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ABSTRACT

Essertel, Grégory PhD, Purdue University, December 2019. IMPROVING PERFOR-
MANCE OF DATA-CENTRIC SYSTEMS THROUGH FINE-GRAINED CODE GEN-
ERATION . Major Professor: Tiark Rompf.

The availability of modern hardware with large amounts of memory created a

shift in the development of data-centric software; from optimizing I/O operations

to optimizing computation. As a result, the main challenge has become using the

memory hierarchy (cache, RAM, distributed, etc) efficiently. In order to overcome

this difficulty, programmers of data-centric programs need to use low-level APIs such

as Pthreads or MPI to manually optimize their software because of the intrinsic

difficulties and the low productivity of these APIs. Data-centric systems such as

Apache Spark are becoming more and more popular. These kinds of systems offer a

much simpler interface and allow programmers and scientists to write in a few lines

what would have been thousands of lines of low-level MPI code. The core benefit of

these systems comes from the introduction of deferred APIs; the code written by the

programmer is actually building a graph representation of the computation that has

to be executed. This graph can then be optimized and compiled to achieve higher

performance.

In this dissertation, we analyze the limitations of current data-centric systems such

as Apache Spark, on relational and heterogeneous workloads interacting with machine

learning frameworks. We show that the compilation of queries in multiples stages and

the interfacing with external systems is a key impediment to performance because of

their inability to optimize across code boundaries. We present Flare, an accelera-

tor for data-centric software, which provides performance comparable to the state

of the art relational systems while keeping the expressiveness of high-level deferred
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APIs. Flare displays order of magnitude speed up on programs combining relational

processing and machine learning frameworks such as TensorFlow. We look at the

impact of compilation on short-running jobs and propose an on-stack-replacement

mechanism for generative programming to decrease the overhead introduced by the

compilation step. We show that this mechanism can also be used in a more generic

way within source-to-source compilers. We develop a new kind of static analysis that

allows the reverse engineering of legacy codes in order to optimize them with Flare.

The novelty of the analysis is also useful for more generic problems such as formal

verification of programs using dynamic allocation. We have implemented a prototype

that successfully verifies programs within the SV-COMP benchmark suite.



1

1 INTRODUCTION

1.1 Problem statement

The past decades have seen a significant increase in the amount of memory avail-

able for computers. It is possible to buy machines with multiple TB and even 10s

of TB of RAM. This development has transformed the way data-centric software is

designed. These large main memory machines have eliminated the bottlenecks of I/O

to and from secondary storage, and have made computational bottlenecks the main

impediment to performance. Therefore using memory efficiently becomes more im-

portant; naturally, optimal use of the memory hierarchy (cache, RAM, distributed,

etc.) becomes the primary strategy for obtaining high performance.

The current industry standard for implementing efficient parallel and distributed

software is to use low-level APIs such as Pthreads, OpenMP, MPI, network primitives,

etc. This requires the programmer to optimize the applications manually. However,

low-level data-centric programs are difficult to optimize due to their high complexity.

The challenge of programming these systems is complicated further by the neces-

sity to use multiple APIs together to achieve good performance. The research com-

munity has proposed alternatives to these tedious low-level APIs, for example with

performance-oriented Domain Specific Languages (DSLs) [144]. However, introduc-

ing new user-facing abstractions always faces the hurdle of adoption. On the other

end of the spectrum, systems like Spark optimize for convenience rather than for raw

performance and have been widely adopted across different fields.

In its initial version, Spark was nothing more than a distributed collections library,

and thus orders of magnitude slower than optimized MPI code. However, developers

could express in just a few lines of code what would take hundreds or even thousands

of lines using MPI. More recently, new classes of systems such as the DataFrame
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subsystem in Apache Spark (Spark SQL [12]) and Tensorflow [4] have emerged, and

these recover some of the runtime performances while retaining productivity benefits.

These systems, inspired by databases and query plans, build a graph representing the

computation that needs to be performed rather than directly performing said com-

putation. Once built, the graph is optimized, and the system generates efficient code

that removes interpretative overhead. This pattern is often called deferred execution

(as opposed to standard, immediate, execution), and APIs such as Sparks DataFrame

library are referred to as deferred APIs. While many advantages came from this

design, there still exists room for improvement:

• While main memory database compilation techniques have been applied to

Spark, however, the results are not optimal. For example, the DataFrame

computation graph is compiled into multiple components, resulting in com-

munication overhead at the code boundaries. Also, fault-tolerant infrastructure

and other such mechanisms add additional overhead. While this can be neces-

sary in a large-scale distributed setting, it is not within a single machine or even

small clusters of less than 100 nodes where failures are statistically unlikely.

• Relational processing is not enough for realistic workloads, which often need

to combine SQL-style relational processing with procedural code and increas-

ingly training loops of inference of machine learning models, sometimes provided

through external frameworks and applications. Spark SQL provides the possibil-

ity to use other systems through User Defined Functions (UDFs), however, the

computation is a black box to the DataFrame optimizer. Thus, each system is

optimized individually; but, when used together, there is no cross-optimization.

This results in unnecessary overheads at the boundaries between systems.

• Aggressive compilation does not come for free. For long-running queries, the

performance benefit is clear, but the extra compilation time can be a significant

overhead for queries with very short running time, which may still be complex
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and require substantial optimization and/or dominate the running time of a

system because queries are executed many times.

• New platforms are rarely backward-compatible, resulting in large amounts of

legacy code which are unable to be utilized on these new systems. In a similar

way, arbitrary UDFs are often difficult to integrate, mainly because they are

not sharing the programming paradigm.

In this dissertation, we analyze and propose a solution to each of these problems.

In order to make our work more easily adopted, we focus on developing accelerators

for existing systems rather than proposing a different paradigm or novel user-facing

DSL. We seek to improve the performance of systems by generalizing the notion

of deferred APIs and generating low-level code that is highly optimized for a given

platform. We demonstrate, that in order to achieve this, we need to use deferred API

and code generation at different levels of abstraction. For example, Spark SQL query

plans contain nodes representing SQL operators, which are then directly transformed

to code. We show that pushing down the code generation granularity to the level of

primitive operations allows an efficient generation of multi-threaded, NUMA aware,

and even distributed code. This also enables cross-optimization with other systems

that use the same design, addressing the challenge of interoperability.

While we show that adding an extra compilation step improves query execution

time, situations in which the execution time and compilation time are similar do

not gain such a benefit. Therefore, we propose a solution to reduce compilation

overhead through tiered compilation and on-stack-replacement (OSR) techniques for

code generators. We illustrate that OSR has a broader application space in the

context of code generation. For example, this can be used to generate code with

speculative optimizations. In addition, the capacity to swap code at runtime is an

interesting avenue to implement fault tolerance mechanisms within generated code.

Finally, we investigate the possibility of applying the different optimizations that

deferred APIs offer to generic user-defined functions (UDFs) and more broadly to
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any low-level legacy code. This is achieved by extracting the meaning of programs

in terms of computation graphs. However, obtaining this kind of information from

a low-level imperative code is not a simple task. We develop a new static analysis

method that extracts functional semantics from low-level imperative code. The theory

we have established is more general than our current context, for example, it can also

be used for formal verification.

1.2 Overview

1.2.1 Flare: Accelerating Data Processing

In recent years, Apache Spark has become the de facto standard for big data

processing. Spark has enabled a wide audience of users to process petabyte-scale

workloads due to its flexibility and ease of use: users are able to mix SQL-style rela-

tional queries with Scala or Python code, and have the resultant programs distributed

across an entire cluster, all without having to work with low-level parallelization or

network primitives.

However, many workloads of practical importance are not large enough to justify

distributed, scale-out execution, as the data may reside entirely in main memory of a

single powerful server. Although Spark adopted the state of the art query compilation

model, we show that it has to be adapted on order to handle these jobs efficiently.

Still, users want to use Spark for its familiar interface and tooling. In such scale-up

scenarios, Spark’s performance is suboptimal, as Spark prioritizes handling data size

over optimizing the computations on that data. For such medium-size workloads,

performance may still be of critical importance if jobs are computationally heavy or

need to be run frequently on changing data.

In Chapter 2, we present Flare, an accelerator module for Spark that delivers order

of magnitude speedups on scale-up architectures for a large class of applications.
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1.2.2 Combining Relational Processing and Machine Learning Frameworks

Realistic contemporary workloads are not purely relational, but for example com-

bine a loading and preprocessing phase (ETL) to feed machine learning pipelines.

Inspired by query compilation techniques from main-memory database systems, Flare

incorporates a code generation strategy designed to match the unique aspects of Spark

and the characteristics of scale-up architectures; in particular, processing data directly

from optimized file formats and combining SQL-style relational processing with ex-

ternal frameworks such as TensorFlow. Running machine learning (ML) workloads

at scale is as much a data management problem as a model engineering problem. Big

performance challenges exist when data management systems invoke ML classifiers

as user-defined functions (UDFs) or when stand-alone ML frameworks interact with

data stores for data loading and pre-processing. In particular, UDFs can be precom-

piled or simply a black box for the data management system and the data layout

may be completely different from the native layout, thus adding overheads at the

boundaries.

In Chapter 3, we show how bottlenecks between existing systems can be elimi-

nated when their engines are designed around runtime compilation and native code

generation, which is the case for many state-of-the-art relational engines as well as

ML frameworks. We demonstrate an integration of Flare (an accelerator for Spark

SQL), and Lantern (an accelerator for TensorFlow and PyTorch) that results in a

highly optimized end-to-end compiled data path, switching between SQL and ML

processing with negligible overhead.

1.2.3 On Stack Replacement for Program Generators And Source-to-Source Com-

pilers

Aggressive compilation has a cost that must be amortized. For long-running

queries the performance are greatly improved. However, in the situation of complex

but short-running time queries, the gains are reduced due to the compilation time
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overhead. Through on-stack-replacement technique, we reduce this problem with a

tiered execution strategy. On-stack-replacement, in addition to solving the compila-

tion time issue, offers a more generic set of techniques that can be used within code

generators.

On-stack replacement (OSR) describes the ability to replace currently executing

code with a different version, either a more optimized one (tiered execution) or a

more general one (deoptimization to undo speculative optimization). While OSR is

a key component in all modern VMs for languages like Java or JavaScript, OSR has

only recently been studied as a more abstract program transformation, independent

of language VMs. Still, previous work has only considered OSR in the context of

low-level execution models based on stack frames, labels, and jumps.

With the goal of making OSR more broadly applicable, in Chapter 4 we present

a surprisingly simple pattern for implementing OSR in source-to-source compilers or

explicit program generators that target languages with structured control flow (loops

and conditionals). We evaluate our approach through experiments demonstrating

both tiered execution and speculative optimization, based on representative code pat-

terns in the context of a state-of-the-art in-memory database systems that compile

SQL queries to C at runtime. We further show that casting OSR as a metapro-

gramming technique enables new speculative optimization patterns beyond what is

commonly implemented in language VMs.

1.2.4 Precise Reasoning with Structured Time, Structured Heaps, and Collective

Operations

While Flare can generate very efficient parallel code, the techniques we developed

can only be applied on code bases that have been implemented using deferred APIs.

We explore the possibilities to use Flare to accelerate some of the legacy code, or

UDFs, that were originally implemented in an imperative single-threaded style. Our

solution is to extract high-level functional semantics from the legacy code, and use
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this representation to extract the essence of the code that can then be accelerated

by Flare. The high-level functional representation has the advantage of being very

generic, thus we use it to solve other problems, such as program verification.

Despite decades of progress, static analysis tools still have great difficulty deal-

ing with programs that combine arithmetic, loops, dynamic memory allocation, and

linked data structures. In this work, we draw attention to two fundamental rea-

sons for this difficulty: First, typical underlying program abstractions are low-level

and inherently scalar, characterizing compound entities like data structures or results

computed through iteration only indirectly. Second, to ensure termination, analyses

typically project away the dimension of time, and merge information per program

point, which incurs a loss in precision.

As a remedy, we propose to make collective operations first-class in program

analysis—inspired by Σ-notation in mathematics, and also by the success of high-

level intermediate languages based on map/reduce operations in program genera-

tors and aggressive optimizing compilers for domain-specific languages (DSLs). We

further propose a novel structured heap abstraction that preserves a symbolic di-

mension of time, reflecting the program’s loop structure and thus unambiguously

correlating multiple temporal points in the dynamic execution with a single point in

the program text.

In Chapter 5, we present a formal model, based on a high-level intermediate

analysis language, a practical realization in a prototype tool that analyzes C code,

and an experimental evaluation that demonstrates competitive results on a series

of benchmarks. Remarkably, our implementation achieves these results in a fully

semantics-preserving strongest-postcondition model, which is a worst-case for analy-

sis/verification. The underlying ideas, however, are not tied to this model and would

equally apply in other settings, e.g., demand-driven invariant inference in a weakest-

precondition model. Given its semantics-preserving nature, our implementation is

not limited to analysis for verification, but can also check program equivalence, and

translate legacy C code to high-performance DSLs, such as Spark DataFrame.
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1.3 Hypothesis

Our thesis hypothesis states that using fine-grained code generation techniques

within the runtime of data-centric systems leads to an increase in performance and

productivity.

1.4 Contributions

The key contributions of our work are the following:

1. We present Flare, an accelerator for data-centric systems. (Chapter 2)

(a) We identify key performance impediments, such as compiling the query

plans in multiple stages, for workloads running on Spark in a shared mem-

ory environment, and present a novel code generation strategy able to

overcome these impediments. (Section 2.4)

(b) We present Flare’s architecture and discuss key implementation choices.

We show how Flare is capable of optimizing data loading, dealing with

parallel execution, as well as efficiently working on NUMA systems. This

is a result of Flare compiling whole queries as opposed to individual query

stages, which results in an end-to-end optimized data path. We evaluate

Flare in comparison to Spark on TPC-H, reducing the gap to the best-

of-breed relational query engines. In this setting, Flare exhibits order-of-

magnitude speedups. Our evaluation spans single-core, multi-core, and

NUMA targets. (Section 2.5 and 2.6)

(c) We show how the work on Flare on a single machine can be extended to

a distributed setting while keeping the same architecture and abstraction

level. Similarly, we show that the technique used to accelerate Spark can

be applied to similar systems such as Flink with little effort. (Section 2.7

and 2.8)
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2. We demonstrate the advantages of using compilation and Flare in conjunction

with machine learning framework or generic user defined functions. We show

that Flare can be used as an efficient database system for machine learning

algorithms. (Chapter 3)

(a) We show that on benchmarks involving external libraries, Flare exhibits

order-of-magnitude speedups. (Section 3.6).

3. We analyze the overheads introduced by Flare compilation step, and develop a

strategy based on OSR to reduce them. (Chapter 4)

(a) We propose an extremely simple model of OSR. We believe that this sim-

plicity will make the model useful for future study. In particular, our model

provides a simpler correctness story than previous formal models. We do

not need to represent OSR primitives in an IR and instead translate away

the OSR behavior into a high-level, structured, AST-like program repre-

sentation. (Section 4.2)

(b) We show how program generators and source-to-source compilers can emit

OSR patterns which enable them to profit from tiered execution and spec-

ulative optimization in addition to standard code specialization. (Section

4.3)

(c) We demonstrate that we can add OSR non-intrusively to a program, with-

out having a JIT setup. Compilation relies only on any of the available

ahead-of-time compilers for the desired target language, and requires min-

imal library support. (Section 4.5 and 4.6)

4. We investigate the challenge of interfacing Flare’s code generation with legacy

code and external UDFs. We develop a technique to extract high-level func-

tional semantics from low-level imperative code. (Chapter 5)
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(a) We present a detailed formal semantics of a source and target language

including a structured heap model. We prove the correctness of the trans-

lation and target-level simplification rules. The simplification rules we

present give rise to a large space of rewriting opportunities that can be re-

alized either deterministically bottom-up or nondeterministically through

search. Each rule is guaranteed to be equality-preserving, which leads to

a simple but overall pessimistic approach if rules are applied one-by-one

after the translation step. (Section 5.3)

(b) We extend the pessimistic, equality-preserving, simplification model to an

optimistic approach that interleaves translation and simplification, based

on Kleene-iteration. This model further increases precision by enabling a

form of speculation, e.g., assuming that parts of a data structure remain

constant throughout a loop, that an arithmetic recurrence has a closed

form, or that a write to a data structure is the initialization of a dense

array. (Section 5.4)

(c) We present SIGMA, which scales up these ideas to be able to analyze C

programs. We evaluate SIGMA on benchmarks for verification, program

equivalence checking, and translation of legacy code to high-performance

DSLs. (Section 5.5)

1.4.1 Publications

The work presented in this dissertation has been published in the following papers:

1. Grégory Essertel; Tahboub Ruby; Tiark Rompf. Flare: Optimizing Apache

Spark with Native Compilation for Scale-Up Architectures and Medium-Size

Data. OSDI 2018. Presented in Chapter 2, with additional unpublished sec-

tions: Section 2.7 and 2.8.
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2. Grégory Essertel; Ruby Tahboub; Fei Wang; James Decker; Tiark Rompf.

Flare & Lantern: Efficiently Swapping Horses Midstream. Demo track VLDB

2019. Presented in Chapter 3.

3. Grégory Essertel; Ruby Tahboub; Tiark Rompf. On-Stack Replacement for

Program Generators and Source-to-Source Compilers. Tech report 2019. Pre-

sented in Chapter 4.

4. Grégory Essertel; Guannan Wei; Tiark Rompf. Precise Reasoning with Struc-

tured Time, Structured Heaps, and Collective Operations. OOPSLA 2019. Pre-

sented in Chapter 5.

The following works are not part of this dissertation, but are related to some of

the chapters.

1. Tahboub Ruby; Grégory Essertel; Tiark Rompf. How to Architect a Query

Compiler, Revisited. SIGMOD 2018. Related to Chapter 2.

2. Fei Wang; James Decker; Xilun Wu; Grégory Essertel; Tiark Rompf. De-

mystifying Differentiable Programming: Shift/Reset the Penultimate Backprop-

agator. ICFP 2019. Related to Chapter 3.

1.5 Background

In this section, we provide the necessary background to understand the concepts

used in the following chapters: Futamura Projections and Lightweight Modular Stag-

ing framework. This section is taken from [149].

1.5.1 Futamura Projections for Query Engines

In 1970, at a time when the hierarchical and network models of data [15] were

du jour, Codd’s seminal work on relational data processing appeared in CACM [39].

One year later, in 1971, Yoshihiko Futamura published his paper “Partial Evaluation
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of Computation Process–An approach to a Compiler-Compiler” in the Transactions

of the Institute of Electronics and Communication Engineers of Japan [63]. The fun-

damental insight of Codd was that data could be profitably represented as high-level

relations without explicit reference to a given storage model or traversal strategy. The

fundamental insight of Futamura was that compilers are not fundamentally different

from interpreters, and that compilation can be profitably understood as specializa-

tion of an interpreter, without explicit reference to a given hardware platform or code

generation strategy.

To understand this idea, we first need to understand specialization of programs.

In the most basic sense, this means to take a generic function, instantiate it with a

given argument, and simplify. For example, consider the generic two-argument power

function that computes xn:
def power(x:Int , n:Int): Int =

if (n == 0) 1 else x * power(x, n - 1)

If we know the exponent value, e.g., n = 4, we can derive a specialized, residual,

power function:
def power4(x:Int): Int = x * x * x * x

This form of specialization is also known as partial evaluation [81].

Specializing Interpreters. The key idea of Futamura was to apply specialization

to interpreters. Like power above, an interpreter is a two-argument function: its

arguments are the code of the function to interpret, and the input data this function

should be called with. Figure 1.1a illustrates the case of databases: The query engine

evaluates a SQL query (static input) and data (dynamic input) to produce the result.

The effect of specializing an interpreter is shown in Figure 1.1b: if we have a program

specializer, or partial evaluator, which for historical reasons is often called mix, then

we can specialize the (query) interpreter with respect to a given source program

(query). The result is a single-argument program that computes the query result

directly on the data, and runs much faster than running the query through the original

interpreter. This is because the specialization process strips away all the “interpretive
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overhead”, i.e., dispatch the interpreter performs on the structure of the query. In

other words, through specialization of the interpreter, we are able to obtain a compiled

version of the given program!

Query Engine

(interpreter)

SQL Query

(source)
input
(data)

result
(a)

input

staged 

interpreter

SQL Query

(source)

input
(data)

result

target

(c)

input
mix

SQL Query

(source)

input
(data)

result

SQL Engine

(interpreter)

(b)

input

source source source

target

Figure 1.1.: (a) Query interpreter (b) applying the first Futamura projection on a
query interpreter (c) Flare realization of the first Futamura projection. Figure taken
from [149].

This key result–partially evaluating an interpreter with respect to a source pro-

gram produces a compiled version of that program–is known as the first Futamura

projection. Less relevant for us, the second and third Futamura projections explain

how self-application of mix can, in theory, derive a compiler generator: a program

that takes any interpreter and produces a compiler from it.

Codd’s idea has been wildly successful, spawning multi-billion-dollar industries,

to a large extent thanks to the development of powerful automatic query optimiza-

tion techniques, which work very well in practice due to the narrow semantic model

of relational algebra. Futamura’s idea of deriving compilers from interpreters auto-

matically via self-applicable partial evaluation received substantial attention from the

research community in the 1980s and 1990s [80], but has not seen the same practi-

cal success. Despite partial successes in research, fully automatic partial evaluation

has turned out to be largely intractable in practice due to the difficulty of binding-

time separation [81]: deciding which expressions in a program to evaluate directly, at

specialization time, and which ones to residualize into generated code.
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1.5.2 Lightweight Modular Staging

Lightweight Modular Staging (LMS) [130] is a library-based generative program-

ming and compiler framework. LMS maintains a graph-like intermediate representa-

tion (IR) to encode high-level constructs and operations. Moreover, LMS provides a

high-level interface to manipulate the IR graph. The idea in LMS is similar to the

Dataset idea in Spark, but is handling a general purpose programing model.

LMS distinguishes two types of expressions; present-stage expressions that are

executed normally and future-stage expressions that are compiled into code. LMS

defines a special type constructor Rep[T] to denote future-stage expressions, e.g.,

our MyInt corresponds to Rep[Int] in LMS, and given two Rep[Int] values a

and b, evaluating the expression a+b will generate code to perform the addition.

LMS provides implementations for all primitive Rep[T] types, i.e., strings, arrays,

etc. In addition, LMS also provides overloaded control-flow primitives, e.g., if

(c) a else b where c is a Rep[Boolean].

Despite academic success [80–82], the magic mix component in Figure 1.1b has

turned out to be elusive in practice, however all is not lost. We just have to find

another way to implement program specialization, perhaps with some help from the

programmer. Going back to the example in 1.5.1, we can implement a self-specializing

power function like this:
def power(x: Rep[Int], n:Int): Rep[Int] =

if (n == 0) 1 else x * power(x, n - 1)

We changed the type of x from Int to Rep[Int]. When we now call power

with a symbolic input value:
val in: Rep[Int] = fresh("in")

power(in , 4)

LMS will emit the desired specialized computation:
int x0 = in * 1; int x1 = in * x0;

int x2 = in * x1; int x3 = in * x2; // = in * in * in * in
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Based on this core idea of introducing special data types for symbolic or staged

computation, we suddenly have a handle on making the first Futamura projection

immediately practical. Previous works on staging include [36,147,161].
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2 FLARE: ACCELERATING DATA PROCESSING

This Chapter is based on [54].

2.1 Introduction

Systems like Apache Spark [12] have gained enormous traction thanks to their

intuitive APIs and ability to scale to very large data sizes, thereby commoditizing

petabyte-scale (PB) data processing for large numbers of users. But thanks to its

attractive programming interface and tooling, people are also increasingly using Spark

for smaller workloads. Even for companies that also have PB-scale data, there is

typically a long tail of tasks of much smaller size, which make up a very important

class of workloads [40, 134]. In such cases, Spark’s performance is suboptimal. For

such medium-size workloads, performance may still be of critical importance if there

are many such jobs, individual jobs are computationally heavy, or need to be run

very frequently on changing data. This is the problem we address in this Chapter.

We present Flare, an accelerator module for Spark that delivers order of magnitude

speedups on scale-up architectures for a large class of applications. A high-level view

of Flare’s architecture can be seen in Figure 2.1b.

Inspiration from In-Memory Databases Flare is based on native code genera-

tion techniques that have been pioneered by in-memory databases (e.g., HyPer [107]).

Given the multitude of front-end programming paradigms, it is not immediately clear

that looking at relational databases is the right idea. However, we argue that this is

indeed the right strategy: Despite the variety of front-end interfaces, contemporary

Spark is, at its core, an SQL engine and query optimizer [12]. Rich front-end APIs

are increasingly based on DataFrames, which are internally represented very much
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Flare Runtime

Spark SQL

Catalyst Optimizer

DataFrame API

Spark
Resilient Distributed Dataset

Code Generation

(a) Spark SQL

Code Generation

SQLScala Python …

(b) Flare

Export query plan

TensorFlow

XLA

Figure 2.1.: Flare system overview: (a) architecture of Spark adapted from [12]; (b)
Flare generates code for entire queries, eliminating the RDD layer, and orchestrating
parallel execution optimized for shared memory architectures. Flare also integrates
with TensorFlow.

like SQL query plans. Data frames provide a deferred API, i.e., calls only construct

a query plan, but do not execute it immediately. Thus, front-end abstractions do not

interfere with query optimization. Previous generations of Spark relied critically on

arbitrarily UDFs, but this is becoming less and less of a concern as more and more

functionality is implemented on top of DataFrames.

With main-memory databases in mind, it follows that one may look to existing

databases for answers on improving Spark’s performance. A piece of low-hanging

fruit seems to be simply translating all DataFrame query plans to an existing best-

of-breed main-memory database (e.g., HyPer [107]). However, such systems are full

database systems, not just query engines, and would require data to be stored in a

separate, internal format specific to the external system. As data may be changing

rapidly, loading this data into an external system is undesirable, for reasons of both

storage size and due to the inherent overhead associated with data loading. Moreover,

retaining the ability to interact with other systems (e.g., TensorFlow [4] for machine

learning) is unclear.
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Another logical alternative would be to build a new system which is overall better

optimized than Spark for the particular use case of medium-size workloads and scale-

up architectures. While some effort has been done in this vein (e.g., Tupleware [40]),

such systems forfeit the ability to leverage existing libraries and frameworks built on

top of Spark, including the associated tooling. Whereas a system that competes with

Spark must replicate all of this functionality, our goal instead was to build a drop-in

module capable of handling workloads for which Spark is not optimized, preferably

using methodologies seen in these best-of-breed, external systems (e.g., HyPer).

Native Query Compilation Indeed, the need to accelerate CPU computation

prompted the development of a code generation engine that ships with Spark since

version 1.4, called Tungsten [12]. However, despite following some of the methodol-

ogy set forth by HyPer, there are a number of challenges facing such a system, which

causes Tungsten to yield suboptimal results by comparison. First, due to the fact

that Spark resides in a Java-based ecosystem, Tungsten generates Java code. This

(somewhat obviously) yields inferior performance to native execution as seen in Hy-

Per. However, generating native code within Spark poses a challenge of interfacing

with the JVM when dealing with e.g., data loading. Another challenge comes from

Spark’s reliance on resilient distributed datasets (RDDs) as its main internal exe-

cution abstraction. Mapping query operators to RDDs imposes boundaries between

code generation regions, which incurs nontrivial runtime overhead. Finally, having a

code generation engine capable of interfacing with external frameworks and libraries,

particularly machine-learning oriented frameworks like TensorFlow and PyTorch, is

also challenging due to the wide variety of data representations which may be used.

End-to-End Datapath Optimization In solving the problem of generating na-

tive code and working within the Java environment, we focus specifically on the issue

of data processing. When working with data directly from memory, it is possible to

use the Java Native Interface (JNI) and operate on raw pointers. However, when

processing data directly from files, fine-grained interaction between decoding logic in
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Java and native code would be required, which is both cumbersome and presents high

overhead. To resolve this problem, we elect to reimplement file processing for com-

mon formats in native code as well. This provides a fully compiled data path, which

in turn provides significant performance benefits. While this does present a problem

in calling Java UDFs (user-defined functions) at runtime, we can simply fall back

to Spark’s existing execution in such a case, as these instances appear rare in most

use cases considered. We note in passing that existing work (e.g., Tupleware [40],

Froid [121]) has presented other solutions for this problem which could be adopted

within our method, as well.

Fault Tolerance on Scale-Up Architectures In addition, we must overcome the

challenge of working with Spark’s reliance on RDDs. For this, we propose a simple

solution: when working in a scale-up, shared memory environment, remove RDDs and

bypass all fault tolerance mechanisms, as they are not needed in such architectures

(seen in Figure 2.1b). The presence of RDDs fundamentally limits the scope of

query compilation to individual query stages, which prevents optimization at the

granularity of full queries. Without RDDs, we compile whole queries and eliminate

the preexisting boundaries across query stages. This also enables the removal of

artifacts of distributed architectures, such as Spark’s use of HashJoinExchange

operators even if the query is run on a single core.

Interfacing with External Code Looking now to the issue of having a robust

code generation engine capable of interfacing with external libraries and frameworks

within Spark, we note that most performance-critical external frameworks are also

embracing deferred APIs. This is particularly true for machine learning frameworks,

which are based on a notion of execution graphs. This includes popular frameworks

like TensorFlow [4], Caffe [79], and ONNX [1], though this list is far from exhaustive.

As such, we focus on frameworks with APIs that follow this pattern. Importantly,

many of these systems already have a native execution backend, which allows for
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speedups by generating all required glue code and keeping the entire data path within

native code.

In the following section our study focuses on Spark, however most of the drawbacks

that we identify are usually present in other big framework as well. Moreover, our so-

lution - using generative programming - can be applied and improve the performances

of these systems by following the same idea.

Contributions The main intellectual contribution of this Chapter is to demon-

strate and analyze some of the underlying issues contained in the Spark runtime, and

to show that the HyPer query compilation model must be adapted in certain ways to

achieve good results in Spark (and systems with a similar architecture like Flink [37]),

most importantly to eliminate codegen boundaries as much as possible. For Spark,

this means generating code not at the granularity of operator pipelines but compiling

whole Catalyst operator trees at once (which may include multiple SQL-queries and

subqueries), generating specialized code for data structures, for file loading, etc.

We present Flare, an accelerator module for Spark that solves these (and other)

challenges which currently prevent Spark from achieving optimal performance on

scale-up architectures for a large class of applications. Building on query compilation

techniques from main-memory database systems, Flare incorporates a code genera-

tion strategy designed to match the unique aspects of Spark and the characteristics

of scale-up architectures, in particular processing data directly from optimized file

formats and combining SQL-style relational processing with external libraries such as

TensorFlow.

2.2 Background

Apache Spark [168,169] is today’s most widely-used big data framework. The core

programming abstraction comes in the form of an immutable, implicitly distributed,

collection called a resilient distributed dataset (RDD). RDDs serve as high-level pro-

gramming interfaces, while also transparently managing fault-tolerance.
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We present a short example using RDDs (from [12]), which counts the number of

errors in a (potentially distributed) log file:
val lines = spark.sparkContext.textFile("...")

val errors = lines.filter(s => s.startsWith("ERROR"))

println("Total errors: " + errors.count())

Spark’s RDD abstraction provides a deferred API: in the above example, the calls

to textFile and filter merely construct a computation graph. In fact, no ac-

tual computation occurs until errors.count is invoked. Because of this property,

RDDs are sometimes described as lazily evaluated. However, this is somewhat mis-

leading, as a second call to errors.count will re-execute the entire computation. 1

However, RDDs do support memoization via explicit calls to errors.persist (),

which will mark the dataset to be kept in memory for future operations.

2.2.1 Spark SQL and the DataFrame API

The directed, acyclic computation graph represented by an RDD describes the

distributed operations in a rather coarse-grained fashion: at the granularity of map,

filter , and so on. While this level of detail is enough to enable demand-driven

computation, scheduling, and fault-tolerance via selective recomputation along the

“lineage” of a result [168], it does not provide a full view of the computation applied

to each element of a dataset. For example, in the code snippet shown above, the

argument to lines.filter is a normal Scala closure. This makes integration

between RDDs and arbitrary external libraries much easier, but it also means that

the given closure must be invoked as-is for every element in the dataset.

As such, the performance of RDDs suffers from two limitations: first, limited

visibility for analysis and optimization (especially standard optimizations, e.g., join

reordering for relational workloads); and second, substantial interpretive overhead,

i.e., function calls for each processed tuple. Recent Spark versions have aimed to

ameliorate both issues with the introduction of the Spark SQL subsystem [12].

1In its original definition, the term “lazy evaluation” means that each term is evaluated only when
needed, and not more than once [70].
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2.2.2 The Power of Multi-Stage APIs and DSLs

The chief addition of Spark SQL is an alternative API based on DataFrames.

A DataFrame is conceptually equivalent to a table in a relational database; i.e.,

a collection of rows with named columns. However, like RDDs, the DataFrame API

records operations, rather than computing the result.

Therefore, we can write the same example as before:
val lines = spark.read.textFile("...")

val errors = lines.filter($"value".startsWith("ERROR"))

println("Total errors: " + errors.count())

This is quite similar to the RDD API in that only the call to errors.count

will trigger actual execution. Unlike RDDs, however, DataFrames capture the full

computation/query to be executed. We can obtain the internal representation using

errors.explain (), which produces the following output:
== Physical Plan ==

*Filter StartsWith(value #894, ERROR)

+- *Scan text [value #894]

Format: ... TextFileFormat@18edbdbb ,

InputPaths: ...,

ReadSchema: struct <value:string >

From the high-level DataFrame operations, Spark SQL computes a query plan,

much like a relational DBMS. Spark SQL optimizes query plans using its relational

query optimizer, called Catalyst, and may even generate Java code at runtime to

accelerate parts of the query plan using a component named Tungsten.

It is hard to overstate the benefits of this kind of deferred API, which generates

a complete program (i.e., query) representation at runtime. First, it enables various

kinds of optimizations, including classic relational query optimizations. Second, one

can use this API from multiple frontends, which exposes Spark to non-JVM languages

such as Python and R, and the API can also serve as a translation target from literal

SQL:
lines.createOrReplaceTempView("lines")

val errors = spark.sql("select * from lines

where value like ’ERROR%’")

println("Total errors: " + errors.count())
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Third, one can use the full host language to structure code, and use small functions

that pass DataFrames between them to build up a logical plan that is then optimized

as a whole.

select *

from lineitem , orders

where l_orderkey = o_orderkey

Spark

Sort -merge join 14,937 ms

Broadcast -hash join 4,775 ms

of which in exchange 2,232 ms

Flare

In -memory hash join 136 ms

Stage 0

Stage 1

scan

Filter

BroadcastExchange

Project

scan

Filter

Broadcast
HashJoin...

CollectLimit

Project

(a) (b)

Figure 2.2.: (a) The cost of Join lineitem ./ orders with different operators (b)
Spark’s hash join plan shows two separate code generation regions, which communi-
cate through Spark’s runtime system.

However, this is only true as long as one stays in the relational world, and, notably,

avoids using any external libraries (e.g., TensorFlow). This is a nontrivial restriction;

to resolve this, we show in Chapter 3 how the DataFrame model extends to such

library calls in Flare.

2.2.3 Catalyst and Tungsten

With the addition of Spark SQL, Spark also introduced a query optimizer known

as Catalyst [12]. We elide the details of Catalyst’s optimization strategy, as they

are largely irrelevant here. After Catalyst has finished optimizing a query plan,

Spark’s execution backend known as Tungsten takes over. Tungsten aims to improve

Spark’s performance by reducing the allocation of objects on the Java Virtual Machine

(JVM) heap, controlling off-heap memory management, employing cache-aware data

structures, and generating Java code which is then compiled to JVM bytecode at
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runtime [93]. Notably, these optimizations are able to simultaneously improve the

performance of all Spark SQL libraries and DataFrame operations [169].

Following the design described by Neumann, and implemented in HyPer [107],

Tungsten’s code generation engine implements what is known as a “data-centric”

model. In this type of model, operator interfaces consist of two methods: produce ,

and consume . The produce method on an operator signals all child operators to

begin producing data in the order defined by the parent operator’s semantics. The

consume method waits to receive and process this data, again in accordance with

the parent operator’s semantics.

In HyPer (and Tungsten), operators that materialize data (e.g., aggregate, hash

join, etc.) are called “pipeline breakers”. Where possible, pipelines of operators (e.g.,

scan, aggregate) are fused to eliminate unnecessary function calls which would other-

wise move data between operators. A consequence of this is that all code generated

is at the granularity of query stage, rather than generating code for the query as a

whole. This requires some amount of “glue code” to also be generated, in order to

pipeline these generated stages together. The directed graph of the physical plan for

a simple join query can be seen in Figure 2.2b. In this figure, we can see that the first

stage generates code for scanning and filtering the first table and the second stage

generates code for the pipeline of the scan, join, and project operators. In Section

2.4 we discuss the impact of the granularity of code generation and the choice of join

algorithm on Spark’s performance.

2.3 Spark Performance Analysis

Spark performance studies primarily focus on the scale-out performance, e.g., running

big data benchmarks [168] on high-end clusters, performing terabyte sorting [169], etc.

However, when considering the class of computationally-heavy workloads that can fit

in main-memory, requires multiple iterations, or integrates with external libraries
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(e.g., training a machine learning classifier), the performance of Spark becomes sub-

optimal.

On a similar note, McSherry, Isard, and Murray have eloquently argued in their

2015 HotOS paper [100] and accompanying blog post [100] that big data systems such

as Spark tend to scale well, but often this is because there is a lot of internal overhead.

In particular, McSherry et al. demonstrate that a straightforward native implemen-

tation of the PageRank algorithm [112] running on a single laptop can outperform a

Spark cluster with 128 cores, using the then-current version.

Laptop vs. Cluster Inspired by this setup and the following quote, we are inter-

ested in gauging the inherent overheads of Spark and Spark SQL in absolute terms:

“You can have a second computer once you’ve shown you know how to

use the first one.”

— Paul Barham, via [101]

For our benchmark, we pick the simplest query from the industry-standard TPC-

H benchmark: Query 6 (shown in Figure 2.3). We define the schema of table

lineitem , provide the source file, and finally register it as a temporary table for

Spark SQL (steps not shown). For our experiments, we use scale factor 2 (SF2) of

the TPC-H data set, which means that table lineitem is stored in a CSV file of

about 1.4 GB. Following the setup by McSherry et al., we run our tests on a fairly

standard laptop.2 Note that all times referenced here may be found in Table 2.1.

Table 2.1.: Running times for Q6 in Spark.

Spark SQL Preload ms Query ms
Direct CSV - 24,400
Preload CSV 118,062 1,418

Hand-Written C / Flare
Preload CSV 2,847 45

2MacBook Pro Retina 2012, 2.6 GHz Intel Core i7, 16 GB 1600 MHz DDR3, 500 GB SSD, Spark
2.0, Java HotSpot VM 1.8.0 112-b16
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val tpchq6 = spark.sql("""

select

sum(l_extendedprice*l_discount) as revenue

from

lineitem

where

l_shipdate >= to_date (’1994-01-01’)

and l_shipdate < to_date (’1995-01-01’)

and l_discount between 0.05 and 0.07

and l_quantity < 24

""")

Figure 2.3.: Query 6 from the TPC-H benchmark in Spark.

// data loading elided ...

for (i = 0; i < size; i++) {

double l_quantity = l_quantity_col[i];

double l_extendedprice = l_extendedprice_col[i];

double l_discount = l_discount_col[i];

long l_shipdate = l_shipdate_col[i];

if (l_shipdate >= 19940101L && l_shipdate < 19950101L &&

l_discount >= 0.05 && l_discount <= 0.07 &&

l_quantity < 24.0) {

revenue += l_extendedprice * l_discount;

}

} ...

Figure 2.4.: Query 6 from the TPC-H benchmark hand-written C code.

We first do a naive run of our query, Q6. As reported in Table 2.1, we achieve a

result of 24 seconds, which is clearly suboptimal. In aiming to boost performance, and

focus on the computational part we rerun the experiment with the data preloaded.

We note in passing that preloading is quite slow (almost 2 min), which may be

due to a variety of factors. With things preloaded, however, we can now execute our

query in-memory, and we get a much better result of around 1.4 seconds. Running

the query a few more times yields further speedups, but timings stagnate at around 1

second (timing from subsequent runs elided). Using 1s as our baseline, we must now

qualify this result.
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Hand-Written C Due to the simplicity of Q6, we elect to write a program in C

which performs precisely the same computation: mapping the input file into memory

using the mmap system call, loading the data into an in-memory columnar represen-

tation, and then executing the main query loop (see Figure 2.4).

Compiling this C program via gcc -O3 Q6.c and running the resultant output

file yields a time of 2.8 seconds (including data loading), only 45ms of which is per-

forming the actual query computation. Note that in comparison to Spark 2.0, this is

a striking 20× speedup. Performing the same query in HyPer, however, takes only

46.58ms, well within the margin of error of the hand-written C code. This dispar-

ity in performance shows that although Tungsten is written with the methodologies

prescribed by HyPer in mind, there exist some impediments either in the implemen-

tation of these methodologies or in the Spark runtime itself which prevent Spark from

achieving optimal performance for these cases.

2.4 Major Bottlenecks

By profiling Spark SQL during a run of Q6, we are able to determine two key

reasons for the large gap in performance between Spark and HyPer. Note that while

we focus our discussion mainly on Q6, which requires low computational power and

uses only trivial query operators, these bottlenecks appear in nearly every query in

the TPC-H benchmark.

Data Exchange Between Code Boundaries We first observe that Tungsten

must generate multiple pieces of code: one for the main query loop, the other an

iterator to traverse the in-memory data structure.

Consider the HashJoin code in Figure 2.5. We can see that Tungsten’s produce/-

consume interface generates a loop which iterates over data through an iterator in-

terface, then invokes the consume method at the end of the loop in order to perform

evaluation. HyPer’s original codegen model is centrally designed around data-centric

pipelines within a given query, the notion of “pipeline-breakers” as coarse-grained
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case class BroadcastHashJoinExec(/* ... inputs elided ... */)

extends BinaryExecNode with HashJoin with CodegenSupport {

// ... fields elided ...

override def doProduce(ctx: CodegenContext): String =

streamedPlan.asInstanceOf[CodegenSupport ]. produce(ctx , this)

override def doConsume(ctx: CodegenContext , input: Seq[ExprCode],

row: ExprCode): String = {

val (broadcastRelation , relationTerm) = prepareBroadcast(ctx)

val (keyEv , anyNull) = genStreamSideJoinKey(ctx , input)

val (matched , checkCondition , buildVars) =

getJoinCondition(ctx , input)

val numOutput = metricTerm(ctx , "numOutputRows")

val resultVars = ...

ctx.copyResult = true

val matches = ctx.freshName("matches")

val iteratorCls = classOf[Iterator[UnsafeRow ]]. getName

s"""

|// generate join key for stream side

|${keyEv.code}

|// find matches from HashRelation

|$iteratorCls $matches = $anyNull ? null :

($iteratorCls)$relationTerm.get(${keyEv.value });

|if ($matches == null) continue;

|while ($matches.hasNext ()) {

| UnsafeRow $matched = (UnsafeRow) $matches.next();

| $checkCondition

| $numOutput.add(1);

| ${consume(ctx , resultVars)}

|}

""".stripMargin

}

}

Figure 2.5.: Spark implementation of inner HashJoin.

boundaries of data flow, and the combination of pre-written code at the boundary

between pipelines with generated code within each pipeline. While the particular

implementation of this design in HyPer leads to good results in HyPer itself, the

direct implementation of HyPers pipeline-focused approach in Spark and similar sys-

tems falls short because the overhead of traversing pipeline boundaries is much higher

(Java vs C++, RDD overhead, ecosystem integration, etc).

The CPU profile (Figure 2.6) shows that 80% of the execution time is spent in one

of two ways: accessing and decoding the in-memory data representation, or moving
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between the two pieces of generated code through code paths which are part of the

precompiled Spark runtime. In order to avoid this overhead, then, we must replace

the runtime altogether with one able to reason about the entire query, rather than

just the stages.

JVM Overhead Even if the previous indirection is removed and replaced with a

unified piece of Java code, the performance remains approximately 30% lower than

our hand-written C code. This difference becomes more pronounced in other TPC-H

queries which require both memory management and tighter low-level control over

data structures. This bottleneck is certainly expected, and choosing a lower level

language does alleviate this performance loss greatly.

BasicColumnAccessor.extractTo(…)/…/DOUBLE$extract(…)	
  

GeneratedIterator.processNext()	
  

computa(on	
   overhead	
  

Figure 2.6.: CPU profile of TPC-H Q6 in Spark SQL, after preloading the lineitem

table. 80% of time is spent accessing and decoding the in-memory data representation.

Other Bottlenecks As shown, even fixing these bottlenecks is not enough. This

becomes even more apparent when moving away from Q6. In dealing with more

complex queries, concerns regarding granularity of code generation and the neces-

sity to interface with the Spark runtime system become more pronounced than with

TPC-H Q6. In fact, queries which require join operations exhibit some unfortunate

consequences for main-memory execution due to Spark’s design as primarily a cluster-

computing framework. Figure 2.2a shows timings for a simple join query that joins
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the lineitem and orders tables of the TPC-H benchmark. Spark’s query opti-

mizer picks an expensive sort-merge join by default. Note that this may be the correct

choice for distributed or out-of-core execution, but is suboptimal for main memory.

With some tuning, it is possible to force Spark’s query planner to opt for a hash join

instead, which is more efficient for our architecture. However, even this follows a

broadcast model with high overhead for the internal exchange operator (2.2s of 4.7s)

which is present in the physical plan even when running on a single core.

2.5 Adding Fuel to the Fire

Based on the observations made in Sections 2.3 and 2.4, we formally present Flare:

a new backend which acts as an accelerator for Spark. Flare eliminates all previously

identified bottlenecks without removing the expressiveness and power of its frontends.

At its core, Flare efficiently generates code, and brings Spark’s performance closer to

HyPer and hand-written C. Flare compiles whole queries instead of only query stages,

effectively bypassing Spark’s RDD layer and runtime for operations like hash joins in

shared-memory environments. Flare also goes beyond purely relational workloads by

adding another intermediate layer between query plans and generated code.

2.5.1 Interface between Spark and Flare

Flare supports most available Spark SQL DataFrame or DataSet operations (i.e.,

all operations which can be applied to a DataFrame and have a representation as

Catalyst operators), though any operators currently missing could be added without

compatibility constraints. In the event that a Spark job contains operations that are

not part of the SQL frontend, Flare can still be used to accelerate SQL operations

and then return the result to the Spark runtime, which will then use the result for

the rest of the computation. However, the benefit of doing this may be negated by

the communication overhead between the two systems.
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Flare can operate in one of two modes. Either users must invoke a function to

convert the DataFrame they wish to compute into a Flare DataFrame (a conversion

that may fail with a descriptive error), to that end Flare exposes a dedicated API to

allow users to pick which DataFrames to evaluate through Flare:

val df = spark.sql("...") // create DataFrame (SQL or direct)

val fd = flare(df) // turn it into a FlareDataFrame

fd.show() // execute query plan with Flare

Or one can set a configuration item in Spark to use Flare on all queries where

possible, and only fall back to the default Spark execution when necessary (optionally

emitting a warning when doing so). When Flare is invoked, it first generates C code

as explained in the following section, then invokes a C compiler, and finally launches

the resulting binary either inside the JVM, or as a separate process. This bypasses

Spark’s runtime entirely, relying solely on Flare’s runtime to trigger execution of the

generated code.

2.5.2 Flare: Architecture

In a work published in SIGMOD’18 [149], we presented a principled approach to

derive query compilers from query interpreters, and show that these compilers can

generate excellent code in a single pass, that is competitive with HyPer [107] and

DBLAB [137]. Flare is based on this design: a single pass compiler (See Figure 2.7).

Traditional 

Query Engine
(1)

Query 

Compiler
(2)

compile

? ? ?

Logical 
plan Interpreter

LLVM IR 

GCC IR ASM Result
(a) Single-pass

(b) Many-pass

HyPer

DBLAB

LB2Staging 

Evaluation

DB optimizations

IR 3

IR 1

IR 2

IR ...

C

Physical 
plan

Physical 
plan

Logical 
plan

SQL

SQL

Figure 2.7.: Illustration of (1) query interpreter (2) query compilers (a) single-pass
compiler (b) many-pass compiler
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A high-level view of Flare’s architecture is illustrated in Figure 2.1b. Spark SQL’s

front-end, the DataFrame API, and the Catalyst optimizer all remain the same. When

dealing with relational workloads, the optimized query plan is exported without mod-

ification from Catalyst to Flare, upon which Flare performs a compilation pass and

creates a code generation object for each of the nodes.

At a closer look, Figure 2.8 illustrates an end-to-end execution path in Flare.

Flare analyzes Spark’s optimized plan (which possibly embeds external libraries as

UDFs) and constructs a computation graph that encodes relational operators, data

structures, UDFs, data layout, and any needed configurations.

analysis

cross-optimizationsQuery Plan

Libraries
+

Staged

Graph

Native
Code

mapping

LMS

Computation

Figure 2.8.: Query compilation in Flare.

Staging and code generation in Flare In the context of query compilation,

LMS is used to specialize a query evaluator with respect to a query plan [85, 128].

Based on partial evaluation results (the first Futamura projection [63]), the outcome

of programmatic specialization is a compiled target of the query. Figure 2.9 shows

an example of compiling a join query in Flare, in which the specialization logic (i.e.,

staging code using Rep) is placed at the granularity of low-level control flow constructs

and primitive operators.

Following the InnerJoin code generation example in Figure 2.9, a CodeGen

object is generated from each of the two children, after which the logic of the Join

operator is implemented: the left child’s code generator is invoked and the tuples

produced populate a hash map. The right child’s code generator is then invoked,

and for each of the tuples produced, the matching lines from the left table are ex-

tracted from the map, merged, and finally become the produced value of the Join

operator. LMS performs some lightweight optimizations (e.g., common subexpression
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case class DataLoop(foreach: (Rep[Record] => Unit) => Unit)

type ThreadCallback = Rep[Int] => DataLoop => Unit

case class CodeGen(gen: ThreadCallback => Unit)

// extract the join hash key functions

def compileCond(cond: Option[Expression ]): (Rep[Record] =>

Rep[Record], Rep[Record] => Rep[Record ]) = ...

def compile(plan: LogicalPlan): CodeGen = plan match {

case HashJoin(left , right , Inner , cond) =>

val lGen = compile(left); val rGen = compile(right)

val (lkey , rkey) = compileCond(cond)

val hmap = new ParHashMap[Record ,Record ]()

CodeGen(threadCallback =>

lGen.gen { tId => dataloop => // start section for left child

val lhmap = hmap.partition(tId) // Thread local data

for (ltuple <- dataloop) lhmap += (lkey(ltuple), ltuple)

}

rGen.gen { tId => dataloop => // start section for right child

threadCallback(tId) { callback => // invoke downstream op

for (rtuple <- dataloop)

for (ltuple <- hmap(rkey(rtuple)))

callback(merge(ltuple , rtuple)) // feed downstream op

} } )

case ...

}

Figure 2.9.: Internal Flare operator that generates code for HashJoin (LogicalPlan
and HashJoin are Spark classes).

elimination, dead code elimination), and generates C code that can be compiled and

executed by the Flare runtime.

Interestingly, this implementation looks exactly like the implementation of an

interpreter. Indeed, this is no coincidence: much like Spark uses multi-stage APIs

at the operational level, Flare uses the LMS compiler framework, which implements

the same concept, but at a lower level. In the same way that Scala (or Python) is

used to build DataFrames in Spark, we use Scala to build a graph which represents

the computations needing to be generated. We qualify the code generation of Spark

as coarse-grain. The BroadcastHashJoinExec operator in Figure 2.5 generates

a string that corresponds to the full join computation. This String is generated

with regard to some placeholders for the inputs/outputs and join conditons that are
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specific to the given query. However, what is hardcoded in the template string will

be generated in the same way for every join. Contrast this with Flare’s fine-grained

code generation: The code in Figure 2.9 also generates code for the Join operator.

However, it does not generate one big string; rather, it invokes functions that express

the logic of the operator using the full power of the Scala language. The use of

Rep[T] expressions in judicious places triggers code generation and produces only

low-level operations.

With the goal of removing the tightest bottlenecks first, the implementation of

Flare has focused on maximizing performance within a single machine. Therefore,

Flare does not implement any specific optimizations for distributed execution. Fur-

thermore, Flare is also unable to handle any workloads which require more memory

than the machine has available. In either of these cases, we fall back to the Spark

runtime.

2.5.3 Optimizing Data Loading

Data loading is an often overlooked factor data processing, and is seldom reported

in benchmarks. However, we recognize that data loading from CSV can often be

the dominant performance factor for Spark SQL queries. The Apache Parquet [157]

format is an attractive alternative, modeled after Dremel [102]. As a binary columnar

format, it offers opportunities for compression, and queries can load only required

columns instead of all data.

While Parquet allows for irrelevant data to be ignored almost entirely, Spark’s code

to read Parquet files is very generic, resulting in undue overhead. This generality is

primarily due to supporting multiple compression and encoding techniques, but there

also exists overhead in determining which column iterators are needed. While these

sources of overhead seem somewhat unavoidable, in reality they can be resolved by

generating specialized code. In Flare, we implement compiled CSV and Parquet
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readers that generate native code specialized to a given schema. As a result, Flare

can compile data paths end-to-end. We evaluate these readers in Section 2.5.5.

2.5.4 Indexing Structures

Query engines build indexing structures to minimize time spent in table lookups

to speed-up query execution. Small-size data processing is performed efficiently using

table scans, whereas very large datasets are executed in latency-insensitive contexts.

On the other hand, medium-size workloads can profit from indexes, as these datasets

are often processed under tight latency constraints where performing full table scans

is infeasible. On that basis, Flare supports indexing structures on primary and foreign

keys. At the time of writing, Spark SQL does not support index-based plans. Thus,

Flare adds metadata to the table schema that describes index type and key attributes.

At loading time, Flare builds indexes as specified in the table definition. Furthermore,

Flare implements a set of index-based operators, e.g., scan and join following the

methodology described in [149]. Finally, at compilation time, Flare maps Spark’s

operators to use the index-based operators if such an index is present. The index-

based operators are implemented with the same technique described for the basic

operators, but shortcut some computation by using the index rather than requesting

data from its children.

2.5.5 Experimental Results

To assess the performance and acceleration potential of Flare in comparison to

Spark, we present two sets of experiments. The first set focuses on a standard re-

lational benchmark; the second set evaluates heterogeneous workloads, consisting of

relational processing combined with a TensorFlow machine learning kernel. Our ex-

periments span single-core, multi-core, and NUMA targets.

The experiments focuses on a standard relational workload, and demonstrates

that the inherent overheads of Spark SQL cause a slowdown of at least 10× compared
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to the best available query engines for in-memory execution on a single core. Our

experiments show that Flare is able to bridge this gap, accelerating Spark SQL to the

same level of performance as state-of-the-art query compiler systems, while retaining

the flexibility of Spark’s DataFrame API. We also compare parallel speedups, the

effect of NUMA optimization, and evaluate the performance benefits of optimized

data loading.

Environment We conducted our experiments on a single NUMA machine with 4

sockets, 24 Xeon(R) Platinum 8168 cores per socket, and 750GB RAM per socket (3

TB total). The operating system is Ubuntu 16.04.4 LTS. We use Spark 2.3, Scala

2.11, Postgres 10.2, HyPer v0.5-222-g04766a1, and GCC 5.4 with optimization flags

-O3.

Dataset We use the standard TPC-H [155] benchmark with scale factor SF10 for

sequential, and SF20 and SF100 for parallel execution.
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SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Postgres 241404 6649 33721 7936 30043 23358 32501 29759 64224 33145 7093

Spark SQL 18219 23741 47816 22630 51731 3383 31770 63823 88861 42216 3857

HyPer 603 59 1126 842 941 232 943 616 1984 967 131

Flare 530 139 532 521 748 198 830 1525 3124 1436 56

SF10 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Postgres 37880 31242 22058 23133 13232 155449 90949 29452 65541 299178 11703

Spark SQL 17233 28489 7403 14542 23371 70944 53932 13085 31226 128910 10030

HyPer 501 3625 330 253 1399 563 3703 1980 434 1626 180

Flare 656 3727 278 302 620 2343 823 909 870 1962 177

Figure 2.10.: Performance comparison of Postgres, HyPer, Spark SQL, Flare in SF10.
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Single-Core Running Time

In this experiment, we compare the single-core, absolute running time of Flare

with Postgres, HyPer, and Spark using the TPC-H benchmark with scale factor SF10.

In the case of Spark, we use a single executor thread, though the JVM may spawn

auxiliary threads to handle GC or the just-in-time compilation. Postgres and HyPer

implement cost-based optimizers that can avoid inefficient query plans, in particular

by reordering joins. While Spark’s Catalyst optimizer [12] is also cost-based, the

default configurations do not perform any kind of join re-ordering. Hence, we match

the join ordering of the query plan in Spark SQL and Flare with HyPer’s, with a

small number of exceptions: in Spark SQL, the original join ordering given in the

TPC-H reference outperformed the HyPer plans for Q5, Q9, Q10, and Q11 in Spark

SQL, and for Q10 in Flare. For these queries, we kept the original join ordering as is.

For Spark SQL, this difference is mainly due to Catalyst picking sort-merge joins over

hash joins. It is worth pointing out that HyPer and Postgres plans can use indexes

on primary keys, which may give an additional advantage.

Figure 2.10 gives the absolute execution time of Postgres, HyPer, Spark SQL, and

Flare for all TPC-H queries. For all systems, data loading time is excluded, i.e., only

execution time is reported. In Spark and Flare, we use persist to ensure that the

data is loaded from memory. At first glance, the performance of Flare and HyPer

lie within the same range, and notably outperform Postgres and Spark in all queries.

Similarly, Spark’s performance is comparable to Postgres’s in most of the queries.

Unlike the other systems, Postgres does not compile queries at runtime, and relies on

the Volcano model [68] for query evaluation, which incurs significant overhead. Hence,

we can see that Spark’s query compilation does not provide a significant advantage

over a standard interpreted query engines on most queries.

At a closer look, Flare outperforms Spark SQL in aggregate queries Q1 and Q6

by 32× and 13× respectively. We observe that Spark is 200× slower than Flare in

nested queries (e.g., Q2) After examining the execution plans of Q2, we found that
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Catalyst’s plan does not detect all patterns that help with avoiding re-computations,

e.g., a table which has been previously scanned or sorted. In join queries, e.g., Q5,

Q10, Q14, etc., Flare is faster than Spark SQL by 19×-76×. Likewise, in join variants

outer join Q13, semi-join Q21, and anti-join Q22, Flare is faster by 7×, 51× and 36×

respectively.

The single-core performance gap between Spark SQL and Flare is attributed to the

bottlenecks identified in Sections 2.3 and 2.4. First, overhead associated with low-level

data access on the JVM. Second, Spark SQL’s distributed-first strategy that employs

costly distributed operators, e.g., sort-merge join and broadcast hash join, even when

running on a single core. Third, internal bottlenecks in in-memory processing, the

overhead of RDD operations, and communication through Spark’s runtime system.

By compiling entire queries, instead of isolated query stages, Flare effectively avoids

these bottlenecks.

HyPer [107] is a state-of-the-art compiled relational query engine. A precursory

look shows that Flare is faster than HyPer by 10%-60% in Q4-Q5,Q7, and Q14-Q16.

Moreover, Flare is faster by 2× in Q3, Q11, and Q18. On the other hand, HyPer is

faster than Flare by 20%-60% in Q9, Q10, Q12, and Q21. Moreover, HyPer is faster

by 2×-4× in Q2, Q8, Q17, and Q20. This performance gap is, in part, attributed

to (1) HyPer’s use of specialized operators like GroupJoin [104], and (2) employing

indexes on primary keys as seen in Q2, Q8, etc., whereas Flare (and Spark SQL)

currently does not support indexes.

In summary, while both Flare and HyPer generate native code at runtime, subtle

implementation differences in query evaluation and code generation can result in

faster code. For instance, HyPer uses proper decimal precision numbers, whereas

Flare follows Spark in using double precision floating point values which are native to

the architecture. Furthermore, HyPer generates LLVM code, whereas Flare generates

C code which is compiled with GCC.
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Optimized Data Loading

An often overlooked part of data processing is data loading. Flare contains an

optimized implementation for both CSV files and the columnar Apache Parquet for-

mat.3 We show loading times for each of the TPC-H tables in Table 2.2.

Full table read From the data in Table 2.2, we see that in both Spark and Flare,

the Parquet file readers outperform the CSV file readers in most scenarios, despite

this being a worst-case scenario for Parquet. Spark’s CSV reader was faster in only

one case: reading nation , a table with only 25 rows. In all other cases, Spark’s Par-

quet reader was 1.33×-1.81× faster. However, Flare’s highly optimized CSV reader

operates at a closer level of performance to the Parquet reader, with all tables except

supplier having a benefit of less than a 1.25× speedup by using Parquet.
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Figure 2.11.: Speedup for TPC-H SF1 when streaming data from SSD on a single
thread.

Performing queries Figure 2.11 shows speedups gained from executing queries

without preloading data for both systems. Whereas reading an entire table gives

Spark and Flare marginal speedups, reading just the required data gives speedups in

the range of 2×-144× (Q16 remained the same) for Spark and 60%-14× for Flare.

Across systems, Flare’s Parquet reader demonstrated between a 2.5×-617× speedup

over Spark’s, and between 34×-101× over Spark’s CSV reader. While the speedup

over Spark lessens slightly in higher scale factors, we found that Flare’s Parquet reader

consistently performed on average at least one order of magnitude faster across each

query, regardless of scale factor.

3All Parquet files tested were uncompressed and encoded using PLAIN encoding.
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In nearly every case, reading from a Parquet file in Flare is approximately 2×-4×

slower than in-memory processing. However, reading from a Parquet file in Spark is

rarely significantly slower than in-memory processing. These results show that while

reading from Parquet certainly provides performance gains for Spark when compared

to reading from CSV, the overall performance bottleneck of Spark does not lie in the

cost of reading from SSD compared to in-memory processing.

Table 2.2.: Loading time in ms for TPC-H SF10 in Postgres, HyPer, Flare, and
SparkSQL.

Table #Tuples Postgres HyPer Spark Spark Flare Flare

CSV CSV CSV Parquet CSV Parquet

CUSTOMER 1500000 7067 1102 11664 9730 329 266

LINEITEM 59986052 377765 49408 471207 257898 11167 10668

NATION 25 1 8 106 110 < 1 < 1

ORDERS 15000000 60214 33195 85985 54124 2028 1786

PART 2000000 8807 1393 11154 7601 351 340

PARTSUPP 8000000 37408 5265 28748 17731 1164 1010

REGION 5 1 8 102 90 < 1 < 1

SUPPLIER 100000 478 66 616 522 28 16

2.6 Parallel and NUMA Execution

Query engines can implement parallelism either explicitly through special split and

merge operators, or internally by modifying the operator’s internal logic to orchestrate

parallel execution. Flare does the latter, and currently realizes parallelism using

OpenMP [41] annotations within the generated C code, although alternatives are

possible. On the architectural level, Flare handles splitting the computation internally

across multiple threads, accumulating final results, etc. For instance, the parallel

scan starts a parallel section, which sets the number of threads and invokes the

downstream operators in parallel through a ThreadCallback (see Figure 2.9).

join and aggregate operators, in turn, which implement materialization points,

implement their ThreadCallback method in such a way that parallel invocations



41

are possible without conflict. This is typically accomplished either through per-thread

data structures that are merged after the parallel section or through lock-free data

structures.

Flare also contains specific optimizations for environments with non-uniform mem-

ory access (NUMA), including pinning threads to specific cores and optimizing the

memory layout of various data structures to reduce the need for accessing non-local

memory. For instance, memory-bound workloads (e.g., TPC-H Q6) perform small

amounts of computation, and do not scale up given a large number of threads on a

single CPU socket. Flare’s code generation supports such workloads through various

data partitioning strategies in order to maximize local processing and to reduce the

need for threads to access non-local memory as illustrated in Section 2.6.

2.6.1 Experimental Results

The experimental set up is the same as in Section 2.5.5.

In this experiment, we compare the scalability of Spark SQL and Flare. The

experiment focuses on the absolute performance and the Configuration that Outper-

forms a Single Thread (COST) metric proposed by McSherry et al. [101]. We pick

four queries that represent aggregate and join variants.

Figure 2.12 presents speedup numbers for Q6, Q13, Q14, and Q22 when scaled

up to 32 cores. At first glance, Spark appears to have good speedups in Q6 and

Q13 whereas Flare’s Q6 speedup drops for high core counts. However, examining

the absolute running times, Flare is faster than Spark SQL by 9×. Furthermore, it

takes Spark SQL estimated 12 cores in Q6 to match the performance of Flare’s single

core. In scaling-up Q13, Flare is consistently faster by 8× on all cores. Similarly, Flare

continues to outperform Spark by a steady 25× in Q14 and by 20×-80× in Q22 as the

number of cores reaches 32. Notice the COST metric in the last two queries is infinity,

i.e., there is no Spark configuration that matches Flare’s single-core performance.
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Figure 2.12.: Scaling-up Flare and Spark SQL in SF20, without NUMA optimiza-
tions: Spark has good nominal speedups (top), but Flare has better absolute running
time in all configurations (bottom). For both systems, NUMA effects for 32 cores are
clearly visible (Benchmark machine: 72 cores, 1 TB RAM across 4 CPU sockets, i.e.,
18 cores, 256 GB each).

What appears to be good scaling for Spark actually reveals that the runtime incurs

significant overhead. In particular, we would expect Q6 to become memory-bound

as we increase the level of parallelism. In Flare we can directly observe this effect

as a sharp drop from 16 to 32 cores. Since our machine has 18 cores per socket,
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for 32 cores, we start accessing non-local memory (NUMA). The reason Spark scales

better is because the internal overhead, which does not contribute anything to query

evaluation, is trivially parallelizable and hides the memory bandwidth effects. In

summary, Flare scales as expected for both of memory and CPU-bound workloads,

and reflects the hardware characteristics of the workload, which means that query

execution takes good advantage of the available resources – with the exception of

multiple CPU sockets, a problem we address next.

As a next step, we evaluate NUMA optimizations in Flare and show that these

enable us to scale queries like Q6 to higher core numbers. In particular, we pin

threads to individual cores and lay out memory such that most accesses are to the

local memory region attached to each socket (Figure 2.13). Q6 performs better when

the threads are dispatched on different sockets. This is due to the computation being

bounded by the memory bandwidth. As such, when dividing the threads on multiple

sockets, we multiply the available bandwidth proportionally. However, as Q1 is more

computation bound, dispatching the threads on different sockets has little effect. For

both Q1 and Q6, we see scaling up to the capacity of the machine (in our tests, up

to 72 cores). This is seen in a maximum speedup of 46× and 58× for Q1 and Q6,

respectively.
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Figure 2.13.: Scaling-up Flare for SF100 with NUMA optimizations on different
configurations: threads pinned to one, two, or four sockets. The speedups relative to
a single thread are shown on top of the bars (Benchmark machine: 72 cores, 1 TB
RAM across 4 CPU sockets, i.e., 18 cores, 256 GB each).
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2.7 Distributed Execution

In addition to parallelism, we extend Flare to support distributed execution.

While this is still a work in progress, we have good initial results and a proof of

concept of a high-level interface.

In Section 2.7.1 we present our abstraction and design, and in Section 2.7.2 we

show preliminary experimental results.

2.7.1 Design and Abstraction

Similar to other aspects in Flare, we use specialization to generate efficient code.

In the context of metaprogramming with distributed systems, we need to decide which

information is going to be known at compile time. We decide to have the number of

processes being a constant: the code generated by Flare is thus specialized for this

number of processes.

Flare is built around data structures, mainly Map for Aggregate, MultiMap for

Joins, and Buffer for almost everything [149]. Therefore, it is natural to look into

how to make these data structures distributed. From an execution point of view,

each process accumulates partial results in its local data structure, which will later

be shuffled to the different processes. While a shuffle operation can be arbitrary com-

plex, we currently propose two useful interfaces: Mergeable and Exchangeable .

Mergeable is used for reducing operations and Exchangable is used to gather

all data at the same location.

Mergeable

trait Mergeable[T,U,V] {

def merge(comm: MergeStrategy)(init: U, mrg: (U, V) => U): (T,

Rep[Boolean ])

}

To implement the Mergeable trait, the data structure needs to implement a

function merge that merges the partial results following a MergeStrategy . The
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MergeStrategy will define the source processes from which the partial results will

be taken, and the destination processes to which the merged result will be sent. The

merge function returns the merged result and a flag that indicates if the result is

available on the current node.
abstract class MergeStrategy {

def execute(send: Rep[Int] => Unit)(recv: Rep[Int] => Unit):

Rep[Boolean]

}

One useful merge strategy includes an all-to-all merge, in which the partial results

of all processes are merged and the final result is made available on all processes.
/*

* Logarithmic merge

* For 4 processes:

* - step 0 (0 <--> 1, 2 <--> 3)

* - step 1 (0 <--> 2, 1 <--> 3)

*/

case class AllToAllMerge(nprocs: Int , pid: Rep[Int]) extends

MergeStrategy {

assert (( nprocs & (nprocs - 1)) == 0) // power of two

val nstep = (math.log(nprocs) / math.log(2)).toInt

def execute(send: Rep[Int] => Unit)(recv: Rep[Int] => Unit) = {

for (step <- 0 until nstep) {

val binome =

if ((pid & ((1 << (step + 1)) - 1)) < (1 << step))

pid + (1 << step)

else

pid - (1 << step)

send(binome)

recv(binome)

}

true

}

}

Another merge strategy is the all-to-one merge, in which the partial results of all

processes are merged and the result is made available only on a single process.
/*

* Logarithmic merge (dst 0)

* For 4 processes:

* - step 0: 1 --> 0, 3 --> 2

* - step 1: 2 --> 0

*

* In order to merge on a node different from 0, we first rotate

* the pids.

*/
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case class AllToOneMerge(nprocs: Int , pid: Rep[Int], dst: Rep[Int])

extends MergeStrategy {

assert (( nprocs & (nprocs - 1)) == 0) // power of two

val nstep = (math.log(nprocs) / math.log(2)).toInt

val epid = (pid - dst) & (nprocs - 1) // rotation

def execute(send: Rep[Int] => Unit)(recv: Rep[Int] => Unit) = {

for (step <- 0 until nstep) {

if ((epid & ((1 << step) - 1)) == 0) {

// idea: if during the next step the node

// exchanges then it is an aggregator in this round

if ((epid & ((1 << (step + 1)) - 1)) == 0) {

recv((pid + (1 << step)) & (nbproc - 1))

} else {

send((pid - (1 << step)) & (nbproc - 1))

}

}

}

pid == dst

}

}

It is important to note that the interface is completely agnostic to the implemen-

tation used for the data transfer. We are currently using MPI [61], but it can be

easily replaced by another interface offering basic send and receive communication

routines.

It is important to notice, our interface does not provide support for synchroniza-

tion issues. For example, the interface is not completely safe from deadlocks or other

common errors. Our MPI interface provides synchronous and asynchronous send/recv

methods. For the asynchronous call, we currently offer the concept of asynchronous

regions, which ensures that the region can exit only when all asynchronous tasks

started in the region are terminated, thus modifying the buffers can be safely done.

This interface can be used as follows; we implement a data structure IntAgg

that computes an aggregate on integers across processes. In order for the code to be

correct for any MergeStrategy , we must adhere to the following rules:

1. the send operation needs to be asynchronous

2. for merging, the data needs to have been received

3. the merge operation should not modify the value of the data being sent
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We solve this problem by duplicating the data to be sent, and we use a blocking

receive call. Of course, this will not always be the correct solution for all data struc-

tures. However, it will be solely dependent on the data structure itself and can be

optimized accordingly.
class IntAgg(value: Rep[Int]) extends Mergeable[Rep[Int], Rep[Int],

Rep[Int]] {

def merge(com: MergeStrategy)(init: Rep[Int], up:

(Rep[Int],Rep[Int]) => Rep[Int]) = {

var res = up(init , value)

val gotIt = com.execute { (dst: Rep[Int]) =>

val tmp = res

Isend_Int(tmp , dst)

}{ (src: Rep[Int]) =>

res += Recv_Int(src)

}

(res , gotIt)

}

}

A simple program using that data structure to compute the sum of the pids of 4

processes may look as follows:
val nprocs = 4

def main(arr: Rep[Array[String ]]) = {

val pid = getPID

// Data structure

val data = new IntAgg(pid)

asyncMPIRegion {

// Execute merge

val (res , gotIt) = data.merge(AllToOneMerge(nprocs , pid , 3))(0,

{

(x, y) => x + y

})

// print result

if (gotIt) printf("Aggregate sum is: %d\n", res)

}

}

When executed, this code would generate the following MPI code.
int main(int x0 , char** x1) {

int provided;

MPI_Init_thread (&x0, &x1, MPI_THREAD_FUNNELED , &provided);

int mpi_pid; MPI_Comm_rank(MPI_COMM_WORLD , &mpi_pid);

MPI_Request req [100];

int nreq = 0;
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int x2 = mpi_pid;

int x3 = x2;

int x4 = (x2 - 3) & 3;

if ((x4 & 1) == 0) {

int x5;

MPI_Recv (&x5, 1, MPI_INT , (x2 - 1) & 3, 0, MPI_COMM_WORLD ,

MPI_STATUSES_IGNORE);

x3 += x5;

} else {

int x6 = x3;

int x7 = nreq ++;

MPI_Isend (&x6, 1, MPI_INT , (x2 + 1) & 3, 0, MPI_COMM_WORLD ,

&req[x7]);

}

if ((x4 & 1) == 0) {

if ((x4 & 3) == 0) {

int x8;

MPI_Recv (&x8, 1, MPI_INT , (x2 - 2) & 3, 0, MPI_COMM_WORLD ,

MPI_STATUSES_IGNORE);

x3 += x8;

} else {

int x9 = x3;

int x10 = nreq ++;

MPI_Isend (&x9, 1, MPI_INT , (x2 + 2) & 3, 0, MPI_COMM_WORLD ,

&req[x10]);

}

}

if (x2 == 3) printf("Aggregate sum is: %d\n", x3);

MPI_Waitall(nreq , req , MPI_STATUSES_IGNORE);

MPI_Finalize ();

return 0;

}

The power of code generation comes to light with this example. By simply chang-

ing the MergeStrategy , the same source code will generate vastly different code,

while still being correct and without requiring additional effort. An interesting small

modification is the unrolling of the loop. In our example, we decided to unroll it

because a merge between 4 processes requires only 2 exchange steps. However, this

may not be a valid strategy for 256 processes (8 steps), thus generating a loop instead

may be better.
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Exchangeable

trait Exchangeable[T] {

def gather(dst: Rep[Int]): Unit

def allGather: Unit

def exchange(comm: ExchangeStrategy): (T, Rep[Boolean ])

}

Exchangeable is a simpler interface, in part due to the fact that the work is

highly dependent on the data structure itself, and also that the whole data structure

is shuffled. Thus we will not look at a full example, but only provide the interface:
abstract class ExchangeStrategy {

// exchange strategy. The return value indicates if

// the current node has access to the global Datastructure

def execute[T]( storage: Exchangeable[T]): Rep[Boolean]

}

case class AllToAll(nprocs: Rep[Int], pid: Rep[Int]) extends

ExchangeStrategy {

def execute[T]( storage: Exchangeable[T]) = {

storage.allGather

true

}

}

case class AllToOne(nprocs: Rep[Int], pid: Rep[Int], dst: Rep[Int]

= 0) extends ExchangeStrategy {

def execute[T]( storage: Exchangeable[T]) = {

storage.gather(dst)

pid == dst

}

}

Our preliminary work does not take into account the topology of the network,

does not propose abstraction for groups and communicators, and does not efficiently

handle string values. However, we strongly believe that the design we proposed is

still adequate and can be adapted easily in the future.

2.7.2 Experimental Results

For this experiment, we modify the Aggregate operator to use a Map that

implements the Mergeable interface and use an AllToAllMerge merge strat-

egy. For Sort and Join , we use Buffer and MultiMaps that implements the
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Exchangable interface and the AllToAll exchange strategy as well. We also use

a CSV reader that mmaps the whole table for each process but only uses a partition

of it.

This strategy is not optimal for different reasons. Once the Map has been merge

in the Aggregate , the data structure is partitioned between processes. Thus a

better merge procedure will ensure that each process only receives its own partition.

Another inefficiency is to always use AllToAll without taking into account the size

of the data structure and/or the place of the operator in the query plan. For example,

Query 1 in TPC-H contains an aggregate that produces 4 values, followed by a sort.

Clearly, executing an AllToAll merge followed by a partitioning of 4 records for

a distributed sort is not optimal. Rather we should do a AllToOne merge and

terminate the query on the master process. This is something that we plan to do in

the future but requires a modification of the query plan. For now, we focus on the

code generation, we assume the query plan has been optimized.

With these modifications, we ran five queries of the TPC-H benchmark that do

not need to shuffle string values. Figure 2.14 displays the speed-ups for 2, 4, and 8

processes on SF100 (total size of the tables around 100GB).

This experiment illustrates the power of Flare: we manage to support distributed

execution without changing the execution engine and only modifying the data struc-

tures. Even without the optimal shuffle strategy, we can see that the distributed code

executes faster. Queries without joins (Q1 and Q6) almost achieve perfect scaling.

While the other queries do not scale as much due to the choice of implementation for

the MultiMap . The design was initially optimized for single-core machines.

2.8 Beyond Spark

The development of Flare was initially based around Spark. However, we built

something more general. The observations made in Section 2.4 hold for many data

systems that are JVM based, or written as interpreter. The Flare code base is made up
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Figure 2.14.: Speedups for Flare on SF100 distributed. (Benchmark machine: 96
cores, 3 TB RAM across 4 CPU sockets, i.e., 24 cores, 750 GB each).

of generic collections (e.g. Buffers, HashMaps, etc.) and Operators (e.g. Aggregates,

Joins, Windows, etc.). Thus, it is possible to accelerate many systems that can map

their internal query plan to Flare operators. We demonstrated that with the system

Flink [6].

We evaluate how Flare accelerates Flink [37] on the full TPCH benchmark. The

data is streamed from a CSV file. The performance of Flare is very similar whichever

front-end system is used. However, Flink does not generate semi/anti-joins but uses

equivalent aggregates on Boolean that are slightly slower (see Q18, Q22).

The engineering effort to write a compiler from Flink to Flare required around

700LOC. The code is very similar to the Spark compiler.

2.9 Future Work

With Flare, we managed to efficiently use a single node to its full potential, and

implemented a proof of concept for distributed execution. As future work, it would
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Figure 2.15.: Performance comparison of Spark, Flink, and Flare in SF10

be interesting to explore the remaining abstraction barriers that are still present in

most systems. One of the main areas of focus will be to expand our support for

generating code that can be executed efficiently on multiple nodes. There are many

other challenges to consider, in addition to the ones we already tackled. We also want

to explore the world of streaming data processing [37]. In essence, the design of Flare

already supports streaming, from a CSV file. Thus we want to add support for timing

events that is required for a full streaming data processing.

We have identified the following possible challenges:

• What is the correct level of abstraction for optimal performance? For now we

are using MPI primitives. However some recent research [8, 98] showed that

generating part of a network stack provides even better performances. In the

case of LMS Verify [8], as a bonus, the HTTP parser was formally verified,

thus allowing more confidence in the correct implementation of one of the entry

points of the system.

• How to handle node failures? Should the code generated be resilient, or should

a new piece of code be generated to finish the remaining computation? Both

approaches solve the problem, so we want to explore each of them and other

possible options. We can already envision that the solution may depend on

the workload. As such, we will propose a mechanism and experiments that

determine the optimal solution. We explore such avenues in Chapter 4.
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• Can we generate code that efficiently balances the load of each node? Would

a fully static solution work, or will it require a static/dynamic hybrid method?

Load balancing is necessary to achieve good scaling with a distributed system: in

the worst case, a distributed application with an unbalanced load could become

virtually a single node application.

Our work presented in Chapter 4 is tackling a more generic problem, it was how-

ever motivated by the search for a solution to the last two points.

2.10 Related Work

Cluster Computing Frameworks Such frameworks typically implement a com-

bination of parallel, distributed, relational, procedural, and MapReduce computa-

tions. The MapReduce model [42] realized in Hadoop [10] performs big data analysis

on shared-nothing, potentially unreliable, machines. Twister [51] and Haloop [33]

support iterative MapReduce workloads by avoiding reading unnecessary data and

keeping invariant data between iterations. Likewise, Spark [168, 169] tackles the is-

sue of data reuse among MapReduce jobs or applications by explicitly persisting

intermediate results in memory. Along the same lines, the need for an expressive

programming model to perform analytics on structured and semistructured data mo-

tivated Hive [156], Dremel [102], Impala [88], Shark [165] and Spark SQL [12] and

many others. SnappyData [122] integrates Spark with a transactional main-memory

database to realize a unified engine that supports streaming, analytics and transac-

tions. Asterix [19], Stratosphere / Apache Flink [6], and Tupleware [40] are other

systems that improve over Spark in various dimensions, including UDFs and perfor-

mance, and which inspired the design of Flare. While these systems are impressive,

Flare sets itself apart by accelerating actual Spark workloads instead of proposing

a competing system, and by demonstrating relational performance on par with Hy-

Per [107] on the full set of TPC-H queries. Moreover, in contrast to systems like

Tupleware that mainly integrate UDFs on the LLVM level, Flare uses higher-level
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knowledge about specific external systems, such as TensorFlow. Similar to Tuple-

ware, Flare’s main target are small clusters of powerful machines where faults are

statistically improbable.

Query Compilation Recently, code generation for SQL queries has regained mo-

mentum. Historic efforts go back all the way to System R [14]. Query compilation

can be realized using code templates e.g., Spade [64] or HIQUE [91], general purpose

compilers, e.g., HyPer [107] and Hekaton [46], or DSL compiler frameworks, e.g.,

Legobase [85], DryadLINQ [167], DBLAB [137], and LB2 [149].

Embedded DSL Frameworks and Intermediate Languages These address

the compromise between productivity and performance in writing programs that can

run under diverse programming models. Voodoo [115] addresses compiling portable

query plans that can run on CPUs and GPUs. Voodoo’s intermediate algebra is ex-

pressive and captures hardware optimizations, e.g., multicores, SIMD, etc. Further-

more, Voodoo is used as an alternative back-end for MonetDB [28]. Delite [144], a

general purpose compiler framework, implements high-performance DSLs (e.g., SQL,

Machine Learning, graphs and matrices), provides parallel patterns and generates

code for heterogeneous targets. The Distributed Multiloop Language (DMLL) [31]

provides rich collections and parallel patterns and supports big-memory NUMA ma-

chines. Weld [114] is another recent system that aims to provide a common runtime for

diverse libraries e.g., SQL and machine learning. Steno [105] performs optimizations

similar to DMLL to compile LINQ queries. Furthermore, Steno uses DryadLINQ [167]

runtime for distributed execution. Nagel et. al. [106] generates efficient code for LINQ

queries. Weld is similar to DMLL in supporting nested parallel structures.

Performance evaluation In data analytics frameworks, performance evaluation

aims to identify bottlenecks and study the parameters that impact performance the

most, e.g., workload, scale-up/scale-out resources, probability of faults, etc. A recent

study [110] on a single Spark cluster revealed that CPU, not I/O, is the source of bot-
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tlenecks. McSherry et al. [101] proposed the COST (Configuration that Outperforms

a Single Thread) metric, and showed that in many cases, single-threaded programs

can outperform big data processing frameworks running on large clusters. TPC-

H [155] is a decision support benchmark that consists of 22 analytical queries that

address several “choke points,” e.g., aggregates, large joins, arithmetic computations,

etc. [27].

2.11 Conclusion

Modern data analytics need to make efficient use of modern hardware with large

memory, many cores, and NUMA capabilities. We introduce Flare: a new backend

for Spark that brings relational performance on par with the best SQL engines. Most

importantly, all of this comes without giving up the expressiveness of Spark’s high-

level APIs. We believe that multi-stage APIs, in the spirit of DataFrames, and

compiler systems like Flare, will play an increasingly important role in the future to

satisfy the increasing demand for flexible and unified analytics with high efficiency.
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3 COMBINING RELATIONAL PROCESSING AND MACHINE LEARNING

FRAMEWORKS

This Chapter is based on [53]. The Lantern system was published in [159].

3.1 Introduction

Machine learning, and especially deep neural networks, have been extraordinarily

successful in fields such as game play, image recognition, speech processing, etc., and

are having a similar impact on business intelligence and related domains. Many data

analytics applications require a combination of different programming paradigms,

e.g., relational, procedural, and map-reduce-style functional processing. Production-

izing ML applications and deploying them at scale often requires interfacing with big

datasets stored in data management systems (DBMS) or data stores such as HDFS.

For example, a machine learning (ML) application might use relational APIs for the

extract, transform, load phase (ETL), and dedicated ML libraries for computations,

e.g in Figure 3.1.

for epoch in range (100):

for batch , labels in sql("select ... from t1 join t2 ..."):

y = model.train(batch , labels)

sql.register_udf("model", model)

sql("select * from input where model(x, y, z, ...) ==

Cluster1")

Figure 3.1.: DBMS used for data loading with ML training algorithm and model
used as UDF within a SQL query.

In this chapter, we show how Flare’s compilation model efficiently extends to

external user-defined functions. Specifically, we discuss Flare’s ability to integrate
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with other frameworks and domain-specific languages, including in particular machine

learning frameworks like Lantern, that target a common intermediate representation,

or frameworks like TensorFlow, that provide compilation facilities of their own.

# Define linear classifier using TensorFlow

import tensorflow as tf

# weights from pre -trained model elided

mat = tf.constant ([[...]])

bias = tf.constant ([...])

def classifier(c1 ,c2 ,c3 ,c4):

# compute distance

x = tf.constant ([[c1,c2,c3,c4]])

y = tf.matmul(x, mat) + bias

y1 = tf.session.run(y1)[0]

return max(y1)

# Register classifier as UDF: dumps TensorFlow graph to

# a .pbtxt file , runs tf_compile to obtain .o binary file

flare.udf.register_tfcompile("classifier", classifier)

# Use compiled classifer in PySpark query with Flare:

q = spark.sql("

select real_class ,

sum(case when class = 0 then 1 else 0 end) as class1 ,

sum(case when class = 1 then 1 else 0 end) as class2 ,

... until 4 ...

from (select real_class ,

classifier(c1,c2,c3,c4) as class from data)

group by real_class order by real_class")

flare(q).show()

Figure 3.2.: Spark query using TensorFlow classifier as a UDF in Python.

The current state of affairs in ML processing represents a chasm between two

classes of systems. Data management systems are highly optimized on the relational

side but typically lacking in native ML support, especially regarding automatic dif-

ferentiation, which is necessary for training via gradient descent. As a result, ML

libraries are integrated as external user-defined functions UDFs e.g., a PyTorch or

TensorFlow classifier in Spark, Flare, etc. (See Figure 3.2). The performance of ML

UDFs varies based on the nature of integration with DBMS evaluation (i.e., black

box entirely or with some degree of cross-optimization).
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On the other hand, ML frameworks e.g., TensorFlow, PyTorch, etc. provide high-

level front-ends on the top of highly-optimized back-end kernels. Programming such

frameworks is heavily based on API calls. However ML frameworks are not optimized

for data processing when data is local or when accessing distributed datasets.

3.2 User Defined Functions (UDF)

Spark SQL uses Scala functions, which appear as a black box to the optimizer. As

mentioned in Section 2.5.2, Flare’s internal code generation logic is based on LMS,

which allows for multi-stage programming using Rep types. Extending UDF support

to Flare is achieved by injecting Rep[A] => Rep[B] functions into DataFrames

in the same way that normal A => B functions are injected in plain Spark. As an

example, here is a UDF sqr that squares a given number:

// define and register UDF

def sqr(fc: FlareUDFContext) = { import fc._;

(y: Rep[Int]) => y * y }

flare.udf.register("sqr", sqr)

// use UDF in query

val df = spark.sql("select ps_availqty from partsupp where

sqr(ps_availqty) > 100")

flare(df).show()

Notice that the definition of the sqr function uses an additional argument of type

FlareUDFContext, from which we import overloaded operators such as +, -, *, etc., to

work on Rep[Int] and other Rep[T] types. The staged function will become part

of the code as well, and will be optimized along with the relational operations. This

provides benefits for UDFs (general purpose code embedded in queries), and enables

queries to be be optimized with respect to their surrounding code (e.g., queries run

within a loop).

Because of that, Flare can integrate with any systems that target the LMS frame-

work. In Chapter 5 we explore solutions to integrate with generic UDFs.
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3.3 Lantern

Lantern [159] is a machine learning framework that performs automated differen-

tiation via delimited continuations, and uses LMS to generate efficient low-level C++

and CUDA code

Machine learning relies on backpropagation to compute gradients and update

model parameters. Traditional machine learning frameworks such as TensorFlow

and PyTorch use auxiliary data structures (computation graphs or traces) to track

forward computations for backpropagation. Lantern achieves a language-level back-

progation (without auxiliary data structures) through callbacks. That is to say, each

computation operation has access to a callback (also called delimited continuation,

that represents the rest of the forward propagation and the beginning of the back-

ward propagation). Each computation operation is overloaded to compute the for-

ward computation, trigger the callback with the result of the forward computation as

the argument, and compute backward computation after the callback returns. When

multiple such operations are stacked together, the forward propagation happens when

the stack of callbacks are triggered, and the backward computation happens when the

stack of callbacks return. Generation of callbacks is further automated via delimited

continuations operators shift and reset , which in addition achieves backpropa-

gation via code transformation.

After backpropagation via delimited continuations, Lantern stages the intermedi-

ate representations and generates low level C++/CUDA code via LMS. The gener-

ated code of Lantern has comparable performance compared with TensorFlow and

PyTorch [159].

3.4 Flare & Lantern

Figure 3.3 shows the integration of Flare and Lantern on the code generation level

using lightweight modular staging (LMS). For ML applications, any of the ML front-

ends integrated with Lantern e.g. TensorFlow can be used to write ML applications.
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Figure 3.3.: System overview: (a) architecture of Spark [12] (b)-(c) the integration
of Flare (a Spark accelerator and query compiler) with Lantern (a machine learning
framework) on the code generation level using lightweight modular staging (LMS) (d)
ML frameworks

It is also possible to use Lantern primitives directly. The computation graph is

processed, staged and the code is generated to target the different back-end of Flare

and Lantern. Thus, the code is optimized for both of data and ML processing.

Moreover, SQL queries with ML UDFs are written in Spark SQL and optimized as

part of Flare’s evaluation [54]. Using the example in Figure 3.2, the result of the

runs on multiple systems is shown in Figure 3.4.

3.5 Native UDF Example: TensorFlow

Flare has the potential to provide significant performance gains with other machine

learning frameworks that generate native code. Figure 3.2 shows a PySpark SQL

query which uses a UDF implemented in TensorFlow [3, 4]. This UDF performs

classification via machine learning over the data, based on a pretrained model. It is

important to reiterate that this UDF is seen as a black box by Spark, though in this

case, it is also opaque to Flare.

Calling TensorFlow code from Spark hits a number of bottlenecks, resulting in

poor performance (see Section 3.6). This is in large part due to the separate nature

of the two programs; there is no inherent way to “share” data without copying back
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and forth. A somewhat immediate solution is to use the Java Native Interface (JNI),

which enables the use of TensorFlow’s ahead-of-time (AOT) compiler, XLA [154].

This already improves performance by over 100×, but even here there is room for

improvement.

Using Flare in conjunction with TensorFlow provides speedups of over 1,000,000×

when compared with Spark (for concrete numbers, see Section 3.6). These gains come

primarily as a result of Flare’s ability to link with external C libraries. As mentioned

previously, in this example, Flare is able to take advantage of XLA, whereas Spark

is relegated to using TensorFlow’s less efficient dynamic runtime (which executes a

TensorFlow computation graph with only limited knowledge). Flare provides a func-

tion flare.udf.register_tfcompile , which internally creates a TensorFlow

subgraph representing the UDF, saves it to a file, and then invokes TensorFlow’s AOT

compiler tool tfcompile to obtain a compiled object file, which can then be linked

against the query code generated by Flare.

Finally, the TensorFlow UDF generated by XLA is pure code, i.e., it does not

allocate its own memory. Instead, the caller needs to preallocate all memory which

will be used by the UDF. Due to its ability to generate native code, Flare can organize

its own data structures to meet TensorFlow’s data requirements, and thus does not

require data layout modification or extraneous copies.

3.6 Experimental Results

We evaluate the performance of Flare with TensorFlow or Lantern integration with

Spark. We run the query shown in Figure 3.2, which embeds a UDF that performs

classification via machine learning over the data (based on a pre-trained model). As

shown in Figure 3.4, using Flare in conjunction with TensorFlow or Lantern provides

speedups of over 1,000,000× when compared to PySpark, and 60× when Spark calls

the TensorFlow UDF through JNI. Thus, while we can see that interfacing with an

object file gives an important speed-up to Spark, the data loading ultimately becomes
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the bottleneck for the system. Flare, however, can optimize the data layout to reduce

the amount of data copied to the bare minimum, and eliminate essentially all of the

inefficiencies on the boundary between Spark and TensorFlow.

#Data Points Spark Spark + JNI Flare + TF Flare + Lantern
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Figure 3.4.: Running time (ms) of query in Figure 3.2 using TensorFlow in Spark and
Flare, and Flare with TensorFlow accelerated by Lantern.

3.7 Related Work

Delite [144] is a general purpose compiler framework, implements high-performance

DSLs (e.g., SQL, Machine Learning, graphs and matrices), provides parallel patterns

and generates code for heterogeneous targets. The Distributed Multiloop Language

(DMLL) [31] provides rich collections and parallel patterns and supports big-memory

NUMA machines.

Weld [114] is another recent system that aims to provide a common runtime for

diverse libraries e.g., SQL and machine learning. Weld is using an IR similar to DMLL

that support nested parallel structures. The system is optimizing externally written

libraries into a common IR.

Delite and Weld are earlier approaches of integrating ML and data management.

Their performances come from the analysis of the IR and loop fusion operations. The
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current work is distinguished by demonstrating best of breed performance for both

state of the art deep learning models e.g., SqueezeNet and relational benchmarks e.g.,

TPC-H. In addition, Delite and Weld differ from ours by their multi-pass compilation

process. Flare and Lantern emit directly the same IR that can then be optimized in

a single pass.

3.8 Conclusion

Modern data analytics need to combine multiple programming models. We il-

lustrated how Flare enables highly optimized heterogeneous workloads with external

ML systems, such as Lantern and TensorFlow.
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4 ON-STACK REPLACEMENT FOR PROGRAM GENERATORS AND

SOURCE-TO-SOURCE COMPILERS

This Chapter is based on a technical report [55].

In Chapter 2, we accelerate systems such as Spark by introducing a compilation

step to specialized low-level C code. This process produces very efficient code for

SQL-like workloads and offers order of magnitude speed-ups. However, there are

situations where the additional compilation step represents a significant part of the

total run time. In particular, workloads with short running times (around hundreds

of milliseconds) do not benefit from the compilation step as the fraction of time spent

in the compilation step is too significant.

In this Chapter, we present a technique that reduces the overhead introduced by

the compilation of the low-level code. We introduce generic on-stack-replacement

techniques for code generators that open the door to an unexplored space of opti-

mizations and programming techniques.

4.1 Introduction

The idea of on-stack replacement (OSR) is to replace currently executing code on

the fly with a different version. There are two main motivations why one would want

to do that: tiered execution and speculative optimization.

Tiered Execution OSR was pioneered in just-in-time (JIT) compilers, concretely

in the SELF VM [75] in the early 1990s. Various forms of dynamic compilation were

known before. JIT compilers of the zeroth generation compiled whole programs during

loading, or individual methods the first time they were called. For large programs,

this leads to high overheads in compilation time. Many methods are used only rarely,
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so compilation does not pay off. First-generation JIT compilers improved on this

model by splitting execution into two tiers: code starts out running in an interpreter,

which counts invocations per method and triggers compilation only after a threshold

of n calls. While this refined model is effective in focusing compiling efforts on hot

methods, it can only switch from interpreted mode to compiled mode on method calls.

But not in the middle of long-running methods, i.e., methods that contain loops. As

an extreme case, a program consisting of a single main method that runs a billion

loop iterations will never be able to profit from compilation. With OSR, however,

one can count loop iterations, trigger background compilation once the loop becomes

hot, and switch from interpreted to compiled code in the middle of the running loop,

while the method is still running.

Taking a more general view, code can be executed using a range of interpreters

or compilers that make different trade-offs in the spectrum of compilation time vs.

running time, i.e., optimization effort vs optimization quality. A typical set up is a

low-level interpreter for fast startup, then a simple compiler, then a compiler with

more aggressive optimizations.

Speculative Optimization and Deoptimization A compiler can more aggres-

sively optimize code if it is allowed to make some optimistic assumptions. However,

if assumptions are violated, a fail-safe mechanism needs to be used that allows the

system to deoptimize. The overall premise for this technique is that deoptimization

cases are infrequent enough so that the incurred overhead is outweighed by the perfor-

mance gained on the fast path. As a concrete example, Java JIT compilers typically

make speculative decisions based on the currently loaded class hierarchy. In particu-

lar, if a method defined in a certain class is never overridden in a subclass, all calls to

this method can be devirtualized since the precise call target is known. Based on the

known call target, the compiler can further decide to inline the method. However, if

a newly loaded class does override the method, this violates the original speculative

assumption and all the optimizations that were based on this assumption need to
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be rolled back. In this particular example, all running instances of the optimized

code have to be aborted since continuing under wrong assumptions about the class

hierarchy would be incorrect. In other cases, there is a bit more flexibility when to

deoptimize. For example, type feedback with polymorphic inline caches (PIC) [72]

caches a limited number of call targets per call site. PIC misses do not necessarily

mean that execution of compiled code needs to abort immediately, but deoptimization

and recompilation are typically triggered after a certain threshold of misses. It is also

interesting to note that PIC schemes benefit from processor-level branch prediction,

which can be seen as a low-level speculative optimization approach implemented in

silicon.

Today, all cutting edge VMs and JIT compilers (HotSpot, Graal for Java; Spider-

Monkey, V8, JSC for JavaScript) support both forms of OSR, tiered execution and

speculative optimization with deoptimization. Following recent related work [44,92],

we use the term “OSR” symmetrically to refer to both optimizing and deoptimizing

transitions; older work does not recognize deoptimization as a form of OSR.

Generative Programming Generative programming is often used to implement

specialized code generation facilities in ways that are out of reach for automatic JIT

compilers. While in many cases code is generated and compiled offline and then avail-

able for future use, there are also important use-cases where code is generated and

compiled on the fly, and then ran once and discarded. This means that the compilation

process is part of the runtime of the service, much like zeroth generation JIT com-

pilers. Therefore it seems natural to look into techniques from the JIT compiler and

VM space to improve performance. As a key motivating use case for this Chapter,

we consider main-memory data processing frameworks such as Flare, and state-of-

the-art query compilers based on generative programming techniques [54, 149]. The

embedded code generators in such systems often emit C source code for debuggability,

portability, and to benefit from the best compiler for a given hardware platform (e.g.,

Intel’s ICC for x86 processors). As we demonstrate in this Chapter, tiered execution



67

can improve performance for workloads that execute many complex, but quick queries

— a scenario that has been identified as key challenge by the database community [87]

— through a simpler but faster compiler. In addition, speculative code generation can

help the downstream C compiler generate more efficient executables on specialized

code paths (e.g., using vectorization). What is needed are OSR techniques adapted

to this setting of explicit code generation, that are generic and easy to use but allow

the generation of efficient code.

Liberating OSR from Low-Level VMs How can we bring the benefits of OSR

to this setting? That is the question we address in this Chapter! The first and obvious

idea would be to turn systems like main-memory databases into full-blown VMs. But

often that is not practicable. First, implementing all the necessary infrastructure,

including a bytecode language and facilities like a high-performance low-level inter-

preter to deoptimize, represents a huge engineering effort on an aspect that is not

the main purpose of the system, and requires deep expertise in areas unfamiliar to

database developers. Second, generating structured source code is often important,

for optimization (no irreducible control flow) and for debuggability. In addition,

there are cases where a given platform dictates a certain target language. For exam-

ple, such external constraints may require generating Java or JavaScript source for

interoperability.

We follow recent work, in particular D’Elia and Demetrescu [44], in viewing OSR

as a general way to transfer execution between related program versions, articulated

in their vision to “pave the road to unprecedented applications [of OSR] that stretch

beyond VMs”. Or, in the words of Flückiger et al. [60]: “Speculative optimization

gives rise to a large and multi-dimensional design space that lies mostly unexplored”.

By making speculative optimization meta-programmable and integrating it with gen-

erative programming toolkits, in particular LMS (Lightweight Modular Staging) [130],

we give programmers a way to explore new uses of speculative optimization without

needing to hack on a complex and low-level VM.
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Key Ideas Our approach is based on two key ideas. First, we view OSR as a

program transformation reminiscent of a data-dependent variant of loop unswitching.

We interrupt a loop at the granularity of one or a handful of loop iterations, switch

to a different compiled loop implementation and resume at the same iteration count.

The second idea is to treat loops as top-level compilation units. To enable separate

compilation for either tiered execution or for speculation with dynamically generated

variants, loops, or loop nests, have to become their own units of compilation. This

can be achieved elegantly using a form of lambda lifting, i.e., representing the loop

body as a function and making the function top-level by turning all the free variables

of the loop into parameters of the extracted function. Using the semantics of func-

tions in the target language allows the framework to guarantee correctness without

worrying about difficult low-level details such as saving and restoring registers. Fur-

thermore, each compilation unit will have fewer data paths than the original loop,

which allows for more aggressive compiler optimizations. It is also important to note

that intraprocedural optimizations can be applied before the transformation.

4.2 A Simple Source-to-Source Model of OSR

Let us consider the following simple Scala program, which computes the dot prod-

uct of two vectors, given as Float arrays x and y along with their size n:

var res = 0.0f

for (i <- 0 until n) {

res += x(i) * y(i)

}

println(res)

By default, Scala compiles to JVM bytecode, and the JVM’s JIT compiler will

naturally support a variety of OSR techniques to optimize this code at runtime. But

what if we wanted to cross-compile this piece of Scala code to C? Let us first desugar

the code into a plain while loop:
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var res = 0.0f

var i = 0

while (i < n) {

res += x(i) * y(i)

i += 1

}

println(res)

Now we can transform it into an equivalent OSR-enabled program following the

ideas described in the introduction. The while loop is lifted into a separate func-

tion loop1 . In addition, there is another function loop2 , which on the surface is

equivalent to loop1 . But the assumption here is that loop2 is more optimized that

loop1, and takes longer to compile. While ignoring for now how the runtime compiles

and loads the different pieces of code (there is a mutable variable loop that holds a

pointer to the currently execution loop body, and at one point loop2 is going to be

assigned to the variable loop), we can see that this code is equivalent to the original

loop, but may switch between semantically equivalent loop implementations at any

time during the execution of the loop.

var res = 0.0f

var i = 0

var loop = loop2

def loop1() = {

while (loop == loop1) {

if (i >= n) return DONE

res += x(i) * y(i)

i += 1

}

NOT_DONE

}

def loop2() = {

while (loop == loop2) {

if (i >= n) return DONE

e2
}

NOT_DONE

}

while (loop() != DONE) {}

println(res)

In a further lowering step, we can perform lambda lifting to close off and un-nest

each of loop functions. A direct mapping to top-level functions in C code is now

straightforward. Importantly, each loop function can even be placed in a separate file

and compiled independently of the others:
// Ref is used to box the value

def loop1(loop: Ref[Func], i: Ref[Int], res: Ref[Float], n: Int , x:

Array[Float], y: Array[Float ]): Int = ...

def loop2(loop: Ref[Func], i: Ref[Int], res: Ref[Float], n: Int , x:

Array[Float], y: Array[Float ]): Int = ...

def main() {

...
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val i = Ref(0); val res = Ref (0.0)

loop = loop1

while (loop(loop , i, res , n, x, y) != DONE) {}

println(res)

}

As we will show, based on this simple pattern, we can realize a variety of practically

relevant OSR patterns, including lazy tiered compilation (recompile on-demand using

a more optimization compilers) and various forms of speculative optimization with

deoptimization.

A Generic OSR Transformation Based on these examples, we can describe a

generic OSR template in a slightly more formal way. We again consider a suitable

subset of Scala as our object language and focus on the representation of while loops.

In addition, we introduce an oracle operator select. Given a sequence of conditions

< ci >n∈ Expn (where Exp is the syntactic category of program expressions) and a

sequence of statements < ti >n∈ Expn, the term select(< ci >n){< ti >n} executes a

statement ti for an i such that ci is true. In addition, select returns the result of the

evaluation of the statement ti.

We propose a generic OSR transformation J . K \ < (ci, fi) >n, where < (ci, fi) >n

∈ (Exp × Exp 7→ Exp)n, meeting the following conditions:

• For all i, the statement fi(e) is equivalent to e under the condition that ci is

true.

• At any point in the program, there is a i such that ci is true.

With that, the generic OSR transformation is:
J while (c) e K \ < (ci, fi) >n

= while (c) select (< ci >n) { < fi(e) >n }

= while (select (< ci >n) { <while (ci) {

if (!c) return DONE; fi(e)>n }; NOT_DONE \

} != DONE) {}

= def loop1() = {

while (c1) { if (!c) return DONE; f1(e) }

NOT_DONE

}

...

while (select (< ci >n) { <loopi()>n } != DONE) {}
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The oracle select represents the runtime selection of the code that should be run. In

addition, select hides the potential compilation and loading of different pieces of code.

For each of the OSR situations described earlier, tiered execution and speculation,

the transformation sequence < (ci, fi) >n has different characteristics.

We can tie the formalism back to our example: f1 is the identity function, c1 =

loop == loop1, f2(e) = e2, and c2 = loop == loop2. The only unknown left is

how the loop variable is assigned to loop2. For tiered execution, the transformations

fi are simply the identity function. For any i, the ci is evaluated to true if the

compilation process has terminated for loopi. For speculation, the transformations

fi can be different in arbitrary ways. In our evaluation (Section 4.6), we will look at

two different kinds of speculation. In the first situation, the different transformations

make optimistic assumptions about the data handled by the program (e.g., that all

values are positive). In this setting, fi(e) is more optimized than fi+1(e), and ci

is true as long as the assumptions made for the fi transformation are valid. But

once the assumption is invalidated, it can never become valid again. In the second

situation, the conditions can be invalidated and be true again later. The conditions

ci are evaluated, like a heuristic, based on data collected during the execution of the

program. In this setting, each transformation is more fitted for a kind of data pattern,

and the OSR pattern allows the code to adapt to the best possible version.

Limitations We focus on structured loop nests only and do not consider arbitrary

recursive functions. In the setting of generative programming and explicit program

generation, this is a very sensible choice, as performance-sensitive code tends to be

dominated by such coarse-grained loop nests and fine-grained recursion is generally

avoided for performance reasons. Moreover, dealing with loops within a function

really is the core problem addressed by OSR. With fine-grained recursion, methods

are entered and exited all the time so in many cases, code can be fruitfully replaced

on a per-method boundary and new invocations will pick it up.
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4.3 Metaprogramming Facilities for OSR

The high-level transformations introduced in Section 4.2 can be realized in any

suitable way, including directly through the use of a syntactic rewriting framework.

In practice, an attractive way to build a (simple) compiler is by programmatically

specializing an interpreter using a form of multi-stage programming (staging) [148].

The fact that specializing an interpreter to a given input program yields a compiled

version of this program is known as the first Futamura projection [63].

In the remainder of this chapter, we will use Scala as the metaprogramming lan-

guage, and LMS (Lightweight Modular Staging) as our multi-stage programming

framework.

Throughout the rest of the chapter, Scala code examples represent the API that

our system provides, as well as the code that a programmer would have to write to use

our system. The C code examples represent the generated code that will be compiled

and executed, and contains the OSR runtime.

4.3.1 Tiered Execution

High Level Interface As mentioned previously, we aim at providing programmers

an easy interface for OSR. In the case of tiered execution, different compilers are used

to compile the same piece of code. As a result, the code generator does not require

additional information: the programmer must simply mark the loop as an OSR loop.

Using LMS and Scala, the interface for programmers to emit a staged while loop is

given by the following function (note that => signifies a by-name parameter in Scala):
def __while(cond: => Rep[Boolean ])(body: => Rep[Unit]): Rep[Unit]

In exactly the same way, we can propose a very simple interface that emits OSR-

enabled while loops, requiring a minimal amount of changes from the programmer:
val validOSR: Boolean

def tieredExecutionOSRWhile(cond: => Rep[Boolean], body: =>

Rep[Unit]): Rep[Unit] // Provided by our framework

def whileOSR(cond: => Rep[Boolean ])(body: => Rep[Unit]): Rep[Unit]

= {

if (validOSR) // Verify that OSR can/should be used.
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tieredExecutionOSRWhile(cond , body)

else

while (cond) body // Invokes __while internally

}

The Scala syntax allows the whileOSR loop to have almost the same syntax as

the regular one, which makes its usage virtually transparent to the programmer. The

validOSR flag is of type Boolean ; this branch is therefore executed during the

code generation phase. When the flag is true, the tieredExecutionOSRWhile

function is invoked. The function generates the necessary code equivalent to the

given while loop with the ability to swap to a more optimize version. Otherwise, it

calls a regular LMS while , which generates a regular loop. It means that through

a simple flag, the program is able to toggle OSR; while also having the possibility

to use while explicitly when a loop should never be transformed. It is of course

not always the case that loops will benefit from an OSR transformation. But based

on this simple API, programmers can easily build more complex heuristics when

necessary. For example, we can use a more complex heuristics than a simple flag by

transforming the validOSR flag into a function that returns a Boolean . Possible

heuristics could be to only transform the first loop, or only the top level ones, which

would thus disable nested OSR loops. With this interface, we can bring OSR to any

program by changing each while loop, into a whileOSR .

Generated Code The code generator needs to generate the low-level details to

support the OSR semantics. As discussed earlier, the loop needs to become its own

compilation unit: a single function, potentially in a separate file. The dot product

example we used in Section 4.2, would be generated as follows:

typedef int

(function_type *)(int*,

float*, int ,

float*, float *)

function_type* loaded_osr = NULL;

int osr_region1(int* i_p , float*

res_p , int n,

float* x, float* y) {

int i = *i_p;

float res = *res_p;

int eCode = NOT_DONE;

while (loaded_osr == NULL) {

if (!(i < n)) { eCode =

DONE; break; }

res += x[i] * y[i];

i++;
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}

*i_p = i;

*res_p = res;

return eCode;

}

int main() {

float res = 0; int i = 0;

...

loaded_osr = osr_region1;

while (loaded_osr (&i, ...) !=

DONE);

printf("%.f\n", res)

}

4.3.2 Speculative Optimization

In the case of speculative optimization, there exists a wider range of possibil-

ities than in tiered optimization. We distinguish between low-level and high-level

speculative optimizations.

Low-level Speculative Optimization is compiling the same code with different com-

piler configurations to produce different binaries. All generated binaries produce the

correct result; however, their performance may vary depending on the input data

(e.g., one version may be more efficient on negative values). Pieces of code with a

simple loop traversing an array contiguously aggregating the positive values are a

perfect example to illustrate this:

float* dist = ...;

float agg = 0;

for (int i = 0; i < N; ++i) {

if (dist[i] > 0) agg += dist[i];

}

This code snippet can be vectorized using Single Instruction Multiple Data (SIMD)

instructions. This means that while the code generated can perform four floating

points operations in parallel (with SSE 128bits width registers, up to 8 or 16 with

AVX2 and AVX-512), some may be executed, but then discarded if the condition does

not hold. The vectorized code always has the same performance no matter the selec-

tivity value of the condition. In general, this is very beneficial, as the computation

may complete in a quarter of the time. However, in the case of very low selectivity, the

non-vectorized code would perform much better. Indeed, at the limit, if the selectivity

is 0%, the branch predictor performs perfectly well and no useless computations are
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executed. However, at selectivity 100%, vectorized code is exactly 4 times faster than

the non-vectorized code. Therefore, there exists a selectivity S such that vectorized

code is more efficient for selectivity greater than S, and the opposite is true for the

selectivities lower than S. This selectivity S depends on the cost of the operations:

the simpler the code, the more it benefits from vectorization and the lower the S

value is. The ideal solution is to use the more suitable code based on the selectivity

of the condition. However, the selectivity is data-dependent and non-uniform within

the array: for example, the selectivity of the condition in our example for this array

[-1, -1, -1, 1, 1, 1] is 50%, but it is 0% for the first half, and 100% for the second.

This means that the correct version must be selected at runtime. In order to provide

an abstract interface for this situation, we need to be able to define different config-

urations and the conditions in which each configuration should be used. We propose

a generic interface in Figure 4.1 that allows the programmer to create a loop to be

compiled with different configurations, as well as a heuristic to swap between them.

type Loop = Rep[Boolean] => Rep[Unit] => Unit

def lowLevelSpeculation(select: => Configuration)

(loop: Loop => Unit): Unit

// Example

var i: Rep[Int] = 0

var hit: Rep[Int] = 0

val arr: Rep[Array[Float]] = ...

lowLevelSpeculation { if (hit < CUTOFF * i) // selection heuristic

Flag("no -tree -vectorize") else Flag("tree -vectorize")

{

whileSpec => // custom while loop to use for the speculative

work

whileSpec (i < n) {

if (arr[i] > 0) { agg += arr[i]; hit += 1 }

i += 1

}

}

Figure 4.1.: API interface for low level speculative loops on a simple example.

The different configurations are expressed through an abstract Configuration

class that contains all the information necessary for the compilation. The selection
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function select is used to pick the configuration that will be used for the following

iterations. In our example, we use a single variable for gathering the necessary infor-

mation for the configuration selection, but the function can be arbitrarily complex.

Similarly to the tiered execution situation, the whileSpec loop is transformed

into a function. However, in the case of low-level optimization, the generated code

cannot check the swapping condition at each iteration. Indeed, if it was the case, the

loop could not be vectorized, as it would add a data-dependent exit condition. The

idea, then, is to split the workload into segments, and check the switching condition

after a full segment has been executed. Once the next configuration is required, the

compilation can be started and the execution will jump to it once it becomes available.

Figure 4.2 shows a sketch of the generated code.

int hit = 0;

int i = 0;

int next = MIN(n, INTERVAL);

while (i < n) {

int cond = hit < CUTOFF * i;

if (cond) ... // trigger compilation

if (osr_region1_nonvect != NULL && cond) {

// Compiled with -fno -tree -vectorize

osr_region1_nonvect(i, arr , next , &hit);

} else {

// Compiled with -ftree -vectorize

osr_region1(i, arr , next , &hit);

}

i = next;

next = MIN(n, n + INTERVAL);

}

typedef void (loop*)(int , float*, int , int*);

volatile loop osr_region1_nonvect = NULL;

void osr_region1(int i, float* arr , int n, int* hit_p) {

int hit = *hit_p;

for (; i < n; ++i) {

if (arr[i] > 0) { agg += arr[i]; hit += 1 }

}

*hit_p = hit;

}

Figure 4.2.: Code generated for the code example in Figure 4.1.
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High-level Speculative Optimization is the process of generating different pieces

of code for the same task: for each piece of code, some optimistic assumptions that

allows the generation of more efficient code are made. One piece of code (the last) is

required to be generic, and work without any assumptions. In the situation where the

assumption is violated, the program must recover and fall back to the next available

segment of code.

We next seek to explain why speculation is highly effective. If the control flow

within a loop is more complex than a single loop, compilers have difficulty applying

optimizations. However, a compiler could optimize the code if the different paths

were within their own compilation units. For example, in the program represented

in the right hand part of Figure 4.3, the condition arr[i] < 0 can be speculated

to always evaluate to true ; the whole of Figure 4.3 represents the program with

this speculative optimization applied. The residual program can now potentially be

vectorized, and in the event this speculation is correct, the performance would be

greatly improved. There are many situations in which the programmer may have

good reason to speculate that a condition will likely evaluate to false , such as an

error checking branch. While the code is required when such an error occurs, the

additional code may prevent the compiler from applying some optimizations. Using

our high-level speculation interface would provide the opportunity to fully optimize

the useful parts of the code, without being blocked by edge cases.

We provide an examination of this situation in our evaluation in Section 4.6.

4.3.3 Implementation Details

In this section, we will use the following example to illustrate the different tech-

nical details by focusing on the tiered execution situation. While the program is not

representative of a real workload, it is representative of a large class of loops. The

condition and the body have side-effects, which help highlight the small details that

must be considered.
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Loop
i++ < n

arr[i] < 0

cond cond'

agg -= arr[i] agg += arr[i]

false

false false

true

true true

f1
Loop

i++ < n

cond

agg -= arr[i]

false

true

Assumption
arr[i] < 0 wrong

Figure 4.3.: Complex control flow for loop vectorization. Multiple nested branches
(right) prevent the compiler from vectorizing the computation. Extracting the hot
path with a side exit (left) enables better optimization in general and especially
vectorization of the hot path.

var i = 0;

while (i++ < n) {

printf("%d\n", i-1);

}

Dynamic Code Loading The implementation of OSR requires some runtime sup-

port to be embedded within the generated code in order to load the code which has

been dynamically compiled. In the general setting, we assume that there are N OSR

regions, and they can be compiled using M different compilers or compiler configura-

tions. In the case of tiered execution, we also assume that the (i+ 1)th configuration

is better than the ith configuration. Therefore, the runtime can prioritize the highest

configuration available at any given time by loading the newest available code.

Most languages have support for dynamic loading through library support; there-

fore the challenges lay on notifying the running program of a newly available code or

starting the compilation of a required piece of code.

For the first challenge, there are several possibilities that can be considered; we

examine two of them here. The first is to have a polling option. In this option, the

worker thread periodically checks if a new version is available. A second possibility

is to block until the next version is ready, in which case it is necessary to use an
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auxiliary thread that is in charge of the loading step. We present the architectures

of these two ideas in Figure 4.4. Theoretically, the background thread option wastes

fewer resources as it is mainly waiting on a blocking event while the worker thread

only has to check a single condition at each iteration. The polling version, however,

must pay the (usually more expensive) cost of polling. If this was done at each loop

iteration, the overhead would be too high, with little benefit. Our solution is to check

only after X iterations; however, the less optimized code may keep running while a

new, faster version is available if X is too large. In that case, the performance gain is

a trade-off between the polling overhead and the waste of using less optimal code.

For the second challenge, our design gives the flexibility to compile the code when

it is the most efficient, without adding extra overhead in the computation thread. In

the case of tiered execution for fast startup, the fast and slow compilers can start the

compilation process at the same time: the code generated by the fast compiler will be

executed until the slow compiler terminates and the highest optimized code is avail-

able. In the case of speculative optimization, the compilation needs to be triggered

based on given criteria, e.g., low-selectivity of a for -if construct vectorizing the

code would be beneficial. This avoids the waste of resources if the compilation is not

necessary.

We evaluate these differences in Section 4.5 and 4.6.

Compensation Code At each boundary of the OSR regions, some extra code needs

to be inserted to handle transitions. It is important to structure the code so that the

downstream compiler can still fully optimize the code. If some variables are mutated

within the loop, they need to be passed as pointers. Because of aliasing issues, the

compiler may not be able to apply all optimizations. The idea is to dereference the

pointer once when entering the region, save the value into a local variable, execute the

region using those variables, and finally assign the current value back to the pointer

when exiting the region (See Figure 4.5). In addition, it may be necessary to give

more information to the compiler on the aliasing and the alignment of the pointers, as
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typedef int (osr_regionX_t)(...);

void* loaded_osr_region[M];

volatile int prev_v[M] = {-1 };

// launched as a separate thread

void* load_shared(void* args) {

for (;;) {

// Wait for a region to be compiled.

int osr_reg , version;

char path [40], name [20];

wait_until_ready (&osr_reg ,

&version , path , name);

if (version <= prev_v[osr_reg ])

continue;

void* plugin = dlopen(path);

loaded_osr_region[osr_reg] =

dlsym(plugin , name)

prev_v[osr_reg] = version;

}

return NULL;

}

int osr_regionX(int cur_v , ...) {

...

while (true) {

if (prev_v[X] > cur_v) {

... // Save state

return NOT_DONE;

}

...

} }

typedef int (osr_regionX_t)(...);

osr_regionX_t loaded_osr_regionX;

int osr_regionX(int cur_v , ...) {

int test = SWITCH_THRESHOLD;

int version = cur_v;

char path [40], name [20];

...

while (1) {

if (--test == 0) {

if (poll_osr_regionX (&version , path)

&& version > cur_v) {

... // Save state

void* plugin = dlopen(path);

loaded_ors_regionX =

dlsym(plugin , "osr_regionX")

return NOT_DONE;

}

test = SWITCH_THRESHOLD;

}

...

}

}

(b) Polling

// Calling site

if (osr_regionX (...) != DONE) {

while (loaded_osr_regionX (...)

!= DONE);

}

(a) Background thread (c) Initiation of the loop (for both loading technique)

Figure 4.4.: Different strategies to test if a newest version is available and load it for
tiered execution. (a) is using a background thread that blocks until the compilation
process notify it. It then loads the newly compiled version. (b) is using a polling
method and check every SWITCH_THRESHOLD if a newer version is available, if yes it loads
it and return.

they are known by the code generator. Generating code with __restricted___

or aligned(X) annotations may be required. This pattern works perfectly for

loop-tiered execution and low-level speculative optimization.

In the case of high-level speculative optimizations, the data layout between re-

gions may be arbitrarily different; the compensation code would potentially have to

transform the already computed data. For example, when using a hashmap, one can

speculate that the keys will only be an integer from 0 to 10, and thus use an array

instead of a generic hashmap. If the assumption fails, the next OSR region may use



81

int osr_region1(int* i_p , int n) {

int i = *i_p;

while (i++ < n) {

if (loaded [0]) {

*i_p = i;

return NOT_DONE;

}

printf("%d, ", i-1);

}

*i_p = i;

return DONE;

}

// main

int i = 0;

if (loaded [0] || osr_region1 (&i,

n) != DONE) {

loaded_osr [0](&i, n);

}

// output if swap arise after

iteration i = 3

0, 1, 2, 3, 5, 6, 7, ..., ‘n‘

// output if swap arise after

iteration i = n - 1

0, ..., ‘n - 1‘, ‘n + 1‘, ... //

miss stop condition

(a) Incorrect

int osr_region1(int* i_p , int n) {

int i = *i_p;

while (! loaded [0]) {

if (i++ >= n) {

*i_p = i;

return DONE;

}

printf("%d\n", i-1);

}

*i_p = i;

return NOT_DONE;

}

// main

int i = 0;

if (loaded [0] || osr_region1 (&i,

n) != DONE) {

loaded_osr [0](&i, n);

}

// output if swap arise after

iteration i = 3

0, 1, 2, 3, 4, 5, 6, ..., ‘n‘

// output if swap arise after

iteration i = n - 1

0, ..., ‘n‘

(b) Correct

Figure 4.5.: Illustration on the importance of the check order. If the loop condition
is carried out before the OSR check, the condition would be executed an extra time
when the following OSR region start. It therefore break the language semantics.
However doing the OSR check first ensures the correctness.

a generic hashmap; when transitioning, all keys already inserted in the array must be

correctly inserted in the hashmap; thus requiring a task-specific compensation code.

Correctness The OSR transformations must preserve the semantics of the original

loop. For tiered execution, we can ensure this if we always test the switching condition

at the beginning of the loop before the loop conditions. Indeed, if the loop condition

has side-effects, exiting the loop after executing it and starting a new loop would lead

to an incorrect transformation. With this constraint, we ensure that a loop iteration

(condition and body) execute completely, or not at all. We show how the checking

order can lead to invalid code transformation in Figure 4.5.
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For speculative optimizations, the condition to switch to different code can be

arbitrarily complex, and depends on the kind of speculation that is made. Such an

OSR transformation would be correct if and only if upon an aborted iteration, the

program can not have had observable effects; otherwise they need to be rolled back.

Whereas it is not possible to define a generic model that would be correct in all

situations, a windowed slicing pattern can be used. At the beginning of the loop, the

state of the program is saved. Once part of the loop has been executed, the program

can check for errors. If there are any, the previous state can be restored, and the

OSR region can exit; the next region can then execute the loop from the saved state.

This pattern does not work without additional precaution for I/O operations. It is

also interesting to note that in a multi-threaded program, restoring the state may not

be enough, as another thread may already have observed the modifications that have

then been rolled back.

Initialization In order to be as efficient as possible, OSR code needs to jump

to the best available code as soon as possible. However, there are some situations

where it does not happen. For example, if the code has a lengthy initialization, the

compilation of the optimal version may be done. However, as the slower code has not

yet reached the OSR region, the swap will arise very late, thus negating the advantage

of using OSR altogether. In order to maximize performance, it is important that the

initialization step is made of code that is optimally compiled by the fast compiler.

For example, it can be made of function calls to libraries which are precompiled with

high optimization settings.

Nested Loops In line with the previous paragraph, the case of nested loops can

lead to unwanted overhead. Assuming that an outer loop is transformed into an OSR

region, and the inner loop is taking more time than the compilation process, there

will be a long period between the end of the compilation and the starting of the

execution of the fast code. In that situation, it may be preferable to transform the
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inner loop into an OSR region. This example shows that it may not always be the

most beneficial to transform the outer loop in an OSR region.

On a technical point of view, however, a nested loop does not make the transfor-

mation more complex or invalid. The impact on the performance, however, needs to

be evaluated. Therefore, leaving the decision up to the programmer is the most log-

ical sense in our situation. Lameed and Hendren [92] discuss the impact of different

approaches.

4.4 Case study: Compiling SQL to C

We apply the ideas and tools presented in the preceding sections to a real-world

case study, adding OSR to a state-of-the art SQL to C compiler, Flare. While

compilation for SQL queries has been an active topic of research for a number of

years, optimizing for fast startup and for workloads that execute many complex, but

short running, queries has only recently been identified as important challenge by

the database community [87]. As we will show, the execution patterns of the SQL

language makes it a perfect candidate for OSR compilation.

We show key parts of a simple SQL compiler in Figure 4.6. This code is taken

from Rompf and Amin [128] and the complete version, including various join operators

and optimized data structures, is implemented in fewer than 500 lines using Scala and

LMS.

Flare that forms the basis of our experiments is essentially a scaled-up version

of this code. With Flare, we show how generative programming using LMS can be

used to design a query compiler by implementing a simple staged interpreter. Inter-

preters have the advantage of being relatively simple, and can easily be understood

by programmers with different backgrounds, even those who are not compiler experts.

For example, in Figure 4.6, the function hasNext returns a Rep[Boolean]; the

while statement in the Scan case will therefore be generated. As such, our inter-

preter will actually become a code generator.
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abstract class Op

case class Scan(stream: Stream) extends Op

case class Print(par: Op) extends Op

case class Project(out: Schema , par: Op) extends Op

case class Filter(pred: Predicate , par: Op) extends Op

case class Join(key: Schema ,

left: Op , right: Op) extends Op

def exec(op: Op)(cb: Record => Unit) = op match {

case Scan(stream) =>

while (stream.hasNext) {

cb(stream.next)

}

case Print(par) => exec(parent) { rec =>

rec.print

}

case Filter(pred , par) => exec(par) { rec =>

if (execPredicate(pred)(rec)) cb(rec)

}

case Project(out , par) => exec(par) { rec =>

rec(out)

}

case Join(key , left , right) =>

val hm = new MultiMap(key , schemaOut(left))

exec(left) { rec =>

hm += (rec(key), rec)

}

exec(right) { rRec =>

for (lRec <- hm(rRec(key))) {

cb(lRec ++ rRec)

}

}

}

Figure 4.6.: Implementation of relational query engine DSL with the corresponding
staged interpreter (exec).
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Here is a simple query to scan a single table:

select * from tweets Print(Scan(stream("tweets")))

Using Flare (and knowing that the CSV format is “user name, # of likes, tweet

content”), this query would be translated to C as shown in Figure 4.7.

int main() {

char* tweets = ...; // open file and mmap it

int fileLength = ...;

int pos = 0;

while (pos < fileLength) {

int userLength; char* user;

pos += parseString(tweets + pos , &user , &userLength) + 1;

int nbLikes;

pos += parseInt(tweets + pos , &likes) + 1;

int tweetLength; char* tweet;

pos += parseString(tweets + pos , &tweet , &tweetLength) + 1;

printf("%.*s, %d, %.*s\n", userLength , user , likes ,

tweetLength , tweet);

}

Figure 4.7.: Code generated for simple query.

Going further, if we add a filtering operation to only display the name and the

number of likes:
select user , likes from tweets where likes >= 1000

The query may be expressed as
Print(Project(Seq("user", "likes"), Filter(Geq(Field("likes"),

Const (1000)), Scan(stream("tweets"))))

in the language of relational query operators. For this query, the code generator

produces nearly the same code, but rather than printing the whole tuple, it generates

code that prints only the expected values, with a simple conditional statement around

it:
if (likes >= 1000)

printf("%.*s, %d\n", userLength , user , likes);

Here, we can see that the code is comprised of a single while loop that goes

through the tweet table. This pattern is a key characteristic of code generated for

SQL queries. Even in complex queries which include aggregates or joins, the code is
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composed of top-level while loops scanning through collections (e.g., tables or data-

structures). These loops are called “operator pipelines” [107]; operators such as

aggregate or join are called “pipeline breakers,” as they must materialize the tuple

of a pipeline and store it in a temporary data-structure, and then produce their result

within another pipeline. Figure 4.9 (a)-(c) shows the overall shape of the code with

a Join operator. This pattern of code is a perfect example where transforming the

pipeline data into OSR regions would be beneficial. In our work, an OSR region is a

loop that will potentially have multiple instructions at runtime, as presented above.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

R
u

n
n

in
g

 T
im

e
 (

m
s)

Scala vs C comparison

Scala
C

Figure 4.8.: Runtime of the query in Figure 4.9 (a) with different target languages.

In looking to implement OSR for this style of code, it is instructive to first gen-

erate code that is executed on a virtual machine which already possesses all the JIT

mechanisms required. We use the example found in Figure 4.9 and generate code to

execute the query in Scala. The generation process specializes the data structures

(e.g MultiMap) to a very efficient low-level implementation on arrays. The lineitem

table contains 60k records (a CSV file of ∼ 7MB) and the part table 2k records (a

CSV file of ∼ 253 kB). The generated Scala code is compiled and run in 963ms. If we

instead generate C code that does not use any OSR constructs, the code is compiled

and run in only 260ms (see Figure 4.8). This demonstrates that Scala’s JIT compi-

lation was unable to bring the Scala code to the same performance as that of the C



87

code. In part, this is due to the fact that the I/O operations in C are much more

efficient than those in the Scala runtime. The C code can directly mmap the input file

and parse the csv, whereas the Scala code needs to use a slow Stream interface. For

those reasons, we want to be able to generate C code, as well as benefit from OSR.

In the generative programming setting, the programmer can use high-level con-

structs for generating OSR regions, without having to handle tedious low-level tech-

nical details. We examine three different kinds of OSR regions that are available

in our framework, and discuss the technical details for each: tiered execution loops,

low-level speculation, and high-level speculation.

Print(

Join(Seq("partkey"),

Filter(Eq(Field("shipdate"),

Const("1995 -09 -01")),

Project(Seq("partkey",

"shipdate", "quantity"),

Scan(stream("linetitem")))),

Project(Seq("type", "partkey"),

Scan(stream("part"))))

)

(a)

Pipeline 2

JoinOp

BA

Pipeline 1

(b)

// Pipeline 1

val lineitem =

Stream[Record ](...)

val hm = new

MultiMap("partkey", ...)

while (lineitem.hasNext) {

val rec = lineitem.next

val prec = rec("partkey",

"shipdate", "quantity")

if (prec("shipdate") ==

"1995 -09 -01")

hm += (rec("partkey"),

prec)

}

// Pipeline 2

val part = Stream[Record ](...)

while (part.hashNext) {

val rRec = part.next

val prRec = rRec("type",

"partkey")

for (lRec <-

hm(prRec("partkey")))

(lRec ++ prRec).print

}

(c)

Figure 4.9.: Shape of the generated code for a Join operator. (b) Example of a query
with a Join operator, (b) highlight the pipelines and loop structure of the code, (c) is
the high level representation of the code generated. The Stream and MultiMap classes
are abstractions that are specialized when the code is generated.
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4.5 Tiered Compilation Experiments

In this section, we evaluate the performance of OSR patterns on tiered compi-

lation. The workload targeted in our experiments is based on compiled query pro-

cessing (Section 4.4). In such situations, OSR has the potential to provide dramatic

speedups for fast startup and workloads that are comprised of complex but short-

running queries. We use the TPC-H benchmark [155] benchmark that focuses on the

performance of practical analytical queries.

Experimental Setup All experiments are conducted on a single NUMA machine

with 4 sockets, 24 Intel(R) Xeon(R) Platinum 8168 cores per socket, and 750GB RAM

per socket (3 TB total). The operating system is Ubuntu 16.04.4 LTS. We use Scala

2.11, GCC 5.4, Clang 6.0 and TCC 0.9.26.

Dataset We use the standard TPC-H benchmark with scale factor SF0.1, SF0.3,

SF1 and SF10 (approximately 100MB, 300MB, 1GB and 10GB of csv files respec-

tively).

Experimental Methodology For all our experiments, the timing is based on the

gettimeofday function call. We report the median of 5 runs unless stated other-

wise.

4.5.1 Tiered Compilation for SQL Queries

In this experiment, we evaluate tiered compilation in the context of compiled query

evaluation. The LB2 query compiler [149] uses generative programming to compile

SQL queries into optimized C. The back-end of a typical query compiler consists of

a small number of structured operators that emit evaluation code on the form of

tight, long-running loops that process data and perform various computations (e.g.,

computing an aggregate over grouped data). The execution path of a compiled SQL

query consists of data structure initialization, data loading, and evaluation. In prac-
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tice, SQL queries in TPC-H take 100-400ms to compile using GCC with the highest

optimization flag (-O3). This time is acceptable when processing large datasets, but

for small-size workloads, compilation time becomes a rather considerable overhead

that may defeat the purpose of compiling SQL queries to low-level code [87]. How,

then, to improve query compilation time?

select sum(l_extendedprice * l_discount) as revenue

from lineitem

where l_shipdate >= date ’1994 -01 -01’

and l_shipdate < date ’1995 -01 -01’

and l_discount between 0.05 and 0.07

and l_quantity < 24

(a)

// data structures initialization & data loading elided.

for (i = 0; i < size; i++) {

double l_quantity = l_quantity_col[i];

double l_extendedprice = l_extendedprice_col[i];

double l_discount = l_discount_col[i];

long l_shipdate = l_shipdate_col[i];

if (l_shipdate >= 19940101L && l_shipdate < 19950101L

&& l_discount >= 0.05 && l_discount <= 0.07

&& l_quantity < 24.0) {

revenue += l_extendedprice * l_discount;

}

} ...

(b)
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Figure 4.10.: TPC-H Q6 in (a) SQL and (b) handwritten C, (c) the compile, runtime
and end-to-end execution of Q6. Speedups in the table are relative to GCC -O1.
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A first idea is to tune the compilation optimization level without negatively im-

pacting runtime. Thus, we first study the effect of varying the optimization flag levels

on compilation time for GCC (we also evaluate Clang in Section 4.5.4). We pick the

simplest query, TPC-H Q6, illustrated in Figure 4.10a, with scale factor SF0.1 (the

lineitem table size is approximately 71MB). The hand-written Q6 shown in Figure

4.10b is essentially a loop with an if condition that iterates over the lineitem table,

filters records, and computes a single aggregate operation (i.e., the sum of a simple

computation on each data record). Figure 4.10c shows the time to compile, run, and

the end-to-end execution time for Q6 using different optimization levels in GCC. At

first glance, we observe that using lower optimization flags improves compilation time

by approximately 20-40ms in GCC. Furthermore, the runtimes of -O3, -O2, and -O1

is nearly identical. Hence, for this basic query, GCC-O1 achieves the best compilation

time and end-to-end execution time. However, using the lowest level -O0 significantly

slows down runtime by 5×. How can the OSR pattern discussed earlier improve the

performance of small-size queries?

While using a lower optimization flag does improve compilation time, 60-70ms is

still perceived as a large compilation time for small-size queries, in our example, it

is as much as the runtime itself. An alternative approach would be to use a less-

optimized, faster compiler to implement the OSR pattern. The Tiny C Compiler

(TCC) [116] is a fast, lightweight compiler that trades performance for speed. For

instance, compiling Q6 in TCC takes approximately 7ms. The key idea is to compile

and launch the query using TCC until the slow compiler finishes its work, after which

OSR switches execution to the fast compiled code. We evaluate this in Section 4.5.3.

Finally, Consider the following breakdown of GCC -O3 and GCC -O0 compile

times:
gcc -O3 -time tpch6.c

# cc1 0.06 0.01

# as 0.00 0.00

# collect2 0.01 0.00

gcc -O1 -time tpch6.c

# cc1 0.05 0.00

# as 0.00 0.00

# collect2 0.01 0.00

gcc -O0 -time tpch6.c

# cc1 0.02 0.01

# as 0.00 0.00

# collect2 0.01 0.00

We observe the higher optimization levels spend more time in the compilation phase.

We also note that the linking time is high as well (the same amount of time TCC
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spends in compilation). These observations encourage the use of the OSR pattern,

it leaves the chance to the slow compiler to perform more optimizations without

”wasting” time as code is already running.

4.5.2 Switching From Slow to Fast OSR Paths

Query evaluation is best described as performing a long-running loop where each

iteration evaluates a number of data records. Integrating OSR in query compilers

requires stopping a running loop in order to switch from slowly compiled code to one

which has been compiled quickly. In this experiment, we evaluate the two switching

mechanisms discussed in Section 4.2. Recall, the first approach uses a polling mech-

anism. We implemented the polling as follows: the compiler process creates a lock

file as soon as the new target becomes available. Furthermore, a switching threshold

X is configured to determine the frequency at which the code checks for the lock file,

for each epoch the code performs X iterations then probes the existence of the lock

file. The second approach uses a background thread that blocks until it is notified

by the compilation process. Once notified, it dynamically loads the dynamic library.

After that, the loading thread updates a volatile variable to signal readiness to the

main processing thread. Checking a volatile variable has the advantage to be much

less expensive than a polling operation.

Table 4.1 illustrates the impact of using a background thread and various switch-

ing thresholds (1, 100, 1000, 10000 and 100000 on OSR runtime in Q6 SF1). We

observe that checking the availability of the fast code at each iteration incurs ap-

proximately 20ms overhead in runtime compared to the other thresholds. Indeed,

performing a check at each iteration uses precious computation time, thus when the

switch happens the amount of useful computation that has been performed is lower.

In our experiment, the code executes only 67k iterations with a threshold of 1 ver-

sus 240k for the others. Similarly, picking a large threshold potentially wastes time

depending on when the compiled target becomes ready. Indeed in the worse case, a
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more optimized code could be available at the beginning of an epoch just after the

check thus it could be available for a full epoch without being used. This situation is

exhibited by our experiment: if the threshold is 100 iterations, the OSR swap arises at

iteration 234k, thus for a threshold of 100k the swap occurs at 300k and therefore the

code spends more time than necessary in the less optimized code when the threshold

is too high (73ms vs 62ms). On the other hand, using a background thread is 25ms

faster than the best threshold used in this experiment, making it the best solution if

multi-threading is supported.

Table 4.1.: The impact of various switching thresholds on OSR-runtime using Q6 SF1
(see Figure 4.4).

threshold thread 1 100 1000 10000 100000

runtime (ms) 672 721 698 697 700 705

switched at (ms) 59 62 60 58 61 73

switch iteration 224265 67856 234500 234000 250000 300000

4.5.3 Complex Code with Many OSR Regions

The OSR pattern is applicable on any long-running loop. Applying OSR on TPC-

H Q6 is straightforward since it consists of a single loop or code region. For the case

of complex programs, each loop is processed as an independent code region where the

main program coordinates running code regions. Consider Figure 4.12 that shows

TPC-H Q1 in SQL. At a high level, Q1 is an example of an aggregate operation that

divides data into groups and computes the sum, average, etc., for each group. The

execution breaks down into three distinct code regions as follows. The first region is

a loop for inserting data into a hash table. The loop in the second region traverses

the hashmap, obtains the computed aggregates and performs sorting. The last region

iterates over the sorted buffer and prints results.
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Figure 4.11.: Tiered execution comparison for Q1, Q5, Q6, and Q14 with different
compiler configurations. XXX/YYY indicates the run was an OSR execution with
first configuration XXX and second YYY. Tables A-D lists the relative speedup of
OSR execution over the GCC -O1 configuration.

select l_returnflag , l_linestatus , sum(l_quantity),

sum(l_extendedprice),

sum(l_extendedprice * (1 - l_discount)),

sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)),

avg(l_quantity), avg(l_extendedprice), avg(l_discount),

count (*)

from lineitem

where l_shipdate <= date ’1998 -12 -01’ - interval ’90’ day

group by l_returnflag , l_linestatus

order by l_returnflag , l_linestatus

Figure 4.12.: TPC-H Q1.
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Figure 4.11 shows the execution time of four different TPC-H queries using TCC

as the baseline, GCC with various compilation flags, and OSR where TCC and GCC

are the fast and slow compilers, respectively. The OSR query time consists of all

TCC compilation time, a part of TCC runtime, and GCC runtime. We observe

first, TCC compilation is very short (around 10ms), which allows starting execution

early. Second, the OSR path is successful in reducing the end-to-end execution time

by executing TCC at the beginning. Third, OSR preserves its expected behavior

with increasing data size. However, increasing data size reduces the overall benefit of

using OSR since the runtime dominates the end-to-end execution time. It may seem

surprising that in the OSR context, the code switch appears to happen before the gcc

compilation terminates. This is due to the fact, that in the OSR context, gcc has less

code to compile than in the non OSR context and it does not have to create a full

executable but only a shared library. Thus the compilation is slightly faster – around

6% for TPC-H Q1.

For the runs with a scale factor of 0.1 (100MB), the best OSR execution (TCC with

GCC -O1) achieves between 14 and 21% speedup over the GCC -O1 configuration.

For a larger scale factor of 0.3 (300MB), the speedup is between 7 and 11%. This

confirms that OSR will be beneficial, as long as the compilation time is non-negligible

compared to the running time. The OSR path in Q1 reduces end-to-end runtime

by 20-30ms in comparison with GCC -O3, -O2 and -O1. TPC-H Q5 and Q14 are

examples of join operations between five and two tables respectively. The pseudo-code

in Figure 4.9 (d) gives a high-level implementation of a hash join operator between

two tables. With this experiment, we see that even with a higher number of OSR

region in the generated code, the technique improves the runtime.

4.5.4 Shape of Code

As discussed in Section 4.5.1, the highly-optimized compilers spend around two-

thirds of compilation time in performing optimizations. Also, the linking time in
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Figure 4.13.: Compilation time and execution time of Q6 on SF0.1, for handwritten
code and generated code on different compiler configurations. XXX/YYY indicates
the run was an OSR execution with first configuration XXX and second YYY.

GCC alone is around the same as TCC’s total compilation time. On the other hand,

the class of fast compilers (e.g., TCC, GCC -O0 and Clang -O0) perform only a small

set of optimizations to minimize compilation time at the expense of performance. For

instance, less sophisticated compilers evaluate statements individually, whereas opti-

mized compilers process multiple statements together. For example, TCC generates

more efficient code for nested expressions than for a cascade of expression (such as

ANF form).
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// nested expression

x = y + z * u;

//ANF form

x1 = z * u;

x = y + x1;

In this experiment, we explore how the shape of code can help fast compilers to

generate faster code. We manually implemented TPC-H Q6 using nested expressions

and executed the query using TCC, GCC, and Clang. Figure 4.13a-b shows the

compile- and runtime of Q6 using the handwritten code and the code generated by

LB2. Table A summarizes the key outcome by listing the relative speedup of the

manual code over the generated one. We observe that compilers with the slowest

compiling times (TCC and Clang) benefited the most with 1.93×-1.87× speedup,

respectively.

Figure 4.13c shows the OSR execution using TCC as the fast compiler and vari-

ous GCC and Clang configurations as slow compilers. For speedup computations, we

pick GCC -O1 as the best default (non-OSR) path to measure performance. Tables

B and C summarize the speedup or slowdown of manual and generated OSR execu-

tion paths over GCC -O1. For the manual case, we see that the OSR configuration

TCC/GCC -OX outperforms GCC-O1 by 12%, 6%, and 5% respectively. However,

only TCC/GCC-O1 outperforms GCC-O1 (14%) in the generated setting as TCC is

much less efficient in this situation. However, the OSR pattern is conserved. Indeed,

the OSR configuration always outperforms its corresponding non-OSR configuration.

While the running times between generated and handwritten code are very close

for GCC and Clang (with optimization), the compilation time actually changes a lot.

This means that compilers manage to optimize the code and converge to the same

version but need more time to do it. GCC takes between 50-60% and Clang around

46% more compilation time when the code is generated. For lower optimization level

or TCC, the compilation time, as well as the runtime, is increased by almost a 2×

factor.

The key insight is code generation frameworks like Lightweight Modular Staging

will need to generate code that makes compilation faster, e.g. nested expressions, etc.

if they want to benefit fully from OSR.
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4.6 Speculative Optimization Experiments

In this section, we evaluate the performance of on-stack replacement patterns in

various scenarios of speculative optimizations. We first look at high-level specula-

tions where multiple code snippets are generated for the same task. We then look

at low-level speculation where the same generated code is compiled using different

optimization options. In both cases, there are multiple OSR regions generated and

the program generator adds the logic to swap between them efficiently.

In generic code with many different paths, compilers may have difficulty optimizing

each path correctly. Our hypothesis is that if we separate each path into its own

compilation unit, the compiler will do a much better job for each path. For example,

autovectorization may be ruled out because of complex control-flow, and singling out

a single path may permit it. In addition, we assume that it is possible to combine

the different paths back together and thus optimize the original program. In the

following paragraph, we test this hypothesis on some microbenchmarks and evaluate

the possible benefits.

4.6.1 Type Specialization

Dynamic language VMs are all about type specialization. A generic + operation

could be used on integers, doubles, or even strings, depending on context. For program

generators, this is not a typical use case. Since programmatic specialization is one

of the prime applications of staging, one would typically try very hard to generate

type-specialized code up front.

However, there are related applications that do occur in practice: for example,

needing to support for variable-precisions within the same type (see below).
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4.6.2 Variable-Size Data

An example of variable-size data is the mpz_t datastructure of the GMP library

[57]. The space used by the data is runtime dependent, and the performance is linked

to its size. A programmer may want to be able to handle all possible scenarios in

their program, however, using mpz_t when all data could fit into an int or a long

will lead to serious performance penalties.

In this experiment, we look at three different programs that compute the sum of

integers of arbitrary size (See Figure 4.14). Program (1) is storing the integer value

into mpz_t , the program (2) and (3) use a scheme where values between 0 and 263−1

are stored as a long and other values as mpz_t .

Figure 4.15 reports the average running time in milliseconds of twenty runs of

these three programs, all of which operate on arrays of 5 million integers. We ran the

experiment with inputs having different densities of numbers larger than 263, 1 in 1

million, 10, 100, and 1000 in 1 million. The higher the density, the lower the index

of the first large number will be, thus reducing the advantage of the speculation for

programs (2) and (3). The experiments show that in this situation, our assumption

was correct. The program with the OSR region performed better than the single loop

program. Using the flag that reports successful vectorization, we can confirm that in

program (3) the loop is vectorized by GCC, but in program (2) it is not. In order

to make the vectorization possible, program (3) needs to be written in a particular

manner. Instead of exiting as soon as the assumption is violated, the program com-

putes the aggregate on a fixed window and sets a flag that the assumption is violated.

After finishing the window, the program checks the flag and swaps the OSR region

upon assumption violation. The following region has to rerun the last window. This

is necessary because a loop with multiple exits cannot yet be vectorized by compilers

(ICC, GCC, or Clang), but it could potentially in the future and therefore improve

this situation even further.
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mpz_t agg;

mpz_init_set_ui(agg , 0);

for (it = 0; it < length ; ++it) {

mpz_add(agg , agg , arr[it]);

}

(1)
The naive version using mpz_t for
all number and for the computation.

long agg = 0L;

mpz_t bagg;

int changed = 0;

for (it = 0; it < length; it++) {

int val = arr[it];

if (val & TAG) {

if (changed) {

mpz_add(bagg , bagg ,

storage[val ^ TAG]);

} else {

mpz_init_set_ui(bagg , agg);

mpz_add(bagg , bagg ,

storage[val ^ TAG]);

changed = 1;

}

} else {

if (changed) mpz_add_ui(bagg ,

bagg , val);

else agg += val;

}

}

(2)
Stores the value between 0 and 263−
1 in a int and the other in mpz_t .
It is a simple loop program that
starts to assume that all values are
stored as long and accumulate into
a long , if the assumption is vio-
lated it continues by accumulating in
a mpz_t .

// OSR region 1

int add_spec(int* arr , int* it_p , long*

agg_p , int interval) {

long agg = *agg_p;

int it = *it_p;

int fail = 0;

for (; it < interval; it++) {

int val = arr[it];

fail |= val & TAG;

agg += val;

}

if (fail) return 1;

*agg_p = agg;

*it_p = it;

return 0;

}

// OSR region 2

int add(int* arr , mpz_t* storage ,

int* it_p , mpz_t agg , int length)

{

int it = *it_p;

for (; it < length; i++) {

int val = arr[it];

if (val & TAG) mpz_add_ui(agg , agg ,

val);

else mpz_add(agg , agg , storage[val ^

TAG]);

}

}

// Main

int limit = 1000; long agg = 0L;

mpz_t bagg;

while (it < length && !add_spec(arr , &it,

&agg , limit))

limit += 1000;

mpz_init_set_ui(bagg , agg);

if (it < length) add(arr , storage , &it ,

bagg , length);

(3)

The code is similar to (2), but instead of being
a single loop it has two OSR regions.

Figure 4.14.: Different programs used for experiment on Variable-Size Data.

4.6.3 Inline Data Structures

Collections such as hashmaps are used to implement complex algorithms effi-

ciently. They usually have a very good theoretical asymptotic performance; however,

there are some specific cases where they are not optimal. For example, Q1 of the

TPC-H benchmark has only four different keys for the group by operation using

the standard TPC-H data. For generality, it is implemented using a hashmap. But in
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that context, hashmaps add more overhead than simply using four variable to store

the different values. Based on that observation, we test some speculative high-level

optimizations. We generated different code for the query: one that assumes there

is going to be only 3 distinct keys, another 4, and another 5. For comparison, we

also generated a program that is using the GHashMap from the GLib library. The

code specialized for a given number of keys stores them in local variables instead of

a more complex data-structure. Given that the number of keys is small, only a small

number of comparisons is needed to find the correct variable to store the data. If the

number of keys exceeds the speculated number, the program falls back to the generic

implementation with the GHashMap . In Figure 4.16, we report the result of our ex-

periment. We ran this program on a table that actually has 3, 4, 5, 6, or 25 distinct

keys. We can see that when the assumption was correct (number of key speculated

higher than the actual number of keys), the specialized code performs much better

than the generic hashmap. But even more importantly, when the speculation is not

valid, the code does not perform worse than the generic hashmap.

4.6.4 Loop Tiling

A famous optimization pattern in linear algebra algorithms is loop tiling. It is

used to improve locality and cache reuse. One could think that OSR could be used

to speculate different tiling strategies and allow the program to change on the fly in

order to find the optimal tiling setting. However, it is actually difficult to create a

safe point (see also [24]). In addition, knowing if or when it is beneficial to switch to

a new configuration depends on timing and cache related statistics. This information

is not easily accessible during compilation, and thus introduces further overhead in

practice.
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4.6.5 Predication vs Branches

Modern hardware supports SIMD, and compilers need to evaluate the benefit

of vectorization with some heuristic. However, the benefit can actually be data-

dependent. For example, a for-loop computing an aggregate on an array based on

some condition (e.g., a basic map-filter-reduce operation) can be vectorized (see Fig-

ure 4.1). The instructions emitted use wide registers to compute the result at the

same time. In order to handle the conditions, the processor creates a mask that voids

the results computed that are not needed. While in most cases it results in a sped-up

computation, there are some limits. Consider the situation where a SIMD instruction

computes two values at the same time. If the computation of these values is significant

and the majority of the time the values are discarded because the condition is false,

the computation is an overhead and the non-vectorized version may be better. In this

experiment, we propose to transform the loop into an OSR region and compile it once

with the -ftree -vectorized flag and once without it. The loop also includes

a counter that keeps track of the selectivity of the data: upon a given cutoff, the

code is going to switch between the two different assemblies coded. In Figure 4.17,

we present the result of the experiments. Empirically, we can see that the vectorized

code and the non-vectorized code intersect when the selectivity is around 15%: using
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this for the cutoff value yields the best performance (the OSR cutoff 15 line cannot

be seen as it is under the non-vectorized line from 0 to 15 and under the vectorized

line from 15 to 100). We can also see that different cutoffs switch too early or too

late.

Similarly to the variable-size data experiment, the OSR region is running for a

fixed window and checks the swapping condition once it is done; otherwise, it would

prevent the vectorization of the loop. There are different ways of computing the

swapping condition: the decision can be made based on the last window, or on all the

data that has been processed so far. Each of those strategies would have a worst-case

scenario that would work for a swap at each window, while not being the optimal

choice for the following one.

4.7 Related Work

OSR On-stack-replacement was first prototyped in SELF [75]. The SELF-93 VM

was designed to combine interactivity and performance. The SELF code compiles

only when needed, instead of performing a lengthy global compilation pass. The

technique unwinds the stack and finds the best function to compile, then replaces all

the lower stack parts with the stack of the optimized function. The SmallTalk 80 [45]

system was implemented using many sophisticated techniques including polymorphic

inline caching (PIC) and JIT compilation. In the case of the JIT compilation, the

procedures’ activation records had different representations for the interpreted code

and for the native code: swapping between these representations is the same that

swapping between two OSR regions in the speculative setting. Strongtalk [29] provides

a type system for the untyped Smalltalk language. An OSR LLVM API is given in

[43,92], similar to our work but focused on a low-level approach within the LLVM IR

more targeted toward VM implementation. OSR is also implemented in Hotspot [113]

and V8 [65]. The work in [59] uses OSR to switch between garbage collection systems.

The work in Skip & Jump [160] presents an OSR API for a low-level virtual machine
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based on Swapstack. Our work is different from those as it make available OSR to the

programmer explicitly, rather than within a runtime environment as an optimization

of the language runtime.

JIT Compilers Examples of modern JIT compilers include the Jalapeo VM [13]

that targets server applications; the Oracle HotSpot [113] VM which improves perfor-

mance through optimization of frequently executed application code; Jikes RVM [7];

the metacircular research VM, Maxine [162]; SPUR [18], a tracing JIT for C#;

Google’s V8 [65]; Crankshaft [66]; and TurboFan [2]. Truffle [163] is built on top of

Graal [109], and optimizes AST interpreters. The PyPy [26,127] framework is written

in Python and works on program traces instead of whole methods. The Mu micro

VM [160] focuses on JIT compilation, concurrency, and garbage collection.

Optimization, Deoptimization, and Performance Dynamic deoptimization

was pioneered in the SELF VM to provide expected behavior with globally-optimized

code. The compiler inserts debugging information at interrupt points, while fully

optimizing in between [74]. In essence, our OSR regions implemented in this Chapter

are similar to [74]. Debugging deoptimization in [73] deoptimizes dependent methods

whenever a class loading invalidates inlining or other optimizations. PIC [72] extends

the inline caching technique to process polymorphic call sites. The work in [60] de-

optimizes code compiled under assumptions that are no longer valid. Bhandari and

Nandivada [24] present a generalized scheme to do exception-safe loop optimizations

and exception-safe loop tiling.

Staging and Program Generation Delite [31, 144] is a general purpose com-

piler framework, implements high-performance DSLs, provides parallel patterns, and

generates code for heterogeneous targets. LMS [130] is library-based generative pro-

gramming and compiler framework. LMS uses types instead of syntax to identify

binding times, and generates an intermediate representation instead of target code.

Code generation examples from relevant domains include Spiral [118] for digital signal
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processing (DSP) and Halide [120] for image processing. Haskell is another popular

host for embedded DSLs [145]. The work in [89] embeds a DSL that mimics JavaScript

in Scala using LMS.

4.8 Conclusion

In this Chapter, we have presented a surprisingly simple pattern for implementing

OSR in source-to-source compilers or explicit program generators that target lan-

guages with structured control flow (loops and conditionals). We have shown how

on-stack-replacement provides the ability to replace currently executing code with a

different version, either a more optimized one or a more general one, within a high

level program. OSR has been a key component in all modern VMs for languages

like Java or JavaScript for a long time, however it has only recently been studied as

a more abstract program transformation, independent of language VMs. Our work

extends the scope of OSR beyond the context of low-level execution models based on

stack frames, labels, and jumps and makes it more broadly applicable.

We have evaluated key use cases and demonstrated attractive speedups for tiered

compilation with Flare. We have further shown that casting OSR as a metapro-

gramming technique enables new speculative optimization patterns beyond what is

commonly implemented in language VMs.
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5 PRECISE REASONING WITH STRUCTURED TIME, STRUCTURED

HEAPS, AND COLLECTIVE OPERATIONS

This Chapter is based on [56].

In Chapter 2, we implement data-centric systems using a defered API: first the

system builds a graph representing the computation, then a compiler phase generates

efficient code. However, a lot of legacy code is not implemented in this fashion, instead

implemented as low-level, imperative code. How can we leverage these pieces of code

already implemented and apply Flare optimizations to make them parallel or even

distributed? Similarly, Flare is limited to UDFs written with the LMS framework,

how can we add support for generic UDFs?

In this chapter, we propose a novel vision to static analysis that allows us to

extract high level constructs from a program. The results given by this new analysis

allow us to accelerate legacy code with Flare, but, in addition, it also provides an

analysis with additional applications such as verification.

5.1 Introduction

Programs like the one in Figure 5.1 are a real challenge for analysis and verification

tools. The language features used include arithmetic, dynamic memory allocations,

linked heap structures, and loops. Analysis tools need to reason about all these

features with high precision. If precision is lost at any point, it may be impossible to

obtain any useful result. In practice, many state-of-the-art tools are unable to verify

this program, including tools that score highly on software verification competitions

such as CPAchecker [23] and SeaHorn [69], as well as Facebook’s Infer tool [34].

While it is easy to come up with a long list of individual reasons that make this

kind of analysis hard, we make two overarching observations:
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// build list of numbers < n

x := null; l := 0

while l < n do {

y := new;

y.head := l;

y.tail := x;

x := y;

l := l + 1

}

// traverse list , compute sum

z: = x; s: = 0

while z != null do {

s := s + z.head;

z := z.tail

}

// check result (closed form)

assert(s == n*(n-1) /2)

Figure 5.1.: Challenge program: in constrast to state-of-the-art tools like
CPAchecker, SeaHorn, or Infer, our approach is able to verify the final assertion,
as well as the absence of memory errors such as dereferences of null or missing fields.
Dynamic allocations and linked data structures pose particular difficulties w.r.t. dis-
ambiguation of memory references, manifest in potential aliasing and the problem of
“strong” updates. Our structured heap model represents allocations inside a loop us-
ing a collective form for sequence construction y = 〈.〉(i < n). [head 7→ i, tail 7→ ...],
based on which the second loop maps to a collective sum s = Σ(i < n). y[i].head =
Σ(i < n). i over this sequence. Knowledge about closed forms for certain sums val-
idates the final assert (details, including the definition of tail 7→ ..., are shown in
Figure 5.2 and Section 5.2.2).

1. Program abstractions used in common analysis methods are typically scalar,

i.e., they represent individual program variables, relations between individual

variables as in the case of relational abstract domains, array updates at individ-

ual positions, and so on. But program abstractions do not typically represent

collective entities such as “an array that contains the natural numbers from 1

to n” or “the sum of all elements in an array.” Instead, such information must

be encoded extensionally using quantified and often recursive formulae.

2. Program abstractions typically project away the dimension of time. Most anal-

yses gather and collapse information into a single abstract value per program

point (possibly with some context-sensitivity). This means that in the presence

of loops, values computed in different loop iterations are not distinguished.

Hence, program abstractions do not typically represent space-time information

such as “field tail of the object allocated here in a given loop iteration points

to the object allocated at the same position in the preceding loop iteration.”
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In this Chapter, we address both points through first-class collective operations and

a structured heap representation, coupled with a structured notion of time.

First-Class Collective Operations For the first point, we propose to model col-

lective operations such as sums or array formation as first-class entities, without

quantifiers or recursive definitions. This idea is inspired by Σ-notation in mathemat-

ics, and by recent advances in highly optimizing compilers where high-level IRs based

on map, reduce , and similar collective abstractions have had significant success.

In mathematics, collective forms such as 〈ai〉i for sequences and Σiai for series

are not just compact syntactic sugar, but they give rise to intuitive algebraic laws.

Thus, collective forms enable reasoning about sequences and series on a higher level

than directly about the underlying recurrences. Introduced by Fourier [62], big-Σ and

related operators have rapidly become an integral part of modern mathematics, and

they have found their way into programming languages in the form of comprehensions

via SETL [136], via Dijkstra’s Eindhoven Quantifier Notation [47], and of course as

functional operators via APL [77].

If these abstractions help manual reasoning, then it seems only logical that they

should also help automated reasoning—so it is surprising that program analysis tools

do not in general afford collective forms first-class status and do not try to reverse-

engineer low-level code into such higher-level representations. Instead, automated

tools usually reason at the level of scalar recurrences, which poses all kinds of chal-

lenges.

Compilers: From Optimizing for Performance to Simplifying for Clarity

In this aspect, the field of optimizing compilers is ahead of general program analy-

sis. Compiler writers have long recognized that aggressive transformations such as

automatic parallelization are very hard to perform on low-level, imperative program

representations. Hence, there has been ample work on trying to extract structure

from low-level code. For example, the Chains of Recurrences (CoR) model [16, 52]

is a collective and closed-form representation for classes of functions including affine,
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multivariate polynomial, and geometric functions, which is widely used in optimizing

compilers for generating efficient code to compute a given function on an interval of

indexes, e.g., in a loop.

Over the last decade, a thriving line of research has demonstrated that even more

aggressive transformations such as automatic parallelization are imminently practical

for domain-specific languages (DSLs) that restrict mutability and make collective op-

erations such as map, reduce , filter , groupBy , etc., first-class, so that the DSL

compiler can reason about them algebraically when making optimization decisions,

potentially coupled with auto-tuning and/or search for the best implementation based

on cost models and dynamic programming. These systems outperform comparable

code written in general-purpose languages by orders of magnitude and achieve asymp-

totically better parallel scaling [31, 32, 120, 131, 133, 141–144]. And while the orignal

goal was for programmers to write DSL code directly, recent research has also shown

that it is often practical to “decompile” low-level legacy code into high-level DSLs,

whose role shifts to that of an intermediate representation [5,83,103,119,124,129,132].

The key thrust of this Chapter is to take this approach further and apply it

to more general program analysis settings, including for the purpose of automatic

verification. Thus we shift the goal from optimizing programs for performance to

simplifying programs for clarity, by extracting high-level collective operators from

low-level code. It is not intuitively clear that this reverse-engineering task is easier

than the desired analysis itself, but we will show how several techniques come together

to make this approach practical, in particular by fusing several simplification and

analysis tasks into a single iterative fixed-point computation (Section 5.4).

Structured Time and Structured Heaps A major challenge remains: dynamic

memory allocation, coupled with unbounded iteration constructs, may lead to an

unbounded number of runtime objects, which need to be mapped to a finite static

representation. The crux of this challenge is to find a static representation that still

enables effective disambiguation of memory references in order to minimize potential
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Figure 5.2.: Flat vs. structured stores for two example programs. The standard flat
store model assigns consecutive numeric addresses for each allocation. By contrast,
addresses in our structured store model consist of a program point and the surround-
ing loop variables at the time of allocation. A, B[1], C[42] are all valid concrete
addresses. For program points inside loops (B and C), all objects allocated there are
are represented as sequences (B = 〈. . . 〉i and C = 〈. . . 〉i) in the store. Going from
concrete to abstract stores, these sequences can be abstracted as collective forms, with
greatly improved precision over an abstract store that only distinguishes allocations
by program point. In particular, it is straightforward to capture the property that
elements in a linked list point to the element allocated in the previous loop iteration
and the last element points to null.

aliasing of pointers, which, among other detrimental effects, stands in the way of

strong updates : recognizing when the previous value of a variable or memory loca-

tion is definitely overwritten. More generally, strong updates are one example of a

situation where an analysis needs to reason about the dimension of time, i.e., relating

values at different points during the dynamic execution of the program. To address

this challenge, a key ingredient of our approach is to identify useful collective-form

representations for arbitrary-size dynamic heap structures such as arrays and linked

lists.
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We propose a novel structured heap model that incorporates the dimension of

time in the structure of addresses and the allocation policy (see Figure 5.2). This

concrete heap model leads directly to an abstract heap model that permits concise

and expressive symbolic representation. Instead of abstracting dynamic allocations

uniformly per program point, and having the abstract heap map abstract locations to

sets of abstract values, we represent objects allocated at a program point inside a loop

as a potentially unbounded sequence, indexed by the loop variable. This enables us

to reason about all objects allocated at a given program point in a collective way, and

assign a concise abstract summary based on a symbolic loop index. This in turn gives

us fine-grained abilities to reason about objects allocated in different loop iterations

and about their interactions, including strong updates deep within data structures

(see Figure 5.2).

Framework Instantiation We instantiate our framework in a way that is similar

to deductive verification with forward reasoning, i.e., a strongest postcondition model.

We translate imperative source programs into a functional representation and simplify,

preserving correctness and error behavior modulo termination. The translation makes

all error conditions explicit, so verification amounts to checking that the valid tag

that signals the occurrence of errors in the final program state has been simplified to

the constant true .

In the simplest case, simplification can happen entirely after translation, based

on various rewriting strategies that apply simplification rules one by one. The

strategies can be deterministic, e.g., apply simplification rules bottom-up, or non-

deterministically search for the most profitable simplification based on various heuris-

tics (Section 5.3.3).

From Pessimistic to Optimistic However, even search-based post-hoc simplifi-

cation strategies are fundamentally limited in that each individual rewrite has to be

equality-preserving. The result is essentially a phase ordering problem (typical in

compilers). The solution is to interleave translation and simplification [95], which en-
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ables a form of speculative rewriting where chains of rewrites can be tried and either

committed, if they are found to preserve equality, or rolled back, if not (Section 5.4).

The post-hoc approach is also characterized as pessimistic, and the interleaved ap-

proach as optimistic. To illustrate the difference, the optimistic approach can simplify

a loop based on the assumption that a variable remains constant throughout the loop,

if it verifies the assumption afterwards. By contrast, the pessimistic approach would

need prove that the variable is loop-invariant first, which may not be possible without

the simplifications currently on hold.

In both pessimistic and optimistic approaches, the end result is a precise sym-

bolic representation of the program state post execution. Although inefficient, this

representation could be used to compute the concrete program output for any given

input. This means that our approach leads to more precise information than strictly

necessary for verification, and essentially solves a harder problem than demand-driven

verification approaches. The fact that we are able to gain this much precision in a

strongest-postcondition setting that is typically considered an unworkable verifica-

tion approach makes us confident that the core of our method will apply just as well

in weakest precondition scenarios or analyses based on abstract interpretation that

approximate deliberately, and lead to increased precision there as well.

We implement our approach in a prototype system called SIGMA, which analyzes

C code. Since our approach produces precise symbolic program representations, we

can use SIGMA not only for verification, but also for checking program equivalence,

and for translating legacy code to high-performance DSLs, as we demonstrate in our

evaluation.

Contributions To the best of our knowledge, no previous work models first-class

collective operations in a general-purpose program analysis setting. There are spe-

cialized uses in aggressive optimizing compilers that aim to retarget legacy code to

high-performance DSLs [5,83,103,119,124,129,132], but these systems (a) are specific

to a given target DSL, and (b) only deal with flat arrays, not linked lists or dynamic
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memory allocation. Likewise, simple classes of structured heap models have been used

in previous work [150], but these are restricted to separating container instances. The

idea of indexing program values by loop iterations has also been proposed in the con-

text of dynamic program analysis [164] and in polyhedral compilation [20]. Our key

novel insight, not found in any previous work, is to push execution indexing all the

way into the heap and allocation model. We give the heap a structure that uniformly

reflects the program’s loop structure, with objects allocated at a program point inside

a loop represented as a sequence indexed by the loop variable, and use this concrete

heap model as a basis for symbolic analysis.

5.2 Collective & Closed Forms, Step-by-Step

We take a program in the imperative source language IMP as input (Figure 5.3),

and translate it into an equivalent functional program in our intermediate analysis

language FUN (Figure 5.6), on which we perform symbolic simplification to expose

the properties of interest (either after the translation or interleaved with it). For

soundness, we require simplification to preserve all potential error conditions, but we

do not, for example, need to preserve cases of divergence. FUN is a good intermediate

representation for several reasons. First, it eschews side effects and makes all data

dependencies explicit, which enables simplification through structural rewriting and

enables us to represent IMP-level error conditions explicitly in the language. Second, it

provides both recursive functions and collective forms, which enables us to gradually

move from one to the other within the same language. While it can be helpful to

think of the translation to FUN as a form of abstract interpretation of IMP programs,

especially w.r.t. the Kleene iteration in Section 5.4, it is important to stress that the

basic translation is exact (i.e., fully semantics preserving), without any approximation

(details in Section 5.3).

As a running example, let us consider a simple while loop, which sums the

integers from 0 to k−1 in variable s:
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j := 0;

s := 0;

while j < k do {

s := s + j;

j := j + 1

}

Our goal is to characterize the program state after the loop, i.e., to obtain a

mapping of the form [ j -> ?, s -> ? ], from program variables to abstract values

(in our case, symbolic expressions).

The first step is to transform this IMP program into an equivalent FUN program.

We make loop indices explicit and represent the values of j and s after a certain

loop iteration i by a set of recursive functions, derived from the program text. For

example, after the first iteration (i = 0), j and s are equal to 1 and 0 respectively,

and are increased by 1 and j(i− 1) respectively for each iteration:
let j = λ(i). if i ≥ 0 then j(i− 1) + 1 else 0
let s = λ(i). if i ≥ 0 then s(i− 1) + j(i− 1) else 0

Now we can meaningfully talk about values at iterations i and i− 1, and about their

relationship: we reason in both space and time. We describe the trip count of the

loop declaratively, as the first n for which the condition is false , using the built-in

# functional—an example of a collective form:
let n = #(i). ¬(j(i) < k)

The operational interpretation of #(i). f(i) is to find the smallest i ≥ 0 for which f(i)

evaluates to true or to diverge if no such i exists. Variable i is bound within the term

following the dot, i.e, f(i). We are now ready to describe the program state after the

loop as a FUN term by mapping each variable to a precise symbolic description of how

it is computed using the previous definitions: [ j -> j(n− 1) , s -> s(n− 1) ]

We go on by identifying patterns in the recursive definitions. The following chain of

rewrites transforms j and s to collective forms: an explicit sum construct, comparable

to the mathematical Σ notation. For uniformity with other collective forms, we use

the syntax Σ(i < n). f(i) to denote the sum of all f(i) for all 0 ≤ i < n. Again,

variable i is bound in the body of the term. As part of the simplification, β-reduction

is performed for non-recursive functions:
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let j = λ(i). if i ≥ 0 then j(i− 1) + 1 else 0
= λ(i). Σ(i2 < i+ 1). 1

let s = λ(i). if i ≥ 0 then s(i− 1) + j(i− 1) else 0
= λ(i). Σ(i3 < i+ 1). j(i3 − 1)

The collective sums for j, s are readily transformed to closed forms, which also pro-

vides a closed form loop count n:
let j = λ(i). Σ(i2 < i+ 1). 1

= λ(i). if i ≥ 0 then i+ 1 else 0
let s = λ(i). Σ(i3 < i+ 1). j(i3 − 1)

= λ(i). Σ(i3 < i+ 1). i3
= λ(i). if i ≥ 0 then (i+ 1) ∗ i/2 else 0

let n = #(i). ¬(j(i) < k)
= #(i). ¬(i+ 1 < k)
= if k ≥ 0 then k else 0

With that, we obtain the desired closed form representation for the final program

state based on j(n− 1) and s(n− 1):
[ j -> if k ≥ 0 then k else 0, s -> if k ≥ 0 then k*(k−1)/2 else 0 ]

This symbolic representation can be used for multiple purposes at this point, either

to verify programmer-specified assertions, as in Figure 5.1, to test equivalence of the

source program with another one, or to generate optimized code (Section 5.6).

To keep the presentation high-level, we have deliberately omitted some details

above, including exactly how recursive relations are converted into collective and

closed forms. A simple approach can be realized based on pattern-based rewriting

(Section 5.3.3), while the more sophisticated iterative approach based on speculative

rewriting is discussed in Section 5.4, using the same running example.

5.2.1 Collective Forms for Arrays

We now turn our attention to dynamic memory operations. The simplest case is

arrays. We modify our example program to first store the numbers in an array a,

and then compute the sum by traversing the array a:
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// build array of numbers < n

a := new;

l := 0;

while l < n do {

a[l] := l;

l := l + 1

}

// traverse array , compute sum

j := 0;

s := 0;

while j < l do {

s := s + a[j];

j := j + 1

}

The additional challenge now is that our analysis needs to reason about array con-

struction, as well as array traversal. In particular, we need to ensure that all array

accesses are safe, and in addition, we need to precisely identify the values each array

slot contains after the first loop, without any ambiguity. We solve this challenge by

representing the array a using a closed form for sequence construction after the first

loop, and recognizing that the second loop sums the elements of that sequence in s,

which enables us again to use a collective sum expression.

The FUN representation is as follows. For simplicity, we show l and j already

rewritten to closed forms, and the number of iterations already resolved to n ≥ 0.

The syntax seq[i -> x] denotes a copy of sequence seq, with the element at

position i updated to x. We extract the recursive dependencies for the first loop:
let l = λ(i). if i ≥ 0 then i+ 1 else 0
let a = λ(i). if i ≥ 0 then a(i− 1)[i -> i] else []

We can now describe the state after the first loop (a(n−1) refers to the definition

above):
[ l -> n, a -> a(n−1) ]

Alas, this will not allow us to relate the array accesses of both loops. Can we do

better? In addition to sums, products, and boolean connectives, our language FUN

also contains collective form constructors for sequences. The notation array( i < n).

f(i) initializes a sequence or array with index range i = 0, . . . , n− 1, where each i is

mapped to f(i). Simplification proceeds as follows:
let a = λ(i). if i ≥ 0 then a(i− 1)[i -> i] else []

= λ(i). array(i2 < i+ 1). i2

And we obtain a much more useful description of the state after the first loop:
[ l -> n, a -> array(i < n). i ]

We can then proceed for the second loop:
let j = λ(i). if i ≥ 0 then i+ 1 else 0
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let s = λ(i). if i ≥ 0 then s(i− 1) + a[j(i− 1)] else 0
= λ(i). if i ≥ 0 then s(i− 1) + (array(i2 < n+1). i2)[i] else 0

Simplifying the array access (array(i2 < n+ 1). i2)[i] to i depends on the presence

of the enclosing loop precondition i < n, i.e., rewriting may be context- and flow-

sensitive. Afterwards, simplification of s proceeds as before.
let s = λ(i). if i ≥ 0 then s(i− 1) + i else 0

= λ(i). if i ≥ 0 then (i+ 1) ∗ i/2 else 0

Finally the state at the end of the program is:
[ l -> n, j -> n, a -> array(i < n). i, s -> n*(n-1)/2 ]

5.2.2 Collective Forms for Linked Structures

To complicate matters further, we might store the numbers in a linked list in-

stead of an array, and build the sum by traversing the list, leading to the code from

Figure 5.1:
// build list of numbers < n

x := null;

l := 0;

while l < n do {

y := new;

y.head := l; y.tail := x;

x := y;

l := l + 1

}

// traverse list , compute sum

z: = x;

s: = 0;

while z != null do {

s := s + z.head;

z := z.tail

}

Now we need to reason about individual heap cells, allocated in different iterations

of the first loop, as well as strong updates to the head and tail fields in these

dynamically allocated objects. At this point, our structured heap model introduced

in Figure 5.2 plays a crucial role.

At runtime, there will be one object created for y per loop iteration i. While

variable y holds the address of an object, we identify the actual object by its location

p in the program text, indexed by the loop variables of its enclosing loops, i.e., p[i],

and refer to the freshly allocated (but deterministically chosen) address as &new:p[i].

Here, we use p as an abbreviation for the precise path in the program tree,

i.e., root.snd.snd.while.fst, and p[i] is an abbreviation for the indexed path

root.snd.snd.while[i].fst.
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The notation p[i] already suggests that we can treat p just like an array of

objects. After loop iteration i, x and y contain the address &new:p[i] of the latest

allocated object:
let x = λ(i). if i ≥ 0 then &new:p[i] else null

let y = λ(i). if i ≥ 0 then &new:p[i] else ⊥, // ⊥ = uninitialized

The collection (array!) of objects p is defined and gets rewritten as follows:
let p = λ(i). if i ≥ 0 then p(i− 1)[i->[tail -> x(i− 1), head -> i]] else []

= λ(i). array(i2 < i). [tail -> x(i2 -1), head -> i2]
= λ(i). array(i2 < i). [tail -> if i2 > 0 then &new:p[i2 -1] else

null , head -> i2]

We can see how the recursive dependency between runtime objects is captured pre-

cisely. Note however that after simplification, p is no longer a recursive function: the

address &new:p[i2 − 1] is a purely syntactic term, which can be used to look up an

object later by dereferencing the address.

After the first loop, the program state represents a proper store with static as well

as dynamically allocated objects:
[ l -> n,

x -> if n > 0 then &new:p[n-1] else null ,

y -> if n > 0 then &new:p[n-1] else ⊥
p -> array(i < n). [tail -> if (i > 0) then &new:p[i-1] else

null , head -> i]

As indicated before, the structure of the store is hierarchical and mirrors the

program structure. Dereferencing an address entails accessing the store. We will use

the notation σ[addr], but need to keep in mind that for a composite address like

&new:p[0], two steps of lookup are necessary: first by p, and then by 0.

The second loop leads to the following definitions of z, s:
let z = λ(i). if i ≥ 0 then σ[z(i− 1)][tail] else x
let s = λ(i). if i ≥ 0 then s(i− 1) + σ[z(i− 1)][head] else 0

Simplification by rewriting yields the desired closed forms (remember i < n as we are

within the loop):
let z = λ(i). if n > 0 then { if i ≥ 0 then σ[z(i− 1)][tail] else

&new:p[n−1] } else null

= λ(i). if i ≥ 0 then &new:p[n−1− i] else null

let s = λ(i). if i ≥ 0 then (i+ 1) ∗ i/2 else 0

Thus, we obtain the desired analysis result.
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Expressions e ∈ Exp
n ∈ Nat, b ∈ Bool, x ∈ Name

e ::=
n | b | &x Constant (nat, bool, addr)
e1 + e2 | e1 − e2 | e1 ∗ e2 Arithmetic
e1 < e2 | e1 = e2 | e1 ∧ e2 | ¬e Boolean
e1[e2] Field read

Statements s ∈ Stm

s ::=
x := new Allocation
e1[e2] := e3 Assignment
if e then s1 else s2 Conditional
while e do s Loop
s1; s2 Sequence
skip No-op
abort Error

Syntactic Sugar
x ≡ &x[0]
x := e ≡ x[0] := e
e.x ≡ e[fieldId(x)]
assert e ≡ if e then skip else abort

Figure 5.3.: IMP: Surface language syntax.

Throughout this section, we have glossed over some details. For example, we did

not include explicit error checks in our translation, but checks for, e.g., validity of

field accesses, need to be accounted for, and the details are described in Section 5.3.2.

We also did not bother with variables that were obviously loop invariant. In reality,

it is part of our analysis’ job to determine which variables are the loop-invariant ones.

We will return to this question in Section 5.4.

5.3 Formal Model

Since our approach hinges on translating imperative to functional code and apply-

ing transformation and simplification rules, it is imperative to formally establish the

correctness of all these components to ensure the overall soundness of the approach.
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Runtime Structures

v ∈ Val ::= n | b | l Value (nat, bool, ptr)
l ∈ Loc ::= &x | &new:c Location (static, dynamic)
o ∈ Obj : Nat ⇀ Val Object
σ ∈ Sto : Loc ⇀ Obj Store

c ∈ Ctx ::= Context path
root At top level
c.then | c.else In conditional
c.fst | c.snd In sequence
c.while[n] In loop (iteration n)

Expression Evaluation σ ` e ⇓ v

σ ` n ⇓ n (ENum)
σ ` e1 ⇓ n1 σ ` e2 ⇓ n2

σ ` e1 + e2 ⇓ n1 + n2
(EPlus)

σ ` e1 ⇓ l1 σ ` e2 ⇓ n2 σ[l1] = o o[n2] = v3

σ ` e1[e2] ⇓ v3
(EField)

Loop Evaluation σ, c ` (e s)n ⇓ σ′

σ, c ` (e s)0 ⇓ σ (EWhileZero)

σ, c ` (e s)n ⇓ σ′
σ′ ` e ⇓ true σ′, c.while[n] ` s ⇓ σ′′

σ, c ` (e s)n+1 ⇓ σ′′
(EWhileMore)

Statement Evaluation σ, c ` s ⇓ σ′

σ, c ` x := new ⇓ σ[&new:c 7→ [],&x 7→ [0 7→ &new:c]] (ENew)

σ ` e1 ⇓ l1 σ ` e2 ⇓ n2 σ ` e3 ⇓ v3 σ[l1] = o

σ, c ` e1[e2] := e3 ⇓ σ[l1 7→ o[n2 7→ v3]]
(EAssign)

σ ` e ⇓ true σ, c.then ` s1 ⇓ σ′

σ, c ` if e then s1 else s2 ⇓ σ′
(EIfTrue)

σ ` e ⇓ false σ, c.else ` s2 ⇓ σ′

σ, c ` if e then s1 else s2 ⇓ σ′
(EIfFalse)

σ, c ` (e s)n ⇓ σ′ σ′ ` e ⇓ false

σ, c ` while e do s ⇓ σ′
(EWhile)

σ, c.fst ` s1 ⇓ σ′ σ′, c.snd ` s2 ⇓ σ′′

σ, c ` s1; s2 ⇓ σ′′
(ESeq)

σ, c ` skip ⇓ σ (ESkip)

Figure 5.4.: IMP: Relational big-step semantics (primitive constants and operators
other than n and + elided). Note the evaluation rules for while loops and the role
of program context c for address allocation in rule (ENew).

In addition, our structured store allocation model incurs some subtleties that warrant

a formal description that explains the connection with standard store semantics.
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Runtime Structures

o ∈ Obj : Nat→ Option Val Object

σ ∈ Sto : Loc→ Option Obj Store

Monad operations:
m ∈ Option T ::= None | Some τ where τ ∈ T
x← m; f(x) = m >>= f

>>= : Option T → (T → Option U)→ Option U
getOrElse : Option T → T → T

toNat : Val→ Option Nat
toBool : Val→ Option Bool
toLoc : Val→ Option Loc

Iteration primitive:
# : (Nat ⇀ Bool) ⇀ Nat

#f = g(0) where
g(i) = if f(i) then i else g(i+ 1)

Expression Evaluation J e K(σ) = v

J . K : Exp→ Sto→ Option Val
J n K(σ) = Some n

J e1 + e2 K(σ) = n1← J e1 K(σ) >>= toNat;
n2← J e2 K(σ) >>= toNat
Some (n1 + n2)

. . . = . . .
J x K(σ) = o← σ[&x]; o[0]

J e1[e2] K(σ) = l ← J e1 K(σ) >>= toLoc;
n← J e2 K(σ) >>= toNat;
o← σ[l];
o[n]

Loop Evaluation J e s K(σ, c)(n) = σ′

J . K : Exp× Stm→ Sto× Ctx→ Nat
⇀ Option Sto

J e s K(σ, c)(n) = f(n) where
f(0) = Some σ
f(n+ 1) = σ′ ← f(n)

true← J e K(σ′) >>= toBool
J s K(σ′, c.while[n])

Statement Evaluation J s K(σ, c) = σ′

J . K : Stm→ Sto× Ctx
⇀ Option Sto

J x := new K(σ, c) = σ[&new:c 7→ [],
&x 7→ [0 7→ &new:c]]

J e1[e2] := e3 K(σ, c) = l ← J e1 K(σ) >>= toLoc
n← J e2 K(σ) >>= toNat
v ← J e3 K(σ);
o← σ[l];
σ[l 7→ o[n 7→ v]]

J if (e) s1 else s2 K(σ, c) = b← J e K(σ) >>= toBool
if b then J s1 K(σ, c.then)
else J s2 K(σ, c.else)

J while e do s K(σ, c) = σ′ ← J e s K(σ, c)(n)
false← J e K(σ′) >>= toBool
Some σ′ where
n = #(λi.(
σ′ ← J e s K(σ, c)(i)
b← J e K(σ′) >>= toBool
Some ¬b) getOrElse true)

J s1; s2 K(σ, c) = σ′ ← J s1 K(σ, c.fst)
J s2 K(σ′, c.snd)

J skip K(σ, c) = Some σ
J abort K(σ, c) = None

Figure 5.5.: IMP Functional semantics with explicit errors, partiality reserved for
divergence. Note the use of monad operations throughout and the use of an iteration
primitive in the evaluation of while loops.

In this section, we formalize the source and target languages and prove correctness

of the translation, and the rewrite and simplification rules. This establishes the

key result that an analysis engine that applies an arbitrary combination of equality-

preserving simplifications will produce a sound result with respect to the semantics

of the source language IMP. We have implemented our formal model in Coq and

mechanized the results in this Section.
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5.3.1 Source Language IMP

The syntax of our imperative model language IMP is defined in Figure 5.3. Our

version of IMP is similar to imperative model languages found in a variety of textbooks,

but is extended with dynamic memory operations and includes the possibility of

certain runtime errors which reflect verification scenarios of practical interest.

IMP’s syntax is split between expressions e and statements s. The language sup-

ports allocation statements x := new, as well as array or field references e1[e2] (note

that both array indices and fields can be computed dynamically) and corresponding

assignments. Addresses of local variables &x are available as constant expressions,

and variable references x are treated as syntactic sugar for dereferencing the corre-

sponding address &x[0]. Named field references e.x are desugared into a numeric

index assuming an injective global mapping fieldId . The null value is not part

of the language, but can be understood as a dedicated address that is not otherwise

used. It is important to note that there is no syntactic distinction between arith-

metic and boolean expressions. Hence, evaluation may fail at runtime due to type

errors or undefined fields. The syntax also includes an explicit abort statement for

user-defined errors with assert as syntactic sugar.

Relational Semantics The semantics of IMP is defined in big-step style, shown in

Figure 5.4. Many of the evaluation rules are standard: expressions evaluate to values,

and statements update the store. A store σ is a partial function from locations l to

heap objects o, which are partial functions from numeric field indexes to values. We

use square brackets to denote store or object lookup, i.e., σ[l] = o and o[n] = v, as

well as update, i.e., σ[l 7→ o] and o[n 7→ v]. However, two aspects of the semantics

deserve further attention.

First, store addresses are not flat but have structure. For dynamic allocations,

rule (ENew) deterministically assigns a fresh store address &new:c where c is the

current program context c. This context is maintained throughout all statement rules

and uniquely determines the spatio-temporal point of execution in the program. It
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combines static information, i.e., the location in the program text, with dynamic

information, i.e., progress of execution, represented by the current iteration vector of

all enclosing loops. This will later enable us to talk about abstract locations from

within the same loop, but at different iterations.

Second, while loops are executed with the help of an auxiliary judgement σ, c `

(e s)n ⇓ σ′, which characterizes the result of executing a loop body n times. This

already hints at what we want to achieve later: replace iteration by a collective form

for a given n. Declaratively, the number of iterations a loop will be executed is the

particular n after which the condition becomes false. Operationally, rule (EWhile)

has to “guess” the correct n. While not necessarily the best fit for deriving an

implementation, this formulation of while loops renders the semantics compositional

[138,139], a good basis for deriving a semantics-preserving translation.

Given these differences, we first establish equivalence of the given semantics with

a more standard formulation that assigns store locations nondeterministically, and

defines while loops without explicit reference to iteration numbers.

Definition 5.3.1 (Standard Semantics) Let ⇓0 be the relation derived from ⇓ by

dropping contexts c and replacing rules (ENew) and (EWhile) with the following

rules:

&new:n /∈ σ

σ ` x := new ⇓ σ[&new:n 7→ [],&x 7→ [0 7→ &new:n]]
(ENewN)

σ ` e ⇓0 true σ ` s ⇓ σ′ σ′ ` while (e) s ⇓0 σ′′

σ ` while (e) s ⇓0 σ′′
(EWhileTrue)

σ ` e ⇓0 false

σ ` while (e) s ⇓0 σ
(EWhileFalse)

Proposition 5.3.1 (Adequacy of ⇓) ⇓0 and ⇓ are equivalent, up to a bijection

between store addrs &new:n and &new:c.

We now study key properties of our semantics. First, we show that ⇓ is determin-

istic, and hence we can understand it as a partial function eval⇓.
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Proposition 5.3.2 (Determinism) The semantics is deterministic: if σ, c ` s ⇓

σ′ and σ, c ` s ⇓ σ′′ then σ′ = σ′′.

Definition 5.3.2 (Initial Store) Let σ∅ be the store with σ∅[&x] = [] and σ∅[&new:c]

undefined for all x and c.

Definition 5.3.3 Let eval⇓(s) = σ iff σ∅, root ` s ⇓ σ, and undefined otherwise.

Error Behavior As presented, the semantics does not distinguish error cases from

undefinedness due to divergence. If our goal is program verification, then we need to

isolate the error cases precisely and introduce a distinction.

Proposition 5.3.3 For all s, eval⇓(s) is either: (1) a unique result σ, (2) undefined

due to divergence (i.e., there exists a loop in the program for which the condition is

true for all n in rule (EWhile)), or (3) undefined due to one of the following possible

errors: type error (Nat, Bool, Loc), reference to nonexistent store location, reference

to nonexistent object field, explicit abort

Proof We show that the property holds up to a given upper bound n on the number

of iterations any loop can execute, and do induction over n.

Functional Semantics Based on these observations, we define a second semantics

that makes all error conditions explicit by wrapping potentially failing computations

in the Option monad, and which also replaces the nondeterminism in rule (EWhile)

with an explicit and potentially diverging search for the correct number of iterations.

With these modifications, the semantics can be expressed in a denotational style,

directly as partial functions. We show the definition in Figure 5.5. Functions J . K

now take the role of the relation ⇓, and partial functions that could be undefined

due to runtime errors are now replaced by total functions that return an Option T

instance, i.e., either None to indicate an error or Some τ with a T -value τ to signal

success. The evaluation of expressions becomes entirely total. The only remaining
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source of partiality is the potentially diverging computation of loop iterations n =

#(λi. . . .).

Definition 5.3.4 Let evalJ K(s) = J s K(σ∅, root).

Proposition 5.3.4 For all s, evalJ K(s) is either: (1) a unique result Some σ, (2)

an explicit error None, or (3) undefined due to divergence.

Proposition 5.3.5 (Adequacy) For all s, eval⇓(s) and evalJ K(s) agree exactly on

their value, error, and divergence behavior.

Proof By induction on an assumed upper bound on the number of iterations per

loop.

This functional semantics has the appealing property of denotational formulations

that we can directly read it as a translation from IMP to mathematics. By mapping

the mathematical notation into (a subset of) our target language FUN, we obtain a

translator from IMP to FUN.

5.3.2 Target Language FUN

The syntax of FUN is defined in Figure 5.6. FUN is a functional language based on

λ-calculus, with expressions g as the only syntactic category. The primitive data types

are natural numbers, booleans, store addresses, and objects, i.e., records with numeric

keys. In addition, FUN has a rich set of collective operators for sums, products, forall,

and exists. While the presention here only covers those four monoids, the technique

presented in this Chapter can be easily generalized to other monoids.

Figure 5.7 summarizes how the various entities in the definition of IMP’s functional

semantics in Figure 5.5 map to FUN constructs. This enables us to directly read the

given IMP semantics as translation rules.

Proposition 5.3.6 Functions J e K(σ) and J s K(σ, c) accomplish translation from

IMP to FUN.
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Expressions g ∈ Exp

g ::=
n | b | l | [] Const (nat, bool, loc, obj)
x Variable
e1 3 e2 Field exists?
e1[e2] Field read
e1[e2 7→ e3] Field update
g1(g2) Application
λ(x). g Function
#(x). g First index
〈.〉(x < g1). g2 Sequence

w ::= Value
n | b | l Constant

e1 + e2 | e1 − e2 | e1 ∗ e2 Arithmetic
e1 < e2 | e1 = e2 | ¬e Logic
if e then s1 else s2 Conditional
letrec x1 = g1, . . . in gn Recursive let
Σ(x < g1). g2 Sum
Π(x < g1). g2 Product
∀ (x < g1). g2 Conjunction
∃ (x < g1). g2 Disjunction
. . .

[n0 7→ w0, . . .] Object

Figure 5.6.: FUN: Target language syntax.

Translation
None = [valid 7→ false]

Some g = [valid 7→ true,data 7→ g]
g >>= f = if g.valid then f(g.data) else None

g1 getOrElse g2 = if g1.valid then g1.data else g2

Val n = [tpe 7→ nat, val 7→ n]
Val b = [tpe 7→ bool, val 7→ b]
Val l = [tpe 7→ loc, val 7→ l]

toNat g = if g.tpe = nat then Some g.val else None
toBool g = if g.tpe = bool then Some g.val else None
toLoc g = if g.tpe = loc then Some g.val else None

o[n] = if o 3 n then [valid 7→ true,data 7→ o[n]]else [valid 7→ false]
σ[l] = if σ 3 l then [valid 7→ true,data 7→ σ[l]]else [valid 7→ false]

Figure 5.7.: FUN: Mathematical notation as syntactic sugar, and value representation
for the Option Monad. This enables reading Figure 5.5 as translation from IMP to
FUN. Every monadic value has a valid flag that is set to false to indicate an error
condition.

The semantics of FUN follows the standard call-by-value (CBV) λ rules. The col-

lective operators trivially map to recursive definitions. The only non-trivial addition

is the mapping of store locations to numeric keys for record access.

Definition 5.3.5 Let→v be the standard CBV λ reduction, extended to FUN with the

following rules:
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w[&new:fst.p]→ w[fst][&new:p]

w[&new:snd.p]→ w[snd][&new:p]

w[&new:while[n].p]→ w[while][n][&new:p]

. . .

Here we assume a standard mapping from names like ‘fst’, ‘while’, etc., to numbers,

as before. We can see now that at the FUN level, the IMP store assumes a nested

structure, mapping all values allocated in a loop into an array indexed by the loop

variable. The update and field test rules are analogous to the lookup rules shown.

Proposition 5.3.7 Evaluating a FUN expression via →∗v can either: (1) terminate

with a value, (2) terminate with a stuck term, or (3) diverge.

We are now ready to express our main soundness result for the translation from

IMP to FUN.

Definition 5.3.6 Let v ∼= w be the equivalence between IMP values v and FUN values

w induced by the value representation in Figure 5.7. Let w ∼= σ be the relation

extended to IMP stores in the nested representation defined above.

Theorem 5.3.1 Translation from IMP to FUN is semantics preserving: For any IMP

terms e or s translated to FUN via J e K or J s K, FUN execution via →∗v never gets

stuck. Values and stores map to their equivalents v ∼= w and σ ∼= w, errors map to

clearly identified error values, and divergence to divergence.

Proof Again, by induction on an appropriate upper bound on the number of any

loop iterations.

5.3.3 Analysis and Verification via Simplification

Based on the sound translation from IMP to FUN, we now want to simplify FUN

programs and extract higher-level information. In particular, we want to transform

recursive definitions into collective operations. This approach to program analysis
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is similar in spirit to deductive verification: we translate the source language into

an equivalent representation (or program logic) which can then be solved through a

solver procedure (e.g., constraint simplification). In our case, the target language is

the functional language FUN, and the solver performs simplification through equality-

preserving rewriting of program terms (we discuss a strategy that interleaves trans-

lation and simplification in Section 5.4). For the concrete rewriting strategy there is

considerable freedom, and we do not fix a particular strategy here.

Structural Equivalences
a[k 7→ u][j] ≡ if j = k then u else a[j]

C[if c then u else v] ≡ if c then C[u] else C[v]
letrec f = (λ(i).[a 7→ u, b 7→ v]) in e ≡ letrec f = (λ(i).[a 7→ fa(i), 7→ fb(i)])

fa = (λ(i).u), fb = (λ(i).v) in e
if 1 < e then x else y ≡ if 0 < e then x else y

if x ≡ y when e = 0
if a < e then if b < e then x′ else y′ else y ≡ if b < e then x′ else y′

if y ≡ y′ and a ≤ b
. . .

Collective Forms

letrec f = (λ(i). if 0 ≤ i then
f(i− 1)[i 7→ gi] else []) in f(a) ≡ 〈.〉(i < a+ 1). gi

letrec f = (λ(i). if 0 ≤ i then
f(i− 1) + gi else 0) in f(a) ≡ Σ(i < a+ 1). gi

x+ Σ(i < a). gi ≡ Σ(i < a+ 1). gi
if x ≡ gi[i := a]

Σ(i < n). i ≡ if 0 < n then n ∗ (n− 1)/2 else 0
#(i). ¬(i < a) ≡ if 0 < a then a else 0

if 0 < #(i). g then s1 else s2 ≡ s1 if s1[(#(i). g) := 0] ≡ s2
. . .

Figure 5.8.: Selected equivalences (non-exhaustive) that can be used as simplification
rules, using a variety of deterministic or nondeterministic rewriting strategies (x[y :=
z] means that y is substituted by z in x).

Verification Based on Explicit Errors Values The key property of the IMP to

FUN translation was that any runtime error in the IMP program will be reflected as

an observable error value in the target language, but not trigger erroneous behavior

there (Theorem 5.3.1). Based on this property, verification just amounts to checking
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that the FUN program cannot produce a failure result. All that is required for this

test is a syntactic check that the FUN program after simplification is equal to Some

g—in other words, that the valid flag according to the value representation in

Figure 5.7 statically simplifies to constant true . If the valid flag is any other

symbolic expression, it means that verification did not succeed; i.e., that the program

might exhibit erroneous behavior (such as an assertion failure).

Soundness of Simplification Rules The property that any error in the IMP pro-

gram will be reflected as an observable error value in FUN follows from the semantic

preservation of the CBV FUN semantics. For purposes of verification, however, we

may settle for a weaker correspondence, and pick a non-strict call-by-name semantics

for FUN. This provides more flexibility for simplification, e.g., the ability to rewrite

0 ∗ e → 0 even if evaluation of e may not terminate, but it also means that some

diverging IMP programs may terminate in their FUN translation. In this case, verifica-

tion may signal false positive errors. For example, for while true do skip; assert

false, the analysis might miss that the assert is unreachable. Importantly, this result

is still sound.

In the following, we therefore assume a non-strict call-by-name (CBN) or call-by-

need semantics for FUN, and recall confluence of λ-calculus and that CBN terminates

on more programs that CBV. We need a few other standard results:

Definition 5.3.7 Let→ be the standard CBN λ reduction, extended to FUN as above.

Let EJ g K be the partial evaluation function induced by →∗.

Definition 5.3.8 (Behavioral Equivalence) Let g1 ≡ g2 iff EJ g1 K = EJ g2 K.

Proposition 5.3.8 (Congruence) For any context C, if g1 ≡ g2, then C[g1] ≡

C[g2]

The congruence property enables us to prove the correctness of individual rewrite

rules, and use them to soundly replace parts of an expression with behaviorally equiv-

alent ones.
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Simplification Rules in Practice We show selected equivalences that give rise

to useful rewrite rules for simplification in Figure 5.8. Besides standard arithmetic

simplification, there are structural rules about objects and their fields. In particular,

a key simplification is to split recursive functions into individual functions per object

field. Since the IMP store is represented as a FUN object, this rule enables local

reasoning about individual IMP variables, instead of only about the store as a whole.

Combined with β-reduction for non-recursive functions, the original function may

be replaced entirely by the component-wise ones. The same pattern also applies to

the construction of sequences: instead of creating an array of objects, it is often

better to create an object of arrays, one per field. If only parts of an object change,

this enables a more detailed characterization of such changes. In addition, it is often

helpful to distribute conditionals over other operations, e.g., to push conditionals into

object fields. Another important set of rules is concerned with the actual extraction

of collective forms for sums, sequences/arrays, etc. The #(i) rule is key for numeric

loop bounds. It is also useful to add standard dead-code and common subexpression

rules. The last rewriting rule related to #(i) in Figure 5.8 is quite interesting. After

analyzing a loop, the resulting store will always be of the form: if the loop executed

at least once (0 < #(i).g) the new store is s1 otherwise it is s2. However, if the loop

did not execute, #(i).g must be 0. Therefore if s1 is equivalent to s2 when the loop

does not execute, then the condition can be removed, and the new store is s1.

We believe that it is a strong benefit of our approach that the set of simplification

rules (Figure 5.8 and beyond) is not fixed and can be extended at any point. The

only requirement for a rule is to individually preserve the CBN concrete semantics.

Rewriting Strategies The set of equivalence rules available for simplification, in-

cluding the rules in Figure 5.8 and beyond, gives rise to a whole space of rewriting

opportunities. If each rule individually is proved to preserve semantics, an implemen-

tation is free to apply them in any order to reach a sufficiently simplified program.

A simple and performance-oriented implementation can use a deterministic bottom-
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up strategy, but it would be entirely feasible to use auto-tuning, heuristic search, or

strategies based on machine learning.

However, even search-based rewriting strategies are fundamentally limited by their

pessimistic nature if they apply simplification rules one by one, due to the requirement

that each individual rule preserves the program semantics, as opposed to a set of rules

applied at once. Section 5.4 discusses an optimistic strategy based on Kleene iteration

that removes this restriction and leads to more precise results in practice.

5.4 Speculative Rewriting & Kleene Iteration

The analysis and verification approach presented in Section 5.3.3 is based on

applying equality-preserving simplification rules after a full IMP program is translated

to FUN. While a useful starting point, this approach has clear limitations.

Fundamentally, equality-preserving simplification has to operate with pessimistic

assumptions around loops and other recursive dependencies. We can only simplify a

program if we are sure that each individual step will preserve the full extent of the

program’s semantics. In this section we will refine our approach towards optimistic

simplification: this approach will simplify loop bodies no matter what, and check

whether the simplification is indeed valid. If not, we try somewhat less optimistic

assumptions, and repeat. This is inspired by Lerner et al.’s work on composing

dataflow analyses and transformations in optimizing compilers [95].

Errors and Loop-Invariant Fields Concretely, equality-preserving rewriting works

well as long as there are no mutually recursive dependencies, i.e., there is always one

recursive function that can be rewritten first, leading to further rewriting opportu-

nities in other functions. But this is not always the case. Consider the following

program:
j := 0;

while j < n do {

assert(j >= 0); j := j + 1

}
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Recall that errors are represented as a valid flag in the record representing the

overall program state (see Section 5.3). The valid flag is equivalent to a variable v

initialized to true at the beginning of the program, and set to false if the assert

fails. To illustrate, the program could be rewritten as follows:
j := 0;

v := true;

while j < n ∧ v do {

if j >= 0 then j := j + 1 else v := false

}

To demonstrate the absence of errors, we need to demonstrate that the valid flag

remains unchanged throughout the loop. However, this is difficult since the derived

FUN representation contains mutual recursion between variables.
let j = λ(i). if i ≥ 0 then { if v(i− 1) ∧ j(i− 1) ≥ 0 then j(i− 1) + 1 else

j(i− 1) } else 0
let v = λ(i). if i ≥ 0 then { if v(i− 1) ∧ j(i− 1) ≥ 0 then v(i− 1) else

false } else true

let n = #(i). ¬(j(i) < n ∧ v(i))

In this situation, we cannot extract an individual recursive function for j (and

much less a collective form) because the loop body may raise an error (set v to false),

and we cannot eliminate v because we do not have enough knowledge about j. Thus

the basic rewriting strategy from Section 5.2 cannot work.

We will explain the process in more detail based on a concrete example of scalar

recurrences below, but it is important to note that the approach is more general and

applies to all kinds of expressions and data types. To complete the verification of the

program above, recall that error conditions are represented as a valid flag in the

record representing the overall program state (see Section 5.3). To demonstrate the

absence of errors, we need to demonstrate that the valid flag remains unchanged

throughout a loop. Fortunately, identifying loop-invariant parts of data structures is

straightforward with the speculative rewriting approach: we make initial optimistic

assumptions that all variables and record fields (including the valid flag as special

case), are loop-invariant, and roll back these assumptions only if writes to certain

vars/fields are observed. With optimistic assumptions, there is no write to v in



133

the loop, and the program verifies. The following table illustrates the simplification

process, that terminates once a fixpoint has been reached.

Before loop Before ith iter. After (expected) After (actual)

y0 f̂(i−1) f̂(i) ∆(f̂(i−1))

Step 1 j = 0 0 0 1

v = true true true true

Step 2 j = 0 i i + 1 i + 1

v = true true true true

Scalar Recurrences Consider the example from Section 5.2:
j := 0; s := 0;

while j < k do {

s := s + j;

j := j + 1

}

Our refined approach is as follows: let y0 be the program state before the loop and let

∆ be the transfer function of the loop, describing the effect of one loop iteration on

the program state. We use f(i) to denote the program state after iteration i, subject

to f(−1) = y0 and f(i+ 1) = ∆(f(i)). The goal is now to approximate f iteratively

by a series of increasingly pessimistic functions f̂k until we reach f .

At the first step f̂0 we assume (maximum optimism) all variables to be loop

invariant, i.e., that we can use the following per-variable functions, where n is the

current symbolic value of k: let k = λ(i).n, let j = λ(i).0, let s = λ(i).0

Then, we evaluate the assumed functions to compute the expected value before and

after loop iteration i, i.e., f̂0(i−1) and f̂0(i). We compare the expected post-iteration

value with the actual symbolic evaluation of the loop body, using the same expected

initial values ∆(f̂0(i − 1)) (Figure 5.9, top). In general, if ∆(f̂k(i)) = ∆(f̂k(i − 1))

for a symbolic representation of i, we know that f̂k = f . But in this case, we can see

that our assumption about j was too optimistic. We need to try a non-loop-invariant

transfer function — but which one?

For scalar values, one of our strategies is to focus on polynomials. The observed

difference dj between before and after the loop iteration can be seen as the discrete
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Before Before After After
loop ith iter. (expected) (actual)

y0 f̂(i−1) f̂(i) ∆(f̂(i−1))
k = n n n n
j = 0 0 0 1
s = 0 0 0 0
k = n n n n
j = 0 i i + 1 i + 1
s = 0 0 0 i
k = n n n n
j = 0 i i + 1 i + 1
s = 0 ((i-1)*i)/2 (i*(i+1))/2 (i*(i+1))/2

f̂0
generalize

f̂0

f̂0(i) 6= ∆(f̂0(i− 1))

f̂1
generalize

f̂1

f̂1(i) 6= ∆(f̂1(i− 1))

f̂2 stop
f̂2(i) = ∆(f̂2(i− 1))

Figure 5.9.: Fixpoint iteration for running example, iterations 0 (top) to 2 (bottom),
converging to a 2nd-degree polynomial for s. The generalization treats different
data types differently: (1) try a higher degree of polynomial for numerics, (2) apply
generalization to fields recursively for records, (3) extract the collective form for arrays
if writing to the adjacent slot, or (4) create a recursive function for fallback.

derivative of the transfer function we are approximating. In this case, dj is a constant,

i.e., a polynomial in i of degree 0. Thus we try the (uniquely defined) polynomial of

degree 1 (a linear function) that matches the observed values for i = 0, j = 1 and has

derivative dj = 1. let k = λ(i).n, let j = λ(i).i+ 1, let s = λ(i).0

The computed expected and actual values are shown in Figure 5.9 (middle). Now

the representation of j has been settled, but s is no longer correct. We follow the same

strategy as before and generalize the transfer function for s. The difference ds = i is

a polynomial of degree 1, and discrete integration yields a quadratic function:

let k = λ(i).n, let j = λ(i).i+ 1, let s = λ(i).(i ∗ (i+ 1))/2

Now we observe convergence, shown in Figure 5.9 (bottom). Therefore, our strat-

egy succeeded and we simultaneously computed sound symbolic representations of k,

j, and s. We can now compute the number of iterations executed: #(i). ¬(j(i) <

n) = if 0 ¡ n then n else 0. Thus, the last iteration executed was n−1 (or -1 if the loop

was not executed at all), and the values of k, j, and s after the loop are therefore:
[ k -> if 0 < n then k(n−1) else n = n,

j -> if 0 < n then j(n−1) else 0 = if (0 < n) then n else 0,
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s -> if 0 < n then s(n−1) else 0 = if (0 < n) then (n-1)*n/2 else

0 ]

In general, polynomials are just one option. Since not all functions can be de-

scribed as polynomials, we cannot rely on convergence, i.e., we need to stop at a

certain degree. In the event that the analysis did not converge, it needs to stop and

produce a conservative solution. The fallback (always valid) is to create a recursive

definition:

f̂ω(i) = if (i ≥ 0) ∆(f̂ω(i− 1)) else y0

This solution is the last resort for our analysis. Therefore, we can view the function

space as partially ordered, from optimistic to pessimistic: f̂0 < f̂1 · · · < f̂ω.

Here, f̂0 can be polynomials of degree 0, f̂1 polynomials of degree 1 etc., with the

recursive form f̂ω at the top of the chain. While polynomials are useful, other chains

of functions would be possible (e.g., Fourier series). The Kleene iteration is subject

to the usual conditions, i.e., that sequences of functions f̂k picked during iteration

must be monotonic in k and without infinite chains.

Detecting Sequence Construction Similar to the extraction of closed forms from

scalar recurrences, we use speculative rewriting to extract collective forms for sequence

construction. Consider the following program:
a := new;

j := 0;

while j < k do {

a[j] := g(j);

j := j + 1

}

Just like we speculate on a closed form for j, we recognize that the first loop iteration

writes to index 0 in a, and we speculate that subsequent loop iterations will write to

indexes 1, 2, etc. Hence, for the next Kleene iteration step we propose a collective

form for a, and verify its validity in the next iteration. During this process, we notice

that j is equal to the loop index, which means that a is being assigned at the loop

index. Therefore we can assume that a is an array array( i2 < i). g(i2) and continue
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the iteration process. As explained in Section 5.2, extracting collective forms for

heap-allocated data structures is key for reasoning about programs like the one in

Figure 5.1.

5.5 Scaling up to C

In the preceding sections, we have instantiated our approach for a representative

model language IMP. To validate this model in practice, we have built a prototype

tool called SIGMA that applies essentially the same approach to C code. Compared to

the formal model, there are several challenges posed by a large and realistic language.

Two important features that IMP does not include are functions, and intraprocedural

control flow other than if and while . These include in particular goto , break ,

continue , switch/case , etc.

SIGMA uses the C parser from the Eclipse project to obtain an AST from C source.

SIGMA then computes a control-flow graph for each function in the AST, and converts

it back into a structured loop form using standard algorithms [123, 166]. We chose

this approach for its relative simplicity and consistency with the formal description.

It would also be possible to adapt the fixpoint algorithm from Section 5.4 to work

directly on control-flow graphs. As part of the iterative translation to a slightly

extended FUN language, SIGMA resolves function calls and inlines the function body

at the call site, which provides a level of context-sensitivity. A potentially more

scalable and performant alternative would be to compute FUN summaries for each

function separately, leading to a more modular analysis approach. SIGMA currently

does not support recursive functions at the C source level, beyond inlining them up

to a variable cutoff.

Our simplification approach is based (1) on normalizing rewrites using smart con-

structors, e.g. pushing a constant in a product to the right, and (2) on an explicit

simplification procedure. The main ingredient here is a solver for linear inequalities

over integers, which in our case consists of a custom implementation of the Omega

test [117]. Other algorithms would also be feasible [48]. Instead of this integrated
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implementation one could also consider invoking an external SMT solver. However,

care must be taken to faithfully encode FUN terms, since the current generation of

SMT solvers cannot directly represent collective operators.

Another feature that is required for realistic analysis is dealing with nondetermin-

istic input, often called havoc or r?. SIGMA models this in a manner very similar

to dynamic allocations: each call to r? is parameterized with the program context

r?(path), so that the results of different r? calls can be uniquely identified even

on the symbolic level. We use this in Figures 5.10, 5.11, 5.12.

While Section 5.3 has focused on a formal soundness property for IMP, we do not

make such claims for the full C language. In particular, SIGMA does not accurately

model integer overflow, pointer arithmetic (beyond arrays), floating point computa-

tion, concurrency, and undefined behavior.

Analysis and verification of C code using SIGMA can currently only be consid-

ered sound for programs that do not use such features. These restrictions are not

unreasonable, and are, for example, reflected in certain categories of the SV-COMP

verification benchmarks.

Figure 5.10 and 5.11 illustrate complex control flow within loops. In Figure 5.10,

SIGMA manages to infer the polynomial form of the variable agg during the approxi-

mation phase. However, in Figure 5.11, there is no such polynomial form, thus SIGMA

generates a generic sum for variable a and b. While this generic form does not provide

a lot of information about either a or b, it can be used to prove, through the algebraic

properties of the sum, that the condition a + b == 3*n is always evaluated to

true.

5.6 Experimental Results

We evaluate SIGMA in three different categories: program verification, program

equivalence, and transformation of legacy code to DSLs. We use an Intel Core i7-

7700 CPU with 32GB of RAM running Ubuntu 16.04.3 LTS.
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int main() {

// path p1

int n = __VERIFIER_nondet_int ();

// path p2

int m = __VERIFIER_nondet_int ();

int agg = 0; int i = 0;

__VERIFIER_assume (0 < m && 0 <= n);

while (i < n) {

// path p3(x18?) = <...>.while[x18?]
if (i < m) agg += 3;

else agg += 1;

i += 1;

}

return 0;

}

Store σx18? after iteration x18? (constant values elided):

"&i" 7→ [ (x18? + 1) : "int" ]

"&agg" 7→ [ if ((x18? < r?(p2))) { ((x18? * 3) + 3) }

else { ((r?(p2) * 2) + (x18? + 1)) } : "int" ]

Loop termination: u = #(x18?).!(x18? < r?(p1))

Final store σf = σu−1 =
"&n" 7→ [ r?(p1) : "int" ]

"&m" 7→ [ r?(p2) : "int" ]

"&i" 7→ [ r?(p1) : "int" ]

"&agg" 7→ [ if ((r?(p1) < (r?(p2) + 1))) { r?(p1) * 3 }

else { ((r?(p1) * 2) + r?(p1)) } : "int" ]

"return" 7→ [ 0 : "int" ]

Figure 5.10.: SIGMA analysis result for a program with a conditional in a loop where
the result can be expressed as a polynomial. Top: C source code. Bottom: the store
inferred within the loop and the final store.

Verification We compare SIGMA with CPAchecker [23] and SeaHorn [69] on pro-

grams from or similar to the SV-COMP benchmarks [22]. We used the programs from

the loop-lit, loop-invgen, and recursive-simple-∗ categories of SV-COMP. CPAchecker

won the 2018 SV-COMP competition, and both state-of-the-art tools scored highly

in previous years. The goal is to assess the reachability of a given function call

VERIFIER error() (an assertion evaluated to false triggers a call to this func-

tion as well). The expected result of the analysis is encoded in the filename, e.g.,

false-unreach-call means that the call marked unreachable can actually be executed,
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int main() {

int i, n, a, b;

i = 0; a = 0; b = 0;

// path p1

n = __VERIFIER_nondet_int ();

__VERIFIER_assume(n >= 0 && n <= 1000000);

while (i < n) {

// path p2(x11?) = <...>. while[x11?]
if (__VERIFIER_nondet_int ()) {

a = a + 1; b = b + 2;

} else { a = a + 2; b = b + 1; }

i = i + 1;

}

__VERIFIER_assert(a + b == 3*n);

return 0;

}

Final store:

"&i" 7→ [ r?(p1) : "int" ]

"valid" 7→ 1

"&a" 7→ [ sum(r?(p1)) { x11? =>

if (r?(p2(x11?))) 1 else 2

} : "int" ]

"&n" 7→ [ r?(p1) : "int" ]

"&b" 7→ [ sum(r?(p1)) { x11? =>

if (r?(p2(x11?))) 2 else 1

} : "int" ]

"return" 7→ [ 0 : "int" ]

Figure 5.11.: SIGMA analysis result for a program with a conditional in a loop
where the result can not be expressed as a polynomial (sv-comp benchmark loop-
lit/bhmr2007 true-unreach-call.c.i). We show the C source on the top. At the bottom,
we show the final store.

whereas a true-unreach-call means that the error can never be triggered. The example

in Figure 5.11 is a program from the loop-lit category.

First, we highlight nine challenging programs of our benchmark: three programs

operate on singly linked lists, four programs use more than one non-nested loop and

two other programs have nested loops. The results for these programs are shown in

Figure 5.13. At first glance we can see two distinct behaviors between CPAchecker

and SeaHorn. CPAchecker, while being quite slow, never gives an incorrect answer.

SeaHorn, on the other hand, is fast and can sometimes give an incorrect (false positive)

result. All three tools manage to handle the false-unreachable-call case, which can
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int main() {

// path p1

int n = __VERIFIER_nondet_int ();

int agg = 0;

int i = 0;

__VERIFIER_assume (0 <= n);

while (i < n) {

agg += i; i += 4;

}

return 0;

}

Store σx11? after iteration x11? (constant values

elided):

"&agg" 7→ [ (x11? * (x11? * 2)) + (x11? * 2)) : "int"

]

"&i" 7→ [ (x11? * 4) + 4: "int" ]

Loop termination: u = #(x11?).!(( x11? * 4) < r?(p1))

Final store σf = σu−1 =
"&n" 7→ [ r?(p1) : "int" ]

"&i" 7→ [ ((r?(p1) + 3) / 4) * 4 : "int" ]

"&agg" 7→ [ (r?(p1) + 3) / 4) * (((r?(p1) + 3) / 4) *

2)

+ ((r?(p1)+3)/4)* -2 : "int" ]

"return" 7→ [ 0 : "int" ]

Figure 5.12.: SIGMA analysis result for a program with a loop increment different
from 1. We show the C source on the top. At the bottom, we show the store inferred
within the loop and the final store.

Name CPAchecker SeaHorn SIGMA

simple built from end true-unreach-call.i TIMEOUT 250 273
list addnat false-unreach-call.i 2890 190 215
list addnat true-unreach-call.i 305560 170 215
loop addnat false-unreach-call.i 2830 190 285
loop addnat true-unreach-call.i TIMEOUT 200 285
loop addsubnat false-unreach-call.i 3140 210 364
loop addsubnat true-unreach-call.i TIMEOUT 230 364
nestedloop mul1 true-unreach-call.i OUT OF MEMORY 7280 405
nestedloop mul2 true-unreach-call.i TIMEOUT 240 365

Figure 5.13.: Results are in ms (TIMEOUT is set at 900s). The red cells indicate
incorrect results (false positives).

be seen as the easy problem as it only requires to find a counterexample. However in

the case of true-unreachable, the prover needs to check all possible values. The very

big search space explains CPAchecker’s timeouts. For SeaHorn, the true case appears
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to be difficult, as the internal logic may overapproximate the problem and give an

incorrect (false positive) result. SIGMA, by contrast, is very precise and can verify all

the examples while being almost as fast as SeaHorn.

In order to have a more general idea of the performance of SIGMA, we look at

three SV-COMP suites: loop-lit, loop-invgen, and recursive-simple-∗. Figure 5.14

shows a summary view of the running time of the analysis, and compares SIGMA

to CPAChecker and SeaHorn. In these graphs, inspired by a similar visualization

by [170], each dot represents one program. The dots are placed at coordinates rep-

resenting their analysis times. The samples under the identity line are the programs

where SIGMA is faster then the other tool. The complete list of programs is shown in

Figure 5.15. On the loop-* benchmark, which is composed of programs with loops

and computation over scalar values, SIGMA performs very well. It proves most of the

reachability goals quickly. Out of the 37 programs, it times out on 3 programs that

have complex control flow (jumps from within the then branch to the else branch).

There are also 4 programs where SIGMA cannot make a decision; this is when the valid

flag is not simplified to 0 or 1. This situation is indicated by a yellow box in Figure

5.15. For the recursive-simple-∗ benchmark, even though SIGMA is not designed to

handle recursion, on many of the programs, the verification is successful. SIGMA man-

ages to verify the assertions through pure symbolic execution driven by inlining of

function calls. We did not implement any additional analysis for recursive functions.

For the programs where it fails, the execution dependents on an unknown value thus

a simple symbolic execution can not terminate and SIGMA gives up after exhausting

its internal inlining limit.

Program Equivalence Since SIGMA computes exact symbolic descriptions of the

program state post-execution, it can also be used to test program equivalence. In the

absence of side effects that read external input, we can run SIGMA on both programs

and verify that the post-execution states have the same symbolic representation, up

to symbolic rewriting. Let s1 and s2 be the two symbolic states, then we want to test
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Figure 5.14.: Verification time of CPAChecker vs SIGMA, and SeaHorn vs SIGMA. Each
point represents a program and is placed at coordinates (analysis time CPACHeck-
er/SeaHorn, analysis time SIGMA).

whether s1 = s2 simplifies to true. Since errors are explicit at the symbolic level, this

test not only applies to programs that independently verify, but can also relate the

error behavior of two programs. In our evaluation, we manage to prove equivalence

between the two functions below: one using a while loop, and the other one using

GOTOs. For example, given the same random input, these two code snippets produce

the same symbolic forms for the return value:

int main() {

int a = nondet_int ();

int b = 0;

while (b < a)

b = b + 1;

return b;

}

int main() {

int a = nondet_int ();

int b = 0; goto cond;

more: b = 1 + b;

cond: if (b < a) goto more;

return b;

}

This method can be generalized to global variables and even I/O. In the case of

I/O, the different streams of input data can be modeled as data stored on the heap

(see earlier discussion of r?(p), and the symbolic forms need to match to prove

equivalence.

In addition, we have verified that SIGMA can demonstrate equivalence of programs

in the style of Section 5.2: (1) a program that computes the sum of n nondeterministic

inputs in a loop; (2) a program that stores these value in an array and then computes

the sum; (3) a program that stores these values in a linked list and then computes

the sum.
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Name CPAchecker SeaHorn SIGMA

linv/apache-escape-absolute true-unreach-call.i 848638 1329 TIMEOUT
linv/apache-get-tag true-unreach-call.i TIMEOUT 851 TIMEOUT
linv/down true-unreach-call.i TIMEOUT 650 98
linv/fragtest simple true-unreach-call.i TIMEOUT 766 978
linv/half 2 true-unreach-call.i TIMEOUT 717 142
linv/heapsort true-unreach-call.i TIMEOUT 2237 3275
linv/id build true-unreach-call.i 6632 661 78
linv/id trans false-unreach-call.i 7268 692 462
linv/large const true-unreach-call.i 16748 448736 305
linv/MADWiFi-encode ie ok true-unreach-call.i TIMEOUT 754 2232
linv/nest-if3 true-unreach-call.i TIMEOUT 746 740
linv/nested6 true-unreach-call.i TIMEOUT 1272 2853
linv/nested9 true-unreach-call.i TIMEOUT TIMEOUT 3267
linv/NetBSD loop true-unreach-call.i TIMEOUT 631 177
linv/sendmail-close-angle true-unreach-call.i TIMEOUT 680 279
linv/seq true-unreach-call.i TIMEOUT 681 1101
linv/SpamAssassin-loop true-unreach-call.i 867493 923 TIMEOUT
linv/string concat-noarr true-unreach-call.i TIMEOUT 732 636
linv/up true-unreach-call.i TIMEOUT 621 183
llit/afnp2014 true-unreach-call.c.i 29254 700 70
llit/bhmr2007 true-unreach-call.c.i TIMEOUT 769 112
llit/cggmp2005 true-unreach-call.c.i 4391 761 32
llit/cggmp2005 variant true-unreach-call.c.i TIMEOUT 583 62
llit/cggmp2005b true-unreach-call.c.i 5998 628 201
llit/css2003 true-unreach-call.c.i 6469 664 127
llit/ddlm2013 true-unreach-call.c.i TIMEOUT 934 205
llit/gj2007 true-unreach-call.c.i 5244 504 49
llit/gj2007b true-unreach-call.c.i TIMEOUT 714 136
llit/gr2006 true-unreach-call.c.i 5692 TIMEOUT 71
llit/gsv2008 true-unreach-call.c.i TIMEOUT 679 952
llit/hhk2008 true-unreach-call.c.i TIMEOUT 620 79
llit/jm2006 true-unreach-call.c.i 802315 625 76
llit/jm2006 variant true-unreach-call.c.i TIMEOUT 590 126
llit/mcmillan2006 true-unreach-call.c.i TIMEOUT 683 259
rec-sim/afterrec 2calls false-unreach-call.c 5296 673 29
rec-sim/afterrec 2calls true-unreach-call.c 4377 534 19
rec-sim/afterrec false-unreach-call.c 5041 659 49
rec-sim/afterrec true-unreach-call.c 4151 629 2
rec-sim/fibo 10 false-unreach-call.c 9751 2100 504
rec-sim/fibo 10 true-unreach-call.c 9716 9217 58
rec-sim/fibo 15 false-unreach-call.c 107274 1772 2292
rec-sim/fibo 15 true-unreach-call.c 134059 25115 1182
rec-sim/fibo 20 false-unreach-call.c TIMEOUT 22148 7934
rec-sim/fibo 20 true-unreach-call.c TIMEOUT 129764 8049
rec-sim/fibo 25 false-unreach-call.c TIMEOUT 81518 82
rec-sim/fibo 25 true-unreach-call.c TIMEOUT 223645 37
rec-sim/fibo 2calls 10 false-unreach-call.c 9731 1096 106
rec-sim/fibo 2calls 10 true-unreach-call.c 11053 3298 105
rec-sim/fibo 2calls 15 false-unreach-call.c 97812 1887 1466
rec-sim/fibo 2calls 15 true-unreach-call.c 175109 11984 686
rec-sim/fibo 2calls 2 false-unreach-call.c 5143 538 32
rec-sim/fibo 2calls 2 true-unreach-call.c 4213 549 21
rec-sim/fibo 2calls 20 false-unreach-call.c TIMEOUT 9728 8441
rec-sim/fibo 2calls 20 true-unreach-call.c TIMEOUT 23486 8053
rec-sim/fibo 2calls 25 false-unreach-call.c TIMEOUT 91274 47
rec-sim/fibo 2calls 25 true-unreach-call.c TIMEOUT 154521 38

Figure 5.15.: Results are in ms (TIMEOUT is set at 900s). The red cells indicate
incorrect results (false positives), and the yellow cells indicate when SIGMA could not
decide (valid flag was not simplified to 0 or 1).
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Name CPAchecker SeaHorn SIGMA

rec-sim/fibo 2calls 4 false-unreach-call.c 6500 763 46
rec-sim/fibo 2calls 4 true-unreach-call.c 6322 980 10
rec-sim/fibo 2calls 5 false-unreach-call.c 6751 790 57
rec-sim/fibo 2calls 5 true-unreach-call.c 6531 1265 10
rec-sim/fibo 2calls 6 false-unreach-call.c 7328 883 24
rec-sim/fibo 2calls 6 true-unreach-call.c 6679 1349 52
rec-sim/fibo 2calls 8 false-unreach-call.c 8138 946 37
rec-sim/fibo 2calls 8 true-unreach-call.c 7730 2611 44
rec-sim/fibo 5 false-unreach-call.c 6557 795 60
rec-sim/fibo 5 true-unreach-call.c 6134 1873 5
rec-sim/fibo 7 false-unreach-call.c 7209 1190 28
rec-sim/fibo 7 true-unreach-call.c 6745 3332 31
rec-sim/id b2 o3 true-unreach-call.c 6330 705 65
rec-sim/id b3 o2 false-unreach-call.c 6915 790 149
rec-sim/id b3 o5 true-unreach-call.c 6076 668 51
rec-sim/id b5 o10 true-unreach-call.c 6223 596 53
rec-sim/id i10 o10 false-unreach-call.c 6513 956 35
rec-sim/id i10 o10 true-unreach-call.c 6067 678 18
rec-sim/id i15 o15 false-unreach-call.c 6640 1169 21
rec-sim/id i15 o15 true-unreach-call.c 6118 631 13
rec-sim/id i20 o20 false-unreach-call.c 6827 1306 66
rec-sim/id i20 o20 true-unreach-call.c 6197 624 18
rec-sim/id i25 o25 false-unreach-call.c 6728 1484 11
rec-sim/id i25 o25 true-unreach-call.c 6540 681 35
rec-sim/id i5 o5 false-unreach-call.c 6327 817 24
rec-sim/id i5 o5 true-unreach-call.c 5832 706 3
rec-sim/id o10 false-unreach-call.c 7026 996 38
rec-sim/id o100 false-unreach-call.c 11357 6152 58
rec-sim/id o1000 false-unreach-call.c TIMEOUT TIMEOUT 56
rec-sim/id o20 false-unreach-call.c 7386 1305 83
rec-sim/id o200 false-unreach-call.c 21269 23597 46
rec-sim/id o3 false-unreach-call.c 6454 777 69
rec-sim/id2 b2 o3 true-unreach-call.c 6274 739 55
rec-sim/id2 b3 o2 false-unreach-call.c 6476 723 74
rec-sim/id2 b3 o5 true-unreach-call.c 6169 670 57
rec-sim/id2 b5 o10 true-unreach-call.c 6313 619 59
rec-sim/id2 i5 o5 false-unreach-call.c 6384 731 23
rec-sim/id2 i5 o5 true-unreach-call.c 6038 895 16
rec-sim/sum 10x0 false-unreach-call.c 6437 985 47
rec-sim/sum 10x0 true-unreach-call.c 6678 754 13
rec-sim/sum 15x0 false-unreach-call.c 6805 1125 68
rec-sim/sum 15x0 true-unreach-call.c 6457 745 10
rec-sim/sum 20x0 false-unreach-call.c 6859 1393 71
rec-sim/sum 20x0 true-unreach-call.c 6693 716 8
rec-sim/sum 25x0 false-unreach-call.c 7189 1625 648
rec-sim/sum 25x0 true-unreach-call.c 6853 760 11
rec-sim/sum 2x3 false-unreach-call.c 6182 717 12
rec-sim/sum 2x3 true-unreach-call.c 5959 755 3
rec-sim/sum non eq false-unreach-call.c 6739 687 127
rec-sim/sum non eq true-unreach-call.c 6480 685 100
rec-sim/sum non false-unreach-call.c 6228 675 232
rec-sim/sum non true-unreach-call.c 6352 727 157

Figure 5.15.: Results are in ms (TIMEOUT is set at 900s). The red cells indicate
incorrect results (false positives), and the yellow cells indicate when SIGMA could not
decide (valid flag was not simplified to 0 or 1).

Legacy Code to DSLs SIGMA can also be used to analyze legacy optimized C

code and translate it to high-level performance-oriented DSLs. In addition, the sym-
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bolic representation obtained from the analysis can be used to better understand the

program behavior. An interesting case is Stencil codes, which are patterns for up-

dating array elements according to their neighbors. Many stencil codes are written

in Fortran or C and heavily optimized for performance on a particular architecture,

which precludes porting to GPUs, parallelizing and distributing across a cluster, or

in general foward-porting the code to other emerging architectures.

A simple example is Jacobi iteration on a one-dimensional array. At each iteration,

the algorithm updates each location with the arithmetic mean of its left-hand side

and right-hand side values. For the out-of-bound locations, the default value is 1.

From the C program on the left, SIGMA will generate the closed form on the right for

the computation of a single iteration:

int i = 0; int ai = a[0];

a[0] = (1 + a[1]) /2;

while (i < n-1) {

int tmp = (ai + a[i+1]) /2;

ai = a[i]; a[i++] = tmp;

}

a[n-1] = (ai + 1)/2;

// Extracted FUN code of the

// corresponding C code:

let a = array(i < n).
if (i == 0) then (1 + a[i+1])/2

else if (i == n-1)

then (a[i-1] + 1)/2

else (a[i-1] + a[i+1])/2

From the derived closed form, the Jacobi algorithm is immediately apparent, de-

spite the use of temporaries and loop-carried dependencies in the C source. The closed

form FUN code is easily mapped to a high-performance DSL such as Halide [83, 103],

which supports parallel CPU, GPU, and cluster execution. The process readily gen-

eralizes to multi-dimensional Jacobi iteration.

Legacy Code to Flare The motivation behind that work was to develop the ca-

pacity to apply Flare optimizations (parallelism, NUMA aware code, distributed,

etc.) to legacy code. In this experiment, we illustrate how to achieve that goal. We

manually implement a C program that computes the SQL query:

select avg(n nationkey), count(*) from nation where n regionkey == 0.

The nation table is part of the TPC-H benchmark that we used to evaluate Flare.

The C version is as follows:
int main(int argc , argv** x1) {
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int n_nationkey_fd = open(".../ nation_n_nationkey", 0);

int table_size = fsize(n_nationkey_fd);

int* n_nationkey_col = (int*)mmap(0, table_size , PROT_READ ,

MAP_FILE | MAP_SHARED , n_nationkey_fd , 0);

int n_regionkey_fd = open(".../ nation_n_regionkey", 0);

int* n_regionkey_col = (int*)mmap(0, table_size , PROT_READ ,

MAP_FILE | MAP_SHARED , n_regionkey_fd , 0);

struct result res;

struct result* res_p = &res;

res_p ->n_nationkey_sum = 0;

res_p ->count = 0;

int idx = 0;

while (idx < table_size) {

if (n_regionkey_col[idx] == 0) {

res_p ->n_nationkey_sum = res_p ->n_nationkey_sum +

n_nationkey_col[idx];

res_p ->count = res_p ->count + 1;

}

idx++;

}

printf("%.4f|%ld|\n", (double)res_p ->n_nationkey_sum /

res_p ->count , res_p ->count);

return 0;

}

We run SIGMA on this program and find the valid flag is set to 1, with the

output of the program having the following value for “printf” (represents the values

printed). We tweaked the output to make it more user-friendly by renaming long

variables name and removing the reference to the fsize function. We can note the

use of the r? oracle that we used previously, to indicate that the value returned by

open or the value read from an mmaped region is considered “unknown”. However,

it is important to remember that it is uniquely referenced through the structured

heap indexing scheme, thus each value can be differentiated.
"printf" -> {

"#1" -> [

sum(table_size) { x53? =>

if (r?((r?(((& open:1,".../ nation_n_regionkey"),top)),x53?))

== 0) {

r?((r?(((& open:0,".../ nation_n_nationkey"),top)),x53?))

} else {

0

}

} / sum(table_size) { x53 =>

if (r?((r?(((& open:1,".../ nation_n_regionkey"),top)),x53)) ==

0) { 1 } else { 0 }

} : "double" ],
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"#2" -> [

sum(table_size) { x53 =>

if (r?((r?(((& open:1,".../ nation_n_regionkey"),top)),x53)) ==

0) { 1 } else { 0 }

} : "int" ]

}

We extract from the output a representation of the computation as a Spark

Dataframe. The extraction program is using some additional knowledge on the way

the table is saved in file. For example, each column is stored in a file with the name:

<table name> <column name>. For our example, the DataFrame generated is as

follows:

nation.filter("n regionkey == 0").agg(sum(n nationkey) / count("*"),

count("*"))

Once we obtain this DataFrame, Flare can generate code that is parallel, NUMA

aware, or even distributed. In addition, the query can be specialized to run on larger

datasets or different input formats.

5.7 Related Work

Decompiling to High-Level Languages A key ingredient of our approach is to

transform—in a sense, “decompile”—a low-level language into a comparatively higher

level language. Our approach has been greatly inspired by previous work in this direc-

tion. Some classics are the GOTO-elimination algorithm by Ramshaw [123] (newer

work in this direction includes [166]), and the realization that compilers or analyzers

for imperative languages based on SSA form are essentially using a functional inter-

mediate language [11]. Various compiler frameworks (e.g., [21]) use rewriting rules to

drive simplification and analysis, though these approaches typically do not address

challenges such as those introduced by dynamic allocation.

More recently, there has been a flurry of work that aims to translate low-level

imperative code to high-performance DSLs. Some works are based on a technique

described as verified lifting, which is used to transform stencil codes to the Halide DSL
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[83, 103], or to transform imperative Java code to Hadoop for cluster execution [5].

Another line of work uses symbolic execution to parallelize user-defined aggregations

[124]. An approach closely related to ours transforms Java code to a functional IR

and then to Apache Spark, after a rewriting and simplification process that, e.g.,

maps loop-carried dependencies to group-by operations [119]. There is also work on

synthesizing MapReduce programs from sketches [140], on defining language subsets

that are guaranteed to have an efficient translation [129], and work in the space

of just-in-time compilers to reverse-engineer Java bytecode at runtime and redirect

imperative API calls to embedded DSLs [132].

High-Performance DSLs Some notable works in the DSL space include Delite

[32, 94, 133, 143], Halide [120], and Accelerate [38, 99, 145, 146, 158]. Most of these

systems come with expressive, functional IRs. Some systems focus explicitly on the

intermediate layers, for example Lift [141, 142], PENCIL [17], or the parallel action

language [97].

Analysis and Optimization Our optimistic fixpoint approach is directly inspired

by Lerner et al.’s work on composing dataflow analyses and transformations [95].

Related work has aimed to automatically prove the correctness of compiler optimiza-

tions [96], and on generating compiler optimizations from proofs of equivalence and

before/after examples [152]. A related line of work models a space of possible program

transformations given by equivalence rules through the notion of equality saturation,

based on a program equivalence graphs (PEGs) [153] as IR. The PEG model has

heavily inspired early versions of our work. The reasoning-by-rewriting approach and

the avoidance of phase-ordering issues is similar, as is the overall goal of a flexible

semantics-preserving representation as a basis for various kinds of analysis. However

there are important differences: PEGs do not include collective forms except the pass

operator, which is similar to our #. The θ operator in the PEG model describes stan-

dard recurrences, not collective forms. Tate et al. [153] also do not discuss specifics

about heap-allocated data, and the accompanying Java analysis tool Peggy maps all
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heap objects into a single summarization object. Thus, while PEGs can express pro-

gram equivalence in general, Peggy could not prove the equivalences in Section 5.6,

nor verify the linked list program in Figure 5.1. The two innovations we propose,

collective forms and structured heaps, could be implemented without difficulty in a

PEG setting, and potentially improve precision.

Recurrence Analysis Analyzing integer recurrences has been an active topic of

research. Some recent works include compositional recurrence analysis (CRA) [58,84],

which aims to derive closed forms for recurrence equations and inequations. The

approach is based on an algebraic representation of path expressions [151], refered to

as Newtonian program analysis [125]. Earlier works include abstract acceleration of

general linear loops [78], and a study of algebraic reasoning about P-solvable loops

[90]. Efficient integer linear inequality solvers have been available for some time

[48, 117]. Aligators [71] is a tool from the static analysis community, representative

for highlighting some of the limitations. Given a simple loop as input, Aligators can

extract quantified scalar invariants, using a recurrence solving technique similar to

the one used in our framework. However, like many other tools, Aligators has limited

applicability in that it only handles linear recurrences (polynomials of degree 1), does

not handle nested loops, does not provide collective forms such as symbolic sums, does

not handle dynamic allocation of arrays, and does not appear to support complex or

nested conditions inside loops. Many compilers provide some form of recurrence

analysis as part of their optimization suite, often based on Bachmann’s chains of

recurrences (CoR) model [16], and sometimes called scalar evolution. An example is

the SCEV pass in LLVM. These analyses are able to infer closed-form representations

for simple counting loops but are limited in ways similar to tools like Aligators with

respect to dynamic allocations, collective forms, and complex expressions.

Heap Abstraction Recent work on efficient and precise points-to analysis models

the heap by merging equivalent automata [150]. Other works use structured heaps

to model container data structures [49], and some techniques have been proposed for
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heap abstractions that enable sparse global analyses for C-like languages [108], similar

in spirit to SSA form. While SSA is typically used for local variables, techniques under

the umbrella name Array SSA exist to extend sparse reasoning to heap data [86]. Our

simplificaton rules that break apart heap objects to expose their fields are inspired

by such techniques. Abstracting abstract machines [76] described different kinds of

allocation policies parameterized by an abstract clock. This line of work has been

inspirational for our structured heap representation, which differs in modeling the

heap structure after the syntactic structure of the program. Many other directions

exist, e.g., predicate abstraction for heap manipulation programs [25].

Shape analysis [135] provides a parametric framework for specifying different ab-

stract interpretations. In each instantiation of the framework, a set of possible run-

time stores is represented by a set of 3-valued logical structures. An individual in a

3-valued structure represents a set of runtime objects: each individual represents all

objects in a runtime store that have the same values for a chosen set of properties of

objects. (Different instantiations of the framework are created by making different

choices of which object-properties to use.) A 3-valued structure does not represent

a static partition of the runtime objects; for instance, in a loop the properties of a

given object o can change from iteration to iteration, and hence the individual that

represents o would be different on different iterations. Stated another way, a given

individual in a 3-valued structure can represent different objects when considered to

be the abstraction of the runtime stores that arise on different iterations. Our work

takes a different approach, by indexing objects via an abstract notion of time: all

objects allocated in a loop are considered to be a sequence (i.e., a collective form)

indexed by the (symbolic) loop variable. It remains to be seen whether the two ap-

proaches could be combined, and what the advantages of such a combination might

be.

Shape analysis approaches based on separation logic [30,126] improve precision and

scale to large codebases [35,50], implemented, e.g., in Facebook’s Infer tool [34]. With

its support for reasoning about linked list and related structures via bi-abduction [35],
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Infer should in principle come close to verifying programs like the one in Figure 5.1;

however it still fails on this particular example and several variations we tried on

the public Infer web interface. Since Infer does not compute precise symbolic rep-

resentations, however, it is unsuited for tasks like translating legacy code to DSLs

(Section 5.6). An interesting avenue for future research is how our heap representa-

tion can form a basis for and interact with separation predicates. This could, e.g.,

enable support for modular analyses that use a precise partial heap model within a

function, and approximate separation predicates for function contracts.

Gopan et al. [67] extend the ideas from shape analysis à la Sagiv et al. [135] to

indexed elements in arrays, thereby creating a parametric framework for creating

abstract interpreters that can establish certain kinds of relationships among array

elements. Their approach is based on splitting the collection of array elements into

partitions based on index values that satisfy common properties, e.g., < i, = i, or

> i, where i is a loop-counter variable. Additional predicates are introduced to hold

onto invariants of elements that have been coalesced into a single partition. Instan-

tiations of the framework are capable of establishing that (i) an array-initialization

loop initializes all elements of an array (and that certain numeric constraints hold

on the values of the initialized elements); (ii) an array-copy loop copies all elements

from one array to another; and (iii) an insertion-sort routine sorts all of the elements

of an array.

The idea of representing program values in terms of an execution context that

captures the current loop iteration is also present in previous work on dynamic pro-

gram analysis [164] and on polyhedral compilation [20]. The main difference in our

work is that we push the indexing idea all the way into the store model and alloca-

tion scheme, which permits effective static reasoning about dynamic allocations and

linked data structures, and that we use the indexing scheme as a basis for a generic

symbolic representation and static analysis.

Semantics The proofs and formal models presented in this Chapter are largely

standard, but make key use of induction over a numeric “fuel metric” that bounds
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the amount of work (in this case, loop iterations) a program is allowed to do. Such

techniques enable effective proofs for functional formulations of big-step semantics

and have only recently received wide-spread interest [9,111]. Existentially quantifying

over the number of loop iterations in our IMP semantics is very similar to a recent

proposal by Siek [138,139].

5.8 Conclusion

In this Chapter, we identified two key limitations of current progam analysis tech-

niques: (1) the low-level and inherently scalar description of program entities, and (2)

collapsing information per program point, and projecting away the dimension of time.

As a remedy, we proposed first-class collective operations, and a novel structured heap

abstraction that preserves a symbolic dimension of time. We have elaborated both in

a sound formal model, and in a prototype tool that analyzes C code. The Chapter

includes an experimental evaluation that demonstrates competitive results on a se-

ries of benchmarks. Given its semantics-preserving nature, our implementation is not

limited to analysis for verification, but our benchmarks also include checking program

equivalence, and translating legacy C code to Flare optimized code.
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6 CONCLUSION

In this dissertation we have demonstrated the advantages of using meta-programming

and deferred APIs to accelerate data-centric systems.

In Chapter 2 we analyzed the key impediments to performance for data-centric

systems and proposed a solution to remove them through low-level deferred API.

We presented Flare, which compiles SQL query plans to efficient low-level C code.

We illustrated how Flare maximizes the performance of a single node architecture

by generating parallel and NUMA aware code, and we also showed how our work

can be adapted for distributed settings. In Chapter 3 we showed how Flare can be

integrated with machine learning frameworks efficiently, and provide an efficient end-

to-end pipeline. In Chapter 4 we tackled the problem of long compilation times for

short execution time programs in the setting of code generation. Furthermore, we

showed how our solution can be more broadly applied to other interesting applications

that would benefit from on-stack-replacement features. We illustrated the feasibility

of speculative optimizations. In Chapter 5 we introduced a new type of static analysis

that extracts functional high-level representation from low-level imperative code. We

presented a formal model with simplification rules and speculative rewriting that are

semantics preserving. We also showed how our theory can be applied to C code for

program verification and legacy code analysis.
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