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ABSTRACT 

Through the computing advance and GPU (Graphics Processing Unit) availability for math 

calculation, the deep learning field becomes more popular and prevalent. Object detection with 

deep learning, which is the part of image processing, plays an important role in automatic vehicle 

drive and computer vision. Object detection includes object localization and object classification. 

Object localization involves that the computer looks through the image and gives the correct 

coordinates to localize the object. Object classification is that the computer classification targets 

into different categories. The traditional image object detection pipeline idea is from Fast/Faster 

R-CNN [32] [58]. The region proposal network generates the contained objects areas and put them 

into classifier. The first step is the object localization while the second step is the object 

classification. The time cost for this pipeline function is not efficient. Aiming to address this 

problem, You Only Look Once (YOLO) [4] network is born. YOLO is the single neural network 

end-to-end pipeline with the image processing speed being 45 frames per second in real time for 

network prediction. In this thesis, the convolution neural networks are introduced, including the 

state of art convolutional neural networks in recently years. YOLO implementation details are 

illustrated step by step. We adopt the YOLO network for our applications since the YOLO network 

has the faster convergence rate in training and provides high accuracy and it is the end to end 

architecture, which makes networks easy to optimize and train.  

 

Keywords: Deep Learning, Object Detection, YOLO. 



 
 

13 

 INTRODUCTION 

1.1 The Original of Deep of Learning 

Artificial intelligence (AI) [1], machine learning and deep learning are not three separate things, 

they are closely related each other. The artificial Intelligence is the biggest part, which contains 

cognitive capabilities, such as solving problems and learning from examples. AI consists of narrow 

AI, general AI and Strong AI. Narrow AI deals with scenarios in which the machine can do better 

than human in a specific task. General AI copes with scenarios like human in any intellectual task. 

Strong AI is in the area that the machine or computer can do much better than human in many 

tasks.  

 

Machine learning is a subset of AI. The definition, from Arthur Samuel, one of the pioneers of 

machine learning, is “field of study that gives computers the ability to learn without being 

explicitly programmed.” Machine learning has two areas, that is, supervised learning which should 

have at least two-dimensional inputs, input and output; and unsupervised learning which only need 

input data. In the latter case the machine learns from the input and finds the regular pattern.  

 

Deep learning [12] [19] is a subset of machine learning. Deep learning mainly indicates deep neural 

networks learning. Deep learning has input layer, hidden layer and output layer. Deep learning 

network is heavily used in image recognition. With a tremendous increase in computer computing 

power and the developed convolution neural networks, the hidden layers in deep learning network 

can have more depth than before. Because of this, the accuracy and speed by using deep learning 

can be significantly enhanced. 

1.2 Deep Learning in Computer Vision 

Computer vision or machine vision is that computers or related devices simulate the human vision. 

Computer processes images or videos to obtain the information that human can easily understand 

and describe. Aiming to address this, scientists teach a computer or machine to learn a way to deal 

with human vision. At the beginning, scientists used the histogram of gradient, HOG [2] and scale-

invariant feature transform SIFT [3], the traditional hand-crafted feature, with shallow-layer model 
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to teach the computer or machine to understand images and videos. With a rapid development of 

deep learning, convolutional neural network (CNN) is evolved and becomes a new representative 

method in computer vison. The definition of computer vision is complicated, and it is an 

interdisciplinary area, including artificial intelligence, digital image processing, machine learning, 

deep learning, pattern recognition, probabilistic graph models, scientific calculations and a series 

of mathematical calculations. There are many implementations which will be introduced as 

following. 

1.2.1 Object Detection and Recognition 

Object detection is our main and basic research direction. Depending on the image or a frame in 

video, the algorithm can find common objects in it, and furthermore can give the location 

information about objects along with even making a category for different objects. A typical 

application with a detection algorithm includes face detection for security identification and 

vehicle plate detection for a paid parking lot. 

1.2.2 Image Semantic Segmentation 

Image segmentation is an analysis task in image processing. The computer processes the image 

using a segmentation algorithm to determine a segmented area for class label, such as person, road, 

sky, car, flower, dog, tree or ocean. It is pixel level recognition for object detection.  

1.2.3 Track Movement 

Track movement is also one of the basic problems in the field of computer vision. In recent years, 

it has been developed rapidly. The method has also been extended from the past low-depth 

algorithm to the deep learning algorithm, and the precision is getting higher and higher. However, 

the accuracy of real-time deep learning in a tracking algorithm has been difficult to improve. The 

tracking algorithm with very high precision runs very slow, so it is difficult to come in handy in 

practical applications. Visual tracking refers to detecting, extracting, recognizing and tracking 

moving targets in image sequences, and obtaining motion parameters of moving targets, such as 

position, velocity, acceleration and motion trajectory, so as to carry out the next processing and 
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analysis to achieve the motion. The behavior of the target is understood to complete a higher level 

of detection for task tracking. 

 

Currently, tracking movement is particularly a hot research direction in athlete sports posture 

detection, aiming to give athletes suggestions in the training period. 

1.2.4 Visual Question Answering 

Visual Question Answering referred to as VQA, is a very popular direction in recent years. 

Generally speaking, the VQA system needs to take pictures and questions as input and combines 

these two parts of information to produce a human language as an output. For a specific picture, if 

we wonder the machine to answer a specific question about the picture in Natural Language 

Processing (NLP), we need to make the machine to have certain content, the meaning, the intention 

of the question, and related common-sense understandings. In terms of its nature, this is a 

multidisciplinary research issue. 

1.2.5 3D Reconstruction 

Vision-based three-dimensional reconstruction refers to acquiring the image data of the scene 

object through the camera, analyzing and processing the image, and combining computer vision 

knowledge to derive a three-dimensional information of an object in a real environment. The focus 

of 3D reconstruction technology is how to obtain the depth information of a target scene or object. 

Under the condition that the depth information of the scene is known, only the location and 

integration of the point data are needed to achieve the 3D reconstruction of the scene. 

1.3 Objectives 

This thesis research is dedicated to investigating the development of deep learning techniques 

including the most popular network structures; then study the YOLO neural network architecture 

with modification. Finally, a new deep learning optimized architecture will be proposed, and its 

performance improvement will be demonstrated. 
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1.4 Organization of Thesis 

This thesis is organized into five parts.  

 

Part 1: Introduction, the artificial intelligence development is introduced, and several fields related 

with computer vision in deep learning are brifiely described.  

 

Part 2: Background, convolutional neural network [18] which is heavily used in deep learning field 

is introduced, including convolutional neural networks architechture, the difference and 

advantagement over multilayer perceptions. Then the state-of-the-art architectures commonly used 

in convolutional neural networks are described. After this, the main part is the review models of 

object detection networks which are very widely used. These most popular models are the basic 

knowledge of this thesis work. 

 

Part 3: Methdology, this is the  details about thesis experiment and implementation. The first task 

is to prepare an enviroment which supports a deep learning platform and to verify codes. Then 

collection and collattion of dataset comes to  the beginning of deep learning. Due to the limited 

dataset, it is especially important to make data augmentation. When data is ready, the simple 

convolutional neural networks is implemted to achieve image classification withthe cutting-edge 

model You Only Look Once, YOLO [4]. Based on our own dataset, the YOLO architecture details 

are customized to achieve our own task. 

 

Part 4: Evaluation and Discussion part, we demonstarte our output information and discuss our 

designed model shortage. 

 

Part 5:  Conclusion,   the summary results of this reesrach work are presneted and conclusions 

are drawn in this chapter.  
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 BACKGROUND 

2.1 Traditional Machine Learning 

2.1.1 Logistic Regression 

When we mention about the Logistic Regression, we must review the linear regression [5]. Both 

of them could do prediction from the dataset. We will briefly introduce the linear regression. 

 

The linear regression is a eqation could make one or multiple variables to regress to a linear 

function using a least squares method. Dataset is denoted by {𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3, … ,𝑦𝑦𝑛𝑛} corresponding 

to {[𝑥𝑥11, 𝑥𝑥21, 𝑥𝑥31, … , 𝑥𝑥𝑚𝑚1 ], [𝑥𝑥12, 𝑥𝑥22, 𝑥𝑥32, … , 𝑥𝑥𝑚𝑚2 ], … , [𝑥𝑥1𝑛𝑛 , 𝑥𝑥2𝑛𝑛, 𝑥𝑥3𝑛𝑛, … , 𝑥𝑥𝑚𝑚𝑛𝑛 ]}. Note that n is the number of 

samples, m is the number of variables, and y ∈ {0, 1}. Thus, the formula takes the form 

𝑦𝑦𝑖𝑖 =  𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1𝑖𝑖 + ⋯+  𝜃𝜃𝑚𝑚𝑥𝑥𝑚𝑚𝑖𝑖 + 𝑒𝑒𝑖𝑖 = 𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑒𝑒𝑖𝑖,    𝑖𝑖 = 1, … ,𝑛𝑛 (1) 

 

Again, notice that y is not only influenced by x, but is also influenced by a random error. This 

formula is the straight line in the Cartesian coordinate system. Due to this feature, the linear 

regression could separate one dataset into two different areas which is the idea of the logistic 

regression. After using the above formula, the activation function applies on the linear regression 

output [6]. The formula is given as following 

ℎ𝜃𝜃(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑦𝑦
=

1
1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖

(2) 

 

where ℎ𝜃𝜃(𝑥𝑥) is the hypothesis, estimated probability, when y = 1 on input X. 

Among them 

y =
1

1 + 𝑒𝑒−𝑥𝑥
(3) 

 

is designed as the sigmoid function, which is commonly used in the logistic regression. 
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Figure 2.1. Sigmoid function. 
 

The logistic regression contains the word ‘regression’, but it is not a regression model and it is a 

classification model. 

2.1.2 Softmax Regression 

The logistic regression is widely used in industrial engineering, because of its low complexity of 

the algorithm and easy for implementation of the features, etc. However, the logistic regression 

algorithm is mainly dealt with two-category (binary) problem which is not suitable for multi-

classification. In this case, an algorithm capable of handling a multi-classification problem come 

to play. The softmax regression [7] algorithm is a generalization of the logistics regression 

algorithm, that is, the value of the class label y is greater than or equal to two. Assume that we 

have data {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)} of n labeled samples. 𝑥𝑥𝑖𝑖  is the set of {𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … , 𝑥𝑥𝑚𝑚𝑖𝑖 }.  

𝑦𝑦𝑖𝑖 ∈ {1, … , K}  where K is the number of classes. Suppose the function, which estimates the 

probability of each category for one input data 𝑥𝑥, is P(𝑦𝑦𝑖𝑖 = 𝑘𝑘|𝑥𝑥𝑖𝑖;  θ) where 𝑘𝑘 is the class and 𝑖𝑖 is 

the one input data. Thus, the specific hypothesis function is expressed as 

ℎ𝜃𝜃�𝑥𝑥𝑖𝑖� =  

⎣
⎢
⎢
⎢
⎡P�y = 1�𝑥𝑥𝑖𝑖;  θ�
P�y = 2�𝑥𝑥𝑖𝑖;  θ�

⋮
P�y = 𝐾𝐾�𝑥𝑥𝑖𝑖;  θ�⎦

⎥
⎥
⎥
⎤

=  
1

∑ 𝑒𝑒𝜃𝜃𝑗𝑗
𝑇𝑇𝑥𝑥𝐾𝐾

𝑗𝑗=1

 

⎣
⎢
⎢
⎡𝑒𝑒

𝜃𝜃1𝑇𝑇𝑥𝑥𝑖𝑖

𝑒𝑒𝜃𝜃2𝑇𝑇𝑥𝑥𝑖𝑖
⋮

𝑒𝑒𝜃𝜃𝐾𝐾
𝑇𝑇𝑥𝑥𝑖𝑖⎦
⎥
⎥
⎤

(4) 
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Here {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝐾𝐾} are the parameters for each category. 𝜃𝜃𝑗𝑗  contain an m-dimensional vector 

which depends on the dimension of input 𝑥𝑥. As we can see P�𝑦𝑦𝑖𝑖 = 𝑘𝑘�𝑥𝑥𝑖𝑖;  θ� =  𝑒𝑒𝜃𝜃𝑘𝑘
𝑇𝑇𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝜃𝜃𝑗𝑗
𝑇𝑇𝑥𝑥𝐾𝐾

𝑗𝑗=1

, suming 

each of them together leads to one. Due to this feature, we can obtain the maximum probability in 

these classes.  

2.2 Neural Networks 

2.2.1 Introduction 

Neural networks [11] [12], as the name suggests, originated from the simulation of the human 

brain. The purpose is to understand the human brain function. Cognitive scientists and 

neuroscientists jointly constructed a neural network model and carried out simulation studies. This 

technology combined with engineering can help us build better neural network systems.  

 

David Marr (1982) [8] believes that understanding an information processing system has three 

levels, collectively referred to as the level of analysis, namely:  

• Computational theory: an abstract definition of the corresponding computational goals and 

tasks. 

• Representation and algorithm: an explanation of how the input/output is represented and 

from the input to output. 

• Hardware implementation: the actual physical implementation of the system. 

 

It should be noted here that there can be multiple representations and algorithms for the same 

computational theory. For the same representation and algorithm there can be multiple hardware 

implementations. For example, for natural and artificial aircraft, the calculation theory can be 

“flying”, the algorithm is to use “aerodynamics”, and the implementation approach is “slap the 

wings” and the other is “launch the engine”.  

 

The human brain can be seen as a hardware implementation of learning or pattern recognition. If 

we can reversely-analyze, extract the representations and algorithms used by the human brain from 
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this implementation, and further obtain computational theories, then we can get the computer 

hardware achievement that is more suitable for us.  

 

A neural network proposes an intervening mode that introduce a small amount of local memory in 

the middle, using processor instructions to input different functions on the memory to implement 

different functions. Each of the processor corresponds to a neuron, the local parameters correspond 

to its prominent weights, and the entire structure is a neural network.  

2.2.2 Components 

The idea of neural network is from the biology neuron. Neuronal research has been around for a 

long time, and in 1904 biologists knew about the composition of neurons.  

 

Figure 2.2. Neural structure. 
 

A neuron usually has multiple dendrites, mainly used to receive incoming information, there is 

only one axon, and many axon terminals at the axon end can transmit information to other neurons. 

The axon terminal is connected to the dendrite of other neurons to transmit signal   s. In 1943, 

psychologist Warren McCulloch and mathematician Walter Pitts [9] referenced the structure of 

biological neurons and published an abstract neuron model of multilayer perception (MP). In the 

following, we will detail the neuron model. 
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Figure 2.3. Warren McCulloch (left) and mathematician Walter Pitts (right) [9]. 

 

The neuron model [9] contains input, output and computational functions. The input can be 

analogized to the dendrite of the neurons, and output can be analogized to the axons of the neurons, 

and the calculation can be analogized to the nucleus. 

 

Figure 2.4. The simple neuron model. 
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There are many input data to the logistic unit and several outputs. Before the input data feed 

forward to the logistic unit, note the middle arrow line between input and logistic unit, there are 

not only many weights for each input data, but here is also one bias parameter for this logistic unit. 

In the logistic unit, the input data would sum together first and pass the activation function. 

2.2.3 Mathematical Expression 

Above model can be written as: 

𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 + 𝑖𝑖𝑛𝑛1 ∗ 𝑤𝑤1 + 𝑖𝑖𝑛𝑛2 ∗ 𝑤𝑤2 + ⋯+ 𝑖𝑖𝑛𝑛𝑛𝑛 ∗ 𝑤𝑤𝑛𝑛) = 𝑓𝑓 �𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 + �𝑖𝑖𝑛𝑛𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (5) 

 

where f() is the activation function. 

2.2.4 Common Activation Functions 

Linear function 

This function is expressed as: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 (6) 

 

A plot of the linear function is depicted as in Figure 2.5. 
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Figure 2.5. The linear function. 

Sigmoid function 

The sigmoid function is given by: 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
(7) 

Figure 2.6 shows the plot of sigmoid function. 

Figure 2.6. The sigmoid function. 
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This function could explain the neuron’s firing rate, the probability, between 0 and 1. 

Tanh function 

This Tanh function is expressed as: 

𝑓𝑓(𝑥𝑥) =
sinh(𝑥𝑥)
cosh(𝑥𝑥) =

𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
(8) 

The plot of Tanh function is shown in Figure 2.7 

Figure 2.7. The Tanh function. 

Note that the Tanh function is a rescaled sigmoid function which can be seen from the expression. 

Their shapes are similar, but with different scales. The Tanh function ranges from -1 to 1. Tanh is 

zero-centered function. 

Rectified linear unit (ReLU) 

The rectified linear unit (ReLU) function is given by: 

𝑓𝑓 = �0 𝑓𝑓𝑜𝑜𝑓𝑓 𝑥𝑥 ≤ 0
𝑥𝑥 𝑓𝑓𝑜𝑜𝑓𝑓 𝑥𝑥 > 0 (9) 

The plot of this function is described in Figure 2.8 
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Figure 2.8. The ReLU function. 

ReLU is widely used in convolutional neural networks. The complexity of the ReLU calculation 

is smaller than the sigmoid or tanh function, and the ReLu leads to a faster convergence rate, 

because of without the exponential calculation. But it is still not zero-centered. 

 Leaky Rectified linear unit (LReLU) 

The leaky rectified linear unit (LReLU) function can be expressed below: 

𝑓𝑓 = �𝑏𝑏𝑥𝑥 𝑓𝑓𝑜𝑜𝑓𝑓 𝑥𝑥 ≤ 0
𝑥𝑥 𝑓𝑓𝑜𝑜𝑓𝑓 𝑥𝑥 > 0 = max(𝑏𝑏𝑥𝑥, 𝑥𝑥) (10) 

Where parameter a is a small scalar. The plot of this function is depicted in Figure 2.9. 
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Figure 2.9. The LReLU function. 

2.2.5 Update Neurons 

When we have a neural network model, we need to train and evaluate this model. In this case, the 

feedforward propagation and the backward propagation are required to be applied. 

Feedforward Propagation 

Each layer of the Neural Network contains several neurons, and the neurons between the layers 

are connected by a weight matrix 𝑤𝑤𝑙𝑙. 𝑤𝑤𝑗𝑗𝑖𝑖
(𝑙𝑙) stands for in 𝑙𝑙th layer, the weight for 𝑖𝑖th node to the next 

layer the 𝑗𝑗th node. Figure 2.10 shows a simple neural network. In the hidden layer, we note the sum 

function output for the all input data times weights of the 𝑖𝑖𝑜𝑜ℎ neuron in layer 𝑗𝑗 as 𝑧𝑧𝑗𝑗
(𝑗𝑗). After this, 

the activation function output denotes as 𝑏𝑏𝑖𝑖
(𝑗𝑗). The number of layers starts at input layer. 
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Figure 2.10. The neural network structure. 
 

An information transfer process can be described as follows: 

1. The 𝑗𝑗𝑜𝑜ℎ layer of neurons receives the upper layer of incoming stimuli (neural impulses): 

𝑧𝑧(𝑗𝑗) = 𝑤𝑤(𝑗𝑗−1)𝑏𝑏(𝑗𝑗−1) (11) 

 

2. After the stimulus is activated by the activation function 𝑔𝑔, an activation vector 𝑏𝑏(𝑗𝑗) is 

generated. 𝑏𝑏𝑖𝑖
(𝑗𝑗) represents the activation obtained by the 𝑖𝑖𝑜𝑜ℎ neuron in the 𝑗𝑗𝑜𝑜ℎ layer:  

𝑏𝑏(𝑗𝑗) = 𝑔𝑔�𝑧𝑧(𝑗𝑗)� (12) 

 

This process, because the order of occurrence constantly pass the stimulus from the previous layer 

to the next layer, it is called forward propagation. 

 

The above neural network forward propagation can be written below: 
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𝑧𝑧1
(2) =  𝑤𝑤11

(1)𝑥𝑥1 + 𝑤𝑤12
(1)𝑥𝑥2 + 𝑤𝑤13

(1)𝑥𝑥3 + 𝑤𝑤14
(1)𝑥𝑥4

𝑏𝑏1
(2) = 𝑔𝑔�𝑧𝑧1

(2)�

𝑧𝑧2
(2) =  𝑤𝑤21

(1)𝑥𝑥1 + 𝑤𝑤22
(1)𝑥𝑥2 + 𝑤𝑤23

(1)𝑥𝑥3 + 𝑤𝑤24
(1)𝑥𝑥4

𝑏𝑏2
(2) = 𝑔𝑔�𝑧𝑧2

(2)�

𝑧𝑧3
(2) =  𝑤𝑤31

(1)𝑥𝑥1 + 𝑤𝑤32
(1)𝑥𝑥2 + 𝑤𝑤33

(1)𝑥𝑥3 + 𝑤𝑤34
(1)𝑥𝑥4

𝑏𝑏3
(2) = 𝑔𝑔�𝑧𝑧3

(2)�

𝑧𝑧4
(2) =  𝑤𝑤41

(1)𝑥𝑥1 + 𝑤𝑤42
(1)𝑥𝑥2 + 𝑤𝑤43

(1)𝑥𝑥3 + 𝑤𝑤44
(1)𝑥𝑥4

𝑏𝑏4
(2) = 𝑔𝑔�𝑧𝑧4

(2)�

𝑧𝑧1
(3) =  𝑤𝑤11

(2)𝑏𝑏1
(2) + 𝑤𝑤12

(2)𝑏𝑏2
(2) + 𝑤𝑤13

(2)𝑏𝑏3
(2) + 𝑤𝑤14

(2)𝑏𝑏4
(2)

ℎ𝑤𝑤(𝑥𝑥) = 𝑏𝑏1
(3) = 𝑔𝑔�𝑧𝑧1

(3)�

(13) 

Loss/Cost Function 

In order to fit the neural network model in training, we need to have a reference to the model, 

which is the loss/cost function. Constantly reducing the value of the loss/cost function is the 

process of constantly optimizing the Neural Network model. 

 

In linear regression, the mean variance error function is the main loss/cost function. The 

mathematic expression is: 

𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏
𝑐𝑐𝑜𝑜𝑏𝑏𝑜𝑜

=
1

2𝑛𝑛
�(ℎ𝑤𝑤(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(14) 

 

where 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 are respectively input data and label of the data. 

 

In logistic regression, the mean variance error function is not working, because it is no longer 

convex function any more. It can have many local minima, which affect the gradient descent 

algorithm to find a global minimum. To address this, we need to reselect the loss/cost function of 

the logistic regression as 

𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏
𝑐𝑐𝑜𝑜𝑏𝑏𝑜𝑜

= �
− log�ℎ𝑤𝑤(𝑥𝑥)�         𝑖𝑖𝑓𝑓 𝑦𝑦 = 1
− log�1 − ℎ𝑤𝑤(𝑥𝑥)� 𝑖𝑖𝑓𝑓 𝑦𝑦 = 0

(15) 
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As we can see, when y is equal to 1, ℎ𝑤𝑤(𝑥𝑥) is closing to 1, the loss/cost is closing to 0. On the 

contrary, when y is equal to 0, ℎ𝑤𝑤(𝑥𝑥) is closing to 1, the loss/cost is closing to positive infinity. 

The above expression can be abbreviated and expand as n input data as follow: 

𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏
𝑐𝑐𝑜𝑜𝑏𝑏𝑜𝑜

= −
1
𝑛𝑛
�𝑦𝑦𝑖𝑖 log�ℎ𝑤𝑤(𝑥𝑥𝑖𝑖)� + (1 − 𝑦𝑦𝑖𝑖) log�1 − ℎ𝑤𝑤(𝑥𝑥𝑖𝑖)�
𝑛𝑛

𝑖𝑖=0

(16) 

 

In the neural network, the loss/cost function can combine all layers’ weights and all output 

units/classes. Let’s define a few variables as follows: 

• n = the number of input data. 

• L = total number of layers in the Neural Network. 

• 𝑏𝑏𝑖𝑖 = number of units in layer 𝑖𝑖. 

• K = number of output units/classes. 

• ℎ𝑤𝑤(𝑥𝑥)𝑘𝑘 as being a hypothesis that results in the kth output. 

 

For the neural networks loss/cost function, we have: 

𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏 = −
1
𝑛𝑛
��[𝑦𝑦𝑖𝑖𝑘𝑘 log(ℎ𝑤𝑤(𝑥𝑥𝑖𝑖)𝑘𝑘) + �1 − 𝑦𝑦𝑖𝑖𝑘𝑘� log(1 − ℎ𝑤𝑤(𝑥𝑥𝑖𝑖)𝑘𝑘)]

𝐾𝐾

𝑘𝑘=0

𝑛𝑛

𝑖𝑖=0

+
𝜆𝜆

2𝑛𝑛
���𝑤𝑤𝑗𝑗,𝑖𝑖

(𝑙𝑙)2
𝑠𝑠𝑗𝑗+1

𝑗𝑗=1

𝑠𝑠𝑖𝑖

𝑖𝑖=1

𝐿𝐿−1

𝑙𝑙=1

(17) 

Gradient Descent 

Gradient descent is known as the steepest descent method. First we take partial derivative of weight 

to loss function, and we then calculate the difference between the weight and the opposite partial 

derivative to get the updated weight. 

𝑤𝑤1 = 𝑤𝑤0 − 𝛼𝛼
𝜕𝜕𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏
𝜕𝜕𝑤𝑤

(18) 

 

Repeating Equation (18) can get the optimized weights, so that the loss/cost could be the minimum. 

 

There are three method of gradient, batch gradient descent (BGD), stochastic gradient descent 

(SGD), mini-batch gradient descent (MBGD). BGD uses all data; SGD uses only one data; MBGD, 

uses a small set of data. In neural network, we use mini-batch gradient descent. 
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Backpropagation 

The back propagation (BP) algorithm (i.e., backpropagation algorithm) [10] [12] is a learning 

algorithm suitable for multi-layer neural networks. It is based on the gradient descent method. The 

input-output relationship of BP network is essentially a mapping relationship: the function 

performed by a BP neural network with n input m output is a continuous mapping from n-

dimensional Euclidean space. The mapping is highly nonlinear. Its information processing 

capability is derived from multiple recombination of simple nonlinear functions, so it has a strong 

ability to reproduce functions. This is the basis for the application of the BP algorithm. 

 

The learning process of the BP algorithm assembles a forward propagation process and a 

backpropagation process. In the forward propagation process, the input information passes through 

all hidden layers and is transmitted to the output layer. If the output predicted value is not match 

the ground truth value, the sum of the squares of the error in the output predicted value and the 

ground truth value is taken as the cost function, and then the back propagation is performed, and 

the partial derivative of the cost function for each neuron weight is obtained layer by layer to form 

a target. The gradient of the function to the weight vector is used as the offset to modify and update 

the weight. When the error reaches the minimum value, the network learning ends. 

 

Backpropagation is based on the gradient descent method; it is important to calculate gradient. 

However, there are more than two derivatives of the composition functions need to be computed 

in neural networks. The chain rule [16] is the best way to address this problem. Here is a brief 

introduction.  

 

Assume two function, 𝑦𝑦 = 𝑔𝑔(𝑥𝑥), 𝑧𝑧 = ℎ(𝑦𝑦) . Then to calculate the derivative of z to x, the 

calculation process is given as 
∂z
∂x

=
∂z
∂y

∙
∂y
∂x

(19) 

 

which will be applied to the neural networks 
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Figure 2.11. The neural network parameters. 

 

For a network depicted in Figure 2.11, the parameters have the same definition as previous ones. 

After forward propagation, each unit will have their own output. 

𝑒
1
2

𝑎 𝑦  

𝑎 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 20  

𝑧 𝑤 ∙ 𝑎 𝑤 ∙ 𝑎 𝑏  

 

𝑏  stands for bias for layer 2 to layer 3.  

 

Depending on the chain rule, we can calculate the error partial derivative over 𝑤 . 

∂𝑒

∂𝑤

∂𝑒

∂𝑎
∙

∂𝑎

∂𝑧
 ∙

∂𝑧

∂𝑤
 21  

 

According to Equation (21), we can get the final equation as follow. 

∂𝑒

∂𝑤
𝑎 𝑦 ∙ 𝑎 ∙ 1 𝑎 ∙ 𝑎 22  
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The partial derivative to  𝑤𝑤12
(2) has the same process as above. 

∂𝑒𝑒𝑜𝑜1
∂𝑤𝑤12

(2) = �𝑏𝑏1
(3) − 𝑦𝑦1� ∙ 𝑏𝑏1

(3) ∙ �1 − 𝑏𝑏1
(3)� ∙ 𝑏𝑏2

(2) (23) 

 

Also, the same process is used for the 𝑤𝑤11
(1), 𝑤𝑤12

(1), 𝑤𝑤21
(1) and 𝑤𝑤22

(1). We could update our weights 

based on the gradient descent, that is.  

𝑤𝑤𝑗𝑗𝑖𝑖
(𝑙𝑙) = 𝑤𝑤𝑗𝑗𝑖𝑖

(𝑙𝑙) − 𝛼𝛼
𝜕𝜕𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏

𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖
(𝑙𝑙) (24) 

 

The whole process is the main idea for backpropagation algorithm. And this is main method to 

update in neural networks. 

2.3 Convolutional Neural Networks (CNN) Background 

Traditional neural networks will generate numerous weights. Since there are too many parameters, 

the amount of backpropagation computation load is huge. Thus, the traditional neural network is 

not recommended from the perspective of computing resources and tuning. If we apply images in 

traditional neural networks, we will generate a large number of weights.  
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Figure 2.12. The neural network structure with 15 neurons in hidden layer [13]. 
 

If we have a traditional neural network is shown in Figure 2.12, we assume the input image is a 

binary image with a size of 28 by 28. The input layer is 28 * 28 = 784 neurons. There are 15 

neurons, 10 neurons respectively in hidden layer and output layer. So from simple calculation, we 

need the number of parameters (weights and bias): 784 * 15 * 10 + 15 + 10 = 117625. This neural 

network only has one hidden layer. We increase several hidden layers, the number of parameters 

will exponentially increase. There are three parts need to be solved. The first one, local connections, 

this is the easiest to think of. Each neuron is no longer connected to all neurons in the upper layer, 

but only to a small number of neurons. This reduces many parameters in neural networks. The 

second is weight sharing. A set of connections can share the same weight, rather than having a 

different weight for each connection, which reduces many parameters as well. The third is down 

sampling input information. To address this problem, the convolutional neural networks (CNN) is 

developed. Similar to the neural network model, CNN’s design inspiration comes from the study 

of nerve cells.  
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The Nobel Prize in Medicine in 1981 was awarded to David Hubel [17], Torsten Wiesel, and Roger 

Sperry. Their main contribution is to discover that the information processing of the human visual 

system is hierarchical. 

 

Convolutional neural networks could work with many sophisticated problems, such as in image 

recognition, speaking recognition, and so on. This thesis work only focusses on image recognition 

problems. The following part mainly devotes to convolutional neural network. 

2.4 Convolutional Neural Networks (CNN) Definition 

Convolutional neural networks [13] are a class of feedforward neural network with convolutional 

computation and deep structure. It is one of the representative algorithms for deep learning. The 

convolutional neural network has representation learning ability and can perform shift-invariant 

classification of input information according to its hierarchical structure. Therefore, it is also called 

“Shifted-Invariant Artificial Neural Network, SIANN.” 

 

The study of convolutional neural networks began in the 1980s and 1990s. The time delay network 

and LeNet-5 [20] were the earliest convolutional neural networks. After the 21st Century, with the 

introduction of deep learning theory and the improvement of numerical computing equipment, 

convolutional neural networks have been rapidly developed and applied to computer vision, 

natural language processing and other fields.  

 

The convolutional neural network constructs the visual perception mechanism of the creature, 

which can perform supervised learning and unsupervised learning. The convolutional kernel 

parameter sharing and the sparseness of the inter-layer connection in hidden layer enable the 

convolutional neural network to minimize computational computations for grid-like topology 

features such as pixel and audio. The convolutional neural networks have a stable effect and have 

no additional feature engineering requirements for data. 
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2.5 Convolutional Neural Networks Architecture 

A convolutional neural network is contributed by input layer, multiple hidden layers and output 

layer. A series of convolutional layers constitute in hidden layer. Mathematically, convolutional 

layer computing is technically a sliding dot product or cross-correlation.  After convolutional 

computing, an activation function is applied in the same fashion as the traditional neural network. 

The ReLU function is a common activation function used in the convolution layer in CNN. In 

order to down sample each convolution layer input, there is a special convolutional layer which is 

called pooling layer. After series of the convolutional layer and pooling layer pairs, the final fully 

connected layer ends the CNN structure as described in Figure 2.13. 

 

Figure 2.13. The common convolutional neural network architecture. 

2.5.1 Convolutional Layer 

The most important part in CNN is the convolutional layer [13] [18]. The name of CNN is derived 

from the use of convolution operations. The purpose of convolution is mainly to extract the features 

of the picture. Convolution operations preserve the spatial relationship between pixels. 

 

In the convolutional layer, by forward propagation, the input image dot product with filter (kernel), 

and the value of each filter (kernel) is updated by backpropagation. 

 

We first use a simple example to explain how to calculate the convolution and then abstract some 

important concepts and calculation methods for the convolutional layer. 
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Suppose there is a 5x5 image, convolving with a 3x3 filter, and we want to get a 3x3 feature map, 

as shown below: 

 

Figure 2.14. The input image pixels (left), the filter/kernel (middle), the output feature  
map (right). 

 

In order to clearly describe the convolution calculation process, we first encode each pixel of the 

image, and use 𝑥𝑥𝑖𝑖,𝑗𝑗 to represent the ith row and the jth column element of the image. Each weight 

of the filter encoded by 𝑤𝑤𝑖𝑖,𝑗𝑗 is used to represent the weight of the ith row and the jth column, and 

𝑤𝑤𝑏𝑏 is used to represent the bias term of the filter. Use 𝑏𝑏𝑖𝑖,𝑗𝑗 to represent the ith row and the jth column 

of the feature map and f  to indicate the activation function. Then, convolution can be calculated 

below: 

𝑏𝑏𝑖𝑖,𝑗𝑗 = 𝑓𝑓 �� �𝑤𝑤𝑚𝑚,𝑛𝑛𝑥𝑥𝑖𝑖+𝑚𝑚,𝑗𝑗+𝑛𝑛 + 𝑤𝑤𝑏𝑏

2

𝑛𝑛=0

2

𝑚𝑚=0

� (25) 

 

For example, for the 𝑏𝑏0,0 element in the upper left corner of the feature map, the convolution 

calculation method is: 

𝑏𝑏𝑖𝑖,𝑗𝑗 = 𝑓𝑓(� �𝑤𝑤𝑚𝑚,𝑛𝑛𝑥𝑥𝑖𝑖+𝑚𝑚,𝑗𝑗+𝑛𝑛 + 𝑤𝑤𝑏𝑏

2

𝑛𝑛=0

2

𝑚𝑚=0

) 

                            = 𝑓𝑓𝑒𝑒𝑟𝑟𝑟𝑟(1 + 0 + 1 + 0 + 1 + 0 + 0 + 1 + 0) (26) 

                     = 𝑓𝑓𝑒𝑒𝑟𝑟𝑟𝑟(4)  = 4                                                



 
 

37 

The calculation results are shown in the figure below: 

 

Figure 2.15. The first convolutional calculation step. 
 

The rest of feature map results could be calculated in the same way. 

 

In the above calculation process, the stride is 1. The stride can be set to number greater than one. 

For example, when the stride is 2, the feature map is calculated as follows: 

 

Figure 2.16. The last convolutional calculation step. 
 

We noticed that when the stride is set to 2, the feature map size becomes 2x2. This means that the 

image size, stride, and the size of the feature map after convolution are related. In fact, they satisfy 

the following relationship: 
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𝑊𝑊𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 𝑚𝑚𝑓𝑓𝑚𝑚 =
𝑊𝑊𝑖𝑖𝑛𝑛𝑚𝑚𝑓𝑓𝑓𝑓 𝑖𝑖𝑚𝑚𝑓𝑓𝑖𝑖𝑒𝑒 − 𝐹𝐹 + 2𝑃𝑃

𝑆𝑆
+ 1 (27) 

𝐻𝐻𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 𝑚𝑚𝑓𝑓𝑚𝑚 =
𝐻𝐻𝑖𝑖𝑛𝑛𝑚𝑚𝑓𝑓𝑓𝑓 𝑖𝑖𝑚𝑚𝑓𝑓𝑖𝑖𝑒𝑒 − 𝐹𝐹 + 2𝑃𝑃

𝑆𝑆
+ 1 (28) 

 

where F is the width of the filter and P is the number of zero-padding. Note that zero-padding pads 

a few laps 0s around the original image. If the value is 1, then we make one lap zero padding. S is 

the number of the strides. 

 

So far, the calculation method of convolutional layer with depth 1 is described. . If the image depth 

before convolution is D which is larger than 1, then the depth of the corresponding filter must also 

be D. We can extent Equation (25) as following: 

𝑏𝑏𝑖𝑖,𝑗𝑗 = 𝑓𝑓 �� � �𝑤𝑤𝑑𝑑,𝑚𝑚,𝑛𝑛𝑥𝑥𝑑𝑑,𝑖𝑖+𝑚𝑚,𝑗𝑗+𝑛𝑛 + 𝑤𝑤𝑏𝑏

𝐹𝐹−1

𝑛𝑛=0

𝐹𝐹−1

𝑚𝑚=0

𝐷𝐷−1

𝑑𝑑=0

� (29) 

 

where D is the depth; F is the size of the filter (width or height, the two are the same); 𝑤𝑤𝑑𝑑,𝑚𝑚,𝑛𝑛 

represents the weight of the mth row and the nth column of the dth layer of the filter; 𝑏𝑏𝑖𝑖,𝑗𝑗 represents 

the weight of the ith row and the jth column of the feature map. 

 

As we mentioned before, there can be multiple filters per convolutional layer. After each filter and 

the original image are convolved, we can get a feature map. Therefore, the depth (number) of the 

feature map and the number of filters in the convolutional layer after convolution are the same. 

There are two characteristics, local connectivity and parameter sharing, in convolutional layer. 

Local connectivity 

Comparing with the traditional neural network, each neuron in the adjacent layer connects with 

others. Because of the connection method, the number of weights in the traditional neural network 

is huge so a dramatically computing power. However, the convolutional neural network addresses 

weights challenge and decrease the number of weights significantly. To do so, the filter connecting 

with the upper layer has the local connection, which will isolate the number of weights with input 

data size.    
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Parameter sharing 

One filter will spread out to all input images, which means that the whole image uses the same 

filter size and weights. In comparison with full connection, the number of weights is tiny. Whole 

image shares the same weights to get the output feature maps. 

2.5.2 Activation Layer 

The activation layer mainly performs a nonlinear mapping on the output of the convolutional layer 

because the calculation of the convolutional layer is still a linear calculation. The activation 

function increases the ability of generalization. The ReLU function is generally used.  Notice that 

the ReLU function only returns max (0, x), or simply removes the negative weights. The associated 

layer is also called ReLU layer. 

 

The convolutional layer and the activation function are usually combined together as a 

convolutional block. 

2.5.3 Pooling Layer 

When the input passes through the convolutional layer, if the receptive field is relatively small, the 

length of the stride is relatively small, and the obtained map is still relatively large. The 

dimensioning operation can be performed on each feature map through the pooling layer, and the 

depth of output is still the same, and it is still the number of feature maps. 

 

The pooling layer also has a “pooling” to scan the feature map matrix and calculate the matrix 

values in the pooling receptive field. There are generally two ways to calculate: 

• Max pooling: take the maximum value in the pooling receptive field matrix. 

• Average pooling: take the average value in the pooling receptive field matrix. 

 

The scanning step stride, which is also involved in the scanning process, scans in the same way as 

convolutional layer, scanning from left to right, then moving down the step stride and scanning 

from left to right again until the end of image. The process is shown in Figure 2.17.: 
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Figure 2.17. The max pooling. 
 

The Figure 2.17 shows the max pooling operation with the filter size as 2x2 and stride as 2, 

respectively. As can be seen, the input size of 4x4 is divided by 4 parts, and each part is presented 

by its largest number. So the output is 2x2 feature map. 

2.5.4 Fully Connected Layer 

The fully connected layer mainly re-fitting features to reduce the loss of feature information. The 

output layer is mainly prepared for the output of the final target result. 

2.5.5 Batch Normalization Layer 

We know that once the network is trained, the parameters will be updated. In addition to the input 

layer data, because the input layer data have artificially normalized. The data distribution of each 

layer of the rest network is always changing, because during training, the update of the previous 

layer training parameters will lead to changes in the distribution of the data of the later layers. Take 

the second layer of the network as an example, the second layer input of the network is calculated 

by the parameters and input of the first layer, and the parameters of the first layer are always 

changing throughout the training process, so it will inevitably cause a change in the distribution of 

the input data for each subsequent layer. We refer to the change in data distribution during the 
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training process of the network at middle layer: “Internal Covariate Shift” [21]. To address this 

problem, the birth of Batch Normalization [22] [23] evolved. 

 

Just like the activation layer, the convolutional layer, the fully connected layer, and the pooling 

layer, Batch Normalization (BN) layer is also a layer of the network. In the previous section, we 

mentioned that in addition to the input and the output layer, the other layers update the parameters 

during the training, which causes changes in the distribution of input data in the later layer. BN 

layer normalized the output of the upper layer network to a mean of 0 and a variance of 1, and then 

acts as an input to the underlying network, so that BN layer solves the aforementioned “Internal 

Covariate Shift” problem.  

2.6 The Neural Network Models History 

2.6.1 Image Classification 

AlexNet 

AlexNet [23] is not the first convolutional neural network architecture, but it is the most influential 

one. In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton from the University of 

Toronto created a “big and deep convolutional neural network” that won ILSVRC (ImageNet 

Large Scale Visual Recognition Challenge).  

 

In the paper, Hinton et al. proposed a new network architecture called AlexNet. Compared with 

the existing CNN at the time, AlexNet has a streamlined layout consisting of five convolutional 

layers with overlapping pooling layers and dropout layers [24] [25], and three fully connected 

layers, which can classify 1000 targets. 
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Figure 2.18. The Alex Network Architecture [23]. 
 

It is the first time the ReLU activation function is implemented in AlexNet. The two new layers 

were introduced, overlapping pooling layer and dropout layer. Comparing with the common CNN 

which uses average pooling, the AlexNet uses maximum pooling to avoid the average pooling 

fuzzification effect.  AlexNet proposes that the stride size is smaller than the size of the pooling 

kernel, so that there will be overlap and coverage between the output of the pooling layer, which 

improves the richness of features and reduces the loss of information. Dropout layer is new idea 

from Hinton to be able to prevent over-fitting of neural networks. A regularization method is used 

to prevent over-fitting of the model as compared to the general linear model, and in the neural 

network, dropout is implemented by modifying the structure of the neural network itself.  

VGG 

After the AlexNet, there so many CNN models arising. The new powerful and influential model 

is VGG [26]. VGG was proposed by Oxford’s ‘V’isual ‘G’eometry ‘G’roup. The neural network 

model is related work at ILSVRC 2014. The main work is to prove that increasing the depth of the 

network can actually affect the final performance of the network. VGG has two structures, VGG16 

and VGG19. There is no essential difference between the two, but the network depth is different. 

One improvement of VGG16 over AlexNet is the replacement of larger convolution kernels 

(11x11, 7x7, 5x5) in AlexNet with several consecutive 3x3 convolution kernels. For a given 

receptive field (the local size of the input image associated with the output), the use of stacked 

small convolution kernels is superior to the use of large convolution kernels, because multiple 
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layers of nonlinear layers can increase network depth to ensure more complex models learned, and 

the cost is relatively small (less parameters). 

 

In simple terms, in VGG, three 3x3 convolution kernels are used instead of 7x7 convolution 

kernels, and two 3x3 convolution kernels are used instead of 5x5 convolution kernels. The main 

purpose of this is to ensure the same under the condition of the perceptual field, the depth of the 

network is improved, and the effect of the neural network is improved to some extent. 

 

VGG has 16 or 19 hidden layers which contain 13 convolutional layers or 16 convolutional layers 

and 3 fully connection layers. The architecture is shown as follow: 
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Table 2-1. The VGG network architecture [26]. Conv3-64 stands for convolutional layer with 
3x3 kernel and output depth is 64. FC-4096 stands for fully connected layer with 4096 output 

depth. 

ConvNet Configuration 

A A-LARN B C D E 

11 weight 

layers 

11 weight 

layers 

13 weight 

layers 

16 weight 

layers 

16 weight 
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Conv3-64 

Conv3-64 

Conv3-64 

Conv3-64 

Conv3-64 
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Conv3-64 

Maxpool 

Conv3-128 Conv3-128 Conv3-128 

Conv3-128 

Conv3-128 

Conv3-128 

Conv3-128 
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Conv3-128 

Maxpool 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 
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Conv3-256 
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Conv3-256 

Conv3-256 
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Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv1-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 
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FC-4096 

FC-4096 
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GoogleLeNet 

GoogleLeNet [27] is the winner of the 2014 ILSVRC14 [55] competition in ImageNet, the same 

as the VGG network, the VGG network is the runner-up of the competition that year. But in fact, 

the TOP-5 error rate of the two networks is not much different. The network structure of 

GoogleLeNet is more complicated than VGG. It is a 22-layer network, and proposes a structure of 

inception, which is a great progress and inspiration for ResNet. 

 

It is well known that the most straightforward way to improve deep neural networks is to increase 

the size of the network, including increasing depth and width. Increasing the depth is to increase 

the number of layers of the neural network. Increasing the width is to increase the number of units 

per layer. However, increasing the depth and width brings two problems. 1. Because the 

parameters become more and more, the network is easier to overfitting, which reduces the 

accuracy. 2. The amount of calculation will be greatly increased, and some parameters may be 

trained to eventually be 0, which wastes computing resources when computing resources are 

limited. So the ultimate goal is to reduce parameters, reduce calculations, increase depth, and 

increase width. 

 

The solution is to replace the full connection with the sparse connection structure, but the existing 

calculation method is very inefficient for non-uniform sparse calculations, so the GoogleLeNet 

proposes the improvement way, inception model. 

 

 

Figure 2.19. The Inception Structure. Inception naïve module (left), Inception module with 
dimension reductions (right). 
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Figure 2.19 describes two proposed inception models. Model (b) is an improved version of model 

(a). As shown in the figure, model (a) is a dense component to approximate and replace an optimal 

local sparse structure. This may be due to the fact that this connected model has a summary of the 

information brought by the four-connection method, and the reduced parameters of the connection 

with the direct 3x3 convolution layers. Why is the parameter reduced? Give an example of the 

figure below: 

 

Figure 2.20. The Inception naïve version reduces parameters. 
 

We noticed the parameter quantity is reduced, but the reduction is not too much, and if the input 

data channel value is relatively large, the parameter quantity will still be relatively large, so the 

improved model (b) is proposed. Model (b) relative to the model (a) uses a 1x1 convolutional layer 

for dimensionality reduction before using a 3x3 or a 5x5 convolution connection, which reduces 

the parameter amount again, and also increases the network non-linear activation after 1x1 

convolutional layer. The amount of parameters changes as shown below. 
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Figure 2.21. The inception dimension version reduces parameters 
 

The GoogleLeNet structure is as follow: 

 

Figure 2.22. The GoogleLeNet Architecture [27]. 

ResNet 

Traditionally, the deeper the network structure of deep learning, the better the effect and ability of 

the network. Therefore, in the subsequent network design, designers always make the network 

design as complicated and deep as possible, but the results are often disappointing, and the network 

is in trouble. One of the reasons for this problem is that the gradient will disappear. But now the 
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shallow network can’t significantly improve the recognition effect of the network, so the problem 

to be solved now is how to solve the problem of gradient disappearing while the network becomes 

deep.  

 

The idea of ResNet [28] could track back to Highway Network [28], allowing the original input to 

be passed directly to the later layers, the basic ResNet structure as shown in the following Figure 

2.23. 

 

Figure 2.23. The core idea about ResNet [28]. 
 

By superimposing layers of y=x (called identity mappings) on a shallow network, we can increase 

the network with depth without causing degradation of performance. This reflects that multi-layer 

nonlinear networks cannot approach an identity mapping network. However, not degrading is not 

our goal, we hope to have a better performance network. ResNet learns the residual function F(x) 
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= H(x) - x, where F(x) = 0, then the identity map mentioned above. In fact, ResNet is a "shortcut 

connections" in the special case of connections under the identity mapping, it does not introduce 

additional parameters and computational complexity. If the optimization objective function is to 

approximate an identity map instead of a zero map, then learning to find the perturbation of the 

identity map is easier than re-learning a mapping function. The residual function generally has a 

small response fluctuation, indicating that the identity mapping is a reasonable preprocessing. 

SENet 

Squeeze-and-Excitation Networks (SENet) [30] is the new network architecture proposed by the 

Momenta Huijie team (WMW). Using SENet, the winner of the imageNet 2017 competition Image 

Classification mission, reduced top-5 error to 2.251% on the imageNet dataset, the original best 

score was 2.991%. 

 

The method is to insert the SENet block into the existing multiple classification networks. This 

method has achieved good results. The motivation is to explicitly model the interdependencies 

between feature channels. In addition, the author did not introduce a new spatial dimension to fuse 

between feature channels but adopted a new “feature recalibration” strategy. Specifically, it is to 

learn the importance of each feature channel automatically by learning, and then to enhance the 

useful features according to this importance and suppress the features that are not useful for the 

current process. 

 

The SE block is embedded in some original classification networks and inevitably adds some 

parameters and calculations, but it is still acceptable in the relative of effects. The Squeeze-and-

Excitation (SE) block is not an integrated network structure, which could integrate with other 

architype network to enhance the performance. 
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Figure 2.24. The SENet Architecture. 

 

Figure 2.25 is a schematic diagram of the SE module. Given an input x, the input channel is 

channel1, after a convolutional layer 𝐹 ∙, 𝜃 , the new channel number will be channel2. Unlike 

the traditional convolutional neural network, the following three functions 𝐹 ∙ , 𝐹 ∙, 𝑤  and 

𝐹 ∙  could modify and update the final output layer 𝑥. 

 

The 𝐹 ∙  function will compress the previous layer 3-dimensional data into two-dimensional data. 

Those data contain the global information. The second function 𝐹 ∙, 𝑤  is an activation function, 

which will reflect the correlation between following layer and previous layer. Finally, a scale 

operation reweights the feature map weights as input and produces a collection of upper layer. 

2.6.2 Object Detection 

R-CNN 

The full name of R-CNN [31] is region-convolutional neural network, which is arguably the first 

algorithm to successfully apply deep learning to target detection. Traditional target detection 

methods are mostly based on image recognition. Generally, we can use the exhaustive method to 

select the area frames that all objects may appear on the picture, extract the features from these 

area frames and classify them by image recognition method, and obtain all the areas with 

successful classification, and pass non-maximum value suppression output results. 
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R-CNN follows the idea of traditional target detection, and also uses the extraction frame to 

perform target detection on each frame extraction feature, image classification, and non-maximum 

value suppression. In the step of extracting features, traditional features (such as SIFT [3], HOG 

[2] features, etc.) are replaced by features extracted by deep convolutional networks.  

 

For an input image, R-CNN generates approximately 2000 candidate regions based on the selective 

search method, and then each candidate region is resized to a fixed sized and sent to a CNN model, 

and finally a feature vector is obtained. This feature vector is then fed into a multi-class SVM [] 

classifier to predict the probability values of the objects contained in the candidate region that 

belong to each class. Each category trains an SVM [14] classifier to infer the probability value of 

the category from the feature vector. In order to improve the positioning accuracy, R-CNN finally 

trained a bounding box regression model and corrected the exact position of the frame through the 

border regression model. 

Fast R-CNN 

In the R-CNN [31] network structure, since the fully connected layer of the convolutional neural 

network has limitations on the input image size, the image of all candidate regions must undergo 

deformation transformation before being subjected to feature extraction by the convolutional 

neural network model. However, the original image information cannot be completely preserved 

regardless of whether the crop or the warp is used. The spatial pyramid pooling Layer [32] [33] 

proposed by He Kaiming et al. effectively solves a limit on the size of the input image in the 

traditional convolutional neural network. 

 

The problem of image distortion is solved, but other problems of R-CNN, such as cumbersome 

training steps and large disk space overhead, still need to be resolved. In order to solve the problem 

in which R-CNN training is slow and the space required for training is large, the original author 

of R-CNN, Ross, Girshick, has improved R-CNN [31] and proposed Fast R-CNN [32], which 

absorbs the characteristics of SPP-Net [33], the speed of target detection is greatly improved. The 

Fast R-CNN architecture is shown as follow. 
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R-FCN 

According to the previous introduction, we already know that the calculation of the fully 

connection layer is much larger than that of the convolutional layer. In the previous image 

detection network, all of them have several fully connection layers. For example, in Fast R-CNN 

[32], there are 300 full connection layers, and the resource of calculation can be imagined to be 

huge. 

 

Observed in ResNet [28] and GoogleLeNet [27], there is only one fully connection layer in the 

last layer, unlike VGG has two fully connection layers. So it is natural to think about that we can 

remove the fully connection layer behind ROI Pooling, RPN (Region Proposal Network) share all 

pervious convolutional output, ROI Pooling directly followed by one fully connection layer. In 

fact, the effect is not acceptable. Because classification requires features to have translation 

invariance, detection requires translation variance which is an accurate response to the translation 

of the target. Most of the current CNN can do a good job of classification, but it is not good for 

detection. SPP [33], Fast R-CNN [32] and other methods are convolution before ROI Pooling, 

which is translation invariant, but once inserted into ROI Pooling, the subsequent network structure 

no longer has translation invariance. Therefore, the concept of position sensitive score map that R-

FCN [34] [35] wants to propose is to integrate the position information of the target into the ROI 

Pooling. 

YOLO 

The above object detection networks are two-stage network, the first stage use a selective search 

like the object proposal method to generate the area which probably has an object and the second 

stage is to classify the proposal area and to localize the object. Because of two-stage network, it is 

hard to debug and optimize the network. Meanwhile, training and testing time become lengthy.  

 

When humans observe the process of recognizing pictures and locating objects, humans can 

always make a general classification of pictures at a glance. That is to say, the recognition speed 

of neural networks should be real time. A network like a two-stage network doesn’t do very well, 

so someone thinks about how to turn the network into a one-stage. Joseph Redmon proposed the 
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new network architecture in 2015 and named it YOLO [4], You Only Look Once. Compared to 

the architecture of R-CNN family, YOLO provides another way to turn the problem of object 

detection into a regression problem. Given an input image, it is possible to directly find bounding 

boxes of the target and classification category of the target at multiple locations of the image. 

 

YOLO is a convolutional neural network which combines the prediction of multiple bounding box 

locations and categories into single stage. YOLO does not choose the sliding window or the 

method of extracting the proposal to train the network, but directly selects the whole picture 

training model. The architecture is shown as follow. 

 

Figure 2.25. The YOLO architecture [4]. 

SSD 

SSD [37] full name: Single Shot MultiBox Detector, published in 2016. Some researchers consider 

that SSD is a combination of faster R-CNN and YOLO. First of all, the contribution of SSD is that 

it takes advantage of the multi-layer network features, not just FC7. This is mainly because SSD 

still borrows the mechanism of detection into regression. It is like the faster RCNN because it 

borrows the mechanism of the anchor, but its anchor is not a fine adjustment of every position. It 

is the same as YOLO to draw the grid, and then create an anchor on the grid. Due to the use of 

multi-layer features, the anchor scale is different in each layer, so more hyper-parameters are 

generated, which increases the training difficulty. 
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SSD is faster than Faster R-CNN and has higher accuracy than YOLO. (At the same time, the 

accuracy is also high. The results are very good under different test sets). 

FPN 

FPN [38], Feature Pyramid Network, is an improvement on the object detection method using 

convolutional neural networks. By extracting multi-scale feature information for fusion, the 

accuracy of object detection is improved, especially in the detection of small objects. 

 

The idea of FPN is relatively simple. It mainly uses the feature pyramid to scale the features of 

different levels, and then integrates the information, so that the lower-level information can be 

extracted and be more completely reflected, which is more detailed information than the top-level 

features. The top-level features may neglect some information of small objects in the process of 

continuous convolution pooling. This method can widely be applied to the detection of small target 

objects. 

 

As shown Figure 2.31, the high-level features of low-resolution and high-semantic information 

and the low-level features of high-resolution and low-semantic information are connected from 

the top to the bottom, so that the features at all scales have rich semantic information. 

 

Figure 2.26. The FPN architecture. 
 

The algorithm of FPN can be divided into three parts: a bottom-up convolutional neural network 

(left), a top-down process (right), and a side connection between features and features. 

 

Predict

Predict

Predict
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The bottom-up part is actually the forward process of convolutional neural networks. In the 

forward process, the size of the feature map changes after passing through some layers, but does 

not change when passing through other layers, and the layer that does not change the size of the 

feature map is classified into one stage. Therefore, the characteristics of each extraction are the 

output of the last layer of each stage, so that it can form a feature pyramid. 

 

The top-down process is performed using upsampling. Upsampling always uses the interpolation 

method. That is, the original image is enlarged by inserting a new element between pixels by using 

an appropriate interpolation algorithm based on the original image pixels. As note that, the feature 

map after upsampling has the same size as the feature map of the next layer. 

RetinaNet 

RetinaNet [39] is just a combination of the original FPN network and FCN network, so it has no 

special innovation in the object detection framework. The biggest innovation in RetinaNet comes 

from the introduction of Focal loss and the successful application of the single-stage target 

detection network RetinaNet (essentially ResNet + FPN + FCN). Focal loss is an improved cross-

entropy (CE) loss, which successfully solves focal loss by multiplying the original CE loss by an 

exponential formula that weakens the easy-to-detect object to the model training. In the object 

detection, the positive and negative sample areas are extremely unbalanced, and the object 

detection loss is easily affected by large batches of negative samples. This problem is the biggest 

cause of the single-stage target detection framework (such as the SSD/Yolo series) and the two-

stage target detection framework (such as Faster-RCNN/R-FCN). 
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 METHODOLOGY 

3.1 Preparation of Deep Learning Environment 

3.1.1 Operating System 

Most deep learning tools only work with Linux operating system. Ubuntu is our first choice. 

Ubuntu is an open-source operating system and it has the biggest community to maintain and 

update. Our workstation Ubuntu version is 16.04, which is the long-term support version before 

26th April 2018. 

3.1.2 NVDIA Support 

Since Hinton invent AlexNet and use GPU to help calculating parameters, the crazy of deep 

learning has begun. GPU computing makes large-scale computing neural network possible. People 

can use the CUDA [40] (Compute Unified Device Architecture) introduced in 2007 to control the 

GPU for parallel computing. In our workstation, we use 2 NVIDIA graphic cards, GTX 1080Ti. 

The version of CUDA is 9.0, which is powerful and supporting well. 

3.1.3 Tools 

There are so many deep learning tools. Because the deep learning is the most popular field in recent 

years, deep learning frameworks are getting more diverse and powerful. Most of this framework 

based on Python language. The following tools are popular which will be brief introduced 

respectively. 

Tensorflow 

On November 9th, 2015, Google released the deep learning framework, Tensorflow, and 

announced an open source. In March 2016, Google’s AI program, AlphaGO, beat the human 

player, Shishi Li with a big score of 4 over 1, which caused widespread concern in the world, 

causing a wave of artificial intelligence. Tensorflow [41] [42] is the most popular framework with 

the most comprehensive API and powerful community. Tensorboard can visually view the network 
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structure, which helps researchers understand the network, debug and optimize the network more 

easily. 

Pytorch 

Pytorch [43] is very popular among academic researchers and is a relatively new deep learning 

framework. Pytorch is a Torch-based Python machine learning library. It was developed in 2016 

by Facebook’s Artificial Intelligence Research Group. In this thesis, the Pytorch 0.4 is used. 

Keras 

Keras [46] is a high-level neural network API for building and testing neural networks. It is written 

in Python and uses Tensorflow, Theano [44], and CNTK [45] as back-end. Strictly speaking, Keras 

is not called a deep learning framework, it is more like a deep learning interface. It is built on a 

third-party framework. Keras' over-encapsulation has made it less flexible and has also caused it 

to run slower. But Keras is the easiest to learn, and it's very convenient to use Keras to verify some 

simple models. 

Caffé 

Caffe [47], the full name of Convolutional Architecture for Fast Feature Embedding, is a deep 

learning framework that combines expressiveness, speed and modularity. Developed by the 

Berkeley Artificial Intelligence Research Group and the Berkeley Center for Visual and Learning. 

Although is kernel is written in C++, Caffe has Python and MATLAB related interfaces. Caffe is 

widely use in research institutes. 

3.2 Motivation 

3.2.1 For parking lot classification 

Parking lot detection is ubiquitous. In a big city, especially in a busy and crowded parking lot, for 

a driver, when he drives into a parking lot, he has to drive around the parking lot by himself, find 

the parking space subjectively, or find some information board prompts how many vacancies are 

currently in the parking lot, but it cannot provide accurate information about the parking space. In 
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order to solve this problem, the current technology is to install a sensor in each parking space, and 

the sensor will transmit the parking space information in real time, with or without a vehicle. The 

problem with sensors is that they cannot be visualized or used on a large scale. If it is used on a 

large scale, the sensor's investment in money in the early stage will be very high. This thesis 

proposes an idea to use the security cameras around the parking lot to obtain the location 

information of the parking lot, use the convolutional neural network to make judgments on the 

parking lot information, and finally return to the parking lot with or without the vehicle information. 

This method is not only convenient and efficient, but also widely used, because the camera is easy 

to set up, and it can not only provide vehicle information detection, but also improve surrounding 

security. 

 

This simple convolutional network is used for a parking lot cars detection project. At the beginning, 

we download dataset from the open-source parking lot dataset, and then we collect data from our 

university parking lots. The first thing to do is to mark every parking space in the parking lot and 

crop the image of the parking space, meanwhile, label each parking space containing the car or 

not. These labeled parking space consists of the training and testing dataset. 

3.2.2 For prostate detection and localization 

The detection and analysis of medical images is becoming more and more popular in the field of 

computer vision. It takes a lot of money and time to develop a professional physician capable of 

analysis and diagnosis, but with the development of deep learning, these problems can be solved 

by computers. This work addresses the problem of prostate location. The prostate is a place where 

inflammation often occurs. For doctors, it is very important to be able to accurately locate the 

prostate on the image and analyze the lesions. YOLO [4] [49] network is a fast and efficient target 

positioning network. By modifying the network structure and changing the output, the purpose of 

prostate identification and positioning is achieved. 
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3.3 Dataset Image Processing 

3.3.1 Convolutional Neural Network for Classification 

Dataset source  

The parking lot dataset source is named as PKLot Dataset which is from Universidade Federal do 

Paraná (UFPR) [48]. The dataset has 12,417 images of parking lots and 695,899 images of parking 

spaces segmented from them. 

Crop images 

Except the downloading dataset, we have our own parking lots as well. For those parking lots, we 

should create the own segmented parking spaces dataset. The segmented parking spaces extracted 

from each whole parking lot, there are areas that are not the vertical rectangle like Figure 3.1.  The 

skew adjustment is used, which is different from the method proposed in [48]. We rotate any slop 

image to 90o degree as shown in Figure 3.1. 

 

Figure 3.1. The rotation method. 
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3.3.2 YOLO Network for Object Detection and Localization 

Prostate image dataset source 

The dataset is from MICCAI Grand Challenge [50]. The dataset name is PROMISE12. There are 

50 training cases available, which include a transversal T2-weighted MR image of the prostate. 

For each of the cases a reference segmentation is also included. 

Pre-processing images 

The dataset image format is test-based tagged file format for medical images. The dataset is 3-

dimensional image with a raw file, which contains the location information.  In order to use the 

dataset, the first step is to convert the mdh/raw file into a common jpg/txt file [51], which stores 

the image information and the bounding box information corresponding to the image. 

 

Figure 3.2. The extracted prostate images. 
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3.4 Classification Network Implementation 

3.4.1 Architecture 

 

Figure 3.3. The customized convolutional neural network. 
 

The overview about classification convolutional neural network architecture is shown in Figure 

3.3. It has 3 convolutional blocks, which consists of a convolutional layer, a ReLU layer and a 

pooling layer. Before the output layer, there is a fully connected layer, which makes classification 

function. 

 

Figure 3.4. The Convolutional Neural Network with BN layer. 
 

Figure 3.4 shows the new architecture with batch normalization layer. 

3.4.2 Loss Function 

For this CNN, we use the cross-entropy to calculate the loss value. The cross-entropy formula as 

follow. 

𝑐𝑐𝑓𝑓𝑜𝑜𝑏𝑏𝑏𝑏 𝑒𝑒𝑛𝑛𝑜𝑜𝑓𝑓𝑜𝑜𝑒𝑒𝑦𝑦 = −�𝑒𝑒𝑘𝑘 ∗ log(𝑞𝑞𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

(30) 

𝑆𝑆𝑜𝑜𝑓𝑓𝑜𝑜𝑠𝑠𝑏𝑏𝑥𝑥 =  
exp(𝑥𝑥[𝑐𝑐𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏])
∑ exp(𝑥𝑥[𝑗𝑗])𝑁𝑁
𝑗𝑗=0

(31) 
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where 𝑒𝑒𝑘𝑘  represents the true/target value, which is a one hot form in this formula; 𝑞𝑞𝑘𝑘  is the 

predicted value, assuming that it is already the result after passing Softmax function. N denotes 

the number of the classes. When we remove the 𝑒𝑒𝑘𝑘 component, the expression change to as follow. 

𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏 = − log�
exp(𝑥𝑥[𝑐𝑐𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏])
∑ exp(𝑥𝑥[𝑗𝑗])𝑁𝑁
𝑗𝑗=0

� = −𝑥𝑥[𝑐𝑐𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏] + log�� exp(𝑥𝑥[𝑗𝑗])
𝑁𝑁

𝑗𝑗=0

� (32) 

3.4.3 Evaluation Metrics in Classification Network 

The simplest and most intuitive evaluation metrics is accuracy. For the test dataset with N samples, 

the network output contains M correct prediction samples, simple division is performed to obtain 

the accuracy as criterion. M contains the true positive predictions and true negative predictions. 

𝐴𝐴𝑐𝑐𝑐𝑐𝑜𝑜𝑓𝑓𝑏𝑏𝑐𝑐𝑦𝑦 =
𝑀𝑀
𝑁𝑁

(33) 

 

For many times, there is no problem with accuracy as the evaluation criteria. But it is unable to 

evaluate if the network is good or not. There is an example, the network can identify whether an 

email is spam or not. There are 100 test data, 98 of them are spam and 2 of them are non-spam. 

Assuming the network always predicts an incoming email as spam, then the network’s accuracy is 

98%, and the number shows it is the pretty good network, but it doesn’t match our actual needs. 

In order to evaluate the network more efficiency, the confusion matrix [52], is introduced. Figure 

3.5 shows the confusion matrix. 

Table 3-1. Confusion matrix 
                                        Predicted 
 
 

Actual 

 Negative Positive 
Negative True Negative False Positive 
Positive False Negative True Positive 

 

Using this confusion matrix, we could calculate two metrics to evaluate the network, which are 

precision and recall. 

𝐴𝐴𝑐𝑐𝑐𝑐𝑜𝑜𝑓𝑓𝑏𝑏𝑐𝑐𝑦𝑦 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
(34) 

𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐𝑖𝑖𝑏𝑏𝑖𝑖𝑜𝑜𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
(35) 
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𝑅𝑅𝑒𝑒𝑐𝑐𝑏𝑏𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
(36) 

 

Note that precision is the proportion of correct prediction positive samples to the total predicted 

positive samples. Recall is the proportion of correct prediction positive samples to the all samples 

in actual positive samples. 

3.5 YOLO Model Implementation 

3.5.1 IOU Introduction 

 

Figure 3.5. The IOU calculation. 
 

In the evaluation system of object detection, there is a parameter called IOU [56], Intersection over 

union, which is simply the overlap ratio between the two boxes. In Figure 3.7, the first step is to 

calculate the area of two boxes overlap, then calculating the area of two boxes union. Dividing the 

first calculated area by the second calculated area leads to the IOU value. 
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3.5.2 Non-Maximum Suppression 

 

Figure 3.6 The Non-maximum example. The multiple bounding boxes (left), the optimal 
bounding box (right). 

 

In object detection, a large number of candidate bounding boxes are often processed by using non-

maximum suppression algorithm (NMS) [57] to remove redundant candidate bounding boxes and 

obtain an optimal detection bounding box to clearly show the object. The essential idea is to search 

for local maximum value and suppress non-maximum values.  Figure 3.7 is for the detection about 

horse. In the left, that is the image before the NMS. After the network prediction, there are several 

bounding boxes produced, with several coordinates and confidence value. Above figure shows one 

object detection with the different confidence values for each predicted bounding box, first the 

NMS will sort this bounding boxes depending on the confidence value from big to small, then 

NMS calculates the IOU with remaining bounding box using the bounding box with the maximum 

confidence value. If some IOU of the remaining bounding boxes are greater than the threshold, 

these bounding boxes are discarded. Immediately after, NMS selects next bounding box with the 

maximum confidence value in the remaining bounding boxes to do the same IOU calculation and 

comparison operation until there is no remaining bounding box left. 

3.5.3 Encoding Method in Pre-Processing 

YOLO converts object recognition and object localization into a regression problem. Since it is a 

regression problem, there must be a one-to-one correspondence between input and output. The 

label information only needs to convert the character information into the corresponding digital 

number to achieve the encoding requirement, but for the position information, it cannot be simply 
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processed. At this point, it is necessary to perform certain encoding processing on the input 

information, so that the input and output are related. YOLO is encoded by dividing an image into 

S x S grid cells. If the center of an object grounding truth box falls in the grid, the grid is responsible 

for prediction of this object. Each grid has to predict B bounding boxes. In addition to regress its 

own position, each box is also accompanied by a prediction of a confidence value. This value 

represents whether the predicted bounding box contains an object. If it contains an object, the 

confidence value is equal to the IOU of the ground truth box and the bounding box of this object. 

If not, the confidence should be 0. 

𝐶𝐶𝑜𝑜𝑛𝑛𝑓𝑓𝑖𝑖𝑠𝑠𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 =  Pr(𝑂𝑂𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑜𝑜) ∗ 𝐼𝐼𝑂𝑂𝑟𝑟𝑚𝑚𝑓𝑓𝑒𝑒𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ (37) 

 

Each bounding box has 5 predictions: x, y, w, h and confidence. The (x, y) represents the center 

of the bounding box related to the relative grid cell. And w, h represent width and height of the 

bounding box to the whole image. 

 

The location information encoding method of YOLO is the similar to that of the faster R-CNN 

[58], mainly based on the offset of the position information in the image, so that the width and 

height information can be distributed between 0 and 1. 

 

Figure 3.7. The Encode method. 
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As shown in Figure 3.8, the image is divided into 7 x 7 grid cells, and we set the cell in the upper 

left corner is (0, 0), increasing from left to right and top to bottom. The red box is the grounding 

truth box, and the green dot represents the center of the red box. As mentioned before, the grid cell 

where the green point is located is responsible for predicting the red ground truth box, thus 

predicting whether there is a dog or where the dog is. We set the width and height of the whole 

image to be wi, hi, the red ground truth box is wg, hg, and the coordinates of the center of the red 

ground truth box are (xg, yg). 

 

In order to make the width and height distributed between 0 and 1, we set 𝑤𝑤𝑖𝑖𝑜𝑜 = 𝑤𝑤𝑔𝑔
𝑤𝑤𝑖𝑖

,ℎ𝑖𝑖𝑜𝑜 = ℎ𝑔𝑔
ℎ𝑖𝑖

. 

But for (x, y) encoding, we need to use the offset of the grid cell. In Figure 3.8, the grid cell is 

located in column 1 and raw 4. Assume (𝑥𝑥𝑖𝑖𝑜𝑜, 𝑦𝑦𝑖𝑖𝑜𝑜) represents the offset which is the center of 

ground truth box relate to the grid cell. 

𝑥𝑥𝑖𝑖𝑜𝑜 = 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙(
𝑥𝑥𝑖𝑖
𝑤𝑤𝑖𝑖
∗ 𝑆𝑆) − 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑠𝑠𝑛𝑛 (38) 

𝑦𝑦𝑖𝑖𝑜𝑜 = 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙(
𝑦𝑦𝑖𝑖
ℎ𝑖𝑖
∗ 𝑆𝑆) − 𝑓𝑓𝑜𝑜𝑤𝑤        (39) 

3.5.4 Loss Function 

The loss function is written below: 

𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏 = 𝜆𝜆𝑠𝑠𝑜𝑜𝑜𝑜𝑓𝑓𝑑𝑑�� ∥𝑖𝑖 𝑗𝑗
𝑜𝑜𝑏𝑏𝑗𝑗 ��𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑜𝑜�

2
+ �𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑖𝑖𝑜𝑜�

2
�

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

+ 𝜆𝜆𝑠𝑠𝑜𝑜𝑜𝑜𝑓𝑓𝑑𝑑�� ∥𝑖𝑖 𝑗𝑗
𝑜𝑜𝑏𝑏𝑗𝑗 ���𝑤𝑤𝑚𝑚 − �𝑤𝑤𝑖𝑖𝑜𝑜�

2
+ ��ℎ𝑚𝑚 − �ℎ𝑖𝑖𝑜𝑜�

2

�
𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

+ �� ∥𝑖𝑖 𝑗𝑗
𝑜𝑜𝑏𝑏𝑗𝑗 ��𝐶𝐶𝑖𝑖

𝑚𝑚 − 𝐶𝐶𝑖𝑖
𝑖𝑖�

2
�

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

+ 𝜆𝜆𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑗𝑗�� ∥𝑖𝑖 𝑗𝑗
𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑗𝑗 ��𝐶𝐶𝑖𝑖

𝑚𝑚 − 𝐶𝐶𝑖𝑖
𝑖𝑖�

2
�

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

+ � ∥𝑖𝑖 𝑗𝑗
𝑜𝑜𝑏𝑏𝑗𝑗 � ��𝑃𝑃𝑖𝑖

𝑚𝑚(𝑐𝑐) − 𝑃𝑃𝑖𝑖
𝑖𝑖(𝑐𝑐)�

2
�

𝑠𝑠𝑐𝑐𝑠𝑠𝑙𝑙𝑓𝑓𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠

𝑆𝑆2

𝑖𝑖=0

                                                                  (40) 
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 (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) stands for the center of prediction bounding box offset to the grid cell, and the (𝑥𝑥𝑖𝑖𝑜𝑜 ,𝑦𝑦𝑖𝑖𝑜𝑜)  

stands for the center of ground truth box offset to the grid cell. ∥𝑖𝑖 𝑗𝑗
𝑜𝑜𝑏𝑏𝑗𝑗 means the grid cell contain the 

object the jth bounding box response to this object, calculate error using this bounding box 

coordinates and confidence score. 𝐶𝐶𝑖𝑖
𝑚𝑚,𝐶𝐶𝑖𝑖

𝑖𝑖 respectively represents confidence score in prediction 

and ground truth. 𝑃𝑃𝑖𝑖
𝑚𝑚(𝑐𝑐),𝑃𝑃𝑖𝑖

𝑖𝑖(𝑐𝑐) represent the classes possibility for each class in prediction and 

ground truth. The above loss function combines the localization error and classification error. The 

weight of these two errors should not occupy the same weight in the expression. Because in the 

image, the number of ground truth boxes is much less than the number of prediction bounding 

boxes, this unbalance output would make the loss function unstable. The Joseph Redmon [4] adds 

two super-parameters in this function 𝜆𝜆𝑠𝑠𝑜𝑜𝑜𝑜𝑓𝑓𝑑𝑑  and 𝜆𝜆𝑛𝑛𝑜𝑜𝑜𝑜𝑏𝑏𝑗𝑗 , respectively set the value 5 and 0.5. 

These two super-parameters mean that when the grid cell contains an object, the loss function is 

more sensitive in the classification error, if not contains, the loss function should merely ignore 

the classification error. Because in the image, the number of ground truth boxes is much less than 

the number of prediction bounding boxes, this unbalance output would make the loss function 

unstable. To make more stable for this formula, we use the square root of the bounding box and 

ground truth box width and height. The sum-squared error will be stable and small after the square 

root of width and height.  

3.5.5 Decoding Method in Prediction 

The process of decoding is the inverse of encoding. Decoding is to display the bounding box 

relative to the entire image when the network makes prediction, rather than the bounding box 

relative to the grid cell. According to the previous coding process, (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) relative to the whole 

image can be derived from the following formula. 

𝑥𝑥𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑜𝑜 + 𝑐𝑐𝑜𝑜𝑙𝑙𝑜𝑜𝑠𝑠𝑛𝑛

𝑆𝑆
∗ 𝑤𝑤𝑖𝑖 (41) 

𝑦𝑦𝑖𝑖 =
𝑦𝑦𝑖𝑖𝑜𝑜 + 𝑓𝑓𝑜𝑜𝑤𝑤

𝑆𝑆
∗ ℎ𝑖𝑖         (42) 
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3.5.6 Evaluation of Network using mAP 

Localization is no longer easy and clear to evaluate the quality of the network compared to 

classification. In this case, some new metrics for object detection is needed. The establishment of 

these standards is based on different online competitions, such as PASCAL VOC Challenge [55]. 

COCO Detection Challenge [59], Google Open Images Dataset V4 Competition, ImageNet Object 

Localization Challenge [60]. The evaluation mAP is the widely and commonly used in objects 

detection network, which stands for mean Average Precision. The generally understood about 

mAP [53] [54] is the area under the precision-recall curve. The ordinate is the precision, and the 

abscissa is the recall, as the recall rate increases, the precision decreases. 

3.6 Customization of YOLO Model 

The original YOLO backbone network is DarkNet [4], which is the network based on C. In this 

thesis, we use ResNet50 to replace the DarkNet, because the problem in this thesis is one object 

detection, therefore, the network structure does not need to be too complicated. In the original 

paper [4], the end of DarkNet is connected with 2 fully connected layers. We remove the fully 

connected layer and use the customized convolutional layer for the final output. 

 

After we change the backbone network, we use the original YOLO and our new architecture to 

evaluate mAP. The performance is better than the original one. 

Table 3-2. The performance of two YOLO network. 

Network architecture Map for voc2012 FPS 

YOLO with ResNet 68.32% 58 

Original YOLO 62.13% 42 

 

As can be seen in Table 3-1, the mAP score is almost 6% increased, and the FPS is faster than the 

original YOLO architecture. 
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 EVALUATION AND DISCUSSION 

4.1 Parking Lot Output 

The training and validation results for parking lot are displayed in Figure 4.1. 

 

Figure 4.1 Training loss (left) and Validation dataset accuracy (right). 
 

In Figure 4.1, we can see the loss value drops dramatically down before 20 epochs, and slowly 

decreases down to 0 at 100 epochs. The accuracy depends on the 2000 validation images, the 

performance of validation dataset relates to the training loss, the accuracy is getting higher while 

the training loss is dropping down. The finial accuracy is almost 100%. The fault detection parking 

space is shown as follow. We are using 500 images to test our model. The precision and recall as 

shown in Table 4-1. 

Table 4-1. Precision and recall at first training. 

Precision Recall 

0.9492 0.972 
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Figure 4.2. Wrong detection images 

 

As we can see, the wrong detections are almost all red cars, we check our training dataset, we 

calculate the red cars only obtain 7% of all training dataset, then we use data augmentation method, 

rotate, crop or flip to get more red cars images. After that, we re-train our model, and test our 

model again. 

 

Figure 4.3. Training loss (left) and Validation dataset accuracy (right) at second time. 

 

For this time, we increase the learning rate at beginning, set value as 0.01 and set 0.001 at 50 

epochs. The training loss is approximately 0 at final epoch, and the accuracy using test dataset is 

100%. Recall is equal to 1 and precision is 0.98. 
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Table 4-2. Precision and recall at second training. 

Precision Recall 

0.98 1 

 

4.2 Prostate Output 

Figure 4.4 shows the training and validation results for the application of prostate detection. 

 

Figure 4.4. The first training for 50 epochs, the blue line (1) is the training data loss, the orange 
line (2) is the validation data loss. 

 

As shown in Figure 4.4, the training loss trending decreases dramatically at beginning several 

epochs, because the backbone network is pre-trained, which load the weights from the ResNet-50 

all layers except the fully connected layer. After first 20 epochs training, the loss is almost at the 

minimum. This proves that our network works, which is learning from the training data to predict 

whether the prostate is contained and the location of the prostate.  
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We try to use this model to test the 778 prostate images. The accuracy for prediction of contain 

prostate images is only 80.2%. This result is far lower than our expectation. The average IOU of 

all correct prediction is 0.736, which is not reasonable. 

 

Figure 4.5. The training for 5000 epochs, the blue line (1) is the training data loss, the orange line 
(2) is the validation data loss. 

 

We continue to train our model for 5000 epochs, the training loss trend is decreasing.  The accuracy 

for prediction of containing prostate images reaches 99.2%. This result is much better than above 

network.  The average IOU of all correct predictions is 0.884. 
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Table 4-3. False Positive for network that predicted 6 contained prostate images as non-
contained prostate images, and location information missed. 

Prediction Ground truth Prediction Ground Truth 

    
Prediction Ground truth Prediction Ground truth 

    
Prediction Ground truth Prediction Ground truth 

    
 

Table 4-3 shows the false positive prediction images. The prediction images should note the image 

with prostate, but they actually do not. After reviewing predecessors work, we concluded that this 

problem can happen because of the YOLO method shortage. The YOLO sets a 7 x 7 grids in the 

image, thus it is hard to detect the small objects. In our model, we set the grid size to 14.  

4.3 Future Work 

Regarding the classification of parking lots with or without vehicles, the corresponding parking 

lot will be optimized successively. 

1. Collect information about specific parking lots, such as campus parking lots. 
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2. Division and numbering of parking lot information 

3. Make a real-time detection system and develop a mobile application 

 

In the detection and location of the prostate, we found that it is difficult to detect the prostate in a 

small area. The accuracy of neural networks for detecting and locating small targets is very low. 

Sometimes when the detection area is small, the accuracy of the network is almost zero. This 

problem has not been effectively solved. The network structure can also be updated later. For 

setting the grid size, we can increase the value as much as possible. But the problem is that the 

training time and detection time will increase. We can also investigate a new network structure, 

YOLO-v3. 
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 CONCLUSION 

In chapter 1 (Introduction), we briefly introduce the concept of deep learning and the 

implementation in computer vision field. The most important part is the object detection and 

recognition, which are the main topic in this thesis.  

 

In chapter 2 (Background), we review the traditional machine learning methods and the neural 

network. The new concept of neural networks influences the trend of machine learning and the 

future. Comparing with traditional machine learning, the problem targeted is often linear 

correlation. The neural network uses an activation function to transform linear correlations into 

nonlinear correlations, so we review some common activation functions in machine learning and 

deep learning. After we review the updating parameter method of neural network, the first step is 

forward propagation, which makes the input pass through l the entire network. The second step 

uses loss function to calculate the error between output and true value. Next, using the gradient 

descend method and back propagation updates all weights in each neuron. The next part is the 

concept of convolutional neural network, which is the main topic of the thesis. We review the 

background and the definition about CNN, and then introduce the architecture of CNN. As the 

finial part, we review the state-of-the-art CNN models. 

 

In chapter 3 (Methodology), at beginning we prepare the working environment and choose the 

advanced deep learning tools. For deep learning, dataset is the most important part. We collect 

parking lot dataset and prostates dataset, one is used for object classification, and the another one 

is used for object localization. Then we introduce our classification network architecture and 

localization network architecture. 

 

In chapter 4 (Evaluation and Discussion), we review and evaluate our model and verify 

performance, and discuss some problems and improvements in our models. 
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