4.1, the moving object of interest is in a randomly scat-

tering medium that is illuminated by a coherent source. We write the detected field

at rd measured through a polarizer as Φd, As Fig. 4.1 illustrates, ∆r is the object

displacement from a reference position r. The second order averaged field correlation

over translated position is 〈Φ∗
d(r)Φd(r + ∆r)〉, where 〈·〉 is mathematically an aver-

age over background scatterer reconfiguration and experimentally an average formed

over stationary speckle intensity data captured by a camera. We write Φd as the

superposition of the scattered field due to the object of interest, Φds, and the back-

ground speckle field without the object, Φdb, so that Φd = Φdb + Φds. It is noted

that Φdb does not change with the object position, and if the object inside the scat-

tering environment is the only source of detected signal, Φd = Φds, simplifying the

situation. The second-order field correlation can be expanded and written in terms of

the background and the scattered intensities (Idb = |Φdb|2 and Ids = |Φds|2, assuming

impedance scaling) and the averaged normalized field correlations (g
(1)
bs , g

(1)
sb and g

(1)
ss ,

where the s subscript indicates scattered field and b subscript indicates background

field), as

〈Φ∗
d(r)Φd(r+∆r)〉 = 〈Idb〉

+〈Idb〉1/2〈Ids(r+∆r)〉1/2g(1)bs (∆r)

+〈Ids(r)〉1/2〈Idb〉1/2g∗(1)bs (0)

+〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)ss (∆r). (4.1)

In writing (4.1), we have used the compact notation g
(1)
sb (r, 0) = g

(1)
sb (0) = g

(1)∗
bs (0),

g
(1)
bs (r, r+∆r) = g

(1)
bs (∆r), and g

(1)
ss (r, r+∆r) = g

(1)
ss (∆r), where the correlations do not

depend on the reference position r after normalization by the averaged intensities.

The normalized field correlation g
(1)
ss (∆r) can be written in terms of the Green’s

function representation of Φds using an object function that describes the object

contrast [21]. Given that |∆r| is large compared to the wavelength and assuming
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adequate random background scatter, so that only the joint spatial support of the

object and the translated object contributes to g
(1)
ss , we can write

g(1)ss (∆r) =
〈Φ∗

ds(r)Φds(r+∆r)〉
〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2

=

∫

dr′Õ∗(r′)Õ(r′ +∆r), , (4.2)

where Õ is the normalized object function, so that
∫

dr′Õ∗(r′)Õ(r′ + ∆r) = 1 for

∆r = 0.

The detected intensity at the detector as a function of the position of a dis-

placed object is Id = |Φd|2. The normalized intensity pattern is computed by Ĩd =

(Id − 〈Id〉)/〈Id〉, where 〈Id〉 is the mean intensity of a speckle pattern. Assuming

zero-mean circular Gaussian polarized field statistics as the result of heavy scatter,

the normalized intensity correlation over object position averaged over scatterer re-

configurations can be expressed using a moment theorem [16] as

〈Ĩd(0)Ĩd(∆r)〉 ≡ 〈Ĩd(r)Ĩd(r+∆r)〉 = |〈Φ∗
d(r)Φd(r+∆r)〉|2

〈Id(r)〉〈Id(r+∆r)〉 , (4.3)

where scaling by the means results in a correlation that is independent of r. Using

(4.1), we expand the numerator of (4.3) as

|〈Φ∗
d(r)Φd(r+∆r)〉|2 = D0(r,∆r) + 2ℜ

{

D∗
1(r,∆r)g(1)ss (∆r)

}

+D2(r,∆r)|g(1)ss (∆r)|2,(4.4)

where D0, D1 and D2 are

D0(r,∆r) = 〈Idb〉2 + 〈Idb〉3/2〈Ids(r)〉1/22ℜ{g(1)bs (0)}

+〈Idb〉3/2〈Ids(r+∆r)〉1/22ℜ{g(1)bs (∆r)}

+〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/22ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+〈Idb〉〈Ids(r)〉|g(1)bs (0)|2 + 〈Idb〉〈Ids(r+∆r)〉|g(1)bs (∆r)|2, (4.5)

ℜ{D1(r,∆r)} = 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2

+ 〈Idb〉1/2〈Ids(r)〉〈Ids(r+∆r)〉1/2ℜ{g(1)bs (0)}

+ 〈Idb〉1/2〈Ids(r)〉1/2〈Ids(r+∆r)〉ℜ{g(1)bs (∆r)}, (4.6)
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ℑ{D1(r,∆r)} = 〈Idb〉1/2〈Ids(r)〉1/2〈Ids(r+∆r)〉ℑ{g(1)bs (∆r)}

−〈Idb〉1/2〈Ids(r)〉〈Ids(r+∆r)〉1/2ℑ{g(1)bs (0)}, (4.7)

D2(r,∆r) = 〈Ids(r)〉〈Ids(r+∆r)〉. (4.8)

Note that D0, D1 and D2 contain terms that are not directly obtainable from speckle

measurements, for example, Ids and g
(1)
bs . By definition, Idb and Ids are non-negative

quantities and g
(1)
bs has a magnitude that is no larger than unity. We can rewrite (4.1)

for ∆r = 0 as

〈Id〉 = 〈Idb〉+ 〈Ids〉+ 〈Idb〉1/2〈Ids〉1/22ℜ{g(1)bs (0)}. (4.9)

From (4.9), we can infer that g
(1)
bs (0) must exist and it must have a negative real part

for an object of interest that is absorbing or occluding speckle background because

〈Idb〉 should always be larger than 〈Id〉. Under the assumption of heavy background

scatter, we expect that 〈Ids〉 is slowly varying for |∆r| ≤ d, where d represents the

size of the object. As the result, 〈Ids(r)〉 ≈ 〈Ids(r + ∆r)〉. With this insight, we

approximate D0, D1 and D2 as constants in the range |∆r| ≤ d. Also, from (4.5),

we can compare the magnitudes and the signs of the terms to infer that D0 should

be non-negative for both the cases of a large and a small 〈Ids〉. From (4.6) and

(4.7), assuming that the object is large compared to the wavelength and not weakly

scattering so that 〈Ids〉 and 〈Idb〉 are about the same magnitude of order, then D1

is small when compared to D0 and D2 due to the opposite signs and the similar

magnitude of the constituting terms. Hence, (4.3) can be rewritten as

〈Ĩd(0)Ĩd(∆r)〉 ≃
D0 + 2ℜ

{

D∗
1g

(1)
ss (∆r)

}

+D2

∣

∣

∣
g
(1)
ss (∆r)

∣

∣

∣

2

〈Id(r)〉〈Id(r+∆r)〉 . (4.10)

where the average of the normalized speckle intensity correlation over object position

is expressed by unknown terms that are grouped and approximated as constants

(D0, D1 and D2), the directly measurable averaged detected intensity (〈Id(r)〉 and
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Fig. 4.2. The experimental setup for measuring the speckle inten-
sity correlation of a moving circular patch translated along the y-axis
between two scattering layers. Speckle patterns are collected at the
camera after passing through a spatial filter and a polarizer.

〈Id(r + ∆r)〉), and the normalized scattered field correlation that contains object

function (g
(1)
ss (∆r)).

4.3 Experiments

Our experimental setup is shown in Fig. 4.2. A 59 mW 850 nm laser diode with

a linewidth less than 10 MHz was used for illumination. We used two layers of the

scattering material separated by a small distance (about 5 cm) and a pair of stages to

move the objects of interest in the transverse plane between the layers. A 4f system

is used to filter the resultant speckle patterns, so that speckle spots incident on the

camera are bigger than a single pixel and a polarizer is used for detecting circular

Gaussian scalar field statistics. An area of approximately 1.8 mm by 1.8 mm on the

back of the second scattering layer was imaged by the camera using magnifying optics.

The speckle images have stationary statistics that are used to form averages. Also,

to improve the estimates, multiple intensity correlation coefficients that correspond

to the same ∆r but different r are averaged to form an estimation of the ensemble

average over many scatterer reconfigurations.
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(a) (b)

Fig. 4.3. Example heavily scattering material used in our experiments.
(a) Two 6 mm, µ′

s = 4cm−1 slabs of acrylic are placed on top of a
page with printed stripes. Through one 6 mm thick slab, one can no
longer distinguish individual stripes, and through a total of 12 mm,
it is not possible to distinguish the striped area. (b) The centrally
cropped speckle patterns for a moving 4 mm circular patch placed
between a 4-ground-glass stack and a 6-ground-glass stack are highly-
decorrelated over an object displacement of about 2.5 mm.
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In our experiments, ground glass diffusers and acrylic slabs (shown in Fig. 4.3(a))

are used as the scattering environment. The acrylic slabs contain TiO2 scatterers

that have a mean diameter of 50 nm, with a reduced scattering coefficient estimated

to be 4 cm−1, with negligible absorption at the wavelength used. Stacks of ground

glass diffusers provide heavy scatter, evident in Fig. 4.3(b) as the measured speckle

patterns become highly-decorrelated over object displacement. The moving objects

used are circular patches of different diameters (3.7 mm, 5 mm, and 6 mm). These

objects were formed with adhesive black tape attached to transparent plastic windows

(10 cm × 13 cm × 0.15 cm), making for a binary object (either complete absorptive

or complete transparent). Five different scattering layers were used: 3 mm and 6 mm

thick acrylic slabs (14 cm × 14 cm), a stack of four ground glass diffusers, a stack

of six ground glass diffusers (individual ground glass is of 10 cm × 10 cm × 0.2 cm,

stacks are taped together at the edges) as well as a single ground glass of 1500 grit.

Specifically, the four-piece stack consists of two 120-grit and two 1500-grit ground

glasses and the six-piece stack consists of two 120-grit and four 1500-grit ground

glasses.

Our experiments with black circular patches of various sizes (with diameters of

3.7 mm to 7.5 mm) and the scattering acrylic slabs used consistently verified that D1

is negligibly small, so that (4.10) becomes

〈Ĩd(0)Ĩd(∆r)〉 ≃
D0 +D2

∣

∣

∣
g
(1)
ss (∆r)

∣

∣

∣

2

〈Id(r)〉〈Id(r+∆r)〉 . (4.11)

We focus on (4.11) and the impact of how differently scattering object and varying

degrees of background scatter impact the normalized intensity correlation over object

motion, specifically, the validity of (4.11) and how D0 and D2 relate to various sit-

uations. The results are shown in Figs. 4.4 and 4.5, where intensity correlations are

normalized according to (4.11) and then rescaled to show the variation of
∣

∣

∣
g
(1)
ss (∆r)

∣

∣

∣

2

.

Figure 4.4(a) shows the measured normalized speckle correlations for varying ob-

ject (patch) size and hence scattering strength, and fixed scatter on the laser and

detector sides. A four-piece stack of ground glass diffusers was used on the laser side
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(a) (b)

Fig. 4.4. Intensity correlations over object position with various patch
size, and hence, varying degree of object scatter. (a) Keeping the same
slab configuration (a four-piece ground glass diffuser at the laser side
and a 6 mm thick µ′

s = 4 cm−1 acrylic slab at the detector side), the
measured intensity correlations are shown for circular patches having
diameters of 3.7, 5, and 6 mm. The larger the size of the object, the
deeper the decorrelation dip. (b) The scaled decorrelation of each

circular patch (
∣

∣

∣
g
(1)
ss (∆r)

∣

∣

∣

2

) in (4.11)) agrees well with our prediction

using (4.2) for ∆r smaller than the object’s size. The measured cor-
relation increases after the minimum because the speckle patterns
become similar to the bright background as the object is displaced
away from the center.
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and a 6 mm thick acrylic slab on the detector side. The motivation for using the

glass diffuser stack on the laser side was to remove decorrelations due to heating, as

might occur with the acrylic scattering slabs. As Fig. 4.4(a) indicates, the correla-

tions decrease from unity, reach a minimum, and then increase (ultimately to close

to one again). The larger the object the greater the dip in the intensity correlation.

This can be understood as the increasing patch size producing larger 〈Ids〉, and from

(4.5) and (4.8), D2 becomes more dominant in (4.11) relative to D0. The minima in

the correlations occur at the diameters of each circular patch and this feature pro-

vides that information. Computing the numerator of the right hand side of (4.11)

from measured data, subtracting D0 and normalizing so that D2 = 1, we find the

data shown in Fig. 4.4(b). Also plotted are solid lines corresponding to
∣

∣

∣
g
(1)
ss (∆r)

∣

∣

∣

2

for |∆r| ≤ d according to (4.2), obtained from the normalized object function auto-

correlation. Note the excellent agreement between the theory and experiment in all

cases. For all data we present, the (wavelength scale) short-range intensity correlation

has been neglected (see, for example, previous results for this regime [20]) and the

macroscopic measurement data has been extrapolated to ∆r = 0 for normalization.

The measured correlations increase after their minima because the speckle patterns

become similar to the bright background as the object is displaced distances large

relative to the object’s size. We note that Fig. 4.4(a) indicates that 〈Ids〉/〈Idb〉 in-

creases with patch size and hence object scattering strength. This is reflected in the

increase of D2/D0 with increasing patch size.

Figure 4.5 shows experimental intensity correlation results for a fixed patch size

(3.7 mm diameter) and varying levels of scatter on the detector side (Figs. 4.5(a) and

(c)) and the laser side (Figs. 4.5(b) and (d)). For the results shown in Fig. 4.5(a),

the scattering layer on the laser side was fixed (the four-piece glass diffuser stack)

while the scattering layer at the detector side was varied (the six-piece diffuser stack,

the 3 mm acrylic slab, and the 6 mm acrylic slab, in order of increasing scatter).

Increasing the amount of scatter on the detector side increases the spatial spread of the

speckle pattern exiting the scattering medium. With the transmission arrangement
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Fig. 4.5. Intensity correlations over object position with various
amounts of scatter on either side of the object of interest, which is
a circular patch of 3.7 mm in diameter. (a) and (c) show the mea-
sured correlation and the rescaled correlation for different amounts of
scatter on the detector side (gg represents the number of ground glass
used, and mm represents the thickness of acrylic slab). (b) and (d)
show the measured correlation and the rescaled correlation for differ-
ent amounts of scatter on the laser side. The measured correlation
decreases at a slower rate to a larger minimum when more environ-

mental scatter is present. The scaled speckle correlation (
∣

∣
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ss (∆r)

∣

∣

∣

2

)

agrees with the magnitude squared of the autocorrelation of the cir-
cular patch of 3.7 mm in diameter except for the case of 3 mm acrylic
slab at the laser side, for which laser heating dominates the change in
speckle pattern.
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of Fig. 4.2, where the spot being imaged in transmission is fixed in size, this increase

in background scatter will result in smaller 〈Ids〉 and hence a reduction in D2/D0.

For this reason, the minimum of the intensity correlation in Fig. 4.5(a) is increasing

(producing a less pronounced dip) with increasing background scatter on the detector

side. While 〈Id〉 will reduce with increase in the background scatter, Fig. 4.5(a) and

(4.11) are scaled by these means. The increase in background scatter will also increase

〈Idb〉, and this is reflected in the diminishing decorrelation dip in Fig. 4.5(a) as the

background scatter on the detector side increases. We show, in Fig. 4.5(c) how well

the theory given by (4.2) and (4.11) match the experiments for the rescaled data.

In another set of measurements, fixing the scatter on the detector side (6 mm

thick acrylic slab) and varying the scatter on the laser side (the single ground glass

diffuser, the four-piece stack of diffusers and the 3 mm thick acrylic slab, in order

of increasing scatter) produced the results in Fig. 4.5(b). Increasing the amount of

scattering on the laser side reduces the proportion of the background speckle scat-

tered by the object. Conversely, with less scatter, the proportion of the background

intensity scattered (absorbed) by the object increases, because the mean intensity is

more peaked. As a result, the ratio 〈Ids〉/〈Idb〉 decreases with increasing background

scatter on the laser side, and a small D2/D0 is expected based on (4.5) and (4.8).

This is confirmed by the experimental results shown in Fig. 4.5(b), where the speckle

intensity correlation decreases at a slower rate to a higher minimum as the medium

on the laser side becomes more heavily scattering. The exception is the 3 mm thick

acrylic slab, for which heating becomes the dominant source of change in the system,

overshadowing the displacement of the small circular patch. We show in Fig. 4.5(d)

that the prediction by (4.2) and (4.11) again match the experimental results accu-

rately except for the case of the 3 mm thick acrylic slab on the laser side.

The impact of changing the scattering strength of the moving object and the sur-

rounding environment, predicted by our theory in (4.5) and (4.8), are verified exper-

imentally through the results shown in Fig. 4.4(a) and Fig. 4.5(a)(b), demonstrating

quantitative and predictive character. Moreover, the agreement between our exper-
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imental results and the predictions using (4.2) and (4.11), shown in Fig. 4.4(b) and

in Fig. 4.5(c)(d), suggests that our key assumption, that D0 and D2 can be treated

as constants and D1 is negligibly small in these situations, has been validated.

4.4 Conclusion

Our sensing and imaging method using speckle intensity correlation over object

position works well in a regime where the relatively static environmental scatter and

the hidden object interacts so that the moving object is the main source of change in

the system. When the detected field exhibits circular zero-mean Gaussian statistics

and the object moves by its length within the measurement time-frame, our approach

can lead to the reconstruction of the object function by fitting the values of the

constants (D0, D1 and D2) and perform phase retrieval using the Fourier magnitude

of the object obtained from the object’s autocorrelation function. With D0, D1 and

D2 containing the only unknown terms, and the denominator 〈Id(r)〉〈Id(r + ∆r)〉
directly measurable, (4.11) represents an accurate model that leads to the excellent

agreement with our experimental results. The dimension of the reconstruction is

commensurate with the dimension of the object movement. The ratio between the

constants D0 andD2, once obtained, represents the relative strengths of the scattering

environment and the moving object. This could lead to interesting applications in

which the scattering strength of an unknown scattering environment can be sensed

with a calibrated measurement, and direct comparison of the scattering strengths of

different hidden objects is also feasible. It is noted that the measurement can be

adapted into a reflection geometry for a wider range of practical applications. The

velocity or the relative position of the moving object could be estimated by some

established methods such as speckle temporal contrast or the Doppler shift [54] and

the diffusion-based method [55].

We presented a general model that relates the averaged intensity correlation over

the hidden object’s position to the autocorrelation of the hidden object moving inside
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heavily scattering environment. It not only enables imaging of hidden object inside

an unprecedented heavily scattering medium, but also provides a way to probe the

amount of environmental scatter and quantify the scattering strength of the hidden

moving object in the system. While fluorescent imaging has proven useful in biological

samples, our theory allows for coherent imaging at high resolution and without the

need to introduce fluorescent reporters. By combining the accuracy of localization by

emission [55] and coherent imaging based on motion, complementary and supporting

information becomes available. For example, one could track a moving cellular cluster

tagged with quantum dots inside deep tissue using emitted diffusive light and form an

image of the tagged tissue using intensity correlations over object position that reflects

absorption at a different wavelength in vivo. Experimental evidence is presented

showing the general theory is in good agreement with the intensity decorrelation of

various circular patches and that the speckle intensity images are sensitive to the

size of the object and the amount of scatter in the surrounding environment. The

capability of quantitatively sensing scattering strengths of a system greatly expands

the scope of the possible applications of speckle intensity correlation over object

position to expand prior capabilities for imaging in and through randomly scattering

media.
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5. THE THEORY OF SPECKLE INTENSITY

CORRELATIONS OVER OBJECT POSITION

5.1 Introduction

Electromagnetic waves are of broad consequence in the natural and engineered

world. Notably, photonics is pervasive in communications, optical sensing, and imag-

ing, providing capacity by virtue of the carrier frequency and the transmission media,

and information through spectroscopy, leading to the expanding presence of optical

methods in medical research and medicine. Throughout the application spaces in

science and technology, random scatter generally presents difficulties. For example,

atmospheric scatter has long limited earth-based astronomy. Tissue scatter of light

has precluded in vivo coherent imaging beyond the near-surface regime. Therefore,

while there are fluorescent optical reporters for calcium channels, function and health

in the mammalian brain remains largely a mystery because of tissue scatter. Even in

single mode optical fibers, polarization mode dispersion results from scatter.

The scatter of coherent light from randomly arranged scatterers in bulk material or

rough surfaces results in speckle, the granular intensity patterns from the interference

between the wavefronts of the differently scattered fields, and if the scatterers move,

the speckle pattern changes accordingly. Therefore, in principle, information about

a scattering medium or the light impinging on such a medium is available. However,

the challenge is to find a means to extract such information. Because of the difficulty

associated with describing deterministic light propagation in the multiply-scattered

regime, a statistical treatment becomes important [1]. Changes in speckle patterns

are used in diffusing wave spectroscopy [6] and laser speckle contrast imaging [66],

where motion reduces the local granular nature of the speckle pattern during the im-

age collection window. The local speckle contrast ratio can thus be an indicator of the
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velocity of blood flow under thin skin [65]. Decreasing the coherence (increasing the

bandwidth of laser light) reduces the speckle contrast ratio (the ratio of the speckle

intensity standard deviation to the mean), effectively reducing the graininess. There

is thus a relationship between speckle decorrelation over scanned frequency and the

transport of light through the scattering medium [17, 67]. The ensemble-averaged

temporal response of a random medium, useful in characterizing random media and

imaging, can be obtained using third-order correlations of speckle patterns over fre-

quency, providing access to the Fourier phase, when the field is described by circular

complex Gaussian statistics [17], allowing use of a moment theorem [16]. Control

of the coherence of the light source provides a means to image hidden objects [4].

Practically, fixing the light source while increasing the scatter also reduces the con-

trast ratio. Speckle contrast can be reduced by reducing spatial coherence using, for

example, random lasers, allowing full-field imaging [26]. Speckle intensity patterns

can also be tailored to have artificial statistics, non-existing in naturally occurring

speckle, using a spatial light modulator, and this has been considered for applica-

tions [68]. The presence of scatter can also increase communication capacity because

of access to multiple independent channels [69,70], as well as provide enhanced secu-

rity [71,72]. Characterization of the transmission properties or a random medium also

the extraction the spectral properties of light incident on the scattering medium [73].

Imaging using coherent light offers high resolution, but increasing random scat-

ter, such as occurs with biological tissue, eventually precludes direct observation.

Consequently, coherent imaging of an object through a thick scattering medium is

extremely difficult. The transmission of coherent light through a scattering medium

has been studied intensely (see, for example, [41, 67, 74]). The memory effect (where

the speckle pattern moves with the incident wave vector) [12] allows imaging through

a scattering medium, as long as the thickness is small [12, 14, 15, 30, 32]. Wavefront

control using a spatial light modulator and feedback control (based on a sensing ar-

rangement at the point of interest) allows focusing through scatter [29,48], facilitating

point-wise imaging. While calculation as a basis for separating background random
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Detector

Scattering Environment

Moving Object

Fig. 5.1. A moving object in a scattering medium to be imaged, along
with the spatial variables and the optical excitation and detection
concept.

scatter is generally not viable because of computational complexity and the unknown

location and precise character of the scatter, measurement of the field transmission

matrix can facilitate imaging. This requires sensing within or on the other side of

the scattering medium or guidestar control of a small volume [75–77]. The enhanced

contrast is directly related to the effective number of the contributing transmission

matrix eigenchannels based on random matrix calculations [47].

We develop a general statistical treatment that allows sensing and imaging of a

moving object hidden inside a heavily scattering random background in a manner

that is limited only by the number of photons detected. The imaging concept is

presented in Fig. 5.1. Notably, the random background provides a structured field

that also allows access to the far-subwavelength spatial information, along the lines of

a proposal for super-resolution imaging with motion in prepared structured fields [78].

In this sense, the random scatter facilitates information that would otherwise be

unavailable at a remote detector. The mathematical development generalizes earlier

work showing the extraction of the incident field from correlations of intensity speckle

patterns over translated field position [18, 19], the imaging of aperture-type objects
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between scattering slabs [20], and recent experimental evidence that general objects

can be imaged [21]. The new theory provides a means to image and motivation for

a series of experiments to evaluate new aspects of the the information that can be

accessed.

We treat the moving object parameterization in the context of the wave equation

in Sect. 5.2. Intensity speckle patterns that can be measured as a function of object

position are expanded as moments of the detected field in Sect. 5.3. Section 5.4

develops the relationship between the second order field moments and the object(s)

to be imaged. The theory has short-range, subwavelength-scale information, and for

macroscopic objects, information on the length scale commensurate with the object

that can be used as a basis for sensing and imaging. Section 5.5 considers the physical

basis of the normalized field correlation functions. The detector intensity correlation

expression is developed in Sect. 5.6, where we arrive at a key relationship that is

subsequently studied in Sect. 5.7 in terms length scale and the amount of the scatter

from the moving object. Section 5.9 presents a discussion of issues related to the

theory, the experimental studies, and key applications, and Sect. 5.10 projects the

potential impact.

5.2 Object Parameterization

We treat the problem of imaging a moving object in a background randomly

scattering medium (Fig. 5.1) as one where the background field without the object

is considered as the incident field and the scattered field is that due to the object

or objects of interest. This neglects possible displacement of background scatterers

as the object of interest moves. Assuming a linear and locally time-invariant system

during each measurement, the total field is exactly the superposition of the incident

and scattered field everywhere. For scattering dielectric problems, it is convenient to

use the electric field representation. The total field is E = Eb + Es, the sum of the

background field (Eb) and the scattered field (Es) due to the moving object. Our
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interest here is in extracting information about the object from Es, but the challenge

is that the associated field is heavily scattered by the background medium. Our

treatment will use a Green’s function for the wave equation, but this will remain

unknown throughout the development we present, and is hence a formality that is

presented for completeness.

The source-free Maxwell curl equations in the temporal frequency domain (exp(−iωt))

and for non-magnetic media are

∇×H = −iωǫ0ǫE (5.1)

∇×E = iωµ0H, (5.2)

where we have assumed that a complex, isotropic dielectric constant ǫ(r) describes

the scattering problem, and H is the magnetic field, µ0 the free space permeability,

and ǫ0 the free space permittivity. From (5.1) and (5.2), the vector wave equation for

E becomes

∇×∇×E− k2
0ǫE = 0. (5.3)

Let

ǫ(r) = ǫb(r) + ǫs(r), (5.4)

where ǫb(r) is the spatially dependent background dielectric constant that describes

the random medium without the moving object(s) of interest and ǫs(r) is the contrast

due to the moving scattering object to be imaged. Therefore, with use of (5.4), (5.3)

becomes

∇×∇× E− k2
0ǫbE = k2

0ǫsE. (5.5)

Recognizing that ∇×∇×Eb − k2
0ǫbEb = 0, (5.5) can be written as

∇×∇× Es − k2
0ǫbEs = k2

0ǫsE. (5.6)

The Green’s function wave equation corresponding to (5.6) is

∇×∇×G(r, r′)− k2
0ǫb(r)G(r, r′) = −δ(r− r′)p̂, (5.7)
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where the position vectors are now included for clarity, r′ is the (equivalent) source

location and p̂ is drawn from the set of orthogonal unit vectors to produce the tensor

G. Using (5.7) and superposition to write the solution to (5.6), and with E = Eb+Es,

we have

E(r) = Eb(r)−
∫

k2
0ǫs(r

′)G(r, r′)E(r′)dr′ (5.8)

as the exact representation for the scattering problem. Implicit in the following

development is the dependence of measurable intensities on the incident field, and

assuming a laser excitation, on the specifics of the illumination.

In an experiment [19, 20], polarized light is detected. Consequently, the electric

field with direction d̂ is sifted, so (5.8) assumes the scalar form

E(r) = Eb(r) +

∫

O(r′) d̂ · [G(r, r′)E(r′)] dr′

= Eb(r) + Es(r). (5.9)

Without loss of generality, we can define a simplified scalar object function as

O(r′) = −k2
0ǫs(r

′). (5.10)

The development of the imaging formulation exploits this simplified scalar picture

with the exact interpretation that the vector field is being sampled at the detector

through a polarizer. Note also that with application of (5.8) we assume a homogenized

description of the object. However, the local homogenized picture could represent

length scales down to the nanometer regime.

5.3 Detected Field Moments

Consider a point detector located at r = rd, as in Fig. 5.1, and define the field at

this point by E(rd) ≡ Ed, where the spatial argument is represented as a subscript

for compactness. We assume measurements that reflect Ed at a sequence of object

positions defined by a reference position r and a translation vector ∆r. We can thus
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describe the field at the detector as Ed(r) with the object at some reference position

and Ed(r+∆r) with the object at the displaced position defined by ∆r.

The background scattering process is treated as random, and the fields at some

rd can be considered as a random phasor sum with developed statistics so that Ed is

zero-mean circular Gaussian [1]. This also provides access to a moment theorem made

widely known by Reed [16], and with stationary statistics the special cases of the sec-

ond and fourth moments are related in a manner presented earlier by Siegert [79].

We define the statistical average 〈·〉 as being over background scatterer configura-

tion. Section 5.8 considers the practical aspects of how the average is determined

experimentally with speckle intensity data obtained by a camera.

The intensity is assumed to be measured, and we write the intensity at the detector

as Id = |Ed|2, where a normalized impedance is assumed that is ultimately irrelevant

because of scaling. The fourth order field moment provides the measured intensity

correlation over object position as [16]

〈Id(r)Id(r+∆r)〉 = 〈Ed(r)E
∗
d(r)Ed(r+∆r)E∗

d(r+∆r)〉

= 〈Id(r)〉〈Id(r+∆r)〉+ 〈E∗
d(r)Ed(r+∆r)〉〈E∗

d(r+∆r)Ed(r)〉

= 〈Id(r)〉〈Id(r+∆r)〉+ |〈E∗
d(r)Ed(r+∆r)〉|2 . (5.11)

Equation (5.11) will be used throughout our development.

It is convenient to define a normalized field

Ẽ =
E

〈I〉1/2 , (5.12)

with I = |E|2, and a normalized intensity

Ĩ =
(I − 〈I〉)

〈I〉 . (5.13)

The normalization for field (giving Ẽ) in (5.12) is consistent with that for intensity

(Ĩ) in (5.13). For a Gaussian field [16], 〈I2〉 = 2〈I〉2, so the intensity variance is

σ2
I = 〈I2〉 − 〈I〉2

= 〈I〉2. (5.14)
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The contrast ration is thus σI/〈I〉 = 1 [1].

The second order field correlation over object position, measured at the detector,

is

G(1)(rd; r, r+∆r) = 〈E∗
d(r)Ed(r+∆r)〉 ≡ G(1)(r, r+∆r), (5.15)

where we use a common notation for the second order field moment (G(1)(·)) and a

compact argument to simplify the form of subsequent expressions, where the implica-

tion is a measurement at a single detector point (rd). With the use of normalizations

involving the mean intensity, 〈Ẽ∗
d(r)Ẽd(r + ∆r)〉 → 〈Ẽ∗

d(0)Ẽd(∆r)〉, and the nor-

malized field (and intensity) correlations become independent of the object reference

position r. The normalized averaged field correlation measured at the detector point

as the object is scanned is then

g(1)(∆r) = 〈Ẽ∗
d(0)Ẽd(∆r)〉

=
G(1)(r, r+∆r)

〈Id(r)〉1/2〈Id(r+∆r)〉1/2 . (5.16)

Use of (5.12) or (5.13) and (5.16) with (5.11) gives

〈Ĩd(r)Ĩd(r+∆r)〉 = 〈Ĩd(0)Ĩd(∆r)〉

=
∣

∣g(1)(∆r)
∣

∣

2

≡ g(2)(∆r). (5.17)

While object information is in principle embedded in (5.17), this interpretation of

normalized measured data does not provide for imaging. We present a theory that

provides a clear path to a method to invert measured data and form an image.

5.4 Relationship Between Object and Detected Field Moments

Returning to (5.9), we write the field at the detector as a superposition of that

due to the background random scatter (Edb) and that due to the object (defined

as the scattered field, Eds), under the assumption that this distinction will become
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meaningful. Expanding the second-order field correlation with this field superposition,

we have

〈E∗
d(r)Ed(r+∆r)〉 = 〈E∗

db(r)Edb(r+∆r)〉+ 〈E∗
db(r)Eds(r+∆r)〉

+ 〈E∗
ds(r)Edb(r+∆r)〉+ 〈E∗

ds(r)Eds(r+∆r)〉

= 〈Idb〉+ 〈E∗
dbEds(r+∆r)〉+ 〈E∗

ds(r)Edb〉

+ 〈E∗
ds(r)Eds(r+∆r)〉. (5.18)

Note that Edb(r) = Edb(r +∆r) = Edb, because the background field is that without

the object (the incident field), so 〈E∗
db(r)Edb(r + ∆r)〉 = 〈E∗

dbEdb〉 = 〈Idb〉, dictated
by the optical excitation, the scattering medium, and the detector location, but in-

dependent of the moving object.

In (5.18), referring to (5.9) and (5.10), Eds = Es(rd), so with the object at the

reference position r,

Eds(r) =

∫

O(r′; r) d̂ · [G(rd, r
′)E(r′)] dr′, (5.19)

where O(r′) defines the object through (5.10). This allows us to build expressions for

each of the three remaining terms in (5.18).

First, from (5.19) and with a shift in object position of ∆r,

〈E∗
ds(r)Eds(r+∆r)〉 = 〈

∫

O∗(r′; r)d̂ · [G(rd, r
′)E(r′)]

∗
dr′

∫

O(r′; r+∆r) d̂ · [G(rd, r
′)E(r′)] dr′〉

= 〈
∫

dr′
∫

dr′′O∗(r′; r) d̂ · [G(rd, r
′)E(r′)]

∗

O(r′′; r+∆r)d̂ · [G(rd, r
′′)E(r′′)]〉

= 〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)ss (∆r) (5.20)

= G(1)
ss (r, r+∆r), (5.21)
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so

g(1)ss (∆r) = 〈Ids(r)〉−1/2〈Ids(r+∆r)〉−1/2

〈
∫

dr′
∫

dr′′O∗(r′; r) d̂ · [G(rd, r
′)E(r′)]

∗
O(r′′; r+∆r)d̂ · [G(rd, r

′′)E(r′′)]〉

= 〈Ẽ∗
ds(0)Ẽds(∆r)〉

= ass(∆r)eiφss(∆r). (5.22)

We note from (5.22) that the normalization results in |g(1)ss (0)| = 1, so that ass(0) = 1

and φss(0) = 0. Notice that g
(1)
ss in principle provides access to a measure of the spatial

correlation of the object, something we pursue later. The challenge is to relate g
(1)
ss

to a measurable quantity, because Ids is not directly available.

Like (5.21), using (5.19), we have

〈E∗
db(r)Eds(r+∆r)〉 = 〈E∗

db

∫

O(r′; r+∆r)d̂ · [G(rd, r
′)E(r′)] dr′〉

= 〈Idb〉1/2〈Ids(r+∆r)〉1/2g(1)bs (∆r). (5.23)

Hence,

g
(1)
bs (∆r) = 〈Ẽ∗

dbẼds(∆r)〉

= abs(∆r)eiφbs(∆r), (5.24)

and |g(1)bs (0)| = 0.

The final term in (5.18) is thus

〈E∗
ds(r)Edb〉 = 〈Ids(r)〉1/2〈Idb〉1/2g(1)sb (0)

≡ 〈Ids(r)〉1/2〈Idb〉1/2g(1)∗bs (0), (5.25)

where we have

g
(1)
sb (0) = 〈Ẽ∗

ds(r)Ẽdb〉

= asb(0)e
φsb(0)

= eφsb(0)

= e−φbs(0)

≡ g
(1)∗
bs (0). (5.26)
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Collecting the various terms, we can thus write the field correlation over object

position measured at the detector point, from (5.18), as

〈E∗
d(r)Ed(r+∆r)〉 = 〈E∗

dbEdb〉+ 〈E∗
db(r)Eds(r+∆r)〉

+ 〈E∗
ds(r)Edb(r+∆r)〉+ 〈E∗

ds(r)Eds(r+∆r)〉

= 〈Idb〉+ 〈Idb〉1/2〈Ids(r+∆r)〉1/2g(1)bs (∆r)

+ 〈Ids(r)〉1/2〈Idb〉1/2g(1)∗bs (0)

+ 〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)ss (∆r). (5.27)

Interpretations of (5.27) will prove useful in imaging based on motion in scattering

media.

5.5 Physical Basis of g
(1)
ss (∆r) and g

(1)
bs (∆r)

Referring to (5.22), experimental evidence indicates that correlations of the scat-

tered field from the object and the translated object survive the averaging pro-

cess [19–21]. Macroscopically, referring to Fig. 5.1, this situation is when the object

and the translated object share a joint spatial support. Therefore, g
(1)
ss (∆r) has cor-

related scattered field contributions from the object and the shifted object when they

share a common spatial support. We will separate g
(1)
ss (∆r) into short range and long

range terms. The short range decorrelation is sensitive to the microstructure and

sub-wavelength features, and the long range to macroscopic object information.

The autocorrelation of the object function is

Γ(∆r) =

∫

dr′O∗(r′)O(r′ +∆r). (5.28)

A comparison of (5.22) and (5.28), under conditions of sufficient random scatter for

developed statistics, suggests

g(1)ss (∆r) = γ(∆r)

=

∫

dr′Õ∗(r′)Õ(r′ +∆r), (5.29)
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where γ is the normalized autocorrelation and Õ is the normalized object function.

With (5.29), information related to g
(1)
ss (∆r) leads to a means to retrieve Õ, as we

will describe.

Possibly less obvious is the role of g
(1)
bs (∆r) and its character, upon observation

of the average field correlation in (5.23). It is insightful to consider the Gedanken

experiment of a detected field correlation without displacement. Based on (5.18), the

mean intensity at the detector point with the object at the reference position is

〈Id(r)〉 = 〈E∗
d(r)Ed(r0)〉

= 〈Idb〉+ 2ℜ{〈E∗
dbEds(r)〉}+ 〈Ids(r)〉

= 〈Idb〉+ 〈Ids(r)〉+ 〈Idb〉1/2〈Ids(r)〉1/22ℜ{g(1)bs (0)}, (5.30)

with ℜ{·} the real part. The term 〈E∗
dbEds〉 is captured by g

(1)
bs (0). This is the only

way to describe a decrease in mean intensity with the introduction of an object that

reduces the background intensity. Therefore, in general, g
(1)
bs must be retained in the

intensity correlation expressions. Also, clear from (5.30), g
(1)
bs (0) has negative real

part for situations where 〈Idb〉 > 〈Id〉. From (5.24), we anticipate that g
(1)
bs (∆r) will

reduce to zero when the object translation is large compared to λ. This position rests

on substantial uncorrelated scattering centers in the moving object in relation to the

background random scatter.

Note from (5.23) that g
(1)
bs (0) is normalized by 〈Ids〉, which provides the scattering

strength. If 〈Ids〉1/2g(1)bs (0) were available, this could provide object information that

could in principle be used in conjunction with or instead of g
(1)
ss (∆r) for sensing and

imaging the moving object.

In addition to information about the microstructure, the small distance decorrela-

tion is influenced by a statistical field decorrelation. By analogy with field correlations

over frequency [80], a random phasor sum description in the Gaussian field limit indi-

cates a pathlength distribution with a differential phase shift k∆x < λ can result from

the statistical average, leading to a decorrelation over |∆r| ∼ λ. Irrespective of the

details of the moving object, we therefore expect a contribution from point scatterer
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motion on this length scale, and that this will influence g
(1)
ss and g

(1)
bs . Embedded in

this will be nanostructure information about the object.

5.6 Detector Intensity Correlation

From (5.11), the intensity correlation at the detector point measured over object

position is

〈Id(r)Id(r+∆r)〉 = 〈Id(r)〉〈Id(r+∆r)〉+ |〈E∗
d(r)Ed(r+∆r)〉|2 . (5.31)

Using (5.27), we have

|〈E∗
d(r)Ed(r+∆r)〉|2 = 〈Idb〉2 + 〈Idb〉3/2〈Ids(r+∆r)〉1/2g(1)∗bs (∆r)

+ 〈Idb〉3/2〈Ids(r)〉1/2g(1)bs (0)

+ 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)∗ss (∆r)

+ 〈Idb〉3/2〈Ids(r+∆r)〉1/2g(1)bs (∆r) + 〈Idb〉〈Ids(r+∆r)〉|g(1)bs (∆r)|2

+ 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)bs (∆r)g
(1)
bs (0)

+ 〈Idb〉1/2〈Ids(r)〉1/2〈Ids(r+∆r)〉g(1)bs (∆r)g(1)∗ss (∆r)

+ 〈Idb〉3/2〈Ids(r〉1/2g(1)∗bs (0) + 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)∗bs (0)g
(1)∗
bs (∆r)

+ 〈Idb〉〈Ids(r)〉|g(1)bs (0)|2

+ 〈Idb〉1/2〈Ids(r)〉〈Ids(r+∆r)〉1/2g(1)∗bs (0)g(1)∗ss (∆r)

+ 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2g(1)ss (∆r)

+ 〈Idb〉1/2〈Ids(r)〉1/2〈Ids(r+∆r)〉g(1)ss (∆r)g
(1)∗
bs (∆r)

+ 〈Idb〉1/2〈Ids(r)〉〈Ids(r+∆r)〉1/2g(1)ss (∆r)g
(1)
bs (0)

+ 〈Ids(r)〉〈Ids(r+∆r)〉|g(1)∗ss (∆r)|2. (5.32)
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Rearranging (5.32) according to the increasing order of 〈Idb〉 gives

|〈E∗
d(r)Ed(r+∆r)〉|2 = 〈Idb〉2

+ 〈Idb〉3/2
[

〈Ids(r+∆r)〉1/22ℜ{g(1)bs (∆r)}+ 〈Ids(r)〉1/22ℜ{g(1)bs (0)}
]

+ 〈Idb〉
{

〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2[2ℜ{g(1)ss (∆r)}+ 2ℜ{g(1)bs (0)g
(1)
bs (∆r)}]

+ 〈Ids(r)〉|g(1)bs (0)|2 + 〈Ids(r+∆r)〉|g(1)bs (∆r)|2
}

+ 〈Idb〉1/2
[

〈Ids(r)〉1/2〈Ids(r+∆r)〉2ℜ{g(1)bs (∆r)g(1)∗ss (∆r)}

+〈Ids(r)〉〈Ids(r+∆r)〉1/22ℜ{g(1)bs (0)g
(1)
ss (∆r)}

]

+ 〈Ids(r)〉〈Ids(r+∆r)〉|g(1)ss (∆r)|2. (5.33)

We note that (5.33) is informative for situations where 〈Idb〉 is large or small, thereby

allowing discrimination based on significant amplitudes at the detector. However,

our interest is in imaging a moving object. Therefore, we distill (5.32) into terms

involving orders of g
(1)
ss , giving

|〈E∗
d(r)Ed(r+∆r)〉|2 =

{

〈Idb〉2

+ 〈Idb〉3/2
[

〈Ids(r+∆r)〉1/22ℜ{g(1)bs (∆r)}+ 〈Ids(r)〉1/22ℜ{g(1)bs (0)}
]

+ 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/22ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+ 〈Idb〉〈Ids(r)〉|g(1)bs (0)|2 + 〈Idb〉〈Ids(r+∆r)〉|g(1)bs (∆r)|2
}

+
{

〈Idb〉1/2
[

〈Ids(r)〉1/2〈Ids(r+∆r)〉2ℜ{g(1)bs (∆r)g(1)∗ss (∆r)}

+〈Ids(r)〉〈Ids(r+∆r)〉1/22ℜ{g(1)bs (0)g
(1)
ss (∆r)}

]

+ 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/22ℜ{g(1)ss (∆r)}
}

+ 〈Ids(r)〉〈Ids(r+∆r)〉|g(1)ss (∆r)|2. (5.34)

It is convenient to convert raw measured speckle intensity data into normalized

form (Ĩ) using (5.13). This step also simplifies the mathematical representation. In

normalized form, (5.31) becomes

〈Ĩd(0)Ĩd(∆r)〉 = 〈Ĩd(r)Ĩd(r+∆r)〉 =
∣

∣

∣
〈Ẽ∗

d(r)Ẽd(r0 +∆r)〉
∣

∣

∣

2

, (5.35)
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where

Ẽd(r) =
Ed(r)

〈Id(r0)〉1/2
= Ẽd(0) (5.36)

Ẽd(r+∆r) =
Ed(r+∆r)

〈Id(r+∆r)〉1/2 = Ẽd(∆r), (5.37)

and, as before, the normalized fields depend only on the translation, ∆r. Drawing on

(5.34) - (5.37), we can write

〈Ĩd(0)Ĩd(∆r)〉 = C0(∆r)

+C11(∆r)2ℜ{g(1)bs (∆r)g(1)∗ss (∆r)}+ C12(∆r)2ℜ{g(1)bs (0)g
(1)
ss (∆r)}

+C13(∆r)2ℜ{g(1)ss (∆r)}+ C2(∆r)|g(1)ss (∆r)|2, (5.38)

where, referring to (5.34),

C0(∆r) = 〈Id(r)〉−1〈Id(r+∆r)〉−1
{

〈Idb〉2

+ 〈Idb〉3/2
[

〈Ids(r+∆r)〉1/22ℜ{g(1)bs (∆r)}+ 〈Ids(r)〉1/22ℜ{g(1)bs (0)}
]

+ 〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/22ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+ 〈Idb〉〈Ids(r)〉+ 〈Idb〉〈Ids(r+∆r)〉|g(1)bs (∆r)|2
}

C11(∆r) = 〈Id(r)〉−1〈Id(r+∆r)〉−1〈Idb〉1/2〈Ids(r)〉1/2〈Ids(r+∆r)〉

C12(∆r) = 〈Id(r)〉−1〈Id(r+∆r)〉−1〈Idb〉1/2〈Ids(r)〉〈Ids(r+∆r)〉1/2

C13(∆r) = 〈Id(r)〉−1〈Id(r+∆r)〉−1〈Idb〉〈Ids(r)〉1/2〈Ids(r+∆r)〉1/2

C2(∆r) = 〈Id(r)〉−1〈Id(r+∆r)〉−1〈Ids(r)〉〈Ids(r+∆r)〉. (5.39)
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We can sift g
(1)
ss from (5.38), with use of (5.39), by separating the real (ℜ) and

imaginary (ℑ) parts of the field correlations associated with C1j as

〈Ĩd(0)Ĩd(∆r)〉

= C0(∆r)

+2
[

C11(∆r)ℜ{g(1)bs (∆r)}+ C12(∆r)ℜ{g(1)bs (0)}+ C13(∆r)
]

ℜ{g(1)ss (∆r)}

+2
[

C11(∆r)ℑ{g(1)bs (∆r)} − C12(∆r)ℑ{g(1)bs (0)}
]

ℑ{g(1)ss (∆r)}

+C2(∆r)|g(1)ss (∆r)|2

≡ C0(∆r) + 2C1r(∆r)ℜ{g(1)ss (∆r)}+ 2C1i(∆r)ℑ{g(1)ss (∆r)}

+C2(∆r)|g(1)ss (∆r)|2, (5.40)

where the C coefficients in general vary with ∆r and

C1r(∆r) = ℜ{C1(∆r)} = C11(∆r)ℜ{g(1)bs (∆r)}+ C12(∆r)ℜ{g(1)bs (0)}+ C13(∆r)

C1i(∆r) = ℑ{C1(∆r)} = C11(∆r)ℑ{g(1)bs (∆r)} − C12(∆r)ℑ{g(1)bs (0)}. (5.41)

Equation (5.40) can thus be written as

〈Ĩd(0)Ĩd(∆r)〉 = C0(∆r) + 2ℜ
{

C∗
1 (∆r)g(1)ss (∆r)

}

+ C2(∆r)|g(1)ss (∆r)|2. (5.42)

Equation (5.42) is our key result, and this will be used to consider various object and

scatter regimes. While (5.42) is a compact expression relating measured intensity

correlations to g
(1)
ss and hence the object through (5.29), Ids and g

(1)
bs are not directly

obtained from any measurement. Therefore, a tractable path requires approximations

or assumptions to access the object function, O.

5.7 Correlation Length Scales, Object Scattering Regimes and Experi-

mental Evidence

There are two important field correlations in (5.42) that carry information about

the moving object, g
(1)
bs (∆r) (that appears in C0(∆r) and C1(∆r) = C1r(∆r) +

iC1i(∆r)) and g
(1)
ss (∆r). At this point, we understand little about g

(1)
bs (∆r) other
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than an expectation that it would reduce from unit magnitude to zero on the length

scale of λ. From (5.21), there will also be a wavelength-scale decorrelation in g
(1)
ss (∆r),

supported by experimental data [20]. There is also a long range correlation where the

light interacts with the object and a translated version at shared points, as Fig. 5.1

shows, and this forms a representation for macroscopic imaging. Therefore, we write

g(1)ss (∆r) = g(1)sss (∆r) + g(1)lss (∆r), (5.43)

where g
(1)s
ss is the short-range correlation, with ∆r ∼ λ, and g

(1)l
ss is the long-range

correlation that exists because the deterministic moving object modifies the back-

ground field at each point in space within the joint spatial support of the scatterer

and the translated scatterer. We have experimental evidence that both g
(1)s
ss (∆r) and

g
(1)l
ss (∆r) can be obtained with heavily scattered light [20].

We consider now forms of (5.42) in the large and small translation distance

regimes, relative to λ, and in the weak and strong scatter contrast domains. This set

of delineations relates to application domains for the theory.

5.7.1 ∆r ≫ λ

With |∆r| ≫ λ, and from (5.23), we assume that g
(1)
bs (∆r) = 0 and g

(1)s
ss (∆r) = 0.

The normalization yields g
(1)
ss (0) = 1 but g

(1)l
ss (0) 6= 1. In this situation of large object

translation, relative to λ, we have from (5.42)

〈Ĩd(0)Ĩd(∆r)〉 = C l
0(∆r) + 2ℜ

{

C l∗
1 (∆r)g(1)lss (∆r)

}

+ C2(∆r)|g(1)lss (∆r)|2,(5.44)

with

C l
0(∆r) = 〈Id(r)〉−1〈Id(r+∆r)〉−1

{

〈Idb〉2 + 〈Idb〉3/2〈Ids(r)〉1/22ℜ{g(1)bs (0)}

+〈Idb〉〈Ids(r)〉
}

(5.45)

C l
1r(∆r) = C12(∆r)ℜ{g(1)bs (0)}+ C13(∆r)

C l
1i(∆r) = −C12(∆r)ℑ{g(1)bs (0)}, (5.46)

with C12(∆r) and C13(∆r) from (5.39).
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5.7.2 ∆r < λ

Given the small scan distance, we assume that stationarity holds, leading to

〈Id(r0)〉 ≈ 〈Id(r +∆r)〉 and 〈Ids(r0)〉 ≈ 〈Ids(r +∆r)〉. The implication is that there

is sufficient scatter. Therefore, in conjunction with (5.42), we have

C0(∆r) = 〈Id(r)〉−2
{

〈Idb〉2

+ 2〈Idb〉3/2〈Ids(r〉1/2
[

ℜ{g(1)bs (∆r)}+ ℜ{g(1)bs (0)}
]

+ 〈Idb〉〈Ids(r)〉2ℜ{g(1)bs (0)g
(1)
bs (∆r)}

+ 〈Idb〉〈Ids(r)〉
[

1 + |g(1)bs (∆r)|2
]}

C1r(∆r) = C11ℜ{g(1)bs (∆r)}+ C12ℜ{g(1)bs (0)}+ C13

C1i(∆r) = C11ℑ{g(1)bs (∆r)} − C12ℑ{g(1)bs (0)}

C2 = 〈Id(r)〉−2〈Ids(r)〉2, (5.47)

where C11, C12, C13 and C2, defined in (5.39), are now assumed independent of scan

distance over the scale of one wavelength. Consequently,

C11 = C12

= 〈Id(r)〉−2〈Idb〉1/2〈Ids(r)〉3/2

C13 = 〈Id(r)〉−2〈Idb〉〈Ids(r)〉

(5.48)

With weak scatter, such as with a very small object, enforcing 〈Ids〉 ≪ 〈Idb〉 and
〈Id〉 ≈ 〈Idb〉. This approximation leads to

C0(∆r) = 1 + 2〈Idb〉1/2〈Ids(r〉1/2
[

ℜ{g(1)bs (∆r)}+ ℜ{g(1)bs (0)}
]

C11 = C12

= 〈Idb〉−3/2〈Ids(r)〉3/2 ≃ 0

C13 = 〈Idb〉−1〈Ids(r)〉 ≃ 0

C2 = 〈Idb〉−2〈Ids(r)〉2 ≃ 0. (5.49)
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Therefore, from (5.42),

〈Ĩd(0)Ĩd(∆r)〉 ≃ 1 + 2〈Idb〉1/2〈Ids(r)〉1/2
[

ℜ{g(1)bs (∆r)}+ ℜ{g(1)bs (0)}
]

. (5.50)

Thus, this development provides access to the character of g
(1)
bs (∆r) by allowing the

extraction of 〈Ids(r)〉1/2ℜ{g(1)bs (∆r)} from a series of measurements providing the left

side of (5.50) and with a measurement of 〈Idb〉, without the moving object.

We note that it is of significance that measurements in this regime with heavy

background random scatter could result in far-subwavelength information. This could

be obtained from g
(1)
bs (∆r), which varies with the object function. It is also available

from g
(1)s
ss and from (5.42).

5.7.3 〈Idb〉 ≫ 〈Ids〉

If the scattering object, large or small, is weakly scattering so that 〈Idb〉 ≫ 〈Ids〉,
we can approximate (5.42) as

〈Ĩd(0)Ĩd(∆r)〉 = C0(∆r), (5.51)

with

C0(∆r) = 1 +

[

〈Ids(r+∆r)〉1/22ℜ{g(1)bs (∆r)}+ 〈Ids(r)〉1/22ℜ{g(1)bs (0)}
]

〈Idb〉1/2
. (5.52)

For ∆r = 0, (5.52) becomes

C0(0) = 1 +
〈Ids(r)〉1/24ℜ{g(1)bs (0)}

〈Idb〉1/2
. (5.53)

Note that from (5.51) and (5.53),for an object that is weakly scattering, we can again

access 〈Ids(r)〉1/2ℜ{g(1)bs (0)}. However, this does not separate 〈Ids(r)〉 and ℜ{g(1)bs (0)}.

5.7.4 〈Idb〉 ≪ 〈Ids〉

With 〈Idb〉 ≪ 〈Ids〉 and (5.42), we have the approximation

〈Ĩd(0)Ĩd(∆r)〉 = C2(∆r)
∣

∣g(1)ss (∆r)
∣

∣

2
. (5.54)
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5.8 Sensing and Imaging Methodology

5.8.1 Formation of Averages (〈·〉) with Experimental Data

The averaging process in our theory, 〈·〉, is mathematically an average over scat-

terer reconfiguration. This means in forming 〈Ĩd(0)Ĩd(∆r)〉 that the intensity is mea-

sured at the detector point (rd) with the object at r (giving the p-th measurement as

Idp(0)) and at r+∆r (resulting in Idp(∆r)). Upon rearranging the background scatters

according to a relevant density function, a set of sample products are obtained. Thus,

the average with P measurements is formed as 〈Ĩd(0)Ĩd(∆r)〉 = 1
P

∑P
p=1 Ĩdp(0)Ĩdp(∆r),

with P suitably large. It is not practical to form such averages experimentally. Even

with moving background scatterers, the object of interest would need to be in two

locations for each measurement with the background scatterer configuration being

identical.

Experimentally, one can estimate 〈·〉 using a camera image of the speckle intensity

where the image domain is small enough for stationary statistics to hold [17,20,21,81].

In this case, each speckle spot needs to be adequately resolved, there needs to be a

sufficient number of spots, and the regions imaged onto the camera should be small

enough for the mean to be independent of position within a given image (but not

necessarily as ∆r is varied). Thus, the average is formed over the pixels of a camera.

The requirement for independent samples can be met with a sufficient number of

speckle spots. The sampling can be enhanced by using multiple reference positions

(rp) and equivalent offsets (∆r) [21]; this has also been done to form average over

frequency [17]. The normalized intensity images associated with each measurement

can thus be formed.
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5.8.2 〈Idb〉 = 0: Aperture in a Screen

The simplest case corresponds to an aperture in a screen, where, with the object

absent, there is no field on the detector side for a transmission measurement. From

(5.42) or (5.54) we have

〈Ĩd(0)Ĩd(∆r)〉ap = C2(∆r)
∣

∣g(1)ss (∆r)
∣

∣

2
. (5.55)

The subscript ap refers to the situation of an aperture in a screen [19]. With heavy

background scatter or small total scan distance, C2(∆r) = C2 is independent of

∆r. Through a renormalization, |g(1)ss (∆r)|2 is then directly available from measured

speckle intensity data. This has been the basis of imaging results presented using

experimental data [20].

5.8.3 〈Idb〉 6= 0: General Object

We consider the heavy scatter regime where the statistics are stationary over

∆r ≫ λ, allowing us to write (5.44) as

〈Ĩd(0)Ĩd(∆r)〉 = C l
0 + 2ℜ

{

C l∗
1 g

(1)l
ss (∆r)

}

+ C2|g(1)lss (∆r)|2, (5.56)

where within a scan distance corresponding to the joint support of the object and its

translated self, it has been found that C l
0, C

l∗
1 , and C2 can be treated as constants [21].

The measured intensity data as a function of object position is then related to four

real numbers and g
(1)l
ss , the object autocorrelation function. In principle, (5.56) can

be solved and g
(1)l
ss (∆r) obtained. Then, through a phase reconstruction process, the

object function Õ can be retrieved from g
(1)l
ss (∆r) based on (5.29). Experiments with

macroscopic opaque patch elements have found C1 to be small [21]. Consequently, in

such situations, the second term in (5.56) can be ignored, C l
0 can be extracted from

measured data, and (5.56) can be renormalized to scale |g(1)lss (0)| = 1. These steps

therefore provide access the normalized object autocorrelation function from (5.29).
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5.9 Applications and Perspectives

Our compact, central result in (5.42) provides a new and fundamental descrip-

tion of intensity correlations over (moving object) space that persist over infinite

length scales. In practice, the distances and levels of scatter become limited by the

laser source energy and detector noise. Previous investigations into second order in-

tensity correlations (see Refs. [67, 82–85] for a review) have identified contributors

to the measured intensity correlation of CI(∆x) = 〈I(x0)I(x0 + ∆x)〉, where ∆x

represents the change in the correlation variable (e.g., frequency or wave-vector di-

rection) and the brackets 〈· · · 〉 represent the ensemble average. CI(∆x) has been de-

composed into three terms, short-range correlations C1(∆x), long-range correlations

C2(∆x), and infinite-range correlations C3(∆x) [41]. Note that we have preserved

the notation in the references indicated for consistency [41], and that the definition

of C1 and C2 is not the same as in the development given in this work. Each of

these correlations may contribute to the measured correlation, and they have been

weighted by the dimensionless quantity g (dimensionless conductance) according to

CI(∆x) = C1(∆x)+g−1C2(∆x)+g−2C3(∆x). For most optical experiments involving

a slab geometry, g ≫ 1 is typical [86], thus making the contribution of the long- and

infinite-range correlations negligible. Our work provides another dimension for the

infinite range correlations for situations that pertains to a randomly scattering slab

where the thickness can in principle approach infinity.

A number of fundamental assumptions were made in the development of our the-

ory that impact applications: we assume that the statistics from a set of camera

images will be a good indicator of an average formed from rearrangements of the en-

vironmental scatterers; there is natural or controlled motion of the object of interest;

the background scattering environment is assumed to be static within the acquisi-

tion of speckle images; and, most importantly, we have required the statistics of the

detected speckle field to exhibit a circular Gaussian distribution, required for use of

Reed’s moment theorem [16]. We address each of these requirements.
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In an experiment, averages would be formed with camera speckle images that ac-

cess random intensity information over space (or angle). The statistics from the cam-

era image are expected to be a good representation provided each speckle is spatially

resolved and there are enough independent samples. Our experience with reasonably

heavily scattering media is that a spot of about 1 mm can have approximately a

constant mean intensity, thereby providing stationary statistics in the camera im-

age [4, 17–20, 46, 87]. A 4-F lens system with an aperture in the Fourier domain

provides separate control of the speckle size. There is obviously a trade-off between

speckle size and number of speckle spots. Measurements are made through a polar-

izer. Negative exponential intensity statistics indicate that the speckle images area

satisfactory, and that the fields are zero-mean-circular Gaussian. Laser light with

adequate coherence is also required (to achieve satisfactory statistics), and this re-

quirement is a function of the amount of background scatter.

Various physical situations involve an object that is moving naturally. One ex-

ample is in vivo blood vessel constituents. In other applications, motion could be

induced using a translational stage. This may be appropriate in material inspection,

for instance. Regardless, prior information on the motion of the object during the

acquisition of speckle images is needed to apply this approach which means the po-

sitional or velocity information of the unknown moving object needs to be inferred

through some complimentary method, such as temporal decorrelation or the Doppler

shift [54], or localization based on the diffusion model [55]. The dimensionality of

any sensing and imaging result is commensurate with that of the object motion. For

motion other than linear translation, we foresee that a similar type of theory may

be possible. Given enough prior information about the motion of the object, the

experimentally-measured correlation could potentially be separated to different types

of object motion, such as translation and rotation, and analyzed for useful sensing

and imaging.

The need for stationary (static) background scatterer positions is perhaps the most

severe restriction. Natural settings may involve motion of the scatterers, such as with
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aerosols. It is assumed that displacement of background scatterers with the motion

of the object of interest can be neglected. Generally, the stationary background

scatterer requirement implies that this motion is negligible during the measurement

period over which the object is moving. Alternatively, the implication is that intensity

decorrelation due to the motion of the randomly located background scatterers can

be accounted for in a calibration and hence known from prior information. This

constraint also relates to object size or speed, which has a detector signal-to-noise

ratio implication.

An amount of scatter producing developed Gaussian field statistics is assumed.

This can be met with a random medium having a thickness of one transport length,

the distance for photon momentum randomization, or more. Heavier scatter, such

that the mean intensity does not vary appreciably with object position over the

measurement provides a simplification, and can lead to approximating C0, C1 and C2

as constant for ∆r about the moving object’s size in our development in Sect. 5.8.

We have been able to reconstruct images of macroscopic (mm-scale) objects, both

apertures of rather complex shapes and also black patches by obtaining speckle images

as a function of translated object position and applying the theory of Sect. 5.8(A)

[21]. This is achieved by assuming that C0, C1, and C2 are constants, which allows

them to be determined by fitting the measured data [21]. This provided access to

g
(1)l
ss and hence the object autocorrelation, from which phase retrieval yielded the

object to quite high precision. The principle is that correlations exist within the

joint support and the wavelength-scale correlation, g
(1)s
ss , is neglected. In the general

situation where these coefficients are spatially dependent, inversion becomes ill-posed.

Consequently, prior information would be needed or constraints imposed. Recently,

we have also obtained experimental results that support using the ratio between C l
0

and C l
2 in (5.56) to qualitatively compare the relative scattering strengths of the

moving object and the scattering environment. This suggests that various measures

based on our general result in (5.42) could be of practical importance. While the

resolution could in principle approach wavelength scale in this macroscopic regime,
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in practice it is limited by scanning precision and other practical aspects of making

such measurements.

The experimental evidence for super-resolution sensitivity in a speckled field is

compelling [20]. This subwavelength length-scale information is contained within g
(1)
ss ,

specifically g
(1)s
ss (∆r), and likely g

(1)
bs (∆r) (although there is currently no experimental

information relevant to the character of g
(1)
bs (∆r)). A combined numerical field study

and experiments with nanoparticles could shed light on these functions and may

provide a means to extract object parameters of relevance, hence providing sensing

and perhaps even imaging on this length scale. The achievement of far-subwavelength

object information with motion in a speckled field is analogous to an earlier proposal

for motion in structured illumination achieved by two interfering beams [78]. The

distinction in the case of the speckled field is that the field is generally unknown and

hence a forward model and conventional computational imaging approaches cannot

be applied.

More generally, our method could allow communication in a cluttered environ-

ment. Consider a moving transmitter that sends an identical set of signals from

a series of spatial positions. This information could be in principle extracted in a

manner similar to how imaging is accomplished. Again, the principle is correlated

information that survives the averaging process with multiply-scattered light. In this

case, temporal or multiple frequency data would be extracted. There are of course

details to be investigated as to how a protocol for this communication arrangement

would be implemented, but the principle we have described should be applicable.

This may also carry over to quantum key distribution in the presence of clutter [88].

Ghost imaging involves entangled or correlated photons [89]. Speckle can occur

[90] and achieving high contrast to noise control is important [91, 92]. It may be

possible to utilize object motion to enhance the robustness of ghost imaging in a

scattering environment. In fact, moving objects have been considered in ghost imaging

[93] and this could be extended to heavily scattering media with our approach. With

regard to energy-time entangled photons in scattering media, correlated detection
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(in the Hanbury Brown and Twiss sense) or detection with a nonlinear crystal [94]

provides temporal gating that could be useful in scattering media. With a moving

entangled photon source in a scattering medium, information can be added by position

control that could be interesting in applications.

Finally, fluorescence (or Förster) resonance energy transfer (FRET) is a non-

radiative energy transfer process between donor and acceptor molecules spatially sep-

arated by a distance usually between 1-10 nm that results in a decrease in the lifetime

and quantum yield of the donor in the presence of the acceptor [95]. Measurement of

FRET through lifetime modification has become important in molecular biology [96]

and has been shown possible for in vivo applications [97,98]. With suitable labeling,

FRET can provide key information about protein folding, relevant for many major

diseases. Generally, the change of lifetime is represented as a donor-acceptor distance

using classical dipole-dipole coupling theory [95]. It may be possible to use a coher-

ent method based on absorption and motion along the lines we have described to

separately determine the distance (which us typically several nanometers).

5.10 Conclusion

We have presented a rigorous theory for imaging based on speckle pattern corre-

lations over object position. This leads to various sensing and imaging opportunities

using coherent light in scattering media. It may be possible to exploit natural motion

in environmental sensing situations where multiple scatter occurs. If the motion of

the object of interest were fast relative to the background scattering media, then the

situation would conform to the theory described. It may also be possible to calibrate

for decorrelation due to the background, provided there is adequate sensitivity to the

moving object to be imaged. An important application domain is in vivo imaging

without contrast agents, such as of blood cells in capillaries. In this case, the local

velocity may be constant over the micron length scales required. While the corre-

sponding translation is 1D, 3D imaging may be possible with constraints. Accessing



72

far-subwavelength information is an intriguing direction. This is relevant in finding

defects in semiconductor device processing using optical inspection. The wafer can

be precisely positioned but traditional methods are diffraction-limited and hindered

by speckle produced due to surface roughness and complicated 3D structures. It is

possible that the presence of defects may be determined by using speckle intensity cor-

relation over the wafer position. In weakly scattering situations, such as in microscopy

where super-resolution would be value, the speckle could be created by a diffusing

screen and the object of interest, cells for example, translated in this structured field,

allowing intensity images to be captured as a function of object position.
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6. ENHANCED COHERENT SENSING USING A

SCATTERING ANALYZER VIA SPECKLE

CORRELOGRAPHY

6.1 Introduction

While speckle can be a nuisance in many coherent applications, metrology methods

that exploit naturally occurring speckle patterns, such as those from optically rough

surfaces, are able to access useful information about remote objects. For example,

speckle interferometry and electronic speckle pattern interferometry [99–102] employ

a fringe analysis of interferograms to measure the displacement of a rough surface,

and can be used in stress, strain, and vibration measurement [103]. However, its

high sensitivity is achieved by intricate interferometric setup and sophisticated phase

unwrapping post-processing. Speckle image correlation algorithms are able to detect

the object’s deformation and displacement using the cross-correlation or the difference

between speckle images [23] because the recorded speckle patterns are sensitive to

displacement and deformation gradients. This correlation-based metrology approach

is not limited to electromagnetic waves: the correlation between ultrasonic speckle

patterns can also be used to detect remote displacement [104].

By adding a ground glass diffuser or an acrylic slab (filled with embedded TiO2

scatterers) between the subject and the detector, we found greater sensitivity to

the subject’s in-plane displacement in the cross correlation between speckle images,

and the enhancement in sensitivity increases as the analyzer’s scattering strength

increases.

In the diffusive regime, where there is enough scatter to fully randomize the multi-

ply scattered photons, the detected electric fields exhibit zero-mean circular Gaussian

statistics [3]. We have previously shown that, in this heavily scattering regime, it is
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possible to reconstruct an obscured field [18] or an embedded object [20,21] by form-

ing correlations over the positions of the moving field or the moving object averaged

over scatterer configurations. Random aperiodic structures, such as the scattering

analyzers used in our study, exhibit interesting field control properties that are de-

pendent on the macroscopic features of the structure [105]. For a slab of multiply

scattering material, the distribution of the eigenvalues of its transmission matrix has

been described as bimodal by random matrix theory (RMT) [24,106,107] where most

eigenchannels are either fully “closed” or fully “open”. According to RMT, the dis-

tribution becomes more bimodal as the thickness of the scattering medium increases.

Realistic setups that involve a finite-sized detector imply an incomplete capture of

all eigenchannels, so that the bimodal description is only accurate for the relatively

small eigenvalues [108], so that there are more modes concentrated around eigenval-

ues close to zero for a thicker slab. Simulations have verified that and as a result, the

few “open” eigenchannels account for a bigger proportion of the total transmittance

for a thicker scattering slab [106].

We show that the averaged speckle intensity correlation over subject movement

decorrelates faster in the presence of the scattering analyzer and that the more

strongly scattering the analyzer, the faster the decorrelation. To understand the en-

hanced sensitivity, we relate speckle intensity correlation to the normalized transmis-

sion eigenvalues of the scattering analyzer and provide finite-element-method (FEM)

simulation results as corroborating evidence.

6.2 Theory

Assuming zero-mean circular Gaussian statistics for the detected field, we can

apply Reed’s moment theorem [16], and write the ensemble-averaged intensity cor-

relation in terms of the correlation of the detected fields (through a polarizer) Φd at

different object positions r and r+∆r,
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〈Ĩ(rd; r)Ĩ(rd; r+∆r)〉

=
|〈Φ∗

d(rd; r)Φd(rd; r+∆r)〉|2
〈I(rd; r)〉〈I(rd; r+∆r)〉 , (6.1)

where rd is the detector position which is fixed, and the intensities are normalized

so that Ĩ = (I − 〈I〉)/〈I〉. It is noted that the correlation computed inside 〈·〉 is the
inner product between two intensity measurements or two complex fields involving

all of the spatial detector pixels. Hence, statistically, 〈·〉 represents an averaging

process. Moreover, we average the correlation coefficients associated with the same

∆r. As a result, the ensemble-averaged correlation depends only on ∆r, and r is

just a reference object position. In this particular study, the mean intensity does

not change much over different object position, so 〈I(rd; r+∆r)〉 ≈ 〈I(rd; r)〉. If the
variation in intensity over ∆r is significant (for a very weakly scattering analyzer),

〈I(rd; r+∆r)〉 can be easily computed and incorporated in the analysis. It is noted

that using averaged cross-correlations is our default choice from our previous speckle

intensity correlation studies, which will result in a monotonic decreasing correlation

given enough averaging samples, easier for comparison.

Through the Fourier transform, we can write any Φd(rd) in k-space as φd(kd),

where kd represents the corresponding k-space Fourier pair of rd. Given that the

discrete Fourier transform is represented by a unitary matrix operator, the ensemble-

averaged correlation is preserved when represented in k-space, so that

〈φ∗
d(kd; r)φd(kd; r+∆r)〉 = 〈Φ∗

d(rd; r)Φd(rd; r+∆r)〉. (6.2)

φd is related by the transmission matrix, t, in k-space, to the plane wave decomposi-

tion of the field incident on the speckle analyzer, φi (Φi in the space domain). The

singular value decomposition of the transmission matrix of the scattering analyzer, t,

gives

t = UΣV∗, (6.3)
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where Σ is a diagonal matrix with non-negative real numbers on the diagonal, which

are the singular values, σi, for i-th eigenchannel. V∗ and U are unitary operators

mapping the input wavevector channels (ki) to eigenchannels (k′
i) and eigenchannels

(k′
d) to output wavevector channels (kd), respectively. The transmission eigenvalues

described by RMT are Ti = σ2
i , and their corresponding diagonal matrix is T. Hence,

we can then write,

φd(kd) = tφi(ki)

φd(kd) = UΣV∗φi(ki)

φ′
d(k

′
d) = Σφ′

i(k
′
i), (6.4)

where φ′
d = U−1φd(kd) and φ′

i = V∗φi(ki) are the detected field and the incident field

represented in the eigenspace.

We write the spatial field correlation in the wavevector eigen space,

〈Φ∗
d(rd; r)Φd(rd; r+∆r)〉 = 〈φ∗

d(kd; r)φd(kd; r+∆r)〉

= 〈φ′∗
d (k

′
d; r)φ

′
d(k

′
d; r+∆r)〉

= 〈(Σφ′
i(k

′
i; r))

∗Σφ′
i(k

′
i; r+∆r)〉

= 〈φ′∗
i (k

′
i; r)Tφ′

i(k
′
i; r+∆r)〉. (6.5)

Submitting (6.5) in to (6.1), we have

〈Ĩ(rd; r)Ĩ(rd; r+∆r)〉 = |〈φ′∗
i (k

′
i; r)Tφ′

i(k
′
i; r+∆r)〉|2

〈I(rd; r)〉〈I(rd; r+∆r)〉

=
|〈φ′∗

i (k
′
i; r)T̃φ′

i(k
′
i; r+∆r)〉|2

〈Ii(rd; r)〉〈Ii(rd; r+∆r)〉 , (6.6)

where T̃ = T

T̄
is the diagonal matrix of the normalized transmission eigenvalues with

T̄ representing the mean transmission eigenvalue. In (6.6), we have expressed the

detected intensity cross-correlation as a function of the cross-correlation of the field

and the intensity incident on the scattering analyzer at different positions of the
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remote diffusive object of interest. For free space, the eigenchannels are all open so

the matrix T̃ can be treated as the identity matrix I.

Therefore, the averaged speckle intensity correlation is directly linked to the nor-

malized transmission eigenvalues of the transmission matrix of the analyzer. Accord-

ing to RMT, for a slab-geometry scattering medium and a finite-sized detector, the

thicker the scattering slab, the few “open” eigenchannels account for a bigger propor-

tion of the total transmittance, and there are more “closed” channels [106]. Hence,

with a smaller number of propagating eigenchannels for the thicker analyzer slab, the

change in speckle pattern will be dominated by a few “open” channels only, which will

result in a faster averaged decorrelation, enhancing the cross-correlation’s sensitivity

to any small system change.

6.3 Experiment

The experimental setup is shown in Fig. 6.1, where a fixed scattering analyzer

is placed between the moving diffusing object of interest and the camera. A 59-

mW, 850-nm laser diode with a linewidth less than 10 MHz is used for illumination,

producing a laser beam on the moving diffusing object that is about 0.4 mm in

diameter. Referring to Fig. 6.1, the moving object used is a diffusive acrylic slab, and

a stage is used to move the slab in the y direction at sub-wavelength step of 476 nm.

The scattering analyzers used are a single ground glass of 1500 grit (10 cm × 10 cm

× 0.2 cm), a 3-mm-thick acrylic slab and a 6-mm-thick acrylic slab. The scattering

slabs (14 cm × 14 cm), are made of commercial clear acrylic with negligible optical

absorption and embedded with TiO2 scatterers having a mean diameter of 50 nm.

The reduced scattering coefficient of the scattering acrylic slabs is about 4 cm−1. The

moving slab and the scattering analyzer are separated by a distance about 5 cm. An

area of approximately 1.8 mm by 1.8 mm on the back of the second scattering layer is

imaged by a Photometrics Prime sCMOS (2048×2048 pixels) using magnifying optics.

The 4f system is used to regulate speckle size at the camera so that it is sufficiently
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large relative to the camera pixel size and the polarizer is used so that we only collect

light that is polarized in one direction.

CameraLaser

Scattering 
Analyzer

Moving Diffusing
Object of Interest

4F System

Polarizer

Y X

Z

Fig. 6.1. Experimental setup. The diffusing object of interest was
translated in the transverse plane, along the y axis.

The averaged speckle intensity correlation is plotted in Fig. 6.2 for the cases of

using no analyzer, 1 ground glass, a 3-mm-thick acrylic slab and a 6-mm-thick acrylic

slab, while keeping the rest of experimental configuration the same. The moving

object used is a 3-mm-thick acrylic slab. We see that, as the scattering strength of

the analyzer increases, the intensity correlation decorrelates faster. In other words,

a thicker analyzer is able to detect subwavelength displacement (∆y) with greater

sensitivity. To illustrate, we tabulate the first two correlation data points for each

case in Table. 6.1 for comparison. We see that, by using a thicker analyzer, the

decorrelation is drastically faster, even for sub-pixel and subwavelength displacement.

The sizes of the speckles exiting the analyzer are estimated to be consistent

throughout our experiments, around 15 pixels in diameter, measured using the full-

width-at-half-maximum of the main peak of the autocorrelation of example speckle

patterns.

It is noted that the incident field correlation can also be influenced by the con-

figuration of the experiment, such as the scattering strength of the moving diffuser
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Fig. 6.2. The averaged correlation over the translation of object de-
creases at different rate for different analyzer configuration. The more
scattering the analyzer is, faster the decorrelation becomes. With a
thicker analyzer, we are able to sense sub-wavelength (< 850 nm)
translation of the diffusing object.

and the separation distance between the analyzer and the moving object. Referring

to Fig. 6.3(a), while the correlation over the translation of object decreases faster for

Table 6.1.
Tabulation of the first two data points in Fig. 6.2, for translations of
476 nm and 952 nm.

Correlation at ∆y = 476 nm 952 nm

No Analyzer 0.9694 0.9550

1 Ground Glass 0.9305 0.8134

3 mm Acrylic 0.7273 0.4431

6 mm Acrylic 0.6401 0.2978
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Fig. 6.3. Experimental configurations other than the analyzer thick-
ness can also affect sensitivity by varying the speckle spot size incident
on the analyzer, which is a function of the area of the speckle spread
and the distance between the diffusing object and the analyzer [3]. (a)
The more-scattering 3 mm thick acrylic slab produces faster decor-
relation when compared to 1 moving ground glass (1 GG), as the
larger spread of speckle intensity exiting the acrylic slab result in
larger speckle spots incident on the analyzer, producing faster decor-
relation. (b) The rate of speckle decorrelation increases for a shorter
separation between the diffusing moving object (1-ground-glass slab)
and the analyzer(3-mm-thick acrylic slab).

the more strongly scattering analyzer, the scattering strength of the diffusing object

also plays a factor. The more-scattering 3 mm thick acrylic slab produces faster

decorrelation when compared to 1-ground-glass (1 GG) as the moving diffuser. In

Fig. 6.3(b), the rate of speckle decorrelation increases for a shorter separation be-

tween the diffusing moving object (1 ground glass slab) and the analyzer(3-mm-thick

acrylic slab). These observations can be explained using the different sizes of the

speckle spots incident on the scattering analyzer, which increase when the speckle

intensity spread exiting the diffusive object increases and when the distance between

the object and the analyzer increases [3]. The smaller the size of the speckle spots

incident on the scattering analyzer, a larger change in speckle pattern is expected

given the same amount of object translation.
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Fig. 6.4. Numerical simulation geometry. (a) The overall geometry
of the simulations: the center of the domain is the 46-µm-long slab,
consisting of 200-nm square scatterers (in blue) randomly distributed
in the space with a fill factor of 50%. (b) The zoomed-in view of the
geometry, with the detection plane of 42.6 µm labeled by the red line,
collecting the total field at half wavelength away from the slab’s right
side. The wavelength used for the plane wave propagating from the
left to the right is chosen as 850 nm.

6.4 Simulation

In our simulation, we focus on analyzing the distribution of the normalized eigen-

values of the transmission matrices for scattering layers of the same material but

different thickness. The simulated analyzer is of a slab geometry and is made of ran-

domly distributed small square scatterers (200 nm × 200 nm), with a fill factor of

50%. The scatterer material has a dielectric constant of 5. The slab’s vertical length

is fixed at 46 µm and the thickness is varied (4 µm, 6 µm, 8 µm). The geometry

for the 8 µm thick slab can be seen in Fig. 6.4(a) and (b). The left and right of the

simulation domain are perfect matched layers while the top and bottom follow period

boundary condition.
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Referring Fig. 6.4(a), a plane wave with the wavelength of 850 nm (TE field that

only has y component, which is perpendicular to the plane of Fig. 6.4) is incident onto

the scattering slab from the left. A detector plane is chosen to be at half wavelength

away from the right side of the slab (red line on Fig. 6.4(b)), where the total field is

recorded. For the 46 µm-long slab, only the central section of 42.6 µm-long is used to

mitigate edge effect associated with the slab geometry. The data collected are at 100

points, uniformly spread along evenly over the 42.6 µm long detector plane. There

are 100 incident angles for the plane waves spanning from -1.0429 rad (-59.75 degree)

to 1.0429 rad (59.75 degree). The range of incident angles are chosen so that the

associated wavevectors are within the propagating spectrum given the wavelength.

Each of the 100 incident fields (each has its own wavevector, kin) produces the

output field. The output field collected in space is then Fourier transformed to spatial

frequency space (kout), where only the propagating spectrum (also 100 wavevectors) is

selected. A transmission matrix (100×100) relating kin and kout can be then mapped

out. However, due to total internal reflection, evident in the very large imaginary

component of the output field in the spatial frequency space, the largest angles close

to the two extremes are discarded, we end up having a 67×67 transmission matrix,

t.

In order to study how analyzer thickness impacts tranmission eigenvalue distribu-

tion, we generate 50 independent instances of random analyzer for each thickness (150

transmission matrices in total), and compute each analyzer’s normalized eigenvalues,

T̃ . Combining all 50 collection of T̃ , we observe the collective histogram for each

analyzer thickness. In Fig. 6.5, we plot the curves formed using the histogram data

of the collective normalized transmission eigenvalues for different slabs in curves of

30 bins for comparison. The normalization is against the mean transmittance of each

slab, so that the unity on the x-axis equals to the mean of all transmission eigenval-

ues of the corresponding slab, T̄ . When the slab is thicker, there are more “closed”

channels with T̃ close to zero, and the “open” channels carry a larger proportion of
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Fig. 6.5. The collective histogram distribution (plotted as a curve of
30 bins) of the normalized transmission eigenvalues, T̃ , of the trans-
mission matrices for slabs of randomly distributed scatterers of differ-
ent thickness. Each histogram contains 50 independently generated
random configurations of the scattering slab of either 8 µm, 6 µm,
or 4 µm. The x-axis rescaled so that 1 is the mean of the transmis-
sion eigenvalues of an analyzer, T̄ . For a thicker slab, there are more
“closed” channels (T̃ close to 0), and the few “open” channels are more
transmitting, carrying a larger proportion of the power (maximum T̃
is larger).
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the transmitted signal as indicated by the larger maximum T̃ value, in agreement

with existing theory [108] and simulation [106].

6.5 Conclusion

Using averaged speckle intensity correlation as a metric to detect displacement

of diffuse object, we have demonstrated experimentally adding a scattering analyzer

in front of the detector greatly enhances the rate of decorrelation, improving sensi-

tivity, capable of detecting subwavelength in-plane displacement of a remote diffuse

object. The more strongly scattering the analyzer is, the higher the sensitivity. We

have shown that the speckle intensity correlation is directly related to the normalized

transmission eigenvalues of the scattering analyzer’s transmission matrix. Through

simulations, we have shown that, when the scattering analyzer is thicker, the normal-

ized transmission eigenvalues have more “closed” channels and a few “open” channels

that carry a larger proportion of the transmitted signal.

This novel remote sensing approach by adding a scattering analyzer can be applied

to the measurement of properties such as displacement and thermal expansion. It

is cheap and simple to implement, and also offers comparable if not superior remote

sensitivity that is at least an order of magnitude below wavelength scale. The analysis

we provided relates the normalized eigenvalues of the transmission matrix of the

scattering analyzer to the intensity correlation metric used opening up opportunities

in the design and calibration of a better-performing scattering analyzer.
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7. SUMMARY

Methods for sensing and imaging a hidden object moving inside a heavily scattering

environment have been presented. Through the use of spatial speckle intensity cor-

relations over object position, a significant amount of information about the object

can be obtained despite the presence of heavy scatter. A theory was developed that

describes the spatial speckle intensity correlation over object position in terms of the

embedded object’s relative refractive index, with a simulated image reconstruction

using measurements from an experiment. The theory was then expanded to accom-

modate a more-weakly-scattering and absorptive object. Biological tissue was used

as a scattering material, and phase retrieval was used for image reconstruction to

demonstrate the feasibility and wide applicability of our approach for practical imag-

ing. Equipped with experimental insights on speckle intensity correlation over object

motion, including its sensitivity to the relative scattering strengths of the moving

object and the surrounding environment, a general mathematical model was devel-

oped that can lead to the sensing and imaging of a small object or features with

super-resolution. This general theory forms the basis of a method to pursue imaging

applications based on spatial speckle intensity correlations with complicated object

motion such as rotation and deformation, as similar theoretical treatment is expected

to apply. For the approach, information about the object motion is required, and this

can be obtained by some other complementary methods. Generally, speckle intensity

correlation over object position provides a way to access the optical properties of

moving objects embedded within heavily scattering media that would not be accessi-

ble otherwise, and possibly capable of revealing super-resolution features, beyond the

limit of conventional optical methods.

Related to the study of speckle intensity correlation over object motion, a tech-

nique that can enhance the sensitivity of optical metrology was introduced. By placing
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a static scattering layer in front of the detector, we showed improved remote sensi-

tivity, capable of detecting subwavelength in-plane displacement of a remote diffuse

object. This simple and inexpensive modification can be used as the design principle

for a wide range of optical sensors, useful for high-sensitivity temperature sensing and

for remote sensing, such as in material inspection.
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