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ABSTRACT 

Author: Cheng, Huiwen. MS 
Institution: Purdue University 
Degree Received: December 2019 
Title: Mitotic cell detection in H&E stained meningioma histopathology slides. 
Major Professor: Gavriil Tsechpenakis 
 

Meningioma represent more than one-third of all primary central nervous system (CNS) 

tumors, and it can be classified into three grades according to WHO (World Health Organization) 

in terms of clinical aggressiveness and risk of recurrence. A key component of meningioma grades 

is the mitotic count, which is defined as quantifying the number of cells in the process of dividing 

(i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done manually 

by a pathologist looking at 10 consecutive high-power fields (HPF) on a glass slide under a 

microscope, which is an extremely laborious and time-consuming process.  The goal of this thesis 

is to investigate the use of computerized methods to automate the detection of mitotic nuclei with 

limited labeled data. We built computational methods to detect and quantify the histological 

features of mitotic cells on a whole slides image which mimic the exact process of pathologist 

workflow. Since we do not have enough training data from meningioma slide, we learned the 

mitotic cell features through public available breast cancer datasets, and predicted on meingioma 

slide for accuracy. We use either handcrafted features that capture certain morphological, 

statistical, or textural attributes of mitoses or features learned with convolutional neural networks 

(CNN). Hand crafted features are inspired by the domain knowledge, while the data-driven 

VGG16 models tend to be domain agnostic and attempt to learn additional feature bases that cannot 

be represented through any of the handcrafted features. Our work on detection of mitotic cells 

shows 100% recall , 9% precision and 0.17 F1 score. The detection using VGG16 performs with 

71% recall, 73% precision, and 0.77 F1 score. Finally, this research of automated image analysis 

could drastically increase diagnostic efficiency and reduce inter-observer variability and errors in 

pathology diagnosis, which would allow fewer pathologists to serve more patients while 

maintaining diagnostic accuracy and precision. And all these methodologies will increasingly 

transform practice of pathology, allowing it to mature toward a quantitative science.  
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1. INTRODUCTION 

 Motivation 

Meningioma represent more than one-third of all primary central nervous system (CNS) tumors, 

and the prediction of recurrence and, for malignant variants, prediction of survival is the most 

important prognostic question. The mitotic index (MI), which is defined as the sum of mitotic 

figures per 10 consecutive high-power fields (HPF), has been shown to be one of the most reliable 

predictors of the likelihood of meningioma recurrence. According to current World Health 

Organization (WHO) classification of meningioma, there are 3 grades: benign (WHO grade I), 

atypical (WHO grade II) and anaplastic (WHO grade III). However, meningioma classification is 

still based on ‘gold standard’ pathology diagnosis on the standard H&E-stained slides, which is a 

challenging and time-consuming task that can lead to variability in measurements and high inter-

observer error. Therefore, there is clearly a need for quantitative image-based assessment of digital 

pathology slides. Computer-aided diagnosis has become more and more important to help increase 

efficiency of routine work, to improve accuracy of tasks in which some grading is involved and 

help to yield relevant information for diagnosis and prognosis.  

 

The approaches to computer aided diagnosis of histopathology images involve segmentation of 

the image into relevant structures, feature extraction, classification and quantification. In addition 

to the numerous potential challenges of pathological image analysis, one of the key challenges for 

digital pathology is the limited data sets that can be used for data mining, and the limited efforts 

that pathologist can put to provide annotated datasets and to validate the results. Therefore, there 

is a clear need to develop and deploy sophisticated image processing and machine learning 

methods with limited data sets for automatic cancer cell detection and classification. 
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 Problem Statement 

According to WHO grading criteria, different grades are defined in table 1. 

Table 1. WHO Grades of Meningioma 

Grade Mitoses/10 HPF 5-year Recurrence 

Grade I (benign) <4 20% 

Grade II (atypical) >=4 and <20 40% 

Grade III (anaplastic) >=20  

 

It usually takes hours to manually count the number of mitotic cells in H&E stained slides by a 

well-trained pathologist, and it is really a challenge to differentiate Grade I and Grad II since it is 

critique to find 4~20 mitotic cells among large number of cell nuclei. Recently, the developments 

of imaging technology have led to the availability of high resolution slide scanners which can scan 

and digitize histopathology slides at magnifications of 40X up-to 80X microscope resolution. The 

availability of this technology has led to a new area of quantitative analysis of pathology images. 

Image analysis tools for automated grading of cancer stage have been developed for 

neuroblastoma(Gurcan et al., 2007; Sertel et al., 2009), breast cancer(Karacali & Tozeren, 2007; 

Schnorrenberg, Pattichis, Kyriacou, & Schizas, 1997), follicular lymphoma(Belkacem-Boussaid, 

Pennell, Lozanski, Shana'ah, & Gurcan, 2010; Fauzi et al., 2015), and prostate cancer (Liu, Tian, 

Zhang, & Fei, 2016), along with other types of cancer. The approaches to computer aided diagnosis 

of histopathology images involve segmentation of the image into relevant structures, feature 

extraction, classification and quantification. However, Mitosis detection is very hard. First, a large 

number of cells can be observed in histology images stained with Hematosin & Eosin, among 

which are many dark-purple spots corresponding to cell nuclei, but only a subset of them is in a 

mitotic phase and must be detected. Therefore, the challenging of pathological image analysis lies 
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on automated analysis of targets 1) the large number of cell nuclei among background; and the big 

size of high-resolution digitized pathology images 2) the variability in size, shape, appearance, and 

texture of the individual cell nuclei. 3) numerous cell candidates with similar appearance as the 

candidate cells, which is quite complicate to discern candidate cells amongst similar-looking cells 

with image artifacts. Recently, the development of computerized systems for automated mitosis 

detection has become an active area of research with the goal of developing decision support 

systems to retrieve pathologists work load. Contests have been held to encourage research in this 

topic, including the 2012 International Conference on Pattern Recognition (ICPR12) Mitosis 

Detection Contest (Roux et al., 2013), the Assessment of Mitosis Detection Algorithms 2013 

Challenge (AMIDA13) (Veta et al., 2015) and the 2014 ICPR Mitosis Detection Challenge 

(MITOS-ATYPIA-14) (Roux, 2014). However, all these contest are for breast cancer, and there is 

no public available mitotic datasets for meningioma. Meanwhile the collection and annotation of 

mitotic cells on scanned slides can be very costly and time consuming.  

So the goal of this thesis is to determine if it is feasible to develop sophisticated image processing 

and machine learning methods with limited data sets for automatic mitotic cell detection and 

classification.  

 

Many researches have attempted to solve the problem. Most of approaches fall into one of the 

following categories: 1) efficient augmentation of label data, 2) utilization of weak label or 

unlabeled information, or 3) utilization of existing models/parameters for other tasks.  

The formal definition of the problem is as follows: Given a patient P, and a H&E stained image 

IHE, we will develop a model that takes IHE as input, and output predictions for the mitotic cells MP 
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which should include all possible candidates, therefore the pathologist can decide further based on 

marked candidates.  

 Contributions of This Thesis 

This thesis provides the following contributions: 

1. This work is the first to identify mitotic cells in meningioma using domain inspired features (hand 

crafted) from other cell types which allow for explicit modeling of the kinds of features that 

pathologists look for when identifying mitoses.  

2. Developed and deployed sophisticated image processing and machine learning methods with limited 

data sets for automatic cancer cell detection and classification.  

Compared the hand crafted features and domain agnostic features (deep learning method) for sensitivity of 

mitosis detection.  
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2. BACKGROUND 

 Meningioma 

Meningiomas are the most common adult primary tumor of the central nervous system accounting 

for about 30 percent of all brain tumors(Buerki et al., 2018; N. Wang & Osswald, 2018), with an 

annual incidence of 5/1000,000. Meningiomas arises from the membranes surrounding the brain 

and spinal cord (Figure 1). Meningiomas are usually slow-growing tumors, and most meningiomas 

are grade I benign tumors, but up to 15% are atypical (grade II) and 2% anaplastic (grade III). 

However, some benign meningiomas follow a more aggressive progression with multiple 

recurrences, whereas some atypical meningiomas and malignant meningiomas can have a relative 

benign progression with long progression-free survival and overall survival(Rockhill, Mrugala, & 

Chamberlain, 2007).  

 

Figure 1. Meningioma in the brain 

Actually, there are two important factors that determine the prognosis in meningiomas patients: 

the extent of resection and the tumor’s histological grade. Higher grade meningiomas are more 

likely not to receive a clean resection, and even when they do, they have higher possibility of 
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recurrence. Once a tumor recurs, it is more likely to do so again, ultimately leading to a loss of 

local control and rarely, metastasis. Counterintuitively, it has been realized that high-grade tumor 

does not always correlate with high recurrence/progression, hence, much work is being performed 

and needed, such as advanced imaging to discover other features or phenomena that contribute to 

tumor growth and recurrence.   

 Mitotic Cells and Grading 

The World Health Organization (WHO) classification for meningiomas is based solely on 

histopathological characterizations of mitotic rate, cellular features of atypia, and local invasion. 

About 80% are WHO grade I (also referred to as BM), 17% are WHO grade II (AM), and 2% are 

WHO grade III (anaplastic meningioma/MM)(Ostrom QT, 2017).  And the key component of 

meningioma grad is the mitotic count (MI- mitotic index), which involves quantifying the number 

of cells in the process of dividing (i.e., undergoing mitosis).   

 

Mitosis is the process that cells reproduce to two identical daughter cells, which is the necessary 

step for cancer cell to form tumors and spread through the body. Mitotic figures evolve over a 

continuum spanning five distinct phases during which a cell nucleus undergoes various 

transformations: prophase, prometaphase, metaphase, anaphase and telophase. Each phase is 

associated with a unique shape and texture, during which chromosomes (stained in purple) is the 

main marker for differentiation between different phases. (Figure 2) 
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(a) Prophase is a stage of mitosis in 
which the chromatin condenses (it 
becomes shorter and fatter) into a highly 
ordered structure called a chromosome 
in which the chromatin becomes visible. 
 

(b) Metaphase is a stage of mitosis in the 
eukaryotic cell cycle in which condensed 
& highly coiled chromosomes, carrying 
genetic information, align in the middle of 
the cell before being separated into each of 
the two daughter cells. 

  

(c) Anaphase is the stage of mitosis when 
chromosomes separate in an eukaryotic 
cell. Each chromatid moves to opposite 
poles of the cell, the opposite ends of the 
mitotic spindle, near the micro- tubule 
organizing centers. 
 

(d) Telophase is a stage of mitosis in a 
eukaryotic cell in which the effects of 
prophase and prometaphase events are 
reversed. Two daughter nuclei form in 
the cell. The nuclear envelopes of the 
daughter cells are formed from the 
fragments of the nuclear envelope of the 
parent cell. As the nuclear envelope 
forms around each pair of chromatids, 
the nucleoli reappear. 
 

Figure 2. Different phases of mitosis 
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Specifically, prophase may be detected as nonmitotic cells, while later stages like anaphase and 

telophase of the mitotic cells may appear to split into two dark-blue spots which will count as one. 

There are also some abnormal mitosises with tripode, tetrapod formation, which all add the 

complication of mitosis detection. Meanwhile, scanned images from a single slide may not show 

all mitotic figures on the plane of focus, making their recognition more difficult due to areas being 

out of focus. 

 Tissue Preparation  

The normal tissue preparation, which involves chemically and physically stabilizing the tissue are 

as follows. (Figure 3)(Lei He, 2010) 

 

Figure 3. Histology tissue preparation and image production. 

The first step of the tissue preparation is formalin fixation, it is to immerse the tissue into a fixative 

solution, which is helping to stop cells from breaking down. In general, tissue is fixed for a few 

hours (small biopsies) to about 24 hours (large biopsies). Fixation is critical because poorly fixed 

tissue leads to poor tissue sectioning and poor microscopic morphology. 
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After fixation, the tissue is physically stabilized by one of several methods (freeze drying, 

microwave, chemical) with the end goal of preserving the cellular morphology. Then the tissue is 

embedded in the paraffin. From the paraffin blocks, sections with a thickness of 3-5 um are cut 

using a microtome (a high precision cutting instrument) and mounted on glass slides.  

 

At this point, the structures of interest in the tissue, in most instances the nuclei and cytoplasm, are 

nearly invisible under a light microscope and must be stained to create contrast. The most widely 

used stains for both diagnostic and research histology are hematoxylin and eosin (H&E, Figure 4). 

In spite of the fact that this staining protocol has been in use for around a century, the diagnostic 

and prognostic procedure for all patients still almost always starts by staining the sections with 

H&E. The reason that H&E staining of tissue has persisted for decades is that these stains attach 

to almost every cellular component, providing excellent contrast between cellular constituents. 

Hematoxylin binds to DNA and dyes the nuclei with blue/purple color, and eosin binds to proteins 

and dyes other structures (cytoplasm, stroma, etc.) with pink color.  

  

 

Figure 4. Hematoxylin and eosin (H&E) 
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 Automated Histology Image Analysis 

After the tissue preparation and image production through different imaging technologies, the 

resulting digital histology images are ready for analysis by pathologists or CAD systems. 

Computer assisted disease diagnosis (CAD) has been conducted for various cancer detection and 

grading applications, including prostate, breast, renal cell carcinoma, pediatric tumor 

neuroblastoma and lung cancer grading. A typical CAD system for histology image 

analysis is shown in Fig. 5. This system consists of conventional image processing and 

analysis tools, including preprocessing, image segmentation, feature extraction, feature 

dimension reduction, feature-based classification, and postprocessing. The sequential order of 

these functional modules may be changed or omitted in practical applications.  

 

Figure 5. Computer assisted diagnosis workflow. 

2.4.1 Image Acquisition 

Image acquisition is the prerequisite in image analysis. Traditional method is to use a microscope-

mounted digital camera that captures individual field images. Currently, a whole-slide-image (WSI) 

scanner can scan through an entire tissue slice to obtain a high-resolution whole-slide-image for 

pathology archiving, education, and image analysis. Recently, The U.S. Food and Drug 



25 
 

Administration just permitted marketing of the Philips IntelliSite Pathology Solution (PIPS), the 

first whole slide imaging (WSI) system that allows for review and interpretation of digital surgical 

pathology slides prepared from biopsied tissue, which opened a new era of digital histology. Whole 

slide scanners capture images of tissue sections tile by tile or in a line-scanning fashion, and the 

images are usually in gigabytes.  

 

Scanning can occur at multiple magnifications. Scanning at 20X magnification is usually 

acceptable for standard viewing and interpretation, including routine image analysis of 

hematoxylin-eosin (H&E) and IHC slides. For other applications, such as digitization of in situ 

hybridization slides, images should be acquired at 40X to resolve information that may be 

separated by distances less than about 0.5 µm. And for mitotic detection, the pathologists selected 

10 high power fields (HPF) at 40X magnification. An HPF has a size of 512 x 512 µm2 (an area 

of 0.262 mm2), which is the equivalent of a microscope field diameter of 0.58 mm. 

When performing image analysis of histopathology images, it is of interest to separate the 

histological stains that dye different tissue components. Multiple resolutions are stored for a single 

whole slide image for streamlined image loading. For example, a sample whole slide image 

acquired at 40x by the Aperio Scanscope whole slide scanner is accompanied by the same image 

down sampled at 10x, 2.5x, and 1.25x, as well as a thumbnail image that represents the entire 

tissue fit within a ~1-megapixel frame.  

2.4.2 Image Preprocessing 

Image quality acquired by scanner varies due to many factors including the innate meningioma. 

Therefore, appropriate preprocessing methods could reduce variations to some 

degree(Bhattacharyya, 2011), such as color normalization which is to minimize staining 
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variations(Khan, Rajpoot, Treanor, & Magee, 2014), spatial filtering which is to highlight major 

image structure, denoising which is to reduce image noise, and enhancement which is to optimize 

contrast between objects of interest and background(He, Long, Antani, & Thoma, 2012). Major 

categories of image denoising methods include partial differential equation (PDE)-based 

anisotropic diffusion(Malik, 1990) variational methods(Rudin, Osher, & Fatemi, 1992), robust 

statistics(Black, 1998), and wavelet thresholding(Donoho, 1995). Traditional enhancement 

techniques include adaptive filters(Gonzalez, 2008) and inverse (backward) anisotropic 

diffusions(Gilboa, Sochen, & Zeevi, 2002). Particularly, intensity centering and histogram 

equalization were normally used to normalize a diverse set of pathology images. 

2.4.3 Cell Detection and Segmentation 

Detection and segmentation of cell nuclei as region of interest from the background is the crucial 

and fundamental steps for further cancer identification and classification.  And the measurements 

of the nucleus features, especially mitotic cell features that are distinct among different types of 

cells are crucial for meningioma diagnosis and prognosis. However, nuclei segmentation is a very 

challenging problem, especially for H&E stained slides, due to the variability of tissue appearance 

caused by imperfections in the staining process.   

 

A large variety of approaches for segmentation of nuclei in histopathology images have been 

proposed by researchers. And the most difficult part of nuclei segmentation in H&E stained 

histology images is to detect individual nuclei, especially when they are clustered together and 

overlap on top of each other.  Easy segmentation methods have so far been proposed for H&E 

images including threshold and clustering, and complex algorithm consist of intensity-based 

(Arteta, Lempitsky, Noble, & Zisserman, 2012), water shed based (Ali & Madabhushi, 2012; 
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Cheng & Rajapakse, 2009; Li, Zhou, Ma, & Wong, 2010), voting-based (Parvin et al., 2007), 

mathematical morphology– based (Esmaeilsabzali, Sakaki, Dechev, Burke, & Park, 2012; Yan et 

al., 2013), texture based (Omar S. Al-Kadi, 2017), color-based Laplacian of Gaussian (LoG)-filter 

based(Al-Kofahi, Lassoued, Lee, & Roysam, 2010), gradient-based (Esmaeilsabzali et al., 2012),  

region growth and Markov random field (MRF) (Fatakdawala et al., 2010),  H-minima transform–

based (Jung & Kim, 2010),  Gaussian mixture model (Vink, Van Leeuwen, Van Deurzen, & De 

Haan, 2013),  and deep learning (Xu et al., 2016) approaches. Other popular models consist of 

active contour model and level set model (Hoque et al., 2001; Qi, Xing, Foran, & Yang, 2012; 

Vink et al., 2013). Although these models show efficiency in nuclei detection, it is still very 

challenging to find proper seed points or deciding initial contours. Furthermore, false or miss 

detected nuclei regions will be propagated during segmentation steps which causes inaccurate 

segmentation results(Jia-Mei Chen, 2017).  Approaches to separate clumps of nuclei including 

splitting them along points of high concavity (Fatakdawala et al., 2010; Wienert et al., 2012) or by 

unsupervised Bayesian classification (Jung, Kim, Chae, & Oh, 2010). Usually the choice of 

segmentation methods depends on the intended application and the feasible time and 

computational resources. For example, graph cuts may yield superior nuclear segmentation, 

however, it is really time consuming and power consuming, which limit their use for high 

throughput applications, especially for the whole slide images’ segmentation which contains too 

much nucleus. Therefore, if such high throughput processing is needed, a simple method like 

thresholding followed by morphological operations might be used with cost of less accurate 

segmentation results. Meanwhile, different segmentation methods are used for different cell types, 

such as Bayesian classifier was used for meningioma subtype discrimination (O. S. Al-Kadi, 

2010). Region based approach, which is also named as seeded volume growing is used by M. 
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MuthuRama Krishnan (Muthu Rama Krishnan et al., 2009) for segmenting and classifying 

subepithelial connective tissue (SECT) cells in oral mucosa, and also used for application 

correlated with breast, lung cancer, prostate (A. N. Basavanhally et al., 2010; Y. Y. Wang, Chang, 

Wu, Tsai, & Sun, 2007). Segmentation methods for shape based algorithm such as expectation 

maximization (EM) algorithm can be used for detecting centers of lymphocytes in breast cancer 

images (Fatakdawala et al., 2010); color and texture-based segmentation method is used for colon 

cancer detection (Gunduz-Demir, Kandemir, Tosun, & Sokmensuer, 2010). Since the tissue 

architecture and cell shape, textures are different for different organs, therefore the methods 

applied for one cell type may not work on another. 

2.4.4 Mitosis Detection  

Mitotic cells are hyperchromatic objects due to the nature of DNA duplication, and it loses nuclear 

membrane with “hairy” protrusions around the edges and basophilia instead of eosinophilia in the 

surrounding cytoplasm. However, all these features are more instructive than definitive, and it 

takes a lot of training and practicing for pathologists to become an expert, due to the fact that many 

other objects such as apoptotic and necrotic nuclei may appear similarly, or  

prophase may be detected as nonmitotic cells, while later stages like anaphase and telophase of the 

mitotic cells may appear to split into two dark-blue spots which will count as one, all of these lead 

to variability in measurements and high inter-observer error. By far, the most distinctive feature of 

the mitotic figures is their hyperchromicity, which means that the intensity of the staining of the 

mitotic nucleus is noticeably darker than normal nuclei (illustrated in figure 6a).  
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(a) Mitotic figures (arrow).                                (b) Apoptotic cells (arrow).  

Figure 6. Mitotic figures and apoptotic figures. 

Therefore, these features are often used to perform thresholding, pixel-wise classification or local 

intensity minima detection, followed by morphological operations and/or active contours 

segmentation. However, many other objects such as apoptotic and necrotic nuclei may appear 

similar features, which cause the false detection (illustrated in figure 6b). Moreover, performance 

of mitosis detection largely depends on image quality. However, digital images are acquired at 

single focal plane, which may cause some of the nucleus out of focus and affect the pathologist’s 

judgment (illustrated in Figure 7). Therefore, we anticipate that in the near future, multiple focal 

planes can be acquired and stored in a new image compression technique.  

 

  

Figure 7. Example digital images with different focus offset values(Caglar Senaras, 2018) 
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2.4.5 Feature Extraction and Dimension Reduction 

After segmented the single cells, feature extraction is subsequently performed to encode 

morphological parameters of the nucleus into a set of features, which is important for later 

classification. To mimic the approach of reading a histology images by pathologists, different 

levels of features will be extracted. These features includes pixel level, object level, and spatial 

level features (Gurcan et al., 2009; He et al., 2012). Pixel-level features include color features and 

texture features, which are the least interpretable in terms of pathological knowledge. And for 

mitotic cell detection, color features are usually widely used since one of the remarkable features 

of mitotic nucleus is hyperchromicity (Irshad et al., 2013). Texture features including features like 

Haralick entropy, Gabor filter, power spectrum, co-occurrence matrices, and wavelets. Object-

level features consists size and shape features, which can be used to describe morphological 

characteristics of individual microstructure. Spatial-level features are used to describe the 

relationship of cells with neighbor cells, which are statistical domain-specific information (e.g. 

Voronoi diagrams, Delaunay triangulation, and minimum spanning trees).  To derive information 

from images as more as possible, a huge number of features need to be extracted. However, it is 

not true that more features make the classification more accurate, because first of all, high-

dimensional feature are computationally more consuming, second it may contain irrelevant and 

redundant features which may hinder in achieving high classification accuracy. Therefore, feature 

dimensionality reduction methods such as direct feature selection based on domain-specific 

knowledge or ranking methods such as maximum Relevance Minimum Redundancy (mRMR) 

(Peng, Long, & Ding, 2005) are usually used to identify the most discriminative features (Bouzas, 

Arvanitopoulos, & Tefas, 2015; Mignotte, 2011). Moreover, feature dimensionality reduction 

tools consist linear and nonlinear techniques. Linear techniques such as principal component 

analysis (PCA) (Richard O. Duda, 2000), linear discriminant analysis (LDA) (Richard O. Duda, 
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2000), and multidimensional scaling (MDS) (Venna & Kaski, 2006), which use the Euclidean 

distance between the feature points. As to nonlinear dimensionality reduction methods, it consists 

of spectral clustering, isometric mapping (Isomap) (Tenenbaum, de Silva, & Langford, 2000), 

locally linear embedding (LLE) (Roweis & Saul, 2000), and Laplacian eigenmaps (LEM) (Belkin, 

2003), among which Euclidean relationship among the feature points is not assumed.  

2.4.6 Classification  

For histopathology images, after segmentation and feature extraction, selection of different 

classifiers are important for diagnosing abnormality in image. Usually, specialized features are 

used to train a classification model, which includes supervised and unsupervised methods.  With 

labelled training sets, supervised methods are typically use ‘ground truth’ reference images for 

training, and use trained models to predict the classes of unlabeled data. In contrast, without a set 

of labeled data, unsupervised classification methods are used which do not require pre-labelled 

training sets for their learning but instead rely on certain similarity measures to group data into 

separate homogeneous clusters. Unsupervised classification methods includes K-means, fuzzy c-

means, ISODATA clustering, self-organizing map (Haykin, 1999), and adaptive resonance theory 

(Carpenter & Grossberg, 2003), such as neural network, k-nearest neighborhood algorithm, 

logistic regression method, fuzzy systems etc (Amoli D. Belsare, 2012). A support vector machine 

(SVM) classifier is most commonly used classifier for cancer diagnosis including differentiating 

between cancerous and non-cancerous images (Raza, Parry, Moffitt, Young, & Wang, 2011) and 

distinguishing between different stages of cancer (A. Basavanhally et al., 2013; Raza et al., 2011). 

Better accuracy has been achieved by using supervised Deep Neural Networks(DNN) in breast 

cancer histology images (Ciresan, Giusti, Gambardella, & Schmidhuber, 2013). After training the 

DNN automatically with a set of visual features 
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from the training data, it directly operates on raw RGB data sampled from a square to 

differentiate patches centered on the nucleus between mitotic from non-mitotic. The 

approach that was proposed in (Ciresan et al., 2013) is unique since it uses deep convolutional 

neural networks instead of candidate detection such as segmentation as an initial stage. Instead, it 

performs classification at every pixel location, which achieves excellent results. However, this 

method needs a lot of ground truth data for training, hence it is usually time and power consuming. 

 

As in segmentation by clustering methods, supervised algorithms can be applied to determine and 

grade disease. SVM, for example, which is one of the widely used machine learning tools, finds 

the hyperplane with maximum distance to the nearest training samples. The original linear SVM 

can also be extended to nonlinear feature space with the Kernel Trick, i.e., kernel functions based 

on inner products of two vectors. In feature similarity computation, a number of metrics (Richard 

O. Duda, 2000) can be applied besides the commonly used Euclidean distance, such as 

Mahalanobis distance, Manhattan distance, and Chebyshev distance. 
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3. METHODOLOGY 

 Overall Approach 

This thesis proposes robust automated methods to identify and quantify mitotic cells in 

meningioma whole slides. The approach for dealing with mitotic cells is explained in the Figure 

8. As shown in the figure, biopsy images are acquired, and pathologists provide annotations on 

mitotic cells on few biopsy images manually. We used the whole slide biopsy images and get 

image patches that mimics the pathologist’s procedure. And perform segmentation for identifying 

each single cell in an image patch. Attributes are extracted for each cell region. Since the labeled 

images for meningioma are so little, which is also the major problem of getting annotated images 

for training in real world. we used unsupervised method, and also supervised methods. For 

supervised method, we used labeled breast tumor mitotic cells from public source and used 

attributes from breast tumor for model training since mitotic cells have same features among all 

cell type. And then predicted on meningioma images to calculate the precision, accuracy and F1 

score.  
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Figure 8. Overall Approach 

 Data 

3.2.1 Images 

The data set used in this research are provided by Dr. Dibson D. Gondim in Indiana University 

Health, which consists H&E stained biopsy section images from meningiomas patients. After H&E 

slides are acquired, they have been scanned by Aperio Scanscope by Kyle Christopher McElyea 

at the IU School of Medicine. Aperio scanners generate a semi-proprietary file format called SVS, 

which is a multi-page tiff file that stored a pyramid of smaller tiff files of the original image. To 

read an SVS image, Aperio ImageScope can be used to open the image in Windows operating 

system, while QuPath can be used in Mac operation system. If we open one image in Aperio 

ImageScope, the figure below will be displayed (Figure 9.) 
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Figure 9. SVS image view at Aperio ImageScope.1 

 
For each view, there are five different views (in arrows) can be seen, from left to right are: a 

thumbnail view, a slide label view, a working area view which can be scrolled in and out of regions 

of interest (ROI), a high-level overview which can be used to choose ROI fast, and a low level 

view which shows the zoomed in version around curser. Actually, all different levels of the images 

are compressed in one SVS file, and those levels are illustrated in figure 9. 

 

 

Figure 10. Various layers in the pyramid. 

 

 

 
1 http://www.andrewjanowczyk.com/working-with-aperio-svs-files-in-matlab-introduction/ 
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Matlab natively supports multi-page tiff reading by simply providing index like: 

 

Figure 11. Matlab commands for open svs file 
 
However, our images cannot be opened by typing this simple command since several levels of 

images are not compressed correctly and corresponding information are lack for those levels 

(illustrated in last column at Figure 11.) Fields 1 stands for original image, fields 2 stands for 

thumbnail images, fields 3 stands for level 1 image which is 1:4 ratio to original image, fields 4 

stands for level 2 image which is 1:16 to original image, fields 5 stands for level 5 image which is 

1:32 to original image, fields 6 stands for slide label which is the ID information for the slide, 

fields 7 stands for whole image.   

 

 

Figure 12. Matlab ‘imfinfo’ command for image information. 
 

To solve this problem, we imported OpenSlide Python module into matlab, and set the 

environment to run python command in matlab. The original resolution images consume a large 

amount of memory, i.e. up-to to gigabytes for each image. To optimize the disk and memory usage 

during image processing, high level of images will be used for acquiring 10 HPF like pathologists’ 

routine and then used for following image process.    
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3.2.2 Pathologist Annotation 

For the purpose of this research, Dr. Dibson D. Gondim who is a practicing Anatomic Pathologist 

in Indiana University Health provided us with some cases of annotation of mitotic cells from 

meningiomas patient slides. And the annotations are divided into two categories, one is definitely 

mitosis, and the other is definitely not mitosis. For definitely mitosis, there are total 10 cases, while 

for definitely not mitosis, there are 5 cases (Figure 12). 

                  
(a)                                                        (b) 

Figure 13. (a) Definitely mitosis cell (b) Definitely not mitosis cell 
 
Since we lack availability of large volumes of labelled data (Ground Truth) which requires Dr. 

Dibson a lot of time and effort for the annotations. We also refer the MITOS datasets provided for 

the MITOS-ATYPIA contest 2012 and 2014. And the beauty of MITOS datasets are all the 

annotations come from the opinions of two pathologists (or three in case of disagreement), 

providing to contestants some additional clues about objects that are clearly mitosis (agreement 

between pathologists) and those that are not so easy to identify (disagreement between 

pathologists). In each slide, the pathologists selected 10 high power fields (HPF) at 40X 

magnification. An HPF has a size of 512 x 512 m2 (that is an area of 0.262 mm2), which is the 

equivalent of a microscope field diameter of 0.58 mm, and equivalent of 2084 x 2084 pixels.  These 

50 HPFs contain more than 500 mitosis in total, with  686659 non-mitotic cells in total. As there 

are several possible shapes for mitosis, it is necessary to have a large dataset to be able to cover all 

the cases.  
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 Image Preprocessing 

This section describes the technical process used to prepocess the images, which prepare for the 

segmentation.  

1. Obtain Image – Patients tumor samples are obtained and fixed onto slides, and then stained 

with a hematoxylineosin (H&E) stain. All slides are scanned and stored as RGB images with 

8 bits per color channel.  

2. Read highest level of raw image – Used OpenSlides module to open images in matlab for level 

5 image which is 1:32 to original image.  And exported saved images into matlab.  

3. For each raw image, convert RGB image to gray scale by using the following formula to create : 

0.2989 * R + 0.5870 * G + 0.1140 * B (Pratt, 2001). Get the mask image which excludes the 

white region for later process, which is to distinguish between tissue sample and white 

background. The filtering process is to get the foreground with pixel bigger than 200.  

4. Create blocks for 10 high power fields selection – Based on the mask image that created from 

last process, small image patches with 2084 x 2084 pixels in raw images will be created if 

more than 90% of the content are not background (white region), which equals to 65 x 65 pixel 

in level 5 images (1:32 to original image). Meanwhile, the location of the image patches are 

created for later allocation.  

5. Get rid of the image label marks – Due to the whole image features, the labels created by blue 

markers are also included in the image patches for the high pixel value. Moreover,  those 

markers usually appear at the corner. Therefore to avoid being selected as real tissue images 

for later process, four corner image patches plus one more column and one more row and their 

connected images which are recognized as real images will be excluded for later random 

selection. 
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Figure 14. Image preprocess steps for whole slide images: 

Step1:Whole slide image in lowest resolution(1:32); Step2: Get foreground images by filtering out 

the background part; Step3: Generate image patches in low resolution for randomly pick 10 areas.  

 

6. Randomly pick 10 rectangle blocks that generated from last step and projected back to the 

original images to get 2084 x 2084 image patches for later cell segmentation since it is the size 

for 1 HPF under 40x magnification. 

7. For each image, first normalize the image with the ref_image with function imhistmatch,  so 

that each image will be normalized to the similar histogram, which has a better distinguish 

between foreground and background. See figure below.  
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Figure 15. Before normalization and after normalization 

 Cell Segmentation 

This step is to segment the cell nuclei from H&E stained backgrounds for feature extractions and 

deep learning.  

1. First red channel is extracted from R,G,B channel (Figure 16), and x 1.3 is used for 

adjustment to make the contrast better for segmentation (Figure 17) 
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Figure 16. RGB channel of raw images 

 
Figure 17. Green channel before and after adjustment 
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2. Anisotropic diffusion filter. For this filter method (Malik, 1990) it removes noise from images 

without blurring edges which can greatly preserve the edge information of nuclei. A function called 

anisodiff2D from mathworks is used, in this function: 

A 2D network structure of 8 neighboring nodes is considered for diffusion conduction. 

(function: diff_im = anisodiff2D(IM, NUM_ITER, DELTA_T, KAPPA, OPTION) 

ARGUMENT DESCRIPTION: 

IM - gray scale image (MxN). 

NUM_ITER - number of iterations. 

DELTA_T - integration constant (0 <= delta_t <= 1/7). 

KAPPA - gradient modulus threshold that controls the conduction. 

OPTION - conduction coefficient functions proposed by Perona & Malik: 

Since Κappa controls the strength of edges, and with Kappa increases, the diffusion will 

become linear. Therefore, after getting the average gradient magnitude of the 

image, and experimenting different K that is lower than the threshold, I found 30 is a 

good number for my image. Also with diffusion time increases, the background become 

clearer. After experimenting different iteration numbers, 20 was chosen (Figure below) 

 

Figure 18. Before and after anisotropic diffusion 



43 
 

3. Use adaptive otsu threshold method to segment cells. The block size of the 

window depends on the row and column of the image, therefore for different images, the 

size will be different. Meanwhile, overlapping block (‘border’) also tried to see whether it 

will give a better result for covering the overlaps, however, it did not work as good as 

blockproc function without overlapping. Time is recorded for each different block size to 

monitor the efficiency. Binary images of the nuclei were obtained after this step, shown 

in yellow.  

   

Figure 19. Before and after cell segmentation 

4. Remove small region areas: After obtaining the binary images, small region areas are measured 

by using image tool, and 80 pixels are used as a threshold for getting rid of these small regions, 

since they are usually come from the background (Image below) 

  

Figure 20. Before and after small region removal, and the display of removed region on raw 
image 

 

5. Get the boundary of each cell by using “bwboundaries” function obtained at previous step. (See 

figure below). The red channel will not include the red part as arrow shows, which is not the cell.  
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Figure 21. Cell boundaries by using red channel 

6. Cell cluster splitting.  

To split the cell cluster, the distance transform of the complement of the binary image is first 

computed using “bwdist”, and then compute the watershed transform and display the resulting 

label matrix as an RGB image (Fig 22). Most of the cells are splitted (right square box) while there 

are still some cells are not split correctly (left square box), however those sub-cluster cells will be 

analyzed differently in the later procedure. 

 

Distance Map                After Split 

 

Figure 22. Cells before and after splitting 
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7. Feature extraction 

7.1 After single nuclei region obtained, their morphological features can be extracted for 

differentiating between different types of nucleus. Those morphological features 

including: 

1) Area – total number of pixels in the region 

2) MajorAxisLength -- The length (in pixels) of the major axis of the ellipse that has the 

same normalized second central moments as the region 

3) MinorAxisLength -- The length (in pixels) of the minor axis of the ellipse that has the 

same normalized second central moments as the region 

4) Perimeter – The distance (in pixels) around the boundary of the region 

5) Eccentricity --The eccentricity of the ellipse that has the same second-moments as the 

region, the eccentricity is the ratio of the distance between the foci of the 

ellipse and its major axis length. The value is between 0 and 1. 

6) Extent -- The ratio of pixels in the region to pixels in the total bounding box 

7) EquivDiameter -- The diameter of a circle with the same area as the region 

Since texture is an import character of differentiating cells between different types, 

texture statistics are also computed for the gray scale image of a given region. 

8) Solidity -- Proportion of the pixels in the convex hull that are also in the region, returned 

as a scalar. Computed as Area/ConvexArea. 

7.2 Basic texture statistics including: 

1) Mean Intensity – The average pixel intensity 

2) Maximum intensity—The maximum pixel intensiy 

3) Minimum intensity – The minimum pixel intensiy 
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4) Standard Deviation – The standard deviation of the intensity in the region, computed as 

distance Map After Split the square root of the variance, 𝜎² 

5) Smoothness (R)– It equals 0 for images of constant intensity and 1 for large value of 

              σ 2(z), computed as R = 1 - #
#$%

 , where s = &²(()
(*+#)²

 , L is the number of image intensity level. 

6) Third moment – Central sample moment of the region is calculated for n=3, it is 

computed as Mk= E[(x-μ)k], where E[x] is expected value of x. 

7) Uniformity - Measure the relative smoothness or coarseness of a region, computed as 

U= Σp2, where p is the histogram of the image. 

8) Entropy -- A statistical measure of randomness that can be used to characterize the 

texture of the input image. Computed as e = -Σp * log2p, where p is histogram of the image 

9) Skewness -- Skewness is a measure of the asymmetry of the data around the sample mean. 

If skewness is negative, the data spreads out more to the left of the mean than to the right. 

If skewness is positive, the data spreads out more to the right. The skewness of the normal 

distribution (or any perfectly symmetric distribution) is zero. The skewness of a 

distribution is defined as 

 s = ,(-+.)³
&³

 , where µ is the mean of x, 𝜎 is the standard deviation of x, and E(t) 

represents the expected value of the quantity t. The skewness function computes a sample 

version of this population value. 

10) Kurtosis -- Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the 

normal distribution is 3. Distributions that are more outlier-prone than the normal 

distribution have kurtosis greater than 3; distributions that are less outlier-prone have 

kurtosis less than 3. Some definitions of kurtosis subtract 3 from the computed value, so 
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that the normal distribution has kurtosis of 0. The kurtosis function does not use this 

convention. 

The kurtosis of a distribution is defined as : 

K = ,(-+.)0
&0

, where µ is the mean of x, σ is the standard deviation of x, and E(t) 

represents the expected value of the quantity t. The kurtosis function computes a sample 

version of this population value. 

8. Feature Standardization 

All extracted features are normalized by standardization method to zero mean and unit 

variance, so that they’ll have the properties of a standard normal distribution with 

μ=0 and σ=1. It defined as: 

 z = -+	.
&

  

Without feature standardization, features can be on different scales, certain weights may update 

faster than others during since the feature values xj play a role in the weight updates 

 

so that Wj := wj + ∆𝑤𝑗 , where 𝜂 is the learning rate, t the target class label, and o the actual 

output. All the clustering algorithems that use Euclidean distance measures matters with or 

without feature scaling – in fact, tree-based classifier are probably the only classifiers 

where feature scaling doesn’t make a difference. 

9. Feature Selection/Ranking 

Use correlation method to check any of the texture features is correlated or not, if true, then 

only one of them will be used. And Attribute Selection- InfoGainAttributeEval  from Weka 
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is used for ranking the features. It is Evaluates the worth of an attribute by measuring the 

information gain with respect to the class. 

InfoGain(Class,Attribute) = H(Class) - H(Class | Attribute). 

 K-Means Clustering 

Since we have very few labeled data, probably 10 samples for positive, and 1700 samples for 

negative, it will be very hard to do supervise methods. Therefore, the first method I tried is the 

unsupervised method k-means. Typically, unsupervised algorithms make inferences from datasets 

using only input vectors without referring to known, or labelled, outcomes. Typically, 

unsupervised algorithms make inferences from datasets using only input vectors without referring 

to known, or labelled, outcomes. A cluster refers to a collection of data points aggregated together 

because of certain similarities. And we know that my dataset need to be seperated into two clusters, 

one is mitotic cell cluster, another is non-mitotic cell cluster, but we don’t know whether the feature 

we extracted will be enough to separate the cells into two clusters. Therefore, we used the elbow 

method to determine the optimal number of clusters for k-means first (Demidenko, 2018).  

The idea of the elbow method is to run k-means clustering on the dataset for a range of values of 

k (say, k from 1 to 10 in the examples above), and for each value of k calculate the sum of squared 

errors (SSE). Like this: 
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Then, plot a line chart of the SSE for each value of k. If the line chart looks like an arm, then the 

"elbow" on the arm is the value of k that is the best.  

The idea is that we want a small SSE, but that the SSE tends to decrease toward 0 as we increase 

k (the SSE is 0 when k is equal to the number of data points in the dataset, because then each data 

point is its own cluster, and there is no error between it and the center of its cluster). So our goal 

is to choose a small value of k that still has a low SSE, and the elbow usually represents where we 

start to have diminishing returns by increasing k. 

So the elbow method for my dataset looks like following:  
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Figure 23. Elbow method for k-means 

So based on the elbow method, k = 5 is chosen for k-means methods.  

 Classification 

Mitoses are characteristic of malignant cells. The number of mitoses increases, atypical mitosis 

forms with defects in the mitotic spindle appear, which results in triple or quadruple asters and 

dissymmetrical structures and atypical forms of chromosomes. Morphologically, the cancerous 

cell is characterized by a large nucleus, having an irregular size and shape, the nucleoli are 

prominent, the cytoplasm is scarce and intensely colored or, on the contrary, is pale (Baba AI, 

2007). Therefore, this morphological features are the same among all kinds of cells.  Although we 

don’t have enough labeled meningioma data for feature extraction to do supervised learning, we 

found labeled mitotic cells in breast cancer histological images online. So we will extract positive 
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and negative features from labeled breast tumor cells, and use different classification methods to 

predict on brain tumor cells.  

3.6.1 C4.5 Pruned Decision Tree 

C4.5, developed by Ross Quinlan (Quinlan, 1993), is a classification algorithm to generate a 

decision tree. C4.5 is an extension of ID3 algorithm which also developed by Quinlan earlier. It 

became very popular after ranking #1 in the Top 10 Algorithms in Data Mining pre-eminent paper 

published by Springer LNCS in 2008 (Wu, 2008). Furthermore, in 2011, authors of the Weka 

machine learning software commented the C4.5 algorithm as "a landmark decision tree program 

that is probably the machine learning workhorse most widely used in practice to date" (Ian H. 

Witten, 2011). In Weka data mining tool, J48 is an open source Java implementation of the C4.5 

algorithm. 

 

In the similar way as ID3, C4.5 uses the concept of information entropy to build decision trees 

with a set of training data. The training data contains a set of already classified samples. Each 

sample consists of a n-dimensional vector, which represents features of the sample and class label. 

At each node of the decision tree, C4.5 chooses the attribute with the highest normalized 

information gain to split.  

 

This algorithm includes several base cases. 

[1], If all the samples belong to the same class. The algorithm simply creates one leaf node with 

class label in the decision. 

[2], If none of the features provide any information gain. C4.5 creates a node higher up the tree 

with the expected value of the class. 
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[3], In case of previously-unseen class, C4.5 creates a decision node higher up the tree using the 

expected value. 

 

The pseudocode for building decision trees is: (Kotsiantis, 2007) 

1, Check all the base cases. 

2, For each attribute a, find the normalized information gain ratio from splitting on a. 

3, Let a_best be the attribute with the highest normalized information gain. 

4, Create a decision node that splits on a_best. 

5, Recur on the sublists obtained by splitting on a_best, and add those nodes as children of node. 

 

All the equations of C4.5 algorithm are as follow: calculate Entropy Info(S) to identify the class 

in the training set S, 

 

Where |s| is the number of cases in the training set, Ci is a class, I = 1,2,…k, k is the number of 

classes, freq(Ci, S) is the number of cases in Ci.  

 

3.6.2 SMO: Sequential Minimal Optimization 

Sequential minimal optimization (SMO) was published by John Platt at Microsoft Research in 

1998 (Platt, 1998). SMO is an algorithm for solving the quadratic programming (QP) problem that 

exists in the training step of support-vector machines (SVM). Before the publication of the SMO 

algorithm in 1998, previously available algorithm for SVM were very complicated and required 



53 
 

expensive third-party QP solvers (Rifkin, 2002). SMO is implemented by the famous LIBSVM 

tool (Chang & Lin, 2011; Zanni, 2006). 

Algorithm SMO is an iterative algorithm for solving the binary optimization problem. SMO breaks 

the whole problem into series of smallest possible sub-problems. The sub-problems are then solved 

analytically.  

 

Since the linear equality constraint involving the Lagrange multipliers ai, the smallest possible 

problem contains two such multipliers. Therefore, for any two multipliers a1 and a2, the constraints 

are reduced to: 0 <= a1, a2 <= C,  y1a1 + y2a2 = k, 

the reduced problem can be solved analytically: simply needs to find the minimum of a 1D 

quadratic function. k is the negative of the sum over the rest of terms in the equality constraint. 

The algorithm proceeds as follows: 

Repeat steps 1 and 2 until convergence. 

Step 1: For the optimization problem, find a Lagrange multiplier which violates the 

Karush–Kuhn–Tucker (KKT) conditions. 

Step 2: Pick a second multiplier a2 and optimize the pair (a1, a2). 

The problem will be solved after all the Lagrange multipliers satisfy the KKT conditions. Although 

convergence is guaranteed for this algorithm, heuristics are used to pick up the pair of multipliers 

to accelerate the speed of convergence. This is extremely useful for large data sets because there 

are n(n-1)/2 possible ways for ai and aj. 
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3.6.3 JRip: Rules Classifieres  

JRip was developed by William W. Cohen in 1995 as an optimized version of IREP. JRip 

implements a propositional rule learner Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER).  

 

It is based in association rules with reduced error pruning (REP), which is a common and effective 

technique among decision tree algorithms. In REP, the training data is split into growing set and 

pruning set. At first, an initial rule set is formed for the growing set, by using certain heuristic 

method. This overlarge rule set is then repeatedly simplified by applying one of a set of pruning 

operators. Typical pruning operators would be used to delete any single condition or rule. At each 

stage of simplification, the pruning operator that yields the greatest reduction of error on the 

pruning set is chosen. Simplification will end when applying any pruning operator would increase 

error on the pruning set. 

3.6.4 Libsvm Polynomial 

Support-vector machines (Chang & Lin, 2011) are supervised learning models for classification 

and regression analysis. Given a set of training examples, which are belong to one of two categories, 

an SVM training algorithm builds a model that assigns new examples to one of the two categories, 

making it a binary linear classifier.  

 

An SVM model represents the examples as points in the space, which is mapped so that the 

examples of the two categories are divided by a gap as wide as possible. Then new examples are 

mapped into that same space and its category will be predicted by the side of the gap it falls to. 
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Besides performing linear classification, SVMs can perform non-linear classifications using kernel 

trick, implicitly mapping the features to higher dimensional spaces. 

The polynomial kernel is commonly used in support vector machines (SVMs). Intuitively, 

thwpolynomial kernel looks not only at the given features of the samples for determining their 

similarity, but also combinations of the features. In the regression analysis, the combinations are 

known as interaction features. The implicit feature space of a polynomial kernel is equivalent to 

that of polynomial regression. 

 Deep Learning 

3.7.1 Data Pre-processing and Data Augmentation 

Since we do not have enough labeling data, we will use augmentation methods to augment the data 

numbers through random transformations such as rotate and flip, so that we can feed more training 

data for better model accuracy, meanwhile it can help to prevent overfitting the model therefore to 

make the model more generic. keras.preprocessing.image.ImageDataGenerator class is used to a) 

instantiate generators of augmented image batches via .flow(data, 

labels) or .flow_from_directory(directory). b) configure random transformations and 

normalization operations on image data during training.  

For augmentation methods are as follows: 

a. Rotate images in degrees (0-180). 

b. Width_shift and height_shift to translate pictures vertically or horizontally 

c. Rescale the image with 1/255 factor, so all images will be rescaled to rang 0-1 instead of 

0-255, which is too high for models to process.  
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d. shear_range to randomly apply shear transformations 

e. zoom_range to randomly zoom the pictures 

f. horizontal_flip to randomly flip half of the images horizontally 

g. fill_model to fill in newly created pixels which appears after a rotation or a width/height 

shift.  

All cells are segmented according to previously method, and each boundingbox around cell is 

cropped with normalized histogram, and then scaled by normalized with 255 for later steps. And 

there are 4576 cell images are for training, among them there are 220 are positive; While for 

validation, there are 3670 cell images are for validation, and 216 are positives.  

3.7.2 Transfer Learning with Breast Cancer Training Data 

I am using the VGG16 architecture, which is pre-trained on the ImageNet dataset. Because the 

ImageNet dataset contains so many classes, so the pretrained model may already have learned 

features that are relevant to my classification problem. Here only convolutional part of the model 

up to the fully connected layers will be initiated. And then the weights will be used to train the 

new model by my training and validation data, and recording the output in two NumPy arrays 

(class 0, class 1), which is the the last activation maps before the fully-connected layers in VGG16 

model. Following image is the VGG16 architecture 
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Figure 24. VGG16 architecture 

For computational efficacy, first I stored the features offline rather than adding the fully-connected 

model directly on top of a frozen convolutional base instead of running the whole thing. Then I 

load saved data and trained the small fully-connected model with 50 epoch. For each epoch, I 

checkpoint the best validation accuracy, and saved the weight for later prediction. Before it trained 

on fully-connected model, the weights looks like following: 
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Figure 25. Model overview before trained on fully-connected layer 

 
In order to prevent overfitting, I chose to fine-tune the last convolutional block instead of the entire, 

since it will have a strong tendency to overfit with the entire network which have a very large 
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entropic capacity. The features learned by low-level convolutional blocks are more general, less 

abstract than those found higher-up, so it is sensible to keep the first few blocks fixed (more general 

features) and only fine-tune the last one (more specialized features). I used slow learning rate to 

fine tune with the SGD optimizer, instead of an adaptative learning rate optimizer such as 

RMSProp, which is to make sure the magnitude of the updates stays very small. The image below 

shows the fine tuning result after each epoch. And the epoch 45 gets to validation accuracy of 0.98 

as shown below.  

                 

Figure 26. Fine tune results after each step 

 

Figure 27. Epoch 45 - validation accuracy: 0.9812 
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4. EXPERIMENTS AND RESULTS 

All predictions will be made on the two images that have doctor’s labels. And the precision, recall 

and F1 score will be calculated.   

 K-Means Results 

To calculate how much number for cluster k is a good number, we used elbow method: which is 

to calculate the sum of the squared distance within each group and use k = 5 for clustering.  

4.1.1 Negative Cluster 

The following images show the four classes that are not including the positive cells. Green 

boundaries are the predicted clusters 

 

Figure 28. Negative clusters from k-means method.  
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4.1.2  Positive Clusters   

Following is the positive cluster that includes the mitotic cells. And for positive clusters the 

precision is 0.055 since a lot of false positive. And the Recall is 1 since it includes all true positive. 

And the F1 = 0.104. Yellow bounding box is ground truth.   

  

Figure 29. Cluster for positive candidates (red boundaries).  
 
 
 

For positive clusters on img2, the precision is 0.018, and the recall is 1, while the F1 score is 

0.035. Red boundaries are the positive candidates, yellow bounding box is ground truth. 
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Figure 30. Candidate Clusters on Img2.  
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4.1.3 K-means on Breast Cancer Slides 

The following image also shows the k-means cluster on breast cancer. Yellow bounding box is 

ground truth. 

 

 
Figure 31. K-means method on breast cancer slides. Classification Results 
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4.1.4 J48 Results 

The following image is the C4.5 prune decision tree result, the yellow circles are ground truth. For 

image1, positive precison = 0.06, recall =1, F1 = 0.11. Red box are positive class, yellow circles 

are ground truth. 

 
Figure 32. Classification results with J48 method on img1.  
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4.1.5 SMO Result 

 The following image is SMO result on image1, for positive cluster, the precision = 0.125, recall 

= 1, F1 = 0.22. Yellow bounding box of positive class, red circles are ground truth. 

 

               
Figure 33. SMO result on image1. 
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4.1.6 JRip Result 

The following image is the result for image1, for positive class, the precision = 0.08, recall = 1, F1 

= 0.144. 

 
Figure 34. JRip result on image1, red circles are ground truth.  
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4.1.7 Libsvm Results 

 
Figure 35. Libsvm Result 
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 Deep Learning Results 

With best validation accuracy weights from brain cancer, the model is used on predicting brain 

tumor image1 and image2. Green box is the result with possibility between [0.3,0.5], while yellow 

box stands for possibility bigger than 0.5. The positive precision is 0.83, while recall is 0.71, and 

F1 score is 0.77.  

 
Figure 36. Prediction results on image1 
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Figure 37. Prediction results on image2  
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5. CONCLUSION 

This thesis set out to determine the feasibility of developing automated computer models for 

classify specific cell types without enough labeled data. We want to determine if it is feasible to 

take the whole slide image of H&E stained image as an input, and mimic the steps of pathologist 

procedure to aid the cancer staging. We also want to determine if it is feasible to use public data 

to transfer learn the features, and use the model to help the diagnosis the cancer cells   

 Whole Slide Image Process 

And for mitotic detection, the pathologists selected 10 high power fields (HPF) at 40X 

magnification and count the cancerous cells to determine the stage of the cancer. Although the 

whole slide images are used, not all the cells are analyzed. Therefore, by using this domain 

knowledge, we invented the automated high power fields detection methods to get 10 cell patches 

that are the similar size of the high power filed under 40X. And by using the lowest resolution 

image of the whole slide, it is super-fast to crop the cell patches under highest resolution, which 

highly increase the computation speed and reduce the computation power by mimicking the real 

procedure of pathologist techniques.  

 Transfer Learning  

The main problem of supervised method in biomedical data is the labels, which require a lot of 

time and efforts from doctors. Meanwhile it is very hard to find public training data with specific 

cell types. Therefore, it is urgent to find a way to use public data which has labels, and use those 

data to aid the diagnosis of specific cell types. Our result shows that by using the public available 

breast cancer cells, we retrained the model and predict on brain tumor slides, which gives a very 
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promising result.  So, by using this model, we are able to predict the meningioma whole slide 

images with pretty good F1 score. Therefore, we can use this model to help pathologist to detect 

cancer cell candidate, which greatly reduce their efforts in finding mitotic cells in lower stage 

tumors.  Also, with the whole process, we will be able to collect more labeled data, and reinforce 

the model to make it more accurate during the whole process.  
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