
LOSSLESS COLOR IMAGE COMPRESSION WITH BIT-ERROR

AWARENESS

by

Xuan Peng

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Hammond, Indiana

December 2019

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Lizhe Tan, Chair

Department of Electrical and Computer Engineering

Dr. Quamar Niyaz

Department of Electrical and Computer Engineering

Dr. Xiaoli Yang

Department of Electrical and Computer Engineering

Approved by:

Dr. Vijay Devabhaktuni

3

Dedicated to my parents Hui Peng and Huanping Ren

4

ACKNOWLEDGMENTS

Here, I would like to express my gratitude to all those who helped me during the writing

of this thesis. I gratefully acknowledge the help of my academic advisor, Dr. Lizhe Tan, who has

offered me valuable suggestions in the academic studies. Under his guidance, I have learned much

knowledge and many methods for the research. Without his patient instruction, insightful criticism

and expert guidance, the completion of this thesis would not be possible.

I also owe a special debt of gratitude to my other committee members, Dr. Quamar Niyaz

and Dr. Xiaoli Yang for their feedbacks. Finally, I like to express my gratitude to my group

members in my research for their help and brainstorming.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

ABBREVIATIONS .. 10

ABSTRACT .. 11

CHAPTER 1. INTRODUCTION ... 12

 Motivations ... 12

 Objectives ... 13

 Organization of Thesis .. 13

 Contribution of Thesis .. 13

CHAPTER 2. BIT-ERROR AWARE LOSSLESS COLOR IMAGE COMPRESSION 14

 Framework .. 14

 Color Space Transformation ... 15

 Prediction .. 17

 Residue Coding ... 18

2.4.1 2-D bi-level block coding and 1-D bi-level block coding ... 18

2.4.2 Interval Huffman coding and standard Huffman coding ... 25

 Error Control Coding .. 31

CHAPTER 3. INTELLIGENT OPTIMIZATION ALGORITHM .. 34

 Genetic Algorithm .. 35

3.1.1 Fitness function .. 38

3.1.2 Selection .. 39

3.1.3 Crossover ... 40

3.1.4 Mutation ... 41

 Particle Swarm Optimization .. 42

3.2.1 Position and velocity .. 44

3.2.2 Fitness value .. 46

3.2.3 Update rule ... 46

 Similarities and Differences .. 46

 Performance Evaluations .. 47

6

CHAPTER 4. EXPERIMENTS AND RESULTS ... 52

4.1 Performance Evaluation for RGB image and Color-converted Image 52

4.2 PSNR Performances for Different Bit-error Rates ... 66

4.3 CR Performances for Different Images .. 69

CHAPTER 5. CONCLUSION AND FUTURE WORK .. 70

REFERENCES ... 71

PUBLICATIONS .. 74

7

LIST OF TABLES

Table 2.1 Transformation formulas for Y, Cr and Cb in color space ... 16

Table 2.2 Linear predictors for Y, Cr and Cb ... 18

Table 2.3 2-D bi-level block coding rules .. 20

Table 2.4 2-D bi-level block coding algorithm ... 22

Table 2.5 1-D bi-level block coding rules .. 23

Table 2.6 1-D bi-level block coding algorithm ... 24

Table 2.7 Interval Huffman coding ... 29

Table 2.8 Standard Huffman coding ... 30

Table 2.9 Relationship between code length and number of parity bits 33

Table 4.1 Performance evaluation for RGB image and color-converted image
in “Lena” image .. 53

Table 4.2 Performance evaluation for RGB image and color-converted image
in “Baboon” image .. 53

Table 4.3 Performance evaluation for RGB image and color-converted image
in “House” image .. 54

Table 4.4 Performance evaluation for RGB image and color-converted image
in “Pepper” image ... 54

Table 4.5 Performance evaluation for RGB image and color-converted image
in “Airplane” image .. 55

8

LIST OF FIGURES

Figure 2.1 Bit-error aware three-stage lossless color image compression. 14

Figure 2.2 Neighbored pixels for the predictor in an image. .. 17

Figure 2.3 Coding protection for bi-level block coding method. ... 25

Figure 2.4 First step in example. ... 26

Figure 2.5 Second step in example. .. 26

Figure 2.6 Final step in example. .. 27

Figure 2.7 Huffman tree. ... 28

Figure 2.8 Coding protection for Huffman coding. .. 30

Figure 3.1 Flow chart of genetic algorithm. ... 37

Figure 3.2 Five variables of the fitness function. .. 38

Figure 3.3 An example of tournament selection. .. 40

Figure 3.4 Four crossover methods. .. 41

Figure 3.5 Four mutation methods. ... 42

Figure 3.6 Flow chart of particle swarm optimization. ... 45

Figure 3.7 Iterative curves for “Lena” image. .. 48

Figure 3.8 Iterative curves for “Baboon” image. .. 48

Figure 3.9 Iterative curves for “House” image. .. 49

Figure 3.10 Iterative curves for “Pepper” image. ... 50

Figure 3.11 Iterative curves for “Airplane” image. .. 50

Figure 4.1 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.001 for “Lena” image. 56

Figure 4.2 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.005 for “Lena” image. 57

Figure 4.3 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.001 for “Baboon” image. 58

Figure 4.4 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.005 for “Baboon” image. 59

Figure 4.5 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.001 for “House” image. 60

9

Figure 4.6 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.005 for “House” image. 61

Figure 4.7 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.001 for “Pepper” image............................... 62

Figure 4.8 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.005 for “Pepper” image............................... 63

Figure 4.9 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.001 for “Airplane” image. 64

Figure 4.10 Comparison results using predictive bi-level block coding, predictive interval Huffman
coding and predictive Huffman coding at BER = 0.005 for “Airplane” image. 65

Figure 4.11 PSNR performances versus the bit-error rate for “Lena” image. 66

Figure 4.12 PSNR performances versus the bit-error rate for “Baboon” image. 67

Figure 4.13 PSNR performances versus the bit-error rate for “House” image. 67

Figure 4.14 PSNR performances versus the bit-error rate for “Pepper” image. 68

Figure 4.15 PSNR performances versus the bit-error rate for “Airplane” image. 68

Figure 4.16 CR performances for five different color images. ... 69

10

ABBREVIATIONS

CR Compression Ratio

PSNR Peak Signal to Noise Ratio

ARQ Automatic Repeat Request

FEC Forward Error Correction

HEC Hybrid Error Correction

GA Genetic Algorithm

PSO Particle Swarm Optimization

BER Bit-error rate

11

ABSTRACT

Image compression is widely applied to medical imaging, remote sensing applications,

biomedical diagnosis, multimedia applications and so on [1]-[4]. In many cases, considering the

factor of image quality, we use a lossless compression method to compress the image.

In this thesis work, we propose bit-error aware lossless compression algorithms for color

image compression subject to bit-error rate during transmission. Each of our proposed algorithms

includes three stages. The first stage is to convert the RGB images to YCrCb images, and the

second stage predicts the transformed images to generate the residue sequences. Optimization

algorithms are used to search the best combination of the image conversion and prediction. At the

last stage, the generated residue sequences are encoded by several residue coding algorithms,

which are 2-D and 1-D bi-level block coding, interval Huffman coding and standard Huffman

coding algorithms. Key parameters, such as color transformation information, predictor parameters

and residue coding parameters, are protected by using (7,4) Hamming code during image

transmission,

The compression ratio (CR) and peak signal to noise ratio (PSNR) are two significant

performance indicators which are used to evaluate the experimental results. According to the

experimental results, the 2-D bi-level block coding algorithm is verified as the best coding method.

12

CHAPTER 1. INTRODUCTION

 Motivations

Image compression means reducing the amount of data needed to represent digital images.

Image data can be compressed because of the redundancy in the data. The redundancy of image

data mainly manifests in the following three aspects: spatial redundancy caused by correlation

between adjacent pixels in the image; temporal redundancy caused by correlation between

different frames in the image sequence; spectral redundancy caused by correlation of different

color planes or spectral bands. Since the amount of image data is huge, and it is very difficult to

store, transfer, and process, compression of image data is demanded.

Due to the growing size of color image datasets, it is necessary to research more efficient

ways to compress the images [5]-[8], where the methods for image compression are divided into

lossy compression and lossless compression. The lossy compression methods can achieve high

compression ratio at the cost of poor reconstruction images [9], [10]. When an exact recovery of a

compressed image is required, we use lossless image compression algorithms [11], [12]. The

lossless compression algorithm is especially useful for dealing with ECG signals, 2-D, 3-D or even

4-D medical images in [13], [14]. In the image compression process, the image quality and

compression ratio are better after preprocessing of the original images. In this paper, we adopt two

steps to preprocess the images. The first step is to convert RGB images to YCrCb images so that

we can get a better image compression ratio. The second step is to use predictive encoders to

reduce the correlation between pixels, thereby increasing the image compression ratio [15]-[17].

Through an optimization algorithm, that is, genetic algorithm or particle swarm optimization

algorithm, the most suitable color conversion equations and predictors are selected. Finally, the

residues produced from the best color space conversion equations and predictors are further

compressed via a lossless compression algorithm. Using lossless image compression could

improve transmission throughput if the compressed image data is transmitted over a noiseless

communication system. However, if bit errors occur in a noisy channel during transmission or in

the storage media, the recovered image can be damaged and become useless if the instantaneous

coder such as standard Huffman coding is directly applied. Although this problem can be cured by

applying a forward error control scheme, adding additional bits required by the error correction

13

coding can significantly degrade the performance of the compression ratio and may even cause the

expansion of image files. A strategy for applying the error control coding needs to be addressed

and the corresponding performance needs to be verified.

 Objectives

We develop bit-error aware lossless compression algorithms using color transformation,

prediction, and four different residue encoding methods, which are 1-D and 2-D bi-level block

coding, interval Huffman coding, and standard Huffman coding. The compression ratio (CR) and

peak signal to noise ratio (PSNR) are used to evaluate their performances.

Bit errors are unavoidable during data transmission. The error-correcting codes are essential.

In this paper, we use (7,4) Hamming code reported in [18], [19] to protect key information of the

compression algorithm in order to prevent images from being destroyed.

 Organization of Thesis

This thesis is organized as follows. Chapter 2 introduces the framework of bit-error aware

lossless color image compression. In Chapter 3, the two optimization algorithms, genetic algorithm

and particle swarm optimization algorithm, are highlighted and compared. Then, we compare and

analyze experimental results in Chapter 4. Finally, Chapter 5 presents the conclusion, contribution,

and future work.

 Contribution of Thesis

This thesis has four contributions. Firstly, we propose conversion methods from RGB to

YCrCb, and predictors on YCrCb images to improve the CR and PSNR. Secondly, genetic

algorithm and particle swarm optimization algorithm are proposed to select the best lossless

conversion from RGB to YCrCb along with the best predictors to obtain the minimum entropy of

the residues. Thirdly, the theory of 1-D bi-level block coding is extended to N-D bi-level block

coding. As a special case, 2-D bi-level block coding is applied for residue coding. Finally, the

performances of using new 2-D bi-level block coding are validated in comparisons with using 1-

D bi-level block coding, interval Huffman coding, and standard Huffman coding.

14

CHAPTER 2. BIT-ERROR AWARE LOSSLESS COLOR IMAGE
COMPRESSION

 Framework

In the image transmission and compression, color images are typically transformed, encoded,

and compressed under certain conditions of fidelity. Besides, it is necessary to remove redundant

data and reduce the amount of extra data when compressing color images to facilitate image

storage and transmission. Figure 2.1 shows a block diagram of our bit-error aware lossless

compression algorithms.

RGB

YCrCb Predictors Residue
Coding

Optimization
algorithms

Residue bit
stream

Packing
scheme

Bit stream

Color space transformation, predictors
parameters, residue coding parameters

protected by Hamming coding (7,4)

Stage 1 Stage 2 Stage 3

Residues from Y
Residues from Cr
Residues from Cb

Figure 2.1 Bit-error aware three-stage lossless color image compression.

As shown in Figure 2.1, an RGB image is transmitted and compressed into a bit stream

through three stages. At the first stage, the image becomes a YCrCb image by color space

conversion, where Y is the luminance component, and Cr and Cb are the red-difference and blue-

difference chrominance components. Next, the color-converted image components of YCrCb are

predicted using the selected predictors and the residues of Y, Cr and Cb are produced. In order to

effectively remove redundancy in the residues, an optimization algorithm is adopted to search the

best combination of color space conversion for image in the first stage and linear predictor in the

15

second stage. Then, the residue sequence produced by the first two stages is further encoded using

one of four different residue coding methods. Consider the fact that the compressed bit stream may

be interfered by bit errors during transmission. (7,4) Hamming code is effective in preventing

image damage by protecting key information, that is, color space transformation, predictors

parameters and residue coding parameters. Finally, a bit stream is produced for transmission or

storage by packing these key parameters and unprotected residue bit stream. Through the reverse

process, we can decode the bit stream back to obtain the restored image.

 Color Space Transformation

YCrCb is mainly used to optimize the transmission of color video signals, making them

backward compatible with old-fashioned black and white TVs. Compared with RGB signal

transmission, its biggest advantage is that it requires only a small amount of bandwidth (RGB

requires three independent signals to be transmitted simultaneously). “Y” indicates brightness

(Luminance or Luma), which is the grayscale value. In RGB images, brightness is established by

RGB input signals by superimposing specific parts of the RGB components. On the other hand,

“Cr” and “Cb” indicate the chroma (Chrominance or Chroma), which are used to describe the color

and saturation of an image to specify the color of pixels. Among them, “Cr” reflects the difference

between the red part of the RGB input signals and the brightness value of the RGB signals. “Cb”

reflects the difference between the blue portion of the RGB input signals and the luminance value

of the RGB signals.

The principle is that in YCrCb format, the luminance channel carries more signal energy,

while the chrominance channels carry much less signal energy. After transformation, more effort

can be spent on coding the luminance channel [20]. According to this principle, the converted

image has a higher compression ratio and image quality than RGB image. Table 2.1 [21], [22] list

some lossless transformation methods from RGB image to YCrCb image and vice versa, where

nine (9) equations are related to RGB converted to Y, twelve (12) equations are related to RGB

converted to CrCb.

16

Table 2.1 Transformation formulas for Y, Cr and Cb in color space

Y

Cr Cb

G

R

B

() / 2+ G R

() / 2+ G B

() / 2+ R B

(2) / 4+ + R G B

(2) / 4+ + R G B

(2) / 4+ + R G B

() / 2− + R B G

() / 2− + G R B

() / 2− + B R G

(3) / 4− + G B R

(3) / 4− + R G B

−B G

(3) / 4− + R B G

(3) / 4− + G R B

(3) / 4− + B G R

(3) / 4− + B R G

−B G

−B R

−G B

−R B

−R G

−B R

−G B

−B G

−R B

−G R

−R G

−R B

−G R

−R G
i

j

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

12

As an example for 512×512 “Lena” image, according to the maximum compression criterion,

the genetic algorithm or particle swarm optimization algorithm selects the 8th transformation

formula for Y space ((2) / 4R G B+ +) and the 1st transformation formula for CrCb, that is,

 Cr R G= − , (2.1)

 Cb B G= − . (2.2)

We can recover the RGB image from the YCrCb image as:

 {(2) / 4}R Y floor Cr Cb= + − , (2.3)

 G R Cr= − , (2.5)

 B Cb G= + . (2.6)

For 512×512 “Baboon” image, the transformation formulas for Y at the sixth, and CrCb at

the eleventh row in Table 2.1 are adopted. The YCrCb image is converted to the RGB image as

follows:

 bG C Y= − , (2.7)

 { / 2}B Y floor Cr= − , (2.8)

17

 { / 2}R Y Cr floor Cr= + − . (2.9)

 Prediction

Statistical analysis of natural scenes and character images shows that pixels with low

brightness levels have a substantial probability. After analyzing of a large number of image

difference signal statistics, the difference signal near zero value has the highest probability of

occurrence. Therefore, the actual discrete amplitude of two pixels in the horizontal direction (or

vertical direction) of the image can be subtracted to obtain their difference, and then the difference

is encoded and transmitted to achieve the purpose of compressing the image data. The image

compression coding of the prediction method is developed on this basis.

The predictive coded data compression technique is based on the correlation of signal data.

It predicts the new sample by using the previous sample values according to a certain model,

thereby reducing the temporal and spatial correlation of the data to achieve the purpose of

compressing the data. In this thesis work, we adopt two kinds of linear predictors reported in [21],

[22], and [23] for Y, Cr and Cb, respectively, although there are many predictors designed using

traditional least-square design methods [24]. According to the certain correlation between the

pixels of the image, the pixel is predicted by using the surrounding pixels, and then the difference

between the actual value and the pre-value (prediction error) is encoded. The more effective the

prediction, the smaller the residue error and residue entropy are. Therefore, the fewer bits are

needed for encoding each residue value. Figure 2.2 shows a typical linear predictor. As shown in

Figure 2.2, X is the predicted pixel; and C, B and A are the known neighbor pixels of X used for

the predictor.

C B

A X

Figure 2.2 Neighbored pixels for the predictor in an image.

18

For a color image, we maintain the pixels in the first row and the first column, and implement

the method showed in Figure 2.2. The pixel values of other rows and columns can be obtained

according to the known pixel values of the first row and the first column. Then, residuals can be

obtained by subtracting the predicted value from the original image. Table 2.2 lists two proposed

predictors for linear predictive coding. Each of Y, Cr and Cb components is predicted using one

of these two methods [11], [23], [25]. In the light of the maximum compression criterion, the best

predictor can be adopted.

Table 2.2 Linear predictors for Y, Cr and Cb

i

1

() for YP x () for CrP x () for CbP x

2

() / 2A B () / 2A B () / 2A B

(3 3 2) / 4 A B C (3 3 2) / 4 A B C (3 3 2) / 4 A B C

 Residue Coding

After the prediction, the residues of predicted images can be compressed sequentially. It is

assumed that the residue samples are uncorrelated and follow the Laplacian distribution

approximately [26], [27]. We design four different methods to encode the residues, which are 2-D

bi-level block coding, 1-D bi-level block coding, interval Huffman coding and standard Huffman

coding.

2.4.1 2-D bi-level block coding and 1-D bi-level block coding

First, bi-level block coding is used, which is a simple and efficient method for encoding data

sequences [28], [29], [30]. This method divides residues into two different blocks. One type of

blocks contains smaller residue values, so it can be encoded with a smaller number of bits per

residue. We call this type of bocks as level-1 block. Each sample in the block can be encoded using

1N bits. The other type of blocks includes not only smaller residue values but also larger residue

19

values. It requires a larger number of bits to encode each residue. This type of blocks is called as

level-0 block. Each sample in the block must be encoded using 0N bits (0 1N N〉).

Let us derive for the general case. For an N-dimensional bi-level block coding method,

assuming all data samples are statistically independent, the probability of a level-1 block is written

as 1 2
1

Nx x xP p= , where 01p p= − is the probability of a data sample requiring less or equal to 1N

bits to encode and 0p (close to zero) is the probability of a data sample requiring more than 1N

bits and less than or equal to 0N bits to encode. The probability of a level-0 block is

1 2
0 11 1 Nx x xP P p= − = − . For a sequence consisting of blocks in which there are k level-1

blocks and (m k−) level-0 blocks, the sequence coding length and its probability are, respectively,

given below:

 0 1 2 1 1 2() ()N NL k m N x x x m k N x x x k= + − + , (2.10)

 () ()1 2 1 2
1 1() 1 1N N

m km k x x x k x x xkm m
P k P P p p

k k
−−

= − = −

 , (2.11)

We can obtain the average total length aveL as

1 2

0

0 1 2 0 1 1 2
0 0

0 1 2 0 1 1 2

() ()

() () () ()

() () N

m

ave
k

m m

N N
k k

x x x
N N

L P k L k

m N x x x m P k N N x x x kP k

m N x x x m N N x x x mp

=

= =

=

= + − −

= + − −

∑

∑ ∑

, (2.12)

Assuming that 1 2 0 0.3Nx x x p ≤ , we can approximate the probability 1P as

1 2 1 2

1 0

0 1 2 0 1 2

(1)
1 ... 1

N Nx x x x x x

N N

P p p
p x x x p x x x

= = −
= − + ≈ −

, (2.13)

by omitting the higher-order terms. Using n x y m= × × , we obtain

 1 0 1 1 2 0
1 2

()ave N
N

nL nN N N nx x x p
x x x

= + + −

, (2.13)

For a fixed 1N , taking derivative of (2.13) to x and setting it to zero leads to

 0 1 2 02
1 1 2

() 0ave
N

N

L n N N nx x p
x x x x

∂
= − + − =

∂

, (2.14)

m

20

 0 1 1 3 02
2 1 2

() 0ave
N

N

L n N N nx x x p
x x x x

∂
= − + − =

∂

, (2.15)

…

 0 1 1 2 1 02
1 2

() 0ave
N

N N

L n N N nx x x p
x x x x −

∂
= − + − =

∂

, (2.16)

Then, we yield the optimal block size and the minimum average bits per sample as:

 *
1 2 0 1 0() 1/ ()Nx x x N N p= − , (2.17)

 0 1 0 1
min

2 ()aveL N N p N
n

 = − +

. (2.18)

2-dimensional bi-level block coding method is a special case in the N-dimensional bi-level

block coding method, which is suitable for encoding color images. Table 2.3 shows the rules of

the 2-D bi-level block coding algorithm.

Table 2.3 2-D bi-level block coding rules

1. Divide the data sequence with a length of n m x y= × × into m ≤ blocks in which
each block consists of x columns and y rows, that is, x y× is the block size. There
are two types of blocks, the level-0 block and the level-1 block.

1N 0N1N 1N

1N 1N
1N

1N 1N 1N

0N
0N

0N 0N 0N

0N
0N0N

y

y

x

x

1() 1 bitsN x y× + 0 () 1 bitsN x y× +

Level-1 block Level-0 block

2. For a level-1 block, any sample in the block requires only 1N bits (1 0N N<
[original sample size]) to encode. Encode each sample using 1N bits and add the
prefix “1” to designate the block as the level-1 block.

3. For a level-0 block, at least one of the samples in the block needs more than 1N
bits to encode. Encode each sample in the block using 0N bits and add the prefix “0”
to indicate the level-0 block.

21

Assuming all data samples are statistically independent the probability of a level-1 block is written

as 1
xyP p= , where 01p p= − is the probability of a data sample requiring less or equal to 1N bits

to encode and 0p (close to zero) is the probability of a data sample requiring more than 1N bits

and less than or equal to 0N bits to encode. The probability of a level-0 block is

0 11 1 xyP P p= − = − . For a sequence consisting of m blocks in which there are k level-1 blocks

and (m k−) level-0 blocks, the sequence coding length and its probability are, respectively, given

below:

 0 1() ()L k m N xy m k N xyk= + − + , (2.19)

 () ()1 1() 1 1
m k m kk xyk xym m

P k P P p p
k k

− −
= − = −

, (2.20)

We can obtain the average total length aveL as

0

0 0 1
0 0

0 0 1

() ()

() () () ()

() ()

m

ave
k

m m

k k
xy

L P k L k

m N xym P k N N xy kP k

m N xym N N xymp

=

= =

=

= + − −

= + − −

∑

∑ ∑ , (2.21)

Assuming that 0 0.3xyp ≤ , we can approximate the probability 1P as

1 0 0 0(1) 1 ... 1xy xyP p p p xy p xy= = − = − + ≈ − by omitting the higher-order terms. Using

n x y m= × × , we obtain

 1 0 1 0()ave
nL nN N N nxyp
xy

= + + − , (2.22)

 0xyp γ< , (2.23)

For a fixed 1N , taking derivative of (2.22) to x and setting it to zero, we yield the optimal block

size and the minimum average bits per sample

 0 1 02 () 0aveL n N N nyp
x x y

∂
= − + − =

∂
, (2.24)

 0 1 02 () 0aveL n N N nxp
y xy

∂
= − + − =

∂
, (2.25)

Then, we yield the optimal block size and the minimum average bits per sample as:

22

 *
0 1 0() 1/ ()xy N N p= − , (2.26)

 0 1 0 1
min

2 ()aveL N N p N
n

 = − +

. (2.27)

The optimal coding parameters are the pair of 1N and *()xy corresponding to the smallest

()min
/aveL n through the entire search for 1 01 N N≤ < . We initially set 1 0 2N N= − , and 4xy = in

case 0 0.3xyp ≤ is not satisfied for all the searches. We summarize the 2-D bi-level block coding

scheme in Table 2.4.

Table 2.4 2-D bi-level block coding algorithm

1. Find 0N for a given data sequence.

Initially, set 1 0 2N N= − and *() 4x y× = .

2. For 1 01, 2,3, 1N N= −

 Estimate 0p , the probability of the sample requiring more than 1N

 bits to encode; and calculate the optimal block size:

 *
0 1 0() 1/ ()x y N N p× = −

 Round up the block size to an integer value.

 If *
0() 0.3x y p× × ≤ , calculate the average bits per sample:

 () 0 1 0 1min/ 2 ()aveL n N N p N= − +

 Record 1N and *()xy values for the next comparison

 End loop

After completing search loops, select 1N and *()xy corresponding to the
smallest value of ()min/aveL n .
3. Perform bi-level block coding using the obtained optimal parameters 1N ,

x and y which satisfy *() ()xy xy= , and rules listed in Table 2.3.

23

Unlike 2-dimensional bi-level block coding method, 1-dimensional bi-level block coding

method divides every line of residues into two different blocks: level-1 block and level-0 block.

The rule of 1-D bi-level block coding method is shown in Table 2.5.

Table 2.5 1-D bi-level block coding rules

1. Each line of residue data is divided into m blocks with each block size of x , so
n m x= × is the total number residues. There are two types of blocks: level-1 block and
level-0 block.

2. For a level-1 block, each sample in the block can be encoded using 1N bits. Add
the prefix “1” to show the level-1 block.

3. For a level-0 block, at least one residue existing in the block requires more than
1N bits to encode. This means that each sample in the block must be encoded using

0N bits (0 1N N〉). Add the prefix “0” to indicate the level-0 block.

1 ... 0 ...

a. level-1 block b. level-0 block
1N 1N 1N 0N 0N 0N

x samples x samples

Assume probability of level-1 blocks is 1= xP p . The probability of level-0 blocks is

0 11 1 xP P p= − = − . For m blocks of residue data, there are k level-1 blocks and (m k−) level-0

blocks. The sequence coding length and its probability are, respectively, given as follows [30]:

 0 1() ()L k m N x m k N xk= + − + , (2.28)

 1 1() (1) (1)k m k xk x m km m
P k P P p p

k k
− −

= − = −

, (2.29)

We can obtain the total average length aveL as

 0 0 1
0

() () () ()
m

x
ave

k
L P k L k m N xm N N xmp

=

= = + − −∑ . (2.30)

The optimal coding parameters are 1N and *x corresponding to the smallest min(/)aveL n , which is

the averaged value in terms of bits per residue. Note that the total number of residues is n m x= × .

24

The derivation of the formula can be found in [27], [30]. Table V lists the process of searching the

optimal block size.

Table 2.6 1-D bi-level block coding algorithm

1. Find 0N for a given data sequence.

Initially, set 1 0 2N N= − and * 4x = .

2. For 1 01, 2,3, 1N N= −

 Estimate 0p , the probability of the sample requiring more than 1N

 bits to encode; and calculate the optimal block size:

 *
0 1 01/ ()x N N p= −

 Round up the block size to an integer value.

 If *
0 0.3x p× ≤ , calculate the average bits per sample:

 () 0 1 0 1min/ 2 ()aveL n N N p N= − +

 Record 1N and *x values for the next comparison

 End loop

After completing search loops, select 1N and *x corresponding to the
smallest value of ()min/aveL n .
3. Perform bi-level block coding using the obtained optimal parameters 1N ,

x , and rules listed in Table 2.5.

In the process of transmission, it is inevitable that bit errors problem will be encountered. In

order to prevent the image from being damaged by bit errors, the correction code is applied to the

image transmission process to protect the crucial parameters of the image. Here, the error

correction code we use is (7,4) Hamming code. As shown in Figure 2.3, (7,4) Hamming code

protects color space transformation of Y and CrCb, predictors parameters, first row and first

column of original image, bi-level block coding parameters and block types.

25

Hamming coding
protection

Hamming coding
protection Bi-level residues

Prediction

Each line of 1-D bi-level
block coding

Block
types1N0N

(Y)P (Cr)P (Cb)P

m x

(1,1)... (1,)X X M (2,1)... (,1)X X NY CrCb

Hamming coding
protection Bi-level residuesEach y lines of 2-D bi-level

block coding
Block
types1N0Nm x y

1 bit

M × pixel size bits for
Y, Cr and Cb,
respectively

(N-1)× pixel size bits for
Y, Cr and Cb,
respectively

9 bits 4 bits 4 bits 9 bits
Variable

bits

1 bit 1 bit4 bits 4 bits

9 bits 4 bits 4 bits 9 bits
Variable

bits9 bits

Figure 2.3 Coding protection for bi-level block coding method.

2.4.2 Interval Huffman coding and standard Huffman coding

In computer science and information theory, Huffman coding is a lossless statistical coding

method that uses the characteristics of the probability distribution of information symbols to adapt

the word length for coding. This method is developed by David A. Huffman while he was

a Sc.D. student at MIT, and published in the 1952 paper “A Method for the Construction of

Minimum-Redundancy Codes” [31].

Huffman coding assigns codes of different lengths depending on the frequency at which each

signal in the data appears. The basic idea is that in the encoding process, the shorter code length is

allocated to the higher the frequency of occurrence, while the longer coded length is assigned to

the lower the frequency.

For example, assuming that there are five characters: A, B, C, D, E, and the weights are 5,

4, 3, 2, 1, respectively. Then we take the first two weights as the left and right subtrees. Construct

a new tree, that is, take 1, 2 to form a new tree, and its node is 1+2=3, as shown in Figure 2.4:

https://en.wikipedia.org/wiki/David_A._Huffman
https://en.wikipedia.org/wiki/Doctor_of_Science
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

26

1 2

3

0 1

Figure 2.4 First step in example.

The dotted line is the newly generated node, and the second step puts the newly generated node

with the weight 3 into the remaining set, so the set becomes {5, 4, 3, 3}, and then according to the

second step, the minimum two weights are taken to form a new tree, as shown in Figure 2.5:

1 2

3

0 1

3

6

0 1

Figure 2.5 Second step in example.

27

Then, the Huffman tree is built in turn, as shown in Figure 2.6:

1 2

3

0 1

3

6

0 1

4 5

9

15

0 1

Figure 2.6 Final step in example.

The corresponding characters in each weight are replaced in Figure 2.7.

28

E D

3

0 1

C

6

0 1

B A

9

15

0 1

0 1

Figure 2.7 Huffman tree.

Therefore, the codes corresponding to each character are: A->11, B->10, C->00, D->011, E->010.

In this thesis work, beside 2-D and 1-D bi-level blocking mentioned above, we adopt two

methods of Huffman coding. One is the interval Huffman coding method; and the other one is the

standard Huffman coding method. Interval Huffman coding is an entropy coding, which can divide

the residues from predictor into different interval and its offset. The formula is given as [30]:

 0 1()() { () / 2 }N Nq n floor r n −= , (2.31)

 0 1()() 2 ()N Noffset r n q n−= − × , (2.32)

where ()q n is symbol of interval, which is quantized from a residue ()r n . It is entropy encoded

and error protected. 0N and 1N are the symbol size. Function ()floor x rounds x down to the

nearest integer towards negative infinity. We assume that our entropy coder achieves 0N β− bits

29

per sample, where 1 ~ 2β = bits. Assuming that ()q n follows a perfect Laplacian distribution,

choosing the smaller simple size 1N for the interval entropy coder will gain approximately the

same compression performance. Our method considers the positive and negative signs of the coded

residual interval, so the case of 1 1N = is not considered. Besides, the average coded residue size

is less than its original size 0N . Therefore, we get the following formula [30]:

 1 0 1 0() ()N N N Nβ η− + − ≤ , (2.33)

where η is the error control coding rate. According to the error correction code of (7,4) Hamming

code, η is equal to 7/4. Hence, the lower and upper limits of 1N as [30]:

 12
1

N βη
η

≤ ≤
−

 (2.34)

Allowing 2β = bits, it is obviously that 1 4N ≤ . The interval sequence with four symbols and a

finite length does not follow the Gaussian distribution function very well, so we exclude 1 2N = .

We finally choose 1 3N = , and it reaches the best result from our experiments. The interval

Huffman codes are listed as follow in Table 2.7 [30].

Table 2.7 Interval Huffman coding

Interval codes Interval codes

0 1 +2 01011
-1
+1
-2

00 -3 010100
0101010
0101011-4

+3011
0100

()q n ()q n

For example, if the largest number of residue ()r n is 31, 0N is equal to 6. Consider that 1N is 3

and residue ()r n equals 20. According to the formulas (2.31) and (2.32), ()q n is equal to +2, and

offset is equal to 4. ()q n is encoded as shown in Table 2.7, and offset is coded in binary.

Considering image quality and image compression ratio, (7,4) Hamming code is used to protect

the value of ()q n . Offset does not need to be protected.

30

Standard Huffman coding method is also used in this paper for comparison. The scheme is

shown as Table 2.8 [32]. A residue from prediction is encoded using a prefix which describes code

size, cascaded by the binary amplitude bits. To encode -3, -2, +2 and +3, for example, the results

are 01100, 01101, 01110, and 01111, respectively. The first three numbers are the prefix code. In

this work, the prefix part is protected using (7,4) Hamming code.

Table 2.8 Standard Huffman coding

Amplitude code Code size
(No. bits)

Amplitude code

00(0) 0 110(5) -31,…,-16,+16,…,+31
010(1)
011(2)
100(3)

-1,+1 1110(6) -63,…,-32,+32,…,+63
-127,…,-64,+64,…,+127

-255,…,-128,+128,…,+255111110(8)
11110(7)-3,-2,+2,+3

-7,…,-4,+4,…,+7
101(4) -15,…,-8,+8,…,+15 111110(9) -511,…,-256,+256,…,+511

Code size
(No. bits)

It has been mentioned before that images are affected by bit errors during transmission, so it

is necessary to implement error correction codes during the encoding process. As shown in Figure

2.8, (7,4) Hamming code protects some key information, such as transformation from RGB to

YCrCb, predictors types, first row and first column of the original image, interval Huffman coding,

and standard Huffman coding parameters.

Hamming coding
protection

Residue interval
Huffman coding

Hamming coding
protection Offset

Codeword code Hamming coding
protection

Prediction

Each line of interval Huffman
coding

Each line of standard
Huffman coding Amplitude code

1N0N

(Y)P (Cr)P (Cb)P (1,1)... (1,)X X M (2,1)... (,1)X X NY CrCb

1 bit

M × pixel size bits for
Y, Cr and Cb,
respectively

(N-1)× pixel size bits for
Y, Cr and Cb,
respectively

4 bits 4 bits Variable bits

Variable bits

1 bit 1 bit4 bits 4 bits

Figure 2.8 Coding protection for Huffman coding.

31

 Error Control Coding

When a digital signal is transmitted on an actual channel, the received digital signal

inevitably generates bit errors due to unsatisfactory channel transmission characteristics and

additive noise. In order to achieve a certain bit error rate index under the known signal-to-noise

ratio, the baseband signal should be designed reasonably. Meanwhile, the modulation and

demodulation methods should be selected, and the frequency domain equalization and time domain

equalization should be adopted to make the bit error rate as low as possible. However, if the bit

error rate still fails to meet the requirements, channel coding, that is, error control coding, must be

adopted to reduce the bit error rate to match the index requirements. With the improvement of

error control coding theory and the development of digital circuit technology, channel coding has

been successfully applied in various communication systems, and it has also been widely used in

computers, magnetic recording and storage.

The primary method of error control coding is to add some supervised symbols to the

information sequence transmitted by the transmitting end, and these redundant symbols and

information symbols are associated (constrained) with specific certain rules. The receiving end

checks the relationship between the information symbols and the supervised symbols according to

the established rules. Once an error occurs during the transmission, the relationship between the

information symbol and the supervised symbol is destroyed, so that the error can be found and

corrected.

There are three commonly used error control methods: Automatic repeat request (ARQ),

forward error correction (FEC) and hybrid error correction (HEC). In the ARQ mode, the

transmitting end sends a code that can detect the error after being encoded, and the receiving end

receives the code. If it finds that there is an error during the transmission, the judgment result is

fed back to the transmitting end through the reverse channel. Then, the sender retransmits the

previously sent information once until the receiver believes that the message has been received

correctly.

In the FEC system, the transmitting end is coded to issue a code that can correct the error,

and after receiving the code group, the receiving end can automatically find and correct the error

during the transmission through decoding. The FEC mode does not require a feedback channel. It

is particularly suitable for applications where only a unidirectional channel can be provided. Since

it can automatically correct errors and does not check for retransmissions, the time delay is small

32

and the real-time performance is good. In order to obtain a low bit error rate after error correction,

the error correction code should have strong error correction capability. However, the stronger the

error correction capability, the more complicated the decoding device is. The main disadvantage

of the FEC system is that the equipment is complicated.

The HEC method is a combination of the FEC method and the ARQ method. In this system,

the sender not only can correct errors but also can detect errors that exceed the error correction

capability. In the latter case, the sender is required to resend the errors through the feedback

channel. The HEC method is a compromise between FEC and ARQ methods in terms of real-time

performance and decoding complexity.

In this paper, we adopt the FEC system to implement bit error correction. The problem with

the FEC system mentioned is that the device is more complicated. Hamming code uses the parity

block mechanism to reduce the cost of this system. Hamming code (7.4) is used to detect and

correct the single bit error. General Hamming code can detect and correct more than one bit error

in the code word, in which more parity bits are included. Table 2.9 shows the relationship between

code length and number of parity bits. According to Table 2.9, we decide to protect the key

information by using a (7, 4) Hamming code that encodes the four bits of the data into seven bits

by adding three parity bits.

33

Table 2.9 Relationship between code length and number of parity bits

n k

1

2～4

5～11

12～26

2

3

4

5

34

CHAPTER 3. INTELLIGENT OPTIMIZATION ALGORITHM

Today science and technology are in an era of multidisciplinary cross-infiltration. In this era, the

development of computer technology has greatly improved the living standards of the people. At

the same time, with the development of human knowledge, people put forward higher requirements

for science and technology. Therefore, efficient optimization techniques and intelligent computing

are valued by more and more people.

Optimization technology is an application technology based on mathematics to solve the

optimal solution of various engineering problems. As an important branch of science and

technology, it is widely used in artificial intelligence, pattern recognition, computer engineering

and other fields.

There are many optimization algorithms, including classical optimization algorithms,

improved local search algorithms, guided search methods and system evolution methods. Classical

algorithms include linear programming, dynamic programming, etc.; improved local search

algorithms include hill climbing, steepest descent, and so on. Simulated annealing, genetic

algorithms, and tabu search are called instructional search methods. Neural network and chaotic

search belong to the dynamic evolution method of the system.

Gradient-based traditional optimization algorithms have the advantages of high

computational efficiency, strong reliability, and mature technology. They are the most important

and widely used optimization algorithms. However, traditional optimization methods have

significant limitations when applied to complex and difficult optimization problems. An

optimization problem is complex and usually refers to one of the following characteristics:

(1) The objective function does not have a clear analytical expression.

(2) The objective function is clearly expressed, but it is impossible to accurately evaluate it.

(3) The objective function is a multimodal function.

(4) There are multiple objective functions, that is, multi-objective optimization.

An optimization problem is difficult. It usually means that the objective function or

constraint is discontinuous, non-differentiable, highly nonlinear, or the problem itself is a difficult

combination problem. Traditional optimization methods often require that the objective function

be convex, continuously differentiable, and the feasible domain is a convex set. In addition, these

35

methods have a poor ability to process non-deterministic information. These weaknesses make

traditional optimization methods limited when solving many practical problems.

Intelligent optimization algorithms are generally random search algorithms based on bio-

intelligence or physical phenomena. At present, they are far less theoretically perfect than

traditional optimization algorithms, and often cannot guarantee the optimality of solutions.

Therefore, they are often regarded as “Meta-heuristic”. In computer science and mathematical

optimization, a metaheuristic is designed to find, generate, or select a heuristic (partial search

algorithm) that can provide a sufficiently good solution to an optimization problem [33]. However,

from the point of view of practical application, such new algorithms generally do not require the

continuity and convexity of the objective function and constraints, and sometimes they do not need

analytical expressions. Besides, these new algorithms also have a strong adaptation to the

uncertainty of the data in the calculation. Therefore, intelligent optimization algorithms are applied

to solve some complex practical problems.

The intelligent optimization algorithm is generally to solve the optimization problem. The

optimization problem can be divided into two problems:

(1) A function optimization problem for solving the value of an independent variable with

the smallest value of a function.

(2) A combinatorial optimization problem that finds the optimal solution in a solution space

and minimizes the value of the objective function.

In this thesis work, we adopt two intelligent optimization methods, which are genetic

algorithm and particle swarm optimization algorithm to select the best combination of color space

conversions and predictors in the experiment. There are 864 formula combinations of color space

and predictors. Searching with intelligent algorithms takes one third less time than searching with

normal exhaustion.

 Genetic Algorithm

Genetic Algorithm (GA), which originated from computer simulation research on biological

systems, is a random search method that draws on the natural selection and natural genetic

mechanism of the biological world [34]. In the early 1960s, American professor Holland proposed

to use the basic principles of genetics to simulate the natural evolution of organisms when

designing artificial adaptive systems. In 1975, Holland published the first monograph on the basic

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Search_algorithm

36

theory and method of genetic algorithm. The monograph proposed the most important schema

theory in the research and development of genetic algorithm. Therefore, it is generally believed

that 1975 is the birth year of genetic algorithm. From the perspective of the entire development

process, genetic algorithm emerged in the 1970s, developed in the 1980s, and entered the climax

in the 1990s.

Genetic algorithm is a random global search and optimization method that mimics the

evolutionary mechanism of biological evolution in nature. It draws on the great evolution of

Darwin and Mendel’s genetic theory. Using the principle of “survival of the fittest”, an

approximately optimal solution is generated successively in the potential solution population.

When solving problems, genetic algorithm has the following advantages:

(1) The genetic algorithm can simultaneously process multiple individuals in a group, that

is, simultaneously evaluate multiple solutions in the search space. It has excellent global

search performance and is easy to parallelize.

(2) No auxiliary information is required. Genetic individuals are evaluated only by fitness

functions, and genetic manipulations are performed on this basis.

(3) Instead of using deterministic rules, genetic algorithms use probabilistic transition rules

to guide the search direction.

(4) Even in the case where the defined fitness function is discontinuous or irregular, the

genetic algorithm is not easy to fall into local optimum during the search process.

(5) Natural evolutionary mechanisms are used to express complex phenomena. It is able to

solve very difficult problems quickly and accurately.

(6) It has inherent parallelism and parallel computing capacity.

(7) It is easy to mix with other technologies.

Of course, the genetic algorithm also has some drawbacks comparing with other optimization

technology:

(1) The programming implementation of genetic algorithm is more complicated.

(2) A single genetic algorithm encoding cannot fully represent the constraints of the

optimization problem.

(3) Efficiency is low.

(4) It is prone to premature convergence.

37

(5) There is no effective quantitative analysis method for the accuracy, credibility and

computational complexity of the algorithm.

In general, genetic algorithm is a good way to solve the optimal solution problem in this

experiment. Figure 3.1 shows the flow chart of genetic algorithm.

Initialize
Population

Fitness Value

Selection Crossover

MutationTermination Criterion

Best Result

N

Y

Figure 3.1 Flow chart of genetic algorithm.

As shown in Figure 3.1, when we want to use the genetic algorithm to find the optimal solution of

a problem, an initial population group is given firstly. Next, the fitness value of each individual in

the population is calculated, and the optimal fitness value is worked out. Then, we determine

38

whether the optimal solution satisfies the judgment index. Since the genetic algorithm is a random

approximation algorithm, we must take measures to not converge to the local optimal solution but

the global optimal solution, and try to improve the probability of reaching the optimal solution.

Therefore, in addition to designing the fitness function, the genetic algorithm has three important

parts: selection, crossover, and mutation. New generation of population is selected through these

three steps. Then, we repeat the previous experimental steps. Finally, the best result can be found.

Four significant parts of the genetic algorithm are fitness function, selection, crossover and

mutation. We will focus on these four parts in the next couple sections.

3.1.1 Fitness function

Fitness function, also called evaluation function, is a criterion for distinguishing the quality

of individuals in a group based on the objective function. High fitness values, that is, excellent

individuals have a higher chance of participating in reproduction, inheriting their genes.

Fitness consists of five variables in Figure 3.2. The first two variables are the transformation

information for converting RGB image to YCrCb image. They have 9 and 12 cases respectively,

so 4 bits are used for encoding each variable. Each of the last three variables has 2 cases for

prediction of Y, Cr or Cb, which is encoded by 1 bit.

Pred Y Pred Cr Pred CbCrCbY

1 bit1 bit1 bit4 bits4 bits

Figure 3.2 Five variables of the fitness function.

Fitness value is defined as the information entropy. The formula for calculating information

entropy is expressed as

39

2

2

2

() log ()

() log ()

() log ()

Y Y

Cr Cr

Cb Cb

entropy p i p i

p i p i

p i p i

= −

−

−

∑

∑

∑

, (3.1)

where ()Yp i is the residue probability from the Y component predictor. ()Crp i is the residue

probability from the Cr component predictor. ()Cbp i is the residue probability from the Cb

component predictor.

3.1.2 Selection

The selection operation in the genetic algorithm is to select some individuals from the parent

population to inherit into the next generation group. There are some common selection operators.

1. Roulette Wheel Selection: It is a playback random sampling method. The probability

that each individual enters the next generation is equal to the ratio of its fitness value to

the sum of individual fitness values in the population. The selection error is large.

2. Excepted Value Selection: It is a random selection operation based on the survival

expectation of each individual in the next generation group.

3. Uniform Sort Selection: All individuals in the group are ranked according to their fitness

values, and the probability that each individual is selected is assigned based on this

ranking rule.

4. Tournament Selection: K random individuals are selected in the population, where K is

called the size of the tournament. Then, the best individual enters the next generation.

Figure 3.3 shows an example of tournament selection.

40

Figure 3.3 An example of tournament selection.

3.1.3 Crossover

Crossover refers to the operation of replacing the partial structure of two parent individuals

to generate new individuals. The following lists some common crossover methods showed in

Figure 3.4:

1. Single Point Crossover: It means that only one intersection point is randomly set in the

individual code string, and then two parts of the two paired individuals are exchanged at

the point.

2. Two Point Crossover: Two intersections are randomly set in the individual code string,

and then some genes are exchanged.

3. Uniform Crossover: The genes on both individuals are exchanged with the same

crossover probability to form two new individuals.

4. Arithmetic Crossover: Two new individuals are produced by a linear combination of two

individuals. The operand is typically an individual represented by the floating-point

number.

41

Single Point Crossover

Two Point Crossover

Uniform Crossover

Arithmetic Crossover

Figure 3.4 Four crossover methods.

3.1.4 Mutation

The mutation operation in the genetic algorithm refers to replacing some values in the

individual code strings with other values to form a new individual. Figure 3.5 lists four mutation

methods, and these methods are shown below:

1. Bit Flip Mutation: It is to change the value of a bit randomly specified by the mutation

probability in the individual binary code string.

2. Swap Mutation: This method randomly changes the value of two genes in an individual

coding string.

3. Scramble Mutation: Scramble mutation randomly selects a region of the individual to

disrupt the genes in it.

4. Inversion Mutation: It randomly selects a segment of the individual to reverse the values

in the region.

42

Bit Flip Mutation

Swap Mutation

Scramble Mutation

Inversion Mutation

Figure 3.5 Four mutation methods.

In the experiment, tournament selection, single point crossover, and bit flip mutation are

used to solve the optimal solution.

 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first proposed by Eberhart and Kennedy in 1995. It

is a random search algorithm based on group collaboration developed by simulating bird foraging

behavior [35], [36]. It is generally considered to be a type of Swarm intelligence (SI), and it can

be incorporated into the Multiagent optimization system (MAOS).

In this algorithm, each particle in the particle swarm represents a possible solution to a

problem. Through the simple behavior of the individual particles, the information interaction

within the group realizes the intelligence of the problem-solving. Due to its simple operation and

fast convergence, PSO has been widely used in many fields, such as function optimization, image

processing, and geodetic survey. With the expansion of the application scope, the PSO algorithm

also has some shortcomings. This algorithm does not handle discrete optimization problems well,

43

and it is easy to fall into local optimum. According to its characteristics, there are several

development directions as follows:

(1) The global detection and local search capabilities of the algorithm are balanced by

adjusting the parameters of the PSO. For example, Shi and Eberhart introduce inertia

weights for the velocity term of the PSO algorithm, and they make linear (or nonlinear)

dynamic adjustments to the inertia weights according to the iterative process and particle

flight conditions, so that balancing the globality and convergence speed of the search.

(2) Different types of topologies are designed, and particle learning patterns are changed to

increase population diversity

(3) PSO algorithm is combined with other optimization algorithms (or strategies) to form a

hybrid PSO algorithm.

(4) Niche technology is adopted. Niche is a bionic technique that simulates ecological

balance and is suitable for the optimization of multimodal functions and multi-objective

functions.

Different development directions represent different application areas. Some need to perform

global detection continuously; some need to improve the precision of optimization; some require

the balance between global search and local search; others need to solve high-dimensional

problems. We should choose the most appropriate algorithm for solving different problems in

different fields.

The basic concept of the PSO algorithm mentioned before stems from the study of the

foraging behavior of birds. In the PSO algorithm, an optimization problem is regarded as a group

of birds that feed in the air. Food is regarded as the optimal solution to the optimization problem,

and each foraging bird flying in the air is a particle that the PSO algorithm searches in the solution

space. Each particle can be regarded as a search individual in the N-dimensional search space. The

current position of the particle is a candidate solution to the optimization problem, and the flight

process of the particle is the individual's search process. The flight speed of particles can be

dynamically adjusted according to the optimal position of the particle history and the optimal

position of the population history.

44

3.2.1 Position and velocity

Particles have only two properties: velocity and position, where velocity represents the speed

of movement, and position represents the direction of movement. Besides, the optimal solution for

each particle to search separately is called the individual extremum, and the optimal individual

extremum in the particle swarm is taken as the current global optimal solution. By updating the

velocity and position of the particles, an optimal solution that satisfies the termination condition is

finally obtained.

As shown in Figure 3.6, when we use the PSO algorithm to search for the optimal solution,

the first step is to initialize the particles with random position and velocity vectors. In the second

step, the fitness value of each particle should be calculated. The third step updates the best solution

for each particle (pbest) and the optimal solution for all particles in the entire particle group

(gbest). Next, the position and velocity of each particle are updated. Then, we determine whether

the optimal solution satisfies the judgment index. If the system satisfies the decision condition, it

outputs the optimal solution. If not, the algorithm returns to the previous second step.

45

Initialize particles with random
position and velocity vectors

Calculate fitness value
for each particle

Termination Criterion

Get global
solution

N

Y

Update pbest and gbest

Update particle velocity
and position

Figure 3.6 Flow chart of particle swarm optimization.

46

3.2.2 Fitness value

The fitness value in the PSO algorithm is the same as the one in the GA algorithm. As shown

in Figure 3.2, the fitness contains five variables. The first two variables are conversion information

for converting an RGB image into a YCrCb image. They have 9 and 12 cases respectively, so each

variable is encoded using 4 bits. Each of the last three variables has two cases for prediction of Y,

Cr or Cb, which is encoded by 1 bit. In addition, Equation (3.1) calculates the fitness value.

3.2.3 Update rule

PSO algorithm first initializes a group of random particles (random solutions). Then, we can

find the optimal solution by iteration. In each iteration, the particle updates itself by tracking two

“extreme values” (pbest , gbest). After finding the two optimal values, the particles update their

velocity and position by the following equations:

 1 1 2 2() () (() ()) (() ())v i v i c r pbest i x i c r gbest i x iω= × + × × − + × × − , (3.2)

 () () ()x i x i v i= + , (3.3)

where ω is the inertia factor, which is non-negative. When the factor’s value is large, the global

optimization ability is strong, and the local optimization ability is weak; when the value is small,

the algorithm has poor global optimization ability and high local optimization ability. 1c and 2c ,

are accelerating constants, where 1c is the individual learning factor of each particle, and 2c is the

social learning factor of each particle. We usually set 1 2 2c c= = , but 1c and 2c do not have to be

equal to 2. 1r and 2r are random numbers from 0 to 1. pbest is the fitness value of the best

position every individual has experienced. gbest is the global optimal fitness value.

 Similarities and Differences

Since both the PSO algorithm and the GA algorithm belong to the intelligent optimization

algorithm, they have a lot of commonalities:

(1) Both of them belong to the bionic algorithm, the random search algorithm, and the global

optimization algorithm.

(2) They imply parallelism.

47

(3) These two algorithms search based on individual adaptation information, so they are not

limited by functional constraints such as continuity, derivative, and so on.

(4) For high-dimensional complex problems, these two algorithms often encounter the

disadvantages of premature convergence and poor convergence performance, so they

can't guarantee convergence to the best solution.

At the same time, the PSO algorithm and GA algorithm also have some differences:

(1) The PSO algorithm applies the solution to the formation of a new population in each

iteration, while the GA algorithm does not save the solution to the next population.

(2) In the GA algorithm, chromosomes share information with each other, so the entire

population moves more evenly toward the optimal region. PSO is a single item

information sharing mechanism, and the whole search update process is the process of

following the current optimal solution. In most cases, all particles can converge to the

optimal solution faster than the evolutionary individuals in the genetic algorithm.

(3) GA’s coding technology and genetic operation are relatively simple, while PSO does not

require crossover and mutation operation relative to GA. Particles are only updated by

internal velocity. Therefore, the principle of PSO is simpler, and it is easier to implement.

 Performance Evaluations

In order to compare the performance of the GA algorithm and the PSO algorithm, we use

these two methods to process four different 512×512 color images, which are named as “Lena”,

“Baboon”, “Pepper”, and “Airplane”, and a 256×256 “House” image. These images are standard

images for image processing.

Figure 3.7 shows the plots of fitness value versus the number of iterations using the genetic

algorithm and particle swarm optimization for “Lena” image. It takes about 6.5 minutes and 6

minutes to process these two images on Lenovo Y900 (i7-6700k). The best fitness value is 4.5511.

According to the five variables of the fitness value, the eighth formula of Y space and the first

formula of CrCb space in Table 2.1 are selected, and the second kind of linear predictor for Y and

the first kind of linear predictors for Cr and Cb are chosen.

48

(a) Genetic Algorithm (b) Particle Swarm Optimization

Figure 3.7 Iterative curves for “Lena” image.

As shown in Figure 3.8, we obtained the plots of fitness value versus the number of iterations using

both genetic algorithm and particle swarm optimization for “Baboon” image. It takes about 10

minutes to process these two images, respectively. The best fitness value is 6.0438. The sixth

formula of Y space and the eleventh formula of CrCb space in Table 2.1 are selected, and the first

linear predictors for Y, Cr and Cb are chosen.

(a) Genetic Algorithm (b) Particle Swarm Optimization

Figure 3.8 Iterative curves for “Baboon” image.

49

It takes about 1.5 minutes to process these two images in Figure 3.9, respectively. The best fitness

value is 4.3508. The fourth formula of Y space and the seventh formula of CrCb space in Table

2.1 are selected, and the second linear predictors for Y and Cr and the first predictor for Cb are

adopted.

(a) Genetic Algorithm (b) Particle Swarm Optimization

Figure 3.9 Iterative curves for “House” image.

As shown in Figure 3.10, it takes about 9 minutes to process these two images on Lenovo Y900

(i7-6700k), respectively. The best fitness value is 5.05799. We choose the ninth formula of Y space

and the twelfth formula of CrCb space in Table 2.1, and the first kind of linear predictors for Y,

Cr and Cb.

50

(a) Genetic Algorithm (b) Particle Swarm Optimization

Figure 3.10 Iterative curves for “Pepper” image.

Figure 3.11 shows the plots of fitness value versus the number of iterations using the genetic

algorithm and particle swarm optimization for “Airplane” image. It takes about 8 minutes to

process these two images, respectively. The best fitness value is 3.97387. The sixth formula of Y

space and the seventh formula of CrCb space in Table 2.1 are chosen, and the second linear

predictor for Y and the first linear predictors for Cr and Cb are chosen.

(a) Genetic Algorithm (b) Particle Swarm Optimization

Figure 3.11 Iterative curves for “Airplane” image.

Combining Figure 3.7 to Figure 3.11, both PSO and GA algorithms can achieve the optimal

solution that we expect. In addition, the PSO algorithm converges to the smallest fitness value and

51

faster than the GA algorithm. As summary from our experiments, the PSO algorithm is slightly

better than the GA algorithm.

52

CHAPTER 4. EXPERIMENTS AND RESULTS

This chapter presents all color image compression results using four different residue coding

methods. In our experiments, we adopt four different 512×512 color images, which are named as

“Lena”, “Baboon”, “Pepper”, and “Airplane”, and a 256×256 “House” image. These images are

standard images for image processing. The peak signal to noise ratio (PSNR) and compression

ratio (CR) are used for encoding performance evaluations.

The peak signal to noise ratio is an engineering term that represents the ratio of the maximum

possible power of a signal to the destructive noise power that affects its representation accuracy.

Since many signals have a vast dynamic range, PSNR is often expressed in logarithmic decibel

units. In image processing, to objectively evaluate an image, it is often necessary to calculate the

PSNR. PSNR is an objective measure of image distortion or noise level. The larger the PSNR

value between the two images, the more similar the images are. The universal benchmark for

PSNR is 30dB, and the image degradation is more obvious below 30dB. The formulas for

calculating the PSNR of an M×N size RGB image are as follows:

 10
255() 20 logPSNR dB

RMSE
 = ×

 (4.1)

2 2

1 1

2 2

1 1 1 1

1 [(,) (,)]
3

[(,) (,)] [(,) (,)]

N M

i j

N M N M

i j i j

RMSE R i j R i j
M N

G i j G i j B i j B i j

∧

= =

∧ ∧

= = = =

= −

×

+ − + −

∑∑

∑∑ ∑∑
 (4.2)

where (,)R i j and ˆ (,)R i j , (,)G i j and ˆ (,)G i j , and (,)B i j and ˆ (,)B i j are the original pixels and the

recovered pixels, for RGB components, respectively.

Compression ratio is the ratio of the pixel size of the original image and the bits of per pixel

of the compressed image. Therefore, the larger the compression ratio, the better the image

compression performance is.

4.1 Performance Evaluation for RGB image and Color-converted Image

For an RGB color image, it is necessary to convert RGB image to YCrCb image which is

generally used for digital image and video. If the image is directly compressed without color space

conversion, its compression ratio and image quality will decrease. Table 4.1 to Table 4.5 list the

53

PSNRs and CRs of RGB images without color space processing and RGB images processed by

color space using different residue coding algorithms when the bit-error rates (BERs) are 0.001

and 0.005. Here, we use the five different color images mentioned before. Each PSNR is obtained

by averaging the values from 10 independent runs.

Table 4.1 Performance evaluation for RGB image and color-converted image in “Lena” image

Algorithms

2-D bi-level block coding
PSNR: 37.5844 dB (BER=0.001)
PSNR: 28.9834 dB (BER=0.005)

CR: 1.4456

RGB image without color space
processing Color-converted image

PSNR: 34.3162 dB (BER=0.001)
PSNR: 25.8931 dB (BER=0.005)

CR: 1.3760

1-D bi-level block coding

Interval Huffman coding

Standard Huffman coding

PSNR: 37.9850 dB (BER=0.001)
PSNR: 28.0733 dB (BER=0.005)

CR: 1.4276
PSNR: 37.1824 dB (BER=0.001)
PSNR: 24.0405 dB (BER=0.005)

CR: 1.2345
PSNR: 36.1313 dB (BER=0.001)
PSNR: 22.5706 dB (BER=0.005)

CR: 1.0735

PSNR: 35.6342 dB (BER=0.001)
PSNR: 26.5518 dB (BER=0.005)

CR: 1.3490
PSNR: 35.4030 dB (BER=0.001)
PSNR: 22.1875 dB (BER=0.005)

CR: 1.1639
PSNR: 33.7797 dB (BER=0.001)
PSNR: 20.0381 dB (BER=0.005)

CR: 1.0532

Table 4.2 Performance evaluation for RGB image and color-converted image in “Baboon” image

Algorithms

2-D bi-level block coding
PSNR: 32.5854 dB (BER=0.001)
PSNR: 21.8879 dB (BER=0.005)

CR: 1.1647

RGB image without color space
processing Color-converted image

PSNR: 28.7418 dB (BER=0.001)
PSNR: 18.6025 dB (BER=0.005)

CR: 1.1117

1-D bi-level block coding

Interval Huffman coding

Standard Huffman coding

PSNR: 32.8938 dB (BER=0.001)
PSNR: 21.6702 dB (BER=0.005)

CR: 1.1540
PSNR: 35.6433 dB (BER=0.001)
PSNR: 22.4370 dB (BER=0.005)

CR: 1.0265
PSNR: 31.6817 dB (BER=0.001)
PSNR: 19.0349 dB (BER=0.005)

CR: 0.8927

PSNR: 28.6679 dB (BER=0.001)
PSNR: 18.6078 dB (BER=0.005)

CR: 1.002
PSNR: 31.8899 dB (BER=0.001)
PSNR: 18.1437 dB (BER=0.005)

CR: 0.9785
PSNR: 27.7489 dB (BER=0.001)
PSNR: 14.7084 dB (BER=0.005)

CR: 0.8616

54

Table 4.3 Performance evaluation for RGB image and color-converted image in “House” image

Algorithms

2-D bi-level block coding
PSNR: 40.3158 dB (BER=0.001)
PSNR: 32.8741 dB (BER=0.005)

CR: 1.4880

RGB image without color space
processing Color-converted image

PSNR: 38.5419 dB (BER=0.001)
PSNR: 29.7221 dB (BER=0.005)

CR: 1.4470

1-D bi-level block coding

Interval Huffman coding

Standard Huffman coding

PSNR: 41.5466 dB (BER=0.001)
PSNR: 34.0512 dB (BER=0.005)

CR: 1.4602
PSNR: 46.0751 dB (BER=0.001)
PSNR: 34.6393 dB (BER=0.005)

CR: 1.2742
PSNR: 44.1098 dB (BER=0.001)
PSNR: 31.9526 dB (BER=0.005)

CR: 1.0977

PSNR: 40.0837 dB (BER=0.001)
PSNR: 31.8607 dB (BER=0.005)

CR: 1.4141
PSNR: 41.6379 dB (BER=0.001)
PSNR: 28.7982 dB (BER=0.005)

CR: 1.2293
PSNR: 40.8307 dB (BER=0.001)
PSNR: 28.6386 dB (BER=0.005)

CR: 1.0932

Table 4.4 Performance evaluation for RGB image and color-converted image in “Pepper” image

Algorithms

2-D bi-level block coding
PSNR: 35.8982 dB (BER=0.001)
PSNR: 28.2509 dB (BER=0.005)

CR: 1.3227

RGB image without color space
processing Color-converted image

PSNR: 34.4890 dB (BER=0.001)
PSNR: 26.3337 dB (BER=0.005)

CR: 1.3115

1-D bi-level block coding

Interval Huffman coding

Standard Huffman coding

PSNR: 38.3388 dB (BER=0.001)
PSNR: 28.5178 dB (BER=0.005)

CR: 1.3104
PSNR: 38.1848 dB (BER=0.001)
PSNR: 25.2053 dB (BER=0.005)

CR: 1.1294
PSNR: 39.4418 dB (BER=0.001)
PSNR: 25.9164 dB (BER=0.005)

CR: 1.0098

PSNR: 35.6128 dB (BER=0.001)
PSNR: 26.6219 dB (BER=0.005)

CR: 1.2923
PSNR: 34.2800 dB (BER=0.001)
PSNR: 20.2287 dB (BER=0.005)

CR: 1.0980
PSNR: 36.5374 dB (BER=0.001)
PSNR: 22.9097 dB (BER=0.005)

CR: 1.0141

55

Table 4.5 Performance evaluation for RGB image and color-converted image in “Airplane”
image

Algorithms

2-D bi-level block coding
PSNR: 36.9359 dB (BER=0.001)
PSNR: 29.2148 dB (BER=0.005)

CR: 1.5104

RGB image without color space
processing Color-converted image

PSNR: 35.1219 dB (BER=0.001)
PSNR: 26.9715 dB (BER=0.005)

CR: 1.4559

1-D bi-level block coding

Interval Huffman coding

Standard Huffman coding

PSNR: 38.6429 dB (BER=0.001)
PSNR: 29.3021 dB (BER=0.005)

CR: 1.4929
PSNR: 37.7154 dB (BER=0.001)
PSNR: 23.2509 dB (BER=0.005)

CR: 1.2079
PSNR: 38.6629 dB (BER=0.001)
PSNR: 25.8670 dB (BER=0.005)

CR: 1.1667

PSNR: 36.2719 dB (BER=0.001)
PSNR: 26.8778 dB (BER=0.005)

CR: 1.4349
PSNR: 33.2473 dB (BER=0.001)
PSNR: 19.4933 dB (BER=0.005)

CR: 1.208
PSNR: 35.3079 dB (BER=0.001)
PSNR: 22.9221 dB (BER=0.005)

CR: 1.1359

As shown in Table 4.1 to Table 4.5, the CRs and PSNRs of images that have not been

processed by color space are smaller than those of images from converting RGB to YCrCb. In

addition, for these residue coding methods, the PSNRs of these four methods are almost the same

when the BER is 0.001. Bi-level block coding algorithm has a higher PSNR when the BER is

0.005. Even though the PSNR of the 1-D bi-level block coding method is almost the same with

the PSNR of the 2-D bi-level block coding method, the 2-D bi-level block coding method has the

highest CR.

As can be seen in Figure 4.1 and Figure 4.3, the recovered image is almost the same with

the original image for RGB image without color space processing and color-converted image when

the BER is 0.001. The images from using 2-D and 1-D bi-level block coding algorithms are

identical, we display one of them in Figure 4.1, Figure 4.3, Figure 4.5, Figure 4.7 and Figure 4.9.

56

Original RGB image “Lena” Bi-level block coding

Interval Huffman coding Standard Huffman coding

(a) RGB image without color space processing,

Original color-converted image
“Lena”

Bi-level block coding

Interval Huffman coding Standard Huffman coding

(b) Color-converted image.

Figure 4.1 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.001 for “Lena” image.

57

Original RGB image “Lena” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Lena”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.2 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.005 for “Lena” image.

58

Original RGB image “Baboon” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Baboon”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.3 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.001 for “Baboon” image.

59

Original RGB image “Baboon” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Baboon”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.4 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.005 for “Baboon” image.

60

Original RGB image “House” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“House”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.5 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.001 for “House” image.

61

Original RGB image “House” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“House”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.6 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.005 for “House” image.

62

Original RGB image “Pepper” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Pepper”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.7 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.001 for “Pepper” image.

63

Original RGB image “Pepper” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Pepper”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.8 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.005 for “Pepper” image.

64

Original RGB image “Airplane” Bi-level block coding

Interval Huffman coding Standard Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Airplane”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.9 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.001 for “Airplane” image.

65

Original RGB image “Airplane” Bi-level block coding

Standard Huffman codingInterval Huffman coding
(a) RGB image without color space processing,

Original color-converted image
“Airplane”

Bi-level block coding

Interval Huffman coding Standard Huffman coding
(b) Color-converted image.

Figure 4.10 Comparison results using predictive bi-level block coding, predictive interval
Huffman coding and predictive Huffman coding at BER = 0.005 for “Airplane” image.

66

With the increase of BER, it has a more significant impact on the image, resulting in image

distortion. As shown in Figure 4.2, Figure 4.4, Figure 4.6, Figure 4.8 and Figure 4.10, images have

varying degrees of distortion using the residue coding methods when the BER is 0.005.

4.2 PSNR Performances for Different Bit-error Rates

We have already known that the compression ratio and image quality of the color-converted

image are higher than the RGB image without color space processing, so our next experiment will

use the color-converted image for analysis. In this section, we mainly study the change of image

quality with bit-error rate. Figures 4.11 to 4.15 show the PSNR performances with the change of

the bit-error rate for color-converted images. Each PSNR is obtained by averaging the values from

10 independent runs.

Figure 4.11 PSNR performances versus the bit-error rate for “Lena” image.

67

Figure 4.12 PSNR performances versus the bit-error rate for “Baboon” image.

Figure 4.13 PSNR performances versus the bit-error rate for “House” image.

68

Figure 4.14 PSNR performances versus the bit-error rate for “Pepper” image.

Figure 4.15 PSNR performances versus the bit-error rate for “Airplane” image.

69

It is easy to see that the PSNRs of 2-D and 1-D bi-level block coding algorithms are almost the

same. When the BER is more than 0.001, bi-level block coding offers a higher value of PSNR than

the other two methods. On the other hand, the image using bi-level block coding has the lowest

value of PSNR when the BER is less than 0.001. However, bi-level block coding algorithm still

has an excellent image quality.

4.3 CR Performances for Different Images

In order to further compare CR performances using different residue coding methods, we

choose five images to do this experiment. The results are shown in Figure 4.16.

Figure 4.16 CR performances for five different color images.

Image using bi-level block coding algorithm has a higher compression ratio, and the performance

of 2-D bi-level block coding is slightly better than the performance of 1-D bi-level block coding.

Considering both image quality and compression ratio, the 2-D bi-level block coding algorithm is

the best algorithm to compress the residue sequences.

70

CHAPTER 5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed four residue coding algorithms to deal with residue

sequences. For the whole process of color image compression with bit-error awareness, there are

three significant stages: converting RGB image to YCrCb image; applying linear predictors for

the converted image. Note that the best combination of color space conversion and predictors are

selected by using the particle swarm optimization or the genetic algorithm; encoding residue

sequences using different methods, which are 2-D and 1-D bi-level block coding, interval Huffman

coding and standard Huffman coding. Key information parameters of these three stages are

protected using (7,4) Hamming code. The algorithm using color space conversion obtains the

higher compression ratio and image quality than the ones without using color space conversion.

Our experimental results validate the coding performances in terms of the compression ratio

(CR) and peak signal to noise ratio (PSNR). When the bit-error rate (BER) is more than 0.001, bi-

level block coding offers the highest PSNR, which means the highest image quality. Even if the

BER is less than 0.001, this method still maintains a good value of PSNR. For compression ratio,

2-D bi-level block coding achieves the highest CR. In summary, the 2-D bi-level block coding

algorithm is the best residue coding method among all the algorithms.

Through this thesis work, we make the following contributions:

1. We propose the methods of converting RGB image to YCrCb image and predictors on

YCrCb image to improve the image quality and compression ratio.

2. GA algorithm and PSO algorithm are adopted to search the best combination of color

space conversions and predictors.

3. We extend 1-D bi-level block coding to N-D bi-level block coding. As a special case, 2-

D bi-level block coding is adopted.

4. After validation, new 2-D bi-level blocking coding shows the improved results over 1-

D bi-level block coding, interval Huffman coding, and standard Huffman coding.

Our future work may include:

1. Applying convolutional neural network (CNN) to search the best combination of color

space conversion and predictors.

2. Applying the bit-error aware lossless compression algorithms to video sequences.

71

REFERENCES

[1] X. Wu, N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. on

Communications, Vol. 45, No. 4, April, 1997.

[2] T. Lin, Pengwei Hao, “Compound image compression for real-time computer screen image

transmission,” IEEE Trans. on Image Processing, vol. 14, no. 8, pp. 993-1005, Aug. 2005.

[3] S. Singh, M. Mishra, P. Gupta, “Image compression on biomedical images using predictive

coding with the help of ROI,” 2015 2nd International Conference on Signal Processing and

Integrated Networks (SPIN), Noida, 2015, pp. 120-125.

[4] C. D. Rawat, S. Rao, “Evaluation of Burrows Wheeler Transform based image compression

algorithm for multimedia applications,” 2014 International Conference on Advances in

Communication and Computing Technologies (ICACACT 2014), Mumbai, 2014, pp. 1-2.

[5] J. Mielikainen, B. Huang, “Lossless compression of hyperspectral images using clustered

linear prediction with Adaptive prediction length,” IEEE Geoscience and Remote Sensing

Letters, vol. 9, no. 6, pp. 1118-1121, Nov. 2012.

[6] S. Miaou, F. Ke, S. Chen, “A lossless compression method for medical image sequences

using JPEG-LS and interframe coding,” IEEE Trans. on Information Technology in

Biomedicine, vol. 13, no. 5, pp. 818-821, Sept. 2009.

[7] V. Sanchez, R. Abugharbieh, P. Nasiopoulos, “Symmetry-based scalable lossless

compression of 3D medical image data, ” IEEE Trans. on Medical Imaging, vol. 28, no. 7,

pp. 1062-1072, July 2009.

[8] H. Wu, X. Sun, J. Yang, W. Zeng, F. Wu, “Lossless compression of JPEG coded photo

collections,” IEEE Trans. on Image Processing, vol. 25, no. 6, pp. 2684-2696, June 2016.

[9] S. Kim, N. I. Cho, “Hierarchical prediction and context adaptive coding for lossless color

image compression,” IEEE Trans. on Image Processing, vol. 23, no. 1, pp. 445-449, Jan.

2014.

[10] R. Kannan, C. Eswaran, “Lossless compression schemes for ECG signals using neural

network predictors,” EURASIP J. Adv. Signal Process., (Special Issue on Advances

Electrocardiogram Signal Processing and Analysis), vol. 2007, pp. 1–20.

[11] R. Starrosolski, “Simple fast and adaptive lossless image compression algorithm,” Softw.

Pract. xper., Vol. 37, pp. 65-91, 2007.

72

[12] T. Leung, M. W. Marcellin, A. Bilgin, “Visually lossless compression of windowed

images,” 2013 Data Compression Conference, Snowbird, UT, 2013, pp. 504-504.

[13] A. Koski, “Lossless ECG Coding,” Computer methods and programs in biomedicine, Vol.

52, No. 1 pp. 23–33, 1997.

[14] V. Sanchez, P. Nasiopoulos, R. Abugharbieh, “Efficient lossless compression of 4-D

medical images based on the advanced video coding scheme,” IEEE Trans. on Information

Technology in Biomedicine, vol. 12, no. 4, pp. 442-446, July 2008.

[15] N. Sriraam, C. Eswaran, “Context based error modeling for lossless compression of EEG

signals using neural networks,” Journal of Medical Systems, Vol. 30, No.6, pp.439–448,

December, 2006.

[16] M. Weinbergner, G. Seroussi, G. Sapiro, “The LOCO-I lossless image compression

algorithm: principles and standardization into JPEG-LS,” IEEE Trans. on Image Processing,

Vol. 9, No. 8, August 2000.

[17] S. D. Stearns, L. Tan, N. Magotra, “Lossless compression of waveform data for efficient

storage and transmission,” IEEE Trans. Geosci. Remote Sensing, vol. 31, no. 3, pp. 645–

654, May 1993.

[18] S. Lin, D. Jr. Costello, Error Control Coding: Fundamentals and Applications. Prentice Hall,

Inc., Englewood Cliffs, NJ, 1983.

[19] S. Rhee, C. Kim, J. Kim, Y. Jee, “Concatenated Reed-Solomon code with hamming code

for DRAM controller,” 2010 Second International Conference on Computer Engineering

and Applications, Bali Island, 2010, pp. 291-295.

[20] L. Tan, J. Jiang, Digital Signal Processing: Fundamentals and Applications. Third Edition,

Elsevier/Academics, 2018.

[21] T. Strutz, A. Leipnitz, “Reversible color spaces without increased bit depth and their

adaptive selection,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1269-1273, Sept.

2015.

[22] X. Peng, J. Hou, L. Tan, J. Chen, J. Jiang, X. Guo, “Bit-error aware lossless color image

compression,” 2019 IEEE International Conference on Electro/Information Technology, pp.

126-131, Brookings, South Dakota, May 2019.

[23] L. Tan, L. Wang, “Bit-error aware lossless image compression,” International Journal of

Modern Engineering, vol. 11, no. 2, pp. 54-59, Spring/Summer 2011.

73

[24] S. D. Stearns, Digital Signal Processing with Examples in MATLAB. CRC Press, 2002.

[25] Z. Li, M. S. Drew, Fundamentals of Multimedia. Prentice Hall, Upper Saddle River, NJ

07458, 2004.

[26] S. D. Stearns, L. Tan, N. Magotra, “A bi-level coding technique for compressing broadband

residue sequences,” Digital Signal Processing, Vol. 2, No. 3, pp. 146-156, July 1992.

[27] S. D. Stearns, “Arithmetic coding in lossless waveform compression,” IEEE Trans. Signal

Process., vol. 43, pp. 1874–1879, 1995.

[28] G. Zeng, N. Ahmed, “A block coding technique for encoding sparse binary patterns,” IEEE

Trans. Acoust., Speech, Signal Process., vol. 37, no. 5, pp. 778–780, May 1989.

[29] L. Tan, J. Jiang, “A bi-level block coding technique for encoding data sequences with sparse

distributions,” Technol. Interface J., vol. 9, no. 1, 2008.

[30] L. Tan, J. Jiang, Y. Zhang, “Bit-error aware lossless compression of waveform data,” IEEE

Signal Processing Letters, vol. 17, no. 6, pp. 547-550, June 2010.

[31] Wikipedia. Available: https://en.wikipedia.org/wiki/Huffman_coding

[32] F. Marcelloni, M. Vecchio, “A simple algorithm for data compression in wireless sensor

networks,” IEEE Commun. Lett., vol. 12, pp. 411–413, Jun. 2008.

[33] Wikipedia. Available: https://en.wikipedia.org/wiki/Metaheuristic

[34] P. Guo, X. Wang, Y. Han, “The enhanced genetic algorithms for the optimization

design,” 2010 3rd International Conference on Biomedical Engineering and Informatics,

Yantai, 2010, pp. 2990-2994.

[35] Mojtaba Ahmadieh Khanesar, Mohammad Teshnehlab, Mahdi Aliyari Shoorehdeli, “A

novel binary particle swarm optimization,” 2007 Mediterranean Conference on Control &

Automation, Athens, pp. 1-6, July 2007.

[36] X. Wu, “A density adjustment based particle swarm optimization learning algorithm for

neural network design,” 2011 International Conference on Electrical and Control

Engineering, Yichang, 2011, pp. 2829-2832.

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Metaheuristic

74

PUBLICATIONS

Conference Papers:

J. Dai, V. Vijayarajan, X. Peng, L. Tan, J. Jiang, “Speech recognition using sparse discrete wavelet

decomposition feature extraction” 2018 IEEE International Conference on Electro/Information

Technology, pp. 812-816, Oakland University, Rochester, Michigan, May 2018.

X. Peng, J. Hou, L. Tan, J. Chen, J. Jiang, X. Guo, “Bit-error aware lossless color image

compression,” 2019 IEEE International Conference on Electro/Information Technology, pp. 126-

131, Brookings, South Dakota, May 2019.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	CHAPTER 1. INTRODUCTION
	1.1 Motivations
	1.2 Objectives
	1.3 Organization of Thesis
	1.4 Contribution of Thesis

	CHAPTER 2. BIT-ERROR AWARE LOSSLESS COLOR IMAGE COMPRESSION
	2.
	2.1 Framework
	2.2 Color Space Transformation
	2.3 Prediction
	2.4 Residue Coding
	2.4.1 2-D bi-level block coding and 1-D bi-level block coding
	2.4.2 Interval Huffman coding and standard Huffman coding

	2.5 Error Control Coding

	CHAPTER 3. INTELLIGENT OPTIMIZATION ALGORITHM
	3.
	3.1 Genetic Algorithm
	3.1.1 Fitness function
	3.1.2 Selection
	3.1.3 Crossover
	3.1.4 Mutation

	3.2 Particle Swarm Optimization
	3.2.1 Position and velocity
	1.1.1
	3.2.2 Fitness value
	3.2.3 Update rule

	3.3 Similarities and Differences
	3.4 Performance Evaluations

	CHAPTER 4. EXPERIMENTS AND RESULTS
	4.1 Performance Evaluation for RGB image and Color-converted Image
	4.2 PSNR Performances for Different Bit-error Rates
	4.3 CR Performances for Different Images

	CHAPTER 5. CONCLUSION AND FUTURE WORK
	REFERENCES
	PUBLICATIONS

