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ABSTRACT

Alzate-Vargas, Lorena Ph.D., Purdue University, December 2019. Structural and Dynam-
ical Properties of Organic and Polymeric Systems using Molecular Dynamics Simulations.
Major Professor: Alejandro Strachan.

The use of atomistic level simulations like molecular dynamics are becoming a key part

in the process of materials discovery, optimization and development since they can provide

complete description of a material and contribute to understand the response of materials

under certain conditions or to elucidate the mechanisms involved in the materials behavior.

We will discuss to cases in which molecular dynamics simulations are used to character-

ize and understand the behavior of materials: i) prediction of properties of small organic

crystals in order to be implemented in a multiscale modeling framework which objective

is to predict mechanically induced amorphization without experimental input other than

the molecular structure and ii) characterization of temperature dependent spatio-temporal

domains of high mobility torsions in several bulk polymers, thin slab and isolated chains;

strikingly we observe universality in the percolation of these domains across the glass tran-

sition.

However, as in any model, validation of the predicted results against appropriate

experiments is a critical stage, especially if the predicted results are to be used in decision

making. Various sources of uncertainties alter both modeling and experimental results and

therefore the validation process. We will present molecular dynamics simulations to assess

uncertainties associated with the prediction of several important properties of thermoplastic

polymers; in which we independently quantify how the predictions are affected by several

sources. Interestingly, we find that all sources of uncertainties studied influence predictions,

but their relative importance depends on the specific quantity of interest.
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1. INTRODUCTION

The continuous need of advanced high-performance materials has challenged the scientific

and engineering communities in order to accelerate their discovery, design, and deployment.

The Materials Genome Initiative MGI launched in 2011 [1, 2] provided a framework to en-

compass the integration of computational tools, experimental tools and digital data, such as

materials databases or informatics, to achieve a fast and reliable discovery and deployment

of low-cost materials.

Successful examples of advances in materials science using the MGI include the combina-

tion of experimental data and physics-based models to develop polymeric self-assembly sys-

tems, [3] and the discovery of cost-effective molecules organic light-emitting diodes (OLED)

by combining theory, computational quantum chemistry and experiments, [4] see Figure 1.1

for the implemented workflow used in the later case. Therefore, simulation tools that enable

predicting materials properties and behavior from first principles are becoming a key part

in the process of materials development continuum.

From the wide range of materials that have been studied using simulation techniques,

polymeric and organic materials are of particular interest due to their wide variety of ap-

plications; from large-scale high-temperature composite matrices and heat shields used in

the aerospace industry to conducting polymers at nano-scale devices, flexible displays and

packaging. Glassy polymers are key for a broad variety of industry and technological uses.

Many include fuselage in airplanes, [5] nano-devices where polymer is used as a substrate or

sometimes as a dielectric, [6] and nano-composites for the automotive and aviation indus-

tries. [7] Consequently, understanding and predicting the long-term behaviour of polymers

in the glassy state remains of great interest.

The implementation of atomistic simulations like molecular dynamics can provide a com-
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Figure 1.1.: Design of new organic light-emitting diodes using combined theoretical and computa-
tional approaches, and experimental characterization. Adapted with permission from Ref. [4] c©
2016 Springer Nature

plete description of organic systems and contribute to understanding the response of mate-

rials under specific conditions, and the mechanisms involved in their behavior. As a result,

MD simulations have been often used to predict properties and explore organic materials

whose properties such as structural, thermal or, mechanical show potential and can help

designing new complex materials, deserving further experimental studies.

However, the limitations of a model can result in discrepancies during the valida-

tion process between experiments and simulation, originating from a variety of uncertainty

sources that must be considered in order to assess confidence in the predictions delivering

sufficient information for decision making. In crystalline materials where predicted proper-

ties can be computed at the unit cell level using DFT, the uncertainties and reproducibility

in such calculations are well understood. [8] Properties susceptible to such treatment include

those that depend weakly on microstructure such as elastic or dielectric constants, defect

energies or band gaps where DFT or beyond-DFT methods offer the required accuracy for

a range of materials. Some examples of proposed new materials using DFT where valida-

tion has been considered, include materials for photoelectrochemical devices [9] and doping
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avenues for single layer transition metal dichalcogenides [10].

Unlike the previously described cases, the prediction of properties that depend on

materials processing and molecular structure using computational atomistic tools is more

complex, since the coupling of various models is often needed to describe structure and

hence, the properties of interest. In polymers, for example, molecular properties can be

influenced by molecular weight, backbone and side-chains stiffness. It is often the case that

uncertainties in these models are poorly understood and can vary significantly from mate-

rial to material and from property to property, arising the question of whether a simulation

result is reliable enough.

If we think in a molecular simulation of a polymer, we must consider: (i) molecular weight

of the samples, (ii) amorphous generation method, (iii) force field used to describe atomic

interactions, (iv) the analysis used to extract the quantities of interest.

𝑇

𝑉

𝑇#𝑇$

Crystal

Liquid

Supercooled
liquid

Glass

Figure 1.2.: Volume vs. Temperature for a hypothetical system in the liquid, crystalline and, glassy
state. If the system becomes a glass, the glass transition temperature Tg is determined by the change
in the slope from the V vs. T data.

One of the critical properties in glassy polymers is the glass transition temperature

Tg. In polymer physics, this is the temperature in which a liquid transitions into a glassy
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form and becomes soft. A glass is an amorphous solid, i.e. it lacks the periodicity and

long-range order; more importantly, the glass is in a state of non-equilibrium, differing from

liquids and crystals as it is shown in Figure 1.2; further discussion in this matter will be

addressed in 1.1. Several works understanding the effect of molecular weight, cooling rate

and data analysis in Tg have been done independently. [11, 12] In the last-mentioned case,

following the general consensus in terms of accessing the glass transition temperature from

examination of volume V (or density ρ) vs. temperature T , and defined as the change in

the slope between the low and high temperature regimes, see Fig. 1.2; Patrone et al. (2016)

proposed an uncertainty quantification (UQ) methodology of data analysis for glass transi-

tion temperature in polymers, [12] that consisted in a hyperbola-based regression [13] to fit

the ρ vs. T data to find Tg. The main goal was to yield a consensus value by weighting the

estimates from all possible outcomes of multiple density vs. temperature datasets obtained

in a simulation. With their set of analysis, it was possible to combine small simulations to

agree on estimates with uncertainties comparable to larger simulations, nevertheless quan-

tification of other uncertainties built into the MD algorithm or arising from simulation in

polymers is omitted.

Because of the lack of works that address the uncertainties in simulated predictions of

some properties and the effect of several factors in the simulation, we propose a systematic

methodology involving state-of-the-art molecular simulations of well known glassy polymeric

systems to predict key quantities relevant to these materials, including the glass transition

temperature. It will be later demonstrated that all sources of uncertainties studied (molec-

ular weight, amorphous builder, force field and data analysis) influence the predictions,

depending significantly on the quantity of interest. We expect that this comprehensive

work will contribute in establishing adequate practices for molecular modeling of polymeric

materials that can lead to confident predictions and elucidation of characteristic materials

behavior.
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1.1 The Glass Transition Temperature

Understanding the glass phenomenon and the implications in polymer’s behavior is a

subject of high interest in science. From an applied point of view, understanding the glass

transition is critical to determine operational ranges and fabrication sizing in order to avoid

property degradation.

Several physical phenomena and materials properties evolve significantly during the phase

transformation happening at the glass transition. [14] As the temperature is reduced through

the glass transition temperature, there is a drastic increase in the viscosity η of the material

(reaching about 1013 poise), [15] eventually turning into a, often brittle, solid. Consequent

with the increase in viscosity, in polymers, chain relaxation dynamics and time through the

glass transition, referred to as the α−relaxation process, slows down dramatically by more

than 10 orders of magnitude.

Despite significant work several questions remain debatable; what kinds of changes occur

in the molecular structure of polymers when crossing Tg? what is the relationship between

molecular mobility and the slowing of the α−relaxation dynamics at the glass transition

region?

Relaxation Process in Polymers We already introduced the concept of α−relaxation,

however it is important to clarify that two main relaxation processes are identified at the

glass transition region: α and β. These relaxations are involved with chain motion in poly-

mers as shown in Figure 5.3. The α process (also called cooperative process) is caused by

the rearrangement of many repeating units and mainly associated to the glass transition

phenomena; a secondary, very fast relaxation process β, connected to the vibration and

reorientation of small groups of atoms (i.e. the side group rotates about the bond linking

it to the main chain), becomes relevant just below Tg.

Adams and Gibbs (1965) [16] introduced in early 1960’s the concept of Cooperatively

Rearranging Region CRR as the the smallest subsystem that can rearrange into another
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Figure 1.3.: G(t) modulus or relaxation function at the glass transition region showing the main
relaxation process involved: segmental or cooperative α from the motion of several segments e.g.
the rotation of torsions along backbone chain, and secondary process β involving small vibrational
motions

configuration, a key process for the relaxation at Tg. It introduced as well, the idea of

dynamic heterogeneities (DHs), understood as domains that exhibit faster dynamics than

other regions only few nanometers away in a glassy material. A visual representation of

the DH concept is displayed in Fig. 1.4. Experimental [17, 18] and computational [19–25]

studies have reveal the existence of heterogeneous behavior in supercooled liquids as the

glass transition temperature is approached, thus, several questions have emerged; how large

are these domains and how long do they last? And even more intriguing, what is the origin

of those heterogeneities?

In an attempt to answer those questions, modern experimental techniques have been used,

achieving the characterization of DHs in several materials. Spiess & coworkers performed

solid-state nuclear magnetic resonant (NMR) measurements on poly(vinyl acetate) to con-

firm the existence of heterogeneities and determined the characteristic size about 3±1 nm

at Tg+10 K. [26] With the same technique, it was found the size of dynamic heterogeneities

to be about 2.5 nm in poly(methyl methacrylate) and 3.3 nm in polystyrene. [27]

Other experimental techniques such as atomic force microscopy (AFM) [24, 28] and

photo-bleaching, [17] estimated the lifetime of dynamic heterogeneous domains in several
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Figure 1.4.: Sketch of dynamic heterogeneities showing the time scale of fluctuations of rates and
length scale ξhet of slow clusters. Reproduced with permission from Ref. [26] c© 1998 The American
Physical Society

glass-formers to be on the order of 101 to 104 s around Tg. Broadband dielectric spec-

troscopy (BDS) [29–31] and fluorescence spectroscopy studies [32] have been carried out

to explore the α−relaxation dynamics and their characteristic times in polymers. Other

indirect methods such as the multi-point dynamic susceptibility function [33,34] have been

used extensively to study the dynamic heterogeneities. There is general consensus that the

characteristic size of the cooperative regions is in the range 1-5 nm for a wide range of

glass-formers at the glass transition. [33,35–37]

Glass Transition and Relaxation Dynamics in Films and Single Molecules

In the interest of the large number of technological applications existent that require

free surfaces or interfaces, for example: opto/electromechanical devices at micro and nano-

scale, or biomedical sensors; it is common to ask, how much does the dynamics of a polymer

under confinement or the presence of free surfaces near the glass transition differs from the

bulk?. However, in spite of the great advances in experimental methods, the relaxation

dynamics in non-bulk polymers remain contradictory.

Priestley et al. (2005) [32] used a fluorescence technique to determine the glassy-state

relaxation dynamics of poly(methyl methacrylate) (PMMA) films in a set of multilayer
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configurations with the objective to study the effect of confinement. Interestingly, it was

found an enhancement of mobility near polymer free surface that leads in reduction of Tg.

Other works in polystyrene (PS) have confirmed the existence of a mobile layer [38–40] with

a bulk-like interior region. [41] Using the same polymer, the time evolution of DHs in films

has been studied by means of atomic force microscopy. Consistent with the existence of

a thin liquid-layer at the glassy surface observed in many experiments, it was determined

that the length scale of the heterogeneities was ∼2.1 nm, with a lifetime of ∼102 s; [24] in

agreement with reported values for bulk polymers around the glass transition. On the other

hand, Tress et al. (2010) [30] using BDS experiments found that dynamics of layers down

to 5 nm do not deviate from bulk-like glassy dynamics and glass transition does not exceed

margins of ±3 K.

Surprisingly, studies of glassy dynamics in isolated and semi-isolated chains using

broadband dielectric spectroscopy [31] revealed a lack of size dependence in the α−relaxation.

The dynamics of the studied chains have insignificant deviations (statistically) from the bulk

behavior, since the length scale of the cooperative process required for the glass transitions

is about 2-3 polymer segments, a much smaller size relative to the chain size ∼50 nm.

Numerous large molecular dynamics simulations of supercooled Lennard-Jones liq-

uids [21–23, 42–44] have reaffirmed the existence of spatially heterogeneous dynamics by

characterizing mobile particles. It was possible to identify regions in the sample where the

local structure has remained constant through the simulation, concurrently, other regions

rearranged significantly. Baljon et al. (2004) [45] studied the glass transition of supported

polymer films, and they confirmed percolation of immobile domains around the glass tran-

sition temperature. Yet, two limitations need to be stated; first, these simulations have

simplified molecular structure and smaller molecular weights than in experiments, and sec-

ond, relaxation times are limited, some roughly achieve 100 ns, whereas typical experimental

times are on the order of seconds.
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In amorphous polymers, MD simulations have focused on describing the motion of

torsional angles i.e. conformational transitions to characterize the dynamics at the glass

transition. [46–51] Since they can provide atomistic detailed information corresponding to

structural changes along the polymer. Wu et al. studied the conformational changes of

polyethylene bulk samples [52] and poly(vinylidene fluoride), [52] discerning two differ-

ent Arrhenius behaviors in the transition rates, their intersection successfully predicted

Tg. They also observed heterogeneous behavior in the torsional rates as temperature ap-

proaches the glass transition as a result of atoms being “frozen”. However, the nature of

the spatio-temporal domains from conformational transitions in polymer systems has not

been addressed.

In order to understand the cooperative motion of torsions in the bulk polymers and systems

with free surfaces, molecular dynamics simulations will be used to characterize high-mobility

domains of torsions along backbone chain and the universal percolation behavior of these

domains across all samples.

To this end, this dissertation is organized as follows: a brief description of molecular

dynamics is presented in Chapter 2. In Chapter 3 presents a study of the uncertainties

associated to the prediction of several properties in thermoplastic polymers using MD sim-

ulations. In Chapter 4 the use of MD simulations in a multiscale framework to predict

properties in small organic crystals is presented. Chapter 5 discusses MD simulations to

identify and characterize spatio-temporal correlations in high-mobility torsions in polymers

at the glass transition.
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2. THEORETICAL BACKGROUND

“Although this may seem a paradox,

all exact science is based on the idea of approximation.”

- Bertrand Russell

2.1 Classical Molecular Dynamics

Molecular dynamics (MD) simulation is a powerful computational method that inte-

grate the Newtonian equations of motion of a many-body system. Classical MD simula-

tions have been widely used to describe and investigate the structure and thermodynamics

of atomic systems from liquids, molecules and polymers to crystals. Given that statistical

mechanics concepts are at the core of molecular dynamics theory, the next section (2.1.1)

briefly introduces basic principles and in section 2.1.2 the equations of motion are dis-

cussed. In section 2.1.3 we will introduce the concept of empirical potential that constitutes

the heart of a classical MD simulation.

2.1.1 Statistical Mechanics Basic Concepts

In molecular dynamics simulation, we often want to explore macroscopic proper-

ties based on microscopic simulations, for example,to calculate the energetics involved in

conformational change. To connect a microscopic simulation with macroscopic properties,

statistical mechanics expressions are implemented to solve equations of motion and to relate

properties to the distribution and motion of the atoms of the many-body system.

Section 2.1 based on the online course “From Atoms to Materials” [53] by Alejandro Strachan from Purdue

University, “Introduction to Molecular Dynamics: Theory and Applications in Biomolecular Modeling [54] by

Yi Wang and J. Andrew McCammon and “Molecular Dynamics of Glassy Polymers” [55] by Julian Clarke
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Statistical Ensembles The collection of all possible systems that have different mi-

croscopic states (microstates) which all satisfy the conditions of a unique thermodynamic

state such as temperature T , pressure P , volume V , energy E, and number of particles or

atoms N . In MD simulation a sequence of points in space ant time that belong to the same

ensemble. An observable A can be calculated by averaging the value of such observable over

the ensemble, i.e. Aobs = 〈A〉ens, where 〈A〉ens is called an ensemble average of A. Some

ensembles are listed below.

Microcanonical Ensemble The microcanonical ensemble (NVE) is characterized

by a constant number of atoms, N , a fixed volume, V , and fixed energy, E. It is assumed

that all systems of the ensemble are isolated and evolve independently.

Canonical Ensemble In the canonical ensemble (NVT) a collection of systems are

in a thermodynamic state with a fixed number of atoms, N , a fixed volume, V , and constant

temperature, T . The system of interest is embedded in a large system that behaves as a

heat bath. Both systems interact by exchanging energy in the form of heat.

Isobaric/Isothermal Ensemble The isobaric-isothermal ensemble (NPT) main-

tains fixed number of atoms, N , constant pressure, P , and constant temperature, T . The

system is described by the partition function of canonical ensemble in 3 dimensions.

In an MD simulation, we will be able to calculate an observable A as a time average

from a simulation trajectory, Aobs = 〈A〉time. Table 2.1 shows the probability distribution,

partition function and free energy expressions for the statistical ensembles used in molecular

dynamics previously mentioned.

2.1.2 Equations of Motion

The molecular dynamics simulation method is based on the equation of motion,

F = ma. To start a simulation, initial positions and velocities of all atoms in the sys-

tem are assigned; the forces on each atom are computed. Next, the temporal evolution of a
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Table 2.1.
Important statistical ensembles used in molecular dynamics simulations. Adapted from ”From
Atoms to Materials: Predictive Theory and Simulations” [39]

Microcanonical (NVE) Canonical (NVT) Isobaric/Isothermal (NPT)

Probability
Distribution

P (r,p) =
1

Ω(N,V,E)
P (r,p) =

e−βH(r,p)

ZNVT
P (r,p, V ) =

e−βH(r,p)−PV

ZNPT

Partition
Function

Ω(N,V,E) =
∑

states

δ(E −H(r,p)) ZNVT =
∑

states

e−βH(r,p) ZNPT =
∑
V

∑
states

e−βH(r,p)−PV

Free Energy S = kB log Ω(N,V,E) FNVT = −kBT logZNVT GNPT = −kBT logZNPT

simulation involves integrating the equations of motion for the particles according to their

interaction, determined by V (r); we will describe the implementation of this potential for

polymeric materials in 2.1.3. The equations of motion are expressed as:

ṙ =
p

m

ṗ = F

(2.1)

where the force on each atom is:

F = ∇V (r) (2.2)

As mentioned, V (r) describes the interaction between atoms.

ṙ =
p

m
=

r(t+ ∆t− r(t)

∆t

ṗ = F =
p(t+ ∆t)− p(t)

∆t

(2.3)

if we rearrange:

r(t+ ∆t) = r(t) +
p

m
· p(t)

p(t+ ∆t) = p + F ·∆t
(2.4)
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Integration of these equations is done using the Verlet algorithm, which does a Taylor

expansion of the position with respect to time. We could rewrite in different time directions:

r(t+ ∆t) = r(t) + Ṙ(t)∆t+
1

2
R̈(t)∆t2 +

1

6

...
R(t)∆t3 +O(∆t4)

r(t−∆t) = r(t)− Ṙ(t)∆t+
1

2
R̈(t)∆t2 − 1

6

...
R(t)∆t3 +O(∆t4)

(2.5)

Figure 2.1 shows a schematic describing the fundamental loop that allows time evo-

lution in a molecular dynamics simulation.

MD is deterministic which means that once the positions and velocities of each atom

are known, the state of the system can be predicted at any time in the future or in the past.

Molecular dynamics have been implemented in various simulation packages, with a variety

of analysis methods integrated. In this work we use the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) as our MD engine.

2.1.3 Force Fields

As we mentioned previously, we need to calculate the forces Fi acting on each atom;

and these are usually obtained from the interatomic potential V (r), often referred as force

field. Force field parameters are usually estimated from experimental data or quantum

mechanics calculations and optimized to reproduce materials properties. As forces have to

as realistic but also achievable, force fields constitute the heart of an MD algorithm.

There are many force fields available for MD simulations of polymeric and organic materials;

two force fields will be used across this work: in the majority of the cases, simulations

are performed using DREIDING force field. [56] We also introduced simulations using the

Polymer Consistent Force Field (PCFF). [57]

Generally, interatomic potentials used for molecular modeling, and especially in soft

materials, are composed of bonded and non-bonded interactions.
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Figure 2.1.: Structure of a minimalist molecular dynamics code. Reproduced from “From Atoms to
Materials: Predictive Theory and Simulations” [53]
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Figure 2.2.: Schematic of a simple chain molecule including bond r, bend angle θ and torsion angle
φ. Reproduced from “Introduction to Molecular Dynamics Simulation”

Bonded Interactions In molecular systems we have to consider intramolecular

bonding interactions such as bend angle and torsion angle to give accurate description

of the structures. A simple model of a polymer chain will include bond rij , angle θjkl and

torsion φijkl terms as displayed in Figure 2.2.

(1) DREIDING is a all-purpose force field based on simple hybridization rules with har-

monic valence terms for bond stretching and bend angle, and a cosine-Fourier ex-

pansion for the torsion term as show in Equation 2.6. In consequence it has good

coverage for organic, biological and main-group inorganic molecules and it has been

widely used in the prediction of thermoplastic polymers [58] and thermosets. [59]

vbonded =
1

2

∑
r

kr(r − r0)2 +
1

2

∑
θ

kθ(θ − θ0)2

+
1

2

∑
φ

kφ,n[1− cos(nφ− γn)] +
1

2

∑
ψ

kψ(cosψ − cosψ0)2
(2.6)

(2) PCFF belongs to the second-generation consistent force fields, characterized by their

ability of predicting many properties in a broad range of polymers and organic mate-

rials. It employs quartic polynomials for bond stretching and angle bending, a three-
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term Fourier expansion for torsions, and many cross-terms: bond-bond, bond-angle,

angle-angle, bond-torsion, angle-torsion, and angle- angle-torsion.

vbonded =
4∑

r,n=2

kr,n(r − r0)n +
4∑

θ,n=2

kθ,n(θ − θ0)n

+
3∑

φ,n=1

kφ,n[1− cos(nφ− γn)] +
∑
ψ

kψ(ψ − ψ0)2

+
∑
rr′

k(r − r0)(r′ − r′0) +
∑
θθ′

k(θ − θ0)(θ′ − θ′0) +
∑
rθ

k(r − r0)(θ − θ0)

+
∑
rφ

[
k(r − r0)

3∑
n=1

krφ,n cosnφ

]
+
∑
θφ

[
k(θ − θ0)

3∑
n=1

kn cosnφ

]

+
∑
θθφ

k(θ − θ0)(θ′ − θ′0) cosφ

(2.7)

Non-bonded Interactions The non-bonded terms are usually split in 2-body, 3-

body and/or 4-body terms. In simulations of polymeric materials is usual to concentrate on

the pair potential v(ri, rj) = v(rij), known as van der Waals interactions. A simple model

for non-bonded terms uses Lennard-Jones (LJ) potential,

vLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(2.8)

We should point out that the PCFF force field uses a LJ potential but using the 9-3 form:

ε
[
2
(
σ
r

)9 − 3
(
σ
r

)6]
. Although DREIDING allows non-bonded interactions to be described

as LJ, a more common choice, and the one used along the majority of the work is proposed

by Buckingham, [60]

vB(r) = Ae−Br − C

r6
(2.9)

where A, B, C > 0. If electrostatic charges are present, Coulomb potentials are added on

the form:

vCoulomb(r) =
Q1Q2

4πε0r
(2.10)
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2.2 Setting Up a Molecular Dynamics Simulation

In the previous section, a brief description of how a classical MD simulation works

is given. However, we have not mentioned that before running simulation it is not only

required to pick a force field and prepare information indispensable, but also it is mandatory

to set up the atomic or molecular structure of interest. Depending on the system, different

methodologies are used to create the initial structure, in some cases the MD engine by itself

can do this task.

Since we focus in this work in organic and polymeric materials, we want to highlight

some approaches to generate the structure to be read by the MD simulator.

2.2.1 Structure to LAMMPS

In some cases, it is usual to have available a molecular or crystal structure, consisting

of the atomic coordinates but no connectivity or force field in the format read by LAMMPS.

For that reason, we have created a tool, LAMMPS Data File Generator [61], capable of

generating a data file for the structure of interest with all the required information to

perform simulations with the DREIDING force field.

The tool framework involves several procedures that can be summarized in four steps

as shown in Figure 2.3. First, the tool reads a structure in a broad list of formats, and

uses OpenBabel [62] and Ovito [63] to convert it into a data file format that can be used in

LAMMPS. After successful conversion of the file, we proceed with a set of scripts written

in Python in order to find the full connectivity: bonds, angles, dihedrals and impropers,

integrating LAMMPS for this task. The third step consists in assigning all the force field

parameters including the correct atom types and energy terms. In this step the atomic

charges are also calculated. Lastly, we gather all the information to generate the data file

in the proper format.

One of the key features of the tool is the flexibility to read multiple file formats. This

can be problematic sometimes since the simulation cell is not specified or it is incorrect as

the one expected from the user. In order to consider this, the tool allows to control the

https://nanohub.org/resources/struct2lammps/
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Figure 2.3.: Schematic of the methodology implemented in the LAMMPS Data File Generator tool

simulation cell information. The user can eventually input the box lengths and angles. In

Figure 2.4 a snapshot of the tool is displayed. After file upload, the user can visualize the

structure to be converted and input any additional information, regarding simulation cell.

After clicking Create Data File output details are given, once it is done, users can download

the file.

Figure 2.4.: Snapshot of the LAMMPS Data File Generator tool, available in nanoHUB. The tool
can be used to convert atomic and molecular structures into a LAMMPS data file containing all the
connectivity and force field terms required to run a MD simulation

https://nanohub.org/
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2.2.2 Building a Structure

In some scenarios, like in polymers, it is necessary to build a sample from a repeating

unit such as a monomer. To do so, several software have been developed and most of them

integrate a force field to avoid bad contacts during the polymerization procedure and to

allow performing simulations. We will give a description of Polymer Modeler [64], available

for freely at nanoHUB, a tool in which users can build polymeric systems and get a data

file ready to perform MD simulations in LAMMPS using the DREIDING force field.

Polymer Modeler The polymer builder tool allows the user to create atomic level

structures of linear polymer chains from a monomer. The process of building is made up of

three steps: (i) monomer(s) specification, chain length and number of chains, (ii) simulation

cell, (iii) placement of monomers and conformation given by dihedral angles; this is done

using the configurational bias Monte Carlo Algorithm. However, other chain builder choices

are available in the tool, alongside with multiple inputs that the user can modify, such as the

temperature to generate the sample, and furthermore, it allows to relax and perform MD

simulations with the structure generated. More details about the tool and the methodology

implemented can be found in Ref. [65].

https://nanohub.org/
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3. UNCERTAINTIES IN PREDICTED THERMO-PHYSICAL PROPERTIES OF

THERMOPLASTIC POLYMERS USING MOLECULAR DYNAMICS

ADAPTED FROM:

Lorena Alzate-Vargas et al. 2017 Uncertainties of Parameters to Predictions of

Polymer Properties by Molecular Simulations. Proceedings of the American Society for

Composites c© 2017 DEStech Publications, Inc. and American Society for Composites

Lorena Alzate-Vargas et al. 2018 Modelling and Simulation in Materials Science

and Engineering, 26, 065007 c© 2018 IOP Publishing Ltd.

3.1 Introduction

Quantification of such uncertainties in models as well as in experiments is a critical

step in model validation. [8] Specially, if tools are to be used in decision making.

The computational materials discovery or optimization involving properties that depend

on processing, microstructure or molecular structure is significantly more complex since

the coupling of various models is often needed to describe structure and properties, see for

example Ref. [66]. It is often the case that uncertainties in these models are poorly un-

derstood and can vary significantly from material to material and from property to property.

The validation of a model is not trivial due to different sources of uncertainties that

can affect both modeling and experimental results.

Uncertainties that can result in discrepancies between experiments and simulation originate

from a variety of sources: (i) Fundamental limitations of the underlying models such as the

choice of exchange and correlation functional in density functional theory or inter-atomic

potentials in molecular dynamics (MD). (ii) Differences in the material modeled and that

characterized experimentally; e.g. simplification of the molecular structure of polymers or
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neglect of defects and microstructure in the simulation. (iii) Differences in the testing proce-

dures between experiments and simulations; e.g. ultra-fast deformation or heating/cooling

in MD simulations. (iv) Data analysis. In the latter one, both in simulations and experi-

ments, it is often the case that the quantity of interest is not measured directly but extracted

through the application of data analysis techniques and/or use of models.

In this work we focus on assessing the uncertainties introduced in the prediction of

some important thermo-physical properties of two well known polymers.

We use state-of-the-art molecular simulations to assess the uncertainties associated in glass

transition temperature Tg, density ρ at 300 K, and coefficient of thermal expansion αV for

two thermoplastic polymers: poly(methyl-methacrylate) (PMMA) and polystyrene (PS).

We independently quantify how the predictions are affected by the various sources of un-

certainties in the simulations, which include: (i) the method used to generate the initial

amorphous structures, (ii) the molecular weight of the samples, (iii) the force field used to

describe atomic interactions, (iv) the analysis used to extract the quantities of interest.

We find that the simulations can capture subtle differences in Tg and density between

these two polymers and that all sources of uncertainties studied affect predictions, but their

relative importance depends on the specific quantity of interest. As expected, the choice

of force fields affects the predicted quantities and our analysis provides insight into the

molecular origins of these differences. Data analysis affects in an important way certain

properties, particularly Tg in our study. Our results indicate significant care should be

devoted to this aspect of the simulation workflow. Finally, the polymer builder influences

the molecular structure and therefore the properties; interestingly, the effect of the builders

used on predicted properties cannot be explained via different thermal histories of the

structures generated with different builders.

Work published in Proceedings of the American Society for Composites 2017 and Modelling and Simulation

in Modelling and Simulation in Materials Science and Engineering with Chunyu Li, Benjamin Haley, Michael

Fortunato, Coray Colina, and Alejandro Strachan as coauthors [67,68]
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3.2 Simulation Details

3.2.1 Molecular Systems

Several molecular models of PMMA and PS were built and used as initial conditions

for MD simulations to extract the desired properties. For each polymer we studied two

different molecular architectures to assess the effect of chain molecular weight: (1) 10 chains,

70 repeating units and, (2) 1 chain, 700 repeating units. The total number of atoms in each

simulation was 10, 520 and 10, 502 for PMMA and 11, 220 and 11, 202 for PS. These systems

were chosen to have a similar number of atoms and are comparable to or larger than those

typically used in MD studies of soft materials.

A full schematic of the methodology implemented in this work is shown in Figure 3.1. More

details for every step are given below.

Figure 3.1.: Schematic of the methodology implemented in the present work

One of the first decisions to be made in a molecular simulation is the force field to

describe the interactions. It must be said that a proper choice can lead to good prediction

of macroscopic properties. In this work we compare predictions for two widely used force

fields: DREIDING and PCFF; their description can be found in section 2.1.3.

In order to minimize variability in predictions associated with electrostatic interactions,
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we used the same partial atomic charges obtained using the Gasteiger method [69] for all

simulations.

3.2.2 Amorphous Structure Generation

We used two different approaches to prepare the molecular structures of the polymers:

continuous configurational bias Monte Carlo as implemented in the Polymer Modeler tool

and described in 2.2.2 and self-avoiding random walk implemented in pysimm. [70]

Continuous Configurational Bias Monte Carlo In the CBMC method the se-

quential chain growth follows a Monte Carlo algorithm including the probability of chain

conformations based on a Boltzmann distribution of torsion energies along the backbone

atoms along with non-bond interactions followed by an equilibration.

During the building procedure the bond distances and angles are fixed at equilibrium so

the dihedral angles are the only available degree of freedom.

Polymers were built at an initial density of 0.5 g/cm3 and temperature T = 300 K for

PMMA and T = 800 K for PS using the DREIDING force field parameters. A higher

temperature for PS was chosen due to its more rigid side chains relaxing faster in the liquid

state.

The relaxation procedure consisted of a 3-level step energy minimization with scaled van

der Waals parameters; followed by an MD simulation under the NVT ensemble for 50 ps,

and a second simulation under NPT conditions for 100 ps. After equilibration, the systems

were re-typed to PCFF.

Self-Avoiding Random Walk The SARW method inserts reference monomer units

sequentially at chain ends, introducing one new polymer bond per insertion, to grow a poly-

mer chain with the desired length. Monomer insertion will not be at the optimal position

and the algorithm allows the structure to relax using energy minimization during the build-

ing procedure.
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The polymer structure is originally built using the Generalized Amber Force Field (GAFF)but

force field parameters were switched to PCFF before the system was equilibrated. Struc-

tures are created at low density of 0.3 g/cm3 and subsequently equilibrated using a com-

pression/relaxation scheme of MD simulations with varying temperature and pressure [70].

The MD equilibration procedure consist in the seven repetitions of the following cycle:

• an NVT simulation at Thigh = 1000 K,

• a second NVT simulation at Tfinal = 600 K,

• and a NPT simulation at Tfinal

The pressure during each cycle varied step wise to reach Pmax = 50000 atm and then to

Pfinal = 1 atm. The length of each simulation was 50 ps.

We used the SARW method to generate PMMA samples, therefore no PS data will be

presented with this builder.

Since both builders use force fields to avoid bad contacts during the chain growth

process and to relax structures. In order separate the build process and the MD simulations

used to extract the quantities of interests (for short notation as QoIs) and quantify separate

uncertainties, the force field adapted in the builder does not match the one used in the

predictions. Thus, the initial structures used for DREIDING and PCFF predictions are

identical.

3.2.3 Molecular Dynamics Simulations

Each polymer structure obtained according to the combination of molecular weight,

builder, and force field was subject to the same MD simulation performed using LAMMPS.

[71] For all systems, non-bonded long-range electrostatic interactions were described using

the particle-particle, particle-mesh method with a precision of 10−4 kcal/mol.Å. A time

step of 1 fs was used in all the simulations. These choices lead to good energy conservation

under NVE conditions.
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Initial Structure Thermalization Before performing the simulations designed to

extract the quantities of interest, we thermalized the structures obtained from the two

amorphous builders and took them to a temperature of 800 K. This equilibration was

performed under constant temperature and pressure of 1 atm for 500 ps using a Nose-

Hoover thermostat and barostat. In all simulations the barostat maintained the shape of

the simulation cell fixed (cell parameters are scaled by the same amount) and we used

relaxation timescales of 0.1 ps for the thermostat and 1 ps for the barostat.

For each molecular weight, builder, and force field we obtained five independent structures

from an additional 50 ps of simulation at 800 K; each structure separated from the next by

10 ps of MD simulation. While 10 ps at 800 K is enough to de-correlate the initial structures

and enables us to have better statistics, this time (even including the prior thermalization)

is not enough for the molecular chain structure to evolve significantly, thus, we expect that

the predictions will depend on the builder used to generate the initial structures.

Cooling In order to extract the desired quantities of interest, each one of the 40

simulations was cooled in a step wise manner at constant pressure of 1 atm to Tfinal = 100

K. The temperature is decreased every 100 ps in steps of 10 K.

3.2.4 Data Analysis procedure

One of the sources of uncertainty in MD simulations that has been vaguely explored

is the procedure to extract properties from raw data. Because of the quantities of interest in

this work, we used the density versus temperature (ρ vs. T ) MD data. Two fitting methods

based on the Levenberg-Marquardt algorithm [72] implemented in the scipy.optimize.leastsq

library in Python, are programmed in order to extract the various QoIs. A representation

of each method is shown in Fig. 3.7.

Bilinear fit This is the most commonly used procedure to determine the glass tran-

sition temperature. It consists in fitting two straight lines: one the low temperature regime

and one for the high temperature regime. The intersection between them, where a change

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq


26

in the slope occurs will be denote Tg. The volumetric coefficients of thermal expansion

(above and below Tg) were extracted from the slopes of each fitted line by converting the

density to volumetric data.

Hyperbola fit This procedure consists in fitting a hyperbola to the density vs. tem-

perature data, as done in Ref. [12]. The asymptotes of the hyperbola denote the low and

high temperature regimes and the intersection between them defines the glass transition

temperature.

Since we have five configurations for each scenario, we implemented two averaging

procedures: (i) analyze each individual sample to obtain the quantities of interest followed

by an average of the results, for short notation QoI Ave and, (ii) average the MD data for the

density and temperature over the five samples and perform the analysis, referred as MD Ave.

�0.85

�0.9

�0.95

�1

�1.05

�1.1

�1.15

�100 �200 �300 �400 �500 �600 �700 �800

(a)

D
en
si
ty
�(
g/
cm
3 )

Temperature�(K)

Data
Low�regime
High�regime

�0.85

�0.9

�0.95

�1

�1.05

�1.1

�1.15

�100 �200 �300 �400 �500 �600 �700 �800

(b)

Data
Fitted�Hyperbola
Asymptote

𝑇" 𝑇"

Figure 3.2.: Estimates of Tg (red point) from a single simulation using two fitting procedures: (a)
Tg is estimated as the intersection of low (blue) and high (green) temperature best-fit lines and (b)
Hyperbola (red) fit to the data, here Tg is estimated from the intersection of the asymptotes (dashed
blue)
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Confidence intervals We have consistently reported the 90% confidence intervals

for the predicted QoIs calculated as

t(α/2)

√(
σ2

n

)
(3.1)

where t(α/2) = 1.645 is the t−value from the standard normal distribution for the selected

confidence percentage and σ/
√
n the standard error of the mean. [73] σ is the standard

deviation of the density data for the five runs and n = 500 is the number of independent

density points from the five simulations.

The confidence intervals for Tg and αV are obtained from the fitting procedure as t∗· SE,

where SE is the standard error and t∗ = 1.6683 from the Student t−distribution (data

points minus number of parameters fitted). [74]

3.2.5 Conformational transition analysis

To explain the trends observed, we have characterized the local chain dynamics by

means of the conformational transition rates in torsional angles along the chain backbone.

There is a general consensus that a dihedral angle undergoes a transition when it rotates

enough to reach a new configurational stage in the potential well. [46, 75, 76] Following the

same definition, we monitor the time evolution of a torsion from the trajectory of the atoms

obtained in MD, spaced every 4 ps. A transition has occurred at ti if

∆φ [(ti + 4 ps)− (ti − 4 ps)]

and

∆φ [(ti + 8 ps)− (ti − 8 ps)]

 ≥ 80◦

This procedure of analyzing a range of 16 ps was designed to count states with

residence times longer than a few torsional vibrational periods. Torsional transition rate k

at a given temperature is defined as:

k =
Ntr

Nφt
(3.2)
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where Ntr is the total number of transitions during the run, Nφ is the total backbone torsions

in the system, and t the total simulation time.

3.3 Predictions and Comparison Against Experiments
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Figure 3.3.: Glass transition Tg (MD Ave) and density at 300 K for different input choices. Filled
symbols represent predicted values using bilinear fitting method, empty symbols represent values
obtained with the hyperbola method. Predictions are circled in orange for PMMA and blue for
PS, light colored ellipses refer to experimental data whereas dark colored ellipses represent WLF-
corrected experimental data.

Figure 3.3 compares the predicted Tg (each symbol represents a combination) and

densities at 300 K with their respective confidence intervals, together with experimental

data for PS and PMMA (large light-colored ovals). The densities shown in Fig. 3.3 represent

the average density (ρ̄) extracted from the last 50 ps of the MD simulations at 300 K for

the five independent runs and MD Ave Tg obtained from the two fitting procedures. Error

bars represent 90% confidence intervals as discussed in section 3.2.4.
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Figure 3.4.: Predicted glass transition temperatures for each combination of input choices in polymer
samples (a) PMMA and (b) PS. All PS simulations are performed by generating samples with the
same amorphous builder method
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The MD simulations resulted in higher glass transition temperatures and lower den-

sities as compared with experiments. This is as expected since the cooling rates used in the

simulations are approximately 12 orders of magnitude faster than the experimental rates.

The effect of cooling rate on Tg can be estimated using the Williams-Landau-Ferry (WLF)

theory [77] that describes relaxation processes in polymers and organic liquids.

The WLF equation predicts an increase in Tg of approximately 3 K to 5 K per order of

magnitude in heating or cooling rate. [78,79] The raise in Tg is accompanied by a decrease

in density of ∆Tg(αglass−αliq), [80] where αglass is the slope of the density-temperature data

below Tg and αliq is the slope above Tg. We also include these WLF-modified experimental

values, using a conservative choice of 3 K increase in Tg per order or magnitude, as darker

areas in Fig. 3.3. Larger values for shifting Tg according to cooling rate would result in

better agreement between the simulations and experiments.

The presented results show that the simulations not only can capture the increase in density

and Tg going from PS to PMMA, but the predicted values are very close to the experimen-

tal ones. We note that the discrepancy between simulations and experiments is larger for

PMMA than PS, understanding the origin of this observation is beyond the scope of this

work but a possible reason could be the large ionic character of PMMA.

The distribution of predicted Tgs with respect to every choice-combination is shown

in Figure 3.4. We can see the large variability that arises from the data analysis in several

combinations for each dataset consisting of five configurations. To consistently summarize

all the predictions from our simulations, including error analysis, Tables 3.1 and 3.2 are

included in this document. Along with Fig. 3.4, they show clear differences between pre-

dicted QoI with respect to the various simulation and data analysis choices; these will be

discussed in the following section. Predicted values for αV convey in good agreement with

experimental data. [81]

As a reminder, the density at 300 K was obtained directly from the MD raw output and

consequently there is not distinction between the bilinear and hyperbola analysis.
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Table 3.1.
Predicted densities at room temperature, glass transition temperatures and coefficient of thermal
expansion for poly(methyl-metacrylate) systems

70 monomers 700 monomers

SARW CBMC SARW CBMC

PCFF PCFF DREIDING PCFF PCFF DREIDING

H B H B H B H B H B H B

ρ̄ [g/cm3] 1.092 1.088 1.078 1.088 1.087 1.070

σ 0.00341 0.00363 0.00956 0.00609 0.00658 0.00466

tα/2· σ/
√
n 0.00025 0.00027 0.0007 0.00045 0.00048 0.00034

Tg (MD Ave) [K] 534 526 485 477 471 467 600 528 534 518 509 514

Std Error 5.1 3.5 5.9 4.2 4.6 6.9 18.3 5.6 6.2 4.1 6.8 4.4

t∗· SE 8.43 5.84 9.9 7.04 7.72 11.51 30.6 9.26 10.4 6.9 11.3 7.36

Tg (Qol Ave) [K] 545 526 499 500 470 462 581 516 531 514 514 515

σ/
√

5 11.6 7.66 18.84 18.47 16.46 12.2 11.6 20.93 17.5 14.4 11.34 11.1

tα/2· σ/
√

5 19.07 12.6 30.9 30.38 27.07 20.17 18.36 34.42 28.8 23.7 20.8 18.26

α−
V (MD Ave) [×10−4 K−1] 2.42 2.07 2.26 1.92 2.37 2.08 2.35 2.03 2.21 1.9 2.19 1.95

Std Error [×10−4 K−1] 0.043 0.026 0.067 0.032 0.016 0.063 0.163 0.035 0.054 0.026 0.09 0.37

t∗· SE [×10−4 K−1] 0.072 0.044 0.113 0.053 0.266 0.105 0.272 0.058 0.089 0.044 0.15 0.62

α−
V (Qol Ave) [×10−4 K−1] 2.42 2.06 2.29 19.5 2.27 2.07 2.29 2.01 2.19 1.89 2.14 1.96

σ/
√

5 [×10−4 K−1] 0.046 0.038 0.07 0.054 0.045 0.038 0.033 0.032 0.023 0.014 0.068 0.05

tα/2·σ/
√

5 [×10−4 K−1] 0.075 0.062 0.115 0.089 0.074 0.062 0.054 0.052 0.038 0.022 0.111 0.083

α+
V (MD Ave) [×10−4 K−1] 4.85 5.09 4.18 4.31 5.58 6.25 4.41 4.63 4.21 4.35 5.13 5.65

Std Error [×10−4 K−1] 0.161 0.055 0.067 0.043 0.37 0.85 0.52 0.072 0.186 0.05 0.27 0.07

t∗· SE [×10−4 K−1] 0.268 0.091 0.113 0.071 0.618 0.142 0.872 0.12 0.311 0.083 0.463 0.117

α+
V (Qol Ave) [×10−4 K−1] 4.3 4.93 4.28 4.96 5.6 6.28 4.32 4.65 4.22 4.37 5.14 5.73

σ/
√

5 [×10−4 K−1] 0.096 0.182 0.36 0.36 0.07 0.046 0.074 0.115 0.158 0.178 0.072 0.112

tα/2·σ/
√

5 [×10−4 K−1] 0.158 0.3 0.591 0.591 0.115 0.076 0.121 0.188 0.26 0.293 0.118 0.184

For short notation hyperbola fitting is referred as H and bilinear fitting as B
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Table 3.2.
Predicted densities at room temperature, glass transition temperatures and coefficient of thermal
expansion for polystyrene systems

70 monomers 700 monomers

PCFF DREIDING PCFF DREIDING

H B H B H B H B

ρ̄ [g/cm3] 0.983 1.010 0.980 1.008

σ 0.00391 0.00475 0.00477 0.00436

tα/2· σ/
√
n 0.00029 0.00035 0.00035 0.00032

Tg (MD Ave) [K] 418 424 428 434 429 434 426 442

Std Error 4.7 3.6 5.1 3.9 5.0 3.9 6.0 4.4

t∗· SE 7.8 5.9 8.5 6.6 8.4 6.5 10.02 7.27

Tg (Qol Ave) [K] 421 429 428 438 433 434 426 439

σ/
√

5 8.1 6.8 4.94 6.42 8.61 9.34 8.34 5.64

tα/2· σ/
√

5 13.36 11.2 8.13 10.57 14.16 15.37 13.73 9.28

α−
V (MD Ave) [×10−4 K−1] 2.71 2.63 2.43 2.46 2.8 2.73 2.39 2.40

Std Error [×10−4 K−1] 0.082 0.058 0.087 0.044 0.067 0.043 0.15 0.053

t∗· SE [×10−4 K−1] 0.137 0.096 0.145 0.073 0.111 0.072 0.25 0.089

α−
V (Qol Ave) [×10−4 K−1] 2.69 2.60 2.44 2.45 2.77 2.69 2.36 2.39

σ/
√

5 [×10−4 K−1] 0.061 0.057 0.06 0.069 0.07 0.066 0.022 0.021

tα/2·σ/
√

5 [×10−4 K−1] 0.1 0.095 0.099 0.114 0.115 0.108 0.037 0.034

α+
V (MD Ave) [×10−4 K−1] 4.66 6.43 4.71 6.06 4.49 6.45 4.62 5.93

Std Error [×10−4 K−1] 0.155 0.058 0.176 0.049 0.134 0.049 0.269 0.06

t∗· SE [×10−4 K−1] 0.258 0.096 0.294 0.083 0.224 0.082 0.449 0.101

α+
V (Qol Ave) [×10−4 K−1] 4.68 6.45 4.73 6.06 4.4 6.2 4.6 5.93

σ/
√

5 [×10−4 K−1] 0.029 0.053 0.05 0.046 0.021 0.055 0.019 0.029

tα/2·σ/
√

5 [×10−4 K−1] 0.048 0.087 0.082 0.075 0.034 0.09 0.032 0.049

For short notation hyperbola fitting is referred as H and bilinear fitting as B



33

3.3.1 Role of Builder, Molecular Weight, Force Field and Data Analysis on Predicted
Quantities

Figure 3.5 quantifies how each of the independent variables (organized in columns)

affects the four QoIs (organized in rows) using raw results from Tables 3.1 and 3.2. The

first column shows how molecular weight influences the QoIs; the bars represent the dif-

ference in prediction (results for systems composed of 70 monomers chains minus those

for 700 monomers chain systems) and the various categories in the plot represent different

combinations of the remaining independent variables.

For each case, we show the QoI Ave (solid red) and the MD Ave (hashed bars). The

second column shows the effect of the builder (SARW - CBMC), the third force field (PCFF

- DREIDING) and the forth column quantifies the effect of data analysis (hyperbola - bi-

linear). Error bars represent the 90% confidence intervals of the two values subtracted as

the square root of their sum of standard deviations. Our results indicate that all variables

studied affect the predicted QoIs, but to different degrees. Comparing red (QoI Ave) and

hashed (MD Ave) bars we find that the averaging procedure tends to have a relatively minor

role.

Role of Molecular Weight. An increase in chain molecular weight is expected to

result in an increase of Tg and density. [82] However, the molecular weight of the system with

1 chain, 700 monomers (70, 084 g/mol for PMMA and 72, 870 g/mol for PS) corresponds

to a regime where Tg becomes independent of molecular weight. [83] Experimental results

indicate that reducing the chain molecular weight to those corresponding to 70 monomers

chains would lead to a reduction of Tg of approximately 5% for both polymers. This reduc-

tion is comparable with the level of accuracy of our calculations and was not observed in

our simulations. As expected, the 70 monomers per chain systems exhibited higher αV in

the solid and liquid phases.

Role of Builder Amorphous polymer builders are known to be key for accurate

predictions of amorphous polymers. This is due to the importance of the initial molecular
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Figure 3.5.: Differences in predicted values for each of the quantities of interest originating from
each of the independent variables studied. Red bars represent QoI Ave and hashed bars represent
MD Ave
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structure as the relaxation timescales of polymers with large molecular weight often exceed

those achievable by MD, even in the liquid phase. [84, 85] Not surprisingly, the choice of

amorphous builder affects the predicted QoIs. We found that the SARW method resulted

in slightly higher density, Tg, and αV s. While the differences between the two builders

are comparable to the 90% confidence interval in many cases, they are observed relatively

consistently for the systems with 70 monomers and the 700 monomer per chain. The higher

coefficient of thermal expansion seen in the SARW structures indicate a faster degree of

relaxation during cooling, which seems at odds with the higher room temperature density.

This will be discussed further in section 3.4.

Role of Force Field As expected, the choice of force field has a relevant footprint

on the predictions. We found that PCFF overestimates Tg and ρ in PMMA as compared

to DREIDING while for PS, Tg calculations were similar in both force fields, but ρ was un-

derestimated by PCFF. This shows a correlation between these properties, higher density

corresponds to higher Tg across force fields. Interestingly, going from the glassy state to the

liquid, DREIDING increased the αV more than PCFF, this could be due to higher chain

mobility seen in the first one, which will be explored further in section 3.4. In the glassy

state, PCFF led to a higher αV than DREIDING for PS indicating higher anharmonicities

in the non-bond interactions.

Role of Data Analysis The functional form used to describe the density-temperature

data leads to large uncertainties in the predicted Tg and αV values. For Tg the uncertainties

span between 5 K and 20 K and are comparable to the 90% confidence level, except one

combination: SARW, PCFF, and 700 monomers; that exhibits higher uncertainties. Fur-

ther analysis of this problematic case shows that the density vs. temperature data does not

exhibit a clear break in slope, see Figure 3.6. Consequently, Tg is not well defined, as it has

been pointed out by Patrone et al. (2016) since the transition region between low and high

temperature regimes can occur over hundreds of degrees, it can be often difficult to identify

the corresponding change in the slope and several attempts to extract Tg can give different
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estimates.

This result shows that it is advantageous to utilize complementary tools to analyze the raw

data. This is particularly important when the QoI is obtained from a non-trivial analysis

such as identifying a change in slope. It is important to note, that even disregarding this

specific case, the uncertainties associated with the predicted Tg introduced by the data

analysis techniques are not negligible and of a magnitude comparable to the discrepancy

between prediction and experiments.
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Figure 3.6.: Density vs temperature plot for combination: PMMA, 700 monomers, SARW, PCFF.
This case results in a large variation for predicted Tg depending on the data analysis used. Predicted
glass transition using bilinear fit shown in red and in blue for hyperbola fit method

The functional form used also affects the prediction of thermal expansion coefficient.

Below Tg, the αV obtained from the hyperbola fitting, evaluated at T = 200 K, is higher

than the bilinear value (between 100K and Tg). Above Tg the hyperbola value, evaluated

at T = 700 K, αV is lower than the linear fit (between Tg and 800 K), this result relates to

the fact that increasing the change in the temperature will increase the difference quotient

(average slopes) of the function and therefore a high value is seen for the linear fit above

Tg.
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Effect of Temperature Range in Data Analysis On the other hand, we looked

at the effect of the temperature range used in the regression model. We reduced the upper

bound in the temperature regime to 700 K and 600 K and found significant variability on

the predicted Tg as presented in Figure 3.7 for simulations done in PMMA.

An interesting response arises for the previously discussed case: SARW, PCFF, 700 monomers,

denoted in the figure as PS700. The hyperbola based regression (hashed colored bars) can

not find an estimate in the MD averaged data over the five samples if we exclude data

points above 700 K. In contrast, a decrease in Tg is observed if the fit is performed between

100 K and 600 K.
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Figure 3.7.: Estimates of Tg for PMMA bulk samples with bilinear method (solid bars) and hyperbola
method (hashed bars) according to the upper temperature regime used in the regression

3.4 Physical Origin of the Trends in Predictions

In order to understand the physical origin of the trends discussed in section 3.3.1,

specifically, those associated with the choice of builder and force field, we analyzed the MD

trajectories to quantify molecular processes responsible for the physical responses.



38

3.4.1 Amorphous builder

0.90

0.95

1.00

1.05

1.10

1.15(a)

D
en

si
ty

 [
g
/c

m
3
]

CBMC
SARW

−8

−4

0

4

8
x 10−3

SARW−CBMC−8

−4

0

4

8

0

4

8

12

16

20
(b) x 10−3

T
ra

n
si

ti
o
n
 r

at
e 

[t
o
rs

io
n

−
1
 p

s−
1
]

0

4

8

12

16

20

−2

−1

0

1
x 10−3

SARW−CBMC
−2

−1

0

1

22

23

24

25

26

100 200 300 400 500 600 700 800

(c)

R
g
 [

Å
]

Temperature [K]

22

23

24

25

26

100 200 300 400 500 600 700 800

Figure 3.8.: Comparison of predicted properties within the two builders in PMMA systems with 70
monomers. (a) Density vs temperature, inset: difference in density between SARW and CBMC as a
function of temperature (b) Conformational transition rate normalized per torsion and time vs tem-
perature, inset: transition rate difference between SARW and CBMC as a function of temperature
(c) Radii of gyration vs temperature

We now switch our attention to studying the origin of the differences in predictions

based on the amorphous builder used. Figure 3.8 compares the density, torsional transi-

tion rates and radii of gyration of polymer chains as a function of temperature for PMMA
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structures containing 10 chains that were simulated with the PCFF force field; so we have

ensured that the results differ only with respect to the builder used to generate the initial

structure.

First, we note that the two density vs temperature curves are very similar for both simu-

lation cases, yet when extracting Tg, values obtained for SARW structure were 20 to 50 K

higher than CBMC cases, regardless of whether we use the bilinear or hyperbola approach.

It is important to highlight that even though the exact same force field was used for the

cooling simulations, differences in the initial structures result in small but persistence dif-

ferences in torsional transition rates and radii of gyration.

Now, going back to the density results, both methods used to generate the polymeric systems

started with very similar densities at high temperature (after annealing for long time), how-

ever in the case of the structure generated with SARW, the higher αV resulted in a higher

density at room temperature.

If we look at the CBMC-generated structures, they exhibited slightly higher torsional

transition rates in the melt than SARW which we believe resulted in a lower glass transition

temperature. The differences in radii of gyration of the systems chains are small (consider-

ably minor than the difference resulting from the force fields) but persisted throughout the

simulation, confirming the long relaxation timescales even at high temperatures. At this

point, the origin in the differences observed between builders cannot be singled out.

3.4.2 Force Field

Many of the QoIs studied are related to chain dynamics and their ability to relax.

For example, the glass transition is a kinetic process by which a glass is formed from a melt

upon quenching and is marked by a significant increase in the relaxation timescales leading

to a non-equilibrium solid. [86, 87] In polymers, this relaxation is dominated by conforma-

tional transition of torsional angles along the polymer backbone that dominate the local

segmental dynamics. Thus, in order to characterize segmental mobility and relaxation, we
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studied the distribution and transitions of torsion angles around sp3 carbon atoms in the

polymer backbone.

0.000

0.005

0.010

0.015

0.020

0.025
PMMA 550 K PS 550 K

0 30 60 90 120 150 180
0.000

0.005

0.010

0.015

0.020

0.025

200 K

Dreiding

PCFF

0 30 60 90 120 150 180

200 KDe
ns

ity

Torsion angle 

Figure 3.9.: Distribution of backbone torsional angles from MD simulations for PMMA and PS,
above Tg: 550 K and below Tg: 200 K

Since the low-energy configuration around two sp3 carbon atoms is staggered (like in

ethane), the dihedral angles are expected to be 60◦and 180◦. Figure 3.9 shows the distribu-

tion of backbone torsional angles for PMMA and PS at two temperatures, above and below

the glass transition. The figure compares results from DREIDING and PCFF for structures

built using the CBMC method. In the case of PMMA we found that DREIDING resulted

in broader distributions of torsional angles, indicating more flexible chains. This was not

the case for PS where both force fields resulted in very similar angle distributions. Since the

glass transition is related to the effective freezing of torsional degrees of freedom, [47,88,89]

the broader distributions in PMMA for DREIDING was likely the culprit of the lower Tg
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with respect to PCFF.

To confirm this, we quantified chain conformational mobility by computing the rate

of torsional angles transitions between subsequent energy minimum as discussed in section

3.2.5. Figure 3.10 compares the torsional transition rates for DREIDING and PCFF in

both polymers and their confidence intervals. As expected, the transition rates decrease

with temperature and, in all cases, we observed a slight change in slope, around the glass

transition as predicted from the density vs. temperature curves. Consistent with a broader

dihedral angle distribution, in the case of PMMA the DREIDING force field exhibited a

higher transition rate than PCFF above Tg.

Figure 3.10.: Conformational transition rates for each force field as a function of temperature for
structures built with CBMC; left PMMA; right PS

Below Tg the transition rates are comparable for both force fields. In PS, we observe

slightly higher transition rates for PCFF at temperatures above 500 K. On the other hand,

in PMMA we observe much higher rates at temperatures above the glass transition tem-

perature. The latter results explain the lower Tg predicted by DREIDING for PMMA. We

also analyzed the mobility of the side chains by characterizing the torsional angle distri-

bution and transition rates. DREIDING and PCFF describe these torsions using different

functional forms which results in different distributions and transition rates at high tem-

peratures.



42

In order to characterize the effect of the force field on molecular structure, we quan-

tified the radius of gyration of all chains in the various systems with 10 chains, each 70

monomers long as a function of temperature and their respective 90% confidence intervals,

see Figure 3.11, and the radial distribution functions (RDFs) at 300 K, Figure 3.12. We

found that DREIDING force field predicts a slightly larger radius of gyration for both poly-

mers than the PCFF force field with a more marked difference in PMMA (approximately

20% difference vs. just over 10% for PS). The RDFs showed that both force fields led to

very similar structures, the main difference being that DREIDING broadened the first peak

of PS.
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Figure 3.11.: Rg distribution averaged over the five samples built with the CBMC method and 10
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3.5 Glass Transition Notebook

We have created a Jupyter notebook tool as one of the deliveries in this research

project. From the comprehensive study of the uncertainties in the molecular modeling of

thermoplastic polymers, we have assemble the different steps required in order to predict a

property. In this notebook, available at nanoHUB (listed as Glass Transition Notebook),

users can build a polymer system using Polymer Modeler with pre-loaded structures or us-

ing molecular structures obtained from the materials database ChemSpider; the desire size

and molecular weight can be specified. After finishing the builder step, users can perform

molecular dynamics simulations using LAMMPS in order to predict Tg. All the generated

systems, will include the atomic interactions as indicated in the DREIDING force field. In

Figure 3.13 a collection of snapshots from the notebook is displayed; they include a visual-

ization of the built polymer and the Tg results after MD is done.

The tool allows the users to control more advances parameters, such as the equili-

bration time and temperature to relax the generated structures. Additionally, the cooling

rate, initial and final temperatures can be specified. The latter feature can be also helpful

to understand the effect of the cooling rate on the glass transition.

As it was demonstrated previously, the data analysis plays an important role in the

prediction of the glass transition. For this reason, the notebook includes a set of automatic

scripts used in this work to get the raw data from the MD simulation, and extract Tg

using the bilinear and hyperbola fitting methods. The error from each of the predictions is

included, alongside with a plot of the density vs temperature data.

https://nanohub.org/
https://nanohub.org/resources/tgnb/
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Polymer system after building

Get results

Figure 3.13.: Snapshots of the Glass Transition Notebook as displayed at nanoHUB including the
visualization of built polymer system and results

https://nanohub.org/
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3.6 Conclusions

As in any physics-based simulations, uncertainties in predicted materials properties

obtained from molecular-level simulations of molecular materials are inevitable. These un-

certainties originate from various sources, including molecular force field form and param-

eters used to describe atomic interactions, sampling size, molecular structure (in the case

of amorphous polymers this includes chain molecular weight and the method used to build

the initial structure), and numerical analysis method. These uncertainties also depend on

the specific chemistry of the molecular system investigated and the property of interest. We

found that the force field used to describe atomic interactions is the main variable affecting

density while the extracted glass transition temperature is affected quite significantly by

the amorphous builder, data analysis method, and chain molecular weight. Also, sample

to sample variability is quite significant even for the relatively large samples studied. We

found a correlation between predicted Tg and density between the two force fields studied

(PCFF and DREIDING): higher density results in higher Tg. Interestingly, the method to

extract from the simulations also results in significant uncertainties; large differences in the

extracted quantity from different methods can indicate issues in the underlying data.
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4. MOLECULAR MODELING OF SMALL ORGANIC CRYSTALS

ADAPTED FROM:

Yifei Zeng et al. 2019 Modelling and Simulation in Materials Science and Engineering,

27, 074005 c© 2019 IOP Publishing Ltd.

4.1 Introduction

Milling and micronization are commonly used to reduce the particle size of active

pharmaceutical ingredients. [90] During these processes the materials are subjected to exten-

sive deformation that may result in amorphization. [91–93] Current amorphization models

require multiple parameters, demanding a large number of experiments. In spite of that, the

use of multiscale frameworks, that integrate numerical tools across different length scales

can help to reduce the necessity of experimental data.

A proposed multiscale methodology to predict mechanically induced amorphization without

experimental information, including molecular dynamics simulations, dislocation dynamics

(DD) simulations and phase fields models (PF) is described in this chapter.

From the MD simulations, the melting temperature, enthalpy of fusion, crystal-amorphous

interface energy, and elastic constants are calculated for small organic crystals. Subse-

quently, this information is used in a phase field model that includes defect nucleation and

solid state amorphization to predict whether the crystal will amorphize or not.

Here we discuss the prediction and validation of some properties of known small organic

crystals in order to verify the simulations performed. This was extended to predict the re-

sponse of two pharmaceutical compounds F1 and F2 (Fig. 4.1), without any experimental

information.

This Work was done in collaboration with Chunyu Li and it was published in Modelling and Simula-

tion in Materials Science and Engineering as coauthor with Yifei Zeng, Rachel Graves, Jeff Brum, Alejandro

Strachan and Marisol Koslowski coauthors [94]
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F1 F2

Figure 4.1.: Crystalline structure of compounds F1 and F2

4.2 Simulation Details

Molecular dynamics simulations were performed using LAMMPS. [71] The crystal

structures were obtained from the Cambridge Structural Database and we used an in-house

set of scripts comprised in the LAMMPS data file generator [61] tool, in order to determine

covalent bonds, identify atom types and assign the appropriate force field parameters, see

2.2.1 for more details.

DREIDING force field [56] was used to describe atomic interactions with environment de-

pendent partial atomic charges obtained using the QEq method [95] with parameters from

Reference [96]. The non-bonded van der Waals interactions are described using the Buck-

ingham potential with an exponential repulsion and power sixth attraction with a cutoff

of 12 Å and explicit hydrogen bond interactions described using LJ potential form 12/10

with a cutoff of 6.5 Å. The non-bonded long-range electrostatic interactions were described

https://nanohub.org/resources/26958


48

using the particle-particle, particle-mesh method with a precision of 10−4 kcal/mol.Å. A

time step of 1 fs was used in all the simulations.

The initial structures were replicated to obtain simulation boxes of the desired size,

based on a considerable number of atoms. Later, they were relaxed via energy minimization;

followed by a two step thermal equilibration at 300 K, first on a NVT simulation for 50 ps

and last NPT run for 200 ps.

In order to obtain the properties of the amorphous phase of the materials of interest, we used

the melt and quench method. The equilibrated crystal structures were heated up to 1000 K

under NPT conditions, well above the expected melting temperatures, with a heating rate

of 10 K/200 ps. Succeeded by a 100 ps of NVT relaxation to enhance the equilibration of

the liquid sample and to confirm their molten state. Cooling procedure is done using NPT

conditions at a rate of 10 K/50 ps.

4.3 Predicted Properties in Organic Crystals

Table 4.1 contains the lattice parameters from MD simulations compared to ex-

perimental results for various small organic crystals. Figure 4.2 shows snapshots of γ-

indomethacin in the crystal and amorphous form and the density vs temperature during

the heating/cooling cycle. We estimated the glass transition temperature Tg, from the

change in slope in the curve during cooling. Our predicted value is approximately 360 K,

just above the experimental result 323 K. [97]

From the MD simulations we obtain the energy and volume during the isobaric heating

and cooling process to calculate the enthalpy of fusion between a crystalline bulk and its

amorphous counterpart calculated as

∆H = ∆U + P∆V (4.1)
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Å

α
/d

eg
β
/d

eg
γ
/d

eg

A
ce

ta
m

in
op

h
en

1
27

21
6

16
.7

9
8

12
.7

05
7.

70
7

90
.0

90
.0

9
0.

0
17

.1
5
6

1
1
.8

3
1

7
.4

0
5

9
0
.0

9
0
.0

9
0
.0

γ
−

in
d
om

et
h
ac

in
2

27
54

9.
32

8
11

.0
08

9.
77

7
69

.4
11

0.
8

9
2.

8
9.

29
5

1
0
.9

6
9

9
.7

4
2

6
9
.4

1
1
0
.8

9
2
.8

A
sp

ir
in

3
45

18
0

11
.5

4
8

6.
65

9
11

.5
13

90
.0

95
.7

9
0.

0
11

.4
4
6

6
.5

9
6

1
1
.3

8
8

9
0
.0

9
5
.3

9
0
.0

S
al

ic
y
la

m
id

e4
50

20
0

6.
17

7
4.

38
1

25
.2

89
90

.0
90

.0
9
0.

0
5.

56
1

3
.8

9
3

2
8
.5

6
6

9
0
.0

9
0
.0

9
0
.0

S
u
cr

os
e5

32
64

8.
13

3
9.

14
0

11
.3

99
90

.0
10

2.
9

9
0.

0
7.

76
2

8
.7

0
4

1
0
.8

6
3

9
0
.0

1
0
2
.9

9
0
.0

C
om

p
ou

n
d

F
1

50
20

0
7.

40
0

7.
81

3
32

.3
78

90
.0

90
.0

9
0.

0
7.

25
9
7

7
.2

9
2
8

3
2
.2

7
6

9
0
.0

9
0
.0

9
0
.0

C
om

p
ou

n
d

F
2

16
12

8
11

.0
2
8

11
.0

64
80

.7
67

90
.0

90
.0

9
0.

0
10

.6
5
8

1
0
.6

5
8

8
4
.9

0
6

9
0
.0

9
0
.0

9
0
.0

1
R

ef
.

[9
8]

2
R

ef
.

[9
9]

3
R

ef
.

[1
00

]
4

R
ef

.
[1

01
]

5
R

ef
.

[1
02

]



50

300 400 500 600 700 800

1.0

1.1

1.2

1.3

1.4

Tm=640K

Exptl. Tg=323K

D
en

si
ty

 (g
/c

c)

Temperature (K) 

Exptl. Tm=431K

Tg=360K

Crystal

Amorphous

𝜌	
[g

/c
m

3 ]

Temperature [K]

𝑇$

Exp 𝑇$ = 431	K
Exp 𝑇) = 323	K

𝑇)

Figure 4.2.: γ-indomethacin crystal and amorphous structures and density changes during heating
and cooling with predicted glass transition and melting temperature

where H stands for enthalpy, and U , P , V for potential energy, pressure and volume, re-

spectively.

Melting Temperature The solid-liquid coexistence method [103] was adopted to

predict the melting temperature TM . The preparation of a crystal-amorphous coexistence

simulation system consists in beginning with a relatively large pure crystal system, then

removing a third of the molecules at one extreme and center to create interfaces and empty

space. A third of the crystal molecules is keep fixed and the remaining third is heated to

get a liquid region. Finally, the solid/liquid coexistence is quenched to 400 K and relaxed

for 2 ns under anisotropic NPT conditions. A solid/liquid configuration and the volume vs

temperature data for γ−indomethacin is shown in Fig. 4.3.

To predict TM , the relaxed crystal-amorphous structure is taken to a series of tem-

peratures under NPT condition for 400 ps. At temperatures above the melting point the

liquid phase will grow at the expense of the solid increasing the volume of the sample and

the opposite will occur at temperatures below TM . The normalized volume by V (T = 300

K) vs temperature is used to extract TM as the intersection of two segments.
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Amorphization enthalpy In order to assess the propensity of the various com-

pounds to amorphize, Figure 4.4 shows the amorphization energy predicted by the MD sim-

ulations at TM . The high enthalpy of amorphization of salicylamide, acetaminophen and

aspirin indicates little propensity to amorphization whereas sucrose and γ−indomethacin

are more likely to exhibit amorphization, this is consistent with experimental studies. Com-

pound F1 has a lower amorphization enthalpy than aspirin and slightly higher than sucrose,

whereas the predicted value for F2 shows more tendency towards amorphization.

To validate the results of our MD simulations performed in acetaminophen, aspirin,

salicylamide, γ-indomethacin, and sucrose; we compared our results with available experi-

mental data for each compound, see Figure 4.5. The experimental density values for F1 and

F2 were obtained by x-ray diffraction of single crystals. Overall our predicted values are

in good agreement with the experimental data reported in literature. The crystal density

obtained from our simulations shows an excellent agreement for γ−indomethacin, sucrose,

salicylamide and aspirin with the experimental data. We notice that our predicted TM

corresponds with the experimental data, which validates the method implemented, being

Aspirin an exception due to its large deviation, it was later found that the charge equilibra-

Temperature [K]

𝑇" = 434	K

(∆
𝑉/
∆𝑇
)/
V -
..

(×
10

4 )

Figure 4.3.: Coexistence of crystal and amorphous structures and the determination of melting
temperature in γ-indomethacin



52

Am
or

ph
iz

at
io

n 
en

th
al

py
 [

J/
g]

Ac
eta

mino
ph

en

𝛾 −
	in

do
meth

ac
in

As
pir

in

Su
cro

se F1 F2

Sa
lyc

ila
mide

Figure 4.4.: Calculated amorphization enthalpy from MD simulations

tion parameters used might have impacted the simulations performed for calculating the

melting temperature. The predicted melting temperatures for compounds F1 and F2 are

480 K and 450 K, respectively, it is important to mention that no experimental values for

this quantity are available similarly for the enthalpy of fusion ∆Hf . we observe that the

predicted ∆Hf are very close to the experimental data, mostly due to the super-heating at

the melting temperature.
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4.4 Conclusions

With the provided information from MD simulations that were validated in multiple

compounds; dislocation dynamics (DD) and finite element analysis (FEA) models were used

to predict amorphization of molecular crystals, achieving successful results, particularly in

compounds F1 and F2. It was found that compound F1 does not exhibit any noticeable

increase in the volume of the amorphous regions while F2 shows an increase of the amor-

phous phase. Physical tests were performed for each compound. Most notably gravimetric

vapor sorption showed that F2 exhibited behavior consistent with amorphization.
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5. LOCAL CHAIN DYNAMICS AND GLASS TRANSITION IN POLYMERIC BULK

AND FINITE SIZE SYSTEMS BY MOLECULAR DYNAMICS SIMULATIONS

5.1 Introduction

Due to the experimental evidence that proves the existence of spatially heterogeneous

dynamics (see discussion in section 1.1), and despite significant progress in understanding

the glass transition phenomenon, the molecular level processes responsible for the slowdown

of the relaxation dynamics, so called α−relaxation in polymers is not well understood.

For this reason, computer simulations have been used to provide some insight into the na-

ture of dynamic heterogeneities.

Several simulation works have reported evidence of organized motion in supercooled

liquids [43, 45, 104, 105] and granular systems, [104, 106] where particles that undergo large

displacements (hopping) on fast time scales tend to arrange in clusters [42] as an indicator

of the cooperative motion responsible for the relaxation of a liquid above its glass transition.

Molecular dynamics simulations can provide a microscopic level understanding of the lo-

cal relaxation phenomena in polymers not available experimentally. Several studies have

monitored the evolution of torsional angles and their conformational transitions in bulk

polyethylene, [46–48, 50, 107] polypropylene, [49, 88] and poly(methyl-methacrylate) [108]

correlating this motion with the dynamic relaxation.

These MD simulations confirmed the existence of cooperative motion at temperatures near

Tg, Arrhenius behavior of conformational transitions, a noticeable freezing of dihedral an-

gles below Tg with an increase in heterogeneity of conformational dynamics. [46, 49,50,52]

Recent MD simulations have proved a linear relationship between activation energy Ea of

torsional transitions and glass transition temperatures for bulk polymers. The Ea values

obtained correspond to the energy required for a dihedral angle to go from the gauche state
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to the trans state. Higher activation energies have been connected to cooperative effects

in torsions. [51] We observe this behaviour in our work as well. However, the cooperative

behavior of torsions where transitions are found in clusters, with characteristic length and

time scales in polymers has not been addressed. In the addition little is known regarding

how the characteristics of theses process translate to nanoscale specimens.

In this work we investigate spatial and temporal correlations in the mobility of back-

bone torsional angles from MD simulations of various bulk and finite-sized polymers. A

cluster analysis of the transitions in torsional angles along the polymers backbones reveals

a percolation critical phenomena from plentiful isolated high-mobility domains below Tg

to a large percolating cluster. Quite interestingly, we find nearly identical transitions in

the bulk polymers studied, in nano-scale slabs and in free-standing chains. This indicates

that key characteristics of the glass transition survive down to isolated and relatively small

chains.

5.2 Computational Details

5.2.1 Polymeric Systems

We characterize the dynamical relaxation of atactic poly(methyl-methacrylate) (PMMA),

atactic polystyrene (PS), atactic polypropylene (PP) and polyethylene (PE) bulk samples.

In the case of PMMA we study the effect of chain molecular weight and finite size effects in

slabs and single-chain systems. For bulk polymers mentioned previously, we studied sam-

ples with 40 chains and 100 monomers per chain. Additionally, PMMA samples were also

investigated. They are listed below.

(i) a bulk systems with 4 chains with 1000 monomers per chain,

(ii) a slab system of 40 chains and 60 repeating units each, and

(iii) two isolated chains: 100 monomers and 1000 monomers.

All samples were built using the continuous configurational bias Monte Carlo (CBMC) as

implemented in the Polymer Modeler tool available for online simulations at nanoHUB.

https://nanohub.org/
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5.2.2 Molecular Dynamics Simulations

The bulk structures were generated at an initial density of 0.5 g/cm3. The PMMA

slab sample was built with periodic boundary conditions in x and y directions and two

excluded regions along the z-direction; polymer chains are reassigned in the box to reach

an initial density of 0.4 g/cm3. To generate isolated polymeric chains, a single chain was

built and placed in the center of a large box (to avoid mirror images) but keeping periodic

boundary conditions along the three directions.

To relax each resulting configuration, a 3-level step energy minimization with scaled

van der Waals parameters was performed, followed by a thermal equilibration at 600 K. The

latter procedure consists of a simulation under NVT conditions for 50 ps and a second run

with NPT ensemble (pressure of 1 atm) for 500 ps. We monitored that the density reaches

equilibrium. However, we must clarify that the procedure for isolated chains was different

and involved one single NVT simulation for 500 ps.

After thermalization, each structure was cooled keeping the equilibration ensemble in

a step wise manner. Temperature was decreased every 10 K, and held during 100 ps, until

reaching a final temperature much below the expected glass transition temperature. For

PMMA and PS the final temperature is 200 K; for PP final temperature is 100 K and for

PE is‘ 50 K. The final atomic structure at each temperature was taken for an extended run

during 1 ns; an atomic snapshot was recorded every 2 ps for further analysis.

All MD simulations are carried out using LAMMPS. [71] Atomic interactions were

calculated using the DREIDING force field [56] and atomic charges were obtained using the

Gasteiger partial charge algorithm. [69] Non-bonded long-range electrostatic interactions

were described using the particle-particle, particle-mesh method with a precision of 10−4

kcal/mol.Å and the non-bonded van der Waals interactions are described using the Buck-

ingham potential with an exponential repulsion and power sixth attraction with cutoff of
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12 Å. A time step of 4 fs was used in all the simulations.

Our goal is to detect transitions in dihedral angles along the polymers backbone and

assessing spatial and temporal correlations between them. This is accomplished in two

steps using developed Python in-house codes, first we identify torsional transitions from the

atomistic trajectories and second, we perform a cluster analysis in space and time.

5.2.3 Torsional Transition Analysis

-350

-300

-250

-200

-150

-100

-50

 0  200  400  600  800  1000

(a)

A
n
g
 [

d
e
g
]

 1

 0  200  400  600  800  1000

(b)

C
h
a
n
g
e
s

Time [ps]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  100  200  300  400  500  600  700  800  900  1000

(c)

T
o
rs

io
n

Time [ps]

Figure 5.1.: Torsional transition analysis. (a) Time evolution of a backbone dihedral angle obtained
from the MD trajectory every 0.1 ps (red line). A window average has been performed to obtain a
torsional angle every 2 ps shown as black line. (b) Jumps detected for the monitored angle. (c) All
transitions (black points) found for backbone dihedral angles as a function of time in bulk PMMA
at 480K

We calculated the time evolution of the torsional angles for each dihedral along the

backbone chain, from the positions of four consecutive sp3 carbon atoms, from the MD

trajectory recorded following the same methodology proposed in 3.2.5. We monitored the

time evolution of each torsional angle with a time resolution of 2 ps simplifying the detection

of a jump. A transition has occurred at time t if :

∆φ [(ti + 2 ps)− (ti − 2 ps)] ≥ 80◦
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Figure 5.1 shows the time-evolution trajectory of a dihedral and their respective

conformational jumps. All the active transitions that were identified during a 1 ns simulation

of bulk PMMA at T = 480 K are shown in (c).

5.2.4 Cluster Analysis

In order to characterize spatial-temporal high-mobility domains we performed a clus-

ter analysis on active torsions in space and in time, via an in-house code implementing

minimum spanning tree algorithm. Every time torsion undergoes a transition we define an

active torsion, i, and characterize it by a position in the simulation cell (Ri, the center point

between the two central atoms) and a time (ti). Two active torsions, i and j, are defined

to belong to the same cluster if:

|Ri −Rj | ≤ Rc and ti = tj

or

Ii = Ij and ti − tj | ≤ tc

Where Ii represents the index of = active torsion i, Rc is a cutoff in space and tc is the

temporal cutoff. The cluster analysis was performed with temporal cutoff tc= 8, 16, 32 and

64 ps for a various distance cutoffs.

Time 0 ps Time 4 ps Time 8 psTime 6 ps

Chain 1

Chain 2

C1

C2

C1

C2

C1

C2

C1

Time 2 ps

Figure 5.2.: Cluster analysis procedure visualization. Two clusters of active torsions (C1 and C2) are
detected within space cutoff at t = 2 ps, at consecutive times (until reaching cutoff) we monitored
the same torsions and nearby ones so they will be included in initial identified clusters

Figure 5.2 shows the time evolution of two high-mobility clusters represented by

circles, formed by nearby torsions that belong to two different chains in a time window of
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8 ps.

At t = 0 no active torsions are found. Two clusters of active torsions in space are detected

at t = 2 ps. Subsequently, at time t = 4 ps, some torsions undergo transitions and remain

active, so they are added to the initial cluster; this is repeated with the torsions that

transitioned at t = 6 ps and t = 8 ps.
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Figure 5.3.: Active backbone torsions as a function of time in PMMA at 480K after clustering
analysis. Each color represents a cluster identified in the simulation, however torsion index does not
represent the location in space of the dihedral angles

For visualization purposes, Figure 5.3 shows the transitions detected in Fig. 5.1b after

the cluster analysis is performed. Each color represents a spatio-temporal cluster detected,

however torsion index does not reflect the actual location of the angle in the simulation. As

the temperature is above the glass transition we can see one predominant cluster (green)

with most of the active torsions.

5.3 Torsional Relaxation in Bulk Systems

In order to characterize the bulk systems studied, we calculated the glass transition

temperature from the density vs. temperature data obtained by averaging the last 50 ps of

the MD simulation at each temperature during the cooling procedure.

We have used the bilinear and hyperbola fitting methods described in 3.2.4 to compute Tg;

results are summarized in Table 5.1 and they are also displayed in Fig. 5.4. Our predictions
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are in good agreement with the experimental data after the effects of cooling rate in MD

are taken into account.

Table 5.1.
Predicted glass transition temperatures Tg [K] from MD simulations for bulk samples using two
fitting procedures

PE PP PS PMMA

Bilinear fit 195 246 442 453

Hyperbola fit 208 275 456 479
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Figure 5.4.: Density vs. temperature data for each polymer and computed glass transition tempera-
ture. Solid lines and dashed lines represent results from the bilinear and hyperbola fitting procedure
respectively

We obtain torsional transition rates k at each temperature as the number of active

torsions normalized by the total number of backbone torsions in each system and total

simulation time following Equation 3.2. Figure 5.5a compares the transition rate for bulk

systems of PMMA, PS, PP and PE consisting of 40 chains with 100 monomers; with their

respective glass transition regimes. Notice, that the rate of conformational transitions is

very similar in both PMMA and PS; this is consistent with the fact that they have similar

glass transition temperatures. While all systems exhibit similar trends of reduction of

torsional transition rates with decreasing temperature, the rates at Tg are different for each
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polymer. In Fig. 5.5b we plotted the same results using an Arrhenius form for each bulk

polymer studied.
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Figure 5.5.: Conformational transition rates as a function of temperature for bulk polymeric samples.
(a) Torsional transition rates vs. temperature; shadow regions represent glass transition regimes and,
(b) Transition rates as a function of temperature in Arrhenius form for each polymer

To calculate the activation energy associated with the motion of the backbone chain

and relate with the glass transition temperature, we calculated the slope from k(T ) ∝

exp(−Ea/RT ) in Fig. 5.5b following the form in Equation 5.1. A linear regression was

done in the region between T bilinear
g and T hyperbola

g .

The correlation between Ea and Tg for bulk polymers in this work is shown in Figure

5.6 is consistent with the demonstrated linear relationship proposed in Ref [51], on the form

of Ea[kcal/mol] = 0.01Tg + 0.44 according to results in bulk PE, PS and PVDF. Despite

that it has been suspected that the activation energies correlate with a single barrier value
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(the energy required for a torsion bond to go from one configurational state to another) it

will be later shown that cooperative effects play an important role.

ln k = −Ea
R

1

T
+ lnA (5.1)
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Figure 5.6.: Activation energy (Ea) from backbone torsions as a function of bulk Tg

Having established overall trends of average torsional mobility and their relationship

with Tg, we now study the spatio-temporal correlations between active transitions by means

of the cluster analysis described in 5.2.3. For visualization purposes, snapshots of the active

torsions in bulk polystyrene at 460 K at different times are shown in Fig. 5.7.

We previously discussed the use of several temporal cutoffs to aggregate the active

torsions and to assess the characteristic scales of the problem.

In order to select appropriated distance cutoffs for the various polymers we computed

the radial distribution functions (pair correlation functions) between torsion centers for each

system, see Figure 5.8 including results for PMMA and PS at 450 K and for PP and PE

at 260 K and 200 K respectively. The sharp peaks at short distances correspond to nearby

torsions along the polymer backbone, the broader peaks correspond to non-bond distances.

Following this analysis, we selected a cutoff to include the first two non-bond peaks; as

expected, observation of percolation requires cutoffs long enough to capture torsions in
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nearby chains.

The resulting cutoffs are: 20 Å for PMMA, 22 Å PS, 15 Å in PP, and 11 Å for PE. Our

characteristic lengths are in agreement with experiments and models for bulk polymers.

Using these spatial cutoff we have performed the cluster analysis with a temporal

cutoff of 64 ps. The torsional transition rates are calculated based on two types of motion:

𝑡 = 0.002 ns 𝑡 = 0.004 ps 𝑡 = 0.006 ps

𝑡 = 0.60 ps 𝑡 = 0.62 ps 𝑡 = 0.64 ps

𝑡 = 0.94 ps 𝑡 = 0.96 ps 𝑡 = 0.98 ps

Figure 5.7.: Snapshots of bulk polystyrene at 460 K with active torsions in yellow. The blue points
represent the torsion centers along the backbone chain
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Figure 5.8.: Radial distribution function of backbone torsions in bulk PMMA at 450 K, PS at 450
K, PP at 260 K, and PE at 200 K

(1) Isolated transitions, identified as single torsion clusters, and, (2) Cooperative transitions,

corresponding to several torsions correlated in space and time. In Figure 5.9 we exhibit the

transition rates vs temperature for bulk polymers according to the clusters they belong

to. At low temperatures, the rate is mainly governed by single clusters, whereas at high

temperatures, the overall transition rates are dominated by cooperative torsions. We have

split the cooperative jumps into ones that are associated in clusters with number of torsions

between 2 and 10 and clusters with more than 10 active torsions. At temperatures around

the glass transition regime an increase in small size clusters is more prominent. As expected,

the low temperatures are governed by isolated transitions whereas the high temperatures

are mainly dominated by the cooperative behavior of torsions.

The intersection of isolated and cooperative transition rates is consistent with the

predicted Tg.
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Figure 5.9.: Torsional transition rates ln k with respect to cluster size vs. temperature 1000/T for
bulk polymers using tc = 64 ps. The predicted Tgs from bilinear and hyperbola fits and the averaged
value are shown as dashed lines

Figure 5.10 shows the time-averaged cluster size (defined as the number of active

torsions per time) for each cluster as a function of temperature (colored points) and the

mass-weighted average size over all clusters, black symbols. As expected, the average cluster

size increases with temperature, but, quite interestingly, the size of the largest cluster of

active torsions grows considerably faster than the rest starting a temperature around the

glass transition, described as gray color regions in Fig.5.10. This behavior is typical of

percolation. In the same manner, the weighted-average lifetime of clusters calculated as

t(final torsion)− t(initial torsion) is displayed in Figure 5.11. Consistent with the increase

of number of torsions in the cluster, around Tg the duration spans almost all the simulation

time.
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Figure 5.11.: Average cluster lifetime (last time active torsion - first time active torsion) in black
points. The distribution of cluster duration is shown in colors
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To characterize the percolation of the active domains, we define the strength of the

largest cluster, defined as its size as a fraction of the total number of active torsions, as

a function of temperature. Figure 5.12 shows the strength as a function of temperature

in bulk polymers for several temporal cutoffs. Interestingly, we observe nearly identical

percolation behavior is all systems. At low temperatures, relaxation dynamics are governed

by large numbers of relatively small high-mobility domains; thus, the strength of the largest

cluster is near zero. As temperature is increased and clusters of active torsions merge, a

percolating high-mobility domain forms and the size of this large domain increases above

a critical temperature. As in all percolation problems, the critical temperature depends

on the cutoff used to define clusters [109]. Despite this dependence, the percolation of a

mobile domain occurs approximately around the glass transition temperature. In order to

verify the characteristic scales of the problem, we have performed the cluster analysis with

different spatial and temporal cutoffs as displayed in Fig. 5.13.
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Figure 5.12.: Largest cluster normalized by active torsions as a function of temperature at different
tc using selected distance cutoff

We find it instructive to visualize correlations between active torsions as shown in

Figure 5.14. We show all active torsions as a function of time, the torsion index (vertical

axes) is unique and assigned sequentially as torsions become active, importantly colors

represent clusters. We find significant correlations between active torsions in the glassy

state, denoted by groups of dots with the same color. Increasing temperature results in

a larger number of active torsions but also in the formation of larger, correlated clusters,

indicating domains of high mobility. At high temperatures, right above the glass transition,
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a large cluster is formed accompanied by small clusters which eventually will become part

of the same cluster.
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samples



69

40
0 

K

𝑇 "
=

46
6 

K

46
0 

K

47
0 

K

48
0 

K

PM
M

A
32

 p
s

64
 p

s

49
0 

K

Torsion index

(a
)

𝑇 "
=

44
9 

K

PS

Ti
m

e 
[p

s]

(b
)

40
0 

K

44
0 

K

45
0 

K

46
0 

K

47
0 

K

32
 p

s
64

 p
s

𝑇 "
=

26
1 

K

PP
(c

)

20
0 

K

26
0 

K

27
0 

K

28
0 

K

32
 p

s
64

 p
s

29
0 

K

PE
(d

)

15
0 

K

19
0 

K

20
0 

K

21
0 

K

32
 p

s
64

 p
s

22
0 

K

𝑇 "
=

20
1 

K

F
ig

u
re

5.
14

.:
T

or
si

on
s

in
or

d
er

of
ap

p
ea

ra
n

ce
a
s

a
fu

n
ct

io
n

o
f

ti
m

e,
co

lo
re

d
b
y

cl
u

st
er

in
te

m
p

er
a
tu

re
s

n
ea

r
T
g

in
b

u
lk

sa
m

p
le

s;
(a

)
P

M
M

A
,

(b
)

P
S

,
(c

)
P

P
an

d
,

(d
)

P
E



70

5.4 Role of Chain Molecular Weight and Size Effects in Torsional Relaxation

In this section, we describe the dynamics of PMMA samples with different chain

molecular weights and finite size characteristics using the same methodology used in Sec-

tion 5.3. Our goal is to characterize spatio-temporal high-mobility domains in PMMA

systems with free surfaces and to compare their behavior with respect to sizes and to com-

pare their behavior with bulk systems.

The samples studied are: a second bulk system containing 4 chains each 1000 monomers

long, a slab of 40 chains with 60 monomers each and two isolated chains: 100 and 1000

monomers long.

The density vs temperature data and corresponding glass transition temperature for

both bulk and polymer slab can be found in Fig. 5.15a; alongside conformational rates as

a function of temperature are displayed in Fig. 5.15b. They show negligible effects of chain

molecular weight in the bulk. The presence of free surfaces in the slab and freestanding

chains increases the torsional transition rates.
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Figure 5.15.: (a) Density vs. Temperature for bulk samples of 40 chains and 4 chains and slab system
with 40 chains of PMMA, and (b) Arrhenius plot of conformational transition rates vs temperature
for PMMA samples
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Figure 5.16.: Largest cluster normalized by active torsions as a function of temperature at different
time cutoffs with spatial correlation for poly(methyl-methacrylate) samples including finite size
geometries
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Figure 5.16 shows the strength of the largest cluster for all systems using spatial cutoff

of 20 Å. The new bulk system (4 chains, 1000 monomers each) shows no significant difference

with the results obtained for the previous reported bulk sample with smaller chain molecular

weight which indicates weak dependence of the relaxation dynamics on molecular weight for

the range studied. Quite interestingly, the dynamics of the spatio-temporal high-mobility

cluster in the polymer slab (with thickness 26 nm) display the same characteristics as the

bulk samples. Despite higher overall torsional transition rates, the percolation behavior is

nearly identical.

Even more striking is the fact that the isolated chains also exhibit quite similar behavior,

indicating that some features of the glass transition and glassy state are retained to very

small sized systems. We note that percolation occurs at slightly higher temperatures in

isolated chain systems, one could naively interpret this as an increase in Tg, but the reason

is simply that these systems are lower density and torsions are further apart from each

other. This is particularly true in the smallest, 100-monomer, system.

A picture of the cluster evolution formed at 20 Å and with time cutoff of 32 and

64 ps in the glass transition regime (450 K − 470 K) and at 400 K below Tg is shown

in Figure 5.17 for the 4 chain-bulk, slab and isolated chains. The correlated behavior of

active torsions at higher temperatures forming one big cluster observed is confirmed in the

latter. As the temperature decreases the formation of small clusters remains at later times

with the participation of torsion that were previously inactive, by reaffirming the effect that

domains of high mobility torsions induce the motion of nearby torsions, in combination with

the freezing of the system.
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5.5 Universality of Critical Exponents from High-Mobility Domains

Systems undergoing critical phenomena are known to exhibit universal behavior, e.g.

while the percolation threshold of various models is system-specific, the critical exponents

that describe the system near the phase transition are universal within classes. An im-

portant critical exponent, denoted β, measures how the order parameter describing the

transformation, strength of the largest cluster in our case, increases as a function of a

scaled free parameter (temperature in our case).

(a) (b)

Figure 5.18.: Critical exponents in percolation of high-mobility domains for (a) bulk polymers and
(b) PMMA samples

In Figure 5.18 shows the order parameter as a function of normalized temperature

above a critical value, Tc, denoting percolation for bulk polymers and PMMA samples.

To aid the eye, we also include power law behavior f(T ) ∝ (T − Tc)β expected in critical

processes with exponent β = 0.3 and 0.4. While extracting accurate exponent from MD

simulations is challenging due to large fluctuations associated with small systems (especially

close to Tc where the power lay applies) all systems exhibit nearly identical behavior with

an exponent β between 0.3 and 0.4. These values of critical exponent β are similar to

those associated with systems undergoing similar phase transformations. Critical exponent

β for liquid-gas has been reported to be 0.32 this value also corresponds to the spontaneous

magnetization of the three-dimensional Ising model on a cubic lattice. In other problems,

such as standard percolation on 3d simple cubic lattice the critical exponent has been
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found to be 0.41 We stress that this universal behavior is observed even when the critical

temperatures and the rates of torsional transitions are strongly system dependent.

5.6 Conclusions

In summary, we characterized spatio-temporal domains of high mobility is various

polymers across their glass transition temperature. We performed a spatio- temporal clus-

ter analysis on backbone torsions that undergo transitions between equilibrium states in

several bulk polymers, thin slabs and isolated chains. Prior work had established the rela-

tionship between torsional relaxation and the glass transition. Our simulations revealed that

the glass transition is marked by the percolation of these high-mobility domains. Quite in-

terestingly, we find identical percolation phenomena, with identical critical exponent, across

four different polymers, a thin slab and isolated chain samples, even when transitions rates

are markedly different in all these systems.
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