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ABSTRACT 

Pavement macrotexture contributes greatly to road surface friction, which in turn plays a 

significant role in reducing road incidents. Conventional methods for macrotexture measurement 

techniques (e.g., the sand patch method, the outflow method, and laser measuring) are either 

expensive, time-consuming, or of poor repeatability. This thesis aims to develop and evaluate 

affordable and convenient alternative approaches to determine pavement macrotexture. The 

proposed solution is based on multi-view smartphone images collected in situ over the pavement. 

Computer vision techniques are then applied to create high resolution three-dimensional (3D) 

models of the pavement. The thesis develops the analytics to determine two primary macrotexture 

metrics: mean profile depth and aggregation loss. Experiments with 790 images over 25 spots of 

three State Roads and 6 spots of the INDOT test site demonstrated that the image-based method 

can yield reliable results comparable to conventional laser texture scanner results. Moreover, based 

on experiments with 280 images over 7 sample plates with different aggregate loss percentage, the 

newly developed analytics were proven to enable estimation of the aggregation loss, which is 

largely compromised in the laser scanning technique and conventional MPD calculation approach. 

The root mean square height based on the captured images was verified in this thesis as a more 

comprehensive metric for macrotexture evaluation. It is expected that the developed approach and 

analytics can be adopted for practical use at a large scale.  
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 INTRODUCTION 

1.1 Background 

The quality properties of road pavements have direct and significant impacts on road safety. 

According to Indiana Crash Facts 2017, about 200,000 vehicle crashes occurred in Indiana every 

year from 2013 through 2017, of which about 34,000 accidents resulted in injuries and 755 

accidents caused fatalities. Ten percent of these accidents were further attributed to insufficient 

surface friction on road curves.  

It is essential to provide adequate friction and drainage to reduce the possibility of accidents 

on roads; and these two properties are mainly determined by pavement surface textures. Pavement 

surface texture, which can be defined as the deviation of a pavement surface from a true planar 

surface (Li et al. 2016), directly affects the various parameters resulting from tire-road interactions 

such as friction, tire noise, skid resistance, tire wear, rolling resistance, splash and spray, traffic 

vibration, etc. (Ejsmont et al. 2017, Das et al. 2015, Yaacob et al. 2014). It was suggested in the 

1987 Permanent International Association of Road Congresses (PIARC), depending on the 

amplitude and wavelength of a feature, to divide the pavement surface characteristics (the 

geometric profile of a road in the vertical plane) in four categories: roughness (unevenness), 

megatexture, macrotexture, and microtexture (Dong et al. 2019, Bitelli et al. 2012, Dunford 2013). 

Roughness refers to the unevenness, potholes, and large cracks on road surfaces that are 

larger than a tire footprint (Dong et al. 2019, Bitelli et al. 2012, Dunford 2013). Irregularities in 

this size correspond to wavelengths ranging from 0.5 m to 50 m, which further correspond to a 

range of vertical dimensions varying from 1 mm to 200 mm (Dong et al. 2019, Das et. al. 2015, 

Dunford 2013). Roughness can affect a vehicle’s dynamics, speed, ride quality, drainage, fuel 

consumption, and tire wear (Abulizi et al. 2016, Douangphachanh et al. 2013, Dunford 2013, 

Paterson 1986) and can even cause traffic accidents by leading to a vehicle’s loss of contact with 

the pavement surface. To determine pavement roughness, repeatable profile measurements, which 

are often called profiling, are completed. On the other hand, megatexture is associated with 

deviations in wavelengths from 50 mm to 500 mm and vertical amplitudes ranging from 0.1 mm 

to 50 mm (Dong et al. 2019, Dunford 2013). Texture of this size is mainly caused by poor 
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construction practices or surface deterioration. This level of texture causes vibrations in tire walls, 

resulting in vehicle noise and some external noise. 

Macrotexture and microtexture refer to the relatively small pavement surface irregularities 

that primarily affect friction and skid resistance, which are illustrated in Figure 1.1. Macrotexture 

refers to the changes in wavelengths ranging from 0.5 mm to 50 mm horizontally and variations 

ranging from 0.1 mm to 20 mm vertically (Dong et al. 2019). However, microtexture, which 

corresponds to wavelengths less than 0.5 mm horizontally and vertical amplitudes up to 0.2 mm, 

is related to the roughness of the individual stone elements used in the surface layer and to the 

natural mineral aggregate (Bitelli et al. 2012). The microtexture of the road surface affects skid 

resistance and is responsible for stopping on dry pavements. Good microtexture also provides 

adequate stopping on wet pavements if the vehicle speed is less than 50 mph (80 kph) and the 

surface of the road is not flooded. However, if the vehicle travels at speeds of 50 mph (80 kph) or 

greater, the friction of the pavement surface in wet circumstance is directly related to the 

macrotexture instead (Snyder 2006). Good macrotexture provides rapid drainage of water during 

rain events between the tire and the pavement, thus allowing better tire contact with the pavement 

to improve frictional resistance and prevent hydroplaning (Babu et al. 2019, Snyder 2006). 

 

Figure 1.1. Illustration of concepts of microtexture and macrotexture. (Flintsch et al. 2003) 

One other aspect of the pavement that should be considered for road quality is the failure 

mode. For normal pavement roads, there are many visible failure modes (e.g., aggregate polishing, 

bleeding, and aggregate loss (Gransberg 2008). A literature review and agency survey conducted 

by Gransberg and James (2005) indicated that aggregate loss is one of the most common visible 

chip seal surface failure modes. The theory of aggregate loss is sophisticated and includes many 

factors, but the specific influence of each factor is still undecided (Miradi 2004, Adams 2017). 

These factors include low binder application rate, dirty or dusty aggregate, cold weather, delayed 
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aggregate application, and traffic patterns (Adams 2017). Despite the fact that aggregate loss is an 

inevitable problem, excessive aggregate loss may cause serious safety concerns (Massahi et al. 

2018). For example, flying aggregate fragments can threaten the safety of vehicles and pedestrians 

(Massahi et al. 2018), and water tends to accumulate at the aggregate loss area, which can lead to 

a significant reduction in surface friction (Baqersad et al. 2016, Massahi et al. 2018). Therefore, it 

is important to quantify the aggregate loss. 

1.2 Objectives 

The objectives of this thesis are to explore new technologies and methods to determine 

pavement macrotexture. The conventional methods for determining road macrotexture include the 

sand patch method, the outflow method, and laser profiling. The sand patch method is operator-

dependent and the test results have poor repeatability (Sengoz et al. 2012). Other problems with 

the sand patch method include that on surfaces with very deep textures it is very easy to 

overestimate the texture depth (Fisco et al. 2014), and accurate sand patch testing cannot be done 

when the road surface is sticky or wet (Praticò et al. 2015). As is the case with the sand patch 

method, the outflow method also is labor-intensive and time-consuming, and the reliability of the 

results depends largely on the operator (Wang et al. 2011). Laser-based linear profiling devices 

have been shown to improve testing efficiency to a great degree (Fisco et al. 2014, Flintsch et al. 

2003), but this method is not cost-effective because of the relatively high cost of the laser 

equipment and the need for routine calibration (Wang et al. 2011). Moreover, its high cost also 

restricts its use over large areas for multi-division transportation agencies.  

Due to the drawbacks and shortcoming for all of the above existing methods and techniques, 

the transportation industry is in need of an effective, low-cost approach to measuring pavement 

quality. To meet this need, this thesis investigates and introduces a low-cost, ubiquitous image-

based sensing technique for pavement macrotexture measurement. The novel approach presented 

here uses smartphone images collected onsite to generate accurate and detailed three-dimensional 

(3D) pavement models. Then, analytics also developed in this thesis are used to determine and 

analyze the pavement macrotexture on the road. Based on the analytics and using high resolution 

3D pavement models from the structure from motion (SfM) technique, this thesis confirms that 

the developed image-based macrotexture measurement approach is convenient, cost-effective, and 
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comparable to the conventional methods. Moreover, the limitations of the current approach are 

addressed and alternative analytics are developed to determine the aggregate loss of pavement. 

1.3 Previous work 

Although both microtexture and macrotexture contribute to pavement friction, there is 

currently no practical procedure for direct measurement of the microtexture profile in traffic (Dong 

et al. 2019, Henry 2000). The PIARC Model for the International Friction Index (IFI) avoids the 

need for measuring microtexture if macrotexture measures are available. A measurement at any 

slip speed, together with the macrotexture parameter, determines the friction as a function of the 

slip speed (Henry 2000). The typical parameter to describe pavement macrotexture is the mean 

profile depth (MPD) or the mean texture depth (MTD). MPD is linear related to MTD and is 

usually converted to MTD when comparing different macrotexture calculation methods (Fisco et 

al. 2014, Henry 2000). There are several conventional macrotexture calculation methods. 

The traditional macrotexture measuring method is referred to as the sand patch method, 

which is commonly used as the reference method when comparing the results obtained with other 

methods. The sand patch method consists of spreading a specified volume of sand (or glass spheres) 

on the pavement in a circular motion with a spreading tool; and the area of this roughly circular 

patch of sand is then calculated by using the average of four equally spaced diameters (Fisco et al. 

2014, Henry 2000), see Figure 1.2. The volume divided by the area is reported as the MTD. 

Although the sand patch method is currently used as a reference ground truth throughout the world, 

it is commonly known that it is an operator-dependent method and its test results have poor 

repeatability (Yaacob et al. 2014, Sengoz et al. 2012). Another problem with the sand patch method 

is that on surfaces with very deep textures, the glass spheres tend to flow under the sides of the 

fixture and subsequently the texture depth is overestimated (Fisco et al. 2014). Also, accurate sand 

patch testing cannot be done when the road surface is sticky or wet (Praticò et al. 2015). 

Another classical method is the outflow method, which establishes the relationship between 

the macrotexture and the time of discharge of water in a receptacle. The outflow meter is a 

transparent vertical cylinder that rests on a rubber bottom placed on the pavement (Aktas et al. 

2011), see Figure 1.2. A valve at the bottom of the cylinder is closed and the cylinder is filled with 

water. The valve is then opened and the time required for the water level in the cylinder to drop 

from the upper reference line to the lower reference line is recorded. Very short outflow times 
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indicate rough surface textures and long outflow times indicate smooth surfaces (Aktas et al. 2011). 

Since outflow time is highly correlated with MTD, the outflow method is used to indirectly 

estimate pavement texture. As a labor-intensive and time-consuming process, the reliability of the 

outflow method results, like the sand patch method, largely depends on the operator (Wang et. al. 

2011). 

   

Figure 1.2. Sand patch method (left) and outflow meter (right) (Aktas et al. 2011) for 
macrotexture calculation. 

More recently, macrotexture measurements have been performed using laser measurement 

devices. These devices can obtain depth information by making distance measurements on the road 

surface at certain intervals along a line. This depth information is used to calculate the MPD (Fisco 

et al. 2014, Yaacob et al. 2014, Cigada et al. 2010, Bitelli et al. 2012), which is standardized in 

American Society for Testing and Materials (ASTM) E1845, for expressing the macrotexture 

properties of pavement. One of the laser measurement devices used to determine the texture of a 

pavement is the circular track or texture meter (CTMeter) (Fisco et al. 2014). The CTMeter uses a 

laser that rotates on a circumference to measure the pavement profile in a circle that can vary in 

size. In 2014 Fisco et al. used a CTMeter with a 284 mm diameter circle track to measure the 

texture with a sampling interval of approximately 0.9 mm. While laser profilers can be static 

measuring devices, there are also vehicle-mounted versions that collect laser measurements at 

traffic speeds. The CTMeter is relatively expensive, can only measure macrotexture with longer 

wave lengths, and has a low percentage of repeatability and reproducibility. Furthermore, it is 

difficult to evaluate grooved surfaces with the CTMeter since it measures texture data in a circular 

ring (Wang et. al. 2011, Byrum et al. 2010). Laser-based devices measuring linear profiles, which 

are known as laser texture scanners, improve the testing efficiency to a great degree while 
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maintaining good correlation with the sand patch method or the CTMeter (Fisco et al. 2014, 

Flintsch et al. 2003). However, these systems are very expensive (Wang et al. 2011); and as is the 

case with the sand patch method, the accuracy of the laser-based devices decreases on wet, shiny, 

and sticky surfaces. Since the laser can only measures a 2D profile, another significant defect of 

laser-based measurement is that it is a 2D estimation of the pavement, which is clearly a 3D surface.  

As an alternative to the methods described above, there also have been studies using image-

based techniques to characterize macrotexture properties. In 2011, El Gendy et al. used a two-

camera photometric stereo system developed by Flintsch et al. in 2008 to reconstruct the 3D texture 

of pavement. This stereo-vision system (SVS) can recover the pavement surface height by 

capturing two images of the same scene using two cameras separated by a small baseline distance 

with the location of a point on the pavement derived through triangulation in stereo-imaging 

(Gendy et al. 2011). In order to reduce variability, the SVS utilizes an enclosure to isolate the scene 

from ambient lighting (Gendy et al. 2011). The system is large in size, which restricts its portability 

and makes it inconvenient for measurement. In 2018, Kogbara et al., using a handheld Canon™ 

6D EOS digital full frame single lens reflex camera, captured twelve images for each study spot 

and generated dense point clouds of pavement surfaces with 3DF Zephyr Pro v3.142 proprietary 

software (3DFlow, Verona, Italy), upon which the surface texture parameters were calculated 

(Kogbara et al. 2018). Although the dense point cloud was generated, the quality of it was not 

discussed in their work. 

However, no studies were found in the reviewed literature using multiple images collected 

by mobile phone cameras, which is much more convenient, flexible, and affordable. Considering 

the widespread usage of smartphones, using a mobile phone camera to measure the pavement 

surface would be a much cheaper and more convenient approach to determine the pavement 

macrotexture.  

In traditional photogrammetry, overlapping images collected from different viewpoints are 

used to reconstruct 3D scene geometry.  To calculate the 3D position of a point in object space, 

the exterior orientation (position and orientation of the camera when the image was collected) and 

the interior orientation (location of the principle point and the focal length of the camera) 

parameters are needed. Exterior orientation parameters establish the relationship between the 

object space and the image plane while the interior orientation parameters establish the relationship 

between the image plane and the projection center of the camera. In most cases, the exterior 
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orientation parameters are computed from the ground control points (GCP) and tie points (TP). 

Once the interior and exterior orientation parameters are determined, a 3D representation of the 

object space covered by the overlap area can be derived through relative and absolute orientation 

procedures. On the other hand, the bundle block adjustment technique, which was first introduced 

by Brown (1971), constructs a rigorous mathematical relationship between the image and the 

object space. By utilizing collinearity equations, the image coordinates of the selected features can 

be related to the corresponding ground coordinates and interior and exterior orientation parameters. 

Finally, simultaneous least squares adjustment solves the ground coordinates of the tie points and 

the exterior orientation parameters. 

The Structure from Motion (SfM) method, first proposed in 1979 by S. Ullman, was 

originally based on the bundle adjustment technique (Ullman 1979). SfM uses images collected 

from different viewpoints but differs from traditional photogrammetry in that it automatically 

estimates the interior and exterior orientation parameters without using any GCPs established on 

the ground and seen in photos (Micheletti et al. 2014, Westoby et al. 2012). This method became 

possible by the emergence of algorithms such as SIFT (Lowe 1999), which were developed in the 

machine vision area, and are able to compute interior and exterior orientation parameters without 

any control point by matching the correspondence points in the images obtained from different 

viewpoints. However, SfM requires a much larger overlap in sequentially-captured images, just as 

in the case where one uses a moving sensor to create the 3D geometry of a structure, thus justifying 

method’s SfM name (Micheletti et al. 2014).   

As for the measurement of aggregate loss, Li et al. proposed an approach in 2012 to measure 

surface macrotexture that could be related to aggregate loss since the excessive aggregate loss can 

cause catastrophic decreases in the macrotexture depth (Li et al. 2012). However, this approach is 

difficult to conduct due to the fact that pavement macrotexture is commonly measured using laser 

devices nowadays. As mentioned above, laser devices provide a 2-D solution for a 3D surface and 

therefore cannot provide a complete representation of the pavement macrotexture.  

Based on the above literature review, this thesis proposes a novel approach to determine 

pavement macrotexture using mobile phones to collect images on site with large overlap and 

redundancy. The SfM technique is utilized in this approach to create accurate and dense 3D 

pavement models with Agisoft Metashape software. Based on the developed analytics, the MPD 

and the aggregate loss can be determined from the created 3D pavement model. 
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1.4 Structure of the thesis 

This remainder of this thesis proceeds as follows. Chapter 2 presents the definitions and 

calculations for several metrics and the major methods used for 3D model generation and analysis. 

Also in Chapter 2, SfM is introduced as the method for 3D reconstruction from multi-view images 

as well as Otsu’s method for separating the remaining aggregate from the ground surface. Chapter 

3 discusses the equipment, location, and sample plates prepared for data collection; and the 

measuring mechanism of the laser texture scanner is described in detail as well as the quality of 

the 3D model generated from the images. One of the data collection location is the Indiana 

Department of Transportation (INDOT), and the others are three state roads which are SR 32, SR 

446, and SR 205. Chapter 4 first presents the results of the calculated MPD, a comparison between 

the MPD results of the laser texture scanner and the 3D models from the images, and a summary 

of the results. Two approaches for aggregate loss evaluation are also introduced in Chapter 4. In 

Chapter 5, major results and contributions of this thesis are described along with possible future 

improvements. 
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 THEORY AND METHODOLOGY 

This chapter first introduces the metrics for macrotexture measurement including MPD and 

RMS height, and the aggregate loss percentage is proposed to evaluate aggregate loss. Then, the 

several methods implemented in this thesis are discussed for 3D model generation and analysis, 

which includes SfM, bundle adjustment, MVS, and Otsu’s method. Moreover, the calculations for 

the image-based method including image-based MPD calculation, RMS height calculation, point 

cloud segmentation, and the volume calculation are presented in detail. 

2.1 Macrotexture metrics 

This section will describe the various metrics for pavement macrotexture. Depending on the 

nature of the measurement, different definitions for pavement macrotexture may be used. The 

classical mean profile depth (MPD) is first introduced followed by the mean segment depth (MSD) 

and then a metric based on plane fitting. The concept of aggregate loss is also described. 

2.1.1 Mean profile depth (MPD) 

According to ASTM E1845-09 (ASTM 2009), MPD is the average of all the mean segment 

depths for all the segments of a profile, while the mean segment depth (MSD) is the average value 

of peak level (1st) and peak level (2nd) having a given baseline, as shown in Figure 2.1 (ASTM 

2009).  

Suppose the profile of a pavement texture is denoted by 

𝑧𝑧 = ℎ(𝑥𝑥), 𝑥𝑥 ∈ [𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑏𝑏]                                                          (2-1) 

The average level for the profile is denoted as Equation 2-2 and its coefficients are determined 

via Equation 2-3. 

𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑧𝑧 + 𝑐𝑐1 = 0,        𝑥𝑥 ∈ [𝑥𝑥𝑎𝑎, 𝑥𝑥𝑏𝑏]                                             (2-2) 

argmin
𝑎𝑎1,𝑏𝑏1,𝑐𝑐1

∑ �ℎ(𝑥𝑥𝑖𝑖) + 𝑎𝑎1𝑥𝑥𝑖𝑖+𝑐𝑐1
𝑏𝑏1

�
2

𝑛𝑛
𝑖𝑖=1                                                (2-3) 

Equation 2-4 (ASTM 2009) is the calculation equation of MSD. It is noted that the baseline 

is 100±2 mm long. According Equation 2-2, the calculation of MSD can be further determined via 
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Equation 2-5. Suppose the number of profiles is 𝑚𝑚, then MPD is calculated by averaging the MSDs 

of all profile, see Equation 2-6. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃 𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙 �1𝑠𝑠𝑠𝑠�+𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃 𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙 �2𝑛𝑛𝑛𝑛�
2

                                       (2-4) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
2

× �max
�𝑎𝑎1𝑥𝑥𝑗𝑗+𝑏𝑏1ℎ�𝑥𝑥𝑗𝑗�+𝑐𝑐1�

�𝑎𝑎12+𝑏𝑏12
+max |𝑎𝑎1𝑥𝑥𝑘𝑘+𝑏𝑏1ℎ(𝑥𝑥𝑘𝑘)+𝑐𝑐1|

�𝑎𝑎12+𝑏𝑏12
�                        (2-5) 

𝑥𝑥𝑗𝑗 ∈ �𝑥𝑥𝑎𝑎, (𝑥𝑥𝑏𝑏−𝑥𝑥𝑎𝑎)
2

� , 𝑥𝑥𝑃𝑃 ∈ �
(𝑥𝑥𝑏𝑏−𝑥𝑥𝑎𝑎)

2
, 𝑥𝑥𝑏𝑏�  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚
𝑖𝑖=1                                                (2-6) 

 

Figure 2.1. Procedure of MSD computation. (ASTM 2009) 

2.1.2 RMS height (𝝈𝝈𝒉𝒉) 

We propose this metric as an alternative and supplement to the classical MPD. It will be 

shown later that this metric is advantageous when working with 3D pavement models. It is a 3D 

generalization of the 2D MPD concept.  

Suppose the pavement surface is described by 

𝑧𝑧 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦), 𝑥𝑥 ∈ [𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑏𝑏],𝑦𝑦 ∈ [𝑦𝑦𝑎𝑎 ,𝑦𝑦𝑏𝑏]                                          (2-7) 

and the mean surface plane of pavement is represented by Equation 2-8. The coefficients of the 

mean surface plane can be determined using least squares fitting, see Equation 2-9.  

𝑎𝑎2𝑥𝑥 + 𝑏𝑏2𝑦𝑦 + 𝑐𝑐2𝑧𝑧 + 𝑑𝑑2 = 0,        𝑥𝑥 ∈ [𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑏𝑏],𝑦𝑦 ∈ [𝑦𝑦𝑎𝑎 ,𝑦𝑦𝑏𝑏]                         (2-8) 
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argmin
𝑎𝑎2,𝑏𝑏2,𝑐𝑐2,𝑑𝑑2

∑ ∑ �𝑓𝑓�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗� + 𝑎𝑎2𝑥𝑥𝑖𝑖+𝑏𝑏2𝑦𝑦𝑗𝑗+𝑑𝑑2
𝑐𝑐2

�
2

𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1                           (2-9) 

Then the height deviation ℎ(𝑥𝑥,𝑦𝑦) of the pavement surface with respect to this mean surface 

plane is the distance between each point of pavement and the mean surface, which is determined 

by 

ℎ(𝑥𝑥,𝑦𝑦) = 𝑎𝑎2𝑥𝑥+𝑏𝑏2𝑦𝑦+𝑐𝑐2𝑓𝑓(𝑥𝑥,𝑦𝑦)+𝑑𝑑2

�𝑎𝑎22+𝑏𝑏22+𝑐𝑐22
,      𝑥𝑥 ∈ [𝑥𝑥𝑎𝑎, 𝑥𝑥𝑏𝑏],𝑦𝑦 ∈ [𝑦𝑦𝑎𝑎,𝑦𝑦𝑏𝑏]                       (2-10) 

And the root mean square height is defined by 

𝜎𝜎ℎ = �1
𝐴𝐴 ∫ ∫ ℎ(𝑥𝑥, 𝑦𝑦)2𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑥𝑥𝑏𝑏

𝑥𝑥𝑎𝑎
𝑦𝑦𝑏𝑏
𝑦𝑦𝑎𝑎

                                              (2-11) 

in which the A is the area of the study pavement surface, and is calculated by 

𝐴𝐴 = (𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑎𝑎)(𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎)                                               (2-12) 
Considering the discontinuity of the point cloud, the RMS height is calculated by  

𝜎𝜎ℎ = �1
𝑁𝑁
∑ ℎ(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                                                   (2-13) 

in which the N is the number of the points in the point cloud. 

Using RMS height to describe macrotexture has two advantages. First, the smaller the size of 

the material applied to the pavement, the smaller the RMS height will be, which is similar to MPD. 

The finer the material, the smaller the MPD. Second, for the same pavement material, the RMS 

height is also reflecting the effect of the aggregate loss, whereas the MPD would only show 

minimal change as the aggregate loss develops. 

2.1.3 Aggregate loss percentage 

Aggregate loss happens in pavement when the bond between the cement and the aggregate 

begins to weaken. As the bond continues to decrease, the fine aggregate strips and then the coarse 

aggregate strips decrease as well. There is not a well-accepted method for quantifying pavement 

aggregate loss. To evaluate the aggregate loss, this thesis uses the aggregate loss percentage, 

denoted as 𝑎𝑎, which is the ratio of the weight of the remaining material denoted as 𝑊𝑊 and the 

weight of the material without any loss denoted as 𝑊𝑊0, The aggregate loss percentage is determined 

via 
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𝑎𝑎 = 𝑊𝑊
𝑊𝑊0

                                                               (2-14) 

If the density of the pavement material can be treated as a constant 𝜌𝜌, the aggregate loss 

percentage is represented as 

𝑎𝑎 = 𝑉𝑉
𝑉𝑉0

                                                                (2-15) 

Since the weight of the aggregate in the pavement is difficult to measure, the aggregate 

percentage is difficult to measure directly in practice. In this thesis, two approaches are proposed 

to evaluate the aggregate percentage. 

The first approach is determining the relationship between the aggregate percentage and the 

macrotexture depth (Li et al. 2012), for example, using RMS height (𝜎𝜎ℎ). Then, the aggregate loss 

can be deducted from the measurable macrotexture depth. As we discussed earlier, for the same 

material, the RMS height and aggregate loss percentage (𝑎𝑎) are two related variables. The larger 

the RMS height, the larger the aggregate loss percentage, and the aggregate loss percentage should 

lean toward 0 as the RMS height close to 0. Accordingly, two possible relationships may meet the 

requirements. One is the linear equation, see Equation 2-16, the other one is exponential equation, 

see Equation 2-17. In this thesis, both two are calculated and evaluated, and it will be shown later 

that the exponential relationship is a better expression of the relationship than the linear one. 

𝑎𝑎 = 𝐴𝐴1𝜎𝜎ℎ + 𝐵𝐵1                                                             (2-16) 
or 

𝑎𝑎 = 𝐴𝐴2𝑒𝑒𝑥𝑥𝑒𝑒 (𝐵𝐵2𝜎𝜎ℎ)                                                      (2-17) 
The second method evaluates the aggregate percentage by its physical meaning represented 

by Equation 2-15. The key is measuring the volume of aggregate in the pavement from the 3D 

model generated from the images. Due to the aggregate loss, those areas lacking aggregate particles 

would become flat with respect to its surroundings, which is illustrated in Figure 2.2 and the 

volume of the remaining aggregate could be calculated from those non-flat areas. The 

measurement procedure includes the following steps: 

(1) generate the 3D model from multi-view images through SfM and MVS; 

(2) determine the flat areas; 

(3) calculate the volume of the remaining aggregates with respect to different aggregate loss 

percentages by calculating the volume of the non-flat areas; 

(4) find the relationship between the calculated volume and the aggregate loss percentage. 
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The relationship between volume (𝑉𝑉) and the aggregate loss percentage (𝑎𝑎) follows the same 

pattern as the relationship between macrotexture and aggregate loss percentage. The larger the 

aggregate loss percentage, the larger the calculated volume, and the calculated volume is supposed 

to approach 0 when the aggregate loss percentage tends to 0. Therefore, both the linear equation, 

see Equation 2-18, and exponential equation, see Equation 2-19, are capable to describe the 

relationship between the calculated volume and the aggregate loss percentage. The following 

results will show that the exponential equation performs better than the linear equation. Moreover, 

it will be shown that the RMS height holds a stronger relation to the aggregate loss percentage, 

and it is recommended to calculate aggregate loss through RMS height instead of using calculated 

volume. 

𝑎𝑎 = 𝐴𝐴3𝑉𝑉 + 𝐵𝐵3                                                           (2-18) 
or 

𝑎𝑎 = 𝐴𝐴4𝑒𝑒𝑥𝑥𝑒𝑒 (𝐵𝐵4𝑉𝑉)                                                      (2-19) 

 

Figure 2.2. Illustration of an intact pavement surface (left) and a pavement surface with serious 
aggregate loss (right). 

2.2 Methodology 

This section introduces the techniques for 3D model generation and analysis used in this thesis.  

First, SfM is introduced. Although the implementation steps of the SfM method vary depending 

on the software packages used, from image acquisition to georeferenced dense point cloud, the 

SfM method has the following three major steps. 

2.2.1 Keypoint generation 

The SfM method aims to identify the common features in consecutive images collected from 

different angles to estimate the interior and exterior orientation parameters for each camera 
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position. Therefore, the first step in SfM implementation is to detect, describe, and match the 

corresponding keypoints between different image-frames. For this purpose, the Scale-Invariant 

Feature Transform (SIFT) algorithm, which is invariant to image scaling, translation, and rotation 

and partially invariant to illumination changes and affine or 3D projection, is proposed (Lowe 

1999; Lowe 2004). SIFT was the most appealing descriptor when it was proposed and has had a 

remarkable performance when it was compared to other descriptors. It is still widely used; however, 

high dimensionality of the descriptor, which prevents faster results, especially for on-line 

applications, is its drawback at the matching step (Bay et al. 2006). Therefore, newer versions have 

been proposed that aim to reduce the complexity of the SIFT method while increasing the speed. 

The Speeded up Robust Features (SURF) algorithm is based on properties similar to SIFT and 

relies on local gradient histograms; however, it uses integral images to reduce the complexity and 

to speed up the process (Calonder et al. 2010).  Upright-SURF (U-SURF), which is a scale 

invariant only version of SURF, assumes camera position horizontal, making the SURF algorithm 

not invariant to image rotation to make the algorithm even faster. Other algorithms proposed to 

further increase the speed of SURF and SIFT algorithms include the Binary Robust Independent 

Elementary Features (BRIEF) proposed by Calonder et al. 2010; Oriented FAST and Rotated 

BRIEF (ORB), which was based on BRIEF (Rublee et al. 2011); (Binary Robust Invariant Scalable 

Keypoints (BRISK) proposed by Leutenegger et al. 2011); and Brief and Efficient SIFT Image 

Matching Algorithm (BE-SIFT) proposed by Zhao et al. 2015). The SIFT algorithm deals with the 

invariance to translation, rotation, and scale, which are four of the six parameters of an affine 

transform. 

As described, all the above algorithms consist of two parts: 1) keypoint detection and 2) 

keypoint description. For example, the SIFT algorithm includes the SIFT detector and SIFT 

descriptor. The detector is used to detect the keypoints on the images. Figure 2.3 is an example of 

all the detected keypoints in one image; and 295,408 keypoints are detected in this photo, which 

are represented by colored dots. The descriptor is conducted for describing the keypoints and 

matching these keypoints by calculating the distance between two points on different images. This 

unique descriptor assures that the keypoints are invariant even after rotation, shift, and scaling. 

After applying the keypoint detection to all the images, the next step is matching the 

correspondence between all keypoints on each image. Figure 2.4 illustrates the keypoint matching 

for two images. 
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(a)                                                    (b) 

Figure 2.3. Keypoints detection conducted by Agisoft Metashape: (a) original image, and (b) 
295,408 keypoints detected for this image. 

 

Figure 2.4. Keypoint matching between two images. 

2.2.2 Bundle adjustment 

In the second step, the interior and exterior orientation parameters for each camera are 

estimated using the feature correspondences and bundle-adjustment algorithm to estimate the 3D 

geometry of the scene. At this stage, the SfM method differs from conventional photogrammetry 

in that SfM does not require GCPs in the scene and separate camera calibration and takes advantage 



 
 

26 

of the redundancy provided by the large number of images and keypoints to estimate the exterior 

orientation, interior orientation, and distortion parameters (Smith et al. 2016). The output of this 

process is an unscaled sparse point cloud having an arbitrary coordinate system as well as the 

relative position and orientation of each camera to the object, which is shown in Figure 2.5.  

 

Figure 2.5. Output of bundle adjustment. The dark points are sparse point cloud generated for the 
object, and the blue rectangles represent the position and orientation of all the images at the time 

it exposed. 

2.2.3 Dense point cloud generation 

In the last step, the point density is increased by implementing Multi-View Stereo (MVS) 

photogrammetry algorithms. Figure 2.6 illustrates the dense point cloud generated from the sparse 

point cloud. The purpose of the algorithms is to reconstruct the 3D model of an object using 

overlapped images collected from different viewpoints and known camera positions (Seitz et al. 

2006). A wide variety of MVS algorithms were proposed in the literature, which include the 

following: Photorealistic Scene Reconstruction by Voxel Coloring (Seitz and Dyer 1997, Seitz and 

Dyer 1999); Patch-based MVS (PMVS) proposed by Furukawa and Ponce 2007, Furukawa and 

Ponce, 2010a; and Bundled Depth-map Merging for MVS proposed by Li et al. 2010. In fact, the 

SfM method ends in the second step outlined above where the sparse point cloud is generated. If 

a dense point cloud is also required in the application, and this is obtained with an MVS algorithm, 

then the name of this method becomes SfM-MVS.  



 
 

27 

 

Figure 2.6. Sparse point cloud (left) and the dense point cloud (right). There are 29,132 points in 
the sparse point cloud, and after densifying the number of points, the dense point cloud can 

extend to 38,510,294. 

The generated point cloud has an arbitrary coordinate system and can be georeferenced by 

providing at least three additional GCPs. As specified above, these GCPs do not need to be marked 

in the field. The features that are clearly visible on the image with known 3D coordinates also can 

be used as GCPs. 

2.2.4 Image-based MPD calculation 

After the point cloud of the study area is generated, MPD can be calculated following the 

methods discussed in Section 2.1.1. 

Ten profiles are measured by LTS for each spot, and the spacings between adjacent profiles 

are calculated. This is achieved by reading the LTS output file to get the spacings between adjacent 

profiles, see Table 2.1. To be consistent with the calculation of LTS, we take 10 profiles along the 

road direction for each spot and maintain the same spacings between adjacent profiles as LTS. For 

each profile, the MPD calculation includes following steps (ASTM 2009). 

(1) Filter the profile and preserve the texture wavelengths ranging from 0.5 mm to 50 mm 

horizontally only; 

(2) Derive the average level by least squares as discussed in Section 2.1.1; 

(3) Divide the profile into two equal segments and calculate the MSDs by finding the 

maximum height deviation of the segments as Equation 2-5; 

(4) The average of the two MSDs is the MPD for this profile. 
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For each spot we can get 10 MPDs for 10 profiles, and the MPD for this spot is determined 

by the average of these 10 MPDs. 

Table 2.1. Spacing between adjacent profiles obtained from LTS. 

Adjacent 
profiles 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

Spacing 
(mm) 7.9174 8.3255 8.621 8.7999 8.8599 8.8001 8.6213 8.326 7.9181 

2.2.5 RMS height calculation 

Calculation of the RMS height includes following steps. 

(1) Deduct the mean surface plane of the 3D model of the pavement using least squares 

method by Equation 2-9; 

(2) Calculate the height deviation ℎ(𝑥𝑥,𝑦𝑦) with respect to the mean surface plane deducted in 

step (1) by Equation 2-10; 

(3) Since the discontinuity of the point cloud, the RMS height is calculated via Equation 2-

13. 

2.2.6 Point cloud segmentation 

The original Otsu’s method proposed by Otsu in 1979 is applied to image segmentation. It 

separates objects from the background based on a characteristic that the gray levels of pixels 

belonging to the object are substantially different from the gray levels of the pixels belonging to 

the background. Otsu suggested minimizing the weighted sum of within-class variances of the 

foreground and background pixels to establish an optimum threshold (Otsu 1979). The 

minimization of the within-class variances is tantamount to the maximization of between-class 

scatter (Otsu 1979, Sezgin 2004). 

Based on the theory of Otsu’s method, it can be applied to point cloud segmentation. The 

height deviation of the point cloud from the multi-view images can be regarded as the gray levels 

of the pixels, and Otsu’s method thus could be implemented to separate the pavement particles 

from the ground surface. The adapted formulations and evaluation of Otsu’s method are discussed 

below in detail (Otsu 1979).  
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Given a point cloud with 𝑁𝑁 points in total, suppose we want to separate it into two classes 𝐶𝐶0 

and 𝐶𝐶1, the optimal threshold is determined by maximizing the between-classes variance 𝜎𝜎𝐵𝐵2: 

𝜎𝜎𝐵𝐵 
2 = 𝜔𝜔0(𝜇𝜇0 − 𝜇𝜇𝑇𝑇)2 + 𝜔𝜔1(𝜇𝜇1 − 𝜇𝜇𝑇𝑇)2                                    (2-20) 

in which the 𝜔𝜔0 and 𝜔𝜔1 are the probabilities of these two classes, the 𝜇𝜇0 and 𝜇𝜇1 are the means of 

these two classes, and the 𝜇𝜇𝑇𝑇 is the total mean of all points. 

Assume the variance of all points is denoted as 𝜎𝜎𝑇𝑇2, an effective metric can be calculated to 

evaluate the goodness of the threshold: 

𝜂𝜂 = 𝜎𝜎𝐵𝐵
2

𝜎𝜎𝑇𝑇
2                                                              (2-21) 

It is noticed that 𝜂𝜂 ranges from 0 to 1, and the larger the value of 𝜂𝜂 the larger the between-classes 

variance, which means the better the performance of the thresholds (Otsu 1979). Moreover, Otsu’s 

method can be extended to multi-classes thresholding (Otsu 1979, Liao 2001, Huang 2009). To 

classify into 𝑘𝑘 classes, the between-classes are determined by  

𝜎𝜎𝐵𝐵2 = ∑ 𝜔𝜔𝑖𝑖(𝜇𝜇0 − 𝜇𝜇𝑇𝑇)2𝑃𝑃
𝑖𝑖=1                                            (2-22) 

The point cloud segmentation in this thesis includes following steps. 

(1) Find the optimal number of classes 𝑘𝑘 using the effective metric in Equation 2-21; 

(2) Segment the point cloud into 𝑘𝑘 classes using the optimal thresholds determined by Otsu’s 

method; 

(3) Reclassify the 𝑘𝑘 classes into 2 classes, one is the flat area of ground surface, the other one 

is the pavement particle. 

Figure 2.7 shows an example of a 3D model of pavement and its segmentation results from 

Otsu’s method. The point cloud is segmented into 5 classes according to the height deviation of 

each point. To further separate the pavement particle from ground surface, we reclassify these 5 

classes into 2 classes. Class 1 is determined to be the flat area of ground surface, and Class 2, 3, 4, 

and 5 are combined to represent the pavement particle. 
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Figure 2.7. Example of a 3D model of pavement (100 mm 90 mm) (left) and its height 
deviation segmentation through Otsu’s method (right, mm). 

2.2.7 Calculation for the volume of remaining aggregate  

We rasterize the point cloud using 0.1 mm × 0.1 mm grids firstly to calculate the volume of 

remaining aggregate. The size of the grid is determined by the average ground spacing of the 3D 

model from images. The ground spacing would be discussed in detail later in Section 3.4. The 

average ground spacing is 0.074 mm for 38 3D models totally, and the maximum ground spacing 

is 0.13 mm. 

Secondly, assume the average height deviation of the points belonging to the flat area is 

denoted as ℎ0, the relative heights of those points belonging to aggregate particles with respect to 

flat area, denoted as 𝐻𝐻(𝑥𝑥,𝑦𝑦), are obtained by 

𝐻𝐻(𝑥𝑥, 𝑦𝑦) = ℎ(𝑥𝑥,𝑦𝑦) − ℎ0                                                  (2-23) 

According to the number of points within a grid, there are three scenarios for volume 

calculation, see Figure 2.8. Scenario 1, for a grid that has only one points inside, see Figure 2.8 (a), 

the volume of this grid (𝑉𝑉1) is calculated by 

𝑉𝑉1 = 0.01 × 𝐻𝐻(𝑥𝑥, 𝑦𝑦)                                                   (2-24) 
Scenarios 2, for a grid contains two points, see Figure 2.8 (b), the volume of this grid is calculated 

by 

𝑉𝑉2 = 0.01 × 1
2

(𝐻𝐻(𝑥𝑥1,𝑦𝑦1) +  𝐻𝐻(𝑥𝑥2,𝑦𝑦2))                                     (2-25) 
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Scenario 3, for a grid contains no less than three points, see Figure 2.8 (c), a plane can be 

determined by these points and the relative heights of the 4 corners of the grid can be calculated, 

then the volume of this grid (𝑉𝑉3) can be obtained. Finally, the volume of the remaining aggregate 

is obtained by summing up the volume of grids of all three scenarios, see Equation 2-26. 

𝑉𝑉 = ∑(𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3)                                                  (2-26) 

 
(a)                                                      (b)                                                   (c) 

Figure 2.8. Three scenarios for calculating the volume of a grid. 
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 EQUIPMENT AND DATA COLLECTION 

3.1 Equipment 

Both a laser texture scanner and a smartphone were used for data collection. The laser texture 

scanner used was last calibrated in 2018. The expected MPD measurement range is from 0.5 mm 

to 2 mm, which is dependent on the material of the pavement and the years of utilization. The 

classical way to conduct macrotexture measurement is to use a laser texture scanner (LTS). Figure 

3.1 shows the Ames LTS Model 9400, which can calculate the pavement’s mean profile depth 

(MPD), texture profile index (TPI), estimated texture depth (ETD), and root mean square (RMS). 

The characteristics of LTS are listed in Table 3.1. The LTS immediately displays the final results 

on the LCD display. As for measuring MPD, the LTS can scan ten 100 mm-length-profiles along 

the road direction, and these ten profiles are unevenly spaced across the road direction. The average 

point spacing within each profile was 0.014286 mm. The MPD for each profile was calculated and 

the arithmetic mean of the ten MPDs was considered as the MPD over the area measured. In this 

study, the LTS was mainly used for measuring the MPD for a pavement surface.  

  

Figure 3.1. LTS model 9400 (left); iPhone 8 plus (right). 

Table 3.1. Characteristics of LTS model 9400. 

Characteristics Values Characteristics Values 

Scan area/mm 107.95 × 72.01 Triangulation Angle at the center of range 32° 

Vertical Resolution/mm 0.015 Dot size at center of range/μm 50 

Maximum Length 
Resolution/mm 0.015 Dot size at max and min range/μm 220 

Maximum Width 
Resolution/mm 

0.0635 Max laser sampling speed/kHz 1 
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Table 3.2. Characteristics of iPhone 8 Plus camera. 

Characteristics Values 

Wide-angle camera aperture f/1.8 

Telephoto camera aperture f/2.8 

Image dimension  
pixel size  

The pavement surface images were collected with a commonly used smartphone, the iPhone 

8 Plus, which has two 12 MP rear cameras: 1) a wide-angle camera with a f/1.8 aperture and 2) a 

telephoto camera with a f/2.8 aperture. The wide-angle camera with a f/1.8 aperture is used to 

collect images in this thesis. The dimension of each image was 4032 pixels × 3024 pixels. The 

detailed characteristics of iPhone 8 Plus is shown in Table 3.2. After the images were collected, a 

3D point cloud of the pavement surface was reconstructed using Agisoft Metashape.  

To provide control and reference for measurement, a control frame was placed in the scene 

when the images were collected. Two control frames were made. The first control frame A was 

used as a reference mark for 3D reconstruction when collecting the pavement surface images 

analyzing MPD on INDOT test site and road sites, as shown in Figure 3.2 (a). The dimension of 

the central rectangular area is the same size as the LTS, which is 152 mm long and 90 mm wide, 

and is made of plastically laminated hard paper. There are many marking points on the surface of 

the template, which are used as references. Moreover, four objects denoted as A1, A2, A3, and A4 

with different heights are glued on the template, which are used as the height ruler. The relative 

heights of these four objects are 8.15 mm, 3.20 mm, 2.90 mm, and 3.36 mm measured by a vernier 

caliper provides a precision to 0.01 mm, and the distances between each object are measured by 

the same vernier caliper. Table 3.3 summarizes the measurements of the GCPs on control frame 

A using the vernier caliper. The dimensions of the rectangular area enclosed by these four objects 

is the same as the scan area of the LTS, which is 100 mm long and 90 mm wide, to assure that the 

observation area is consistent for both the LTS and the smartphone. 

The second framework B was designed as a reference for analyzing aggregate loss. The 

dimension of the central rectangular area is 150 mm long and 90 mm wide. The dimension of the 

entire board is 270 mm long, 180 mm wide, and 5 mm high. Eight objects denoted as B1, B2, B3, 

B4, B5, B6, B7, and B8 with different heights are glued on the template. The relative heights of 

these eight objects are 7.5 mm, 10 mm, 7.5 mm, 6.5 mm, 7.5 mm, 10 mm, 7.5 mm and 6.5 mm. 
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This control frame subsequently printed out via a 3D printer using polylactide material, and the 

3D printer used is a Lulzbot Taz 6 printer. See Figure 3.2 (b).  

Table 3.3. Summary on the measurements of the GCPs on control frame A. 

 Obj. Measurement 1 
(mm) 

Measurement 2 
(mm) 

Measurement 3 
(mm) 

Average 
(mm) 

Height 

A1 8.23 8.13 8.09 8.15 

A2 3.20 3.21 3.20 3.20 

A3 2.92 2.90 2.88 2.90 

A4 3.35 3.40 3.34 3.36 

Distance 

A1-A2 120.92 120.64 120.72 120.76 

A2-A3 115.07 114.79 114.72 114.86 

A3-A4 119.30 119.48 119.47 119.42 

A4-A1 111.58 111.28 111.25 111.37 

A1-A3 166.32 166.01 165.69 166.01 

A2-A4 164.11 163.97 163.85 163.98 

  
(a)                                                                       (b) 

Figure 3.2. Two control frames made for image collection. (a) Control frame A used for 
collecting images for MPD calculation. (b) Control frame B used for collecting images for 

aggregate loss analysis. 
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3.2 Data collection procedure 

Since INDOT has been successfully using LTS to measure MPD for several years, the MPD 

measured by LTS is assumed to be accurate and reliable. Therefore, the MPD by LTS is used to 

validate the accuracy of the proposed method in this thesis. As shown in Figure 3.3, the data 

collection procedure for MPD analysis of the proposed method includes following steps. 

(1) Choose a spot randomly and mark the position at the pavement surface. 

(2) Apply control frame A to the spot along the road direction and apply the LTS to that spot, 

making sure that the laser scans are along the road direction, while scanning the spot and 

calculating the MPD. 

(3) Remove the LTS, take between 20~32 images for the spot using a smartphone following 

a circle trace, which is about 400 mm high to the area center and the diameter is about 600 mm. 

(4) Reconstruct the surface based on the images and calculate the MPD from the 3D surface 

model. 

(5) Move to the next spot and repeat steps (1) to (4) until all spots completed. 

 
Step (2) 

 
Step (3) 

  
Step (4) 

Figure 3.3. Process of data collection on road for MPD measurement. 

The data collection procedure for aggregate loss analysis includes the following steps. 

(1) Prepare the samples plates with different aggregate loss percentage. 

(2) Apply control frame B on one sample plate. 

(3) Collect 40 images of the area using a smartphone following a circle trace which is about 

400 mm high above the area center and the diameter is about 600 mm.  

(4) Reconstruct the surface based on the images and calculate the MPD from the 3D surface 

model. 

(5)  Move to the next sample plate and repeat steps (2) to (4) steps until completion. 
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3.3 Sites of data collection 

3.3.1 INDOT test site 

The test site is located at the INDOT Division of Research and Development, West Lafayette, 

IN, as shown in Figure 3.4 (a). There are four different types of pavements tested. From Figure 3.4 

(b), it can be seen that the righthand lane is Portland cement concrete (PCC) pavement; the center 

lane is 3-year-old hot-mix asphalt (HMA) pavement; and the lefthand lane is 10-year-old HMA 

pavement. A 1 m × 1 m high friction surface treatment (HFST) area is constructed on the 10-year-

old HMA pavement. The measurements were performed on the above-mentioned four different 

pavements on December 3, 2018. For each pavement, there are two testing spots collecting data.  

          
(a)                                                       (b) 

Figure 3.4. Testing site at INDOT. 

Table 3.4. Summary of data collected at the INDOT test site spots.

Type of 
pavement Date 

LTS Image method 

Number of 
spots 

Number of 
spots 

Number of images 
for each spot 

10-year-old 
HMA 12/3/2018 2 2 27 

3-year-old 
HMA 12/3/2018 2 2 22, 29 

HFST 12/3/2018 2 2 24, 25 



 
 

37 

3.3.2 Road sites 

State road 32 

The HFST on SR 32 was completed on August 13, 2018. Before the HFST, the existing 

pavement surface was a 9.5 mm HMA mixture. On the day of treatment, the LTS was applied and 

11 groups of MPDs were collected for quality control. About eight months after treatment on April 

5, 2019 the measurements were collected again at the three testing spots. The detailed information 

of data collected on SR 32 is shown in Table 3.5, and Figure 3.5 shows a glance of the SR 32. 

Traffic control was necessary during the measurement process; and due to a time constraint, the 

LTS and smartphone testing was conducted side by side simultaneously instead of using the exact 

same locations consecutively. 

State road 446 

The HFST on SR 446 was finished on October 19, 2018. Before the HFST, the existing 

pavement surface was single-layer chip seal. On the day of treatment, the LTS was applied and 10 

groups of MPDs were collected for quality control. About six months after treatment on April 11, 

2019, 10 groups of measurements were collected again. Among the 10 spots, both the LTS and 

smartphone collected laser data and images at seven spots, and only a smartphone was used to 

collect images at the other three spots. The detailed information of data collected on SR 446 is 

shown in Table 3.5, and Figure 3.5 shows a glance of the SR 446. Traffic control was necessary 

during the measurement process; and due to a time constraint, the LTS and smartphone testing was 

conducted side by side simultaneously instead of using the exact same location consecutively. 

State road 205 

The HFST construction at SR 205 was finished on October 23, 2018. Before the HFST, the 

existing pavement surface was single-layer chip seals. On the day of construction, the LTS was 

applied and 11 groups of MPDs were collected for quality control. Six months after treatment on 

April 16, 2019, 12 groups of measurements were collected again. Among these 12 spots, both the 

LTS and smartphone collected laser data and images. The detailed information of data collected 

on SR 205 is shown in Table 3.5, and Figure 3.5 shows a glance of the SR 205. 
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Figure 3.5. Road sites on SR 32 (left), SR 446 (middle) and SR 205 (right). 

Table 3.5. Summary of data collected at the test spots on State Roads. 

3.3.3 Sample plates for aggregate loss analysis 

To quantify and analyze the aggregate loss, seven sample plates with different aggregate loss 

percentages are used. As the aggregate percentage decreased, less material remained on the plate, 

which simulates the situation when pavement aggregate loss becomes severe. The procedure for 

preparing the sample plates was as follows. 

(1) Weigh the amount of HFST material needed for a 15 cm × 15 cm area for the total 

weight 𝑊𝑊0. 

(2) Take only part of the total material and apply them on a 15 cm × 15 cm plate. The weight 

of the material actually applied on the plate divided by the total weight 𝑊𝑊0 is the 

aggregate percentage; for example, 12.5% means that 12.5% of the material remains on 

the sample plate. 

(3) Repeat steps (1) and (2) to make seven sample plates with 12.5%, 25%, 37.5%, 50%, 

62.5%, 75% and 100% aggregate, which are shown in Figure 3.6 below 

 

Day of Construction After Construction 

LTS LTS Image method Date 
2019 

Number of 
spots 

Date 
2018 

Number 
of spots 

Number 
of spots 

Number of images 
for each spot  

SR 32 11 8/13 3 3 20-22 4/5 

SR 446 10 10/17 7 10 20-32 4/11 

SR 205 11 10/22 12 12 22-29 4/16 
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(1) 12.5%                  (2) 25%                     (3) 37.5%                     (4) 50% 

 
(5) 62.5%                      (6) 75%                    (7) 100% 

Figure 3.6. Seven sample plates (150 mm×150 mm) for aggregate loss analysis. 

3.4 Quality of the 3D models from images 

For the MPD calculation, approximately 20 to 32 images were collected at each testing spots 

and over 700 images were collected in total. Control frame A was used and four ground control 

points were chosen for georeferencing. The average error of these four GCPs was 1.595 mm along 

the X direction, 1.077 mm along the Y direction, and 0.133 mm along the Z direction. After 

georeferencing with the GCPs and densification, 31 3D models with a 517  average coverage 

area were obtained. The average number of points for each point cloud is 10,246,788 and the 

average ground spacing is 0.071 mm. Once the ground coordinates of the point cloud of the 3D 

model are computed, these points are reprojected to the pixels on each image using the prior 

acquired camera position. Thus, the discrepancy between the reprojected pixel and the original 

pixel is the residual. Based on this concept, the average RMS residual of the tie points is 1.012 

mm on the ground and 3.114 pixel on the image, and the average maximum residual of the tie 

points is 3.167 mm on the ground and 30.890 pixels on the image. Figure 3.7 shows an example 

of the residual distribution of the tie points. It can be seen that the residuals are in normal 

distribution in X and Y direction. And the characteristics of this residual distribution also indicates 

the residuals of the tie points are reasonable, see Table 3.8. 
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Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11 briefly present the 31 3D model generated. 

It can be seen that the center of the model maintains high quality and the surrounding margin of 

the model is the part where distortion occurred. This distortion mainly originates from the lens 

distortion of the original images, which can be seen at the margin of photos. The lens distortion 

can be largely reduced through lens calibration. In this research, the study area locates at the center 

of the 3D model, so the lens distortion has minimal impact on calculation. Another noticeable 

characteristic is the blank area without any points that exists on the white frame. This blank area 

occurred because no obvious feature points can be detected by SIFT or SURF at the first step of 

SfM, and the sparse point cloud produces an entire blank area in the dense point cloud. 

For aggregate loss analysis, seven sample plates were produced with different aggregate loss 

percentages, and 40 images were collected from each sample plate for a total of 280 images. 

Control frame B was used and eight GCPs were chosen for georeferencing. The average error of 

these eight GCPs was 0.145 mm along the X direction, 0.114 mm along the Y direction, and 0.343 

mm along the Z direction. The error of in the GCPs for control frame B in the X, Y direction was 

significantly less compared to control frame A. The reason for the difference was that the locations 

of the GCPs on each image for control frame A were selected manually, which enlarged the 

possibility of error. For control frame B made via a 3D printer, on the other hand, the locations of 

the GCPs on each image were identified automatically with higher accuracy. The GCP errors for 

control frame B in the Z direction were slightly larger than control frame A because the z 

coordinates for control frame A were measured by vernier calipers, and those Z coordinates were 

used for control frame B as the designed value of the framework. Thus, that error was introduced 

during the 3D printing.  

After georeferencing and densification, seven 3D models with a 435  average area were 

obtained. The average number of points for each point cloud is 7,328,176, and the average ground 

spacing is 0.077 mm. The average RMS residual of the point cloud is 0.687 mm on the ground and 

1.631 pixels on the image; and the average maximum residual of the point cloud is 2.094 mm on 

the ground and 25.794 pixels on the image. The residual significantly decreased compared to that 

of the models georeferenced with control frame A. The accuracy of the 3D model is improved by 

improving the accuracy of the GCPs using control frame B. Figure 3.12 briefly presents these 3D 

models.  
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Table 3.6. Average RMS residuals of GCPs used by two control frames. 

Control frame Number of 
GCPs 

Average X 
residual (mm) 

Average Y 
residual (mm) 

Average Z 
residual (mm) 

A 4 1.595 1.077 0.133 

B 8 0.145 0.114 0.343 

Table 3.7. Summary of the residuals of 3D models. 

Control 
frame 

Number of 3D 
models 

Average RMS residual Average maximum 
residual 

mm pixels mm pixels 

A 31 1.012 3.114 3.167 30.890 

B 7 0.687 1.631 2.094 25.794 

  

Figure 3.7. Residual distribution of tie points of spot 1 at INDOT test site in X direction (left) 

and Y direction (right). 

Table 3.8. Characteristics of the residual distribution in Figure 3.7. 

 Mean 𝜇𝜇 STD 𝜎𝜎 Points’ residual 
within 𝜇𝜇 ± 𝜎𝜎 

Points’ residual 
within 𝜇𝜇 ± 2𝜎𝜎 

Residual in X direction -0.0273 0.3430 82.56% 95.01% 

Residual in X direction -0.0117 0.1814 8.50% 95.61% 
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(1) Spot 1              (2) Spot 2                 (3) Spot 3 

   
(4) Spot 4               (5) Spot 5                (6) Spot 6 

Figure 3.8. Six 3D models for MPD measurement at INDOT test site. 

   
(1) Spot 1                     (2) Spot 2                (3) Spot 3 

Figure 3.9. Three 3D models for MPD measurement at SR 32. 
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(1) Spot 1                 (2) Spot 2                  (3) Spot 3                 (4) Spot 4 

    
(5) Spot 5                 (6) Spot 6                   (7) Spot 7                (8) Spot 8 

  
  (9) Spot 9                 (10) Spot 10 

Figure 3.10. Ten 3D models for MPD measurement at SR 446. 
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(1) Spot 1                  (2) Spot 2                    (3) Spot 3                     (4) Spot 4 

    
 (5) Spot 5                   (6) Spot 6                    (7) Spot 7                    (8) Spot 8 

    
(9) Spot 9                   (10) Spot 10                 (11) Spot 11                (12) Spot 12 

Figure 3.11. Twelve 3D models for MPD measurement at SR 205. 

    
(1) 12.5%                  (2) 25%                     (3) 37.5%                         (4) 50% 

    
 (5) 62.5%                    (6) 75%                       (7) 100%                     

Figure 3.12. Seven 3D models of sample plates for aggregate loss analysis. 

  



 
 

45 

 RESULTS AND EVALUATION 

A comparison between the MPD results of the proposed image-based method and LTS is 

presented in this chapter utilizing the four testing spots in Chapter 3. The results of the aggregate 

loss evaluation are presented as well. 

4.1 MPD results and evaluation 

4.1.1 MPD results for test site at INDOT 

The first data collection location was the test site located at INDOT, where six pairs of LTS 

and image data were collected from six different spots at the test site. The MPD results are listed 

in Table 4.1. Among these six pairs of data, the first two were collected from 3-year-old HMA 

pavement, the second two pairs were collected from 10-year-old HMA pavement, and the last two 

pairs were collected from the HFST pavement. The MPD results listed in Table 4.1 are incremental. 

The MPD of spots 1 and 2 represent the macrotexture of 3-year-old HMA pavement whose average 

MPD was 0.624 mm. The MPD of spots 3 and 4 represent the macrotexture of 10-year-old HMA 

pavement whose average MPD was 1.299 mm, which was larger than the 3-year-old HMA 

pavement’s MPD. After 10 years the asphalt had been stripped and the gravel layer was exposed 

which accounted for its larger MPD than the 3-year old HMA pavement. Finally, the MPD of spots 

5 and 6 represent the macrotexture of the HFST pavement, which was larger than that the MPD of 

both HMA pavements. Accordingly, as the times goes on, the MPD of pavement would decrease 

first then increase, and the MPD of HFST is improved by 200% compared to the 3-year-old 

pavement and by 50% with respect to the 10-year-old pavement. Applying HFST on the existing 

old road is an effective way to increase the pavement friction. 

As shown in Table 4.1, the MPD measured by LTS ranged from 0.515 mm to 2.073 mm, and 

the MPD based on images ranged from 0.559 mm to 2.030 mm. The average MPDs for 3-year-old 

HMA pavement, 10-year-old HMA pavement, and HFST pavement at the six INDOT testing spots 

measured by LTS were 0.624 mm, 1.299 mm, and 1.911 mm and the average MPDs based on 

images were 0.599 mm, 1.316 mm and 1.947 mm, respectively. The difference between the 

average MPDs for the two methods was less than 6%. 
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Three spots had differences larger than 10%, and detailed investigations for these three spots 

therefore were conducted. As mentioned in Section 3.1, the LTS would scan ten profiles during 

each measurement and take the average of these ten profiles as the MPD for this spot, and the 

proposed method does the same MPD measurement procedure.  

Figure 4.1 shows the calculated MPDs of ten profiles from both LTS and the proposed method 

for spots 2, 5, and 6 using 3D models. Among these ten profiles, for spot 2, the fifth and eighth 

profiles show larger discrepancy than the others. The fourth and fifth profiles were blunders for 

spot 5, and the eighth profile was a blunder for spot 6. It was clearly shown that there were blunders 

for both the LTS data and the image data, but the average MPDs from both methods were relatively 

consistent.  

   

Figure 4.1. Comparison between MPDs of 10 profiles for spot 2 (left), spot 5 (middle) and 
spot 6 (right) at INDOT.  

Table 4.1. MPD from LTS and images for the INDOT test site. 

Type of 
pavement 

3-year-old HMA 
pavement 

10-year-old HMA 
pavement HFST pavement 

Spot ID 1 2 
Avg. 

3 4 
Avg. 

5 6 
Avg. 

Image 
method 

# of 
images 27 27 22 29 25 24 

MPD 
(mm) 0.559 0.639 0.599 1.244 1.388 1.316 2.030 1.864 1.947 

LTS 
method 

MPD 
(mm) 0.515 0.733 0.624 1.275 1.323 1.299 1.749 2.073 1.911 

Difference of 
MPD (%) 8.6 -12.9 -2.15 -2.4 4.9 1.25 16.0 -10.1 2.95 
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4.1.2 MPD results for road sites 

The MPDs at the three road sites were collected by LTS on the date of the HFST construction, 

the date for which are shown Table 4.2. According to ASTM E1845, the average MPD measured 

construction date reflects the macrotexture of the HFST pavement right after construction, which 

was 2.075 mm, 1.590 mm, and 1.860 mm respectively for SR 32, SR 446, and SR 205. Several 

months later, these three state road sites were revisited and LTS and images were both collected. 

Table 4.2 summarized the average MPD measured by LTS and images for each revisited road sites. 

Table 4.2. Summary of the MPD of three road sites by LTS and images. 

 

On Construction After Construction 

LTS Month 
after 

LTS Image 
# of 
spots 

Avg. MPD 
(mm) 

# of 
spots 

Avg. MPD 
(mm) 

# of 
spots 

Avg. MPD 
(mm) 

SR 32 11 2.075 7.7 3 1.315 3 1.393 

SR 446 10 1.590 5.8 7 1.259 10 1.302 

SR 205 11 1.860 5.8 12 1.243 12 1.235 

State Road 32  

The first road revisited was SR 32 after eight months. Three pairs of LTS and image data were 

collected from three different spots on SR 32. The results of calculated MPD from both LTS and 

images are listed in Table 4.3.  

State Road 446  

SR 446 was the second road revisited after six months, where seven groups of LTS data and 

ten groups of image data were collected from seven and ten correspondent spots on SR 446. The 

results of the calculated MPD from both the LTS and the images are listed in Table 4.4.  

State Road 205 

SR 205 was revisited after six months, where 12 pairs of LTS and image data were collected 

from 12 different test spots. The results of the calculated MPD from both the LTS and the images 

are listed in Table 4.5.  

Based on the LTS acquisition data on these three state roads, the average MPD of the HFST 

pavement is 1.272 mm after six to eight months. This is a 30.8% reduction of the MPD after six to 

eight months of construction compared to the average MPD measured by LTS on the construction 
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date. According to Tables 4.3, 4.4, and 4.5, there are several large variations of the differences of 

MPD between two methods among the 22 spots in total. In addition to the blunders, the average 

MPDs from the proposed image-based method were consistent with the average MPDs from LTS. 

Table 4.3. MPD from LTS and image-based methods for SR 32 about 8 months after the 

construction. 

Roads Spot ID 
Image LTS MPD 

(mm) Diff. (%) 
Number of Images MPD (mm) 

SR 32 

1 22 1.401 1.504 -6.8 

2 20 1.562 1.391 12.3 

3 22 1.215 1.05 15.7 

Average 1.393 1.315 5.9 

Table 4.4. MPD from LTS and image-based methods for SR 446 about 5 months after 
construction. 

Roads Spot ID 
Image LTS MPD 

(mm) Diff. (%) 
Number of Images MPD (mm) 

SR 446 

1 20 1.075 \ \ 

2 20 1.143 \ \ 

3 29 1.612 \ \ 

4 29 1.072 1.178 -9.0 

5 26 1.579 1.353 16.7 

6 26 1.520 1.318 15.3 

7 30 0.913 1.092 -16.4 

8 25 1.524 1.408 8.2 

9 29 1.339 1.201 11.5 

10 32 1.240 1.266 -2.1 

Average 1.302 1.259 3.4 
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Table 4.5. MPD from the LTS and image-based methods for SR 205 about 5 months after 
construction. 

4.1.3 MPD for any direction 

Since the 3D model of pavement already has been reconstructed from images, the MPD for 

any direction could be calculated for consideration. The profiles of 18 directions were calculated 

for the MPD. Direction 𝜃𝜃 ranged from 0° to 180° and was evenly spaced. The direction along the 

road was set at 0°, and the direction perpendicular to the road was 90°. Figure 4.2 shows the results 

of the calculated MPD for any direction for the six testing spots at INDOT. Figure 4.2 shows that 

a direction 10° to the direction along the road has the largest MPD, and the direction perpendicular 

to the road has the smallest MPD. The results show that the friction across road direction would 

be largely reduced after a period of traffic and may cause severe safety concern especially at the 

curves of roads. 

Roads Spot ID 
Image LTS MPD 

(mm) Diff. (%) 
Number of Images MPD (mm) 

SR 205 

1 29 0.944 1.020 -7.4 

2 29 1.025 1.102 -7.0 

3 25 1.003 1.107 -9.4 

4 25 1.167 1.162 0.5 

5 23 1.164 1.195 -2.6 

6 26 1.456 1.222 19.2 

7 25 1.132 1.258 -10.0 

8 26 1.149 1.263 -9.0 

9 26 1.489 1.286 15.8 

10 26 1.201 1.341 -10.5 

11 22 1.693 1.442 17.4 

12 25 1.391 1.516 -8.3 

Average 1.235 1.243 -0.9 
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Figure 4.2. MPD for any direction for six testing spots at INDOT. 

4.1.4 Summary 

The comparison between the MPD results from the LTS and image data was illustrated in the 

two sections above. 790 images were collected and LTS was conducted at 31 spots. The MPDs 

from the LTS ranged from 0.515 mm to 2.073 mm, and the MPDs based on images ranged from 

0.559 mm to 2.030 mm. The MPD difference at 22 spots of the 31 spots was less than 12% between 

the two methods, and the maximum MPD difference between the two methods is less than 20%. 

When the average MPD of each road site was considered, the maximum difference was less than 

6%. These discrepancies indicate that when MPD was regarded as expressing the macrotexture of 

the pavement surface, the MPD calculated based on multiple images by a smartphone was a 

dependable and economically feasible alternative method compared to LTS. 

4.2 Evaluation of Aggregate Loss 

4.2.1 Evaluate aggregate loss via RMS height  

We will use image-based method for the aggregate loss evaluation. Although MPD is 

commonly used to describe macrotexture, it cannot reflect the aggregate loss. After the 3D models 

were reconstructed for the seven sample plates, the MPDs were calculated according to ASTM 

E1845-09. The MPDs calculated for the seven sample plates with different aggregate loss 

percentage indicated the limitation of MPD that there were no large discrepancies between the 
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MPDs for the different aggregate loss situations as can be seen in Table 4.6. As mentioned 

previously the MPD locates the maximum height deviation of several profiles instead of 

considering the macrotexture of the entire pavement surface. In other words, very different 

pavement surface conditions are possibly to have the same MPD. 

Table 4.6. Calculated MPD of sample plates with different aggregate loss percentage. 

Aggregate Loss 
Percentage  12.5% 25% 37.5% 50% 62.5% 75% 100% 

MPD (mm) 1.224 1.451 1.278 1.279 1.459 1.576 1.540 

Therefore, the RMS height will indicate the advantages of describing the macrotexture 

comprehensively compared to the MPD since it takes all the height deviations of the pavement 

surface into consideration. The calculated RMS height for each aggregate loss sample plate is 

shown in Table 4.7. Li et al. stated in 2012 that surface macrotexture can be related to aggregate 

loss since the excessive aggregate loss will cause catastrophic decrease in macrotexture depth. 

Theoretically, the sample plate with the smallest aggregate percentage at 12.5% means only that 

12.5% of the material remaining has the smallest macrotexture depth, and the sample plate with 

the largest aggregate percentage of 100% means that no aggregate loss and should have the largest 

macrotexture depth. The decreasing aggregate loss percentage from 100% to 12.5% therefore 

would lead to a continuous decrease in the macrotexture depth. The trend of RMS height with 

respect to different aggregate percentages is illustrated in Figure 4.3 which indicates the 

relationship between macrotexture and aggregate loss. 

Besides aggregate loss, one other aspect to take into consideration regarding macrotexture 

depth is the particle size of the pavement surface material. The impacts of aggregate loss and 

particle size on macrotexture depth are independent. In other words, the RMS height and MPD 

would be different for different material with the same aggregate loss condition and could be 

identical for different materials with different aggregate loss conditions as well. 

The calculated RMS height with respect to different aggregate percentages is shown in Table 

4.7 below. As we expected, the RMS height decreases as the aggregate loss percentage decreases. 

To find the relationship between aggregate loss percentage and RMS height, we tried two 

possible fitting as mentioned earlier. The first one is linear regression, see Figure 4.3 (a), and the 
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linear relationship is determined by Equation 4-1. It is obvious that the linear relationship does not 

meet the requirement that the predicted aggregate loss percentage is way far from 0 when the RMS 

height decreases to 0. The exponential fitting is shown in Figure 4.3 (b), and the relationship is 

determined by Equation 4-2. The exponential equation performs better than linear equation that 

the predicted aggregate loss percentage approaches 0 as the RMS height tend toward 0. The 

aggregate loss percentage is possible to be 0 theoretically, but it will never be 0 exactly in practice 

due to noise from measurement. 

𝑎𝑎 = 258.35𝜎𝜎ℎ − 109.37                                                   (4-1) 

or 

𝑎𝑎 = 2.09𝑒𝑒𝑥𝑥𝑒𝑒 (4.96σh)                                                    (4-2) 

Table 4.7. Calculated RMS height of sample plates with different aggregate loss percentage. 

Aggregate Loss 
Percentage  12.5% 25% 37.5% 50% 62.5% 75% 100% 

RMS height (mm)  0.509 0.544 0.556 0.696 0.572 0.726 0.765 

  
(a)                                                                        (b) 

Figure 4.3. Illustration of the relationship between aggregate loss percentage and RMS height 
using (a) linear regression and (b) exponential fitting.  

The exponential fitting is further evaluated quantitatively. Table 4.8 lists the residuals of the 

exponential fitting. Although the number of residuals is small since small number of sample plates, 

the average of the residual is 0.5670%, which is close to 0, shows reasonable residuals of the fitting 
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model. The root mean square error (RMSE) of the exponential fitting is 14.601, and the R-squared 

is 0.8359 shows that 83.59% of the total variants can be explained by the exponential fitting model. 

Table 4.8. Residuals of exponential fitting for aggregate loss percentage on RMS height. 

RMS height (mm)  0.509 0.544 0.556 0.696 0.572 0.726 0.765 

True aggregate loss 
percentage  12.5% 25% 37.5% 50% 62.5% 75% 100% 

Calculated aggregate 
loss percentage 26.22% 31.07% 33.02% 66.18% 35.73% 76.66% 93.05% 

Residuals (%) -13.72 -6.07 4.48 -16.18 26.77 -1.66 6.95 

4.2.2 Evaluate aggregate loss via volume 

Another way to evaluate the aggregate loss besides analyzing the aggregate loss by 

macrotexture measurement is considering the physical meaning of aggregate loss by its volume. 

According to Equation 2-12, the ratio of the volume of the remaining aggregate and the volume of 

the aggregate without any loss among the same area is the aggregate loss percentage. Therefore, 

we may measure the aggregate loss percentage by finding the relationship between aggregate loss 

percentage and the volume of the remaining. 

Due to excessive aggregate loss, the ground under the first layer of pavement exposed has a 

flat appearance. To calculate the volume of the remaining aggregate, the first step was to separate 

the objects from the ground using Otsu’s method. One problem that needed to be solved for Otsu’s 

method was the optimal number of classes. We implemented Otsu’s method with different 

numbers of classes for seven sample plates, and the effectiveness was calculated to evaluate the 

goodness of the thresholding (see Figure 4.4). As the number of classes increased, the effectiveness 

increased sharply at first and then remained somewhat steady. Suppose the number of classes is 

denoted as 𝑘𝑘, the effectiveness of this number of classes is 𝜂𝜂𝑃𝑃. The best number of classes is the 

one that satisfies Equation 4-3. The optimal numbers of classes for the seven sample plates are 

shown in Table 4.9.  

𝜂𝜂𝑘𝑘−𝜂𝜂𝑘𝑘−1
𝜂𝜂𝑘𝑘−1

< 0.1 & 𝜂𝜂𝑃𝑃 > 0.9                                                  (4-3) 
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Figure 4.5 compares the results of Otsu’s method and the original model side by side in detail. 

The point cloud for the 12.5% sample plate is classified into 4 classes, and the others are divided 

into 5 classes. Further, Class 1 is determined to be the flat area of the ground, and the rest classes 

are combined to be the remaining aggregate. From Figure 4.5, it can be seen that the area of the 

ground for a low aggregate percentage was underestimated, such as the 12.5% sample plate, while 

the area of ground for a high aggregate percentage overestimated, such as the 100% plate. Then, 

the volumes of the aggregates for the seven sample plates were measured (see Table 4.9).  

Table 4.9. Optimal number of classes and volume of aggregate remained on each sample plate. 

 

 

Figure 4.4. Effectiveness of thresholding vs. number of classes for seven sample plates. 

Aggregate Loss 
Percentage  12.5% 25% 37.5% 50% 62.5% 75% 100% 

Optimal k 4 5 5 5 5 5 5 

Volume ( ) 27.217 24.817 30.291 34.070 27.288 34.703 39.133 
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(a) 12.5%                                                        (b) 25% 

 
(c) 37.5%                                                        (d) 50% 

Figure 4.5. Comparison between original 3D model and the thresholding results of Otsu’s 
method for seven sample plates. 
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Figure 4.5. Continued. 

 
(e) 62.5%                                                        (f) 75% 

                        
(g) 100%                                                 (h) Legend  

To find the relationship between aggregate loss percentage and volume of the remaining 

aggregate, we tried two possible fitting too. The first one is linear regression, see Figure 4.6 (a), 

and the linear relationship is determined by Equation 4-4. Obviously, the linear relationship does 

not meet the requirement that the predicted aggregate loss percentage is way far from 0 when the 

volume of the remaining aggregate decreases to 0. The exponential fitting is shown in Figure 4.6 

(b), and the relationship is determined by Equation 4-5. The exponential equation performs much 

better than linear equation that the predicted aggregate loss percentage approaches 0 as the volume 
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decreases to 0. Theoretically, the aggregate loss percentage should be 0 when the volume is 0, but 

it will never be 0 exactly practically due to the noise from measurement.  

𝑎𝑎 = 4.85 × 10−3𝑉𝑉 − 98.98                                                   (4-4) 
or 

𝑎𝑎 = 2.54𝑒𝑒𝑥𝑥𝑒𝑒 (9.37 × 10−2V)                                                (4-5) 

  
(a)                                                                        (b) 

Figure 4.6. Illustration of the relationship between aggregate loss percentage and volume of 
remaining aggregate using (a) linear regression and (b) exponential fitting. 

To evaluate the exponential fitting quantitatively. Table 4.10 lists the residuals of the 

exponential fitting for the relationship between aggregate loss percentage and volume. The average 

of the residual is 1.333%, which is close to 0, shows reasonable residuals of the fitting model. The 

RMSE of the exponential fitting is 16.1086%, and the R-squared is 0.8002 shows that 80.02% of 

the total variants can be explained by the exponential fitting model. 

Table 4.10. Residuals of exponential fitting for aggregate loss percentage on volume. 

Volume (𝑐𝑐𝑚𝑚3) 27.217 24.817 30.291 34.070 27.288 34.703 39.133 

Aggregate Loss 
Percentage  12.5% 25% 37.5% 50% 62.5% 75% 100% 

Calculated aggregate 
loss percentage 32.5% 25.95% 43.35% 61.78% 32.72% 65.56% 99.3% 

Residuals (%) -20 -0.95 -5.85 -11.78 29.78 9.44 0.70 
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4.2.3 Summary 

Analysis of the measurement of aggregate loss was conducted through two approaches. Seven 

sample plates were produced with different aggregate percentages. Forty images were collected 

by iPhone 8 plus for each sample plate for a total of 280 images. Seven fine 3D models were 

reconstructed from these 280 images. From the calculations, it was determined that there were no 

large discrepancies between the MPDs for the seven sample plates. In other words, the MPD 

cannot sufficiently represent the macrotexture of pavements while the RMS height can represent 

the macrotexture depth and reflect the aggregate loss very well.  

Therefore, the first approach evaluated the aggregate loss via determining the relationship 

between RMS height and aggregate loss percentage. The second approach evaluated the aggregate 

loss via determining the relationship between the volume of remaining aggregate on the pavement 

and aggregate loss percentage. Both relationships were fitted by the linear equation and the 

exponential equation. From the above results, the exponential fitting was found to perform better 

than the linear fitting. Table 4.11 summarizes the evaluation of two exponential fitting models for 

both relationships. It can be seen that the exponential fitting model for aggregate loss percentage 

on RMS height holds a larger R-squared and a smaller RMSE than the other one, meaning the 

model has a better performance. In summary, aggregate loss is recommended to be measured 

through RMS height via Equation 4-2. 

Table 4.11. Summary of the evaluation of two exponential fitting models. 

Exponential fitting model Average 
residual (%) R-squared RMSE (%) 

RMS height vs. Aggregate loss percentage 0.5670 0.8359 14.6008 

Volume vs. Aggregate loss percentage 1.333 0.8002 16.1086 
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  CONCLUSION 

This thesis explored an alternative technology for MPD measurement using multi-view 

images collected by smartphone. Thirty-one 3D models were reconstructed from over 700 images 

collected at 31 different spots. The quality of these 3D models was evaluated in Chapter 3. It is 

known from Chapter 3 that images by smartphone with a well-produced control frame are 

sufficient for the reconstruction of a high-resolution 3D model. Based on tens of high-resolution 

3D models of the pavement surface created by Structure from Motion (SfM) technique, we show 

that the image-based macrotexture measurement is convenient, cost effective and comparable to 

the traditional LTS methods in Chapter 4.1. We expect this newly development be further 

enhanced and adopted widely.  

In Chapter 4.2, the limitation of MPD describing macrotexture depth under aggregate loss 

was addressed and RMS height was conducted for macrotexture depth representation. The RMS 

height has advantages on comprehensive representing macrotexture depth and reflecting aggregate 

loss. As for aggregate loss which used to be difficult to measure in practice, this thesis implemented 

two approaches to evaluate aggregate percentage. The aggregate loss percentage was discovered 

to be exponential related to RMS height and volume of remaining aggregate. And the exponential 

relationships between them were derived, the exponential fitting model of aggregate loss 

percentage on RMS height performs better than the exponential model of aggregate loss percentage 

on volume. Thus RMS height is recommended for aggregate loss evaluation.  

There are several areas where this research could be improved. First, one of the control frames 

used to take images is handmade by cardboard which is flexible, and another control frame made 

via 3D printing is slightly bent due to the cooling during printing. The unevenness and bent of 

control frame limit the quality of the 3D model. A 3D model with higher resolution and better 

quality can be gained with a more rigid control frame. Second, the number of sample plates for 

aggregate loss analysis are too small, there is only one sample plate for each aggregate percentage. 

More sample plates could make the exponential fitting model more reliable, more noise-resistant 

and more accurate. Third, the sample plates are made of HFST pavement material only. As 

mentioned earlier, the RMS height depends on aggregate loss percentage and the pavement 

material. The exponential model deducted before has poor generality for all pavement. It reveals 

the exponential relationship between aggregate loss percentage and RMS height, while the 
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coefficients of the model need to be recalculated for the other pavement material. If the sample 

plates made of variance of material are provided, a more general and more convincible model may 

be derived. 
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