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ABSTRACT

Dailey, Ryan M. MSCompE, Purdue University, December 2019. Automated Dis-
covery of Network Cameras in Heterogeneous Web Pages. Major Professor: Yung-
Hsiang Lu.

Reduction in the cost of Network Cameras along with a rise in connectivity en-

ables entities all around the world to deploy vast arrays of camera networks. Network

cameras offer real-time visual data that can be used for studying traffic patterns,

emergency response, security, and other applications. Although many sources of Net-

work Camera data are available, collecting the data remains difficult due to variations

in programming interface and website structures. Previous solutions rely on manu-

ally parsing the target website, taking many hours to complete. We create a general

and automated solution for indexing Network Camera data spread across thousands

of uniquely structured webpages. We analyze heterogeneous webpage structures and

identify common characteristics among 73 sample Network Camera websites (each

website has multiple web pages). These characteristics are then used to build an

automated camera discovery module that crawls and indexes Network Camera data.

Our system successfully extracts 57,364 Network Cameras from 237,257 unique web

pages.



1

1. INTRODUCTION

As the cost, ease of use, and Internet bandwidth has improved, more Network Cam-

eras are being deployed by governments, hobbyists, and private entities. Real-time

data is data that provides information about the current or near-past. Network

cameras returning real-time data offer rich contextual information and are used for

weather [1], traffic [2], security [3,4], and other applications all around the world [5].

These real-time data sources provide distinct advantages over other types of publicly

available data because it could be used to study temporally dependent phenomena.

For example, Figure 1.1 shows two instances where real-time Network Camera data

could be use to help emergency responders save lives. The images, taken in Houston

during a period of intense flooding, show how real-time visual data could be used to

identify and rescue individuals stranded in the water (Figure 1.1a). Real-time views

of the city could also be used to direct emergency vehicles around heavily flooded city

streets (Figure 1.1b). These tasks could not be done with slower methods of visual

data collection such as Google Street View [6] where data is rarely collected.

In addition to the rise of real-time Network Camera data, recent developments in

deep learning techniques for computer vision have enabled cameras to play a deeper

role in threat detection [8], route planning [9], and other applications. Deep learning

models require a large amount of training data to achieve high levels of accuracy [10].

Network camera data has been shown to be substantially different from traditional

object detection datasets [11]. Data from Network Cameras often have smaller sub-

jects, more object occlusion, and a greater number of objects per frame compared

with traditional datasets like ImageNet [12]. The real-time data collected from Net-

work Cameras could be used to create new training datasets for computer vision

applications. For example, images of crashes and car fires, like those in Figure 1.2,
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(a) (b)

Fig. 1.1.: Real-time Network Camera data gives valuable information during natural
disasters such as flooding. These Network Camera images were taken in Houston,
Texas from Houston Transtar [7]. (a) shows how first responders could use real-time
data to identify individuals that were stranded or needed assistance. (b) shows how
Network Camera images could be used to determine a safe path through a flooded
city.
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(a) (b)

Fig. 1.2.: Real-time data could be used to identify traffic accidents. These Network
Camera images from were taken from traffic cameras installed by the Georgia De-
partment of Transportation [13]. (a) shows emergency workers clearing an accident
and (b) shows a car fire.

Camera	Websites

Deployed	Cameras

(c)(b)(a)

Fig. 1.3.: Data from Network Cameras in the same geographical area are distributed
across several websites. Each website has a different structure. (a) Syracuse Univer-
sity [14] uses video. (b) New York State Thruway [15], has a list. (c) NYCDOT [16],
has a map. None of these websites provide an easy way to retrieve the Network
Camera data.

could be used to build computer vision models that alert emergency responders to

traffic accidents without human intervention.
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Fig. 1.4.: Proposed Network Camera Discovery Process. The system can be broken
down into two parts: the Web Crawler module and the Network Camera Identification
module. The resulting cameras are then stored in a Camera Database which can be
accessed using a RESTf API.

Despite the ubiquity of real-time public Network Camera data, there is no easy

way to collect this data and adopt it to new applications. This is because the data

is distributed by thousands of organizations on individual websites across the Inter-

net. For example, universities, regional transportation departments, news stations,

and many other organizations in New York State have camera networks deployed.

Figure 1.3 shows an example of Network Cameras deployed in New York City. Al-

though the cameras are in overlapping geographical areas, each organization provides

their own website to access the camera data. Because cameras providing related data

are spread across many heterogeneously structured websites, it is difficult to collect

and process the Network Camera data for new applications. To find this data across

different websites, one could search for ”traffic cameras New York” or ”New York

webcams” in a search engine and manually determine where the Network Camera

data is on the resulting websites. This process is inefficient and does not guarantee

that all the Network Camera data for a given area is found. Even if users are able to

find a website with relevant Network Camera data, organizations provide no way to

download and process the data from their website. Each website has a different user

interface and distributes data in different formats (image vs video).

Our solution for automated Network Camera discovery eliminates the need for

human efforts during the discovery process. Our system, shown in Figure 1.4, creates

a database of Network Camera data that users can directly access using a REST API.

We remove the need to manually search for Network Camera data on the Internet.
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Using our system, a user can directly query the database API and collect real-time

Network Camera data from hundreds of websites. Our Network Camera discovery

system consists of two parts: (1) A Web Crawler module that finds data links (2)

A Network Camera Identification module that distinguishes between real-time data

links and links to static visual data (such as logos). After our system classifies a

link to be real-time in nature, the data retrieval information is stored in a database

which can be accessed using a public RESTful API. The data can then be used for

a variety of purposes including: real-time traffic monitoring, or to build computer

vision training datasets to solve new problems. The proposed system allows users to

discover Network Cameras through API calls to the database.

In this work, we define a Network Camera as a link with the following properties:

1. The link provides visual data, either as a static image or a streaming video.

2. The data provided by a link is from a statically positioned camera.

3. The visual data provided by the link is real-time and changes from an initial

time (t0) to a later time (t0 + ∆t). ∆t can be less than one second to several

hours. This feature is highlighted in Figure 1.5.

t0 t0 + ∆t

Fig. 1.5.: The frames above are from the same Network Camera. These images
from the NYC Department of Transportation [16] provide real-time data that can be
accessed from a single static URL.

To develop our solution, we studied a sample of 73 sites that distribute data from

Network Cameras (Section 3). These samples were used to identify characteristics of
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Network Camera websites. Common characteristics among websites were then used

to create a general system for automated Network Camera discovery (Section 4). We

discussed an implementation of our system in Section 5 and evaluated the results in

Sections 6 and 7. When our system was tested on the 73 websites, it successfully

discovered 57,364 cameras on the sites. The system checked for Network Camera

data from 237,257 unique web pages. Using the manually labeled data, we evaluate

the accuracy of our method. Our camera discovery system achieves classification

accuracy of 99.4% on a manually labeled dataset.
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2. RELATED WORK

Many methods have been proposed for creating semantic classifications of multimedia

on web pages. For example, Chen et al. [17] generate descriptions of the content of

images using a combination of ”high-level” features (file name, hyperlinks, surround-

ing text) and ”low-level” features (image color histogram, shape, and texture). These

descriptions can then be searched to enabled users to find useful image data. Simi-

lar methods are used by Yuan et al. [18] to generate a semantic representation of

Youtube videos. These works infer properties about the visual data based on contex-

tual information in the webpage. Although these works do not identify real-time data,

they use the context of the surrounding web page to develop a better understanding

of visual data.

In [19], Brickley et al. propose a methodology for creating a search engine for

publicly available datasets. Datasets are found by parsing RDF (Resource Description

Framework), Microdata, and JSON-LD (JavaScript Object Notation for Linked Data)

formats. Their broad definition includes visual data but not necessarily real-time

data.

Work has also been done on analyzing Peer-to-Peer streaming networks. In [20],

Vu et al. proposed using a web crawler to collect information on live Peer-to-Peer TV

streams. However, their focus was on network topology and the data they collected

was only from one Peer-to-Peer video sharing site PPLive. They do not crawl multiple

websites. Furthermore, the data streams on PPLive are TV streams, not streams from

Network Cameras.

The heterogeneity of public sensor data distribution methods was highlighted by

Mao et al. in [21]. They propose that public sensor data from governments around

the world could be collected and used for other purposes if the data interface was

standardized. They suggest that web crawling methods could be used to collect this
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sensor data. Their focus is on government websites that provide a single web page

where public datasets can be downloaded. These datasets however, do not contain

real-time image data.

Nath et al. [22] present a system for visualization of sensor data on a map. Like

Mao et al., they note the problem of heterogeneous methods for distributing sensor

data in public data repositories. Their solution to this problem is to create an interface

for displaying sensor data from various sources in one interface. They do not attempt

to automatically highlight sensor data on the internet, instead, their work focuses

on how to store and visualize the data after it has been collected.The process of

highlighting sensor data and storing the data required to retrieve additional data

from the sensor is defined as indexing.

The Archive of Many Outdoor Scenes (AMOS) [23] project is closely related to

our work. They use publicly available Network Cameras to create a dataset of over

330,000,000 images. Jacobs et al. outline the methodology in collecting these cameras

as well as analysis done on the images taken over time. To create their dataset, they

do not automatically discover the cameras, but rather combine lists provided by

Network Camera aggregation sites and manual searches in a search engine. They also

allow users to submit their cameras. A comparison of related work can be found in

Table 2.1.

It is important to acknowledge the privacy implications of this work. In previous

work, we discuss the privacy concerns of collecting publicly available multimedia

data including Network Camera data [24]. Widen [25] discusses the conditions when

privacy can be expected. More specifically, the paper classifies the scenarios based

on the subject’s location and the observer’s location. Recently, the public facial

recognition dataset from Microsoft known as MS Celeb [26] has been taken down

over privacy concerns [27].

Our prior work [29] created a database of Network Camera data using human-

made parsing scripts. In the solution, a parsing script was written for each site

individually due to the heterogeneity of website structures. Writing a script for each
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(a)
(b)

Fig. 2.1.: Structure and style of web pages change over time. (a) shows Travel-
Cam.net [28] in February 2019. The website has a pull down menu. (b) shows how
the site had been redesigned by April 2019. The pull-down menu has been removed.
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Table 2.1.: This table compares the related work. To our knowledge, this is the
only work that combines visual data collection, real-time data identification, and
automated data indexing into one system.

Work
Visual Data
Collection

Identify
Real-time Data

Automated
Data Indexing

Chen et al. [17] X X
Yuan et al. [18] X
Brickley et al. [19] X
Vu et al. [20] X
Mao et al. [21] X
Jacobs et al. [23] X X
Dailey et al. [29] X X
This Work X X X

website makes the camera discovery processes inefficient. Websites change over time

and new cameras may be added. For example, Figure 2.1 shows two screen-shots

from the Travel-Cam website [28] before and after a redesign. Changing web site

structures require manually updating human-made scripts. This paper improves our

previous method by creating a general solution that automatically discovers camera

data on the Internet. This can lead to easier access to thousands of Network Cameras

real-time data.

To our knowledge, this is the study that focuses on automatically collecting real-

time video data from heterogeneous websites.

The major contributions of this paper include

• A detailed analysis of the website structures of Network Camera websites.

• A general system for automatically aggregating Network Camera data on the

Internet.

• A method for determining if a given data link is from a Network Camera pro-

viding real-time data.
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3. WEBSITE STRUCTURE ANALYSIS

In order to identify Network Camera data from heterogeneous web structures, we

create a system as shown in Figure 1.4. Our system contains a Web Crawler module

and a Network Camera Identification module. The Web Crawler module must be

able to effectively find and extract Network Camera data links from web pages. The

Network Camera Identification module must be able to differentiate between real-

time Network Camera data and other visual data. For these modules to be effective,

we must first understand what data formats, website structures, and programming

interfaces are most common among Network Camera websites.

In this section, we identify commonalities that can be used to create a general

solution for indexing Network Camera data. A set of 73 sample websites are analyzed;

Table 3.1 shows the distribution of these sites. Section 3.1 explains the data formats,

website structures, and programming interfaces of these websites. Section 3.2 analyzes

how the websites are organized and can be parsed into the database.

Table 3.1.: Distribution of types of camera websites studied.

Type Sites Estimated Number of Cameras Cameras/Site
Aggregation 8 27909 6977
Traffic 42 21755 505
News Station 1 502 502
Tourism 3 5062 1687
University 14 31 2
Weather 4 2712 678
Total 73 57971
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(a) (b) (c) (d)

Fig. 3.1.: Examples of images found on web pages not from Network Cameras. (a)
Static Photographs [30], (b) Logo, (c) Map markers, (d) Social media logos [31].

3.1 Data Formats for Network Cameras

Most Network Cameras studied on the sample websites distribute camera data in

either static image or streaming video formats. Only one website on the 73 example

sites, OnTheSnow [32], did not use static image or streaming formats. In some cases

[28,31,33], sites post a combination of both static images and streaming videos. The

following paragraphs describe the differences of these data formats.

Static Images

Static images such as PNG and JPEG are the most common formats for public

Network Camera data. Of the 73 sample websites, 57 provide some static images.

These static images are snapshots from the cameras and are updated intermittently.

The user must send a new HTTP request to retrieve updated data from the websites.

For most websites, each time an image is updated, the server overwrites the previ-

ous image. This means that an HTTP request sent to the same link at t0 and t0 + ∆t

will return different images. Figure 1.5 shows two example images downloaded from

the same Network Camera data link. Network cameras that have a link format similar

to (1) are the most common of the 57 websites that provide static images. Next we

will discus a other link formats that were observed in our sample websites.

<base URL>/<camera id>.jpg (1)
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Several sites [34–36] have query strings appended to the URL when the user

loads the page. In most sites with query strings, the date-time field has no effect

on the data downloaded from the link. In (2) for example, each time the web page is

loaded, the date-time field is updated. For this group of sites, the query string can

be completely removed from the data link and the most recent image data will still

be returned.

<base URL>/<camera id>.jpg?<date-time> (2)

The above examples show that even within Network Camera websites that dis-

tribute data as static images, there is significant heterogeneity to the formatting of the

data links. Next, we discuss sites that distribute Network Camera data in streaming

video formats.

Streaming Cameras

The second most popular format for camera data is streaming formats such as

HTTP Live Streaming (HLS), Motion JPEG (MJPG), Real-time Message Protocol

(RTMP), and Real-time Streaming Protocol (RTSP). Streaming data is less common,

as only 16 sites (22%) from the sample websites used streaming formats. The most

common streaming format is MJPG which makes up about 43% of streams followed

by HLS (38%) and RTMP (18%). In some cases, a single site offered more than one

streaming format.

RTMP, RTSP, and HLS formats require embedded video players to view the cam-

era data in browsers. HLS camera data is loaded using an m3u playlist file. In 2 sites,

the m3u file is loaded automatically when the video player is loaded and requires no

user interaction. For 3 other sites, users must interact with the video player (press

a play button) before an HTTP GET request is sent for the m3u file. This type of

interaction can make it difficult for cameras to be automatically identified.

MJPG streams can be directly embedded in a web page and do not need a video

player to view. These streams are often from cameras that have HTTP servers inside.
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(a) (b) (c) (d)

Fig. 3.2.: Examples of different list views from Network Camera websites. (a) and (b)
are from department of transportation websites [38,39]. (c) shows a Network Camera
on a university website [40]. (d) shows an aggregation site called WorldCam.eu [41].
This site shows Network Cameras by their geographic locations.

These cameras will respond to a variety of HTTP requests allowing the user to get

either static image, MJPG video, or HLS video from the camera by sending specific

HTTP requests. For some other cameras, the data is distributed using either an HLS

stream or an RTMP stream. In some cases [31, 37], an RTMP or HLS link can be

found in an XHR request (discussed further in Section 3.2). This is usually when

the link is loaded in the page automatically and does not require the user to click or

interact with the page to load the video data.

3.2 Network Camera Site Organization

In this section, we analyze how camera data is organized and presented on the

sample websites. The diversity of structures and organizations within sample sites

is greater than the formats discussed in Section 3.1. The developers of each site

use different programming interfaces, making it difficult to find shared characteristics

that can be used to create a generalizable indexing method. Some sites embed camera

data links directly in the HTML of the pages, other sites require the user to click a

button or scroll on a map to load the camera data.

Humans can navigate sites to access the camera data but automated solutions

may not be able to interact with these views to load the Network Camera data. For
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(a) (b) (c) (d)

Fig. 3.3.: Examples of websites that distribute camera data in interactive maps using
different APIs. (a) This website displays a popup on Google Maps API [38]. (b)
HERE Maps API is used [42]. Clicking on a camera marker will display an image
on the top right corner of the map. (c) The Missouri Department of Transportation
traffic website [33] uses ArcGIS API. (d) When a user clicks on a map marker, another
webpage is shown [43].
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example, the traffic website for the City of Tallahassee [44] requires the user to close

a pop up menu, select a drop down menu, then select ”Cameras” in the drop down

menu. Humans can deduce how to interact with the pages to load the camera data,

but these interactions are complicated for machines because there is no standard way

to interact with the page. Figures 3.2 and 3.3 depict the variability within the sample

Network Camera sites.

We identify two methods that are most common for organizing data on the pages:

(1) Lists Views (2) Map Views. The following subsections analyze these two methods

in more detail. In general, all 73 sample websites can be categorized into methods

(1) and (2), but variation exists between implementation details. This means that

a method for indexing data from one website may not work on another website. In

some of the sample sites, both a map and a list are used to organize the data on the

same site. For example, Figures 3.2a and 3.3a show a map and a list both from the

Alberta Department of Transportation website [38].

List Views

For 47 of the 73 (64%) sites provide list views of the Network Camera data.

Figure 3.2 shows examples of different list views. We can further break down list views

by studying how the data links are loaded into the pages. In some cases [35, 45, 46],

real-time image data is embedded in the HTML and loaded directly with the pages,

commonly seen in traffic camera websites. Figure 3.2a shows a screen-shot from

Alberta 511 [38]. In this example, the site uses an API call to load camera data

into the page. The most recent snapshot is then automatically embedded in the

HTML of the page. For these sites, simply parsing the HTML and extracting the

<img src="..."> tags yields camera data links.

In other cases, indexing the camera data requires user interaction. These sites are

more difficult to automatically index due to the range of interactions needed to load

the links. In Figure 3.2b no image data is loaded into the page until the user selects
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Table 3.2.: APIs used by websites that had interactive maps.

API Number of Sites Example
Google Maps 18 Figure 3.3a
Openlayers 8
ArcGIS 7 Figure 3.3c
HERE 4 Figure 3.3b
Leaflet 3
HTML 2 Figure 3.3d
Other 1
Total 43

a region and a route from a drop down menu. After these parameters are selected,

the user must select a camera location from the corresponding list. One image can

be loaded at a time.

Another type of list view can be observed on aggregation sites [28, 47, 48]. These

sites rely on user submissions to aggregate large numbers of Network Cameras. These

aggregation sites have more cameras than other types of Network Camera websites

but in many cases the data is not hosted directly on the site. WorldCam.eu, seen in

Figure 3.2d, is one such site.

Fourteen websites are from universities. These sites have a large number of pages

but few Network Cameras, making it difficult to find cameras on these sites. Often

universities have one or two Network Cameras looking at iconic areas around the

campus. These cameras are not listed in a table on the site like the previous examples.

A Network Camera from University of Southern California [40] is shown in Figure 3.2c.

This website has only one Network Camera but thousands of web pages.

Map Views

Some sites provide interactive maps. For 43 of the 73 (59%) sites present camera

data in a map. In most cases, the user can zoom and pan around the map to see

the geographic locations of the cameras. Figure 3.3 shows some examples of websites
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that use interactive maps. Map interfaces are especially common with traffic camera

websites from regional departments of transportation (DoT).

Interactive maps are similar to the list view shown in Figure 3.2b because they

do not embed the Network Camera data directly in the HTML pages. On these

sites, Network Camera images are only shown on the pages when users click on the

corresponding map markers. Camera data is displayed in one of three ways: (1) inside

a map as shown in Figures 3.3b, (2) as a pop-up shown in Figure 3.3a, or (3) each map

marker links to another web page where the images are displayed [38, 49]. For most

of sample sites with map views, a JavaScript API is used to create the interactive

maps. The examples in Figures 3.3abc show maps created with a JavaScript API.

Table 3.2 lists the different APIs used by the 43 sample sites that have maps. Google

Maps [50] is the most popular API used by the sites accounting for 41% of all sites

that use JavaScript.

To create map markers, JavaScript APIs need geospatial information. In 70% of

cases, the geospatial data comes from an XMLHttpRequest (XHR) to a JSON or

XML file. XHR files are found by monitoring the HTTP requests sent by the client

during the page load. Eighty-two percent of the geospatial XHR files also contain links

to the Network Camera data streams. In many cases, all information that appeared

on the map marker when it was clicked was also stored in the the XHR file. Three of

the websites contain Network Camera data hard-coded into JavaScript files instead

of a JSON or XML file.

In 12 sites that use JavaScript API, the geospatial data is generated dynamically

and not loaded in XHR files. If the XHR file was found but contained no data links,

the link is usually created for each camera using camera IDs from the XHR file. For

5 sites, user interaction is required before the XHR request is sent. For the South

African National Roads Agency [51], as the user zooms and pans the map, XHR

requests are sent, loading small sections of the camera data at a time. Zooming and

panning operations occur on only this site, but are important to note as they are

more complicated for an automated solution to preform.
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Two of sites did not use JavaScript API to map the data. Instead these sites

display maps as images embedded in the HTML of the web pages. Figure 3.3d shows

one example of this type of map. These maps do not use XHR files to load the data.

Instead, they load small markers in the HTML and overlay them on the map image.

For these sites, clicking on the marker images will bring the user to another web page

where the camera data is loaded.



20

4. AUTOMATED NETWORK CAMERA DISCOVERY

SYSTEM

This section outlines our system which automatically discovers Network Camera data

using common characteristics found from the sample websites in Section 3. The

system has two parts: Section 4.1 The Web Crawling module responsible for searching

the website for potential Network Camera data links and Section 4.2 The Network

Camera Identification module that downloads and compares data from the data links

found by the crawler.

Given an IP (Internet Protocol) address or data link, the camera discovery system

will determine if the link points to a website or to potential Network Camera data.

If the data link points to a website, the address is sent to the Web Crawler module.

If the address responds to the HTTP queries of known camera brands then the Web

Crawler step is skipped and the address is sent directly to the Camera Identification

module. If nether criteria are met, the address is likely not a Network Camera and

will be ignored by our solution.

4.1 Web Crawler

If an IP address responds to an HTTP requests with a web page, then the address

points to a website that may contain many Network Cameras. The flowchart in

Figure 4.1 describes how the Web Crawler indexes links to potential Network Camera

data.

For each data link found on a web page, the Web Crawler module downloads the

web page and parses the HTML. Some pages contain JavaScript code. Thus, each

page is rendered in a browser environment to ensure all the page assets are loaded

properly. Figure 4.2 shows that the rendering step is important because not executing
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Seed	Webpage
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from	HTML	Files
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Fig. 4.1.: The Web Crawler module: This module searches every page for links to
other pages and visual data links. The Web Crawler module then sends visual data
links to the Network Camera Identification module (Figure 4.3).



22

(a) JavaScript disabled (b) JavaScript enabled

Fig. 4.2.: Screenshots of Oregon Department of Transportation website [52] show the
importance of JavaScript rendering for many Network Camera websites. If JavaScript
rendering is not enabled, the Network Camera data in the map is not loaded.

the JavaScript can substantially reduce the information loaded into the web page. In

many cases, Network Camera data is loaded into the site during this time using XHR

requests as discussed in Section 3. Without this step, Network Camera data can

potentially be lost.

After the web page has been downloaded and rendered, the crawler will parse the

HTML response and look for types of data links common to Network Cameras such as

image and video links. The crawler will look for .jpg or .png file extensions, as these

are the most common data formats found in Section 3.1. For streaming cameras, the

crawler will look for .m3u, rtmp://, rtsp://, and .mjpg links.

While the browser environment is loading the page, our system will monitor all

XHR requests sent by the site. The Web Crawler module will then parse the request

URLs to look for common map API database files with extensions such as .json,

.geojson, and .xml. These files are parsed for common Network Camera data links

and links to HTML pages. The Web Crawler module records all links found to ensure

duplicate links are not checked twice. Links to other web pages are filtered to ensure

the page has not been previously crawled and then sent to the crawler. At this stage,

the extracted links have either been identified as new web pages and sent to the

crawler, point to camera data formats (images or video), or discarded. The next
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Fig. 4.3.: Network Camera Identification module: Each data link found by the Web
Crawler module (Figure 4.1) is processed by this module to determine if a given link
is to a Network Camera.

step is to determine which of the data links are Network Cameras using the Network

Camera Identification module.

4.2 Network Camera Identification

After potential Network Camera data links has been indexed, the Network Camera

Identification module determines if a given data link references Network Camera data

by distinguishing between Network Cameras (Figure 1.5) and web assets (Figure 3.1).

The real-time data from Network Camera changes often; in contrast, web assets rarely

change. For each data link, the Camera Identification module downloads several

frames from the data link at different times. After each frame is downloaded, they

are compared to determine if there is any change.

We present three different comparison methods for determining if a data link is

a Network Camera. (1) Checksum Method : compare the file checksum across sam-

ple frames downloaded by the Network Camera Identification Module. (2) Percent

Difference Method : compare the percent of pixels changed between frames. (3) Lumi-

nance Difference Method : compare the mean pixel luminance change between frames.

Each of these comparison methods are evaluated on a manually labeled dataset in

Section 7.1.
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The first and simplest method is to compare the checksum on the frames. For

this method, the Network Camera Identification Module simply compares the MD5

checksum between different frames taken from the visual data link. If the checksum

changes between the frames taken at t0 and t0 + ∆t we classify the data link as a

Network Camera. Although this method is simple to implement, it does not look at

the content of the frame to predict if it came from a Network Camera. The next two

methods we use statistics that provide more information about the content of the

frame.

The Percent Difference Method compares the percentage of pixels that change

between the frames. Algorithm 1 shows how this value is calculated. To determine

if a visual data link is from a Network Camera, a threshold value is determined

experimentally. If the percentage of pixels that changed is above the threshold, we

classify the visual data link as a Network Camera. This method provides more insight

to how the content of the visual data link changes between sample frames. For

each frame, a small percentage change may indicate that only a few pixels changed.

Real-time data changes significantly over time. This would not be true of computer

generated images like those in Figure 3.1. Unlike the Checksum Method, this method

takes the content of the frame into account.

The final method we introduce is the Luminance Difference Method. This method

uses the average difference in luminance between sample frames. For this method,

shown in Algorithm 2, the mean pixel value of the frame is taken. The difference

between the luminance of the initial frame (t0) and a second frame (t0 + ∆t) is used

to identify Network Cameras. We determine an experimental threshold to classify

Network Cameras in Section 7.1. If the overall luminance difference between the

sample frames is greater than this threshold, we classify the visual data link as a

Network Camera.

This method uses the fact that many Network Cameras are positioned outdoors.

Network Cameras will have a greater difference in luminance over the course of a day
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as the sun changes position. This should also provide some insight into the content

of the image and improve the overall accuracy of our classification.

Streaming camera links indexed by the Web Crawler module are processed differ-

ently by the Network Camera Identification module. For these data links, the module

will attempt to establish a connection to the stream. The method used to establish

this connection changes depending on the type of stream. For example, if the link

is to an HLS stream, the Camera Identification module will send an HTTP request

to download the .m3u playlist file. Using this playlist file, the module will connect

to the stream and download camera data. The Camera Identification module will

determine if the link is to a real-time data stream by checking the duration and

start time information for the video. The way this information is obtained depends

on the streaming format used. A streaming camera will have a start time greater

than zero and no duration. If the data link passes these checks, it is considered

a Network Camera. Frames can also be taken from streaming cameras that pass

the first checks. These frames can be compared using one of the three methods for

non-streaming cameras.

Algorithm 1 Percentage Difference

procedure percentDiff(img1, img2)
count ← 0
for px = 0, 1, . . . ,size(img1) do

count ← count+|img1[px] - img2[px]| > 0

return count/size(img1)

if percentDiff(frame0,frame1) > threshold then
return True . visual data link is a Network Camera

else
return False . visual data link is not a Network Camera



26

Algorithm 2 Luminance Difference

procedure luminanceDiff(img1, img2)
img1Lum ← mean(img1)
img2Lum ← mean(img2)
return abs(img1Lum - img2Lum)

if luminanceDiff(frame0, frame1) > threshold then
return True . visual data link is a Network Camera

else
return False . visual data link is not a Network Camera
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5. IMPLEMENTATION

This section outlines the implementation of the proposed system for automated Net-

work Camera discovery.

5.1 Web Crawler Implementation

The Web Crawler Module is implemented using the Scrapy web crawler framework

[53] and uses Splash web browser [54] to render the JavaScript on the crawled web

pages. The indexed meta-data found by the crawler is stored in a MongoDB [55]

unstructured database.

The Splash rendering engine is responsible for sending the HTTP requests to the

target web page. If Splash could not establish a connection to a page within 180

seconds, the page is discarded and the crawler moves on. After the crawler connects

to the server and downloads the web page, the JavaScript render engine waits for 8

seconds for the page to finish loading. This step ensures JavaScript assets are loaded

into the page before the rendered HTML is sent to the HTML parser.

The HTML parser finds new pages within the seed domain by extracting the

<a href="..."> tags. The contents of these tags link to other web pages. The crawler

is restricted to following <a href="..."> tags that link to same domain. For exam-

ple, if the seed website has the domain of www.example.com then the crawler would

follow links to www.example.com/cameras/ and www.subdomain.example.com/cameras/

but would not follow links to www.facebook.com/. This restriction prevents the

crawler from spending time crawling large websites outside the target domain. In

addition, as several sites discussed in Section 3 do not host or embed camera data on

their servers, this restriction on the crawler will also prevent it from finding camera

data that is not embedded on the target domain. This restriction could be lifted
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for future crawls enabling the crawler to discover new domains that host Network

Camera data.

In this implementation, the parameters given in each web server’s robots.txt file

are respected. If the robots.txt file does not exist for a domain or if the site did not

have specific crawling directives, the following default parameters are used:

• The crawler is limited to 32 connections per domain so as not to overwhelm the

web servers.

• The crawler waits 3 seconds between requests to the same target domain.

The crawler traverses sites in breadth first order starting on the seed page and

reaching a maximum depth of 15 pages from the seed page. Once the crawler has

visited all the available links within the seed domain or has reached a depth of 15,

the crawler stops crawling that domain. The crawler keeps detailed information on

the data indexed. In addition to the absolute links to the images discovered by the

crawler, the HTML data of each web page and other statistics are stored in the

Crawler Database.

5.2 Camera Identification Module Implementation

The Camera Identification Module takes the links discovered by the Web Crawler

Module and determines weather or not they contain Network Camera data. When

a new data link is indexed by the crawler, the Camera Identification Module down-

loads a copy of that image and stores it in the database. The Identification Module

downloads a frame from each data link 4 times.

Several different algorithms were tested to determine if an image was from a

Network Camera. Detailed discussion of the luminance and other methods tested can

be found in Section 7.1. In total, 4 frames were downloaded from each data link at

the following times:

t0 (Time when the data link is first indexed by the Web Crawler)
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t0 + 5min

t0 + 60min

t0 + 12hrs

The range of time from the first frame at time t0 to time t0+12hrs is chosen to provide

a significant change in luminance that is often seen in outdoor Network Cameras. In

the next section we discuss the results of this implementation on the sample of 73

example websites introduced in Section 3.
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6. RESULTS

The Network Camera Discovery module is tested on the sample of 73 Network Camera

sites introduced in Section 3. We run the Network Camera Discovery module for 55

days and find 523,696 visual data links. During the run, the module crawls 237,257

unique web pages in total. Figure 6.2 shows the total number of pages and visual

data links found by the crawler during the run. Of the 73 sample websites, 4 websites

were not crawled successfully. This error is because the web pages are unreachable

at the start of the crawl, and no new links are generated.

Potential cameras are found on 47 of the 73 websites. Figure 6.3 shows when

different cameras are found during the crawl. Most cameras are found at the beginning

of the crawl, because the Web Crawler starts on the page linking directly to the camera

data for most sites.

A breakdown of the data links found for streaming cameras can be found in

Table 6.2. Of the data links found, less than 1% are links to video data. Only 3,974

video data links are discovered by the crawler and 99% of these links are found in

XHR files. Only 25 cameras are found to be embedded in the page HTML. All 25

of the embedded links are for .mjpg cameras and 17 of the 25 are working Network

Cameras. Of the 3,949 streaming data links found in XHR files, about 43% are links

to Network Cameras. In total 1,745 streaming cameras are found from 8 different

websites.

Table 6.1 shows where the Network Camera data links were found. Of the 465,249

unique image links found, 89% are embedded in the HTML files, and the remaining

11% are found in the XHR files. The images found in XHR files are much more likely

to be Network Cameras then those embedded in the HTML pages. Almost 30% of

images found in XHR files are found to be from Network Camera while less than 4%

of HTML embedded images come from Network Cameras. Static image camera data
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Fig. 6.1.: The percentage of cameras and pages found at each page depth during the
crawl.

Fig. 6.2.: Total number of images and pages found during the Network Camera Web
Crawler experiment.

is found using the average image luminance method, which is discussed in further

detail in the Section 7.

In some websites, more cameras are found by the Camera Discovery module than

manual estimation. In some cases i.e. the California Department of Transportation

site [31], the site contains links to static camera images and streaming links, both of

which would be caught by the Camera Discovery module. In other cases, for exam-

ple the USGS geological monitoring site [56], each camera image has an associated

thumbnail image posted to a different URL. More examples and analysis of the sites

can be found in Section 7.

Figure 6.1 shows the crawler does not traverse websites very deeply and only

reached a max depth of 3. In this implementation, the scheduler preformed a breadth
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Fig. 6.3.: The number of cameras found over the length of the crawl.

Table 6.1.: Static images and cameras found during the crawl.

Static Images Num. of Links found Num. of Cameras found
From HTML 466,983 16,998
From XHR 55,636 15,960
Total 522,619 32,958

Table 6.2.: Streaming videos and cameras found during the crawl.

Streaming Num. of Links found Num. of Cameras found
From HTML 25 17
From XHR 3,949 1,728
Total 3,974 1,745
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first traversal of each site, and that most pages on the seed websites can be reached

within a traversal depth of 3. Although many more pages are crawled at depth 3, a

majority of the cameras are found at a depth of 2.
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7. ANALYSIS

In this section, we will analyze the results of our system in more detail. In Section 7.1,

we discuss methods tested to differentiate between Static Image Cameras and other

web assets. In Section 7.2, we give a few in-depth examples of the successes and

failures of the Camera Discovery module.

7.1 Network Camera Identification Metric Analysis

This section discusses different methods that can be used to differentiate between

Network Cameras and other images indexed by the Web Crawler. The three methods

presented in Section 4.2 are tested using precision and recall. Precision is a measure

of proportion of Network Cameras correctly identified by our system (true-positives)

divided by the total number of cameras identified (true-positives + false-positives).

Recall is the percentage of cameras correctly identified by our system (true-positives)

divided by the total number of cameras (true-positives + false-negatives).

We show that the luminance change method has the highest precision and recall

a test dataset. The test dataset is created using a subset randomly chosen from data

indexed by the Web Crawler. For each data link, 4 frames are taken by the Network

Camera Identification module. These frames are then manually identified by a person.

Each set of frames from one data link is given a single label of one of the following

categories:

1. Network Camera - Any chosen data link where images change between frames.

The frames from the link also have to resemble Network Camera images. See

Figure 7.1a.
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(a) (b)

(c) (d)

Fig. 7.1.: Examples of labeled data. Each set of images (from left to right) shows:
initial frame taken, 5min after, 60min after, and 12hours after. Images in (a) show
links that were labeled Network Camera. (b) links labeled Frozen Camera. (c) and
(d) links labeled Other Web Assets.

(a)

(b)

Fig. 7.2.: Above are examples of images incorrectly classified as Network Cameras
using the Luminance Difference Method. More sophisticated methods are needed to
identify these false positive classifications.

2. Frozen Camera - Any chosen data link that resembles Network Cameras but do

not change from frame to frame. See Figure 7.1b.

3. Other Web Assets - Any other data link where sample frames do not resemble

a Network Camera. See Figure 7.1c. In some cases the web assets change over

time but the data does not appear to be from a Network Camera. Figure 7.2

shows examples of such data.

During the labeling process, the person is shown all the frames taken by the

Network Camera Identification module side by side, along with an indication of the

number of pixels that changed between the frames. If no pixels changed over the
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Fig. 7.3.: Figure 7.3a shows the precision and recall evaluated for the percentage
difference method presented in Section 4.2. The threshold of this method is the
average percentage of pixels that changed over the sample frames. Figure 7.3b shows
the precision and recall of the Luminance Difference Method from Section 4.2. Both
methods are evaluated on the set of manually labeled data.

from frame t0 to frame t0 + 12hours, the data link could not be labeled as a Network

Camera. The person labeling the image would then look for large changes in light

level over the sample period. If the image appeared to be taken from a static camera,

was not computer generated, and had visible changes to the scene such as light level

change, the image would be labeled as a Network Camera. If the changes were too

subtle to see across the samples, the data link could also be analyzed for words such

as ”webcam”, ”camera”, etc.

In total, 9,165 images are manually labeled. This sample represents about 2% of

the total visual data links indexed by the crawler. In the labeled dataset 1,645 (18%)

of the images are found to be from Network Cameras. Additionally, 639 images (7%)

are found to be Frozen Cameras or potential Network Cameras that do not change.

The remaining 6,881 (75%) of images are other web assets.

The first method outlined in Section 4.2, the Checksum Method, uses only the

checksum of the frame to determine if the data has changed. This method identifies

818 of the labeled images as Network Cameras. The recall of this method is 100%

because an image has to change to be classified as a Network Camera. However, there
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is a high number of false positives (images that changed but were not from Network

Cameras); as a result, the precision is 75.0%.

The Percent Difference Method outlined in Section 4.2 finds the percentage of

pixels that change between the frames. For this method, we use a linear combination

of the differences from each frame relative to the initial frame. This average difference

across frames is used to determine a threshold. Figure 7.3a shows a graph of the

precision recall over different thresholds.

If we treat precision and recall as having equal importance for our classifier, the

threshold is 0.11. This threshold identifies 1,683 of the labeled data links as Network

Cameras. The overall accuracy of this method for the manually labeled dataset was

99.1%. The precision and recall of this method is 96.3% and 98.5% respectively. If we

apply this method to all the visual data links found by the Web Crawler we classify

55,365 visual data links as Network Cameras.

The Luminance Difference Method from Section 4.2 was found to be the most

accurate of the three methods tested on the labeled dataset. For this method, the

mean pixel value of the image is taken from the t0 frame and subtracted from the frame

at t0 + 12 hours. The resulting value is compared to an experimental threshold. The

frame taken at 12 hours is chosen to capture the day/night cycle of outdoor cameras.

If we treat precision and recall as having equal value, the threshold for the Lu-

minance Difference Method is 1.3. At this threshold, this method has a precision of

98.7% and a recall of 98.2% on the labeled dataset. A graph of the precision and

recall for this method can be found in Figure 7.3b. If we apply this method with

a threshold of 1.3 to the entire set of visual data links found by the Web Crawler

Module, the total number of cameras identified is 55,619.

A full comparison of the results of the three methods can be found in Table 7.1.

Here we see that the Luminance Difference Method has the best accuracy on the

labeled dataset. Figure 7.4 shows the precision and recall for the Luminance Differ-

ence Method for the frames taken at 5min, 60min, and 12hrs after the initial image

was discovered. The difference between frame t0 and frame t0 + 12 hours has the
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best trade off between precision and recall. This is likely due to the large change in

luminance from day to night over a 12 hour period.

Table 7.1 also shows the number of visual data links that are classified as Net-

work Cameras for each method evaluated on the manually labeled dataset. We see

that the Checksum Method labeled the most visual data links as Network Cameras.

The manually labeled dataset contained 1,645 Network Cameras but the Checksum

Method identified 2,061 visual data links as Network Cameras. This means that 416

visual data links that changed in the test dataset were not from Network Cameras.

The Percent Difference Method and the Luminance Difference Method had a better

overall precision meaning that the content of the frames can be used to help identify

Network Cameras.

We select the Luminance Difference Method as the best method for our classifier

and apply this method to all visual data links collected by the Web Crawler Module.

We find that 55,619 Network Cameras are identified. We add the 1,745 streaming

Network Cameras to determine a final total of 57,364 Network Cameras. This num-

ber is close to the manually estimated number of cameras in Section 3. We will

further discuss the results on specific sample websites in Section 7.2. Next, we look

at some examples of visual data links that are incorrectly classified by the Luminance

Difference Method.

Figure 7.2 shows some examples of false-positive classifications of the image lu-

minance method. CAPTCHA errors (Figure 7.2a) are a common false-positive clas-

sification for the change in luminance. These images are hard to classify correctly

without more advanced computer vision metrics. A few computer generated images

are also incorrectly classified as Network Cameras by the luminance metric. Fig-

ure 7.2b shows one such example that is updated to the same URL like a Network

Camera, but instead depicts the movement of the sun on the earth. These errors

show that the metrics used to determine if a data link is from a Network Camera can

improve. Potential solutions to these problems are discussed in Section 8.
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Table 7.1.: Comparison of the results of the Network Camera classification methods
introduced in Section 7.1. For the Percent Difference Method, a threshold of 0.11
was used. For the Luminance Difference Method, a threshold of 1.3 was used. The
number of visual data links classified as Network Camera using each method is shown
for the manually labeled dataset. The last column shows the number of cameras that
are found if each method is applied to all visual data links found by the Web Crawler
Module.

Precision Recall Accuracy
Num. of

Cams. Found
(Labeled)

Num. of
Cams. Found
(All Links)

Checksum 0.750 1.000 0.978 2,061 71,471
% Diff. 0.963 0.985 0.991 1,683 55,365
Lum. Diff. 0.987 0.982 0.994 1.637 55,619



40

Fig. 7.4.: Comparison of the precision and recall using the mean Luminance Difference
between the first frame and frames downloaded 5min after, 60min after, and 12hrs
after the first frame.

In the future, more frames can be taken to further improve the accuracy of the

Network Camera identification. Next we will discuss a few sample websites from the

crawl.

7.2 Website Result Analysis

In this section, we review examples from two categories of the 73 tested domains.

In 7.2 we will discuss sites where the crawler does not find any camera data. In 7.2 we

will discuss the sites where the Camera Discovery module collects significantly more

data then expected, given the manual estimate. In these examples, duplicate data

links are found on the site.

Few Cameras Found

No camera data is found on 26 of the 73 sites studied. For 9 of these sites, the

Web Crawler is unable to identify any camera data or streaming links on any pages.

In many cases, this is because the site did not properly load in the browser, or the

website would exceed the 180 second timeout of the crawler.
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In a few cases, the crawler is able to identify the camera data but the data does

not change during the crawl. This is the case for the Indiana Department of Trans-

portation website [57]. During the crawl, the links to the camera data on the site

are discovered by the crawler. No cameras are identified from the site because the

cameras stop updating before the frames are taken. The site later went offline for

maintenance.

On The Snow [32], a travel camera website, is another example of a site where

no cameras are found even though 5,743 pages are crawled and 20,264 images are

discovered. Many of the cameras are not directly embedded in the site and the user

must click on a play button where a time-lapse of images from the last 24 hours are

shown in a short video.

Another site that the crawler is unable to collect all the camera data is the World-

Cam website [41]. This site has 14,847 cameras listed, many of which come from the

community posting links to the cameras. Almost none of the cameras on this site

are embedded directly on the site. Only 164 cameras are found on this site. This is

because the crawler is limited to following links only from the initial domain.

In three websites, the method used to distribute the Network Camera data is

different then those discussed in Section 3.1. On these three sites the format of the

URL is similar to URL format (2) from Section 3.1 however, an HTTP request sent

t0 + ∆t will return the same data as a request sent at time t0. These sites follow the

URL format shown in (3). Where the <date-time> field is updated each time a new

image is posted. For example, on Montana Department of Transportation’s website

[58], to get data from November, 4th, 2018 at 6:08 PM, the <date-time> field of the

URL in (3) must be set to 2018-11-04_18-08-00.jpg.

<base URL>/<id>_<date-time>.jpg (3)

<base URL>?<id>_<date-time>.jpg (4)

Another example can be seen on oktraffic.org [59]. The format of the data links on

this site can be seen in (4). Here, a date-time is incremented in the query string for
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each new image. Changes like these are imperceptible to the user because a JavaScript

function automatically generates a new data link each second and updates the image

on the page. The format of examples (3) and (4) does not follow our definition of a

Network Camera because new HTTP requests to these data links will not yield new

image data. The only way to tell if a data link behaves like (2) or like (4) is to send

an HTTP request with and without the query string and see what kind of data is

returned. This behavior in these examples does not follow our definition of a Network

Camera from Section 1 so these Network Cameras will not be found by our system.

These examples showcase the most prevalent errors with the proof-of-concept ex-

periment. In some cases, finding the cameras on these websites relies on giving the

Web Crawler permission to visit additional domains. In other cases, the crawler will

need to be outfitted with additional methods of extracting and identifying camera

data.

Duplicate Cameras Found

On 23 sites, the number of cameras indexed by our system was greater than the

expected number of cameras on that site. This usually happens because the camera

data is assigned multiple different links across the site. The most common example

of this are sites that have query strings in the image links, like those discussed in

Section 3. For example, [34,35,43,60] all have a random number or time-stamp after

the camera link.

Figure 7.5 shows an example of thumbnails, another common aspect that causes

errors in the Camera Discovery module. Sites with thumbnails [35,45,56,61] may have

multiple links to the same data. Some are re-sized for display in a list that links to the

full size image. Some sites, 511 South Carolina site [37] and California Department

of Transportation Site [31], have links to both streaming and static camera data

or cameras that have streams available in multiple formats. The Camera Discovery

module will index a new camera for every data link found.
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Fig. 7.5.: Example of thumbnail images in a list are shown in on the left. The image
on the right shows the actual feed of the camera. The thumbnail image has a different
data link then the full size image.

Another common reason that the Camera Discovery module may have found too

many cameras on a site is that links to the previous static frames are also found on

the site. For example, California Department of Transportation [31] has links to the

past 12 updates listed on the site. The Camera Discovery module counted a new

camera for each of these links causing an overestimate of the cameras found.

The root of this problem is that the Camera Discovery module can only tell if two

potential camera links are the same by looking at the URL to the image data. The

current method offers no way to tell if a camera has been found before on the same

site or a different site. Possible solutions to this problem are discussed in Section 8.
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8. FUTURE WORK

In future work, we plan to implement several improvements into the Network Camera

Discovery System presented in this work. Improvements could be made to allow the

crawler to achieve a higher accuracy of camera classification. The current method of

comparing image luminance is simple and a more sophisticated algorithm could be

created that would reduce false-positives like those in Figure 7.2. This problem could

also be solved by taking more frames from the data links or by training a machine

learning model to recognize Network Camera images. The current Camera Discovery

module has no way of checking if two data links point to the same camera data. This

problem is difficult to solve as some cameras are not static and move their viewpoint

over time.
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9. CONCLUSION

In conclusion, this work provides an in-depth look at how Network Camera informa-

tion is distributed on the Internet. We provide a method for indexing this valuable

data source automatically and methods to determine on a given web page, what data

on the page is from a Network Camera. We present a proof-of-concept version of

the Network Camera discovery system that was successfully able to identify 57,364

Network Camera data links from 237,257 unique web pages over a 55 day test run.

The data found by the Automated Network Camera Discovery system presented in

this work can create a central repository of the thousands of public Network Cameras

all around the world. This data can be beneficial for a variety of applications that

need real-time data.
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