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ABSTRACT

Tu, Zhan. Ph.D., Purdue University, December 2019. Onboard Sensing, Flight Con-
trol, and Navigation of A Dual-motor Hummingbird-scale Flapping Wing Robot.
Major Professor: Xinyan, Deng, School of Mechanical Engineering.

Insects and hummingbirds not only can perform long-term stationary hovering

but also are capable of acrobatic maneuvers. At their body scale, such extraordinary

flight performance remains unmatched by state-of-the-art conventional man-made

aerial vehicles with fixed or rotary wings. Insects’ and hummingbirds’ near maximal

performance come from their highly intricate and powerful wing-thorax actuation sys-

tems, sophisticated sensory system, and precise neuromotor control. Flapping Wing

Micro Air Vehicles (FWMAVs) with bio-inspired flapping flight mechanisms hold

great promise in matching the performance gap of their natural counterparts. Devel-

oping such autonomous flapping-wing vehicles to achieve animal-like flight, however,

is challenging. The difficulties are mainly from the high power density requirements

under the stringent constraints of scale, weight, and power, severe system oscilla-

tions induced by high-frequency wing motion, high nonlinearity of the system, and

lack of miniature navigation sensors, which impede actuation system design, onboard

sensing, flight control, and autonomous navigation.

To address these open issues, in this thesis, we first introduce systematic modeling

of a dual-motor hummingbird-scale flapping wing robot. Based upon it, we then

present studies of the onboard sensor fusion, flight control, and navigation method.

By taking the key inspiration from its natural counterparts, the proposed hum-

mingbird robot has a pair of independently controlled wings. Each wing is directly

actuated by a dc motor. Motors undergo reciprocating motion. Such a design is a

severely underactuated system, namely, it relies on only two actuators (one per wing)

to control full six degrees of freedom body motion. As a bio-inspired design, it also
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requires the vehicle close to its natural counterparts’ size and weight meanwhile pro-

vide sufficient lift and control effort for autonomy. Due to stringent payload limitation

from severe underactuation and power efficiency challenges caused by motor recipro-

cating motion, the design and integration of such a system is a challenging task. In

this thesis, we present the detailed modeling, optimization, and system integration

of onboard power, actuation, sensing, and flight control to address these unique chal-

lenges. As a result, we successfully prototyped such dual-motor powered hummingbird

robot, either with power tethers or fully untethered. The tethered platform is used

for designing onboard sensing, control, and navigation algorithms. Untethered design

tackles system optimization and integration challenges. Both tethered/untethered

versions demonstrate sustained stable flight.

For onboard attitude sensing, a real-time sensor fusion algorithm is proposed with

model-based adaptive compensation for both sensor reading drift and wing motion in-

duced severe system vibration. With accurate and robust sensing results, a nonlinear

robust control law is designed to stabilize the system during flight. Stable hovering

and waypoint tracking flight were experimentally conducted to demonstrate the con-

trol performance. In order to achieve natural flyers’ acrobatic maneuverability, we

propose a hybrid control scheme by combining a model-based robust controller with a

model-free reinforcement learning maneuver policy to perform aggressive maneuvers.

The model-based control is responsible for stabilizing the robot in nominal flight sce-

narios. The reinforcement learning policy pushes the flight envelope to pilot fierce

maneuvers. To demonstrate the effectiveness of the proposed control method, we

experimentally show animal-like tight flip maneuver on the proposed hummingbird

robot, which is actuated by only two DC motors. These successful results show the

promise of such a hybrid control design on severely underactuated systems to achieve

high-performance flight.

In order to navigate confined space while matching the design constraints of such

a small robot, we propose to use its wings in dual functions - combining sensing and

actuation in one element, which is inspired by animals’ multifunctional flapping wings.
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Based on the interpretation of the motor current feedback which directly indicates

wing load changes, the onboard somatosensory-like feedback has been achieved on our

hummingbird robot. For navigation purposes, such a method can sense the presence

of environmental changes, including grounds, walls, stairs, and obstacles, without the

need for any other sensory cues. As long as the robot can fly, it can sense surroundings.

To demonstrate this capability, three challenging tasks have been conducted onto

the proposed hummingbird robot: terrain following, wall detection and bypass, and

navigating a confined corridor.

Finally, we integrate the proposed methods into the untethered platform, which

enables stable untethered flight of such a design in both indoor and outdoor tests. To

the best of our knowledge, this result presents the first bio-inspired FWMAV powered

by only two actuators and capable of performing sustained stable flight in both indoor

and outdoor environment. It is also the first untethered flight of an at-scale tailless

hummingbird robot with independently controlled wings, a key inspiration from its

natural counterparts.
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1. INTRODUCTION

1.1 Motivation

Through millions of years of adaptation, insects and hummingbirds have evolved

with extraordinary flight capabilities. Powered by flapping wings, they can hover,

make sharp turns, fly backward and sideways, land upside-down, fly dexterously in

courtship, perform rapid evasive maneuvers when facing threats, and achieve nearly

drift-free body flips while navigating confined, cluttered spaces [1–5]. To date, much of

their extraordinary flight performances remain unchallenged by small scale man-made

flying vehicles. In fact, downsizing to insect or hummingbird sizes, flight performance

of the most pervasive aircraft, i.e., fixed and rotary winged vehicle, drops significantly,

if not impossible. Small-sized wings and low Reynolds numbers (the ratio of inertial

forces to viscous forces within a fluid) yield inadequate aerodynamic performance of

those conventional aerodynamic surface designs. In contrast, by taking advantages of

the unique unsteady aerodynamic mechanism of flapping flight, including clap-and-

fling, rotational circulation, wake-capture, delayed stall (leading edge vortex), and

added-mass effects, insects and hummingbirds are capable of generating sufficient lift

and control efforts under very tight size and weight constraints [6–11]. Fascinated by

their superior flying skills and compact sizes, researchers and roboticists attempted

to imitate their aerodynamic performance and develop Flapping Wing Micro Aerial

Vehicles (FWMAVs), which is promising for acrobatic fly of man-made MAVs in

tight spaces. Moreover, since the flapping wing vehicles work favorably in compact

sizes, they are expected to demonstrate excellent environmental adaptability in the

cluttered spaces.

In flying animals, the highly intricate and powerful wing-thorax actuation system,

the sophisticated sensory system, and the precise neuromotor control are all criti-
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cal to their extraordinary flight abilities, from basic reactive control to autonomous

navigation [2, 3, 12–14]. Over the past decades, extensive studies have been con-

ducted on these sophisticated mechanisms. Besides the ever-increasing understand-

ing of the aerodynamic mechanism and unique lift generation principles of flapping

flight [6–10,15,16], there are many fruitful results in the design, sensing, control, and

navigation of the bio-inspired FWMAVs as well. Dating back from the UC Berkeley

MFI control [17,18], the development of FWMAVs has witnessed tremendous progress

in recent years. Today, several designs have been proposed and prototyped from

the inspiration of various nature’s flyers, including insect-inspired vehicles [19–25],

the hummingbird-inspired vehicles [26–33], as well as some well-designed platforms

that are actuated by flapping wings with adopted different forms from those of ani-

mals [34, 35]. Developing a powerful, miniaturized, multifunctional onboard system

for FWMAVs is still a focus of ongoing research, with the main challenge coming

from the stringent design constraints of scale, weight, and power (SWaP) require-

ments. [26, 29, 36–38]. Flapping flight dynamics is also highly nonlinear with rapidly

varying, unsteady aerodynamics. It varies significantly under different flight regimes,

most of which remain poorly understood except hovering. The variation in dynamics

poses challenges to the onboard sensing and control [26, 30–33, 39–41]. Furthermore,

relying on limited onboard sensors and computational resources to achieve animal-

like environmental adaptability and navigation remains an open issue on bio-inspired

flapping wing platforms.

1.2 Related Work and Research Challenges

Developing onboard sensing, control, and navigation on FWMAVs to achieve au-

tonomous flight remains significantly challenging, and is mainly due to the stringent

design constraints, limited computing resources, lack of miniature sensors, unmea-

surable system uncertainties, unsteady aerodynamics, and highly nonlinear dynamics

of the system. Trade-offs among those issues must be carefully considered. In this
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section, related and previous works are reviewed in detail, and the remaining open

challenges are discussed.

1.2.1 Actuation

For a flapping wing platform, the wing actuation strategy dominates the design

and control principle of the overall system. As shown in Figure 1.1, according to the

different actuation approaches, these state-of-the-art platforms can be divided into

two main groups: those using crank-rocker four-bar (or its equivalent) mechanisms

to convert unidirectional motor rotation to the reciprocal flapping motion of the

wings [26, 30–32], and those employing direct drive of each wing by piezo or motor

in reciprocal motion through high-frequency input power modulation [42–44]. In

addition, as a notable hybrid design (Figure 1.1.(f)), such an FWMAV is based on

two separate motors and linkages to drive its left and right wing pairs, while using

additional actuators and translational mechanisms to generate control torques [35].

For flight control, the first group needs to rely on additional servomechanisms for

stroke plane modulation or wing shape deformation, and employ a helicopter-like con-

trol instead of decoupled wing controls similar to animals’ flight control mechanism.

Based on this design principle, AeroVironment’s Nanohummingbird [26] achieved the

first hover flight of FWMAVs with remote control in 2012. Subsequently, other groups

have successfully reproduced similar results following this design principle [30–32]. In

such designs, as shown in Figure 1.2, due to their size, weight, and power density

needs, they use DC motor as the main actuator to drive the wings. On these plat-

forms, motor rotates continuously at high speed, thus gaining more motor efficiency.

Moreover, it significantly simplifies onboard driver integration, i.e., allowing to di-

rectly implement off-the-shelf driver modules and designs, such as various brands

of Electronic Speed Control (ESC) products. The typical actuation issues, such as

power regulation, thermal effects, torque ripples, and motor cogging force, have mi-

nor impacts on those platforms. However, due to their coupled wing kinematics



4

Figure 1.1. : Flapping wing platforms that demonstrated sustained hover flight: (a).

AeroVironment Nanohummingbird [26]: weighs 19 grams and has a wingspan of

165mm; (b). Harvard Robobee [42], weighs 0.8 grams and has a wingspan of 30mm;

(c). Texas A&M robotic hummingbird [30], weighs 62 grams and has a wingspan of

300mm; (d). ULB COLIBRI [31], weighs 22 grams and has a wingspan of 210mm; (e).

KUBeetle [32], weighs 21 grams and has a wingspan of 200mm; (f). Delfly Nimble [35]

weighs 28 grams and has a wingspan of 330mm, (g). Purdue Hummingbird, the

proposed platform in this thesis: has a wingspan of 170mm and weighs 12 grams with

power tethers. The untethered version of Purdue Hummingbird weights 20 grams

with the same wingspan.
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design, they usually rely on swash-plate like differential mechanisms to generate con-

trol torques, which significantly limits the system maneuverability comparing to their

natural counterparts [26,29,36,45].

The other FWMAV designs are proposed to drive the wing independently, which

takes a key inspiration from flying animals [29, 36, 42]. With independent wing kine-

matics control, some flapping wing vehicles have demonstrated astonishing maneu-

vers, such as vertical perching and rapid evasive fly [43,47]. Without assistance from

the linkage mechanism, the actuator needs to undergo high-frequency, bi-directional

movement to operate the reciprocating motion of the wings. It simplifies the mecha-

nism design yet results in difficulties for the design of the onboard controller and driver

module. The difficulties are mainly from the trade-off between SWaP constraints and

high lift-to-weight ratio desires.

For FWMAVs actuated by direct-drive wings, without systematic consideration

and layout, the direct adoption of the commercial drivers usually cannot match SWaP

criteria properly and results in short of the performance of the lift generation. There-

Figure 1.2. : Power density versus mass of various actuators from [46].
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fore, in order to boost the system performance, designing a powerful driver mod-

ule coordinated with an appropriate actuator is essential. For example, on Harvard

Robobee - the first insect-scale flapping wing robot that demonstrated stable hovering,

a customized 20-milligram onboard driver that can step up a 3.7V Li-poly cell input

to 200V was developed to actuate the piezo-driven wings [48]. Despite that the piezo-

electric actuator requires high voltage input, its high power density fits their bee-size

design perfectly, as demonstrated in Figure 1.2. Specifically, the power density of the

design is about 7.75- 9.75kW/kg, which provides about 2.0 lift-to-weight ratio [48].

Based on such powerful actuation system, they demonstrates stable hover flight [42]

and an aggressive maneuver [47]. Recently, such insect-scale, piezo-powered FW-

MAVs have even demonstrated untethered flight using optical power sources (laser or

solar) [37,38]. Nevertheless, for fully autonomous purpose, insect-sized platforms may

have their specific limitations on the size and weight of the payload, which extremely

challenges such designs to integrate the necessary sensors and controllers onboard.

Larger platforms such as hummingbird-sized FWMAVs hold a great promising to ac-

commodate more payload for additional sensors, microcontrollers, and batteries. At

such scale, DC motors are the desired actuators for FWMAVs [36,46], which provides

sufficient power density for vehicle control while lower the drive voltage.

In this thesis, we propose a wing-actuation design, aiming to boost the actuation

performance of a dual-motor actuated hummingbird robot to perform animal-like

hovering and agile maneuvering through a pair of independently controlled flapping

wings. The particular issue of such a severely underactuated bio-inspired system -

tradeoff between payload limitation and power efficiency, has been solved system-

atically through a multi-object optimization. Following the guidance from the op-

timization result, the system integration challenge has been addressed as well. In

particular, two motors are used to actuate the vehicle, and the wing trajectories are

altered by two independent onboard motor drivers, which is controlled by an onboard

microcontroller for desired aerodynamic thrust and control torque generation. Body

attitude of the proposed platform is sensed by onboard inertial sensors. A dc-dc
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power regulation module is attached to separate the power of logic and actuation

circuits. System can be powered either through power tether or onboard batteries.

The proposed tethered design achieves about 2.4 lift-to-weight ratio and the burst

power reaches about four times of the rated power consumption in hovering. This

result is comparable to the real hummingbirds [5], thus, guarantee the superlative

maneuverability and stability in its flapping flight. Untethered stable flight has been

experimentally demonstrated in both indoor and outdoor environment as well.

1.2.2 Onboard Attitude Sensing

Reliable onboard attitude feedback and control is essential for autonomous MAVs.

In order to accommodate weight and size constraints, the low-cost and lightweight

MEMS Inertial Measurement Unit (IMU) is widely used on MAVs as a primary

pose sensor, which is usually comprised of an accelerometer, a gyroscope, and a

magnetometer.

On flapping wing platforms, IMU sensor presents a unique implementation prob-

lem: due to the reciprocating motions of the wings, the resulting instantaneous

body acceleration is extremely higher than that of the conventional aircraft. Ac-

cordingly, the Signal to Noise Ratio (SNR) of the accelerometer’s raw measurements

shows orders of magnitudes drop during flapping flight. It almost drives the ac-

celerometer readings to reach its sensing upper bound, causing attitude estimation

diverging [33,49,50]. Traditional sensor fusion methods for attitude estimation, such

as complementary filter, gradient descent methods, and Kalman filter based meth-

ods [51–53], are not designed to compensate such severe instantaneous oscillations,

thus not able to be directly applied to FWMAVs.

In order to attenuate such severe oscillations, one solution is to add a suppres-

sion mechanism between the sensor and the vibration source, i.e., the wing system.

Verboom et al. employed this method on Delfly-II [49]. They combine a foam-based

mechanical damper with a moving average filter to reject the body vibrations. This
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approach successfully filtered out the original DC motor vibration up to 300Hz as

well as the oscillations from their clap-and-fling wing pair. Compared to their special

crossed wing pair design, which mostly generates undesired accelerations along the

thrust direction, the reciprocating motion of the wing with bio-inspired structure usu-

ally results in more serious consequences. It generates stronger accelerations along

the dorsoventral orientation of the vehicle due to the large instantaneous aerody-

namic drag in flapping motion and produces obvious Flapping Counter Force (FCF)

and Flapping Counter Torque (FCT) - a unique aerodynamic effect on flapping flight

platform as presented in [54, 55], both of which affect attitude stability significantly.

As observed by Fuller et al., even on the insect scale platform, it can distort the

accelerometer readings about two times larger than that of the interest [56]. There-

fore, besides passive damping, a well-designed sensor fusion algorithm that capable of

compensating such severe vibrations is also necessary for accurate attitude feedback.

On FWMAVs, as the impact of the accelerometer is more prominent than the other

internal sensors in IMU, most efforts attempt to avoid using accelerometer in order to

reduce the sensing error. In 2012, the AeroVironment Nanohummingbird relied on the

integration result of gyroscope readings to achieve the first attitude stable hover flight

using flapping wings [26]. Similarly, the Harvard Robobee implemented this strategy

within an insect-sized vehicle, which enables up to 5s hovering [56]. Under such

severe vibration, a single gyroscope is incapable of guarantee drift-free for long-term

sensing due to the sensor bias and ambient noise [57]. In addition, Harvard RoboBee

also attempted to use a magnetometer solely for pitch and yaw stabilization [58].

However, magnetometer feedback is easy to be distorted by magnetic or metallic

objects, and moreover, it loses roll angle feedback. Alternatively, a promising solution

could be using auxiliary sensors with different physical characteristics to aid the

inertial sensors, such as cameras or optic flow sensors [59–63]. However, considering

SWaP constraints and the usage restrictions of the added sensor, such as the light

condition for visual sensors, FWMAVs implementing this alternative solution may

still have limited performance [64–66].
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In sum, for bio-inspired FWMAVs, in order to achieve a robust, long-term onboard

attitude sensing, it is desirable to have a well-designed sensor fusion algorithm that

could compensate for aerodynamic forces, sensor measurements noise and drifting.

To address this problem, we propose a model-based sensor fusion solution with adap-

tive compensation for both sensing drift and aerodynamic forces induced by flapping

wings.

1.2.3 Onboard Control

To date, numerous efforts have been devoted to interpreting flapping flight con-

trol [17, 27, 67–71]. Based on these studies, we have proficient knowledge about flap-

ping flight principles and control methods, such as averaging theory [72,73]. However,

controlled hover flight for a small-sized flapping wing robot remains significantly chal-

lenging due to the highly nonlinear system dynamics, complex time-varying aerody-

namics, severe body oscillation, limited actuation, manufacturing imperfections, and

undesired disturbances. The nonlinearity is mainly caused by the additional damping

coming from FCF and FCT, which affects instantaneous aerodynamic force and sys-

tem dynamics under various flight regimes. In order to deal with system nonlinearity,

as our previous work presented [33], a model-based, nonlinear geometric controller

with global exponential attractiveness is designed. However, the performance of such

design is limited by the run-time varying dynamic model and control command offset.

These undesired system uncertainties are due to manufacturing imperfections and un-

measurable components wearing off, which challenges control law design seriously. To

reject such trim conditions induced by the mechanical asymmetry of the system, some

engineer tricks have been conducted before the flight test, such as repeated manually

trim tuning [29,33,40,74]. Since the trim condition also varies with time and operating

conditions, the tuning result could become inaccurate after just several flights [29,74].

Model-based adaptive control allows online parameter adaptation to compensate trim

effect in a certain extent [74]. However, during the flight, unmodeled dynamics, such
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as actuator torque ripples, ground effect, and complex body vibrations, can still drop

down the performance of the controller [47]. The robustness of the system needs to

be enhanced to withstand these unexpected uncertainties.

Even though stable flight control is already difficult for FWMAVs, in addition to

that, performing animal-like extreme maneuvers is an even tougher challenge. Flight

dynamics under many maneuvers remain unknown. Different from the model-based

control law design, nature’s flyers never rely on the strict mathematical calculation

to tune the stability of their flight. Insects and hummingbirds mastered their flight

control through millions of years adaptation. They can perform ’controlled unstable

flight’ with consistent performance to demonstrate their extraordinary maneuver-

ability. For example, flies can make nearly drift-free backflips within a minimum

footprint. In the man-made control system, doing such maneuvers, the maneuvering

control authorities can even contradict to vehicle stabilization goal when the vehicle

poses upside down. Relying on a pre-planned force/torque for a temporary open-loop

piloting is not always feasible to address such a fierce maneuver because the flight

condition is easily affected by system uncertainties and disturbances, causing serious

safety consequences [75,76]. Actually, natural selection for insects and hummingbirds

can be viewed as a long-term training and optimization process of their flight con-

trol strategy. In order to adapt to various goals in harsh conditions, nature’s flyers

acquired the skill of performing surprisingly stable and reliable maneuvers. Their

reward mechanism is to gain more chances for survival under certain circumstances

such as being chased or cornered. Taking this inspiration, in this thesis, we propose

to incorporate machine learning to facilitate flight control.

In this thesis, we first introduce our model-based control law, which is designed

to ensure the stability of the proposed hummingbird robot in normal flight (head up)

(Figure 1.1.(g)). In such a design, we propose to use motor current feedback to quan-

tify system asymmetries for trim compensation. With the balanced trim condition, we

design a deterministic robust control (DRC) law to counter the undesired uncertain-

ties and disturbances, achieving robust altitude control. From our modeling result,
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with a robust altitude control and thrust generation, control torques can be approxi-

mated by a single variable dominated, linear-varying term. Therefore, to reduce the

computational load of onboard control, body attitude and lateral position of our hum-

mingbird robot are controlled by a simple cascade proportional–integral–derivative

(PID) controller. This design serves as our baseline control law, the accuracy and

convergency speed of which is validated through experiments on free flight tests, in-

cluding stable hovering and waypoint tracking. Based upon it, to achieve an optimal

flip on the proposed hummingbird flapping wing robot, we focus on the integration of

a learning-based control strategy to mimic the flight training in nature. In particular,

Reinforcement Learning (RL) is used here to generate reliable maneuver policy for

the demonstration of a flip maneuver, instead of using a traditional optimal control

or a trajectory planning algorithm. The process from low-level actuation commands

to the vehicle states can be modeled as a Markov Decision Process (MDP). Thus, the

optimal maneuver policy can be searched in the learning process.

The proposed control strategy can not only stabilize the robot in normal flight

but also work with instantaneous uncontrollable scenarios. As a hybrid flight control

strategy, it combines a model-based nonlinear controller (DRC+PID) to guarantee

the nominal flight stability and a model-free maneuver policy to push flight envelope

and guide an aggressive maneuver. We made this control scheme on the proposed

hummingbird robot because the stabilization control is ineffective during flip over due

to the contradictory control effort and unmanageable control error [17]. Since our

hummingbird robot equips only two actuators (DC motors), we aim to investigate

if machine learning can aid bio-inspired flapping wing robots to deal with system

uncertainties, varying dynamics, and demanding performance even under severely

actuation constraints. We demonstrate that, although bio-inspired robots cannot

replicate the elaborate actuation in animals, it can achieve flight performance that

closely resembles their natural counterparts with the aiding of model-free learning.



12

1.2.4 Navigating Confined Spaces

Compared to flying animals, environment perception capabilities of engineered

flapping wing platforms are still limited, especially when the surroundings becomes

cluttered and confined. To date, employing man-made flapping wing vehicles to

autonomously navigate an unexplored tight space is still an open question. Besides

navigation, flapping wing vehicles flying in a tight, cluttered space also poses a huge

flight safety issue since they always face inevitable collisions and wing wear and tear.

Different from the inadequacies of artificial platforms, by taking advantage of

the sophisticated sensory system, flying animals exhibit extraordinary environmental

adaptability [2, 13, 14]. Inspired by nature, many FWMAVs has implemented bio-

inspired sensors for perception. Among them, the visual sensors are the most widely

used ones. At insect-scale, Harvard Robobee implemented an ocelli-inspired sensor for

its upright orientation control [77]. At bird-scale, Delfly equipped a customized stereo

vision system to provide visual guidance for obstacle avoidance and environment

exploration [40, 78]. However, for FWMAVs, visual sensors at such a scale have

their specific usage restrictions due to light conditions, SWaP constraints, and high

computational resources cost.

In turn to nature, animals rely on many other sensing approaches that can be an

alternative or complementary method besides vision, providing diverse aiding infor-

mation to improve the sensing capability. For example, haptic feedback also indicate

surrounding changes [3, 12, 79, 80]. Inspired by the cockroaches antennas, artificial

antennas are prototyped and implemented on some ground vehicles to enable bio-

inspired tactile sensing [79, 80]. Without any visual cues, these works successfully

demonstrated cockroach-like wall detection and following. Similarly, such a tactile

sensing strategy can also be employed on the FWMAVs. Actually, wings of flying

animals not only generate aerodynamic lift but also can be used to sense surrounding

changes [2,3,12,13]. Such dual functions of sensing and actuation coupled in one ele-

ment are particularly useful for small-sized, bio-inspired robotic flyers, whose SWaP
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are under stringent constraint. However, to date, man-made FWMAVs generally use

their wings only for actuation and rarely for sensing.

In this thesis, we propose to use motor current feedback to interpret the wing load

changes and thus sense its surroundings. With wing load information, we demonstrate

that the proposed hummingbird robot can provide the onboard somatosensory-like

feedback as same as flying-animals: using flapping wings to navigate confined spaces

without additional sensors’ feedback. During the navigation, by taking advantages of

the wings’ material flexibility and reciprocating motion, the safety of the vehicle can

be passively assured if an inevitable collision happens. In comparison, drones with

rotors usually avoid for touching objects directly, e.g., one relied on a cage-like shield

to ensure passive safety when traveling through narrow corridors with obstacles and

turns [81,82].

1.3 Thesis Contribution and Organization

In the course of this study, the main contributions are:

1. Systematic modeling and validation of a dual-motor at-scale flapping wing

hummingbird robot.

2. Designed a novel sensor fusion algorithm for real-time onboard attitude feed-

back of flapping wing vehicles to compensate both wings’ high-frequency reciprocating

motion induced large instantaneous oscillation and sensor drift simultaneously.

3. Proposed a novel hybrid control scheme by combining model-based control with

model-free reinforcement learning to enhance flight control performance and enable

animal-like aggressive maneuvers.

4. Proposed the first flapping wing robot using its flapping wings in such dual

functions - sensing and actuation coupled in one element for environmental perception

and navigation in tight space, without the need for any auxiliary feedback.

5. Addressed the payload and power efficiency challenges of the proposed hum-

mingbird robot to enable untethered flight through system optimization. Developed
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the first bio-inspired FWMAV powered by only two actuators, whose sustained un-

tethered stable hovering is achieved through a pair of independently controlled wings.

The rest of this thesis is organized as follows. In Chapter 2, the systematic

modeling work of the proposed robot platform is introduced. In Chapter 3, a novel

real-time onboard sensor fusion of flapping wing vehicles is proposed. In Chapter

4, we present a novel flight control design by combining model-based control with

model-free reinforcement learning to boost the performance of FWMAVs. In Chapter

5, a strategy of using the two wings as a primary sensor to navigate tight space is

proposed. In Chapter 6, the untethered flight of a dual-motor actuated at-scale

hummingbird robot with bio-inspired decoupled wings is demonstrated. All of the

proposed algorithms and methods above are validated through experimental flight

tests. Finally, in Chapter 7, the thesis works are summarized and future works are

outlined.
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2. ROBOT DESCRIPTION AND MODELING

In this chapter, the flapping-wing hummingbird robot designed in Purdue Bio-robotics

Lab is briefly introduced. All of the following works in this thesis, i.e., onboard

sensing, flight control, navigating confined space, and untethered flight, are based

upon it. The detailed schematics and parameters of such a design are elaborated.

In addition, systematic modeling of the overall system is presented, including wing

rotation and stroke dynamics, wing kinematics modulation, control authority analysis,

and body dynamics.

2.1 System Overview

The mechanical design of the proposed flapping wing robotic hummingbird plat-

form in this thesis is shown in Figure 2.1. It has a wingspan of 170 mm, weighs 12

grams without battery. By taking the inspiration from its natural counterparts, the

kinematics of its two wings are fully decoupled, with each of them driven by a brush-

less DC motor independently. A pair of reduction gears are equipped on each motor

for efficient torque transmission. Torsional springs paired with wings are installed to

restore kinetic energy, which dominates the wingbeat frequency at system resonance

(around 34Hz) to further improve actuation efficiency. Inspired by some insects’ pas-

sive rotational wings [83, 84], the wing rotation angle varies passively through the

effect of aerodynamic and inertial loading, meanwhile only the wing stroke motion is

under active control.

The schematic drawing of a typical onboard electronic system of the proposed

hummingbird robot is shown in Figure 2.2, which includes two motor drivers, a mi-

crocontroller, and an IMU sensor. Battery and onboard power boost regulators are

optioned for untethered flight scenarios, which provides about 8 grams additional
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Figure 2.1. : Design of the proposed hummingbird robot.
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Figure 2.2. : Schematic diagram of the onboard electronic system of the proposed

hummingbird robot.

weight cost. Based on different power sources, i.e., onboard or offboard, the robot

demonstrates both tethered and untethered stable flight. The tethered platform, as

shown in Figure 2.3, is used for designing onboard sensing, control and navigation al-

gorithms. Untethered design tackles system optimization and integration challenges.

Such onboard system integration, covering components selection, ripple suppression,

power regulation, and layered circuit design, are detailed in Chapter 6.
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Total Weight: 12.0g
Motors 6g, 50% 
Wings 0.1g, 0.83% 
Frame 1g, 8.3% 
Electronics 2.3g, 19.2% 
Mechanism 2.1g, 17.5% 
Others 0.5g, 4.2% 

Figure 2.3. : Prototyped hummingbird robot. The system is powered through thin

tether wires.

A brief summary of the design concept of the entire onboard system: With an

IMU sensor, an onboard attitude estimation algorithm can be implemented to enable

feedback control (Chapter 3); With reliable feedback, the microcontroller handles a

hybrid control law to achieve stable flight and aggressive maneuvering (Chapter 4);

Two sensing resistors are adopted to sense instantaneous wing load relying on motor

current feedback, which not only facilitates vehicle control and can also be used to

interpret the surrounding changes for navigation (Chapter 5). In the onboard system

design, from hardware to software, we addressed sensing, control, and navigation

issues. Furthermore, the payload and power efficiency issues also have been addressed

through design optimization. With proper design, the proposed robot is capable of

generating sufficient control effort to carry onboard power source for fully untethered

flight (Chapter 6).
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Figure 2.4. : Wing parameters of the proposed hummingbird robot.

2.2 Wing-actuation System Dynamics

Wing-actuation system is the core subsystem in FWMAVs. It generates aerody-

namic lift and flight control authority for controlled flight. In order to control the

hummingbird robot, understanding the dynamics of this subsystem is essential. In

this section, we propose a complete, multidisciplinary dynamic model of our motor-

direct-drive design.

2.2.1 Dynamics of Wing Rotation

The rotation mechanism of the robot’s wings is shown in Figure 2.4. It has a

bi-stable design similar to [26, 31, 32]. Clearance fitted sleeves are shaped along the

leading edge and driveshaft to enable passive wing rotation. Such a morphology is

inspired by the insects whose wings can perform passively rotating [83, 84]. In both

upstroke and downstroke flapping motion, the wing shape of the proposed humming-

bird robot can be formed with a desirable camber in order to keep the majority of the

wing area having an optimal rotation angle. The formulation of our wing morphology

follows Ellington’s definition presented in [6].
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As shown in Figure 2.4, the wing rotates about the steel shaft crossing the shoul-

der. The wing rotational dynamics of the proposed design is formulated by

Jwr θ̈w −
1

2
Jwr ψ̇

2
w sin 2θw + Jwrsψ̈w cos θw = τaero + τd, (2.1)

where Jwr is the moment inertia of the wing along wing rotational direction, Jwrs

is the product moment of inertia of the wing about the wing rotational and stroke

directions, θw is the wing rotation angle, ψw is the wing stroke angle, τaero and τd are

the total aerodynamic moment and rotational damping integrated along the wingspan

respectively. To calculate τaero and τd, we need to figure out the normal force applied

on the wings during flapping.

The angle of attack α = sgn(ψ̇w)φw + π
2
, which denotes the angle about the fluid

velocity and the wing chord. The lift and drag coefficients can be formulated by a

sinusoidal function [7, 11]. From [11]

CL(α) = CLmaxsin(2α),

CD(α) = (
CDmax + CD0

2
)− (

CDmax − CD0

2
)cos(2α).

(2.2)

The best fits of the coefficients are presented in [11], wherein CLmax = 1.8, CD0 =

0.4, CDmax = 3.4.

The normal force combines the lift and drag applied on the wing. The normal

force coefficient CN(α) = cos(α)CL(α) + sin(α)CD(α).

Using blade element theory, τaero and τd are

τaero = −sgn
(
ψ̇w

) 1

2
ρaψ̇

2
wCN(α)R3

wc̄
2d̂cpẑcp,

τd = −1

8
|θ̇w|θ̇wCrdRwc̄

4ẑrd,
(2.3)

where ρa is the air density, Rw is the wing length, c̄ is mean chord length of the wing,

d̂cp is the non-dimensional center of pressure from the leading edge bar, and Crd is the

wing rotational damping coefficient. The two integral constants are ẑcp =
∫ 1

0
r̂2ĉ(r̂)2dr̂

and ẑrd =
∫ 1

0
ĉ(r̂)4dr̂ where r̂ and ĉ are the non-dimensional axes along wing span-wise

and wing chord-wise direction, respectively [7, 11].
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Based on the dynamic model above, the numerical solution of the wing rotation

angle can be determined given a certain wing stroke kinematics. With the camber

wing design, the angles of attack of the wings have been optimized to 45◦ approxi-

mately, which determines the aerodynamic drag coefficient CD [7]. Subsequently, The

cycle-averaged aerodynamic damping coefficient can be solved by

Bw =
1

2
ρaC̄DR

4
wc̄r̂

3
3. (2.4)

where C̄D is cycle-averaged drag coefficient, r̂3
3 is the 3rd dimensionless moment of

wing area [6]. Bw is used to derive the aerodynamic damping applied on the wing,

which represents a time-varying aerodynamic load of the wing-actuation system.

2.2.2 Dynamics of Wing-actuation System

The wings of the proposed hummingbird robot are directly actuated by their

paired dc motors. Therefore, the wing-actuation system can be modeled as a spring-

mass-damper system combining with the aerodynamic load. The dynamics is given

by

Jmψ̈m +Bmψ̇m = τm − τext, (2.5)

where Jm is the moment of inertia of the motor, ψm is the motor rotation angle, Bm

is the damping constant of the motor, τm is motor torque output, and τext denotes

the overall external motor loading.

Motor torque output τm = Kaia, where Ka is motor torque constant and ia is

motor armature current. τext is mainly comprised by the moment of inertia of the

wing (Jw) and the reduction gear (Jg), wing’s aerodynamics damping Bw during

flapping, and the wing motion induced elastic restoring torque Ksψw (wherein Ks is

the spring coefficient and ψw is the instantaneous wing stroke angle). Through the

gear transmission, the total motor loading is

τext =
[(Jw + Jg)ψ̈w +Bwψ̇

2
wsgn(ψ̇w) +Ksψw]

ηgNg

. (2.6)
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where Ng is the gear ratio, ηg is the gear efficiency. With the gear transmission,

ψm = Ngψw.

For motor control, an on-board driver circuit is needed to generate periodic al-

ternating phase-phase voltage to adjust motor torque and spinning direction. By

neglecting the small motor inductance, the electric model of the motor-driven system

can be approximated by

u− iaRa = Kaψ̇m, (2.7)

where u is the motor drive voltage and Ra is the motor winding resistance. Note,

for an actual system, Ra is not a constant due to the motor thermal effect. The

expression for resistance change is

Ra = R0(1 + γcu(Tw − T∞)), (2.8)

where R0 is the winding resistance under ambient temperature, γcu is thermal ef-

fect coefficient of copper winding which is 0.00383◦C−1, Tw is the current winding

temperature, and T∞ is ambient temperature. If Ra increased too much, more en-

ergy would wast on heat dissipation, which results in insufficient power for actuation.

When flapping-wing MAV is doing aggressive maneuver or flying in a deteriorated

weather condition (e.g., counter big wind gust), it needs to overdrive the motor tem-

porarily for stabilization, which causes the motor to overheat. In this situation, the

wing stroke amplitude and lift force decrease significantly. Meanwhile, the attitude

stabilization is affected in series due to the inherent coupling between lift force and

3-axis body torque [33]. Therefore, in order to sustain a consistent flight performance,

accommodating the motor thermal effect is necessary.
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2.2.3 System Efficiency

Since the wing is driven around its natural resonance frequency, the inertial torque

and elastic torque are balanced [29]. Thus, the electrical characteristics of this motor-

driven system can be approximated by

ia =
1

Ngka
(Bl +Bwψ̇w)ψ̇w,

u = Kaψ̇m + iaRa,

(2.9)

where Bl is the lumped linear damping coefficient.

With u and ia, the cycle-averaged input power P̄in is

P̄in =
1

T

∫
T

|u| · ia. (2.10)

During the flap motion, with the time-variant aerodynamic load, the cycle-averaged

wing drag cost P̄d is

P̄d =
1

T

∫
T

Bwψ̇w
2
sgn(ψ̇w)dt. (2.11)

Therefore, the cycle-averaged system efficiency η̄ can be estimated by

η̄ = ζ
P̄d
P̄in

, (2.12)

where ζ is power regulation efficiency.

2.3 Wing Kinematics Modulation

Like flying animals, the proposed hummingbird robot adopts a pair of reciprocal

wing-actuation systems with horizontal stroke planes in order to enable flight control

(Figure 2.6). Each wing is driven independently by a DC motor. Thus, the two wings

are fully decoupled and generate independent wing kinematic trajectories. With

proper wing motion profile design and modulation, the two wings are capable of

generating aerodynamic thrust and control torques. Such a unique design is severely

underactuated, i.e., using only two actuators to demonstrate the capability of 6-DoF

controlled flight, which provides a great challenge of flight control.
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The wing modulation technique as introduced in [85] is used here to generate the

roll, pitch, yaw torque and thrust by four parameters respectively: the differential

voltage amplitude of left and right wings δV , the mean voltage bias V0, the split-

cycle parameter change δσ, and the input voltage amplitude VI0. The two input

voltages follow a modulated sinusoidal form

ui =

VIi cos
(

2πft
2σi

)
+ V0 if 0 ≤ t ≤ σi

f

VIi cos
(

2πft−2π
2(1−σi)

)
+ V0 if σi

f
≤ t ≤ 1

f

(2.13)

where i represents the left (i = 0) or right motor (i = 1), VIi = VI0 + (−1)iδV and

σ = 0.5− (−1)iδσ.

With such wing control command, the steady-state wing kinematic response is

shown in Figure 2.6, which generates the following stroke trajectory [36,50]

ψwi =

Ψwi cos
(

2πft
2σwi

+ βi

)
+ ψw0 if 0 ≤ t ≤ σwi

f

Ψwi cos
(

2πft−2π
2(1−σwi )

+ βi

)
+ ψw0 if

σwi
f
≤ t ≤ 1

f

(2.14)

where ψw0 is bias angle, β is phase shift and σwi is the resulting split-cycle parameter.

In order to validate the modeled wing kinematics, we conduct experimental tests.

The test setup is shown in Figure 2.5. A high-speed head camera (Photron FAST-

CAM Mini UX50 high-speed camera) is set to capture the wing motion. A 6-axis

force/torque transducer (Nano17, ATI Ind. Automation) is used to measure the cor-

responding thrust and control torque generated by the robot’s two wings. A NI data

acquisition box (NI SC-86 DAQ) is connected to a desktop for force/torque measure-

ments logging. The head camera view is shown in Figure 2.5.(a). With high-speed

video, the instantaneous wing rotation and stroke angle can be digitized. Wings are

actuated by the onboard driver circuits. Both wing rotation and stroke responses are

validated as shown in Figure 2.5.(b).

To quantify the ability of the torques and thrust generation, we define the kine-

matic force gains as the ratio between resulting forces/torques and kinematics change

from trim condition (stable hovering). The nominal kinematics is Ψw1 = Ψw0 , βi = 0,
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Figure 2.5. : (a). Experimental setup for wing kinematics validation and instanta-

neous lift/torque measurement. (b). Head camera view in wing motion validation.

(c). Validation results of wing rotation and stroke angle in three typical wing beats.

ψw0 = 0 and σwi = 0.5, i.e., the body control torque is balanced, and the thrust

generated by the two wings equals to the body weight: mg = F̄L.

The kinematic force gains can be derived from the nominal kinematics parameters

based on the assumption of near-hover condition [55,86].

The control torque and thrust are formulated by:

1. Thrust Fz is adjusted by symmetric amplitude change, with Ψwl = Ψwr = Ψwt =

Ψw0 + δΨw

Fz =
1

2
ρaC̄LR

3
wc̄r̂

2
2(S)ω2

nΨ2
wt = F0v

2
1,

v1 =
δΨw

Ψw0

+ 1 ≈ 1

Ψw0ωn

Ku√
B2
l + 4BwVIKu

δVI0 + 1
(2.15)

where F0 = mg, Ku = ηgNg
Ka
Ra

is the gain of the motor input, VI0 = VI + δVI0

and VI is the nominal voltage amplitude for hovering.
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Figure 2.6. : (a), (b), (c), (d) illustrate the wing modulations for the thrust and

roll, pitch, and yaw torque generation, respectively. Experimental validations of the

modeled thrust and torque generation are shown accordingly. Gray-cross indicates

the nominal operating point.
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2. Roll torque is produced with asymmetric amplitude change, with Ψwl = Ψwt +

δΨw and Ψwr = Ψwt − δΨw.

τφ =
1

2
ρaC̄LR

3
wc̄r̂

2
2(S)ω2

nΨ2
wtrcp

(
2δΨw

Ψwt

)
= rcpF0

Ψwt

Ψw0

2δΨw

Ψw0

= rcpv1v2

v2 =
2δΨw

Ψw0

≈ 2

Ψw0ωn

Ku√
B2
l + 4BwVIKu

δV

(2.16)

where rcp is the span wise center of pressure and δΨ is the change of amplitude.

3. Pitch torque is generated by shifting mid stroke position for both wings

τθ = rcpFz sinψw0 = rcpF0v
2
1v3

v3 = sinψw0 ≈ ψw0 =
Ku

Ks

V0

(2.17)

4. Yaw torque is realized using antisymmetric split-cycle modulation with σwl =

0.5− δσw and σwr = 0.5 + δσw

τψ =
1

8
ρaC̄DR

4
wc̄r̂

3
3(S)ω2

nΨ2
wt

(
1− 2σw

σw(1− σw)

)
= rcpF0

C̄D
C̄L

v2
1v4

v4 =
C̄D
C̄L

(
1− 2σw

4σw(1− σw)

)
≈ 2δσw = 2kscδσ

(2.18)

where ksc is a scaling factor. This scaling is due to the strong attenuation of the

flapping wing dynamics to the non-sinusoidal excitation with split cycle. This

factor can be quantified through a simple FFT analysis [33]. For our specific

design, it is around 0.1.

The proposed formulation of the thrust and control torque is verified experimen-

tally, as shown in Figure 2.6. The experimental result matches the analytical predic-

tion. The offsets between measurement and modeling results are due to the manufac-

turing imperfection of the vehicle. Despite our best effort to maintain the symmetry

and consistency of the vehicle’s components, these offsets cannot be eliminated com-

pletely due to the semi-manual fabrication process. To achieve stable flight, it requires
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sufficient control effort and closed-loop control to compensate for the negative effect

of such system asymmetries.

2.4 Body Dynamics

Body motion of flapping flight induces additional forces and torques on the wing

through the kinematic coupling. Such effects due to additional aerodynamic damping

caused by body motion during different phases of wing motion are modeled and

presented as flapping counter forces (FCFs) and flapping counter torques (FCTs) [55].

It is a unique aerodynamic phenomenon for FWMAVs that can directly change flight

dynamics and affect flight control bandwidth. To improve the control bandwidth and

flight performance, such coupling cannot be ignored in the modeling of vehicle body

dynamics. In this section, we present the body dynamics of the flapping-wing vehicle

taking consideration of wing motion induced passive damping.

The coordinate definition is shown in Figure 2.7. For flight control law design, the

vehicle is approximated as the standard rigid body system

Ṗ = V

mP̈ = Rf b +mg

Ṙ = R[ωb×]

Iω̇b = τ b − ωb × Iωb

(2.19)

where P = [x, y, z]T is the position vector of the vehicle in the inertial frame XY Z

which is defined by North-East-Up (NEU); V is the velocity vector of the vehicle

in the inertial frame; m is the total mass; g = [0, 0,−1]T is the normalized gravity

acceleration vector; R is the rotation matrix; [•×] denotes the skew-symmetric matrix

mapping from vector dot product to cross product; I is the inertia matrix of the

vehicle; •b represents the vector in the body frame xbybzb, e.g., the thrust vector

f b = [0, 0, fz]
T , the vehicle angular velocity ωb = [p, q, r]T , and the 3-axis control

torque τ b = [τx, τy, τz]
T .

The overall stroke-averaged wrenches from the flapping wings are given by
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Figure 2.7. : Coordinate definition of the vehicle body frame and the inertial frame.

f b =


0

0

fz


︸ ︷︷ ︸
fbn

+


−cxu− cxdsq

−cyv + cydsp

−czw


︸ ︷︷ ︸

fbd

,

τ b =


τx

τy

τz


︸ ︷︷ ︸
τ bn

+


dscyv − (d2

scy + cφ)p

−dscxu− (d2
scx + cθ)q

−cψr


︸ ︷︷ ︸

τ bd

,

(2.20)

where f bn and τ bn are the nominal wrenches, f bd and τ bd are the damping wrenches,

fz, τx, τy, τz are the four inputs of the system, ds is the offset between the stroke plane

and the center of mass, [u, v, w]T is the body translational velocity vector in the body

frame, and c• denotes the 3-axis FCF/FCT.
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From [55], for the platform with a pair of wings at near-hovering condition, the

damping coefficients can be formulated by

cx

cy

cz

cφ

cθ

cψ


=



2ρaR
2
wc̄Ψw0ωnr̂

1
1CD cos2(ψw)|dψ̂w

dt̂
|

2ρaR
2
wc̄Ψw0ωnr̂

1
1CD sin2(ψw)|dψ̂w

dt̂
|

ρaR
2
wc̄Ψw0ωnr̂

1
1
dCN (α)
dα
|α0 cos(α0)|dψ̂w

dt̂
|

ρaR
4
wc̄Ψw0ωnr̂

3
3
dCN (α)
dα
|α0 cos(α0) cos2(ψw)|dψ̂w

dt̂
|

ρaR
4
wc̄Ψw0ωnr̂

3
3
dCN (α)
dα
|α0 cos(α0) sin2(ψw)|dψ̂w

dt̂
|

2ρaR
4
wc̄Ψw0ωnr̂

3
3CD|

dψ̂w
dt̂
|


(2.21)

wherein t̂ = ωnt is the non-dimensional time, Ψw0 is the nominal stroke amplitude,

dψ̂w
dt̂

is the non-dimensional flapping velocity of the wing.
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3. ONBOARD ATTITUDE SENSING

On small scale FWMAVs, the high-frequency reciprocating wing motion introduces

severe instantaneous body oscillations. Such oscillations affect the reading accuracy of

onboard inertial sensors seriously, resulting in poor performance of real-time attitude

sensing of the vehicle. In this chapter, we present a sensor fusion design for onboard

attitude sensing of FWMAVs by using an of-the-shelf IMU sensor. The proposed

design is composed of a model-based compensation scheme and an adaptive sensing

error estimator. The effect of both sensing drift and undesired aerodynamic forces

has been addressed. Such a design has been validated on our hummingbird robot

in both indoor and outdoor flight. The experimental results have demonstrated the

accuracy, convergence, and robustness of the proposed sensor fusion algorithm.

30mm

Figure 3.1. : Reciprocating wing motion causes severe body vibration.
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3.1 Introduction

Though the development of flapping-wing MAVs has witnessed tremendous progress

over the past years, there remain open challenges that must be addressed in order

for them to approach the flight performance of their natural counterparts. Among

those challenges, with the design constraints and especially with the introduced severe

vibration from the high-frequency flapping motion of current FWMAVs, real-time on-

board attitude sensing is still not fully solved yet, as discussed in Chapter.1.2.2.

On FWMAVs, in order to cope with the stringent size and weight constraints,

MEMS-based IMU sensors are typically used for onboard attitude sensing. It has

been demonstrated that IMU sensors work well on conventional MAVs (with fixed or

rotary wings) with proper sensor fusion algorithms [51–53,87,88]. However, for FW-

MAVs, direct adoption of conventional sensor fusion algorithms usually results in poor

performance [26,49,50,56]. The sensing errors are largely caused by the severe oscil-

lation induced by wings’ reciprocating motion, complex time-varying aerodynamics,

and sensor drift [57].

In order to enable onboard feedback control, in this chapter, we introduce an

onboard sensor fusion algorithm that can attenuate the severe sensing error caused

by body oscillation from high-frequency, high-amplitude wing motion. The sensing

performance has been experimentally validated on the proposed hummingbird robot

through several flight tests. All of the flight tests were conducted into a VICON space

(an external camera-based motion capture system, check www.VICON.com). The

VICON data provides ground truth with a certain communication delay. Two flight

scenarios have been studied, i.e., hovering and maneuvering. The results demonstrate

the accuracy and robustness of the proposed sensor fusion method for FWMAVs.

3.2 Sensor Fusion Design

In this section, we introduce our novel sensor fusion solution for FWMAVs’ on-

board attitude sensing. It consists of aerodynamic force compensation, external mag-
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netic field correction, and adaptive sensing error estimation. To avoid singularities

in geometric transformation, all of the attitude calculation is based on quaternion

theory. The test platform is the proposed hummingbird robot in this thesis. An

MPU9250 IMU is implemented on our test platform due to its lightweight, compact

size, and reliable performance [89].

As shown in Figure 3.1, body frame and inertial frame are defined respectively.

The origin of the body frame is docked at the center of the onboard IMU. IMU is

placed close to the Center of Mass (CoM) of our robot. A NEU (local north, east,

up) coordinate is chosen for the inertial frame as aircraft frequently used. Orienta-

tion quaternion q is defined as [q0, q1, q2, q3]T ∈ R4. The corresponding Euler angle

representation of vehicle body attitude can be converted from q trivially.

θ = atan2(2q2q3 + 2q0q1, 1− 2q2
1 − 2q2

2),

φ = asin(2q0q2 − 2q3q1),

ψ = atan2(2q0q3 + 2q1q2, 1− 2q2
2 − 2q2

3),

(3.1)

where θ, φ and ψ are roll, pitch and yaw Euler angle respectively.

3.2.1 Modeling of Sensor Readings

The raw data of IMU includes the vehicle linear acceleration, magnetic field and

angular velocity, which can be modeled by

a = R(q)g + aex + ba + na,

ω = ω̄ + bg + ng,

m = R(q)M + bm + nm,

(3.2)

where a,ω,m ∈ R3 are raw data of acceleration, body angular rate and magnetic

field, respectively. R(q) is the quaternion represented rotation matrix which aligns

inertial frame and body frame. g = (0, 0,−1)T and M = (mN , 0,mD)T are nor-

malized gravitational acceleration and magnetic field, which construct a local NED

coordinate. Sensor biases ba, bg, bm can be investigated by Allan variance [57]. Sen-
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sor noise na, ng, nm are assumed as zero-mean Gaussian white noises. aex denotes

the external acceleration applied to the sensor. During flapping flight, aex 6= 0 due

to the time-varying aerodynamic forces caused by the flapping wings. From Figure

3.2, aex is prominent in accelerometer’s measurement, which affects the useful grav-

itational information in attitude sensing. From SNR comparison, the gravitational

output is about 30 times less than wing-flapping effect. Therefore, external accelera-

tion compensation is critical to mitigate accelerometer errors caused by wings.

In addition to the effect of vibration, magnetometers, and gyroscopes also have

other flaws. For instance, the magnetic field radiated by the motor can disrupt mag-

netometer readings, and output drift on the gyroscope is difficult to correct due to

bias and noise uncertainty. To solve these issues, in the sensor fusion algorithm, we

first compensate external acceleration based on aerodynamic forces approximation.

We then calibrate the magnetometer to obtain an accurate inertial frame magnetic

field by using gravity vector only. In addition to the calibration, an adaptive ob-

server is designed for overall sensing error estimation and correction based on all

IMU readings.

3.2.2 External Acceleration Compensation

To obtain a valid accelerometer reading, extra accelerations produced by flapping-

wings need to be subtracted from the sensor output. Such additional acceleration can

be approximated by aerodynamic force modeling. On the hummingbird robot, the

wings are independently driven by two brushless DC motors, which can be modeled

as a spring-mass-damper system with extra aerodynamic damping. Referring to the

modeling work in Chapter 2, the wing subsystem dynamic is

Jsψ̈w +Blψ̇w +Bwψ̇
2
wsgn(ψ̇w) +Ksψw = Kuu (3.3)

where ψw is the wing stroke angle, Js is the total moment of inertia, Bl and Bw are the

linear and aerodynamic damping coefficients, respectively, Ku is the lumped motor

voltage input gain.
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To solve the responses of equation (3.3) around the natural frequency ωn ≈ 34Hz,

we use the method of multiple time scales [90,91] for analyzing: Given the dimension-

less perturbation term ε = Bw/Js, which is the normalized linear damping coefficient,

the new time variable is scaled by Ti = εit, i = 0, 1, 2... and the first-order approxima-

tion ψw0 = Ψwcos(ωnT0+β(T1))+O(ε) can be used for aerodynamic forces estimation.

The wing is driven by a sinusoidal voltage input u with amplitude VI . The steady-

state solution of the approximation is

Ψw =
3π

16Bwωn

(√
B2
l +

32KuBwVI
3π

−Bl

)
,

β = −π
2
.

(3.4)

Thus, the wing stroke angle can be approximated by ψw(t) = Ψwcos(ωnt+ β), which

is experimentally validated as presented in Chapter 2.

Quasi-steady model can be used for aerodynamic lift (FL) and drag (FD) calcula-

tion [7] in normal flight condition, which fits the aerodynamic behavior of our wings

and works with a relatively low computation load because of its simplified formu-

lation. The instantaneous aerodynamic lift and drag applied on the flapper can be

calculated by

FL =
1

2
ρaCL(α)R3

wc̄r̂2
2ψ̇2

w,

FD =
1

2
ρaCD(α)R3

wc̄r̂2
2ψ̇2

w,
(3.5)

where ρa is the air density, FL and FD respectively denote aerodynamics lift and drag

applied on the wings, CL(α) and CD(α) are corresponding lift and drag coefficients

where the angle of attack α is close to 45◦ as validated in Chapter 2.

Note, it is preferred to have additional sensors that aids to acquire reliable wing

motion feedback, e.g., speed, position, or current feedback of the motor [44, 92],

since the ψw(t) can be easily obtained instead of using the approximation way above.

Compared to the model-based estimation, direct sensing and interpretation of motor

current can also capture the unsteady aerodynamic drag, increasing the accuracy of

the sensor fusion result.
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The aerodynamics on vehicle body frame can be calculated as

f baex
=


F l
Dcos(ψlw)sgn(ψ̇lw) + F r

Dcos(ψrw)sgn(ψ̇rw)

F l
Dsin(ψlw)sgn(ψ̇lw)− F r

Dsin(ψrw)sgn(ψ̇rw)

F l
L + F r

L

 , (3.6)

where ψlw and ψrw are stroke angles of left side and right side wing respectively.

With f baex
, the subtraction of external acceleration can generate a relative clean ac-

celerometer output for sensor fusion. With compensation, the improvement of SNR is

shown in Figure 3.2. However, ab = a− aex cannot be directly adopted for attitude

estimation because the compensation process introduces new approximation errors.

Moreover, other types of sensor noise still exist.
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Figure 3.2. : Pitch-axis acceleration SNR in the static and oscillated condition. The

noise is orders of magnitudes higher with the wing motion effect. aex compensation

increases the SNR effectively on flapping wing platform.

3.2.3 Magnetometer Calibration

The magnetometer can evaluate the magnetic field on the inertial frame. From

sensor characteristics, the raw magnetometer outputs include substantial errors in-
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troduced by vicinity electronics, metals, and actuators. Specifically, on our robotic

hummingbird, the main magnetic disturbance is from the reciprocating spinning of

the two motors.

Due to the static nature of the hardware configuration and the established oper-

ating point of the vehicle, a constant offset on the raw magnetometer measurements

are observed during flight. So bm can be removed by sensor calibration wherein the

magnetometer signals between motor run/stop are compared. The offset cancellation

result shows in Figure 3.3, where the red line reports the measured Y-axis magnetic

field in the absence and presence of the disturbance, and moreover, the blue line

represents the offset cancellation result.
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Figure 3.3. : Magnetometer calibration. Motor introduced offset is compensated.

To estimated full orientation, it requires an accurate measurement of the magnetic

field in the inertial frame. The typical approach relies on magnetic field mapping.

However, it is affected by a lot of unsettled distortions in some particular environments

and implementation cases. The method we present in this section relies on ~g only to

map the magnetic field orientation from the body frame to the inertial frame.
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Body frame gravity distribution can be expressed by R(q)~g, so the magnetic field

direction in the inertial frame can be updated through

(R(q)~g)TR(q)M = (R(q)~g)Tm,

⇒ ~gTM = (R(q)~g)Tm,

⇒ mD = (R(q)~g)Tm,

mN =
√

1−m2
D.

(3.7)

The overall measurement error of orientation in accelerometer-magnetometer sys-

tem can be updated by

yerr(q, a
b,m) =

 ab −R(q)g

m−R(q)M

 ∈ R6×1. (3.8)

Error function yerr(q, a
b,m) indicates the unknown sensor noise combined with

the discrepancy between sensor measurements and NED reference which needs a

correction.

3.2.4 Adaptive Orientation Update

To achieve an accurate and drift-free attitude estimation q̂, the sensor fusion al-

gorithm is designed to cancel the overall sensing error adaptively. The rough attitude

can be estimated via a simple integration of gyroscope data due to the following

reasons:

1. Compared with the other two sensors in the IMU system, gyroscope is more

robust at a certain high-frequency working condition. The rate-noise spectral

density of MPU9250 is only 0.01◦/s/
√
Hz, which can be neglected at flapping

resonance frequency in contrast to the acceleration noise.

2. From the Allan variance investigation of MPU9250 [89], an unknown slowly

drifting bias bg (instability ≤ 0.0013◦/s) dominates the gyroscope output noise

during a long cluster time (800s). In the high-frequency updated estimation

algorithm, bg can be assumed as an unknown constant.
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Figure 3.4. : Block diagram of the proposed sensor fusion for FWMAV attitude

estimation.

3. Gaussian noises ng can be filtered.

To enable quaternion calculation. we augment gyroscope measurements as {0,ω} ∈

R4. The raw attitude estimation based on gyroscope can be expressed by

q̇g = 0.5 · qg ⊗ {0,ω}, (3.9)

where qg is vehicle orientation quaternion and ⊗ denotes quaternion multiplication.

The best estimation can be the integration of ˙̂q = 0.5 · q̂ ⊗ {0, ω̄}. However,

as ω 6= ω̄ and qg 6= q̂. The accuracy of integration is limited by yerr and bg.

Consequently, an adaptive observer is designed for yerr and bg compensation.

Introducing E to represent the lumped estimation error in q̂, so q̂ = qg ⊗ E.

With force compensation and calibration, E ≈ [1, e]T , where e ∈ R3.

From [93],

ė = 0.5(ω̄ − ω) + 0.5e× (ω̄ − ω)− ω × e, (3.10)

where e× (ω̄ − ω) ≈ 0 since both two terms are very small. Thus,

ė ≈ 0.5(ω̄ − ω)− ω × e = −ω × e− ξ, (3.11)

where ξ represents lumped sensor error of gyroscope raw data.

Solve e:

R(q̂) = R(E)R(qg) = R(qg)− 2[e×]R(qg), (3.12)
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where

[e×] =


0 −e3 e2

e3 0 −e1

−e2 e1 0

 , (3.13)

based on (3.8),

yerr(qg, a
b,m) =

 2[R(qg)g×]

2[R(qg)M×]

 e. (3.14)

From the derivation above, e can be approximated by using least square approxi-

mation presented in [94]. Since accelerometer-magnetometer readings generate an

overdetermined sensory system, such an approximated method can minimize the over-

all estimation errors of every single equation in the calculation.

ξ can be estimated with an adaptive observer:

˙̂e = −ω × ê− ξ̂ − k1δe,
˙̂
ξ = k2δe, (3.15)

where k1 and k2 are positive defined gain matrices, δe and δξ are estimation errors

where δe = ê− e, δξ = ξ̂ − ξ.

The observation is designed to compensate unknown measurement noise, approx-

imation and estimation errors such that (1) all of the measurements and approxima-

tions are bounded, and (2) δξ converges asymptotically to 0.

With the updating, the best estimation of orientation q̂ is given by

˙̂qg = 0.5 · q̂g ⊗ ({0,ω + ξ̂}), q̂ = q̂g ⊗ Ê. (3.16)

The proposed sensor fusion method can be summarized as a block diagram as

shown in Figure 3.4.

The observer stability proof is given below:

As

δ̇e = −ω× δe− δξ− k1δe,

δ̇ξ = k2δe.
(3.17)

The Lyapunov candidate function can be

L =
1

2
‖δe‖2 +

1

2k2

‖δξ‖2, (3.18)
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where L is a smooth, positive definite, and radially unbounded function [95]. The

derivative of L yields

L̇ = (δe)T (−ω⊗ δe− δξ − k1δe) +
1

k2

(δξ)T (k2δe),

= 0− (δe)Tδξ − k1|δe|2 + (δξ)Tδe,

= −k1|δe|2 ≤ 0.

(3.19)

Here L is negative semi-definite, which guarantees the global stability of the ob-

server. Furthermore, for global asymptotic stability proof, it needs more arguments.

Given 0 ≤ L, thus the upper bound of L̇ is determined by its initial value L0.

Because L is a radially unbounded function in terms of δe and δξ, δe and δξ are

bounded. Since the gyroscope measurement w is bounded as well due to the charac-

teristic of sensor, all terms on the right side of (3.17) are bounded. It can conduct δe

and δξ are continuous and moreover, δė and δξ̇ are bounded, which yields δe and ξ

are uniformly continuous.

Thus, for any t ≥ 0, we have

√∫ t

0

|δe(τ)|2dτ ≤
√
L0

k1

, δe ∈ L2. (3.20)

From Barbalat’s lemma [95] and boundedness of ω, δe and δ̇ξ are globally asymp-

totically stable at the origin.

Since ω and e satisfy the persistent excitation criteria [95], based on Lemma A.1

as presented in [96], the globally asymptotically stability for δξ can be proved.

3.3 Experimental Result and Discussion

The indoor experiment setup is shown in Figure 3.5. During the test, the proposed

hummingbird robot is flying in a VICON space. Totally 6 VICON cameras are in

use. VICON captured information is received by a desktop computer via VICON

Tracker 1.0.3 software at 200Hz. The transmission delay is about 0.03s. A NI myRIO

is used to relay the position feedback and log data. The onboard circuit is powered an



41

external power supply through tethers. The proposed sensor fusion and flight control

algorithms are running onboard. The onboard IMU communicates with onboard

microcontroller through I2C bus protocol. In this specific test, VICON also provides

ground truth.

Note, in this thesis, most of the indoor flight test uses this setup.

VICON Cameras

 
Giganet 
Box

 
PC

 
NI myRIO

power supply

Motion captured

position,
data logging

VICON data

Figure 3.5. : Illustration of flight test setup in VICON space.

Before we achieve the controlled free flight, to tune the sensor fusion algorithm, we

conducted several flight trials with wire constraints on the landing gear of the robot

to aid the attitude stability, generating a near-hover flight condition. Tightening

and relaxation of the wires can be considered a low-frequency external disturbance.

Maneuvering tests were also conducted by manually adjusting the tightness of wires

or short-time free flight. We compared the proposed sensor fusion solution with two

state-of-the-art algorithms: Extended Kalman Filter and Madgwick Filter. We tuned

their sensor fusion gains to achieve their overall best performance respectively. As

shown in Table 3.1, without a particular concern of FWMAVs’ specific properties,

traditional methods cannot perform adequately sensing results. We also applied aex
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compensation onto two comparison methods, both of their performance becomes bet-

ter but only marginally, as shown in Figure 3.6.(c).
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Figure 3.6. : (a). Attitude estimation in hovering (constraint condition). (b). Atti-

tude estimation in maneuvering (constraint condition). (c). Euler angle estimation

in maneuvering with aerodynamic force compensated acceleration for Madgwick fil-

ter and EKF. The accuracy of both was improved. Nevertheless, they still failed to

converge to the ground truth before wings stopped (around 14s).

From Figure 3.6.(a,b), during the initial test, the idea attitude set-point is around

zero. Due to the severe acceleration induced by wings, the EKF and Madgwick filter
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Table 3.1. : RMSE Comparison of Tested Sensor Fusion Algorithms

Proposed Madgwick EKF

Hovering test

roll 2.2161° 30.1043° 17.4910°

pitch 2.0454° 37.2643° 28.8441°

yaw 2.8318° 37.0175° 11.6472°

Maneuvering test

roll 2.2320° 28.7868° 24.6769°

pitch 2.0262° 35.4507° 24.7713°

yaw 3.6863° 17.5361° 29.7953°

Maneuvering test

with aex

compensation

roll 2.2320° 17.9809° 10.8939°

pitch 2.0262° 12.3591° 9.8938°

yaw 3.6863° 19.3879° 17.4390°

10 12 14 16 18 20 22
Time(s)

-50
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g)

VICON reference Proposed method Proposed method without aex compensation

2 4 6 8

Figure 3.7. : Pitch angle estimation in maneuvering condition with/without aex com-

pensation for the proposed method. Without aerodynamic force compensation, pitch

angle cannot be estimated correctly.

are failed to obtain correct attitude information. As shown in Figure 3.6, Madgwick

filter is hard to overcome the trade-off between chattering results from higher com-

plementary gain and drifting results from smaller complementary gain. EKF shows

obvious sensing error and its convergence speed is slow. Such a slow, drifting response
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Figure 3.8. : Two free flight test, the proposed sensor fusion working together with

flight control. (a). Attitude estimation in hovering. (b). Attitude estimation in

maneuvering. Both scenarios show great estimation accuracy.

will affect onboard feedback control significantly. Both of them can hardly reject the

sensing error under such severe vibration. In contrast, the accuracy of the proposed

method was not impacted by such a huge vibration.
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From Table.3.1, along wing stroke direction, i.e., pitch axis, sensing result becomes

even worse for EKF and Madgwick filter, which indicates the significance of model-

based compensation. As shown in Figure 3.7, even for the proposed method, without

aex compensation, error E cannot be fully rectified as well, especially during aggres-

sive maneuvering. Thus, we then implemented the model-based compensation design

to feed compensated acceleration information onto both Madgwick filter and EKF

for comparison. Their accuracy improvement in pitch angle sensing can be observed

on RMSE. However, the introduced approximation error within the compensation

step affects their roll and yaw angle estimation. To address it, the proposed sensor

fusion design employs an adaptive updating law to correct the lumped sensing error,

covering sensor drift and model error.

We then test the effectiveness of the proposed sensor fusion working together

with onboard flight control. We detail the controller design in Chapter 4. Here, we

implemented the proposed controller to guarantee flight stability and then retested

the sensor fusion performance in two typical free flight scenarios. The results of both

flight samples show the convergence and accuracy of the proposed method. Compared

to the preliminary test, it illustrates that the effectiveness of the proposed sensor

fusion does in free flight. It has been used in untethered flight as well, as presented

in Chapter 6.

3.4 Conclusion

On FWMAVs, many existing onboard sensor fusion methods exhibit performance

degradation in terms of accuracy, robustness, and convergence in attitude sensing,

which is mainly due to their flapping wing induced severe oscillations. To address

this open issue, in this work, a model-based sensor fusion approach is proposed for the

onboard real-time attitude sensing of FWMAVs by using MEMS-based IMU sensor.

The sensing performance of the proposed method has been validated experimentally.
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From the experimental result, such an approach demonstrates accurate and robust

performance. The proposed method can be used for closed-loop feedback control.



47

4. ONBOARD FLIGHT CONTROL

Relying on their sophisticated sensory-motor systems, insects and hummingbirds are

among the most nimble flying animals. They have mastered the flight capability

through millions of years of adaptation, which can be treated as a long-term op-

timization strategy of their flight control mechanism. In order to match the flight

performance on similar scale FWMAVs, a well-designed control law is required. We

propose a novel hybrid control (in terms of combining conventional with learning-

based control) strategy. We first design a model-based nonlinear control law to achieve

stable hovering and waypoint tracking. A motion control policy is then trained to

perform aggressive maneuvers through Reinforcement Learning (RL). These two sets

of control logic can complement each other perfectly. In normal stable flight, model-

based control is pursuing stability and robustness over a large region of attraction.

The trained model-free policy is specifically designed to push the boundary of the

flight envelope to enable the extreme maneuvers that model-based control is hard to

handle, such as flip upside down (control efforts contradict to vehicle stabilization

goal). In this chapter, we first present our model-based control law design. Several

flight tests were conducted to demonstrate its performance, including hovering and

waypoint tracking. Based upon it, we then challenge animal-like tight flip maneuver

relying on RL. We demonstrate a nearly drift-free rapid 360◦ body flip on our bio-

inspired hummingbird robot. Such a result indicates that although bio-inspired robots

cannot fully replicate the elaborate actuation in animals, through a combined method

of machine learning and conventional controls, they can achieve flight performance

that closely resembles their natural counterparts with the help of learning.
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4.1 Introduction

Through millions of years of natural selection, insects and hummingbirds have

evolved with superior flight capabilities. Their ability to perform acrobatic maneu-

vers in indoor or confined spaces showed great potential and attracted great interest

from the robotics community to develop bio-inspired Flapping Wing Micro Aerial

Vehicles (FWMAVs). As a result, the development of such biomimetic flying plat-

forms has witnessed remarkable progress over the past decade as we introduced in

Chapter 1. Nevertheless, to match the flight performance of their natural counter-

parts, there remain many open issues that need to be addressed. Particularly, flight

control of such vehicles is a great challenge. The difficulties are mainly from their

highly nonlinear system dynamics, complex time-varying aerodynamics, severe body

oscillation, limited actuator performance, and manufacturing imperfections, to name

but a few. These system uncertainties affect system robustness significantly and chal-

lenge the control law design. We first deal with the uncertainty from manufacturing

imperfections that cause the trim condition. To deal it and avoid repeated manu-

ally trimming, we propose to use motor torque feedback to estimate and rectify the

lumped system asymmetries. Furthermore, we address unsteady aerodynamics and

nonlinearity caused control issues. Based on the control authority study and averag-

ing theory [17,72], we design a robust control law to generate stable altitude control

and thrust generation, which allows a linear attitude and lateral control. Such a

design aims to save onboard computational resources while maintaining flight perfor-

mance. Hovering and waypoint tracking tests were performed to evaluate the overall

performance of the proposed control algorithm with unknown trim conditions. The

result demonstrates that even with only two actuators, such a bio-inspired humming-

bird robot can still track full 6-DoF perfectly by modulating its decoupled flapping

wings.

The proposed nonlinear controllers provide an effective solution for stable flight.

However, it is not enough to challenge high-performance maneuvers observed in an-
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imals. To address acrobatic maneuvers, conventional flight controls rely on pre-

planned trajectories and model-based flight control algorithms. However, flapping

flight is highly nonlinear, coupled dynamics which is further complicated by its unique

inherent dynamic mechanisms such as FCF and FCT [54], and the rapidly changing,

unsteady aerodynamics. As a result, flight dynamics vary significantly under differ-

ent flight modes and many remain unknown besides hovering dynamics. Therefore,

the conventional planned method is hard to be directly applied to FWMAVs. Most

importantly, during certain maneuvers such as back or side flips, the maneuvering

control authorities can contradict to vehicle stabilization goal. For example, body

flips remain significant challenges since such maneuver contradicts the normal flight

control system, i.e., the vehicle is unstable when turned upside-down.

On the other hand, natural selection can be viewed as a long-term training and

optimization process for biological systems. For example, Flies can perform nearly

drift-free backflips within a minimum footprint (translational drift). Thus, we propose

to incorporate machine learning to facilitate flight control performance in maneuver-

ing. In particular, besides the stable and robust hovering, we integrate a reinforcement

learning control policy to enable tight flips on our hummingbird robot. A proposed

stable control law works as a baseline control for stabilization purposes. Reinforce-

ment learning is used here to enable the aggressive maneuvers of the robot instead of

a traditional trajectory planning algorithm. This design can work with instantaneous

uncontrollable scenarios. The process from low-level actuation commands to the ve-

hicle states can be modeled as a Markov Decision Process (MDP). Thus, the optimal

maneuver policy can be searched in the learning process. This design choice is made

because the averaged dynamics model of the system for stabilization is relatively ac-

curate, while for extreme maneuvers the approximation error becomes unmanageable

for model-based controller design [17]. Particularly, in drift-less body flip maneuver,

a model-free maneuver policy is trained by using Deep Deterministic Policy Gra-

dients (DDPG) to take over the flip motion control when the stable controller is

infeasible, e.g., flying upside-down. Our goal is to find out if machine learning can
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aid bio-inspired flying robots to cope with model uncertainty, varying dynamics, and

demanding performance even under severely underactuated systems. The test result

shows that although bio-inspired robots cannot replicate the elaborate actuation in

animals, through a combined method of machine learning and conventional controls,

they can achieve flight performance that closely resembles their natural counterparts.

4.2 Model-based Control

4.2.1 System Trimming

Unlike conventional aerial vehicles, the aerodynamic force and torque generation

of the flapping wing robots are very sensitive to any slight fabrication asymmetries,

which affects system passive stability significantly as shown in Figure 4.1. Since such

system imperfection cannot be completely eliminated in fabrication as discussed in

Chapter 2, it motivates the trim conditioning work to generate a default asymmetric

control effort on the two wings to compensate for the inherent asymmetry of the

system.

Figure 4.1. : Two examples of open-loop liftoff. (a). Liftoff with only a constant

thrust command. (b). Liftoff with balanced trim condition.

In order to avoid the repeated manually trim tuning [29, 33, 40, 41], we present

a new method to quantify trim condition based on motor torque feedback. Since
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the angle of attack of our wings are fixed at 45o, the production of the aerodynamic

force and drag becomes a function of the angular speed of the wing motion (φ̇w) [7],

which can be fully sensed by the motor torque asymmetry based on the motor current

feedback as shown in equation 2.7. Therefore, with the current feedback of the two

motors, the trimming process can be converted to a power balance problem. For

example, Figure 4.2 shows the current feedback of the two motors in hover with the

nominal power input - 10V/0.5A. Based on this, we can conduct the trim condition

as below:
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Figure 4.2. : Motor current feedback for the estimation of system trim condition.

1. The mean current difference between the left and right side wings are 0.025A.

According to the nominal current, it stands about 5% aerodynamic force discrepancy

during flight and must cause an undesired roll-axis rotation. From the force mapping,

since motor excitation is proportional to the φ̇2
w, 5% aerodynamic force discrepancy

requires (1.052 − 1)× 10V ≈ 1V to balance the roll torque offset.
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2. The left and right wings have -0.003A and -0.002A average excitation bias

respectively and two wings have overall -0.001A average offset between upstroke and

downstroke. These indicate the pitch and yaw trims are fairly small.

4.2.2 Control Law Design

From Chapter 2.3, the control inputs of the system is given by

fz = F0v
2
1,

τ =


rcpF0v1v2

rcpF0v
2
1v3

rcpF0v
2
1u4

 , (4.1)

where F0 = 1
2
ρaC̄LR

3
wc̄r̂

2
2(S)ω2

wA
2
0 = mg is the nominal lift force to counter the

gravitational force of the robot. Obviously, the thrust term dominates the robot

control as it impacts all control torques generation. It means any slight altitude drift

could affect attitude stability simultaneously. Therefore, fz plays an important role

in FWMAVs control, namely, robust altitude tracking aids the whole system stability

significantly.

To achieve fast reaction and guarantee transient control performance, a deter-

ministic robust control law (DRC) is designed to generate proper thrust for altitude

control.

For our hummingbird robot, altitude dynamics is

mz̈ = −mg + cosφcosθfz + dz, (4.2)

where dz represents the lumped system uncertainty from modeling errors and external

disturbances.

Given a reference input zd, we define a sliding surface

sz = ėz + ksez = ż − ˙zeq, (4.3)

where ez = z − zd is the tracking error, ks is a positive gain and zeq is the equivalent

tracking error which can be derived trivially.
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As shown in Figure 2.6, with the input voltage growing, the thrust increase can

be approximated with a linear fitting

fz = ku(uz − uz0), (4.4)

where kf is a positive slope, uz is voltage input, and uz0 is a constant term.

Rewrite system dynamics along z-axis as:

mṡz = Kzuz +ϕTz Θz + ∆z, (4.5)

where 
Kz = Kucosφcosθ,

ϕTz = [−Kzuz0 ,−(g + z̈eq), 1],

Θz = [1,m, d̃z]
T .

(4.6)

Here ∆z = dz − d̃z, wherein d̃z denotes the estimated lumped modeling error that

may vary slowly.

Assuming the parameters and uncertainty are bounded:

Θz ∈ ΩΘz , {Θz : Θmin ≤ Θz ≤ Θmax},

∆z ∈ Ω∆z , {∆z : |∆z| ≤ δz}.
(4.7)

where Θmin = [1, 12,−0.5] and Θmax = [1, 12, 0.5]. It means that it can handle

±0.5 gram modeling error in total mass weighing. We set δz = 1 then control model

can tolerate 1 gram estimation error. Note, this setup does not affect the flight

performance, control efforts in other axes are still sufficient as normal, as shown in

Figure 2.6.

As ΩΘz and Ω∆z are known, a control law is designed by

Kzuz = uzm + uzl + uzr , (4.8)

where uzm = −ϕTz Θ̂z is model-based compensation terms and uzl = −kzlsz is the

linear stabilizing terms, wherein Θ̂z is the reference model from system identification

and kzl is a positive gain.
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With the control law defined in equation 4.8, the error dynamics becomes

mṡz + kzlsz = uzr −ϕTz Θ̃z + ∆z, (4.9)

Thus, the robust control input uzr should be designed such thatsz(uzr −ϕ
T
z Θ̃z + ∆z) ≤ εz,

szuzr ≤ 0,
(4.10)

where εz is a designed parameter that represents the approximation accuracy between

the ideal sliding mode control law and the proposed method. εz should be positive

and sufficiently small.

To satisfy all of the above conditions, referenced from [92], one example of uzr

design is given by

uzr = − 1

4εz
[||Θzmax −Θzmin||2||ϕz||2 + ||δz||2]sz, (4.11)

The stability proof of this design is similar to [92] with different input. Such

a robust controller guarantees the transient and steady state tracking performance.

The upper bound of tracking error e is: exp(−ket)[|e(0)|2−|e(∞)|2]+ |e(∞)|2 wherein

|e(∞)|2 ≤ 2εz
ke

, ke = 2kzl/m.

As discussed before, with robust altitude control, lateral and attitude control of

our hummingbird robot become similar to drone control except for the FCF and

FCT induced damping disturbances. Particularly, on our platform, the x-y position

is controlled by a proportional controller that generates velocity control reference,

where the velocity is controlled by a PID controller in inner-loop to generate roll

and pitch angle control references. The attitude is also constructed as a cascading

form where the outer loop is a proportional controller mapping angle error to angular

velocity references and relying on the inner-loop PID controller generating torque

command. Combing with the wing kinematics control, eventually, torque command

are converted to motor signal that powers the vehicle.

Note, the proposed DRC+PID control law only guarantees the vehicle stability

in stable flight condition. To challenge extreme maneuvers, the advanced control

method is required.
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4.3 RL-enabled Acrobatic Maneuvering

A learned policy is used to take over the model-based control when it is infeasible,

e.g., flying upside down. The framework structure is shown in Figure 4.3. An RL

policy training is performed in a high fidelity simulation tool that is developed with

full system dynamics including flapping flight aerodynamics, wing-actuation thorax

dynamics, and vehicle body dynamics [97]. In order to transfer to the real robot

platform, the sensing error, communication delay, and arbitrary noise are also intro-

duced in the simulator to emulate the real flight condition. In the simulation, all

physical parameters and signal characteristics came from system identification of the

real hummingbird robot.

RobotModel-based 
Control

Maneuver
Policy

Sensor
Fusion

reference states

observation

Closed-loop Dynamics

flip?

Figure 4.3. : Illustration of the hybrid controller structure. If the flip maneuver was

triggered, RL policy takeover the original controller.

4.3.1 Problem Formulation

Reinforcement learning is a specific area of machine learning. The key mechanism

in RL is performing optimal actions to maximize a certain reward. In a typical RL

problem setup, there is an agent that keeps interacting with an environment. This

interaction can be formulated as a MDP, which consists of environment state space

S, action space A, state transition model p(st+1|st, at), reward model r(st, at), and

discount factor γ, wherein t represents time step. An agent policy function π : S → A



56

is accordingly defined to take the current environment state and return an action. π

is a policy network πθ(at|st) which is parameterized by θ.

The agent starts from an initial state distribution p(s1). At each time step, the

environment state changes according to the agent’s action. Meanwhile, agent action

results in a reward/penalty response from the environment. The goal of the learning

process is to obtain the optimal policy parameter θ, i.e. how actions affect the state,

such that it can maximize the cumulative rewards.

The expected discounted return of a finite-horizon RL problem is

J = Eai∼πθ [R] = Eai∼πθ

T∑
i=0

γi−1r(si, ai), (4.12)

where T is the horizon, i is the discrete step and γ is the discount factor.

In this study, each component is defined as follows:

1. Agent: the hummingbird robot.

2. Environment: a constraint ’world’ defined in simulation.

3. States s = [̂i, ĵ, k̂, x, y, z, p, q, r, ẋ, ẏ, ż]T ] ∈ S. All terms are defined in Chapter

2.

4. Action: the additional control commands, wherein action a = [u, δV, V0, δσ] ∈

A. All terms are defined in Chapter 2.

5. State transition dynamics: closed-loop vehicle dynamics, where the feedback

controller is described above.

6. Reward function: a customized function to incentivize robot to perform certain

maneuvers.

4.3.2 Reward Design

To perform the flip maneuver, the robot hovers at p0 = [0, 0, 0.5]T . When a trigger

signal is given, the robot initiates a 360◦ turn and then stabilize at p0 again.
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Figure 4.4. : (a). Coordinate define and translation. (b). A successful flip over along

Y-axis. (c). A failed flip over along Y-axis.

As shown in Figure 4.4, a successful front/back rollover can be described by the

flight trajectory projection crossing all four quadrants of ZO′Y . Side flip is the

same. The coordinate system attached to the tail of the vehicle is translated from the

world frame. With the rigid body assumption, such a coordinate translation will not

affect the maneuver definition, which can be proved trivially through 3D coordinate

transformation.

Since a successful flip maneuver can be defined clearly, designing the reward func-

tion is straightforward. Considering the entire flip process, a complete flip maneuver

can be intuitively split into two steps: first, tilting upside down, then, turning back to

the head-up state. Therefore, we propose a ’carrot-and-stick’ design to describe the

whole process: the first ’carrot’ is set to the bottom of the robot; after the robot flips

180◦ vertically and successfully reached the first ’carrot’, the second ’carrot’ appears

at the robot’s original head area to lead the robot to turn back. In order to get the

reward in the second stage, at the end of the first stage, the vehicle will learn to
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maintain a certain rotational speed to avoid the failed case as described by Figure

4.4.(c).

Figure 4.5. : Illustration of reward model design.

During the first step, a well-designed reward model should incentivize the robot to

perform an upside-down motion. Mathematically, the reward should increase signifi-

cantly when the body z-axis projection in the inertia frame ẑ = k̂ ·K̂ was approaching

to −1, which represents the robot heading downwards. So the reward model on the

first half stage of flip motion is designed as r1 = K1/[1 + (1 + ẑ)2], wherein K1 is a

positive gain. Once the robot finished the upside-down step, the reward function will

move on to award the ẑ approaching 1. Thus, the second term of our reward model

is defined oppositely to r1, which is r̄2 = K2/[1 + (1− ẑ)2]. Like r1, K2 is a positive

gain as well. Such a ’carrot-and-stick’ configuration successfully guides a basic flip

maneuver.

Besides flip maneuver, the above setup may generate some undesirable behavior.

For example, the robot will learn to oscillate at very large amplitude to collect more

cumulative reward. To filter out these undesirable behaviors, a linear growing stability

reward rs and a position tracking reward rp = Kp||ep|| + Kv||v|| have also been

added to r2 to further promote a flip-drift-recovery process, where Kp and Kv are

positive gains. rs leads the robot to perform flip as quick as possible for gaining more

cumulative reward. Meanwhile, these additional terms prevent large positional drift,
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assisting the model-based control when the robot turns back to normal flight. The

lumped r2 = r̄2 + rs + rp.

The total reward is given by

rt = (1− λ)r1 + λr2 (4.13)

where λ is a binary flag to indicate whether robot is in the first or second stage in

the flip maneuver.

In order to achieve animal-like performance where the available space for flipping

is tuned to be tightly constrained. Eventually, we only allow one wingspan length of

translational drift in all X-Y-Z direction. During the training, if the robot travels out

of bounds, the current rollout will be terminated to cut the cumulative reward, thus

penalizing the corresponding action. By maximizing the reward, the policy will learn

to minimize the vehicle’s position drift.

4.3.3 Training

In our design, both state transition model and reward model are deterministic

functions. Therefore, a Deep Deterministic Policy Gradients (DDPG) is chosen as

our training algorithm due to its robust performance on such robot platforms with

continuous action spaces [98]. DDPG is an off-policy algorithm constructed with

actor-critic architecture that updates a policy function (actor) and an action-value

function (critic) by batch sampling from a replay pool of tuples (st, at, rt, st+1) [98].

The function approximators are fully connected multilayer perceptrons.

The actor and critic network are configured with 32×32 and 64×64 hidden units

respectively. Hidden and output activation functions in both networks are hyperbolic

tangent (tanh) function. The simulation is solving the physics at 10kHz. Considering

the consistency between real and simulated flight control of the robot, the control

frequency is downsampled to 500Hz which is same as the onboard control. The horizon

of each rollout has a maximum of 1000 samples which corresponds to 2 seconds. Each
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epoch is set to a maximum of 10000 samples, i.e., ≤ 20 seconds (10 rollouts) at least.

The algorithm implementation is based on [99] with hyperparameters from [98].

In order to acquire a sim-to-real portable solution, we use dynamic randomization

approach in the training process [100]. Randomness was injected into the physical

parameters of the vehicle, such as mass/inertia, actuator parameters, mechanical

configurations, and sensing noise to imitate the modeling error of the system.

During the training process, the termination condition is set to stop an episode

early to improve the training efficiency and prevent the useless action state appeared

in the replay pool. By setting termination conditions, we intend to penalize the

meaningless behavior with a huge position drift or fully destabilized flight. Successful

maneuvers wherein the robot resumes to a hovering flight will keep collecting positive

rewards and maximizing the total return.

4.4 Experimental Result and Discussion

We conducted a couple of flight tests to evaluate the performance of the proposed

model-based controller and RL maneuver policy on our hummingbird robot. During

the test, a VICON system is used to provide position feedback.

4.4.1 Stable Flight: Hovering and Waypoint Tracking

To validate the performance of the proposed controller, we first performed hover

flight tests on our hummingbird robot. During the test, the altitude reference is

prescribed. To avoid unrealizable ascending and descending velocity, a first-order

filter is used to generate a smooth reference trajectory zd. X-Y, and attitude control

reference are set at zero. A typical flight result is shown in Fig. 4.6. The vehicle

is commanded to takeoff and hover at 0.4m. The tracking error is small enough to

enable a stable hovering in sustained performance.
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Figure 4.6. : (a). Time sequential result of a typical takeoff, hovering, and landing

flight. Composed image only show takeoff and hovering. (b). Attitude and position

of the robot in the test. Gray dash lines represent control references.

In addition, we also performed waypoint tracking flight tests. During the test, a

single set point is specified and the reference trajectory is generated by a first-order

filter as well. The results is shown in Fig.4.7.

From the experimental result, the proposed model-based controller successfully

stabilizes the flapping wing robot in all flight tests and demonstrates great tracking

performance. Based on such a design, we train our hummingbird robot to achieve

aggressive maneuver control.

4.4.2 Extreme Maneuver: Drift-free Flip

The trained flip maneuver of our hummingbird robot converges to the side flip

motion, which is a bit out of our expectation since the front/back flip is more observed

on the animals. Theoretically, the front/back flip is easier for flapping wing platform

due to FCF and FCT effect. Perhaps due to the larger torque generation along the roll

axis, the manifested flip maneuver trends to side direction. The work presented in [35]

demonstrates a similar motion using the traditional planning method. Compared to
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rows point out the corresponding flight directions. (a2). and (b2). Attitude and

X-Y position of the robot in the test. Gray dash lines represent control references for

maneuvering along longitudinal and lateral direction respectively.

their obvious altitude drop in flipping, we show much smaller peak to peak vertical

travel, which is less than one wingspan.
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Figure 4.8. : (a). A sample of flip maneuver sequence in simulation. Flight trajectories

of the hummingbird robot in simulated flip maneuver is shown. Trajectories are

averaged over 5 trials. (b). A sample of flip maneuver sequence in experiment.

Flight trajectories of the hummingbird robot in experimental flip maneuver is shown.

Trajectories are averaged over 5 trials.

To finish such a tight flip, the robot learned to first generate an upward acceler-

ation. After gaining some momentum, the left wing’s amplitude increases to enable

the roll turn. When the robot is upside down, the right wing’s amplitude increases

to decelerate body rotation. To reduce the altitude drop, the maneuver policy is

optimized to sacrifice a few X-Y tracking performance. Eventually, the robot will

return to the upright position with small overshoots, which results in small lateral

position drift. Once return to the normal flight, such a small lateral tracking error

can be corrected by the model-based flight controller quickly.
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The optimized policy can complete the flip maneuver about 0.13 seconds, and

within a vertical travel of approximately one wingspan. This is the first time such

maneuver is achieved on a flapping wing robot with only two actuators within such

tight spacial constraints, similar to such behaviors observed on animals.

4.5 Conclusion

In this work, we present the attempts to develop a combined control law for bio-

inspired flapping wing robots to achieve animal-like stationary hovering and acrobatic

maneuvers. Among the design, a model-based controller guarantees the stability of

the robot in normal flight. During aggressive maneuvers, a model-free reinforcement

learning policy is trained to push the boundary of the flight envelope to approach

its extreme performance. We experimentally demonstrate that sustained flight and

accurate waypoint tracking based on the proposed robust controller. Furthermore, we

demonstrate such AI-assisted control strategy can achieve animal-like drift-free rapid

360◦ body flip on our hummingbird robot, which is powered by only two actuators.

The successful performance in these flight tasks shows the promise of combining ro-

bust control and machine learning in mobile robots to cope with system imperfections,

unexpected disturbance, and demanding performance on severely underactuated sys-

tems.
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5. NAVIGATING CONFINED SPACE USING FLAPPING WINGS

Wings of flying animals can not only provide thrust and enable superior flight con-

trol, they can also be used to sense their surroundings. Such dual functions of sensing

and actuation coupled in one element is particularly useful for those FWMAVs un-

der stringent SWaP constraints while having sensing and navigating demands. In

this chapter, we demonstrate the proposed hummingbird robot using its wings for

environment sensing and navigation in tight spaces; no visual feedback is required.

By interpreting the wing load changes, our robot achieves onboard somatosensory-like

feedback. The wing load information indicates the presence of environmental changes

such as grounds, walls, stairs, and some other obstacles. Wing load can be onboard

quantified from the measurements and interpretation of the current feedback by the

motor that actuates the wing. We conducted several flight tests on our hummingbird

robot to validate the proposed sensing and navigation approach, which covers three

specific tasks: terrain following, wall following, and flying in a narrow corridor. Our

robotic hummingbird can successfully finish all the tasks above without visual cues.

In sum, using a flapping wing in dual functions - sensor and actuator, is a promising

method for the size and weight constrained robots. Such a strategy can also be an

alternative or complementary method of visual perception.

5.1 Introduction

Bio-inspired FWMAVs target to achieve the similar stability and maneuverability

of flying animals, such as insects and hummingbirds. Besides the flight performance,

compared to their natural counterparts, autonomous navigation for such systems is

still an open issue, especially in unexplored, tight spaces These are mainly due to their

stringent SWaP constraints. These constraints, as well as the undesired vibrations
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Figure 5.1. : A dual-motor powered hummingbird robot is navigating a 1ft width

corridor relying on load variations on its wings. Wing load change can be captured

by onboard motor current feedback.

caused by the high-frequency reciprocating wing motion, severely limit the available

sensors that can be used for autonomous navigation.

In nature, the flying creatures’ wings are usually multi-functional: they not only

can generate aerodynamic lift, but also can provide somatosensory information to

sense their surroundings. Therefore, they play an important role in the neuromotor

control to accommodate the uncertainties in their environments [2,3,12,13]. To date,

wings of engineered FWMAVs are usually just for actuation purpose [26, 29, 32, 33,

35,42]. Employing dual functions of actuation and sensing in flapping wings like the

ones in natural flyers has rarely been studied.

In this chapter, we target to autonomous navigation of the FWMAVs by using

their flapping wings. We propose to use onboard motor current feedback to capture

wing load variation. Environmental changes can induce instantaneous wings load,

which in turn manifest as changes in the current feedback of the motors that actuate

the wings. Therefore, on FWMAVs, besides generating aerodynamic lift, their wings

can be utilized as physical range finders. Such a dual function element can enable
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autonomous navigation of the FWMAVs that cannot carry visual sensors. The ef-

fectiveness of the proposed navigation method is experimentally demonstrated. We

conducted several challenging tasks which are essential for tight space navigation

on the proposed hummingbird robot: terrain following, wall following, and passing

through a narrow corridor with turns, without using any vision or standard proximity

sensors. The proposed baseline controller proposed in Chapter 4 is implemented here

to ensure flight stability.

5.2 Environment Sensing Principle

5.2.1 Terrain Sensing

Figure 5.2. : Setup for ground effect quantification.

When the flying animals are approaching the ground, the interaction between the

downwash airflow generated by their flapping wings and the ground surface yields
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a strong aerodynamic forces change (both lift and drag) [101, 102], which is named

ground effect. From the real hummingbird study by Kim et al via airflow visualization

[101], ground effect results in large lift enhancement. On the proposed hummingbird

robot, a similar effect was found as well. In addition, we also observed a simultaneous

reduction of the motor current on both wings while the vehicle is flying towards the

ground. Such a phenomenon means indicates that the resulting aerodynamic drag is

reduced. This correlation between ground clearance and motor current reduction can

be employed to detect terrain change.

We experimentally calibrate the ground effect on our hummingbird robot. The

details of the experiment setup are shown in Figure 5.2, which is similar to the setup

of our wing kinematics validation test. The only difference is the ground clearance

between our robot and the artificial ground can be adjusted. All the other lift/torque

measurements are the same. Before the test, the robot is aligned to perpendicular to

the artificial ground. As introduced in Chapter 2, on our hummingbird robot, two dc

motors are used to directly actuate the wings (one per each) with sinusoidal input. For

onboard sensing, two 0.3Ω/0.5W sensing resistors are paired with the motor to sense

its current feedback. The connection follows the low-side sensing strategy. During

the calibration, the vehicle is gradually moved to approach to the ground from 15c̄

to 1.5c̄ distance, where c̄ is the mean chord length of the wing. For our specific wing

morphology, c̄=21.2mm. On each certain height, the input voltage of the system

ramps up from 10V to 15V with 1V stepsize. The result of a particular voltage is the

average of the total 20 datasets. Each dataset contains 3 complete wingbeats data

with the 2000Hz sampling frequency. The calibration results are shown in Figure 5.3.

From the calibration result, the ground effect appears around 2-4c̄. Within this

range, 2.3c̄ and 3.3c̄ are two special points as they denote the minimum drag and

maximum lift respectively. It shows an interesting finding: the most efficient flying

altitude of our hummingbird robot is around 3.3c̄, which comes with the optimal lift

and near-optimal energy cost, maximizing the bonus from the ground effect. For
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The corresponding motor current change with increased ground clearance. D/c̄ is
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cycle-averaged current feedback of the left and right wing respectively.

implementation, the current value of 3.3c̄ and the corresponding inputs can be fitting

as,

iL3.3c̄ = 0.015Vs + 0.062,

iR3.3c̄ = 0.014Vs + 0.037.
(5.1)

During the flight, if we set 3.3c̄ as the threshold of current feedback, a feedforward

altitude control law can complement the proposed baseline control to adapt to the

terrain undulation. Meanwhile, the relative altitude can be recorded to analysis the

topology of the terrain change.

5.2.2 Wall Sensing

Unlike ground effect test, motor current can not perceive the wall effects of our

hummingbird robot. This might be due to the weak tip vortex, as studied on both

man-made platforms and animals [7, 101].
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Inspired by insects’ tactile sensing, we allow the wing to physically contact with

objects. The wing collision induced motor current spike can be employed for wall

inspection. Wing collision is a severe issue for conventional aircraft with rigid wings.

However, due to their typically flexible wings and reciprocating wing motion, FW-

MAVs are passively protected by their wings and can survive in collisions.

During flapping flight, an entire wingbeat can be divided into two phases, namely,

upstroke and downstroke. The possible collisions on each half-stroke can be sensed

by motor current feedback, which indicates the relative location of the obstacles.

Therefore, flapping wings can be treated as range finders, which points the objects

along with six directions: front, back, front left, front right, back left, back right.

In general, arbitrarily placed wall barriers can be categorized into two different

cases as described in Figure 5.4.(a). In the first scenario, the wall obstacle is in front

of the robot that barricades its forward path. If a collision happens, both wings

would show increased current feedback on the upstroke. Compared to the unaffected

downstroke current feedback, the obstacle location can be identified accordingly. The

same strategy can be implemented to the backward flight case. Actually, the collision

not only causes the current differential change, but it also results in an overall higher

mean current compare to the normal flight. In the second scenario, the wall barrier

is along the wing spanwise direction which blocks the side path as shown in Figure

5.4.(b). In this case, only one wing collide, which yields the related motor current

changing while the other one not.

Considering the trim condition, to enable sensing function, the motor current

feedback needs to be calibrated, including upstroke and downstroke movement for

both two wings. To demonstrate the navigation capability of our hummingbird robot,

we calibrated the touch-based current feedback with the 3.3c̄ ground clearance to

integrate ground sensing for the later flight test. An artificial wall is set for allowing

wing collision as shown in Figure 5.4.(c). The motor input is the same as the previous

ground effect test. The calibration result is shown in Figure 5.5. Both wings on both

stroke directions show about 10% increase of the motor normal current during the
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Figure 5.4. : (a). When both wings hit the front-side obstacle during the forward

flight (left figure), the corresponding plot of instantaneous motor current showing

both wings’ upstroke currents is higher than normal (right figure). (b). When the

left wing’s downstroke is blocking on the side by the wall barrier (left figure), only

the corresponding left wings’ downstroke current becomes greater than normal (right

figure). (c1)-(c3). Illustration of the setup for quantifying the wing collision effect,

including bumping from front/back-side as (c1) and upstroke/downstroke-side as (c2)

and (c3).
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collision. The incremental current caused by collisions rises approximately linearly

with the voltage increasing.

5.3 Motion Plan

As discussed in section 5.2, the motor current feedback of our FWMAV can be used

to identify different environmental factors and further assist in navigation, especially

when the robot is flying in compact spaces without vision or proximity sensors.

To detect and follow the terrain change, a feedforward control is proposed,

δzr = Kẑ(iL/R − i3.3c̄L/R),

zr = zr + δzr,
(5.2)

where δzr is the detected relative altitude variation, Kẑ is the feedforward proportion

gain, and zr is the altitude reference.
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To achieve a stable terrain sensing and following, mathematically, cosφcosθ ≈ 1,

namely, attitude control error should be fairly small. As relatively noisy feedback,

current fluctuation can result in oscillated z control performance. Therefore, we im-

plemented a low-pass filter for signal conditioning, the cut-off frequency of which is

200Hz. In addition, we set a response dead-band for the current readings, which

is tuned to be 75%-100% of iL/R3.3c̄ to delay the possible aggressive altitude con-

trol. Obviously, in the dead-band zone, the following performance would be limited.

Nevertheless, such a design smooth the altitude travel effectively.

For lateral control, ideally, the robot positioning can always be handled by the

VICON system. Therefore, through touch-based sensing, the robot can detect where

the obstacle is and then alter its default flying path for avoidance. However, VICON

sometimes can be blinded due to object shield and light condition restriction, losing

the object tracking. It causes that the robot loses its position feedback and affects

the pre-plan trajectory tracking accordingly. To address this problem in actual flight,

we use the onboard IMU to approximate the robot position in a short period until

the VICON system recovered. A 2-D transformation matrix is defined by
xk

yk

1

 =


cosψ −sinψ

sinψ cosψ

 [xk−1, yk−1]T

0 1

pb (5.3)

where pb = (xb, yb, 1) is the augmented lateral position vector in the body frame.

With continuously position feedback, the flying path planning of the robot can be

keep updating. To demonstrate the sensing capability discussed in section 5.2.2, we

implemented a simple and robust path planning method to address obstacle following

and avoidance demands: When a blind FWMAV flying in an unexplored space with

obstacles, firstly, the planner is greedy to shorten the flight time - straightly flying

towards its target point; once the obstacles were detected by wing collision, a retreat-

ing action along the opposite direction of the detected obstacle was performed; then

shifting the original flight trajectory along the perpendicular direction of the current

moving direction for collision avoidance. Keeping the head orientation, the timing
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greedy policy will pilot the robot to perform a ’following’ flight if it continuous shifts

its flight path. Once it bypassed all obstacles, it would directly fly towards the target.

Such a method is similar to ’Bug’ planner [103,104].

5.4 Experimental Result and Discussion

To validate the proposed sensing method, we conducted several flight tests. At

first, we demonstrated the basic terrain and wall following the capabilities of our hum-

mingbird robot. Then, the robot is commanded to navigate a narrow corridor blindly,

which integrates walls and terrain change together. The results show that FWMAVs

can use their wings as the primary sensor to sensing and map the surroundings.

5.4.1 Terrain Following

In this test, the robot is planned to perform a point to point flight blindly. A 1ft

length ramp with 20◦ slope is placed on the way to make the terrain change. The

robot crossed over successfully with ground effect sensing. In the beginning, around

2-4s, the robot ascended high first and then descended to detect the ground. Once

it has been detected, the robot starts to move forward with a certain speed. Based

on the motor current feedback, if terrain change was detected, i.e., motor current is

much lower than the predefined threshold iL3.3c̄ and iR3.3c̄ (out of the dead-band zone),

altitude reference will be adjusted accordingly to accommodate such terrain change

as demonstrated in 7-8s, 9-10s, and 11-13s flight. During such terrain following,

the robot keeps recording altitude information. With the recorded data, the flight

trajectory (z-axis) can be further used to reconstruct the actual terrain topology as

shown in Figure 5.6.(c).
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Figure 5.6. : (a). Time sequential result of a typical terrain sensing and mapping

test. (b). The cycle-averaged current feedback data corresponds to (a). (c). Altitude

mapping result through ground effect.

5.4.2 Wall Following

In this test, the robot was commanded to perform a point to point flight, same as

the terrain following test. A 1×2ft2 wall is placed on its way to block the flying path.

During the flight, the robot relied on the wing collisions to sense the wall, and then

altered the flight trajectory to avoid it. As shown in Figure 5.7, in this typical flight

test, after a couple of collisions and path alternations (around at 5s, 8s, 10s, 13s), the

vehicle passed the wall. Through the touch-based navigation method, the instanta-

neous motor current feedback can indicate wing collisions and obstacles existence. As

shown in Figure 5.7.(b), the two enlarged areas with detailed upstroke/downstroke

current feedback are corresponding to the 8s and 13s collisions in this flight trial.

They represent collision case 1 and 2 as mentioned in section.5.2.2 respectively. Since

the instantaneous motor current signal is noisy, in order to eliminate false positives,
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Figure 5.7. : (a). Time sequential result of a typical wall sensing and mapping test.

(b). The instantaneous current feedback data corresponds to (a). (c). Actual flight

path with collisions and path alternations.

multiple wing collisions are allowed around the suspected obstacle location. Mean-

while, during the flight, as long as the collisions were detected, the coordinate of such

bumping points would be recorded. As shown in Figure 5.7.(c), with the recorded

points, we can roughly sketch the outline of the obstacle.

5.4.3 Passing Narrow Corridor

In this test, our robot challenged navigating a narrow corridor with a sharp turn.

The corridor was constructed with both wall barrier and varying terrain, which can

block VICON feedback in some spots. To further increase the difficulty, the path

width of the corridor was adjusted to less than two wingspans of our robot. Without

any aiding information, navigating such a tight, unexplored, obstacle-filled space can

be a challenging task for most MAVs. We demonstrated that flapping wing MAVs
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Figure 5.8. : (a). Time sequential result of a typical corridor navigating. (b). Actual

flight path with collisions and path alternations. (c). Altitude mapping result through

ground effect.

with the somatosensory-like feedback of their reciprocating wings show a natural ad-

vantage in the perception and adaptation of complex environments. Although With-

out visual sensor support, the robot successfully finished this flight task with solely

the interpreted environmental information from the wings that enable the fly. Similar

to the above two tests, with the recorded ground surface information and collision

coordinates, the contours of the obstacles can be extracted. A typical flight path and

obstacle detections are shown in Figure 5.8.(b)(c). The red dot and arrow indicate

the perceived obstacle point and the corresponding heading direction in collisions.

With multiple flights, the distribution of collision points can be more uniform

which result in a more complete and accurate outline of the corridor interior as shown
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in Figure 5.9. With such information, an artificial field can be generated to facilitate

planning a safety path, aiding the later on platforms to avoid superfluous collisions.

With a central node that gathers all of the collision points, this concept is certainly

feasible and can be extended to many complex application scenarios.
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Figure 5.9. : With more flights, the contours of the corridor can be sketched clearly.

5.5 Conclusions

In this chapter, we propose to use actuator loading to sense surrounding change

and assist onboard navigation of MAVs in confined spaces. The main concept of this

design is inspired by flying animals, whose wings can be a somatosensory sensor to

perceive surrounding changes and aid in motion/path planning. Different from fixed

or rotary-winged vehicles, FWMAVs take such a unique advantage from their natural

counterparts, using their reciprocating wings in dual-functions: actuation and sens-

ing. In this work, we demonstrate the first hummingbird-scale robot using its flapping

wings to obtain the somatosensory-like feedback. Such a sensing function is enabled

by incorporating the instantaneous motor current feedback of the wing system, which

directly senses wing load change while it does not affect its actuation function. The
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feasibility of the proposed sensing method has been experimentally validated. We

successfully use our robotic hummingbird’s flapping wings as the primary sensor for

navigating through a tight, unexplored, obstacle-filled space. Such a dual-functional

design provides many advantages, such as no additional payload, high sensing band-

width and sensitivity (depending on wingbeat frequency), and low computation load

which hold a great promise on a variety of applications for the robots who faces SWaP

constraints. Furthermore, it can serve as an alternative or complementary method to

other sensing approaches.
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6. UNTETHERED FLIGHT

In this chapter, we present the first bio-inspired FWMAV powered by only two actu-

ators and capable of sustained untethered flight in both indoor and outdoor environ-

ment. Sustained stable hovering of the proposed FWMAV is achieved through a pair

of independently controlled wings, a key inspiration from its natural counterparts.

The untethered flight of such FWMAVs is a challenging task due to stringent

payload limitation from severe underactuation and power efficiency challenge caused

by motor reciprocating motion. In this work, we present the detailed modeling,

optimization, and system integration of onboard power, actuation, sensing, and flight

control to address these unique challenges of such FWMAV during untethered flight.

We performed untethered flight experiments in both indoor and outdoor environment

and demonstrate sustained stable flight of the robot.

Figure 6.1. : Untethered sustained outdoor hover flight of a hummingbird-scale flap-

ping wing robot. Background is blurred to reduce distractions.
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6.1 Introduction

Drawing inspiration from insects and hummingbirds for their hovering capability

and acrobatic maneuvering performance [6, 7, 9], researchers have been creating bio-

inspired Micro Air Vehicles (MAVs) with morphology and kinematics similar to their

natural counterparts. Compared to conventional flying vehicles, flapping wing MAVs

are capable of sustained flight with small-sized wings and low Reynolds numbers due

to their unique unsteady aerodynamic mechanism. Therefore, they are promising

alternatives to conventional MAVs especially at small-scale and can work favorably

in tight indoor spaces as well as outdoor environments.

To date, several prototype insect or hummingbird scale Flapping Wing Micro Air

Vehicles (FWMAVs) have demonstrated stable hovering [26, 31, 32, 35, 42, 43, 105].

Their flapping mechanisms are either based on a unidirectional motor coupled with

four-bar (or equivalent) [26, 31, 32, 35] or direct-driven bi-directional actuation [42,

43, 105]. Accordingly, flight control is achieved through either additional servos to

modulate wing stroke plane or wing differential (of left and right wings) [26,31,32,35]

or instantaneous direct and independent modulation of wing kinematics [42,43,105].

In the latter case, by taking advantages of decoupled wings with independent wing

kinematic control, such bio-inspired flapping-wing vehicles employ the key inspiration

from real animals and can approximate their highly controllable and maneuverable

flight even though they are severely underactuated [43,47].

Untethered flight of insect or hummingbird inspired platforms have appeared in

recent years. For the insect-inspired platforms, [37] and [38] have demonstrated un-

tethered liftoff, showing the potential for fully untethered autonomous flight. While

insect-sized platforms may have their specific limitation on the size and weight of

payload, larger platforms such as hummingbird-sized MAVs have the potential to

accommodate larger and heavier payload and off-the-shelf sensors, microcontrollers,

and power source. To date, the untethered flight of hummingbird-sized FWMAVs

is based on unidirectional motor(s) actuated four-bar mechanism coupled with ad-
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ditional servos for flight control [26, 31, 32, 35]. As a result, system integration for

the untethered flight of such systems is relatively straightforward with available solu-

tions and commercially available controller and driver modules. For the direct-drive

bi-directional motor actuated platform such as the one described in this chaper, a

systematic wing-actuation system design is needed to address instantaneous power

fluctuation and energy consumption due to frequent acceleration and deceleration of

the motors from their fast reciprocating motion. Such a unique power efficiency issue,

coupled with payload capacity constraints caused by actuation limitation, calls for

systematic design optimization and customized hardware and software solutions in

system integration of the untethered robot to accommodate SWaP constraint.

In this work, we present the sustained stable untethered flight of a dual-motor ac-

tuated at-scale hummingbird robot. Compared to our previous tethered design which

has unlimited energy input via power wires in Chapter 3∼5, untethered flight be-

comes energetically expensive and requires more payload capacity to handle onboard

power source. Correspondingly, the system integration becomes more challenging

because it requires to lead the prototyped vehicle close to its natural counterparts’

size and weight meanwhile provide sufficient power and control effort. In this article,

the particular issue of such a severely underactuated bio-inspired system - trade-

off between payload limitation and power efficiency, has been solved systematically

through a multi-object optimization. Following the guidance from the optimization

result, the system integration challenge has been addressed by customized onboard

actuation, sensing, control, and power supply designs. In particular, two DC motors

are used to actuate the vehicle. The wing trajectories are altered by two indepen-

dent onboard drivers, which is controlled by an STM32 microcontroller for desired

aerodynamic thrust and control torques generation. Body attitude of the proposed

platform is sensed by onboard inertial sensors. A customized dc-dc power regula-

tor is attached to separate the power of logic and actuation circuits. System power

comes from two rechargeable onboard batteries. All components and parameters of

the system are carefully selected to satisfy performance requirements while matching
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real hummingbirds’ size and weight. Both indoor and outdoor flight tests have been

conducted experimentally. To the best of our knowledge, such results present the

first bio-inspired FWMAV powered by only two actuators and capable of performing

sustained autonomous flight. It is also the first untethered flight of an at-scale tailless

hummingbird robot with independently controlled wings, a key inspiration from its

natural counterparts.

6.2 System Design

Based on the modeling of the motor-wing dynamics and energy consumption in

section 2.2.3, a systematic design optimization was conducted to inspire the unteth-

ered vehicle design, which governs wing morphology and kinematics, system reso-

nance, actuator characteristics, power input, and power regulation performance. Be-

sides the single object optimization in the previous design [36], which only focuses on

generating sufficient thrust and control effort, energy efficiency is also important and

is incorporated here to accommodate energy consumption and payload constraints for

untethered flight. As a result, multi-object optimization is used here to address pay-

load capacity and energy efficiency challenges in such design. This optimization prob-

lem can be formulated as: defining objective functions [f1(x), f2(x), f3(x), ..., fn(x)]

that needs to be minimized over the vector x subject to certain constraints X.

In particular, the optimization is

min[−γl2w(x),−η̄(x)], x ∈X (6.1)

where γl2w(x) represents lift-to-weight ratio, η̄(x) is the averaged actuation efficiency,

x is the feature vector of the design subject to certain constraints. In particular, we

define x = [Rw, c̄, f,Ψw, Ng, Ks, ζ]T .

We set boundary conditionX according to the biological inspiration, e.g., mimick-

ing wing morphology and the key kinematic characteristics from real hummingbirds.

In particular, Rw ∈ [50, 90] mm, c̄ ∈ [8, 40] mm, f ∈ [10, 50] Hz, to cover the different

hummingbird species. Ψw ∈ [0,±95], which represents the range of stroke amplitude
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Figure 6.2. : Pareto Front of the robot design. x∗ is the selected design.

of the wing. Ψw is constrained by mechanical configurations particularly. In addition,

our previous design experience also provides valuable intuitions for gear and spring

(Ng and Ks) selection [36]. Power loss in regulation step is calibrated and detailed

in section 6.3. Generic algorithm is used here to solve the numerical solution. Popu-

lation size is 200. Termination criteria is defined by maximum generations, which is

set to 200. Crossover law is used for combining the genes. Fitness function is formu-

lated based on the wing kinematics modeling and efficiency estimation presented in

Chapter 2. The optimal result is shown in Figure 6.2.

Note that actuator selection is essential since its weight and power density de-

termines the scale of the entire system. To achieve an at-scale robot similar to real

hummingbird size and weight, we use small size DC motor due to its high power

density at tens-of-gram scale [29], as presented in Chapter 1. For this purpose, we

studied the off-the-shelf high-performance 3∼6mm diameter precision motors to seek

optimized solutions, as shown in Figure 6.2. Our final choice is Maxon EC6Φ2W

with x∗ = [70, 21.2, 34,±75, 10, 0.0134, 0.8]. Such a design resulted in a vehicle close
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to a typical magnificent hummingbird presented in [5], whose Rw = 77mm, c̄ =

19.5mm, f = 32Hz. Furthermore, as shown in Figure 6.2, it can handle the particu-

lar payload capacity and power efficiency requirement of the proposed hummingbird

robot to achieve untethered autonomous flight.

General physical parameters of our specific wing-actuation system can be found

in Table 6.1. The untethered design of the proposed hummingbird robot is shown in

Figure 6.3. It keeps similar morphology as the tethered flight version and the total

weight grows up to 20.4 grams with batteries and onboard electronics. Details of the

onboard system are presented in section 6.3.

Figure 6.3. : Illustration of system integration of the proposed robot.

6.3 Onboard System Integration

In this section, we detail the design and integration of the onboard system. The

prototyped platform consists of motor drivers, a micro control unit, onboard sensors,

and power regulation circuits. The design follows the design presented in Table 6.1.

As a result, Figure 6.4 shows the schematic diagram and the prototyped circuits

respectively. We introduce each module one by one below.
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Table 6.1. : Parameters of The Proposed Wing-actuation System

term definition value unit

Jm motor inertia 0.703 g.mm2

Bm motor damping 9700 mN.mm.sec

Ka motor torque constant 1750 mN.mm/A

Ra motor winding resistor 12.4 Ohm

Ng gear ration 10 -

ηg gear efficiency 0.8 -

Jg gear inertia 4.7 g.mm2

Ks spring coefficient 0.0134 mN.mm/rad

Jw wing inertia (stroke direction) 215.9 g.mm2

Jwr wing inertia (rotation direction) 14.0 g.mm2

Jwrs product wing inertia (rotation-stroke) 26.5 g.mm2

α optimized AOA ≈ 45 degree

Rw wing span length 70 mm

r̄ mean chord length 21.2 mm

B̄w cycle-averaged aerodynamic damping coefficient 61856 mN.mm.sec

r̂1 1st dimensionless moment of wing area 0.4 -

r̂2 2nd dimensionless moment of wing area 0.53 -

r̂3 3rd dimensionless moment of wing area 0.59 -

mw wing mass 0.09 g

Ψw0 nominal stroke amplitude ±75 degree

ζ power regulation efficiency 0.8 -

6.3.1 Actuation

To enable the flapping motion of wings, the motors undergo bi-directional oscilla-

tion. The DC motors are driven by alternating magnetic fields generated by switching
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Figure 6.4. : Schematic diagram and prototyped circuits of the complete onboard

electronic system that enables untethered flight of the proposed hummingbird robot.

the motor commutation sequence periodically. Here we use H-bridge circuit which is

composed of three pairs of DMOS (double-diffused MOSFET) transistors to power

the motor. Each motor has three embedded hall sensors to provide rotational position

feedback for motor commutation. With this basic circuit structure, we can specify

the requirement of the power capability of the onboard driver based on the estimated

power consumption as discussed in section 2.2.3. The power specifications, namely

gate-source voltage and peak-peak output current, can then be estimated and used to

guide the specific driver design. As shown in Figure 6.4, the prototype circuit board

on the test platform was equipped with two DMOS driver-L6235Q (7×7×1mm, 0.14

grams), and it is able to conduct 8-18V gate-source voltage and 0.1-1.2A continuously

current on a 10×34mm2 customized printed circuit board (PCB).

Performance of the circuit depends not only on the appropriate transistor used,

but also carefully designed peripheral circuits. Since the H-bridge usually behaves

like a switch, it imposes a problem where the output power drops too much during

the periods of motor commutation. To solve this problem, installing a reservoir ca-
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pacitor for instantaneous power bootstrap is a practical solution. A fitted reservoir

capacitor is the key component in the entire driver circuit design since it dominates

the consistency of the electrical power. Without it, the wing actuation system cannot

generate lift. During the wing flapping, the reservoir capacitor undergoes simultane-

ous charged-discharged frequently. Therefore, in order to provide adequate energy for

bootstrapping, the power capability of the reservoir capacitor must be higher than

the power consumption on the discharged stage. The averaged power capability of

reservoir capacitor Pc is given by

Pc = CrV
2/2tc, (6.2)

where tc is the operation time, and Cr is the desired capacitance of the reservoir

capacitor.
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Figure 6.5. : (a). A typical record of the instantaneous current and voltage in normal

hover flight condition. (b).The differential amplitude of the left and right wings are

generated by flight control for the attitude stabilization. Digitized wing kinematics

can be used for runtime power estimation.

A typical runtime power consumption is shown in Figure 6.5, which requires

13.0V/0.47A mean voltage/current for stable hovering. Based on equation 2.12, the

overall power efficiency is about 24% in this test. To govern all possible flight con-

ditions, the reservoir capacitor on our platform should at least be 32.7uF theoreti-

cally. Considering the commercially availability and the fabrication errors, 47uF is
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currently used. With a certain capacitance, we can choose dielectric material then.

Since the effect of dielectric materials on actuation performance is difficult to model,

we verify it through experimental tests. The result is shown in Figure 6.6. In Figure

6.6, the lift generation result of a particular voltage is the average of a total of five

datasets wherein one dataset contains 100000 samples of wing motion data with the

5KHz sampling frequency. As a result, Multi-Layer Ceramic Capacitors (MLCCs)

can compete with the others and exhibit overall as good performance as the tantalum

capacitor. Actually, both MLCCs and tantalum capacitors are fitted to the test plat-

form, in which the overall weight of the MLCC is lighter, while the tantalum capacitor

performs better under thermal effect. Aluminum capacitors are not competitive in

performance, especially when the motor is overheated.
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Figure 6.6. : Performance comparison of bootstrap capacitance with different di-

electrics. (a). Motor and driver working in normal condition. (b). Motor and driver

working in overheated condition.

For the selection of the bootstrap capacitor, the equivalent series resistance also

needs to be considered, because it is one of the leading causes of motor torque ripple.

As expressed in

Vo = Vs − Io ∗ (Req + ton/Cres), (6.3)
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where Vo and Io are the output voltage and current respectively, Vs is the power

source voltage, Req is the equivalent series resistance of the bootstrap capacitor, and

ton is the discharging time. Since ton/Cres ≈ 0, Io ∗ Req is the approximated voltage

ripple. Depending on the maximum allowed voltage ripple ∆V and the corresponding

output current of the driver board, the selection of a reservoir capacitor must satisfy

Req < ∆V/Io.

Note, torque ripple is not only derived from Req, but also from the parasitic

inductance in the circuit, backlash of the gears, airframe vibrations, and unsteady

aerodynamics. Placing small ceramic capacitors close to the power source and the

ground pin can counter the impact of parasitic inductance. Other mechanical factors

can only be attenuated by elaborated components layout and active control.
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Figure 6.7. : Torque ripple suppression via motor current control.

For our direct-drive wings, the motor current feedback directly responds to the

motor load changes, including aerodynamic changes, cogging force, and torque rip-

ples. In the case of the pure open-loop control of the wing kinematics, the output
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torque expresses relative strong pulsations as shown in Figure 6.7. In order to acquire

a smoother torque output, active current control is implemented on the test flapping-

wing platform to reject the external disturbances. In particular, a proportional-

integrated controller is used. Current feedback passes through a 200Hz filter to at-

tenuate control input jerks. Compare to the open-loop control result, the torque

ripple is reduced, which is reflected in the motor current feedback, i.e., fluctuation

magnitude reduced from ± 0.5A to ± 0.15A.

6.3.2 Sensing and Control

For onboard sensing, two sensing resistors and a splitting IMU module are equipped

on the robot for motor current feedback and attitude sensing, as introduced in pre-

vious chapters. The selected sensors are both with small sizes and lightweights. An

STM32 microcontroller was chosen as our onboard Micro Control Unit (MCU), which

combines a 32-bit ARM Cortex-M4 core (with FPU and DSP instructions), running

at 72 MHz. Such a microcontroller allows analog input/output, such as current feed-

back, while handling other digital auxiliary sensors and peripheral devices. In normal

flight, the embedded microcontroller should handle: 3 timers for wing kinematics con-

trol, sensor fusion and flight control, and communication; 1 I2C port to gather IMU

measurements; 1 serial port to communicate with the ground station to get position

feedback; 6 PWMs for motor control; 2 analog input port for current sensing. For the

outdoor test, due to the lack of the miniaturized position sensor, our position con-

trol algorithm presented in Chapter 4 cannot be enabled on this tetherless platform.

Attitude controller is always working behind for stabilization.

6.3.3 Power Regulation

Considering the payload limitations of the vehicle and the availability of com-

mercial products, we use two 100mAh Li-po batteries (zon.cell LP601420P30) as the
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on-board power supply. The total weight of the onboard batteries is about 5∼6 grams.

Such a weight cost has already been considered in system optimization.

The onboard system is assembled with logic and analog circuits. Their rated

working conditions are completely different. We implement three power regulation

circuits to enable their respective functions. Original battery output (≈ 7.4V) is

converted to 3.3V and 5V to power the onboard microcontroller and sensors. Such

regulators - TPS76033/50 are embedded in the control and driver board.
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Figure 6.8. : Illustration of the step-up regulator performance. Regulation efficiency

varies depending on battery status.

To power the H-bridge of the driver that requires 8-18V voltage input, we design

a separate regulation board for voltage step-up. Particularly, high-frequency boost

chopper technique is used. As shown in Figure 6.4, the high-frequency switching

(1MHz) is enabled by TPS61040, which can be operated with constant peak current

control to guarantee the actuation performance. The maximum load current output is

tuned up to 2A by adjusting the peripheral capacitor and inductor. Typical efficiency

of the prototyped regulator is greater than 70%, as shown in Figure 6.8. With fully

charged battery (≈8.4V), the boost efficiency is above 85% and quite stable. However,

it drops obviously when battery is low (≈6V). Based on Figure 6.8 the onboard
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batteries can support about 0.1/0.94 ∗ 0.24 ∗ 60 ∗ 0.8 = 1.23min flight, where 0.8 is

the averaged power regulation efficiency.

6.3.4 Circuit Layout

For the control and driver board design, we use the common FR-4 substrates to

construct a 4-layer stack up PCB. Each layer comes with 1 oz/ft2 copper to accom-

modate the current requirements. Whole PCB size has been shrunk to match size,

weight and power constraints while fitting the required chips and peripheral circuits

and wiring. Similar design is applied to the splitting IMU module. The separate

power regulation board is designed with only two layers to remove the unnecessary

lamination and coppers, which uses 2 oz/ft2 copper on both top and bottom layers.

The details are shown in Figure 6.9.

Control and driver board IMUPower regulater

Figure 6.9. : Illustration of the layered design of onboard system.

Since PCB layout directly affects its performance, we use layered design to sepa-

rate digital and analog nodes and paths to reduce the harmful effect from overlapping

and cross-talk. To minimize parasitic inductance, all high current tracks are designed

to connect to the specified analog ground in their shortest path, including motor driver

output and current sensing paths. To avoid the impedance and noise of the signal on

the ground path, we connect the digital and analog ground in a single point [106,107].
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Note, in this scenario, magnetic beads or inductors are not working for digital-analog

isolation since their high-frequency impedance can yield a large voltage spike between

the digital and analog grounds that may damage the embedded chips consequently.

6.4 Experimental Result and Discussion

We conducted both indoor and outdoor untethered flight experiments of proto-

typed hummingbird robot. For the indoor test, a VICON motion capturing system

with 6 cameras is used to record the vehicle attitude and position information. At-

titude control reference was set to zero during the experiments. Since there is no

onboard position sensing in the untethered flight, only attitude stability is under con-

trol yet vehicle position is drifting. From the result in Figure 6.10.(a) and (b), the

attitude error of the test platform is within 10 degrees, demonstrating excellent flight

stabilization.
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Figure 6.11. : Compound result of a typical outdoor untethered stable hovering under

15mph averaged wind gust.

A typical outdoor flight test is shown in Figure 6.11. Unlike indoor tests, outdoor

experiments encounter more disturbances such as wind gust. Being a lightweight

platform without onboard position feedback, such unpredicted external disturbances

usually cause significant positional drift and hard to perform altitude control effec-

tively, as exemplified in Figure 6.11. Since the depth of field of the image changes, it
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is difficult to certainly define constant scale information. For reference, the buildings

around the experimental site are about 11-15m high. For safety concerns, we limited

the allowable flight time (≤20s) before the vehicle fly too high and drift far away. The

test result demonstrates that the platform can also achieve sustained stable flight in

outdoor environment. After adding position sensors in the future, wind gust caused

position drift can be compensated through active position closed-loop control.

6.5 Conclusion

In this chapter, we present the untethered flight of an at-scale hummingbird robot

whose sustained stable hovering was achieved by two actuators through their respec-

tive onboard motor drivers to alter the instantaneous wing trajectories, which are

controlled by an STM32 microcontroller for desired aerodynamic thrust and flight

control torques. Body attitude of the platform is sensed by onboard inertial sensors.

A dc-dc power regulation module is attached to separate the power of logic devices

and motor drivers. System power comes from two rechargeable onboard batteries.

The proposed design is optimized to balance payload capacity and power efficiency.

To the best of our knowledge, the result presents the first bio-inspired FWMAV

equipped with only two actuators and capable of sustained stable flight in both in-

door and outdoor environment. It is also the first untethered flight of FWMAV with

independently controlled wings, a key inspiration from its natural counterparts. In

the future, we will integrate additional navigation sensors such as cameras for flight

navigation and control.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we proposed multidisciplinary research to address several common is-

sues on flapping wing micro aerial vehicles, attempting to match the performance gap

between engineered flying vehicles and their natural counterparts. The significance

of the results presented in this thesis are: 1). For the flapping-wing robots, which are

usually flying under large instantaneous oscillation, we proposed a model-based sen-

sor fusion algorithm is for real-time onboard attitude feedback. Accurate and robust

feedback is a significant prerequisite of control algorithm design. 2). With control au-

thority analysis, we show that a DRC+PID control scheme can guarantee the stable

flight of our hummingbird robot. Stationary hovering and rapid, accurate waypoint

tracking flight were conducted to demonstrate the control performance. 3). In order

to perform animal-like agile maneuvering, using model-free reinforcement learning to

train a motion planner is a feasible way. We show that the proposed hummingbird

robot is capable of performing the nearly drift-free flip maneuver with a learned ma-

neuver policy. Such performance matches that of nature flyers. 4). To address the

navigation issue in confined space, we propose the first flapping-wing robot by using

its flapping wings in such dual functions - sensing and actuation coupled in one ele-

ment for surrounding perception. It is significantly useful for those similar platforms

under tight design constraints. 5). We address the payload challenge and system de-

sign with onboard power for the proposed hummingbird robot to achieve untethered

stable flight, which is the world’s first bio-inspired FWMAV powered by only two ac-

tuators and capable of sustained hovering in both indoor and outdoor environment.

It is also the first untethered flight of an at-scale tailless hummingbird robot with

independently controlled wings, a key inspiration from its natural counterparts.
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Despite our pioneering work on the flapping-wing robots, numerous issues have

to be addressed before such robots can fly like real hummingbird. Here We outlined

several important directions to pursuit for future research as below:

Precisely fabricated wings are important for small-scale flapping wing robot. Re-

fer to Harvard Robobee, their state-of-art high precision micro-machining facilities

guarantee their insect-sized flapping wing vehicle’s flight performance. Since we use

manually fabricated wings, the amount of control effort puts on countering the mi-

nor differences of a pair of wings. From our simulated result, perfect aligned body

and symmetrical wings will push the boundary of the flight envelope significantly,

improving the flight performance.

Flight control and tracking performance can be further improved as well. Cur-

rently, the control performance is partially limited by onboard computational re-

sources. We sacrifice some transient tracking performance to reduce the computing

load. Advanced control algorithm design incorporated with a powerful onboard pro-

cessor can certainly boost control performance. For learning-based control, besides

the existing setup, a real ’end-to-end’ training can be performed: directly generates

motor voltage for robot control according to the state observation instead of following

a certain sinusoidal wing trajectory. Such a design may generate unique control and

motion plan solutions to address some certain scenarios effectively.

The demands on long-term autonomous flight necessitate the robot to provide

more payload. The current 12 grams robot prototype was able to carry up to 16

grams payload. Unfortunately, it is unlikely to be sufficient for the extra components

required to achieve long-term autonomous flight, such as more batteries and addi-

tional sensors. In fact, robot flying under full payload onboard will shorten the flight

time and impact the control performance severely. We conduct preliminary calcu-

lations that show a bit larger scale vehicle design can generate reasonable payload

capacity while needs further system-level optimization. Meanwhile, beyond current

design optimization, multi-objective optimization using Genetic Algorithm can be a

promising approach to address more trade-offs in robot design.
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Autonomous navigation in a complex environment of such small aerial vehicles

remains an open question due to computational and payload limitations. Wing load

sensing can partially solve the navigation issue in confined, cluttered space. However,

in a vast space, such as outdoors, it becomes infeasible. For autonomous navigation

flight in a broad environment, the first step is localizing the vehicle without using

VICON system. A possible solution is based on RSSI, which stands for Received

Signal Strength Indicator, represents a value of the power of a received radio signal.

The longer the distance is, the lower the RSSI signal is. Therefore, with an onboard

wireless communication module (e.g., Bluetooth, Wifi), collaborating with a couple

of wireless communication beacons, the vehicle can be localized with respect to those

additional ground station devices. However, the working range will be limited by the

available communication distance. Another possible solution is to add visual or other

optic sensors for Simultaneous Localization and Mapping (SLAM). Yet, it is currently

not feasible for such small systems due to the lack of such miniaturized sensors and

the limited payload capacity of the robot. To address this issue, the specific sensing

strategy research and robot design optimization is needed urgently.



REFERENCES



100

REFERENCES

[1] Stephen Dalton and John Kings. Borne on the wind: the extraordinary world
of insects in flight. Number QL 496.7. D34. 1975.

[2] Michael H Dickinson. Directional sensitivity and mechanical coupling dynamics
of campaniform sensilla during chordwise deformations of the fly wing. Journal
of experimental biology, 169(1):221–233, 1992.

[3] Richard E Brown and M Roger Fedde. Airflow sensors in the avian wing.
Journal of experimental biology, 179(1):13–30, 1993.

[4] Bo Cheng, Xinyan Deng, and Tyson L Hedrick. The mechanics and control of
pitching manoeuvres in a freely flying hawkmoth (manduca sexta). Journal of
Experimental Biology, 214(24):4092–4106, 2011.

[5] Bo Cheng, Bret W Tobalske, Donald R Powers, Tyson L Hedrick, Yi Wang,
Susan M Wethington, George T-C Chiu, and Xinyan Deng. Flight mechanics
and control of escape manoeuvres in hummingbirds ii. aerodynamic force pro-
duction, flight control and performance limitations. Journal of Experimental
Biology, pages jeb–137570, 2016.

[6] CP Ellington. The aerodynamics of insect flight. ii. morphological parameters.
Phil. Trans. R. Soc. Lond. B, 305:17–40, 1984.

[7] Michael H Dickinson, Fritz-Olaf Lehmann, and Sanjay P Sane. Wing rotation
and the aerodynamic basis of insect flight. Science, 284(5422):1954–1960, 1999.

[8] Mao Sun and Jian Tang. Unsteady aerodynamic force generation by a model
fruit fly wing in flapping motion. Journal of experimental biology, 205(1):55–70,
2002.

[9] Sanjay P Sane. The aerodynamics of insect flight. The journal of experimental
biology, 206(23):4191–4208, 2003.

[10] Wei Shyy, Yongsheng Lian, Jian Tang, Dragos Viieru, and Hao Liu. Aerody-
namics of low Reynolds number flyers, volume 22. Cambridge University Press,
2007.

[11] John P Whitney and Robert J Wood. Aeromechanics of passive rotation in
flapping flight. Journal of fluid mechanics, 660:197–220, 2010.

[12] JWS Pringle. The excitation and contraction of the flight muscles of insects.
The Journal of physiology, 108(2):226–232, 1949.

[13] Susanne Sterbing-D’Angelo, Mohit Chadha, Chen Chiu, Ben Falk, Wei Xian,
Janna Barcelo, John M Zook, and Cynthia F Moss. Bat wing sensors support
flight control. Proceedings of the National Academy of Sciences, 108(27):11291–
11296, 2011.



101

[14] Douglas L Altshuler, Joseph W Bahlman, Roslyn Dakin, Andrea H Gaede,
Benjamin Goller, David Lentink, Paolo S Segre, and Dimitri A Skandalis.
The biophysics of bird flight: functional relationships integrate aerodynamics,
morphology, kinematics, muscles, and sensors. Canadian Journal of Zoology,
93(12):961–975, 2015.

[15] Jiang Hao Wu and Mao Sun. Unsteady aerodynamic forces of a flapping wing.
Journal of Experimental Biology, 207(7):1137–1150, 2004.

[16] Wei Shyy, Hikaru Aono, Satish Kumar Chimakurthi, Pat Trizila, C-K Kang,
Carlos ES Cesnik, and Hao Liu. Recent progress in flapping wing aerodynamics
and aeroelasticity. Progress in Aerospace Sciences, 46(7):284–327, 2010.

[17] Xinyan Deng, Luca Schenato, Wei Chung Wu, and S Shankar Sastry. Flapping
flight for biomimetic robotic insects: Part i-system modeling. IEEE Transac-
tions on Robotics, 22(4):776–788, 2006.

[18] Xinyan Deng, Luca Schenato, and S Shankar Sastry. Flapping flight for
biomimetic robotic insects: Part ii-flight control design. IEEE Transactions
on Robotics, 22(4):789–803, 2006.

[19] Robert J Wood. The first takeoff of a biologically inspired at-scale robotic
insect. IEEE transactions on robotics, 24(2):341–347, 2008.

[20] GCHE De Croon, KME De Clercq, Remes Ruijsink, B Remes, and Christophe
de Wagter. Design, aerodynamics, and vision-based control of the delfly. Inter-
national Journal of Micro Air Vehicles, 1(2):71–97, 2009.

[21] QV Nguyen, WL Chan, and M Debiasi. Performance tests of a hovering flapping
wing micro air vehicle with double wing clap-and-fling mechanism. In IMAV
2015: Proc. Int. Micro Air Vehicle Conf., Aachen, Germany, 15–18 September,
2015.

[22] Jesse A Roll, Bo Cheng, and Xinyan Deng. An electromagnetic actuator for
high-frequency flapping-wing microair vehicles. IEEE Transactions on Robotics,
31(2):400–414, 2015.

[23] Yang Zou, Weiping Zhang, and Zheng Zhang. Liftoff of an electromagnetically
driven insect-inspired flapping-wing robot. IEEE Transactions on Robotics,
32(5):1285–1289, 2016.

[24] Jesse A Roll, Dane T Bardroff, and Xinyan Deng. Mechanics of a scalable
high frequency flapping wing robotic platform capable of lift-off. In Robotics
and Automation (ICRA), 2016 IEEE International Conference on, pages 4664–
4671. IEEE, 2016.

[25] Takashi Ozaki and Kanae Hamaguchi. Bioinspired flapping-wing robot with
direct-driven piezoelectric actuation and its takeoff demonstration. IEEE
Robotics and Automation Letters, 3(4):4217–4224, 2018.

[26] Matthew Keennon, Karl Klingebiel, Henry Won, and Alexander Andriukov. De-
velopment of the nano hummingbird: A tailless flapping wing micro air vehicle.
In AIAA Aerospace Sciences Meeting, 2012.



102

[27] Domenico Campolo, Muhammad Azhar, Gih-Keong Lau, and Metin Sitti. Can
dc motors directly drive flapping wings at high frequency and large wing strokes?
IEEE/ASME Transactions on Mechatronics, 19(1):109–120, 2012.

[28] Lindsey Hines, Domenico Campolo, and Metin Sitti. Liftoff of a motor-driven,
flapping-wing microaerial vehicle capable of resonance. IEEE Transactions on
Robotics, 30(1):220–232, 2013.

[29] Lindsey Hines, David Colmenares, and Metin Sitti. Platform design and teth-
ered flight of a motor-driven flapping-wing system. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 5838–5845. IEEE, 2015.

[30] David Coleman, Moble Benedict, Vikram Hirishikeshaven, and Inderjit Chopra.
Development of a robotic hummingbird capable of controlled hover. Journal of
the American Helicopter Society, 62(3):1–9, 2017.

[31] A Roshanbin, H Altartouri, M Karásek, and André Preumont. Colibri: A
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[96] Gildas Besançon. Remarks on nonlinear adaptive observer design. Systems &
control letters, 41(4):271–280, 2000.

[97] Fan Fei, Zhan Tu, Yilun Yang, Jian Zhang, and Xinyan Deng. Flappy humming-
bird: An open source dynamic simulation of flapping wing robots and animals.
In 2019 IEEE International Conference on Robotics and Automation (ICRA),
pages 9223–9229. IEEE, 2019.

[98] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[99] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. In Inter-
national Conference on Machine Learning, pages 1329–1338, 2016.

[100] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-to-real transfer of robotic control with dynamics randomization. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages
1–8. IEEE, 2018.

[101] Erica J Kim, Marta Wolf, Victor Manuel Ortega-Jimenez, Stanley H Cheng, and
Robert Dudley. Hovering performance of anna’s hummingbirds (calypte anna)
in ground effect. Journal of The Royal Society Interface, 11(98):20140505, 2014.

[102] H Lu, KB Lua, YJ Lee, TT Lim, and KS Yeo. Ground effect on the aero-
dynamics of three-dimensional hovering wings. Bioinspiration & biomimetics,
11(6):066003, 2016.

[103] Vladimir J Lumelsky and Tim Skewis. Incorporating range sensing in the robot
navigation function. IEEE Transactions on Systems, Man, and Cybernetics,
20(5):1058–1069, 1990.
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