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ABSTRACT

Pandey, Ashutosh Ph.D., Purdue University, December 2019. Computational Anal-
yses of the Unsteady, Three Dimensional Multiphase Flow in a Liquid Ring Vacuum
Pump. Major Professor: Tom I-P. Shih.

Vacuum is needed in many applications and, there are many types of pumps that

can provide the vacuum level needed. One widely used pump is the liquid-ring vacuum

pump, which does not involve any solid-solid contacts at interfaces where moving and

stationary parts meet. Though liquid-ring vacuum pumps are efficient and robust,

manufacturers have aggressive goals on improving efficiency, performance, and range

of operations.

In this research, time-accurate computational fluid dynamic (CFD) analyses were

performed to study the flow mechanisms in a liquid-ring vacuum pump to understand

how it works and how the design can be improved. Based on the understanding

gained, a physics based reduced order model was developed for preliminary design of

the liquid ring vacuum pumps.

In the CFD analyses, the liquid (water) was modeled as incompressible, the gas

(air) as an ideal gas, and turbulence by the shear-stress transport model. The gas-

liquid interface was resolved by using the volume-of-fluid method, and rotation of

the impeller was enabled by using a sliding mesh. Parameters examined include the

suction pressure (75, 300, and 600 Torr) and the impeller’s rotational speed (1150,

1450 and 1750 rpm) with the temperature of the gas at the inlet of the suction

chamber kept at 300 K and the pressure at the outlet of the exhaust chamber kept

at one atmosphere. The CFD solutions generated were verified via a grid sensitivity

study and validated by comparing with experimental data. When compared with

experiments, results obtained for the flow rate of the gas ingested by the pump had
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relative errors less than 6% and results obtained for the power consumed by the pump

had relative errors less than 13%.

Results obtained show the shape of the liquid ring to play a dominant role in cre-

ating the expansion ratio or the vacuum needed to draw air into the pump through

the suction port and the compression ratio needed to expel the air through the dis-

charge ports. Results were generated to show how centrifugal force from rotation and

how acceleration/deceleration from the difference in pressure at the pump’s inlet and

outlet along with the eccentricity of the impeller relative to the pump’s housing affect

the shape of the liquid ring. Results were also generated to show how the rotational

speed of the impeller and the pressure at the suction port affect the nature of the gas

and liquid flow in the pump and the pumps effectiveness in creating a vacuum.

With the knowledge gained from the CFD study, a physics-based reduced-order

model was developed to predict air ingested and power consumed by the pump as well

as the liquid ring shape and pressure of the gas and liquid in the pump as a function

of design and operating parameters. This model was developed by recognising and

demonstrating that the amount of air ingested and power consumed by the pump is

strongly dependent on the shape and location of the liquid ring surface. The flow rates

of the gas ingested by the pump and the power consumed by the pump predicted by

the model were compared with experimental data and relative errors were less than

12% and 17% respectively.
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1. INTRODUCTION

Low pressures are needed in many applications, and these include drying papers in

papermaking [1], freeze drying of pharmaceuticals [2], composite plastic moulding [3],

ion implantation in semiconductor processing [4], dry etch, physical and chemical

vapor deposition in photolithography [5] [6], and uranium enrichment [7] as well as

clean rooms [8] and environments with toxic material [9]. There are many types of

pumps that can provide the low pressure needed, for example rotary vane [10], piston

[11], screw [12] and scroll [13] [14]. These systems all involve solid-solid contacts with

lubrication. One widely used pump is the liquid-ring vacuum pump (Fig. 1.1), which

does not involve any solid-solid contacts at interfaces where moving and stationary

parts meet. Consequently, the lifespan of such pumps increases considerably, and

the cost of operation comes down significantly. Though liquid-ring vacuum pumps

are efficient and robust, manufacturers have aggressive goals on improving efficiency,

performance, and range of operations. One way to achieve this is to understand how

design and operating parameters affect the flow physics of liquid ring vacuum pump

and using that knowledge to improve design.

Relatively few investigators have studied the unsteady, multidimensional, gas-

liquid flow in liquid-ring vacuum pumps, and nearly all are computational. Early

attempts focused on modelling and computational issues in simulating liquid-ring

vacuum pumps. Grohmann et al. [15], modelled the pump as two dimensional flow

device. The computation starts with the impeller being intially positioned at zero

eccentricity with respect to the casing to arrive at symmetric ring of water, after which

center of impeller was shifted to the required eccentricity. Kakuda et. al. [16], while

modelling the pump as two dimensional flow device, adopted a lagrangian approach

for water with air being formulated as incompressible. Radle et. al. [17], while

performing three-dimensional unsteady flow simulations to study cavitation, modeled
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Fig. 1.1. Liquid Ring Vacuum Pump

air as incompressible. Huang et. al. [18] [19] did a three-dimensional simulation

with air modeled as compressible. The study provided with an approximation for

the liquid ring but did not provide any quantitative comparison with experiments.

More recently, Ding et al. [20] performed time-accurate three-dimensional simulations

that resolved the air-water interface to study the effects of suction pressure and the

rotational speed of the impeller. Their predictions on the volumetric flow rates and

power consumption compared well with experimental data. So far, no studies have

reported on the flow mechanisms and details of the flow features inside liquid-ring

vacuum pumps. Also, to date, no study examined the details of the temperature

distribution and heat transfer inside liquid-ring vacuum pumps.

The objective of this study is twofold. The first is to use computational fluid

dynamics (CFD) to understand the nature of the flow and heat transfer in a liquid-

ring vacuum pump. Of particular interest are as follows:

1. What are the mechanisms that affect how the liquid ring distributes itself in

the pump?
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2. How design and operating parameters affect the liquid-ring shape?

3. How the liquid ring enables suction, compression, and ejection processes?

4. How heat transfer between the phases affect the suction and compression pro-

cesses?

The second objective is to use the understanding gained from CFD study to

develop a physics based reduced order model to predict the rate of air ingested and

power consumed by the pump as a function of design and operating parameters to

be used in preliminary design of liquid ring vacuum pumps.

The remainder of the dissertation is organized as follows: First, the liquid ring

pump configuration studied is described. Next, its problem formulation for CFD anal-

yses are given. Then, the description of the numerical method of solution employed

in the CFD analyses as well as the verification and validation studies. This is followed

by the results generated and the physics-based reduced order model developed.
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2. PROBLEM DESCRIPTION

The liquid-ring vacuum pump studied is shown in the Fig. 2.1. It consists of a

housing; an impeller which is eccentrically mounted in the housing; a port plate that

is modelled as infinitely thin; and a suction/exhaust chamber. The port plate connects

the suction/exhaust chamber to the housing. It also connects the inlet through which

water enters the housing. In addition, the port plate has two sets of openings. One

set is a single kidney-shaped hole that serves as the suction port where air from the

suction chamber is ingested into the impeller. The other set consists of circular holes

and an end collar that serve as the discharge ports where pressurized air is expelled

from the impeller to the exhaust chamber.

Fig. 2.1. Problem description.

The circular holes for discharge opens only when the pressure on the impeller side

is higher than the pressure in the exhaust chamber (i.e., there can be no back flow
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from the exhaust chamber into the pump chamber)(see Fig. 2.2). When the holes

are closed, it is treated as a wall. On the volumes between successive blades in the

impeller, they are sealed by the blades, the hub, the port plate, and the liquid ring

that forms next to the housing. In this study, the clearance between the impeller and

port plate is not considered so that there is no leakage across the blades. For this

pump, it is noted that the eccentricity of the impeller with respect to the housing

causes the radial distance from the blade tip to the housing to vary lowest when the

blade tip is closest to the housing, referred to as top dead center (TDC) and highest

when the blade tip is furthest away, referred to as bottom dead center (BDC).For

the pump just described, three rotation speeds of the impeller (ω = 1150, 1450 and

1750 rpm) and three inlet pressures (Pin = 75, 300, 600 Torr) were studied. The total

temperature at the inlet (To) of the pump was kept at 300 K, and the static pressure

at the pumps outlet (Pe) was maintained at 760 torr. The gas ingested into the pump

is taken to be dry air.

Fig. 2.2. Ports and valves.

The liquid in the pump is water, and its flow rate into the pump is 0.378 Kg/s.

The turbulence intensity of the air and water that enter the pump is taken to be

3.07% and turbulent length scale is 0.0049 m. Fig. 2.3 summarizes all the cases

studied.
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Fig. 2.3. Summary of Cases
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3. FORMULATION AND NUMERICAL METHOD OF

SOLUTION

In the CFD analyses, the flow and heat transfer in the pump with air and water were

modeled by the unsteady form of the ensemble averaged continuity, momentum and

total energy equations with air taken to be a thermally and calorically perfect gas and

water as a constant density fluid. The interface between air and water is modelled by

the Volume-of-Fluid (VOF) method. The turbulence is modelled by the Shear Stress

Transport (SST) model of Menter [21] with curvature correction, and wall functions

were used. The initial conditions for this problem is described later in this section.

The boundary conditions employed are as follows. At the suction chamber inlet,

the suction pressure (Pin) is imposed. At the outlet of the exhaust chamber, a back

pressure (Pe) was imposed. At the inlet where water enters the pump, its mass flow

rate was imposed. All solid surfaces were modeled as adiabatic and no-slip walls.

Solutions to the aforementioned governing equations and the corresponding ini-

tial and boundary conditions were obtained by using ANSYS-Fluent 17.1. Since

time-accurate solutions are sought, the PISO scheme is used, and iterations where

more than the standard two corrections were implemented to ensure convergence at

each time step. On the time differencing, second-order three-point backward im-

plicit scheme was used. On spatial differencing of the convective terms, second-order

upwind scheme was used. All diffusion terms were approximated by second order cen-

tral differencing schemes. The air-water interface was modelled by an implicit VOF

scheme [22], where the body forces were treated implicitly. For the volume-fraction

equation, required by VOF, the second-order compressive interface capturing scheme

was used. Sliding mesh approach was used to transfer data between the rotating and

non-rotating parts of the pump. Suction and discharge ports are fluid-fluid interface

boundaries through which conservative interface flux interpolation is allowed. The
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time-step-size, the number of iteration per time step, and the grid systems used are

described in the section on verification.

Fig. 3.1. Initial Conditions

Though time-accurate solutions are sought, the interest is in the time-periodic

solution, not in the initial transients of the startup of the liquid-ring vacuum pump.

Initial conditions strongly affect how quickly the solution can become periodic. The

initial condition employed in this study (see Fig. 3.1) is as follows. The water in

the housing is initialized as an annular ring with its inner radius determined by the

amount of water intended to be in the housing. Under the condition of this study, the

intended amount of water in the housing gives rise to an inner radius of 105 mm. The

portion of the housing not filled with water is filled with air. For the air and water in

the impeller region of the housing, a forced vortex rotating at the pumps operating

RPM (ω) was imposed (Vr = 0, Vθ = ωr). At radii outside the impeller, the inviscid

free vortex motion was imposed (Vr = 0, Vθ = ωr). Here, Vr and Vθ are the radial

(perpendicular to the direction of rotation) and azimuthal (aligned with the direction
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of rotation) velocities and r is the radial distance from the axis of rotation of the

impeller. The circulation (Γ) of the free vortex was chosen so that the velocity at the

location where the forced vortex and the free vortex meet (impellers blade tip which

is at radial distance ri) are the same (Γ=2πωri
2). The temperature and pressure of

the air and water were set at 300 K and 101,325 Pa, respectively. It should be noted

that the initial pressure is inconsistent with the initial velocity field and ring shape.

However, the solver recovers the pressure distribution consistent with initial velocity

field and ring shape within few time steps (see Fig. 3.2).

On the boundary condition at the inlet of the pump, though the desired suction

pressure is Pin, it is not imposed right away. Instead, a mass flow-rate boundary

condition is imposed at the inlet initially. The mass flow rate specified is extremely

small (0.001 Kg/s), just large enough to ensure that reverse flow will not take place

at the inlet. This mass-flow boundary condition is imposed until the pressure at the

inlet boundary the housing near the suction port is 5% below Pin. Once that pressure

is achieved, the pressure boundary condition is imposed at the inlet with the pressure

set to Pin. With the aforementioned procedure, periodic solutions are achieved within

three to four revolutions.

Fig. 3.2. Volume Fraction and Pressure Distribution after 43 time steps
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4. RESULTS

In this section, the verification and validation studies performed for the CFD study

are first described. Afterwards, the results obtained by the CFD on the nature of the

flow and heat transfer are presented and discussed.

4.1 Verification

A representative grid system employed in the CFD study is shown in Fig. 4.1. The

grids used between the blades of the impeller and in the outer casing are structured

with hexahedral cells, and the grids used in the suction and exhaust chambers are

unstructured with tetrahedral cells. To study the effects of the number of cells in

the grid system used, results generated by three successively finer grid systems were

examined.

Fig. 4.1. Grid System
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The coarsest, the baseline, and finest grid systems have 1.26, 3.42, and 6.7 million

cells respectively. The number of cells between two successive blades is 35,416; 75,372;

and 154,758 for the three grid systems (see Fig. 4.2). The grid system has cells that

get smaller as they get closer to solid surfaces. The y+ of cells next to all solid

surfaces is between 35 and 50, which places those cells in the log-law regions of the

turbulent boundary layers next to all solid surfaces. Fig. 4.3 shows the baseline grids

for the outer casing and suction/exhaust chambers. At the ports, prism layers were

generated to resolve suction and discharge processes. To assess the resolution of the

three grid systems, the predicted water ring as well as the pressure were compared.

From the volume fraction contour, the grid independence was judged based on the

location and thickness of the air-water interface. For pressure, values at points inside

the domains were compared as the grid is refined. The study was conducted for the

case with 300 Torr inlet pressure and operating rotational speed of 1750 rpm. Fig.

4.4 shows the volume fraction for the finest grid. From the figure, it can be seen

that the air-water interface is resolved by two cells. Thus, the air-water interface is a

region, and its thickness reduces as the grid is refined.

Fig. 4.2. Impeller Sector
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From Fig. 4.5, it can be noted that all three grid systems predicted essentially the

same water ring shape. The maximum relative difference in that shape (measured

from the air surface of the air-water interface region) can be up to 8% for results

from the coarsest and finest grids and 2% for results from the baseline and finest

grids. The maximum relative difference occurs when the amount of air between two

successive blades reaches its minimum. Fig. 4.6 shows the predicted pressure. 34

locations were chosen at the mid plane of the pump chamber to record the pressure

data at all instances when they are midway between two successive impeller blades.

First 17 points are in the air region and the remaining 17 points are in the water

region. Since cell centers may not coincide with those monitor points at the time

when pressure is being recorded, tri-linear interpolation is used. The pressure thus

recorded was ensemble averaged. The largest relative difference in pressure between

baseline and the finest grid within 2%. The maximum relative difference again occurs

where there is the least amount of air.

Fig. 4.3. Baseline mesh for Outer Casing and Suction/Exhaust Chamber
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Fig. 4.4. Volume Fraction for the finest grid

Fig. 4.5. Interface curve for three grids
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Fig. 4.6. Pressure verification

To ensure that the solutions generated are independent of the time-step size and

the number of grids points or cells used, a sensitivity study was performed. The

time-step size employed was estimated based on the time scales that are needed to

be resolved. For this problem, the time scales that must be resolved from large to

small are as follows: period of one revolution of the impeller, the duration of suction

process, duration of discharge process through each of the 8 holes and the end collar,

and the time scales of the fluid physics such as the shedding of vortices from the

impellers blade tips. These time scales are determined by the rotational speed of the

impeller as well as the position and size of the suction and discharge ports relative

to the impeller. In this study, the following three time-step sizes were employed but

stated in terms of degrees of impeller motion per time step so that the rotational

speed of the impeller is accounted for: 0.105, 0.0525, and 0.02625 degrees per time

step.

For the pump shown in Fig. 2.1 rotating at 1750 rpm, 0.0525 degree per time step

corresponds to a time-step size of 5 x 10-6 seconds, which results in 6,960 time steps
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Fig. 4.7. Time step verification

for one revolution, 1,160 time steps to resolve the suction process, and 40 time steps

to resolve the discharge through the hole that span the smallest angle measured from

the impeller center of rotation. Fig. 4.7 shows the computed pressure at the monitor

points after half a blade passing for the three time steps employed. The results of

this study show that having a time-step size that produces 0.0525 degree per time

step gives results that are within 1% of those obtained by halving the time-step size

(i.e., one that produces 0.02625 degree per time step). In addition to the time-step

size, the solution at each time step must converge. In this study, the convergence

criteria for each time step is the scaled residuals (relative error) which was reduced

to the level of 10-5 for continuity, 10-6 for the momentum, 10-9 for energy, 10-6 for

turbulent kinetic energy equation, 10-5 for specific dissipation equation, and 10-7 for

the volume fraction equation. Typically, 10 iterations per time step were needed.
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Since the results from the baseline grid differ those from the finest grid by 5% at

most, only results from the baseline grids are used.

4.2 Validation

This CFD study is validated by comparing computed and experimentally mea-

sured values of mass flow rates ingested through the suction port and the torque

exerted on the pumps impeller. The experimental data include time-averaged mea-

surements of the volumetric flow rate into the pump and the power consumption

as a function of suction pressure and rotational speed of the impeller, where power

consumption is torque times rotational speed. Fig. 4.8 and 4.9 show a typical time

variation of volume-flow rate and power consumption from CFD. Fig. 4.10 shows

the computed and measured time-averaged volume-flow rate and power consump-

tion. From these tables, it can be seen that when ω = 1,750 rpm and Pin = 300

Torr, CFD over predicts the volume-flow rate by 2.2% and under predicts the power

consumption by 3.90%.

Fig. 4.8. Inlet Volume Flow Rate (Pump Capacity)

When ω = 1450 rpm and Pin = 300 Torr, CFD over predicts the volume-flow rate

by 2.06% and under predicts the torque and power consumption by 2.81%. The dis-

crepancy in the volume-flow rate can be attributed to inadequacies in the turbulence
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Fig. 4.9. Torque

Fig. 4.10. Comparison of CFD with Experiments

model used and in the modelling of the air-water interface by VOF. The discrepancy

in the power consumption can be attributed to losses not accounted for in the CFD

study such bearing losses and the torque needed to raise angular speed of the water

that is continuously being fed into the pump. These comparisons give some confidence

to the CFD method employed to study liquid-ring pumps.
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4.3 Nature of Flow Field Induced by Pump

As noted, the objective of this study is to understand the nature of the flow

and heat transfer that take place inside liquid-ring vacuum pumps. This section

describes the role of the liquid ring and its shape on the suction, compression, and

discharge processes and how design parameters affect the shape of the liquid ring.

The discussion in this section is based on results from case 2 in Fig. 2.3 (Pin = 300

Torr, ω = 1,750 rpm).

4.3.1 Pressure Field

Fig. 4.11 shows the instantaneous flow field pressure, temperature, and the

water-air interface in two axial planes (z = 0, L/4; origin on the plane containing

suction and discharge port profiles) in the liquid-ring pump. Though instantaneous,

it is fairly representative of the qualitative nature of the flow field at other instances

of time. From this figure, it can be seen that at any azimuthal coordinate, the

pressure increases radially outwards because of centrifugal force from rotation. That

increase in pressure is a strong function of density so that the pressure variation in

the radial direction is quite significant in the water ring and nearly negligible in the

air. The actual magnitude of the pressure in the water and air is dominated by two

mechanisms. The first is the pressure of the air about the suction and discharge

ports, which are strongly affected by the suction and exhaust pressures (Pin and Pe).

At azimuthal coordinates about the suction port, the air pressure is near Pin. The

water’s pressure at those coordinates rises in the radial direction due to rotation, and

it rises from that air pressure at the air-water interface to some higher pressure at

the housing (PS,h). At azimuthal coordinates about the discharge ports, the air is

near Pe. The water’s pressure at those coordinates also rises in the radial direction to

some higher pressure at the housing (PD,h). Since the Pe � Pin, PD,h � PS,h. Thus,

there is a favorable pressure gradient in the water ring from discharge ports to the
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suction port, and an adverse pressure gradient from the suction port to the discharge

ports.

Fig. 4.11. Volume Fraction, Pressure, Temperature for Pin=300 Torr,
ω=1750 RPM

In regions with a favorable pressure gradient, water speeds up so the water ring

gets thinner to maintain continuity. In regions, with an adverse pressure gradient,

water slows down so the water ring gets thicker to maintain continuity. This is one

reason why the water ring is thinnest about the suction port and thickest about the

discharge ports. The second mechanism that affect the pressure magnitude is the

volume change between impeller blades and housing due to eccentricity. Because of

the eccentricity, the total volume between the blades and the housing wall decreases

after BDC, causing water to enter the region between the blades.

Similarly, because of eccentricity, the total volume between the blades and the

housing wall increases after TDC, causing water to move radially out of the region

between the blades because of centrifugal force from rotation. Thus, this is second

reason why the liquid ring is thickest about the discharge ports and thinnest about
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Fig. 4.12. Time averaged Volume and Pressure of Air between the
Blades and Housing Pressure vs. rotor angle

the suction port. The thickening of the liquid ring causes the water to enter the region

between the blades. This is the mechanism that compresses the ingested air.

4.3.2 Mechanisms driving ingestion, compression and discharge

The mechanisms by which the pump ingest, compress, and discharge air will be

explained by starting with blades of the rotor at the BDC. At BDC, compression

of the air between the blades starts. Compression occurs because of two reasons.

First, the volume between the blades and the housing wall decreases after BDC. This

causes the water to move into the region between the blades, which compresses the air.

Second, there is an adverse pressure gradient from the suction port to the discharge

ports.
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Fig. 4.13. Pressure on the given planes

This adverse pressure gradient decelerates the flow of the water, so continuity

causes more water to move into the region between the blades, causing additional

compression of the air. The compression continues as the impeller rotates until ex-

posed to the first opened discharge port. Once the discharge ports open, air between

the blades discharges into the exhaust chamber. During discharge, the volume occu-

pied by air decreases steadily. Once the impeller blade passes by the last discharge

port, typically just upstream of TDC, the discharge ends. Once discharge ends, the

volume occupied by air starts to increase. This volume increases because the volume

between the blades and the housing wall increases after TDC and there is a favorable

pressure gradient from discharge ports to the suction port. This favorable pressure

gradient accelerates the flow of the water, so continuity and centrifugal force cause

the water to move out of the region between the blades to create more volume for the

air. Thus, the pressure of the air in the region between the blades keeps dropping as

the impeller rotates until the suction port opens. Once the suction port opens, two

scenarios are possible, depending upon the pressure of the air between the blades just



22

before the suction port opens, denoted as PS,i, and the pressure of the suction port,

PS (PS is slightly below Pin because of losses in the suction chamber and increases

in the flow velocity near the suction port). If PS,i is less than PS, then suction starts

right away. As impeller rotates, the volume available for air increases till BDC even

though there is an adverse pressure gradient from the suction port to the discharge

ports. This increase in the volume available for air causes air to be ingested into

the region between the blades throughout the suction process. If PS,i is greater than

PS, then air discharges from the region between the blades into the suction chamber.

Ingestion into the pump does not take place until the pressure of the air in the region

between blades drops below PS. Ingestion stops when the suction port closes. Once

back at BDC, compression starts and the cycle repeats.

4.3.3 Pressure distribution of ingested air

In this section, the pressure distribution of the air in the liquid-ring vacuum pump

as the impeller rotates is explained. Fig. 4.12 shows the time-average pressure of the

air between the blades of the rotating impeller and on the housing wall. From this

figure along with Fig. 4.11, it can be seen that in the latter portion of suction

process (θ 70o), the pressure of the air between the blades is nearly constant and

only slightly below Pin. The pressure variations in the earlier portion of the suction

process is because the pressure in the air, PS,i, just before the suction port opens

may not equal to PS. From the end of suction to BDC, the air experiences a slight

expansion resulting in a small drop in pressure (the maximum relative difference in

this drop is about 4%). From BDC to just before any of the discharge ports open,

the pressure rises so the ingested air is compressed. From the first open discharge

ports to the last, the air is ejected into the exhaust chamber, and its ejection rate

depends on how many holes are open. If more holes are open, then the pressure of

the air between the blades drops quickly in time. However, if too few holes are open,

then the pressure of the air between the blades could actually increase in time. That



23

is the reason for the pressure oscillations seen in Figure 4.12 between θ = 260o and

345o. Once all discharge ports are closed to just before the suction port opens, the

volume between the blades for the air increases, and this causes the pressure of the

air to decrease from PD,i (pressure in the residual air just after the last discharge

port closes) to PS,i. When the suction port does open, it is noted that PS may not

equal to Pin. This explains the pressure variations in the early portion of the suction

process. Fig. 4.13 shows the pressure at several planes. From this figure, it can

be noted that the pressure varies primarily in the radial direction and is dominated

by the location of the air-water interface. During discharge, water pushes the air

out into the exhaust chamber and fills the space created by the discharged air. The

filling-in of the water into lower radial locations further increased the pressure in

the radial direction because of centrifugal force, which reinforces the discharge of the

air. Since the radial position of the air-water interface is now a function of the axial

coordinate, the pressure varies radially and axially. The pressure variation in the

axial direction is less during the ingestion process because water moves towards the

housing during that process. At this point, it is noted that there can be pockets of air

embedded/trapped in the water as the air discharges. Depending upon how these air

pockets are compressed by the water due to water’s dynamic pressure, the pressure

in these air pockets could increase.

4.3.4 Flow pattern of water and air

Fig. 4.14 to 4.19 show the flow patterns of the water and air in the pump. Fig.

4.14 shows the absolute and relative velocity of water and air with respect to the

impeller in the form of streamlines in the r-θ plane at z = L/2. Fig. 4.16 shows the

relative velocity of water and air with respect to the impeller in the form of streamlines

colored with temperature at 17 planes. Fig. 4.17 shows the absolute velocity of the

air in the form of streamlines in the suction and exhaust chambers. From Figure 4.14,

it can be noted that circulations created by the flow physics in the r-θ planes do not
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Fig. 4.14. Absolute and relative velocity streamlines(left and right);
volume fraction in background (black fill-air; white-water)

Fig. 4.15. Velocity magnitude in the water region

produce recirculating flows in the absolute frame and can only be seen in coordinate

systems that move with the impeller. For the water, the recirculating flow observed

in the frame relative to the impeller is due to changes in the direction of water

flow in the radial direction. During compression, which occurs from BDC till end
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of discharge, water generally flows radially inwards because of the adverse pressure

gradient and because of eccentricity. However, once all discharge ports close, the

favorable pressure gradient plus the opposite effect of eccentricity causes the water

to flow radially outwards. On the air flow, Fig. 4.17 shows uniform flow entering

the pipe that leads to the suction chamber. Once entering the suction chamber, the

flow separates because of the sudden change in the geometry. The separation created

a large toroidal vortical structure. When air enters the region between the blades

through the suction port, additional vortical structures form because of two reasons.

The first is flow separation at the edge of the suction port. The second is due to jet

impingement on the impeller wall. These vortical structures can be seen in Fig. 4.16.

Fig. 4.16. Streamlines colored wit h temperature at given planes with
volume fraction in background (black-air; white-water) Plane 1-11
follow legend on the left, Plane 12-17 follow legend on the right

When air enters the region between the blades through the suction port, the vortex

formed due to flow separation is small at the start of ingestion. As the air volume

increases, the size of this vortex increases till θ = 90o. From θ = 90o till the end of

suction, the size of this vortex remains almost constant. This is because this vortex is



26

confined between the air-water interface and the incoming air flow that is entering the

region between the blades through suction port. In the last stages of suction, some

smaller vortices are generated due to flow separation. As soon as the suction stops,

this vortex entrains itself completely in the region between the blades causing its

size to increase. This is because the incoming air is no longer confining this vortex.

When the flow entry ceases, the region between the blades is left with significant

recirculating flow. As the impeller progresses, the entrapped air experiences a small

amount of volume increase resulting in a small increase in the size of this vortex.

When the air starts to get compressed, this vortex decreases in size.

Fig. 4.17. Streamlines in suction (right) and exhaust (left) chambers

This is because volume available for the mixing gets reduced when air gets com-

pressed. In the last stages of compression, the recirculating flow is confined to a very

small region near the hub. When the discharge ports open, compression stops, and

air gets ejected out of the region between the blades into the exhaust chamber. The

ejection of air into the exhaust chamber also gives rise to an interesting flow pattern.
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From the Fig. 4.18 and 4.19, it can be observed that the air ejection is almost axial

to the impeller. When the air ejects out of the region between the blades into the

exhaust chamber, it expands due to the sudden change in available volume which ac-

celerates the flow considerably (see Fig. 4.20). This high-speed jet while coming out,

decelerates due to presence of wall downstream. As the jet progresses, it impinges

on back wall of exhaust chamber causing it to turn by 90o (see Fig. 4.19). The flow

turning is repeated two more times resulting in an impingement of this circulating

flow into the jet coming out of the region between the blades. This impingement

pushes the jet coming out of the region between the blades slightly away from the

axial line. This also results in turning of the impinged flow. Combined, these give

rise to a tornado like flow pattern in the exhaust chamber (see Fig. 4.17).

Fig. 4.18. Velocity vectors at suction and discharge ports

Evolution of Air Temperature

By examining the temperature in Fig. 4.11, it can be seen that ingestion of air

between blades as the impeller sweeps across the suction port is nearly an isothermal

process. From the time the suction port closes to BDC, the air experiences a slight

expansion causing the temperature and density to drop. From BDC to the first set
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of open discharge ports, the air experiences compression, so the temperature rises.

During the compression process, the polytropic index of compression was found to

be 1.2, which is not isentropic. The deviation from isentropic compression is because

of heat transfer from air to water. During the discharge process, the temperature of

the air decreases steadily due to ejection of air into the exhaust chamber. Once all

discharge port closes, expansion starts, and its polytropic index was found to be 1.1.

The deviation from isentropic expansion is again because of heat transfer, but this

time it is from water to air, and it is lower than the compression index by 0.1 because

of the higher surface-to-volume ratio available for heat transfer. From the first set of

discharge ports till end of discharge, the temperature of air drops gradually due to

ejection of air into exhaust chamber. Fig. 4.16 shows the variation of temperature

along with streamlines projected in 17 planes. From this figure, it can be seen that

at the end of the discharge process (plane 1), there is still some air left between

the blades albeit a very small amount (≤5%). This air experiences expansion once

all discharge ports close because of the favorable pressure gradient in the water ring

(Fig. 4.12). The temperature non-uniformities can be seen to occur in Fig. 4.16 about

the suction port during ingestion, about the air-water interfaces during compression,

throughout the core between the blades during exhaust, and about the impeller hub

during expansion. These non-uniformities at the air-water interfaces are expected

because that is where considerable heat transfer takes place. The non-uniformities

in the core is because cooled air from the air-water interface gets convected there by

different vortical structures.

Once the impeller blades reach the suction port, the air between the blades at

pressure, PS,i, is suddenly exposed to the pressure at the suction chamber, Pin. If PS,i

is less than Pin, then air is immediately ingested into the region between the blades

(plane 4). Typically, Pin is much larger than PS,i, so that the ingestion process involves

a high-speed jet entering into the region between the blades (planes 4 and 5). Because

the air ingested from the suction chamber at temperature Tin and pressure Pin were

greatly accelerated, the temperature and pressure of the ingested jet is considerably
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Fig. 4.19. Projected streamlines at a cut plane in suction (right) and
exhaust (left) chambers

lower than Tin and Pin. During the discharge process, the velocity of the jet exiting

the region between blades is also very high. Thus, the pressure and temperature

in the jet region is considerably lower than pressure and temperature in the region

between the blades just before discharge port opens. From the Fig. 4.16 (planes 11

to 13), it can be seen that there is a low temperature film near the hub. This is due

to the water injected into the region between the blades through the water inlet. This

injected water eventually flows to join the water ring that surrounds the impeller.
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Fig. 4.20. Velocity and Pressure at a cut plane on the discharge side

4.4 Effects of Suction Pressure

In this section, the effect of the operating parameter, suction pressure (Pin) on

the nature of flow in the liquid ring vacuum pump is discussed.

4.4.1 Ring Structure and Pressure distribution

Fig. 4.21 and 4.22 show how changes in the suction pressure (Pin = 600, 300,

and 75 Torr) for a given exhaust pressure (Pe = 1 atm) and rotational speed (ω

= 1750 rpm) affect the water-ring shape and the pressure distribution in the water

ring and the ingested air. From Fig. 4.21, it can be seen that the water-ring shape

changes when the shape of the water-air interface changes. The water-air interface

is approximately elliptical with its major axis nearly vertical when Pin = 600 Torr,

circular when Pin drops to 300 Torr, and elliptical again except with its major axis

nearly horizontal when Pin drops further to 75 Torr. These changes occur because a

decrease in Pin for a given Pe increases the pressure gradient from the discharge ports
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to the suction port, which increases the acceleration of the water flow in the region

between the blade tips and the housing. This increase in acceleration increases the

velocity of the water there, which causes water in the region between the blades to get

pulled into the region between the blade tips and housing to satisfy continuity. Thus,

the volume between the blades available for air increases, and the air expands, and

pressure drops. The increase in the adverse pressure gradient from the suction port

to the discharge ports has the opposite effect because it increases the deceleration of

water flow in the region between the blade tips and the housing. This deceleration

slows the velocity there, which causes water in the liquid ring to enter into the region

between the blades to satisfy continuity. With water entering into the region between

the blades, the volume between the blades available for air decreases so air compresses

and pressure rises.

Fig. 4.21. Air volume in a region between the blades with angular
coordinate (similar to Fig. 5.12) for Pin=600, 300, 75 Torr for ω=1750
RPM

To understand the pressure distribution for different Pin, it is important to note

that the discharge ports will not open until the pressure of the air between the blades

is higher than Pe though the end-collar is always open. Thus, though the pressure of
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Fig. 4.22. Volume averaged air pressure in a region between the blades
with angular coordinate (similar to Fig. 5.12) for Pin=600, 300, 75
Torr for ω=1750 RPM

the ingested air at the start of compression process is lower if Pin is lower, compression

continues until its pressure exceeds Pe. Results obtained for this pump configuration

show that discharge ports do not open until θ = 230o, 260o, and 300o, which corre-

sponds to Pin = 600, 300, and 75 Torr, respectively (see Fig. 4.25). Since θ = 230o

is the earliest possible θ for any discharge port to open, all discharge ports are open

when Pin = 600 Torr. For Pin = 300 Torr, the discharge ports open at θ = 260o.

When Pin = 600 and 300 Torr, the flow through all opened discharge ports is always

from the region between the blades to the exhaust chamber. Reverse flow never takes

place. When Pin = 75 Torr, all circular discharge ports were never opened because

the pressure of the air is still below Pe. However, when θ = 300o, the end-collar opens

irrespective of whether the pressure of the air between the blades is higher or lower

than Pe. When Pin = 75 Torr, the pressure of the air between the blades is less than

Pe when it first reaches the end-collar. Thus, flow enters from the exhaust chamber

into the region between the blades (see Fig. 4.23). Discharge does not occur until

the pressure of the air between the blades exceed Pe, which occurs at approximately
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θ = 312o. Thus, even at Pin = 75 Torr, the pump configuration at 1750 rpm can still

ingest and expel air. One more observation is that as Pin decreases, the highest pres-

sure in the pump, which occurs on the housing about the end-collar, decreases, and

this is expected since compression of the ingested air started at a lower pressure. At

the suction port, it always opens at θ = 35o whether the pressure of the air between

the blades (PS,i) is higher or lower than Pin. For the pump studied, PS,i is always

less than Pin when Pin = 600 and 300 Torr so that air always enters into the region

between the blades; i.e., there is never any reverse flow at the suction port. When

Pin = 75 Torr, PS,i is higher than Pe when it first reaches the suction port. Thus,

air exits from the region between the blades into the suction chamber, which reduces

the performance of the pump (see Fig. 4.23 and 4.24). Ingestion does not take place

until θ = 55o when PS,i starts to get lower than Pin. One way to address this problem

is to delay the θ at which the suction port opens.

Fig. 4.23. Velocity vectors at suction port (right) and discharge ports
(left) for Pin=600, 300, 75 Torr (top to bottom)
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Fig. 4.24. Volume averaged air pressure near suction. The black line
indicates the angular coordinate at the onset of suction

Fig. 4.25. Discharge port behavior for Pin = 600, 300, 75 Torr (Left
to Right) Red indicates open ports, Black indicates closed ports

4.4.2 Temperature

Fig. 4.26 shows how the Pin affect the temperature of the air between the blades.

As Pin decreases, the compression ratio - i.e., the ratio of maximum to the mini-
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mum volume occupied by the air between the blades during the compression process

increases. Since the compression ratio increases with decreasing Pin and the temper-

ature of the air at the suction chambers inlet is kept constant, the temperature of the

discharge air increases with decreasing Pin.

Fig. 4.26. Volume averaged air temperature in a region between the
blades with angular coordinate (similar to Fig. 5.12) for Pin=600,
300, 75 Torr for ω=1750 RPM

4.5 Effects of Rotational Speed

In this section, the effect of the operating parameter, rotational speed (ω) on the

nature of flow in the liquid ring vacuum pump is discussed. Fig. 4.27 and 4.28 shows

how changes in the rotational speed (ω = 1750, 1450, 1150 rpm) for a given suction

and exhaust pressure (Pin = 300 Torr and Pe = 1 atm) affect the water-ring shape

and the pressure distribution in the water ring and the ingested air.

From Fig. 4.27, it can be seen that when the rotational speed decreases from

ω = 1750 to 1150 rpm, the elliptical shape of the rings inner surface rotates in a

direction opposite to that of the impeller. This is because the pressure gradient from
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Fig. 4.27. Air volume in a region between the blades with angular
coordinate (similar to Fig. 5.12) for ω=1750, 1450, 1150 RPM for
Pin=300 Torr

Fig. 4.28. Volume averaged pressure of air in a region between the
blades with angular coordinate (similar to Fig. 5.12) for ω=1750,
1450, 1150 RPM for Pin=300 Torr
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Fig. 4.29. Volume averaged temperature of air in a region between
the blades with angular coordinate (similar to Fig. 5.12) for ω=1750,
1450, 1150 RPM for Pin=300 Torr

Fig. 4.30. Discharge port behavior for ω=1750, 1450, 1150 RPM (Left
to Right) Red indicates open ports, Black indicates closed ports

the discharge port to the suction port is balanced by less resistance from the flow

at lower rotational speeds. This change in shape is important because it affects the

compression ratio from BDC to when the first discharge port opens. Lowering the
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rotational speed was found to increase the compression ratio, which increases the

pressure and temperature of the air between the blades as the impeller rotates (see

Fig. 4.28 and 4.29). Since the discharge ports open only when the pressure of the air

in the region between the blades is higher than Pe, the discharge ports open at lower

θ when the rotational speed is lower (Fig. 4.30). This change in shape also affects

the volume available for expansion from the end of discharge to when the suction

port opens. Lowering the rotational speed was found to increase the volume available

during the expansion process. Thus, PS,i reduces with decrease in rotational speed,

which reduces the temperature and density of the air in the region between the blades

when the suction port first opens.
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5. PHYSICS BASED REDUCED ORDER MODEL FOR

PREDICTING PERFORMANCE OF LIQUID RING

VACUUM PUMPS

5.1 Introduction

As noted, although liquid-ring vacuum pumps are efficient and robust, manu-

facturers have aggressive goals on improving efficiency, performance, and range of

operations. Improving design requires detailed understanding of the flow and heat

transfer as a function of design and operating parameters. This knowledge could be

obtained by CFD or experiments. However, both approaches require considerable

time and resources. A physics-based reduced-order model that encapsulates the un-

derstanding gained from CFD and experiments would be most useful for preliminary

design. This is because such models can provide the information needed with mini-

mal time and resources. Pardeshi et al. [23] developed a semi-empirical reduced order

model to predict the pump capacity, and the predictions were reasonable. However,

the model was developed primarily by curve fitting the experimental data as a func-

tion of key dimensionless parameters. As a result, the model has limited range of

applicability. Huang et al. [24] developed a model for predicting the performance

of a liquid ring vacuum pump, and their predictions on pump capacity and power

matched experimental data with reasonable accuracy. However, on pump capacity,

their model assumes isentropic expansion after discharge which is not supported by

the CFD study conducted in this work. In the model by Huang et al. [24], the vari-

ation of power due to suction pressure is attributed to changes in compression work

of the gas, and the compression was also assumed to be isentropic. Again, this is

not supported by the CFD study conducted in this work. The CFD study found the
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changes in liquid content to be predominantly responsible for changes in power and

the compression process to be polytropic.

Thus, the objective is to develop a physics based reduced order model based on

the understanding gained from the CFD study. The proposed model allows to predict

the rate of air ingested and power consumed by the pump as a function of design and

operating parameters and can be used in preliminary design of liquid ring vacuum

pumps.

In the subsequent sections, the development of physics based reduced order model

is described. It’s validation and range of applicability are also described.

5.2 Problem Description for the Physics Based Reduced Order Model

The liquid ring vacuum pump problem studied is the same as that described

in Chapter 2. Some of the key features are repeated as housing (radius = rc); an

impeller (tip radius = ri, hub radius = rh, blade thickness = thb, blade angle = δ,

number of blades = nb, eccentricity = e) and rotating at rotational speed ω; and a

suction/exhaust chamber. At the inlet boundary, pressure level of Pin is applied. At

the outlet boundary, pressure level of Pout is applied (see Fig. 5.1).

Five different configurations of the liquid ring vacuum pump were used to vali-

date the model developed. The details of these configurations are described in Fig.

5.2. Of these configurations, CFD analyses were performed only for configuration 1.

Experimental data however is available for all five configurations.

5.3 Model Development

This section describes the development of the reduced order model. The CFD

study showed that a certain volume of air (residual air) gets left behind in the region

between the blades after discharge. Since this residual air is at near discharge pres-

sure, the volume of the residual air increases when it reaches the suction port. This

decreases the effective volume available in the region between the blades for the pump



41

Fig. 5.1. Problem Description

Fig. 5.2. Configurations studied. Configuration 1 is proprietary

to ingest air thereby reducing the pump capacity. As the suction pressure decreases,

this volume change (in this case, volume increase) of residual air increases assuming

the volume of residual air does not change with suction pressure. But if the liquid

ring changes, the volume of residual air left after discharge will also change. So the
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effects of polytropic expansion of the gas and the change of the liquid ring shape must

be accounted for in predicting the pump capacity. On the power consumption, the

shape of the liquid ring is in direct correlation with the amount of water that the

impeller has to rotate inside the pump chamber. The water in the pump chamber

acts as resistance to the impeller in rotation. This is the predominant source of power

consumption in a liquid ring vacuum pump. Therefore, the change of the liquid ring

shape must be accounted for in predicting the power consumption as well.

The CFD study showed that the shape of the liquid ring primarily depends on

the centrifugal force from rotation, acceleration/deceleration from differences in the

pumps pressure at its inlet and outlet, and impellers eccentricity relative to the pumps

housing. As the suction pressure decreases, the air-water interface goes from approx-

imately elliptical with its major axis nearly vertical to circular to elliptical again

except with its major axis nearly horizontal. These changes occur because a decrease

in Pin for a given Pout increases the pressure gradients in the liquid ring between the

discharge ports and the suction port. On the other hand, when the rotational speed

decreases, the elliptical shape of the rings inner surface rotates in a direction opposite

to that of the impeller. This is because the pressure gradient from the discharge port

to the suction port is balanced by less resistance from the flow at lower rotational

speeds. These effects must be taken into account to predict the shape of the liquid

ring.

To incorporate the insights gained from CFD to predict the performance param-

eters, the model involves eight key stages which are as follows:

1. Develop a model for the prediction of rate of gas ingested assuming the shape

of the liquid ring is known.

2. Develop a model for prediction of torque exerted by the fluids on the impeller

assuming the shape of the liquid ring is known.

3. Develop a procedure for prediction of shape of the liquid ring. Through this, the

volume of air between the blades as a function of angular position is calculated.
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4. Using the information on volume of air between the blades as a function of

angular position, develop a model for prediction of pressure of air between

the blades as a function of angular position. At this point, all the variables

required to predict the pump capacity are known. The information on volume

and pressure of air between the blades is used to calculate the rate of air ingested

by the pump.

5. Using the information on velocity profile of liquid flow at BDC location from

CFD study, develop a model for the flow rate of liquid in the liquid-ring.

6. Using the information on flow rate of liquid in the liquid-ring and the shape of

the liquid ring, develop a model for prediction of rotational speed distribution

in the liquid-ring.

7. Using the information on rotational speed distribution and pressure of air be-

tween the blades, develop a model for prediction of pressure distribution in the

liquid-ring

8. Using the information on pressure distribution in the liquid-ring, develop a

model for prediction of pressure on the blade surfaces. At this point, all the

variables required to predict the torque exerted by the fluids on the impeller

are known. The information on pressure on the blade surfaces is used to get

the torque exerted by the fluids on the impeller.

In the subsequent sections, the aforementioned stages in the model are described.

5.3.1 Rate of Gas Ingested by the Pump (Pump Capacity)

The CFD study conducted showed that the shape of the liquid ring decides on

how much air the pump can ingest since that shape was found to play a dominant

role in creating the expansion ratio or the vacuum needed to draw air into the pump

through the suction port and the compression ratio needed to expel the air through
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the discharge ports. By applying continuity to the control volume marked by thick

black lines (1 and 2 in Fig. 5.3), the impeller’s hub surface on one side and the liquid

ring surface on the other side for the rate of air ingested by the pump yield,

Fig. 5.3. Control volume for application of continuity

ṁin = ṁ1 − ṁ2 (5.1)

This could be written as,

ρinQin = ρ1Q1 − ρ2Q2 (5.2)

Rearranging yields,

Qin =
ρ1
ρin

Q1 −
ρ2
ρin

Q2 (5.3)

Since the air experiences polytropic processes between end of suction to BDC and

from ed of discharge to start of suction, the above equation becomes,
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Qin =

(
Pa1
Pin

)1/γ1

Q1 −
(
Pa2
Pin

)1/γ2

Q2 (5.4)

where the volume flow rate Q1 and Q2 are given as:

Q1 =
Va1
tblps

; Q2 =
Va2
tblps

; tblps =
2π

ωnb
(5.5)

In the above equation, Va1 is the volume of air between the blades at surface 1 and Va2

is the volume of air between the blades surface 2 and tblps is time per blade passing.

Since Va1 and Va2 can vary with time, the Va1 and Va2 are the ones when the ”X”

(see Fig. 5.3) coincides with surface 1 and 2 where ”X” is a location on surface of the

impeller midway between the blades.

5.3.2 Torque Exerted by the Fluids on the Impeller (Power Consump-

tion)

The CFD study conducted also showed that the shape of the liquid ring decides on

the power consumption since that shape is in is in direct correlation with the amount

of water the impeller has to rotate inside the pump chamber and the resistance

offered by the water to the impeller in its rotation is a predominant source of power

consumption in a liquid ring vacuum pump. Each blade is partitioned into a finite

number of elements as shown in Fig. 5.4. The total number of blade elements is Ne.

Application of a force balance to a blade element in a non-inertial reference frame

gives,

~F −
∫
V

~arel dm =
∑

~FB +
∑

~FS (5.6)

The CFD data shows that the force due to shear stress by the fluids is less than 0.2%

of the total force on the impeller. So, surface forces due to friction (~F S3 and ~F S4) can

be neglected. So the net surface force is given by,

∑
~FS = ~FS1 + ~FS2 =

∫
S

P (−n̂) dA = (Pi − Pb)Aen̂ (5.7)
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Fig. 5.4. An element on impeller blade with its free body diagram;
grey indicates solid regions; blue indicates fluid regions

The acceleration of the non-inertial frame, ~arel can be written as,

~arel =
d2 ~R

dt2
+
d~ω

dt
× ~r + 2~ω × ~r + ~ω × (~ω × ~r) (5.8)

Linear acceleration of the frame’s origin is zero. So,

d2 ~R

dt2
= 0 (5.9)

Angular acceleration is zero. So,

d~ω

dt
× ~r = 0 (5.10)

Coriolis acceleration is zero. So,

2~ω × ~r = 0 (5.11)
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Centrifugal acceleration is non-zero. So,

~ω × (~ω × ~r) = ω2rr̂ (5.12)

So, The acceleration of the non-inertial frame, ~arel, becomes,

~arel = ω2rr̂ (5.13)

Using the lowest rotational speed tested (1150 RPM) for configuration 1 at lowest

possible radius (rh), it can be found that the gravity is less than 1% of centrifugal

acceleration for the case. So, force due to gravity (W) can be neglected. This results

in,

∑
~FB = ~RE (5.14)

Here, ~RE is the reaction on the blade element shown in Fig. 5.4 by the blade elements

in its vicinity. So total force on the blade element becomes,

~F = (Pi − Pb)Aen̂+meω
2rr̂ + ~RE (5.15)

Equilibrium in radial direction (assuming inelastic material) mandates:

~RE = −meω
2rr̂ (5.16)

So total force on the blade element is approximately,

~F = (Pi − Pb)Aen̂ (5.17)

With the force on the blade element known, the torque on the blade element can is,

~Tj = ~r × ~F (5.18)

Putting the force in the equation for torque given,
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~Tj = ~r × ((Pi − Pb)Aen̂) (5.19)

Rearranging:

~Tj = r(Pi − Pb)Ae(r̂ × n̂) (5.20)

The cross product comes out as:

r̂ × n̂ = sin βk̂ (5.21)

where β is the angle between r̂ and n̂. So, the final equation for torque becomes:

~Tj = r(Pi − Pb)Ae sin βk̂ (5.22)

The total torque is the vector summation of the torque over all the blade elements

which is given by,

~T =
Ne∑
j=1

~Tj (5.23)

While summing, note that some of the blade elements are exposed to gas only while

some are exposed to liquid only. Once the torque is known, the power (PW) can be

calculated as follows:

PW = Tω (5.24)

Now, power (PW) and torque (T) can be used interchangeably for analysis since they

differ only by a scaling factor ω (rotation speed).

Equations (5.6)-(5.23) calculates torque exerted by the fluid on the impeller at

one angular position. Since the torque is function of its angular position it needs to

be calculated at a series of positions of impeller and then averaged. In this study, ~T is

computed at N angular positions with each position separated by one degree, where

N=360/nb.
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5.3.3 Procedure to Construct the Ring

In this section, shape of the liquid ring is modelled. The CFD study conducted

showed that the shape and location of the liquid ring to strongly depend on centrifugal

force from rotation and acceleration/deceleration from the difference in the pressure

at the discharge and suction ports along with the eccentricity of the impeller relative

to the pump housing. Variation in suction pressure changes the pressure gradient in

the azimuthal direction. This causes liquid ring to change shape accordingly. The

liquid ring is approximately elliptical with its major axis nearly vertical when Pin =

600 Torr, circular when Pin drops to 300 Torr, and elliptical again except with its

major axis nearly horizontal when Pin drops further to 75 Torr. Variation in rotational

speed changes the balance between centrifugal acceleration and pressure gradient in

azimuthal direction. So, when the rotational speed decreases from ω = 1750 to 1150

rpm, the elliptical shape of the rings inner surface rotates in a direction opposite to

that of the impeller. This says that the liquid ring is a strong function of design and

operating parameters.

One approach to model the liquid ring’s inner surface is to separate the effects of

geometry and operating conditions. The geometry effects are embedded in a curve

referred to as the base curve and the effects of operating conditions are embedded as

correction to the base curve. The base curve is chosen to be a circle and is constructed

with the help of the following information: impeller radius, hub radius and eccentricity

as shown below,

(x− xcb)2 + (y − ycb)2 = r21 (5.25)

where:

xcb = kxex (5.26)

ycb = kyey (5.27)
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r1 =
ri + rh

2
(5.28)

kx = 0.95
(ri − rh

2ex

)0.9
(5.29)

ky = 0.95
(ri − rh

2ey

)0.9
(5.30)

Fig. 5.5. Construction of base curve

The coefficients that describe the center of the base curve (kx, ky) were determined

to ensure that at BDC the liquid and the impeller will not have a gap for the gas

to flow past blades. With the base curve defined, geometry of the liquid ring’s inner

surface can be developed as a correction to the radius of the base curve (see Fig. 5.6)

as follows:

r2 = r1 ∗ φ (5.31)

where r2 is the radial distance from the center of the base curve to the inner surface

of the liquid ring and φ, which is function of the angular position, is the correction



51

factor. To get φ, eight points are chosen at equal angular intervals on the base curve

as shown in Fig. 5.5, so that Eq. (5.31) becomes,

r2 =



r21

r22

r23

r24

r25

r26

r27

r28



=



r1φ1

r1φ2

r1φ3

r1φ4

r1φ5

r1φ6

r1φ7

r1φ8



(5.32)

To get φ, it is noted that in the CFD analysis conducted, it was observed that the

liquid ring surface is approximately elliptical. The general equation for an ellipse is,

x2 + Axy +By2 + Cx+Dy + E = 0 (5.33)

From the above equation, it can be seen that five points are required to define an

ellipse. Via trial and error, it was found that five points are too few to capture the

effects of the operating conditions on the liquid ring geometry. However, eight points

were found to be adequate capturing the effects of operating conditions on the liquid-

ring geometry. So, another type of closed curve is used to represent the inner surface

of the liquid ring and it is given by,

Ax4 +By4 + Cx2y + x2 +Dxy + Ey2 + Fx+Gy +H = 0 (5.34)

The eight points are equally spaced and have following angular position:
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θ =



θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8



=



0o

45o

90o

135o

180o

225o

270o

315o



(5.35)

The φ at each of those points were found to depend on,

FPin
=

P in

P out

(5.36)

F ω =
1

2

ρω2ri
2

P out

(5.37)

Details on how φ depends on FPin
and Fω will be given later in this section. Once

the φ is defined, a system of linear equations is solved to find the coefficients in Eq.

(5.34) as follows:



x41 y41 x21y1 x1y1 y21 x1 y1 1

x42 y42 x22y2 x2y2 y22 x2 y2 1

x43 y43 x23y3 x3y3 y23 x3 y3 1

x44 y44 x24y4 x4y4 y24 x4 y4 1

x45 y45 x25y5 x5y5 y25 x5 y5 1

x46 y46 x26y6 x6y6 y26 x6 y6 1

x47 y47 x27y7 x7y7 y27 x7 y7 1

x48 y48 x28y8 x8y8 y28 x8 y8 1





A

B

C

D

E

F

G

H



=



x21

x22

x23

x24

x25

x26

x27

x28



(5.38)

where,
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xn = r2n cos θn + xcb ;n = 1 to 8 (5.39)

yn = r2n sin θn + ycb ;n = 1 to 8 (5.40)

Fig. 5.6. Construction of liquid ring inner surface curve

5.3.4 Effects of Operating Conditions

To get φ, four steps are performed:

1. Develop model for the geometry of the blade.

2. Develop a model for the air volume as a function of the liquid ring shape (ac-

count for the variation in the hub radius)

3. Determine φ for CFD cases.

4. Generalize φ as a function of operating conditions.
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Fig. 5.7. Schematic of region between the blades with liquid ring and
impeller tip bound

Model for Blade Geometry

The equation for blade contour needs to be derived. In the present approach,

the blade is assumed to be a circular arc. Using this and the available geometric

parameters (impeller radius, hub radius, number of blades, blade angle and thickness

of the blades), an equation for the blade contour can be derived.

Fig. 5.8 shows schematic of blade contour. From this figure, it can be noticed that

the center of the circular arc is at (rh, -rb) and the radius of the circular arc is rb. So

the equation of the circular arc can be given as:

(x− rh)2 + (y + rb)
2 = r2b (5.41)

In the above equation, rb is unknown and needs to be calculated. Since the impeller

tip is located at T, applying distance formula between O and T gives,

√
(rb sin δ + rh)2 + (rb cos δ − rb)2 = ri (5.42)

Squaring both sides,
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Fig. 5.8. Schematic of blade contour

(rb sin δ + rh)2 + (rb cos δ − rb)2 = r2i (5.43)

Rearranging,

r2b (1− cos δ) + rb(rh sin δ)− r2i − r2h
2

= 0 (5.44)

This is a quadratic equation in rb. The positive root of the equation is the solution

of interest, which is:

rb =

√
r2h sin2 δ + 2(1− cos δ)(r2i − r2h)− rh sin δ

2(1− cos δ)
(5.45)
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Equation (5.41) and (5.45) defines the equation of the blade contour.

Fig. 5.9. Schematic of volume of air between the blades

Model for Air Volume Between the Blades

To calculate, the air volume between the blades, ArABCD needs to be calculated

(see Fig. 5.7). To get ArABCD, Ar1, Ar5, Ar6 and Ar7 are required (see Fig. 5.9). To

get Ar1, equation for AB is needed, which is:
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x2 + y2 = r2h (5.46)

Then the area becomes:

Ar1 =

∫ yB

yA

f1(y)dy (5.47)

where:

f1(y) =
√
r2h − y2 (5.48)

This can be analytically integrated between points A and B. Points A and B can be

arrived at from geometrical information of pump configuration. To get Ar5, equation

for BC is needed, which is:

(x− xcr)2 + (y − ycr)2 = (r + thbl)
2 (5.49)

where:

xcr = rh cos δ − r sin δ (5.50)

ycr = −(rh sin δ + r cos δ) (5.51)

r =

√
r2h sin2 δ + 2(1− cos δ)(r2i − r2h)− rh sin δ

2(1− cos δ)
(5.52)

Then the area becomes:

Ar5 =

∫ yC

yB

f2(y)dy (5.53)

where:

f2(y) =
√

(r + thbl)2 − (y − ycr)2 + xcr (5.54)
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This can be analytically integrated between points B and E. Point C is the intersection

point between liquid ring surface curve and curve BC and is arrived at by solving

a system of non-linear equations containing equation for curve BC and liquid ring

surface curve for every discrete position of impeller section. To get Ar6, equation for

CD is needed, which is:

Ax4 +By4 + Cx2y + x2 +Dxy + Ey2 + Fx+Gy +H = 0 (5.55)

Then the area becomes:

Ar6 =

∫ yD

yC

f3(y)dy (5.56)

f3(y) is an implicit function so analytical integration cannot be performed. To inte-

grate, numerical integration is employed.

Ar6 =

∫ yD

yC

f3(y)dy =
N∑
i=1

f3(yi)∆y (5.57)

where, y1 = yC and yN = yD. To find f3(yi), root finding at the corresponding discrete

yi is employed. Point D is the intersection point between liquid ring surface curve

and curve AB and is arrived at by solving a system of non-linear equations containing

equation for curve AB and liquid ring surface curve for every discrete position of

impeller section. To get Ar7, equation for DA is needed, which is:

(x− rh)2 + (y + r)2 = r2 (5.58)

where:

r =

√
r2h sin2 δ + 2(1− cos δ)(r2i − r2h)− rh sin δ

2(1− cos δ)
(5.59)

Then the area becomes:

Ar7 =

∫ yD

yA

f4(y)dy (5.60)
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where:

f4(y) =
√
r2 − (y + r)2 + rh (5.61)

This can be analytically integrated between points A and D. So, now all the the

elements to get ArABCD are available. So, the area becomes:

ArABCD = Ar6 + Ar7 − Ar5 − Ar1 (5.62)

With this area, assuming axial symmetry, the total volume between the blades be-

comes:

Vc = ArABCD ∗ sb (5.63)

Fig. 5.10. Schematic of impeller blade in axial direction. Ar8 corre-
sponds to actual design

Since the hub is not axially symmetric, the blade configuration is not axially sym-

metric (see Fig. 5.10). To account for this, the calculated volume Vc needs to be

corrected. To arrive at the corrected air volume, a fraction of total available volume

between the blades (Vb) is subtracted from Vc. So, the expression becomes:

Va = Vc − κVb (5.64)
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For the configurations studied, κ was found to be between 0.09 and 0.12. With the

above calculation the volume of air between the blades can be found for every discrete

position of impeller.

Fig. 5.11. Schematic of total volume available between the blades

To calculate the total available volume between the blades, area under ABEF

needs to be calculated (see Fig. 5.7). To get ArABEF, Ar1, Ar2, Ar3 and Ar4 are

required (see Fig. 5.11). To get Ar1, equation for AB is needed, which is:

x2 + y2 = r2h (5.65)
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Then the area becomes:

Ar1 =

∫ yB

yA

f1(y)dy (5.66)

where:

f1(y) =
√
r2h − y2 (5.67)

This can be analytically integrated between points A and B. Points A and B can be

arrived at from geometrical information of pump configuration. To get Ar2, equation

for BE is needed, which is:

(x− xcr)2 + (y − ycr)2 = (rb + thbl)
2 (5.68)

where:

xcr = rh cos δ − rb sin δ (5.69)

ycr = −(rh sin δ + rb cos δ) (5.70)

rb =

√
r2h sin2 δ + 2(1− cos δ)(r2i − r2h)− rh sin δ

2(1− cos δ)
(5.71)

Then the area becomes:

Ar2 =

∫ yB

yE

f2(y)dy (5.72)

where:

f2(y) =
√

(rb + thbl)2 − (y − ycr)2 + xcr (5.73)

This can be analytically integrated between points B and E. Point E can be arrived

at from geometrical information of pump configuration. To get Ar3, equation for EF

is needed, which is:
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x2 + y2 = r2i (5.74)

Then the area becomes:

Ar3 =

∫ yE

yF

f3(y)dy (5.75)

where:

f3(y) =
√
r2i − y2 (5.76)

This can be analytically integrated between points F and E. Point F can be arrived

at from geometrical information of pump configuration. To get Ar4, equation for FA

is needed, which is:

(x− rh)2 + (y + rb)
2 = r2b (5.77)

where:

rb =

√
r2h sin2 δ + 2(1− cos δ)(r2i − r2h)− rh sin δ

2(1− cos δ)
(5.78)

Then the area becomes:

Ar4 =

∫ yF

yA

f4(y)dy (5.79)

where:

f4(y) =
√
r2b − (y + rb)2 + rh (5.80)

This can be analytically integrated between points A and F. So, now all the the

elements to get ArABEF are available. So, the area becomes:

ArABEF = Ar3 + Ar4 − Ar1 − Ar2 (5.81)
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With this area, assuming axial symmetry, the total volume between the blades be-

comes:

Vb = ArABEF ∗ sb (5.82)

φ from CFD data

The dependence of φ on operating conditions can be written as:

φ(FPin
, F ω) (5.83)

To get this, CFD data for the volume of air between the blades for operating condi-

tions studied in this work (see Fig. 2.3) are used to get φ(F300,F1750), φ(F300,F1450),

φ(F300,F1150), φ(F600,F1750) and φ(F75,F1750). In Fig. 5.12, the values for φ for all

eight points for the cases analyzed in the CFD study is given.

Fig. 5.12. φ for eight points considered for cases analyzed in the CFD study

Through the values given in Fig. 5.12, following functions can be found:

φ(F 300, F ω) (5.84)

φ(FPin
, F 1750) (5.85)
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These function are of the following form:

φn1 = φ(F300, Fω) = 0.054872 a1F
2
ω + 0.05487 b1Fω + c1 + 1 (5.86)

φn2 = φ(FP in
, F1750) = a2F

2
P in

+ b2FP in
+ c2 + 1 (5.87)

The coefficients (a1,b1,c1) and (a2,b2,c2) for all eight points are given in the Fig. 5.13.

Fig. 5.13. Coefficients for Equations 5.86 and 5.87

Fig. 5.14 show the comparison of model and CFD data for volume of air between

the blades for the cases studied. Maximum relative error for the fit was found to be

within 10%. Fig. 5.15 liquid ring’s inner surface curve calculated through the air

volume fit respectively.

General Relations for φ

One approach to get the general relations for φ is to separate the effects of suction

pressure and rotation speed which yields,

φ(FPin
, F ω) = g(FPin

) h(F ω) (5.88)
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Fig. 5.14. Comparison of model and CFD for volume of air between
the blades for the cases analyzed in the CFD study

Fig. 5.15. Liquid ring’s inner surface curve calculated through the air volume fit
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Using this, φ(F300,Fω) and φ(FPin
,F1750) can be written as follows:

φ(F 300, F ω) = g(F 300) h(F ω) (5.89)

φ(FPin
, F 1750) = g(FPin

) h(F 1750) (5.90)

Multiplying Eq. (5.89) and (5.90) yields,

φ(F 300, F ω) φ(FPin
, F 1750) = g(F 300) h(F ω) g(FPin

) h(F 1750) (5.91)

Rearranging yields,

φ(F 300, F ω) φ(FPin
, F 1750) = {g(FPin

) h(F ω)}{g(F 300) h(F 1750)} (5.92)

Using Eq. (5.88), Eq. (5.92) becomes:

φ(F 300, F ω) φ(FPin
, F 1750) = φ(FPin

, F ω) φ(F 300, F 1750) (5.93)

Rearranging yields,

φ(FPin
, F ω) =

φ(F 300, F ω) φ(FPin
, F 1750)

φ(F 300, F 1750)
(5.94)

Equation (5.94) gives the relation between φ(FPin
,Fω) and φ(F300,Fω) and φ(FPin

,F1750).

φ(F300,Fω) and φ(FPin
,F1750) are given in Eq. (5.86) and (5.87). Using 5.94, general

expressions for φ(FPin
,Fω) at all eight points can be derived.

5.3.5 Air Pressure Calculation

Air Pressure from CFD data

To calculate the pressure from the fitted volume data, the revolution of the im-

peller section needs to be broken into processes that the air between the blades goes

through (see Fig. 5.17). From θ = 90o to θs; suction process happens. From θs to
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θc the air goes through a polytropic expansion process then a polytropic compres-

sion process with γ1=1.2. From θc to θd discharge process happens from θd to θst

the air goes through a polytropic expansion process with γ2=1.1. From θst to 90o

development of suction happens. The equation for the processes are given below:

90o ≤ θn ≤ θs : Pa(θn) = Pin (5.95)

θs ≤ θn ≤ θc : Pa(θn) = Pa(θn−1)

(
Va(θn−1)

Va(θn)

)γ1
(5.96)

θc ≤ θn ≤ θd : Pa(θn) = P h
a +

1

2
((1− β)a1 + (1 + β)a2)(θn − θah)2 (5.97)

β =
|θn − θah|
θn − θah

; a1 =
Pa(θc)− P h

a

(θc − θah)2
; a2 =

P d
a − P h

a

(θah − θd)2
(5.98)

θd ≤ θn ≤ θst : Pa(θn) = Pa(θn−1)

(
Va(θn−1)

Va(θn)

)γ2
(5.99)

θst ≤ θn ≤ 90o : Pa(θn) = a3(θn − θst) + Pa(θst) (5.100)

a3 =
Pin − Pa(θst)

40o
; here, if Pa(θn) ≥ Pin; Pa(θn) = Pin (5.101)

Fig. 5.16. CFD values for the Pa
h and Pa

d for the cases analyzed in the CFD study

Here Pa
h is the maximum air pressure during the revolution and Pa

d is the air pressure

after the end of discharge process. Since the present approach models the air pressure
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Fig. 5.17. Angles of interest for calculation of air pressure

during discharge process using Pa
h and Pa

d, CFD data on Pa
h and Pa

d is required.

Fig. 5.16 lists the CFD values for the Pa
h and Pa

d for the cases studied. With this

information Pa
h(F300,Fω), Pa

h(FPin
,F1750) as well as Pa

d(F300,Fω), Pa
d(FPin

,F1750) can

be derived and these function are of the following form:

P h
a (F300, Fω) = 0.054872 a1F

2
ω + 0.05487 b1Fω + c1 (5.102)

P h
a (FP in

, F1750) = a2F
2
P in

+ b2FP in
+ c2 (5.103)

Similarly,

P d
a (F300, Fω) = 0.054872 a1F

2
ω + 0.05487 b1Fω + c1 (5.104)

P d
a (FP in

, F1750) = a2F
2
P in

+ b2FP in
+ c2 (5.105)
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The air pressure calculation has the capability to calculate θc based on the condition

that the discharge ports open when pressure of air between becomes slightly higher

than Pout. But for due to the discrete distribution of discharge ports, this condition

couldn’t be used to fit the CFD data since the discharge ports could open only at

discrete angles. So, the CFD data for θc is used (see Fig. 5.16). Again, With this

information θc(F300,Fω), θc(FPin
,F1750) can be derived and these functions are of the

form:

θc(F300, Fω) = 0.054872 a1F
2
ω + 0.05487 b1Fω + c1 (5.106)

θc(FP in
, F1750) = a2F

2
P in

+ b2FP in
+ c2 (5.107)

The coefficients (a1,b1,c1) and (a2,b2,c2) for all eight points are given in the Fig.

5.18. With this, the air pressure calculation becomes closed form.Fig. 5.19 show the

comparison of calculated pressure with the CFD data.

Fig. 5.18. Coefficients for Equations 6.104 and 6.105

General Relations for Pa
h, Pa

d and θc

To get general relations for Pa
h, Pa

d and θc, the hypothesis employed in deriving

general relations for φ. Using the hypothesis:

P h
a (FPin

, F ω) =
P h
a (F 300, F ω) P h

a (FPin
, F 1750)

P h
a (F 300, F 1750)

(5.108)
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Fig. 5.19. Comparison of model and CFD for pressure of air between
the blades for the cases analyzed in the CFD study

Similarly,

P d
a (FPin

, F ω) =
P d
a (F 300, F ω) P d

a (FPin
, F 1750)

P d
a (F 300, F 1750)

(5.109)

Similarly,

θc(FPin
, F ω) =

θc(F 300, F ω) θc(FPin
, F 1750)

θc(F 300, F 1750)
(5.110)

5.3.6 Water Flow in the Ring

The pump geometry with the liquid ring is is given in Fig. 5.20. The location

A consists of two regions as far as velocity profiles are concerned. One inside the

impeller region which is small (region 2) and another outside the impeller region

(region 1). In region 1, CFD suggests approximate linear velocity profiles (see Fig.

5.21 and 5.22). Using this, the velocity profile in region 1 can be written as:



71

Fig. 5.20. Region of interest (location A) for calculation of volume
flow rate of water in the liquid ring

u =
u2 − u1

h
yt + u1 (5.111)

So the volume flow rate through an infinitesimal area is:

dQw1 = sb u dyt = sb

(u2 − u1
h

yt + u1

)
dyt (5.112)

So the total flow rate in the region 1 is:

Qw1 =

∫
dQw1 =

∫ h

0

sb

(u2 − u1
h

yt + u1

)
dyt =

1

2
(u1 + u2)sbh (5.113)

In region 2:
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Fig. 5.21. Velocity profile in region 1 for the cases with varying im-
peller rotational speed analyzed in CFD study

Fig. 5.22. Velocity profile in region 1 for the cases with varying suction
pressure analyzed in CFD study

u =
u1 − u3

l
yt + u1 (5.114)

So the volume flow rate through an infinitesimal area is:
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dQw2 = sb u dyt = sb

(u1 − u3
l

yt + u1

)
dyt (5.115)

So the total flow rate in the region 1 is:

Qw2 =

∫
dQw2 =

∫ 0

−l
sb

(u1 − u3
l

yt + u1

)
dyt =

1

2
(u1 + u3)sbl (5.116)

So the total volume flow rate of water becomes:

Qw = Qw1 +Qw2 =
1

2
(u1 + u2)sbh+

1

2
(u1 + u3)sbl (5.117)

It can be noted that u2 is needed to define the volume flow rate. u2 is modelled

through CFD data at the same location. The modelling of u2 is again broken up into

two parts: 1. contribution from geometry 2. contribution from operating conditions.

u2
utip

= ψ ∗ ε (5.118)

where ψ is the contribution from geometry and ε is the contribution form operating

conditions. The equations for ψ and ε are as follows:

ε = a3F
2
ω + b3Fω + c3 (5.119)

where,

a3 = −5.8972; b3 = 2.5145; c3 = 0.6103 (5.120)

ψ = a4λ
3 + b4λ

2 + c3λ+ d4 (5.121)

where,

λ =
ri − rh

roc − ri + ey

(ri − rh
roc

)2
(5.122)

a4 = 183.34; b4 = −163.13; c4 = 47.758; d4 = 3.6354 (5.123)
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Fig. 5.23. Schematic for calculation of rotational speed distribution
in the liquid ring

5.3.7 Rotational Speed Distribution in the Ring

In the previous section the total volume flow rate of water in the ring was calcu-

lated. This will be used to calculate the rotational speed distribution in the ring. In

the Fig. 5.23 at a certain angular position, at a radial distance r, an element in the

liquid part of the ring was chosen. This element has a thickness of dr and velocity of

ωr. So the volume flow through this element is:

dQws = sb ωr(r, θ) r dr (5.124)

So the total volume flow at this angular position will be:

Qws =

∫
dQws =

∫ rocp

rrp

sb ωr(r, θ) r dr (5.125)
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At this angular position, the radial position of the ring is rrp and radial position of

the casing is rocp. For the purposes of this analysis, an average ω along the radial

direction for all the angular positions will be calculated:

ωr(r, θ) = ωr(θ) = ωr (5.126)

Putting, the equation for total flow becomes:

Qws =

∫ rocp

rrp

sb ωr(r, θ)rdr =

∫ rocp

rrp

sb ωrrdr (5.127)

After integrating the total flow is given as:

Qws =

∫ rocp

rrp

sb ωrrdr = sb ωr

∫ rocp

rrp

rdr =
1

2
sb ωr(r

2
ocp − r2rp) (5.128)

Now, mass conservation in the azimuthal direction is applied. The total flow at

location A was calculated in the previous section. The volume flow at location A

and for any location should be equal for mass conservation to hold. Applying, the

equation becomes:

Qw = Qws =
1

2
sb ωr(r

2
ocp − r2rp) (5.129)

So the final expression for omega becomes:

ωr =
2Qw

sb(r2ocp − r2rp)
(5.130)

5.3.8 Pressure Distribution in the Ring

In the previous section, the rotational speed distribution for the ring was found.

Now, we need to find the pressure distribution in the ring. To do that, solid body

rotation theory is employed. According to the theory, the radial pressure variation

for a given ω at particular radial (r) location and for a given fluid is given as:

dPr
dr

= ρω2
rr (5.131)
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To calculate the pressure variation the above relation needs to be integrated. Rear-

ranging, we get:

dPr = ρω2
rrdr (5.132)

Integrating both sides with appropriate limits:

∫ Pr

Pr1

dPr =

∫ r

r1

ρω2
rrdr (5.133)

So the equation becomes:

Pr = Pr1 +
1

2
ρω2

r(r
2 − r21) (5.134)

In the air region with appropriate Pr1 and r1 we have:

Pr = Pa +
1

2
ρaω

2(r2 − r2h) (5.135)

In the water region with appropriate Pr1 and r1 we have:

Pr = Pa +
1

2
ρaω

2(r2rp − r2h) +
1

2
ρwω

2
r(r

2 − r2rp) (5.136)

5.3.9 Pressure on a Blade Element

In the previous section, rotational speed distribution and pressure distribution in

the ring was calculated. With this information, the pressure distribution on the blades

can be calculated. To proceed, the impeller blades are broken into small elements

and the flow around the blades is observed through the frame of the elements. In

the air region, since the air is trapped between the blades, the relative velocity of air

with respect to blades is almost zero in the azimuthal direction. So the pressure on

the approaching side of the blade in the air region becomes:

Pi = P c
r (5.137)
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Fig. 5.24. Schematic for pressures Pi and Pb

For the water region, Fig. 5.24 shows the velocity vector of the blade element and

liquid around it from an inertial reference frame. Figure shows the velocity vector

of the blade element and liquid around it from an non-inertial reference frame. The

relative velocity v l/b can calculated as:

~vcl/b = ~vcl − ~vb = (~ωr − ~ω)× ~r (5.138)

To get the pressure on the blade element, the normal component of the relative

velocity is required, which can be calculated as:

~vcnl/b = ~vcl/b · n̂ (5.139)

And pressure on the approaching side in the water region, using the Bernoulli’s equa-

tion along the black line between the elements in Fig. 5.24, becomes:

Pi = P c
r +

1

2
ρwv

c
nl/b

2 (5.140)
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The pressure on the trailing side is calculated as follows:

Pb = P b
r (5.141)

5.4 Performance and Validation of the Model

The experimental data from configuration 1 [25], 2 [20], 3, 4 and 5 [24] has been

used to evaluate the performance of reduced order model developed. Fig. 5.25-5.29

describe comparison of rate of air ingested by the pump predicted by the model

developed and those measured by the experiments. It can be seen that the rate of

air ingested by the pump can be predicted with maximum relative errors less than

12%. Fig. 5.30-5.34 describe comparison of torque predicted by the model developed

and those measured by the experiments. It can be seen that the torque can be

predicted with maximum relative errors less than 17%. It should be noted that the

model developed demonstrates generality since the configurations 1, 2, 3, 4 and 5 are

significantly different from each other.

Fig. 5.25. Rate of air ingested by the pump comparison between
model and experiments for configuration 1
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Fig. 5.26. Rate of air ingested by the pump comparison between
model and experiments for configuration 2

Fig. 5.27. Rate of air ingested by the pump comparison between
model and experiments for configuration 3
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Fig. 5.28. Rate of air ingested by the pump comparison between
model and experiments for configuration 4
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Fig. 5.29. Rate of air ingested by the pump comparison between
model and experiments for configuration 5

Fig. 5.30. Torque comparison between model and experiments for configuration 1
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Fig. 5.31. Torque comparison between model and experiments for configuration 2

Fig. 5.32. Torque comparison between model and experiments for configuration 3
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Fig. 5.33. Torque comparison between model and experiments for configuration 4
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Fig. 5.34. Torque comparison between model and experiments for configuration 5
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6. SUMMARY

Vacuum is needed in many applications, and there are many types of pumps that can

provide the vacuum levels needed. One widely used pump is the liquid-ring vacuum

pump, which does not involve any solid-solid contacts at interfaces where moving and

stationary parts meet. Though liquid-ring vacuum pumps are efficient and robust,

manufacturers have aggressive goals on improving efficiency, performance, and range

of operations. In this research, time-accurate, three-dimensional CFD that resolve

the air-water interface were performed to study the nature of the flow in a liquid-

ring vacuum pump. This study showed how the suction pressure, discharge pressure,

rotational speed and eccentricity of the impeller, and the location of the discharge

and suction ports affect the formation and the shape of the liquid ring which in

turn enables the suction process to create a vacuum. This study also showed that if

the suction pressure is below some critical value, then two adverse effects can occur.

During the suction process, a portion of the process has discharge instead of suction.

Similarly, during the discharge process, a portion of the process has suction instead

of discharge. These adverse effects can be removed by shifting the location of the

suction and discharge ports. It can also be eliminated by decreasing the rotational

speed of the impeller. This is because for a given pump design, the compression and

expansion ratios that enables suction and discharge are increased by decreasing the

rotational speed of the impeller.

The CFD study conducted also showed that the shape of the liquid ring decides

how much gas the pump can ingest since that shape was found to play a dominant

role in creating the expansion ratio or the vacuum needed to draw gas into the pump

through the suction port and the compression ratio needed to expel the gas through

the discharge ports. In addition, the CFD study showed that the shape of the liquid

ring decides on the power consumption since that shape is in direct correlation with
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the amount of liquid the impeller has to rotate inside the pump chamber and the

resistance offered by the liquid to the impeller in its rotation is a predominant source

of power consumption in a liquid ring vacuum pump. With this knowledge, a physics

based reduced order model was developed to predict air ingested and power consumed

by the pump as a function of design (impeller radius, hub radius, casing radius,

eccentricity, blade span, blade angle, blade thickness, number of blades) and operating

(suction pressure, rotational speed of the impeller) parameters. This model was

developed by recognising and demonstrating that the amount of air ingested and

power consumed by the pump is strongly dependent on the shape and location of the

liquid ring surface. Results obtained for the flow rate of the gas drawn through the

suction port by the pump were compared with experimentally measured values, and

a reasonable match was found with relative error less than 12%. Results obtained

for the power consumed by the pump were compared with experimentally measured

values, and a reasonable match was found with relative error less than 17%. The

model predicts pressure of air between the blades as a function of rotor angle which

in turn can predict the location of first discharge port open. The model also predicts

pressure of water as a function of radial and angular position in the pump which in

turn can predict the location and magnitude of maximum pressure on the housing.



REFERENCES



87

REFERENCES

[1] S. Hashemi, R. Crotogino, and W. Douglas, Effect of Papermaking Parameters
on through Drying of Semi-Permeable Paper. Drying technology, 15(2), 1997.

[2] L. Rey and J. May, Freeze-Drying/Lyophilization Of Pharmaceutical and Biolog-
ical Products. CRC Press, 2004.

[3] Y. Ying and J. Qiuzhou, Progress of Moulding Technology of Resin-matrix Com-
posite/foam Plastic Sandwich[J]. Aerospace Materials and Technology, 1, 2004.

[4] S. Namba, Ion implantation in Semiconductor Processing. Nuclear Instruments
and Methods in Physics Research, 189(1), pp. 175, 1981.

[5] M. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology.
CRC press, 2011.

[6] D. Baldwin and G. Rowe, Lubrication at High Temperatures With Vapor-
Deposited Surface Coatings. Journal of Basic Engineering, 83(2), pp. 133, 1961.

[7] E. V. Halle, H. W. III, and R. Lowry, The effect of vacuum core boundary con-
ditions on separation in the gas centrifuge. Nuclear Technology, 62(3), pp. 325,
1983.

[8] M. Havet and F. Hennequin, Experimental characterization of the ambience in a
food-processing clean room. Journal of food engineering, 39(3), pp. 329, 1999.

[9] H. Behnsen, Underground repositories for chemically toxic waste in German salt
and potash mines. Reviews in Engineering Geology, 29, pp. 31, 2008.

[10] S. Hong and G. Son, Numerical study of a vane vacuum pump with two-phase
flows. Journal of Mechanical Science and Technology, 31(7), pp. 3329, 2017.

[11] R. Harris, K. Edge, and D. Tilley, The suction dynamics of positive displacement
axial piston pumps. Journal of dynamic systems, measurement, and control,
116(2), pp. 281, 1994.

[12] A. Kovacevic, N. Stosic, E. Mujic, and I. Smith, CFD integrated design of screw
compressors. Engineering Applications of Computational Fluid Mechanics, 1(2),
pp. 96, 2007.

[13] J. Wang, J. McDonough, and D. Zhang, Analysis and numerical simulation of a
novel gasliquid multiphase scroll pump. Journal of Heat and Mass Transfer, 91,
pp. 27, 2015.

[14] M. Cui, Numerical study of unsteady flows in a scroll compressor. Journal of
fluids engineering, 128(5), pp. 947, 2006.



88

[15] I. Grunow, U. Salecker, P. Bartsch, and T. Grohmann, Analysis of Cavitating
Flow in a Liquid Ring Vacuum Pump. Technical Study by CFX-Berlin, 2011.

[16] K. Kakuda, Y. Ushiyama, S. Obara, J. Toyotani, S. Matsuda, H. Tanaka, and
K. Katagiri, Flow Simulations in a Liquid Ring Pump using a Particle Method.
Reading Massachusetts: Computer Modeling in Engineering and Sciences 66,
215, 2010.

[17] M. Radle and B. Shome, Cavitation Prediction in Liquid Ring Pump for Aircraft
Fuel Systems by CFD Approach. SAE Technical Paper, 2013-01-2238, 2013.

[18] S. Huang, Z. Y. Ruan, Q. Deng, T. Z. Wu, and Z. H. Tan, Numerical Analysis
of Gas-Liquid Two-Phase Flow in Liquid Ring Vacuum Pump. Vacuum 2, 26,
2009.

[19] J. Guan and S. Huang, Property Analysis of the Two-Phase Flow of Liquid-Ring
Vacuum Pumps Based on Computational Fluid Dynamics (CFD). Chemical
Engineering and Machinery 6, 21, 2010.

[20] H. Ding, Y. Jiang, H. Wu, and J. Wang, Two Phase Flow Simulation of Water
Ring Vacuum Pump Using VOF Model. ASME/JSME/KSME 2015 Joint Fluids
Engineering Conference, V001T33A019-V001T33A019, 2015.

[21] F. R. Menter, M. Kuntz, and R. Langtry, Ten Years of Industrial Experience
with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4, 625,
2003.

[22] C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free
boundaries. Journal of computational physics, 39(1), pp. 201., 1981.

[23] I. Pardeshi, A. Pandey, and T. I. Shih, A Reduced-Order Model for Predicting
the Performance of a Liquid-Ring Vacuum Pump. ASME 2018 International
Mechanical Engineering Congress and Exposition, 2018.

[24] H. Si, J. He, X. Wang, and G. Qiu, Theoretical Model for the Performance of
Liquid Ring Pump Based on the Actual Operating Cycle. International Journal
of Rotating Machinery 2017, 2017.

[25] D. V. T. Inc., Experimental Studies on DV0300B-KA Liquid Ring Vacuum Pump.
Personal Communication, 2015.


