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ABSTRACT 

Transcriptomic regulation of human liver is a tightly controlled and highly dynamic process. 

Genetic and environmental exposures to this process play pivotal roles in the development of 

multiple liver disorders. Despite accumulating knowledge have gained through large-scale 

genomics studies in the developed adult livers, the contributing factors to the interindividual 

variability in the pediatric livers remain largely uninvestigated. In the first two chapters of the 

present study, we addressed this question through an integrative analysis of both genetic 

variations and transcriptome-wide RNA expression profiles in a pediatric human liver cohort 

with different developmental stages ranging from embryonic to adulthood. Our systematic 

analysis revealed a transcriptome-wide transition from stem-cell-like to liver-specific profiles 

during the course of human liver development. Moreover, for the first time, we observed 

different genetic control of hepatic gene expression in different developmental stages. Motivated 

by the critical roles of genetics variations and development in regulating hepatic gene expression, 

we constructed robust predictive models to impute the virtual liver gene expression using easily 

available genotype and demographic information. Our model is promising in improving both 

PK/PD modeling and disease diagnosis for pediatric patients.  

 

In the last two chapters of the study, we analyzed the genomics data in a more liver disease-

related context. Specifically, in the third chapter, we identified Macrophage migration inhibitory 

factor (MIF) and its related pathways as potential targets underlying human liver fibrosis through 

an integrative omics analysis. In the last chapter, utilizing the largest-to-date publicly available 

GWAS summary data, we dissected the causal relationships among three important and 

clinically related metabolic diseases: non-alcoholic fatty liver disease (NAFLD), type 2 diabetes 
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(T2D), and obesity. Our analysis suggested new subtypes and provided insights into the 

precision treatment or prevention for the three complex diseases. 

 

Taken together, through integrative analysis of multiple levels of genomics information, we 

improved the current understanding of human liver development, the pathogenesis of liver 

disorders, and provided implications to precision medicine. 
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CHAPTER 1. TRANSCRIPTOME-WIDE REGULATION OF HUMAN 

PEDIATRIC LIVER DEVELOPMENT 

1.1 Introduction 

The development of human liver is a tightly controlled process during which a variety of hepatic 

cell types were matured and organized as a specialized functional organ (Gordillo, Evans, & 

Gouon-Evans, 2015; Ober & Lemaigre, 2018). This process is highly dynamic with numerous 

molecular and morphological changes (Si-Tayeb, Lemaigre, & Duncan, 2010). A better 

understanding of this dynamic process would provide insights into liver regeneration and the 

pathogenesis of liver diseases.  

 

Accumulating evidence has shown that the dysregulation of the precise temporal control of the 

transcriptome is critical in the pathogenesis of multiple liver disorders (Ober & Lemaigre, 2018). 

Despite the numerous knowledge about the transcriptome regulation gained from cell culture or 

animal models (T. T. Li et al., 2009; Schrem, Klempnauer, & Borlak, 2002; Q. Zhou et al., 

2017), recent studies have shown that human beings display specific regulatory features 

(Cardoso-Moreira et al., 2019; Y. Yu et al., 2010). Consequently, it’s challenging and sometimes 

misleading to understand human liver development using model systems.  Better approach 

including using human liver tissues would help solve these issues, however, due to the 

availability of the human samples, especially in the prenatal stage, our understanding of human 

liver development is still far from complete.  

 

To address this knowledge gap, we sampled human liver tissues covering different 

developmental stages from embryonic to adulthood and aimed to explore the transcriptome 
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dynamics at both gene and isoform level. Next, to understand the cellular composition changes 

across different developmental stages, we deconvoluted the cell type proportion using the 

published liver single cell signatures (MacParland et al., 2018). Moreover, to investigate the 

effects of predisposed genetic risk on transcriptome regulation, especially at the prenatal stage, 

we calculated the polygenetic scores of 5 important metabolic diseases (Khera et al., 2018; Khera 

et al., 2019) and identified candidate risk genes and pathways for the corresponding diseases. A 

workflow summarizing the key question and analyses performed in this chapter was listed in 

Figure 1.1.  

 

 

Figure 1.1 Analysis workflow 

  

Key question: How was the transcriptome regulated during human liver development?

RNA sequencing (n=111) DNA genotyping (n=192)

a. Mapping (GRCh38.90)
b. Normalization and transformation
c. Covariate selection

Overlapped samples (n=110)
a. 16248 expressed genes
b. 6,233,264 high quality variants

Temporally dynamic genes
a. Clustering analysis
b. Functional annotation

c. Tissue-specific enrichment

Cell type deconvolution
a. Cell proportion dynamics
b. Heterogeneity analysis

Polygenetic risk score
a. Risk stratification
b. Risk gene identification

c. Pathway enrichment

Human liver samples in 10 developmental stages from prenatal to postnatal

a. Initial QC
b. Imputation (1000G Phase3 V5 )
c. After imputation QC
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1.2 Materials and methods 

1.2.1 RNA sequencing 

The RNA samples were extracted from the liver tissues using Qiagen AllPrep 

DNA/RNA/miRNAUniversal Kit, followed by DNase I treatment. Libraries were prepared with 

Illumina TruSeq Stranded mRNA HT (RS-122-21) kit following the manufacturer’s instruction. 

Paired-end sequencing (2 x 76bp) was performed on Illumina HiSeq 4000 platform in the 

Indiana University genomics core. 

1.2.2 Genotyping 

DNA samples processing and genotyping were performed on Vanderbilt Technologies for 

Advanced Genomics (VANTAGE). In brief, 192 liver DNA samples, two experimental 

replicates, and six unrelated HapMap controls were processed following the Infinium LCG 

Assay protocol and then genotyped through the Infinium Human MEGA Ex Vanderbilt 

Beadchips. The reproducibility between duplicates was above 99%. Genome Studio v2.0.2.3 

were used to analyze the scanned data and prepare the PLINK files for subsequent analysis.  

1.2.3 Imputation and quality control 

To maximum the coverage of genotyping and increase the power of the subsequent analyses, we 

performed genotype imputation through the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu) (Das et al., 2016). Before the imputation, initial QC 

was performed by PLINK1.9 to remove low-quality and rare genotyped variants. In specific, 

variants with genotyping call rate < 0.9, Hardy-Weinberg p value < 1e-3, and minor allele 

frequency (MAF) < 0.05, individuals with call rate less than 0.9 were filtered out. There are 190 

samples and 717,098 variants passed the initial QC and were converted to VCF files for 

https://imputationserver.sph.umich.edu/
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imputation. Haplotype phasing and genotype imputation were performed using minimac3 (Das et 

al., 2016) and Eagle v2.3 (Loh, Palamara, & Price, 2016) with the 1000G Phase3 V5 reference 

panel (Genomes Project et al., 2015). Imputed variants with accuracy (R^2) > 0.8 were kept and 

went through the post-imputation QC using the same criteria as the initial QC. In total, 190 

samples and 6,233,264 variants passed the accuracy and QC threshold. The genomic coordinates 

of the high-quality variants were lifted from hg19 to hg38 using LiftOver 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) for subsequent analysis.  

1.2.4 RNA-Seq data processing 

The quality of the Fastq files was assessed through FastQC v0.11.8 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Then low-quality reads were 

trimmed using Trimmomatic v.0.36 (Bolger, Lohse, & Usadel, 2014) with the parameters: 

SLIDINGWINDOW:4:20 MINLEN:25.  

 

The trimmed reads were aligned to the GRCh38.90 reference genome (Schneider et al., 2017) 

using STAR v.2.7.0c (Dobin & Gingeras, 2015). To accommodate the requirement of the 

subsequent isoform level quantification, the bam files were generated in both genomic and 

transcriptome coordinates. Moreover, to reduce the reference mapping bias for the subsequent 

allele specific expression (ASE) analysis, WASP (van de Geijn, McVicker, Gilad, & Pritchard, 

2015) filtering tags were added based on the genotyping files generated in section 1.2.3. More 

details on ASE analysis are discussed in the later sections. An example mapping parameters were 

listed as follows:  
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$STAR --runMode alignReads --runThreadN 5  --genomeDir $GRCh38  --readFilesIn 

R1_001.merged.fastq.gz R2_001.merged.fastq.gz  --readFilesCommand zcat  --

outFileNamePrefix unique.wasp. --quantMode TranscriptomeSAM GeneCounts --outSAMtype 

BAM SortedByCoordinate --outSAMstrandField intronMotif  --outFilterMultimapNmax 1 --

outSAMattributes All --waspOutputMode SAMtag --varVCFfile $vcf 

 

The uniquely mapped reads were quantified for gene- and isoform-level expressions using 

RSEM v.1.3.1 (B. Li & Dewey, 2011). The alignment quality metrics were generated by 

picardmetrics (https://github.com/slowkow/picardmetrics) using Picard tools 

(https://github.com/broadinstitute/picard).   

1.2.5 RNA-Seq data normalization 

The resulted gene- and isoform-level counts from RSEM were further processed to adjust 

technical variates. Firstly, we removed gene and transcripts with counts less than 10 in more than 

50% of the samples. We also removed mitochondrial, immunoglobulin (IG), and T cell receptor 

(TR) genes were removed due to their extensive interindividual variability. Secondly, we 

calculated the normalization factors to correct the GC content and gene/isoform length bias using 

CQN. Next, DESeq2 (Love, Huber, & Anders, 2014) was used to output the normalized read 

counts using the normalization factors calculated by CQN (Hansen, Irizarry, & Wu, 2012). 

Finally, the vst function of DESeq2 was used to stabilize the variance and transform the 

normalized reads into log2 scale.  

https://github.com/slowkow/picardmetrics
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1.2.6 Outlier detection and quality control  

Firstly, we inspected the potential outliers through PCA plot. The outliers were defined as the 

samples deviated 3 standard deviations (SD) from the mean of PC1 or PC2. We didn’t detect any 

outliers using this threshold. Secondly, we assessed if there were any mislabeling in terms of the 

sex of the samples. We examined the sample sex by a scatter plot of XIST gene expression 

(female only) and the average expression of genes located in the non-pseudoautosomal region 

(PAR) of Y chromosome (male only).  We identified 6 samples with potential mislabeling 

(Figure 1.2 B). Four of them were prenatal samples and two of them were child samples. We 

used the sex inferred from the gene expression pattern for the subsequent analysis (Figure 1.2 C, 

D). Finally, we checked the concordance between DNA and RNA samples using verifyBamID 

(Jun et al., 2012). We didn’t identify any sample swaps.  

1.2.7 Covariates selection 

To adjust the confounding effects of the technical factors (e.g. sequencing depth, mapping 

quality) on interindividual variability of human liver expression, we performed a principal 

component analysis (PCA) using 90 RNA-Seq metrics collected from picardmetrics 

(https://github.com/slowkow/picardmetrics). The first principal component explained more than 

98% of the total variance, indicating the technique factors affect the gene expression in a uniform 

way. Therefore, the covariates included in the subsequent analyses were the first PC of the RNA-

Seq metrics (RNAseq PC1) and other known confounding factors including sex, RNA integrity 

number (RIN), library batch, and the first three genetic PCs. Age was not adjusted when 

identifying the temporally dynamic genes but was included as a covariate when evaluating the 

genetic effects on gene expression.  

https://github.com/slowkow/picardmetrics
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1.2.8 Identification of the temporally dynamic genes 

Based on the reported post conception days (PCD), we characterized the liver samples into 10 

developmental stages (Table 1.1). Then DESeq2 was used to identify differentially expressed 

genes (DEG) between two adjacent stages. Covariates including RNAseq PC1, sex, RIN, library 

batch, and the first three genetic PCs were adjusted in the differential gene expression analysis. 

We required the significant DEGs to have at least a 2-fold change and Benjamini-Hochberg FDR 

adjusted p value less than 0.05. The temporally dynamic genes were defined as the significant 

DEGs in at least one comparison between two adjacent developmental stages.  

1.2.9 K-means clustering of the temporally dynamic genes 

To understand the expression pattern of the temporally dynamic genes, we performed k-means 

clustering analysis to group all the temporally dynamic genes into six clusters. We tested a range 

of different numbers of clusters from 1 to 30, then the best number of cluster (k=6) was 

determined as the elbow point of the total within sum of squares plot (Figure 1.5).  The 

clusterProfiler package (G. Yu, Wang, Han, & He, 2012) was used to perform KEGG pathway 

enrichment analysis in each of the clusters.  

1.2.10 Functional enrichment of the temporally dynamic genes 

To understand the relevance of the temporally dynamic genes to several important biological 

functions, we tested the enrichment in a list of gene sets including pharmacogenomics (PGx) 

genes, GWAS related genes, RNA binding proteins (RBP), human transcription factors (TF), and 

human epigenetic factors. In specific, the list of PGx genes was obtained from a study in which 

the authors manually curated a list of PGx gene based on their functions in drug metabolism 

(Wei et al., 2012). GWAS genes were downloaded from the GWAS Catalog v.1.0.1 (Welter et 
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al., 2014). The list of RBP genes was obtained from a review study listed all the established 

RBPs (Gerstberger, Hafner, & Tuschl, 2014). The List of human TF was downloaded from the 

AnimalTFDB v.3.0 database (H. Hu et al., 2019). The list of human epigenetic factors was 

obtained from the EpiFactors (v.1.7.3) database (Medvedeva et al., 2015). Two-sided Fisher’s 

exact test was used to determine the significance of the enrichment and depletion. The effect size 

of the enrichment or depletion was calculated as the odds ratio (OR) in log2 scale.  

1.2.11 Tissue-specific enrichment of the temporally dynamic genes  

To examine the expression pattern of the temporally dynamic genes in different human tissues, 

we performed tissue-specific enrichment analysis using the TissueEnrich package (Jain & Tuteja, 

2019). The tissue-specific genes were defined as genes whose expression levels in a particular 

tissue are 5-fold higher than all the other tissues. The gene expression data of different human 

tissues were collected from the Human Protein Atlas (HPA) and the GTEx project. 

1.2.12 Characterization of the temporally dynamic long non-coding RNAs (lncRNAs) 

As the human reference genome was updated actively, we first checked the most recent genome 

build (GRCh38.97) to annotate the expressed LncRNAs in the pediatric livers. Then we assessed 

both cis and trans regulating effects of the dynamic LncRNA on the candidate target genes 

respectively.  

 

For the cis effects, dynamic LncRNAs were assigned to their closest protein coding genes (target 

PCG) based on the distance between TSS. Each target PCG was then matched with its closest 

neighboring protein coding gene (control PCG) to control the shared cis-regulatory effect. Each 

dynamic LncRNA was also paired with a randomly selected protein coding gene (random PCG) 
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to generate the null distribution of the LncRNA-mRNA correlations. We calculated the 

Pearson’s correlations for LncRNA-target PCG, target PCG-control PCG, and LncRNA-random 

PCG using all the liver samples (n=110). We identified candidate cis-coexpressed protein coding 

genes if the adjusted p value (LncRNA-target PCG) < 0.05 and p value (LncRNA-target PCG) < 

p value (target PCG-control PCG). The KEGG pathway enrichment analysis was then performed 

to understand the functions of the target protein coding genes. 

 

For the trans effects, we calculated the Pearson’s correlation between each of the dynamic 

LncRNAs and each of the dynamic protein coding genes. We considered the absolute value of 

the correlation coefficients larger than 0.9 and adjusted p value less than 0.05 as the candidate 

target genes. The KEGG pathway enrichment analysis was then performed to understand the 

functions of the target genes. The correlations between LncRNA and the target genes were 

visualized using the igraph package (http://igraph.org).  

1.2.13 Cell type deconvolution 

To explore the cell type composition of liver tissue during development, we decomposed the 

bulk RNA-Seq data into cell type proportions using the CIBERSORT method (Gentles et al., 

2015). The performance of the deconvolution relies on the cell type signature, which are the 

expression levels of the cell-type specific gene markers. We constructed the cell type signature 

from a single cell RNA-Seq (scRNAseq) study examining 8,444 cells from five human adult 

livers (MacParland et al., 2018). The study identified 20 different cell populations, but four of 

them were contributed by only one donor liver, indicating an individual-specific population or 

technical issues. Therefore, we only included the other 16 cell populations that were contributed 

by at least two livers. Then the cell type signature and the bulk RNA-Seq data were imported 

http://igraph.org/
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into CIBERSORT for cell proportion estimation. We further removed 9 negligible populations 

(less than 1% in more than 80% of the samples) and re-calculated the relative proportions of the 

abundant cell types, including hepatocytes I, hepatocytes II, hepatic stellate cells (HSC), 

erythroid cells, T cells, cholangiocytes, mature B cells, liver sinusoidal endothelial cells (LSEC), 

non-inflammatory macrophages (Kuffer cells), inflammatory macrophages, and plasma cells. 

The cell type heterogeneity (entropy) was calculated as -∑ log(𝑝𝑖) ∗ 𝑝𝑖
𝑛
𝑖=1 , where 𝑝𝑖 is the 

proportion of the ith cell type and n is the total number of cell types.  

1.2.14 Genome-wide polygenic score (GPS) calculation and risk stratification 

GPS is defined as the weighted sum of the variants contributed to the risk for complex 

traits/diseases (Chatterjee, Shi, & Garcia-Closas, 2016), such as body mass index (BMI) and 

Type 2 diabetes (T2D). We calculated the GPS of 5 metabolic diseases, including BMI, T2D, 

Atrial fibrillation (AF), Coronary artery disease (CAD), and Inflammatory bowel disease (IBD), 

using the genotype of the liver samples and weights from previous studies (Khera et al., 2018; 

Khera et al., 2019). The genotype available in the liver set is highly overlapped with the reported 

weights (mean overlapping rate > 98%). As the ancestry is a major confounding factor of GPS 

(Figure 1.14), we calculated the corrected GPS as the residuals of regressing the first three 

genetic PCs on the raw GPS. The corrected GPS didn’t have a significant correlation with 

ancestry any more (Figure 1.15). Then we stratified the individuals based on their corrected GPS 

of each disease. The individuals with the highest 10% GPS were considered as high risk, while 

individuals with the lowest 10% GPS were classified as low risk. The rest of the individuals were 

considered as medium risk.   
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To examine the effects of genetic predisposition on transcriptomic signatures of the human liver 

at the early stage of development. For each of the diseases, DESeq2 was used to identify 

differentially expressed genes in prenatal samples with high (top 10%) and low (tail 10%) risk of 

disease. Post-conception days, RNAseq PC1, sex, RIN, library batch, and the first three genetic 

PCs were controlled in the analysis. Genes with FDR adjusted p < 0.05 and fold change > 2 were 

considered as significant. To capture the overall pattern of differentially expressed genes, we 

adopted a liberal threshold (nominal p < 0.05 and fold change > 2) to perform the KEGG 

pathway enrichment analysis. Pathways with FDR adjusted p < 0.05 were considered as 

significant.  

1.3 Results  

1.3.1 Characteristics of the human liver samples  

A total of 110 human pediatric liver samples passed the stringent quality control of both 

genotyping and mRNA sequencing (see section 1.2.3 and 1.2.4 for details) and were analyzed in 

the study. Based on the post-conception days (PCD) of each sample, we characterized the liver 

samples into 10 developmental stages from embryonic to adulthood (Table 1.1, Figure 1.2 A).  
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Table 1.1 Developmental stages 

Stage Name Description Sample size 

Stage 1 Embryonicand Early_fetal 4 < Age <= 10 PCW 12 

Stage 2 Early fetal_ 10 < Age <= 13 PCW 11 

Stage 3 Early mid_fetal 13 < Age <= 16 PCW 12 

Stage 4 Mid fetal 16 < Age <= 17 PCW 7 

Stage 5 Infancy 0 < Age <= 12M 11 

Stage 6 Toddlerhood 1 < Age <= 2Y 12 

Stage 7 Early childhood 2 < Age <= 7Y 9 

Stage 8 Middle childhood 7 < Age <= 13Y 8 

Stage 9 Adolescence 13 < Age <= 20Y 16 

Stage 10 Adulthood Age > 20Y 12 
PCW: post-conception weeks. 

 

The sample sizes of adjacent stages are relatively similar (the difference between adjacent stages 

ranging from 1 to 8). There were no power analyses to determine the same size before sampling. 

The sample collection was not performed in a randomized and blind way. Due to the availability 

of the samples, prenatal liver with post-conception weeks less than 4 weeks and greater than 17 

weeks were missing in the study. Due to the incomplete demographic information and potential 

mislabeling, we determined the sex of the samples through a scatter plot of XIST gene 

expression (female only) and the average expression of genes located in the non-

pseudoautosomal region (PAR) of Y chromosome (male only).  As shown in Figure 1.2 B, two 

clear clusters of samples separated by the sex-specific gene expression. We then used the sex 

inferred from the gene expression pattern for the subsequent analysis (Figure 1.2 C, D). The 

ancestries of the samples were diverse, in which most of the prenatal samples were black and 

most postnatal samples were white. Our RNA samples have good integrity (>6 for all the 

samples, and the mean value is 7.4), ensuring good quality of subsequent RNA sequencing 

(Figure 1.2 F). 
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Figure 1.2 Characteristics of the samples 

A. The number of sample size of each developmental stage; B. The scatter plot of XIST gene expression (female 

only) and the average expression of genes located in the non-pseudoautosomal region (PAR) of Y chromosome 

(male only). The color represents the reported sex; C. The scatter plot of XIST and non-PAR expression. The color 

represents the sex inferenced from the expression pattern; D. The number of male and female samples in the study; 

E. PCA plot of the genetics background of the samples; F. The distribution of RIN values of the samples. Red line 

indicates the mean value. 

 

1.3.2 RNA-Seq quality control metrics and covariates selection  

A total of 3.2 billion read pairs (29.3  6.3 million per sample) were uniquely mapped to the 

human GRCh38.90 reference genome (Figure 1.3 A). The majority of the reads were from 

mRNA (coding region and UTR regions) (Figure 1.3 B). The examination of the relative 

converge of the transcript indicated underrepresentation in 5 prime and overrepresentation in 3 

prime (Figure 1.3 C), which is not uncommon in mRNA sequencing (Shanker et al., 2015) and 

will be corrected in the subsequent analyses.  
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To systematically adjust the confounding effects of technique factors on gene expressions, we 

collected 90 RNA-Seq quality control metrics and summarized them through a principle 

component analysis (PCA). The first PC captured 98.8% of the total variance, and samples were 

not separated into obvious groups by the first two PCs (Figure 1.3 D). Therefore, we used the 

first PC to represent the technical effects of RNA-Seq.  

 

To further understand the effects of biological and technical confounding factors on gene 

expression, we examined the pair-wise correlation between the first 10 PCs of gene expression 

profiling and factors including sex, age (PCD), the first 3 genetics PCs, RIN, library batch, and 

the first PC of RNA-Seq metrics (Figure 1.3 E). We found that age has the most significant 

correlation with the first PC of gene expression, suggesting the existence of a broad age-related 

effect. Other factors including sex, RIN, library batch, RNAseq PC1, and the first three GPCs 

will be adjusted as covariates.  
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Figure 1.3 Characteristics of the RNA sequencing 

A. Distribution of the number of uniquely mapped read pairs (million). Red line indicated the mean value; B. The 

proportion of the reads mapped to the different regions of the genome. Each bar represents one sample; C. The 

normalized coverage of the transcript. Black bars represent 95 confidence intervals; D. The PCA plot of the 90 

quality control metrics collected during RNA sequencing; E. Correlation matrix of the first 10 PCs of the gene 

expression and covariates including sex, age (post-conceptions days), the first three genetic PCs, RIN, library batch, 

and the first PC of RNA-Seq QC metrics. Scale bar represents the Pearson correlation coefficient. Only correlations 

with p < 0.05 were plotted. 

1.3.3 Identification and characterization of temporally dynamic genes 

A systematic survey of temporally regulated genes would provide insights into human liver 

development. As shown in Figure 1.3 E and Figure 1.4 A, there are dramatic differences in the 

gene expression patterns of different developmental stages. To curate a complete list of genes 

under temporal control, we performed differential gene expression analyses between each pair of 

adjacent stages. We found 34.9% (5669/16248) of expressed genes were dynamic during 

development (Figure 1.4 B). The most significant difference happens between stages of mid fetal 

(16 < age <= 17PCW) and infancy (0 < age <= 12M), which is consistent with findings in other 

human tissues such as the brain. K-means clustering analysis of the temporally dynamic genes 

indicated that there are mainly two big clusters: early expressed (highly expressed in prenatal 

stages) and late expressed (highly expressed in postnatal stages) genes. Based on the gene 
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expression levels, these two big clusters can be further dissected into six sub-clusters: early low, 

early medium, early high, late low, late medium, late high (Figure 1.6).  

 

Figure 1.4 Identification of temporally dynamic genes 

A. PCA plot the gene expression pattern of liver samples; B. The number of significantly differentially expression 

genes in each of the comparison between two adjacent stages. 

 

K-means clustering analysis (Figure 1.5) and the KEGG pathway enrichment analysis indicated 

that pathways related to cell proliferation (e.g. cell cycle, DNA replication) and autoimmune 

disease (e.g. systemic lupus erythematosus) were overrepresented in the early expressed genes, 

while pathways involved in liver-specific functions such as biosynthesis, drug metabolism, and 

fatty acid metabolism were enriched in the late expressed genes (Figure 1.6).  

A B
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Figure 1.5 K-means clustering analysis 

A list of different k from 1 to 30 were tested. The best k = 6 was picked up at the elbow point. 

 

 

 

Figure 1.6 K-means clustering analysis of the dynamic genes. 

K-means clustering analysis of the identified dynamic genes. The pattern of gene expresion was annotated by the 

KEGG analysis. Green color represents early expressed genes, while red color represents late expressed genes. 

  

k=6 (elbow point)
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To further interpret the relevance to several important liver functions, we tested the enrichment 

of the temporally dynamic genes in the gene sets including pharmacogenomics (PGx) genes, 

GWAS related genes, RNA binding proteins (RBP), and human transcription factors (TF). The 

overall human TFs were slightly overrepresented in early expressed genes and significantly 

underrepresented in the late expressed genes (Figure 1.7 A). However, the liver‐ enriched 

transcription factors (LETFs) such as HNF4A, FOXA2, HNF1A, CEBPA, and CEBPB were 

mostly expressed in the postnatal stages (Figure 1.7 B). RBPs were enriched in the late highly 

expressed genes but underrepresented in the other clusters, suggesting the critical roles of 

posttranscriptional regulation during the developmental processes and differentiation of tissue 

identity (Baralle & Giudice, 2017; Brinegar et al., 2017). Consistent with the KEGG analysis, we 

found liver-specific functional genes (PGx genes) and disease-related genes (GWAS genes) were 

enriched in the late expressed genes.  

 

 

Figure 1.7 Functional annotation of the temporally dynamic genes 

A. Enrichment analysis for the 6 clusters of genes in human transcription factors (TF), RNA-binding proteins (RBP), 

GWAS genes, and PGx genes. Two-sided Fisher exact test was used to determine the significance of the enrichment 

or depletion. FDR adjusted p value < 0.05 was considered as significant. The extent of enrichment or depletion was 

expressed as log2 odds ratio; B. Expression trajectory of liver enriched transcription factors. Loess regression was 

used to fit the trend line. Shades represent 95% CI. The red line indicates the birth day, grey dash lines represent the 

different developmental stages.  
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Moreover, we explored the epigenetic regulation of human liver development by testing the 

enrichment of epigenetic factors (histone and histone modification genes) in each of the dynamic 

clusters. We found that the epigenetic regulators tend to be up regulated in the prenatal stages 

(Figure 1.8), suggesting the substantial epigenetic modifications occur in the early development 

of human livers. 

 

Figure 1.8 Enrichment analysis for the 6 clusters of genes in epigenetic regulators 

Two-sided Fisher exact test was used to determine the significance of the enrichment or depletion. FDR adjusted p 

value < 0.05 was considered as significant. The extent of enrichment or depletion was expressed as log2 odds ratio. 

1.3.4 Tissue-specific enrichment indicated a transition from a stem-cell like to liver-specific 

expression profiling during development 

Next, we performed the tissue-specific enrichment analysis to see the expression pattern of the 

dynamic genes in multiple human tissues. Interestingly, we found the early expressed genes 

displayed a stem-cell like transcriptomic signature, in which actively proliferating tissues such as 

bone marrow and lymph node were the most significantly enriched (Figure 1.9 A). The late 
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expressed genes were predominantly enriched in liver-specific expressed gene set (Figure 1.9 B). 

The closest tissues to liver are adipose and small intestine, which is consistent with their related 

similar expression patterns (Consortium et al., 2017). These findings suggested the major 

function of liver was transited from cell growth in the prenatal stage to liver-specific metabolic 

processes in the postnatal stage.  

 

Figure 1.9 Tissue-specific expression analysis 

A. Enrichment of the early expressed (low, medium, and high) genes in tissue-specific expression signatures; B. 

Enrichment of the late expressed (low, medium, and high) genes in tissue-specific expression signatures. Fisher 

exact test was used to determine significance, followed by FDR multiple testing adjustment.  
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1.3.5 Temporally dynamic isoforms showed similar patterns as dynamic genes, but with larger 

effect sizes 

We further analyzed the temporally regulation of gene expression at the isoform level. Similar to 

the gene level, we observed significantly differentially expressed isoforms between stages of 

prenatal and postnatal (Figure 1.10). The majority (4399 out of 6811) of dynamic isoforms were 

dynamic at the gene level as well (Figure 1.11 A), but with larger effect sizes (Figure 1.11 B, p < 

2.2e-16 by Kolmogorov–Smirnov test). Pathway enrichment analysis indicated that the 

overlapped dynamic genes were mostly involved in steroid hormone synthesis, systemic lupus 

erythematosus, and drug metabolism (Figure 1.11 C), which are similar to the enriched pathways 

at the gene level.  

 

We also identified a group of isoform-specific temporally dynamic genes (n=2412). These genes 

were mainly enriched in pathways regarding mRNA splicing (Figure 1.11 C), indicating the 

temporal control of alternative splicing in liver was regulated in an isoform-specific way. 

Consistent with the KEGG pathway analysis, RBPs were significantly overrepresented in the 

isoform-specific dynamic genes (Figure 1.11 D). 
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Figure 1.10 Temporally dynamic isoforms 

A. PCA plot the isoform expression pattern of liver samples; B. The number of significantly differentially 

expression isoforms in each of the comparison between two adjacent stages; C. Correlation metrics of the first 10 

PCs of isoform expression and the covariates.  
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Figure 1.11 Comparison between dynamic genes and dynamic isoforms 

A. Venn diagram of dynamic genes and isoforms; B. The distribution densities of the effect size of dynamic genes 

and isoforms. K-S test was used to determine the significance; C. KEGG pathway enrichment analysis of overlapped 

genes and isoform specific genes; D. Enrichment analysis of the overlapped and isoform specific genes in functional 

gene set including human transcription factors (TF), RNA-binding proteins (RBP), GWAS genes, and PGx genes. 

Two-sided Fisher exact test was used to determine the significance of the enrichment or depletion. FDR adjusted p 

value < 0.05 was considered as significant. The extent of enrichment or depletion was expressed as log2 odds ratio. 

1.3.6 Dynamic LncRNAs exert broad effects on human liver development 

LncRNAs, which are long transcripts (more than 200bp) without detectable protein coding 

potentials, have been identified to be co-expressed with developmental regulators in adult 

tissues. To assess the contribution of lncRNAs to human liver development, we examined the 

expressed lncRNAs in the pediatric livers and investigated their cis- and trans-regulating effects 

on the candidate target genes.  

p = 1.9e-305 by K-S Test
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Based on the most recent human reference genome (GRCh38.97), we identified 1412 lncRNAs 

expressed in the pediatric liver set. Consistent with previous findings, lncRNAs tend to have 

lower expression levels (Figure 1.12 A) and shorter transcript length (Figure 1.12B) as compared 

to the protein coding genes (both p values < 2.2e-16 by Mann-Whitney U test). We identified 

596 dynamic lncRNAs out of the total 1412 expressed lncRNAs. The dynamic genes were 

significantly enriched in lncRNAs (OR=1.41, p value = 8.8e-10 by Fisher’s exact test). More 

specifically, dynamic lncRNAs tend to be highly expressed in the early stages of the 

development (Figure 1.12 C). 

 

To systematically examine the cis-regulating effects of dynamic lncRNAs, we calculated the 

Pearson’s correlation between each of the dynamic lncRNAs and its most adjacent protein 

coding gene (target PCG). As the correlation between lncRNA and target PCG might be 

confounded by the shared cis regulatory effects, we further calculated the correlation between 

target PCG and its immediately neighboring protein coding gene as a control (control PCG). 

Also, we calculated the correlation between each dynamic lncRNA and a randomly selected 

protein coding gene (random PCG) to generate the null distribution of the lncRNA-PCG 

correlations (Figure 1.12 D). As shown in Figure 1.12 E, dynamic lncRNAs displayed strong 

positive correlations with the target PCGs as compared with the control PCGs (K-S test, p = 

6.5e-16), suggesting the existence of the cis-regulating effects of dynamic lncRNAs. We also 

observed a bias to the positive target PCG-control PCG correlation (K-S test, p = 3.8e-3), 

indicating the shared cis regulatory effects. Furthermore, we identified 258 candidate target 

genes with adjusted p value (lncRNA-target PCG) less than 0.05 and p value (lncRNA-target 

PCG) less than p value (target PCG-control PCG). Pathway analysis of the candidate target 
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genes indicated strong enrichments in development and metabolism related pathways (Figure 

1.12 F).  

 

Moreover, we investigated the trans regulation effects of the dynamic lncRNAs as increasing 

evidence have shown that lncRNA might regulate remote gene expression through affecting 

chromatin states, influencing nuclear structure, and interacting with other transcriptional 

regulators (Kopp & Mendell, 2018). To that end, we calculated the Pearson’s correlation 

between each of the dynamic lncRNAs and each of the dynamic protein coding genes. 

Correlations with coefficients larger than 0.9 and adjusted p values less than 0.05 were 

considered as candidate target genes. We identified lncRNA AC073349.1 has the most (n=229) 

correlated protein coding genes. Pathway analysis indicated that the candidate gene were 

significantly enriched in porphyrin metabolism (adjusted p = 1.02e-5) and cell cycle (adjusted p 

= 0.019) pathways. The co-expressed relationships between AC073349.1 and its target genes in 

porphyrin metabolism and cell cycle pathways were shown in Figure 1.12 G.   
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Figure 1.12 Effects of dynamic lncRNAs on transcriptional regulation. 

A. Comparison of expression levels between lncRNAs and protein coding genes. Mann–Whitney U test was used to 

determine the significance; B. Comparison of transcripts length (in log10 scale) between lncRNAs and protein 

coding genes. Mann–Whitney U test was used to determine the significance; C. The number of dynamic lncRNAs in 

each of the expression clusters; D. Diagram of the tested correlations. lncRNA: dynamic lncRNA; target PCG : the 

most closet protein coding gene to the lncRNA; control PCG: the immediate neighboring protein coding gene to the 

target PCG; random PCG: randomly selected protein coding gene; F. Pathway analysis of the candidate cis-

regulating targets genes of the dynamic lncRNAs; G. Correlations between lncRNA AC073349.1and its candidate 

trans-regulating target genes. Nodes were colored by the gene functions: red: lncRNA, blue: cell cycle pathways; 

green:  porphyrin metabolism pathways. 

 

1.3.7 Cell type heterogeneity decreased during human liver development 

To understand the temporal change in cell type composition, we utilized the single-cell data of 

adult human livers from a published study (MacParland et al., 2018) to deconvolve our bulk 

RNA-Seq data. After removing negligible cell populations (see section 1.2.12 for details), we 

estimated the relative proportions of 9 cell types in the liver. Hepatocytes, which are the building 

blocks of liver and the most abundant cells, increased during embryonic and fetal development 

(Figure 1.13 A). The change in hepatocytes proportion correlated closely with the expression 

lncRNA Target PCG Control PCG

Random PCG

P = 3.8e-3

P = 6.5e-15

P < 2.2e-16 P < 2.2e-16
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level of HNF4A, which is the master TF controlling hepatocytes differentiation (Kamiya, Inoue, 

& Gonzalez, 2003) (Figure 1.13 C).  Consistent with the dynamic gene analysis, the proportions 

of proliferating active cells such as erythroid cells and T cells were decreased over the 

development. The composition of other major liver cell types including Kuffer cells and hepatic 

stellate cells (HSC) seemed to remain stable over time, but this could due to the limited 

sensitivity of deconvolution for less abundant cells. 

 

Next, we calculated the entropy of cell type proportions to investigate the change in cell type 

heterogeneity during development. As shown in Figure 1.13 B, the heterogeneity decreased till 

the end of infancy. The increasing uniformness corroborated the finding of tissue-specific 

enrichment analysis, in which liver transited from a stem-cell like tissue to a more functional 

organ during development. 
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Figure 1.13 Cell type deconvolution  

A. Relative cell type proportions over the course of developmental stages; C. Cell type heterogeneity; C. Expression 

trajectory of HNF4A; D. Correlation between HNF4A expression and hepatocyte proportion. Loess regression was 

used to fit the trend line. Shades represent 95% CI. The red vertical line indicates the birth day, grey vertical dash 

lines represent the different developmental stages. 

1.3.8 Genome-wide polygenic score (GPS) analysis identified risk genes for metabolic diseases 

Recent studies have shown that the risk of complex disease could be better predicted through 

modeling the genetic variants at the genome-wide level (Richardson, Harrison, Hemani, & 

Davey Smith, 2019). GPS, which is the weighted sum of multiple variants based on their 

associations with the disease, has been shown to display similar performance as a monogenetic 

mutation in predicting complex diseases such as Type 2 diabetes (T2D) (Khera et al., 2018). 

Therefore, GPS has becoming a powerful approach to stratify the general population into 

different risk groups. To understand the predisposed genetics effects on disease pathogenesis at 
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the early stages of development, we compared the transcriptomic profiles of the prenatal livers 

with high (top 10% GPS score) and low (tail 10% GPS score) risk for 5 metabolic diseases 

(Figure 1.17). 

 

 

Figure 1.14 Correlation matrix of the raw polygenic scores 

A. The distribution and pair-wise correlation of the polygenic scores of 5 metabolic diseases; B. Correlation matrix 

between the polygenic scores of 5 metabolic diseases and covariates. Scale bar represents the Pearson correlation 

coefficient, and only correlation with p < 0.05 was plotted. T2D: type 2 diabetes, BMI: body mass index, AF: Atrial 

fibrillation, CAD: Coronary artery disease, IBD: Inflammatory bowel disease.  
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Figure 1.15 Ancestry corrected polygenic scores. 

A. Scatter plot of the raw polygenic score of T2D and the first genetic PC; B. Scatter plot of the ancestry corrected 

polygenic score of T2D and the first genetic PC. 

 

 

 

 

 

Figure 1.16 Correlation matrix of the ancestry corrected polygenic scores 

A. The distribution and pair-wise correlation of the ancestry corrected polygenic scores of 5 metabolic diseases; B. 

Correlation matrix between the corrected polygenic scores of 5 metabolic diseases and covariates. Scale bar 

represents the Pearson correlation coefficient, and only correlation with p < 0.05 was plotted. T2D: type 2 diabetes, 

BMI: body mass index, AF: Atrial fibrillation, CAD: Coronary artery disease, IBD: Inflammatory bowel disease.  
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Figure 1.17 Disease risk stratification  

Risk stratification for the 5 metabolic disease. People with the top 10% of the ancestry corrected polygenic scores 

were considered as high risk, the tail 10% as low risk, and the rest as medium. T2D: type 2 diabetes, BMI: body 

mass index, AF: Atrial fibrillation, CAD: Coronary artery disease, IBD: Inflammatory bowel disease.  

 

A total of 32 genes have been identified to be differentially expressed (FDR adjusted p < 0.05 

and fold change > 2) between the high and low risk groups.  Interestingly, some of the identified 

genes have been reported to be involved in the pathogenesis of the corresponding diseases. For 

example, RSC1A1 is down-regulated in the prenatal samples characterized with high-risk for 

obesity (Figure 1.18 B, which is consistent with the study showing that RSC1A1 knockout mice 

displayed increased glucose transport and developed obesity (Osswald et al., 2005). Similarly, 

we found CD69, which is a critical regulator and potential therapeutic target of IBD (Radulovic 

& Niess, 2015), was up-regulated in the IBD high-risk group (Figure 1.18 E).  



45 

 

To capture the overall signature of the differentially expressed genes, we performed the KEGG 

pathway analysis with a relatively liberal threshold (nominal p < 0.05 and fold change > 2). We 

found the top enriched pathways were highly functional relevant to the corresponding diseases. 

For example, the PI3K/Akt signaling pathway, which is a critical pathway underlying the 

development of T2D (X. Huang, Liu, Guo, & Su, 2018), was found to be enriched in the 

identified T2D risk genes (Figure 1.19). These findings suggest that hepatic molecular profiles 

have already been significantly altered at the early stage of life among the individuals with high 

genetic risk for chronic disease.  

 

 

Figure 1.18 Boxplot of the representative differentially expressed genes in the prenatal livers 

A. Boxplot of NIPA2 expression in prenatal livers; B. Boxplot of RSC1A1 expression in prenatal livers; C. Boxplot 

of ACKR1 expression in prenatal livers; D. Boxplot of FLRT2 expression in prenatal livers; E. Boxplot of CD60 

expression in prenatal livers. 

  

A B

C D

E



46 

 

 

Figure 1.19 KEGG pathway analysis of the differentially expressed genes in the prenatal livers. 

T2D: type 2 diabetes, BMI: body mass index, AF: Atrial fibrillation, CAD: Coronary artery disease, IBD: 

Inflammatory bowel disease. 

1.4 Discussions 

The transcriptome profiles of liver tissues in different developmental stages were analyzed in the 

present study to provide insights into the human liver development and the pathogenesis of 

metabolic diseases at both gene and isoform level. Despite ongoing endeavors (Cardoso-Moreira 

et al., 2019; Huse, Gruppuso, Boekelheide, & Sanders, 2015), this is the first large-scale study to 

depict the multiple facets of human liver development. In specific, this study is significant in the 

following aspects. 

 

Firstly, we characterized a list of temporally dynamic genes using the largest-to-date cohort of 

human pediatric liver samples. Consistent with previous studies (Cardoso-Moreira et al., 2019; 
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Huse et al., 2015), we observed dramatic changes in human liver transcriptome during the course 

of development. In specific, the developing livers tend to display a proliferative profile, in which 

cell cycle, DNA replication and repair related genes were highly expressed. In the contrast, the 

developed livers tend to have differentiated liver function (e.g. drug metabolism and fatty acid 

degradation) related genes highly expressed. Our findings supported a transcriptome-wide 

transition from a stem-cell like to a liver-specific gene expression signature. This is consistent 

with the notion that development is a dynamic balancing process between proliferation and 

differentiation (Ruijtenberg & van den Heuvel, 2016), but was the first time to show in human 

livers at the transcriptome-wide level. Interestingly, we found the temporal regulation is more 

dynamic at the isoform level compared to the gene level. This suggested the developmental 

regulation might be controlled with more subtle and complex mechanisms in an isoform-specific 

way, which is consistent with the observations in other tissues (Gandal et al., 2018; M. Li et al., 

2018).  

 

Secondly, the emerging single cell data provide us an opportunity to explore the human liver 

development at the cell type specific resolution. We successfully decomposed the bulk RNA 

expression into cellar composition and estimated the trajectory of major hepatic cell types over 

development. Consistent with the knowledge that hepatocyte is the major liver functional cell 

type, we observed a surge in hepatocyte proportion from prenatal to postnatal stages. The 

proportion of hepatocyte correlated closely with the expression levels of the hepatocyte 

differentiation controlling transcription factor HNF4A, suggesting our estimation accurately 

reflected the true trajectory of hepatocytes proportion. Interestingly, we observed a decreased 

cell type heterogeneity from the embryonic stage till the end of infancy. The increasing 
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uniformness is consistent with the switch to a more functional profile. Despite the significance of 

the cellular composition analysis, our study is limited in the selection of the cell type signatures. 

Due to the limited availability of the single cell data of prenatal livers, we performed our analysis 

using only the mature cell type signatures collected from adult livers. Therefore, we don’t have 

the power to observe the transition from the progenitor cells to the mature cells in our system. 

Future single-cell or single-nucleus RNA sequencing analysis are in need to investigate the cell 

type heterogeneity change in the prenatal liver samples.  

 

Moreover, our polygenetic score analysis stratified the disease risk and identified both known 

and novel disease risk genes. Our analysis framework is conceptually similar to the 

transcriptome-wide association study (TWAS) (Gamazon et al., 2015; Gusev et al., 2016) or 

summary-data-based mendelian randomization (SMR) approaches (Zhu et al., 2016), in which 

genes associated with the predisposed genetic risk are more likely to be the causal genes due to 

fewer biases from confounding effects and reverse causality. What’s more, we chose to focus on 

the prenatal samples due to less unknown environmental exposures in the prenatal stage. Several 

identified risk genes are highly relevant to the development of the corresponding disease. For 

example, CD69, a determining regulator of inflammation and potential therapeutic target for IBD 

(Radulovic & Niess, 2015), was found to be up-regulated in the prenatal liver tissues of the IBD 

high-risk individuals. This finding not only suggested the involvement of liver in IBD given the 

similar expression pattern of liver and small intestine (Consortium et al., 2017), more 

importantly,  revealed that the transcriptomic signatures of high-risk people might be 

dysregulated at the very beginning of the development process due to the predisposed genetic 

risk. This is significant for the disease risk prediction and development of therapeutic treatment 
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for the target genes. Despite the significant findings revealed by the polygenic risk analysis, it is 

of note that the GPS score calculation (even after ancestry correction) is still prone to error, 

especially in the non-Caucasian ethnic groups (De La Vega & Bustamante, 2018). The GPS 

analysis is also limited in understanding liver disorders such as NAFLD, this is because 

construction of robust GPS model needs a large volume of independent genomics data which is 

not available for liver disorders yet. Future studies on the construction of GPS for liver diseases 

are needed to identify corresponding risk genes. 

 

Taken together, our study significantly improved the current understanding of human liver 

development through a systematic analysis of the transcriptomic signature of human pediatric 

liver samples. Future studies at the single cell and epigenome level are warranted to further 

decipher the detailed mechanisms of human liver development and the pathogenesis of liver 

disorders.  
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CHAPTER 2. ALLELE SPECIFIC EXPRESSION ANALYSIS TO 

INVESTIGATE THE GENETICS CONTROL OF GENE EXPRESSION 

IN HUMAN PEDIATRIC LIVERS 

2.1 Disclaimer 

The area under the curve (AUC) data in Figure 2.11 were collected by ChienWei (Jack) Chiang 

and Lang Li from the Department of Biomedical Informatics of the Ohio State University. 

2.2 Introduction 

Numerous studies have revealed the significant associations between genetic variations and 

human gene expression in adult tissues (Consortium et al., 2017). However, recent studies have 

shown that the genetic control of gene expression is not only tissue-specific, but also highly 

dependent on the stages of the developmental process (Flutre, Wen, Pritchard, & Stephens, 2013; 

D. Wang et al., 2018). Consistent with the drastic transcriptome change (see details in Chapter 

I) between prenatal and postnatal liver, genetic mutations would affect multiple aspects of liver 

development and lead to serious liver disorders (Rao, Asch, & Yamada, 2017; Saha et al., 2014). 

Due to the limited availability of human pediatric liver samples, the associations and interactions 

between genetic variants and hepatic gene expression in the process of development remain 

largely unknown.   

 

Expression quantitative trait loci (eQTL) analysis is the most common approach to investigate 

the relationships between genetic variations and gene expression. However, due to the multiple 

testing burden (Q. Q. Huang, Ritchie, Brozynska, & Inouye, 2018), large sample size is needed 

to identify significant associations, which is unavailable for the pediatric liver samples yet. Also, 

despite the advancement of fine mapping approaches (Roytman, Kichaev, Gusev, & Pasaniuc, 
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2018; Tehranchi et al., 2019), the identified significant eQTLs might not be the causal regulatory 

variants due to the existence of LD structure (Q. Q. Huang et al., 2018). 

 

Allele specific expression (ASE) analysis, as an alternative approach, aims to identify significant 

allelic imbalance at the heterozygous sites. Therefore, ASE can be used to interrogate the cis-

regulating effects at the individual level (Bell & Beck, 2009). As such, ASE is less likely to be 

affected by the confounding issues due to the existence of perfect internal control (Castel, Levy-

Moonshine, Mohammadi, Banks, & Lappalainen, 2015). To systematically investigate the 

genetics control of hepatic gene expression during development, we tested the ASE at all the 

heterozygous sites of each of our pediatric liver samples. Then we analyzed if prenatal and 

postnatal samples display different ASE pattern. To understand the interactive effects between 

genetic variants and age on gene expression, we analyzed the associations between ASE and 

developmental stage using a newly developed powerful approach EAGLE (Knowles et al., 

2017a). In the end, we intergraded both genetics and non-genetics information e.g. age and sex to 

build up predictive models for important pharmacogenomics (PGx) genes, with the aim of 

improving pharmacokinetic /pharmacodynamic (PK/PD) modeling for pediatric patients. A 

diagram summarizing the key question and major analyses in this chapter was shown in Figure 

2.1. 
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Figure 2.1 Analysis workflow 

2.3 Materials and methods 

2.3.1 Raw data generating  

A total of 190 DNA samples and 6,233,264 high-quality variants were genotyped or imputed. 

The RNA samples (n =110) of the same set of livers were sequenced and mapped to the 

GRCh38.90 reference genome. More details on the raw data generating were introduced in the 

sections 1.2.3, 1.2.4, and 1.2.5.  

2.3.2 Sequencing filtering by WASP 

Allele specific expression (ASE) analysis is known to be sensitive to mapping biases, in which 

the reference allele is more likely to be mapped than the alternative allele (Castel, Levy-

Moonshine, Mohammadii, Banks, & Lappalainenii, 2015). To reduce the potential mapping 

Key question: What’s the genomic control of human liver transcriptome during development?

Human pediatric liver samples in 10 development stages (n=110)

Allele specific expression (ASE) analysis

Interindividual ASE distance

ASE x Age interaction

Pharmacogenomics (PGx) gene expression prediction
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biases, we filtered out reads that mapped differently to the reference and alternative genome 

using the WASP method (van de Geijn, McVicker, Gila, & Pritchard, 2015). In brief, for the 

reads overlapping genetic variants of interest (see section 2.3.3.1 for details), the allele in the 

read was flipped and tested if the read was able to be mapped to the original position. The 

original WASP method was re-implemented in the mapping tool STAR v.2.7.0c (Dobin & 

Gingeras, 2015) by adding the vW tag to the output bam files. We only kept reads with vM:i:1 

tag (passed the WASP filtering) for the subsequent analyses. Finally, we de-duplicated the reads 

using the rmdup.py function of WASP tools. Importantly, one copy of the duplicated reads was 

randomly retained instead of the copy with the highest score to reduce the potential mapping 

biases.  

2.3.3 ASE analysis  

2.3.3.1 Genetic variants of interest  

A total of 6,233,264 high-quality variants (see section 1.2.3 for details) existed in our liver 

samples were used as the core set of SNPs to be analyzed. We removed SNPs located in the 

ENCODE blacklist regions (Dunham et al., 2012) and areas with mappability < 1 from the 75-

mer UCSC genome browser mappability track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode

CrgMapabilityAlign75mer.bigWig). Following the suggestion of Panousis NI et al. (Panousis, 

Gutierrez-Arcelus, Dermitzakis, & Lappalainen, 2014), we then removed SNPs displaying > 5% 

mapping bias based on 50bp simulated reads 

(ftp://jungle.unige.ch/Allelic_map_bias//paired_end_genome_based_BWA/EUR01_50bp_result

_stats_05bias.txt). The left SNPs were subject to be analyzed for allele specific expression.  

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign75mer.bigWig
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign75mer.bigWig
ftp://jungle.unige.ch/Allelic_map_bias/paired_end_genome_based_BWA/EUR01_50bp_result_stats_05bias.txt
ftp://jungle.unige.ch/Allelic_map_bias/paired_end_genome_based_BWA/EUR01_50bp_result_stats_05bias.txt
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2.3.3.2 Allele specific read count 

We processed our data following the QuASAR pipeline (Harvey et al., 2015). Briefly, we used 

the mpileup function of SAMtools (H. Li et al., 2009) to compile counts of read covering both 

reference and non-reference alleles at each of the SNPs of interest with GRCh38.90 reference 

genome. Then SNPs that were not covered by a read or within a splice junction were removed to 

avoid potential biases.  

2.3.3.3 Heterozygous SNPs confirmation 

Genotyping or imputation error would lead to serious false-positive issues for ASE inference. 

For example, if it a homozygous site was mistakenly considered as heterozygous during DNA 

genotyping or imputation steps, then the reference ratio (ref allele count / total count) of this SNP 

would be extreme and prone to be inferred as a significant ASE site. To reduce the biases 

introduced by the genotyping/imputation error, we used the QuASAR method (Harvey et al., 

2015) to orthogonally call the genotypes from the RNA-Seq reads. Then the final list of 

heterozygous SNPs to be analyzed for ASE were selected: a. heterozygous by DNA 

genotyping/imputation; b. heterozygous by mRNA-based genotyping (posterior probability of 

being heterozygous > 0.99); c. the total coverage is larger than 20. Overall, we observed a high 

concordance between DNA and RNA based genotypes. In average, 95.8% of the heterozygous 

SNPs were confirmed by both DNA and RNA based genotyping, while 2.5% and 1.7% were 

characterized as DNA and RNA only, respectively (Figure 2.2 A). The inconsistency between 

DNA and RNA genotypes could due to technical issues (e.g. genotyping, imputation, or 

sequencing error) or biological factors such as imprinting or RNA editing.  
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As a quality check of the mapping bias, we calculated the genome-wide reference ratio (defined 

as the mean reference ratio of all the Het SNPs in a sample) of each sample. The average 

genome-wide reference ratio of our sample is 0.498 (Figure 2.2 B), which is very close to the 

theoretical threshold of 0.5 (Castel, Levy-Moonshine, Mohammadii, et al., 2015), suggesting the 

mapping bias is unlikely to confound the ASE inference.  

 

 

Figure 2.2 Mapping biases quality control 

A. The proportion of DNA-confirmed, RNA-confirmed, and both RNA and DNA confirmed heterozygous SNPs in 

each liver sample; B. The genome-wise reference ratio (ref count/ total count) of each liver sample, blue dash line 

indicates the theoretical threshold of 0.5, the red line indicates the mean reference ratio of all the samples.  

2.3.3.4 ASE inference 

Inspection of the distribution of the effect size (defined as reference ratio – 0.5) of the tested 

heterozygous SNPs didn’t observe obvious overdispersion issue (Figure 2.3 A), which is the 

major concern of using binomial test in ASE inference. Therefore, we chose to use the binomial 

test for the better power over the beta-binomial model (Figure 2.3 D).  

 

Mean = 0.498

A B
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The two-sided binomial test was used to determine whether the reference ratio was significantly 

deviated from 0.5, following by the Benjamini-Hochberg (BH) multiple testing adjustment. As 

ASE was inferred at a per-SNP base, different coverages at different sites would affect the 

statistical power. Therefore, we required the converge > 20 to ensure adequate power while 

filtered out Het SNPs with absolute effect size less than 0.1 to account for the potential false-

positive at the high coverage sites. Moreover, we only considered the recurrent ASE events 

(FDR < 0.05 and |effect size| > 0.1 in at least two individuals) for further analysis. The 

significant ASE variants were annotated by an online SNP annotation tool SNPnexus 

(https://snp-nexus.org/) (Ullah et al., 2018).  

 

Figure 2.3 Distribution of the median effect size  

A. Distribution of the median effect size (ref count / total count – 0.5) across all heterozygous individuals for all 

tested Het SNPs; B. Distribution of the median effect size (ref count / total count – 0.5) across all heterozygous 

individuals for the significant ASE sites; C. The number of over-expressed and under-expressed allele; D. QQ-plot 

of ASE inference using binomial test and beta-binomial test in one example sample.    

A B

C D

https://snp-nexus.org/
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2.3.4 Interindividual ASE distance  

To examine the similarity within individuals with regard to the ASE pattern, we defined the ASE 

distance between two individuals as 1 −
NsharedASE

𝑁𝑠ℎ𝑎𝑟𝑒𝑑𝐻𝑒𝑡
 , where NsharedASE represents the number of 

shared significant ASE sites (FDR < 0.05 and |effect size| > 0.1), 𝑁𝑠ℎ𝑎𝑟𝑒𝑑𝐻𝑒𝑡 represents the 

number of overlapped heterozygous SNPs between two individuals. We then visualized the ASE 

distance matrix using multidimensional scaling (MDS) plot with two dimensions.  

2.3.5 Comparison with ASE in human adult livers 

To make a comparison with the published adult ASE data using GTEx tissues (V6, October 

2015), we download the ASE track from UCSC genome browser for liver tissues 

(http://hgdownload.soe.ucsc.edu/hubs/gtexAnalysis/hg38/gtexAwgAseLiver.bb). 

 

The effect size of an ASE site was defined as the median allelic imbalance (|0.5 – ref count / total 

count|) across all individuals. More details on the ASE inference in adult tissues can be found in 

the previous publication (Castel, Levy-Moonshine, Mohammadii, et al., 2015).  Kolmogorov–

Smirnov test was used to determine if the two densities were equal. 

2.3.6 ASE x Age interaction  

To systematically evaluate the interactions between genetic variation and age, we used EAGLE 

(Knowles et al., 2017b), a recently developed method to identify significant GxE interactions 

using ASE data. EAGLE is conceptually similar to the spearman association between allelic 

imbalance and environmental factor of interest such as age but has been shown to improve power 

and reduce false-positive through modeling the read counts directly and accounting for the 

overdispersion (Knowles et al., 2017b). For the input of Het SNPs to be tested, we used the same 

http://hgdownload.soe.ucsc.edu/hubs/gtexAnalysis/hg38/gtexAwgAseLiver.bb
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threshold as in the ASE identification i.e. both DNA and RNA confirmed Het sites and 

converge > 20 counts. Following the author’s suggestion, we required at least 20 heterozygous 

individuals to test for the significance of the interaction effect between ASE and age, which is 

quantified as the log10 transformed post-conception days. FDR adjusted p value less than 0.1 

was considered significant. Two-sided Fisher’s exact test was used to determine the enrichment 

of the significant ASE-age interaction in the significant ASE events. KEGG pathway analysis 

was used to identify significantly enriched pathways in the genes harboring GxE variants. 

2.3.7 Pharmacogenomics (PGx) genes expression prediction  

To help improve the pharmacokinetic/pharmacodynamic (PK/PD) modeling for pediatric 

patients, we constructed the predictive model for several important PGx genes using both genetic 

variation and non-genetics factor including sex and age as predictors. In specific, we used the 

bayesian variable selection regression (BVSR) method to model the hepatic gene expression 

using varbvs (http://github.com/pcarbo/varbvs) due to its ability to select significant variants at 

the genome-wide level. The predicted PGx genes include CYP3A4, CYP3A5, ABCC10, and 

SLC29A3. The SNPs within 1Mb of each gene, log10 PCD, sex, and the first 3 genetic principle 

components were used to train the predictive model using our pediatric liver set. Then the model 

was applied to an independent cohort of pediatric patients to calculate their virtual hepatic gene 

expression levels. To validate the predictive performance, we correlated the predicted gene 

expression levels with the area under the curve (AUC) data of drug metabolism collected by our 

collaborators.  

http://github.com/pcarbo/varbvs
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2.4 Results  

2.4.1 Identification and characterization of ASE in human pediatric liver samples 

Allele specific expression analysis is a sensitive approach to explore the cis-regulating effects 

through identifying significant allelic imbalance (Figure 2.4 A). After stringent quality control 

processing steps, we characterized a total of 1,503 significant ASE variants out of 28,810 tested 

heterozygous SNPs. Consistent with the findings in eQTL and GWAS studies (Park et al., 2011), 

variants with lower minor allele frequency tend to have larger effect size (Figure 2.5 B) and be 

more likely to be characterized as significant ASE (Figure 2.5 C).  

 

The ASE sites were annotated to be within the transcripts of 777 genes. These ASE-overlapping 

genes tend to be enriched in the pathways related to liver functions such as drug metabolism and 

fatty acid degradation (Figure 2.4 B), suggesting the involvement of cis-regulating effects in 

liver functions.  

 

The majority of the ASE sites located in the 3 prime downstream or the 3 prime UTR regions of 

the corresponding transcripts, while 5 prime UTR has the least ASE sites. This is consistent with 

the finding that 3’ UTR (1028bp on average) is around 5 times longer than 5’ UTR (210bp on 

average) for human beings (Mignone, Gissi, Liuni, & Pesole, 2002). Moreover, the 3’ 

overrepresentation of RNA-Seq coverage (Figure 1.3 C) might contribute to the most ASE 

identification in the 3’ UTR as well.  

 

Most of the ASE variants are synonymous mutations or benign non-synonymous substitutions 

(Figure 2.4 D), however, we identified several ASE sites that would lead to potentially damaging 
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effects such as stop codon gain/loss mutations. For example, the A allele of rs1790218 

introduced a stop codon gain mutation in SLC22A10, which is a liver-specific organic anion 

transporter (OAT) gene involved in transporting anionic drugs such as antibiotics (Klein et al., 

2010; Sweet, 2005). The stop gain mutation leads to significant expression reduction at both 

gene (p = 0.001, Figure 2.6 A) and isoform level (p = 0.003, 0.0002, and 0.001, respectively, 

Figure 2.6 B, C, and D).  

 

We also observed that the ASE variants tend to within the regulatory regions of the genome 

(Figure 2.4 E). For example, we identified the most ASE sites within the promoter regions, 

indicating the cis-regulating effects might be mediated by affecting the promoter binding 

affinity.  
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Figure 2.4 ASE identification and characterization  

A. The diagram of ASE; B. KEGG pathway analysis of the genes containing ASE sites; C. The distribution of the 

location of ASE in the transcripts; D. The distribution of the type of mutation for ASE in the coding region; E. The 

distribution of the ASE sites that located in the regulatory regions of the human liver HepG2 cells.  

 

Figure 2.5 ASE and allele frequency 

A. The distribution of the number of tested heterozygous SNPs in different allele frequency groups; B. The 

distribution of the absolute allelic imbalance (|ref count/ total count – 0.5|) of the ASE sites in different allele 

frequency groups; C. The distribution of the ASE frequency (number of ASE sites / number of the tested Het SNPs) 

in different allele frequency groups.  
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Figure 2.6 An example stop-gain ASE in gene SLC22A10 

A. Boxplot of the SLC22A10 expression; B-D: boxplots of the expression levels of three SLC22A10 isoforms. 

Linear regression was used to determine the significance.  

2.4.2 Prenatal and postnatal livers exhibited different ASE signatures 

To address the question of whether development affects the ASE pattern in human livers, we 

explored the ASE frequency (proportion of ASE sites in Het SNPs) of each sample. Interestingly, 

we found that the postnatal samples tend to have higher ASE frequency compared to the prenatal 

samples (1.8% and 3.2% in prenatal and postnatal samples, respectively, p < 2.2e-16) (Figure 2.7 

A).  Moreover, we calculated the pair-wise interindividual ASE distance and found that samples 

were clustered by their developmental stages (Figure 2.7 B). Due to the different genetic 

background of prenatal and postnatal samples (most of the prenatal samples were from black 

people, while most of the postnatal samples were from white people), we explored whether 
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ancestry would confound the observed ASE signatures. The correlation matrix indicated that the 

ASE frequency is positively correlated with age, but not correlated with the first genetic PC 

(Figure 2.8 A). To account for the potential confounding effects, we regressed sex, genetic PC1, 

RIN, library batch, and read depth on the ASE frequency and found the residuals were still 

positively correlated with age (r = 0.4, p = 1.6e-5, Figure 2.8 B). The MDS plot of ASE distance 

also demonstrated that ancestry didn’t separate the samples into obvious clusters (Figure 2.8 C). 

Therefore, we concluded age/developmental stage was the major factor leading to the different 

ASE signatures.  

 

Figure 2.7 ASE patterns in prenatal and postnatal samples 

A. The number of ASE sites and ASE frequency of the liver samples. The color represent the frequency (number of 

ASE sites / number of the tested Het SNPs) of the ASE sites in each individual. B. The MDS plot of the 

interindividual ASE distance.  

 

 

A B
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Figure 2.8 Ancestry and ASE frequency 

A. Correlation matrix between ASE frequency and covariates; B. Scatter plot of the age (log10 post-conception 

days) and ASE frequency adjusted for covariates; C. The MDS plot of the interindividual ASE distance. 

2.4.3 Comparison between ASE in pediatric livers and adult livers 

Next, we compared the allelic imbalance in our pediatric set with the published human adult liver 

tissues (GTEx V6). Overall, we observed good concordance between pediatric liver and adult 

livers (Figure 2.9 A, B), suggesting ASE as a general mechanism regulating hepatic gene 

expression. In specific, postnatal samples tend to have more similar allelic imbalance (rho = 0.48 

[0.43, 0.52], p = 6.8e-66, Figure 2.9 B) than prenatal samples (rho = 0.34 [0.26, 0.41], p = 4.3e-

16, Figure 2.9 A). While both prenatal and postnatal livers have different densities as adult livers 

(both p < 2.2e-16 by K-S test), the density of postnatal samples is relatively similar to the adult 

counterpart (p = 0.001 by K-S test, Figure 2.9 C), which is consistent with the notion that age 

plays a role in shaping ASE signatures.  

 

A B C
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Figure 2.9 Comparison between ASE in pediatric and adult livers 

 A. The correlation between median effect size of ASE sites in prenatal and adult livers; B. The correlation between 

median effect size of ASE sites in postnatal and adult livers; C. The densities of the distribution of the effect sizes. 

K-S test was used to determine the significance.  

2.4.4 ASE x age interaction  

Given the different ASE patterns in the prenatal and postnatal samples (section 2.4.3), we aimed 

to identify the specific age-dependent ASE sites at the population level (Figure 2.10 A). In total, 

we identified 35 significant (FDR < 0.1) ASE-age interactions. These age-dependent ASE sites 

were significantly enriched in the ASE sites identified at the individual level (p < 2.2e-16 by 

two-sided Fisher’s exact test). As with individual-level ASE sites, age-dependent ASE variants 

tend to be located in the genes related to major liver functions such as fatty acid and glucose 

metabolism (Figure 2.10 B). For example, the allelic imbalance of the rs174546 in FADS2, the 

critical enzyme for long-chain polyunsaturated fatty acid (LC-PUFA) metabolism in the liver (L. 

Wang et al., 2015), was found to be increased over development (FDR adjusted p = 1.4e-6, 

Figure 2.10 C), suggesting an age-dependent difference in PUFA metabolism for people with 

different genetic background. Similarly, we also found the allelic imbalance of KLF10, the 

determining transcription factor regulating hepatic glucose metabolism (Yang et al., 2017), and 

p = 0.001 by K-S test

A B C
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PON1, a liver fibrosis protect gene (Marsillach et al., 2009),  were significantly changed over the 

course of development (FDR adjusted p = 0.02 and 0.09, respectively, Figure 2.10 D, E). 

 

 

Figure 2.10 ASE x Age interaction 

A. The diagram of the age-dependent ASE; B. KEGG pathway analysis of the genes containing age-dependent ASE; 

C-E. Allelic imbalance of three example age-dependent ASE sites. Loess regression was used to fit the trend line. 

Shades represent 95% CI. The red vertical line indicates the birth day, grey vertical dash lines represent the different 

developmental stages. 

2.4.5 Hepatic gene expression imputation through the integration of both genetics and non-

genetics factors 

Given the pivotal role of developmental stage in shaping liver gene expression, the current adult 

tissue-based gene expression imputation model would not be applied well to the pediatric people 

(Gamazon et al., 2015). Therefore, we constructed gene expression predictive models using our 

pediatric liver set to best fit the need of pediatric people. As a proof of concept, we first applied 
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our predictive model to several important PGx genes, with the aim to improve the 

pharmacokinetic/pharmacodynamic (PK/PD) modeling for pediatric patients. Interestingly, we 

found the predicted expression levels are significantly correlated with the area under the 

curve (AUC) data of vincristine in an independent pediatric cohort of patients. For example, the 

predicted expression levels of CYP3A4, which is the major enzyme responsible for the 

metabolism of around half of the prescribed drugs (Zanger & Schwab, 2013), was negatively 

correlated with the vincristine AUC data (beta = -0.03, p = 0.04, Figure 2.11 A), which is 

consistent with the notion that a higher level of CYP3A4 leads to metabolism lower drug 

exposure. Another significant example is the transporter gene ABCC10, which has been shown 

to play a critical role in the resistance of multiple drugs (J. J. Chen et al., 2013; Oguri et al., 

2008; Zhao et al., 2018) . We found the predicted ABCC10 expression levels were positively 

correlated with the vincristine exposure time (beta = 0.04, p = 0.02, Figure 2.11 C), suggesting 

the possibility to model drug resistance using genetic variation and non-genetics factors such as 

age and sex.  
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Figure 2.11 PGx gene expression prediction 

Correction between the predicted levels of PGx genes and vincristine drug exposure (AUC) in an independent 

cohort of pediatric patients.  

2.5 Discussions  

We explored the effects of genetic variations on the interindividual variability of hepatic gene 

expression in the context of development. To our best knowledge, this is the first study to 

investigate the genetic control of gene expression in human pediatric livers. Our study is 

significant in the following aspects.  

 

Firstly, we observed genes in the postnatal samples were more likely to display allele specific 

expression pattern. In other words, development/ageing is an induce factor of ASE in at least 

human liver tissues. As the liver is one of the major metabolic organs interacted with the 

environment, the more environmental exposures accumulated after birth might lead to the higher 

ASE rate in the postnatal stage. This is consistent with the recent studies showing that ASE is 
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under selection (Chen et al., 2016; Shao et al., 2019; Tian et al., 2018), in which ASE sites were 

less conservatory than the non-ASE sites. Given the transition from a proliferative to a 

differentiated expression profile from prenatal to postnatal (Chapter I), the less ASE rate in the 

prenatal stage might indicate the existence of a protective mechanism to tolerate genetic 

variations in the critical developing periods. As we also observed the predisposed genetic risk 

plays a role in the early stage gene expression (section 1.3.7), future studies are warranted to 

study the balance between the predisposed genetic load and the potential tolerate system. 

 

Secondly, motivated by the findings that both genetics variations and development play pivotal 

roles in regulating hepatic gene expression. As a proof-of-concept, we constructed the predictive 

model for important PGx genes and found the predicted levels were significantly correlated with 

the drug metabolism data in an independent cohort. The virtual hepatic expression prediction 

model is of translational interest. For the purpose of precision medication, our study is promising 

in improving the modeling of PK/PD for pediatric patients due to the age-dependent PGx gene 

expression patterns. As for the diagnosis of serious liver disorders such as NASH and fibrosis, no 

biomarker was existed to screen people for their disease risks.  The virtual hepatic expression 

indicates the baseline levels/activities of important disease-related genes, thus could serve as a 

potential biomarker to screen people for the need to perform further invasive diagnostic 

procedures such as biopsy.  

 

In summary, through the ASE analysis in the different developmental stages of human livers, we, 

for the first time, identified an age-dependent allele specific expression pattern. This motivates 
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the construction of the pediatric-specific hepatic gene expression system, which is of important 

translational significance in drug and disease diagnosis.  
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CHAPTER 3. INTEGRATIVE OMICS ANALYSIS IDENTIFIES 

MACROPHAGE MIGRATION INHIBITORY FACTOR SIGNALING 

PATHWAYS UNDERLYING HUMAN HEPATIC FIBROGENESIS 

AND FIBROSIS 

3.1 Disclaimer  

The materials in this chapter were adapted from the author’s published paper (Z. Liu, Chalasani, 

et al., 2019). The copyright has been granted by Wolters Kluwer Health, Inc. 

3.2 Introduction 

Hepatic fibrosis is a highly conserved and protective response characterized by the excessive 

accumulation of extracellular matrix proteins following either acute or chronic liver injury 

(Bataller & Brenner, 2005). Chronic viral hepatitis, alcohol abuse, and non-alcoholic fatty liver 

disease are the main causes of liver fibrosis (Hernandez-Gea & Friedman, 2011). Although 

normal liver composition can be restored following acute or transient insult, sustained chronic 

liver injury will lead to a progressive formation of fibrous scar tissue, which will destroy the 

liver architecture and eventually produce hepatocellular dysfunction (Benyon & Iredale, 

2000) .The pathogenesis of liver fibrosis is not fully understood, and it remains largely unclear 

why the severity of the disease displays substantial variability in patients with the same set of 

known risk factors (Pellicoro, Ramachandran, Iredale, & Fallowfield, 2014). Therefore, there is a 

pressing need to understand the genetic basis underlying the liver fibrosis which may 

subsequently allow for identifying critical drug targets can be identified and early intervention 

strategies for subjects with high risk of liver disease can be developed.   
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The expression of alpha-smooth muscle actin (α-SMA) reflects the activation of hepatic stellate 

cells to myofibroblast-like cells and is closely related to human liver fibrogenesis (Mann & 

Smart, 2002). Sirius red staining can accurately quantify the total hepatic collagen content 

(Lattouf et al., 2014), which is among the predominant hepatic extracellular matrix proteins 

(Schuppan, 1990). Therefore, quantitative α-SMA expression and Sirius red staining are accurate 

and reliable markers indicating liver fibrogenesis and fibrosis, respectively. In this study, we 

explored the genetic basis underlying the variability of these two quantitative molecular 

phenotypes using a step-wise genome-wide analysis, using donor liver samples which reflects a 

general American population. We performed genome-wide association study on the quantitative 

level of the two markers. We further investigated the potential function of candidate single 

nucleotide polymorphisms (SNPs) in regulating mRNA expression for their nearby genes. A 

pathway enrichment analysis was further conducted to identify critical genes and pathways that 

are potentially underlying the genetic susceptibility to liver fibrosis.  

3.3 Materials and methods 

3.3.1 Datasets 

The tissue procurement procedure and related information of the liver samples (n = 121) used in 

this cross-sectional study have been described in our previous studies (Gamazon et al., 2013; 

Innocenti et al., 2011; L. Wang et al., 2015). In brief, these liver samples were obtained from 

unrelated liver transplantation donors of self-reported European and African descent. Subjects 

with heavy alcohol consumption (> 20 g/day), hepatitis B and C virus infection, or drug-induced 

liver injury, were excluded from this study. The genotype and gene expression profiling of these 

samples have been previously analyzed and deposited to the Gene Expression Omnibus database 
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(accession number: GSE26106, https://www.ncbi.nlm.nih.gov/geo/). The demographical and 

histological characteristics of the donor liver samples used in this study have been summarized in 

Table 3.1. Analyses in this study were performed on anonymous individuals, thus this study is 

not considered to involve “human subjects”. The study was reviewed and has been approved by 

the Institutional Review Board (IRB) of Wayne State University (approval No. 201842) on May 

17th of 2018. 

Table 3.1 Demographical and histological characteristics of the donor liver tissues 

Item Data 

Male 82 (67.8) 

Age (year) 40 (17-57) 

body mass index (kg/m2) 25.8 (21.8-29.8) 

Race  

White 102 (84.3) 

Black 19 (15.7) 

Percentage of alpha-smooth muscle actin expression 3.6 (1.8-7.1) 

Percentage of total collagen content 9.4 (5.5-14.1) 

Fibrosis stage*  

Focal perisinusoidal 1 (0.9) 

Perisinusoidal 6 (5.2) 

No fibrosis 109 (93.9) 
N=121. *missing information for 5 participants. Data are expressed as number (percent) in male, race, and fibrosis 

stage, and median (interquartile range) in others. 

3.3.2 Liver histology characterization and α-SMA and sirius red staining and quantification 

Formalin-fixed, paraffin-embedded liver sections were stained with hematoxylin and eosin and 

Masson trichrome stains for histological evaluation. The biopsies were scored by an experienced 

hepatopathologist (JL) in a blinded fashion according to the non-alcoholic steatohepatitis clinical 

research network liver histology criteria published by Kleiner et al. (Kleiner et al., 2005) and it 

showed normal in 59% and non-alcoholic fatty liver disease in 41% [fatty liver 5%, borderline 

non-alcoholic steatohepatitis 23%, and definite non-alcoholic steatohepatitis in 13%. Formalin-

https://www.ncbi.nlm.nih.gov/geo/
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fixed, paraffin-embedded sections were stained for α-SMA (marker for stellate cell activation) 

and Sirius red (total collagen content) and were digitally quantitated and expressed as a percent 

of total liver biopsy area using SPSS Sigma Scan Pro 5.0 software (SPSS Inc., Chicago, IL, 

USA). 

3.3.3 Genome-wide association study (GWAS) analyses 

Genotyping was performed using Illumina Human610-Quad v1.0 BeadChip array 

(Illumina, San Diego, CA, USA)(Innocenti et al., 2011). The overall genotyping rate was 

95.16%. After excluding rare (minor allele frequencies <5%) and low quality (call rate < 90% 

and deviation from Hardy-Weinberg equilibrium P <1e-3) variants, there are 533,687 remaining 

SNPs for the linear regression analysis. Using an additive genetic model, each SNP was tested 

for association to α-SMA expression and hepatic collagen content, respectively. The phenotypes 

were normalized with log base 10 transformation. Age, gender, body mass index, and the first 

two genetic principal components were adjusted as covariates for the association. SNPs with P 

value less than 1e-4 were considered as candidate loci for the following analysis. The quality 

control and association test was performed using the package PLINK 1.07 

(http://pngu.mgh.harvard.edu/purcell/plink/)(Purcell et al., 2007). The regional plots were 

generated using the package LocusZoom (http://csg.sph.umich.edu/locuszoom/)(Pruim et al., 

2010). 

3.3.4 Expression quantitative trait loci (eQTL) analyses 

Gene expression profiling was measured using Agilent-014850 Whole Human Genome 

Microarray 4x44K (Agilent, Santa Clara, CA, USA) for the liver tissues of the same set of 

subjects (Innocenti et al., 2011). Linear regression model was used to detect transcripts 

http://csg.sph.umich.edu/locuszoom/
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significantly associated with the lead GWAS loci within ±1 Mbp region. Age, gender, body mass 

index, and the first two genetic principal components were used as covariates. Associations with 

P value less than 0.05 were considered as significant for the following analysis. The eQTL 

analyses were performed using R package Matrix eQTL (Shabalin, 2012).  

3.3.5 Pathway enrichment analyses 

We used QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, CA, USA; 

www.qiagen.com/ingenuity) to identify overrepresented signaling pathways in eQTL-controlling 

genes. Right-tailed Fisher's exact test was used to determine the significance level of signaling 

pathways, and P < 0.05 was considered significant. 

3.3.6 Gene interactions from curated databases and text-mining 

The Gene Interactions tool in University of California, Santa Cruz Genome Browser 

(https://genome.ucsc.edu) was used to search the gene-gene interactions. Two genes were 

considered to be interacted if the interaction has been supported by either curated databases or 

text-mining. The curated databases consist of 23 pathway or protein interactions databases. A 

full list of databases that have been included can be found in the user guide of Gene Interactions 

tool (https://genome.ucsc.edu/goldenPath/help/hgGeneGraph.html). The text-mining supported 

gene interactions were generated by the Literome machine-reading program, which read and 

extracted the gene interactions from 20 million PubMed abstracts by the end of 2014 (Poon, 

Quirk, DeZiel, & Heckerman, 2014). The gene-gene interactions among a given list of genes 

were visualized through igraph 1.0.0 (http://igraph.org).  

https://genome.ucsc.edu/
https://genome.ucsc.edu/goldenPath/help/hgGeneGraph.html
http://igraph.org/
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3.3.7 Statistical analysis 

Linear regression was used to assess the association between genetic variants and fibrosis 

markers or gene expression levels. Age, gender, body mass index, and the first two genetic 

principal components were used as covariates in the linear regression model. For GWAS 

analysis, P value less than 1e-4 were considered as candidate loci for the following analysis. As 

for the eQTL analysis, P value less than 0.05 were considered as significant for the following 

analysis. The demographical and histological features of the samples were expressed as number 

(percentage) for categorical variables and median (interquartile range) for continuous variables. 

The correlations between MIF gene expression and α-SMA expression and total collagen content 

were evaluated by Pearson correlation test, and P <0.05 was considered statistically significant. 

The statistical tests were performed using R 3.4 (https://www.r-project.org). 

3.4 Results 

3.4.1 GWAS analysis identifies multiple loci affecting 𝜶-SMA expression and total collagen 

content 

The workflow of the study is shown in Figure 3.1. The two phenotypes explored by GWAS are 

positively correlated with each other (r = 0.31, P =6.6e-4). After GWAS, no SNP was identified 

with a typical genome-wide significance (5e-8) in correlation with each phenotype. At a 

suggestive level of P <1e-4, there were 73 and 71 candidate genetic variants associated with α-

SMA expression and total collagen content, respectively. Although there is a moderate 

correlation between the two markers, only 3 SNPs (rs1274369, rs1274351, rs1274323) were 

commonly associated with both markers. The Manhattan plots and Q-Q plots of the GWAS are 

shown in Figure 3.2, and the characteristics of the top 10 association loci are summarized in 

Table 3.2.  

https://www.r-project.org/
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Figure 3.1 Flowchart showing the workflow of the analysis.  

White boxes represent the input data of human liver samples. Grey boxes indicate the significant output of analysis. 

α-SMA=alpha-smooth muscle actin, eQTL=expression quantitative trait loci, GST=glutathione S-transferase, 

MIF=macrophage migration inhibitory factor, SNP=single nucleotide polymorphism. 

 



78 

 

 

Figure 3.2 Genome-wide association studies of 𝛂-SMA expression and total collagen content.  

(A, B) Manhattan plot and quantile-quantile plot for GWAS of α-SMA expression. (C, D) Manhattan plot and 

quantile-quantile plot for GWAS of total collagen content. P values were calculated by using multiple linear 

regression model adjusted for age, gender, body mass index, and first two principle components. The horizontal red 

lines indicate the suggestive significance threshold (P <1e-4) used for further analysis. α-SMA=alpha-smooth 

muscle actin, GWAS=genome-wide association study. 

 

Top GWAS hits for 𝛂-SMA expression include an intronic SNP rs8015303 in BAZ1A 

(bromodomain adjacent to zinc finger domain 1A) which encodes a protein subunit of the ATP-

dependent chromatin assembly factor that involved in chromatin remodeling. An intronic SNP 

rs1012580 in the NOL10 (nucleolar protein 10) was also significantly associated with 𝛂-SMA 

expression. A few other top hits indicated that several genes involved in inflammation and 

immune response especially IL2RA (interleukin 2 receptor subunit alpha), HTR7 (5-

hydroxytryptamine receptor 7), ST6GALNAC3 (ST6 N-acetylgalactosaminide alpha-2,6-

sialyltransferase 3) and AOAH (acyloxyacyl hydrolase).  
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Top GWAS hits for total hepatic collagen content are mainly genes that are significantly related 

to cell skeleton structure, extracellular matrix and cell adhesion. These include ZWINT (ZW10 

Interacting kinetochore protein) (spindle assembly)(Woo Seo et al., 2015), BCAR3 (breast cancer 

anti-estrogen resistance 3) (cytoskeletal remodeling and adhesion)(Wilson, Schrecengost, 

Guerrero, Thomas, & Bouton, 2013), EFNA5 (ephrin-A5) (cell adhesion and 

morphology)(Buensuceso & Deroo, 2013) and COL11A2 (collagen type XI alpha 2 chain).  

 

Table 3.2 Top 10 GWAS Loci associated with 𝛂-SMA expression and total collagen content 

SNP Gene Locus Position A1 A2 MAF Beta SE P 

 α-SMA expression         

rs8015303 BAZ1A 14q13.2 34316223 G A 0.06967 -0.7229 0.1313 3.70e-7 

rs1012580 NOL10 2p25.1 10725199 A G 0.2869 -0.4247 0.07935 6.96e-7 

rs12722561 IL2RA 10p15.1 6109899 A G 0.1557 -0.5144 0.09968 1.54e-6 

rs12479413 AK311291 2q14.3 129343258 G A 0.05328 -0.9579 0.1869 1.78e-6 

rs1274351 BC037970 10q23.31 92237989 A G 0.123 -0.5068 0.09921 1.90e-6 

rs1274323 HTR7  10q23.31 92264462 G A 0.127 -0.5038 0.09925 2.17e-6 

rs724999 ST6GALNAC3  1p31.1 76961614 A G 0.07438 -0.8518 0.1741 4.58e-6 

rs12207 TUBB3 16q24.3 88529861 A G 0.05785 -0.9667 0.2023 7.23e-6 

rs1345546 NUAK1  12q23.3 104826063 A G 0.09426 -0.6404 0.1381 1.23e-5 

rs10281171 AOAH  7p14.2 36773906 G A 0.3852 -0.3295 0.07149 1.37e-5 

 Total collagen content         

rs6908031 FAM46A  6q14.1 81900082 G A 0.2992 -0.2554 0.04814 8.46e-7 

rs2108935 LDB2  4p15.32 16453008 G A 0.2541 -0.2545 0.05043 2.44e-6 

rs7089692 ZWINT  10q21.1 58603555 G A 0.2459 -0.2431 0.0493 3.89e-6 

rs3950119 BCAR3 1p22.1 93821825 G A 0.2336 0.2674 0.05438 4.10e-6 

rs9512950 TPTE2 13q12.11 18870233 C A 0.2992 -0.2572 0.05406 7.74e-6 

rs181662 EMX2  10q26.11 119372445 G A 0.3279 0.2253 0.04743 7.97e-6 

rs13092046 CNTN3  3p12.3 74617642 A G 0.4262 0.2266 0.04828 9.97e-6 

rs2237172 ATXN1 6p22.3 16709566 G A 0.3512 -0.2444 0.05214 1.03e-5 

rs6894788 EFNA5  5q21.3 106875173 G A 0.2645 0.2476 0.05317 1.16e-5 

rs9368758 COL11A2 6p21.32 33245999 A G 0.06557 -0.4443 0.09714 1.58e-5 

The single nucleotide polymorphism is mapped to its nearest gene; A1 is the minor allele, and A2 is the major allele; 

All positions refer to hg18. α-SMA=alpha-smooth muscle actin, MAF=minor allele frequencies, SE=standard error. 
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3.4.2 Expression analysis identifies significant eQTLs for lead variants 

The eQTL analysis can help establish the potential causality for the GWAS findings. To further 

explore the effects of GWAS loci on gene expression, we performed a cis-eQTL analyses in the 

same set of liver tissues as the GWAS, by focusing on genes that are within the distance of ±1 

Mbp to GWAS identified candidate loci (P <1e-4). By accepting a liberal significance level of P 

=0.05 for eQTLs, we identified 102 significant eQTLs for 44 α-SMA-associated variants and 77 

eQTLs for 44 candidate GWAS loci associated with collagen content.  

 

Our results show that several variants are associated with the mRNA expression of their nearest 

genes. For example, rs1012580 in nucleolar protein 10 (NOL10) for 𝛂-SMA expression and 

rs13092046 in contactin 3 (CNTN3) for total collagen content are found to be correlated with the 

mRNA expression levels of their most nearby genes. However, other significant eQTLs may 

exert their effects on gene expression in a relatively broad range. For instance, fibrogenesis 

candidate variant rs12207 at TUBB3 locus is associated with the expression levels of several 

nearby genes including charged multivesicular body protein 1A (CHMP1A), fanconi anemia 

complementation group A (FANCA), VPS9 domain containing 1 (VPS9D1), and paraplegin 

matrix AAA peptidase subunit (SPG7) instead of TUBB3 itself.  

 

Top eQTLs for α-SMA expression include several variants in 22q11.23 locus that are 

significantly associated with the transcription levels of macrophage migration inhibitory factor 

(MIF) and glutathione S-transferase theta 2 (GSTT2). Top eQTL-controlling genes for total 

collagen content include two glycosyltransferases encoding genes, namely solute carrier family 

35 member B4 (SLC35B4) and beta-1,3-galactosyltransferase 4 (B3GALT4). The transcription of 

prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes a cyclooxygenase involved in 



81 

 

the MIF-related apoptosis repression, is significantly associated with collagen-related variants in 

1q31.1 locus. 

3.4.3 Pathway enrichment analysis of the eQTL-controlling genes  

Given the polygenic nature of liver fibrosis, a single genetic variant or gene may only possess 

limited effect on the development and progression of the disease. We aim to identify pathways 

underlying the liver fibrosis that individual SNP-based GWAS analysis might miss. We 

conducted enrichment analyses on the candidate eQTL-controlling genes using the ingenuity 

pathway analysis package. In order to avoid missing key pathways, we assumed that those genes 

whose transcriptions are associated with the candidate SNPs at a nominal P <0.05 level are the 

candidate genes for an enrichment analysis. As shown in Table 3.3, eumelanin biosynthesis, 

ataxia telangiectasia mutated signaling, glutathione redox reactions I, vascular endothelial 

growth factor signaling, glutathione-mediated detoxification, MIF-mediated glucocorticoid 

regulation, and MIF regulation of innate immunity pathways are top enriched pathways for the α-

SMA activation. On the other hand, MIF-mediated glucocorticoid regulation, MIF regulation of 

innate immunity, branched-chain α-keto acid dehydrogenase complex, and glutathione ascorbate 

recycling pathways are enriched in candidate genes for total collage content. 
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Table 3.3 Results from ingenuity pathway analysis analyses 

Item Ingenuity canonical pathways P Molecules 

α-SMA expression  

Eumelanin biosynthesis 

7.079e-

5 MIF, DDT 

ATM signaling 

1.318e-

3 MDM4, RNF8, ZNF420 

Glutathione redox reactions I 

1.585e-

3 GSTT2/GSTT2B, GSTT1 

Vascular endothelial growth factor signaling 

2.692e-

3 ROCK2, VCL, NOS3 

Glutathione-mediated detoxification 

2.754e-

3 GSTT2/GSTT2B, GSTT1 

MIF-mediated glucocorticoid regulation 

3.548e-

3 MIF, PLA2G2D 

MIF regulation of innate immunity 

5.495e-

3 MIF, PLA2G2D 

Actin nucleation by ARP-WASP complex 

1.000e-

2 ROCK2, ARPC4 

Citrulline-nitric oxide cycle 

1.349e-

2 NOS3 

Remodeling of epithelial adherens junctions 

1.445e-

2 VCL, ARPC4 

Total collagen 

accumulation MIF-mediated glucocorticoid regulation 

2.884e-

3 PLA2G4A, PTGS2 

MIF regulation of innate immunity 

4.365e-

3 PLA2G4A, PTGS2 

Branched-chain α-keto acid dehydrogenase complex 

9.550e-

3 BCKDHB 

Ascorbate recycling (cytosolic) 

9.550e-

3 GSTO2 

Endothelin-1 signaling 

1.047e-

2 

PLA2G4A, ADCY5, 

PTGS2 

Eicosanoid signaling 

1.148e-

2 PLA2G4A, PTGS2 

Role of MAPK signaling in the pathogenesis of 

influenza 

1.318e-

2 PLA2G4A, PTGS2 

Estrogen-dependent breast cancer signaling 

1.479e-

2 IGF1, HSD17B8 

Adenine and adenosine salvage III 

1.660e-

2 ADAL 

Purine ribonucleosides degradation to ribose-1-

phosphate 

1.905e-

2 ADAL 

α-SMA=alpha-smooth muscle actin, ATM=ataxia telangiectasia mutated, MAPK=mitogen-activated protein kinase, 

MIF=macrophage migration inhibitory factor. 
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Interestingly, although there is only a minimal overlap between the candidate genes associated 

with the two phenotypes, the MIF related pathways as well as glutathione-S-transferases (GSTs) 

are significantly enriched for both markers. A detailed inspection of the MIF gene SNPs 

identifies several variants near the MIF locus to be negatively associated with α-SMA levels 

(β = -0.43; 95%CI: -0.64, -0.23; P  =8.38e-5) (Figure 3.3 B), but positively associated with MIF 

gene expression (β = 0.37; 95%CI: 0.30, 0.44; P = 6.34e-7) (Figure 3.3 C). We found that MIF 

gene expression is significantly correlated with decreased levels of α-SMA (Figure 3.4 A, r = -

0.21, P =0.026), suggesting that variations in MIF locus might affect the susceptibility of 

fibrogenesis through controlling MIF gene expression. There is no significant correlation 

between MIF gene expression and total collagen content (Figure 3.4 B, P =0.29). 

 

Figure 3.3 Association between variants near MIF locus and MIF gene expression and 𝛂-SMA 

levels. 

(A) Regional plot for MIF locus. Each SNP is plotted with its P value (shown as –log10 P value) as a function of its 

genomic coordinate (Hg 18). The local LD structure was estimated based on 1000 Genomes 2010 CEU; B: Negative 

association between MIF rs5996635 and 𝛂-SMA expression levels (β = -0.43; 95%CI: -0.64, -0.23; P =8.38e-5). P 

values were calculated by using multiple linear regression model adjusted for age, gender, BMI, and first two 

principle components. (C) Positive association between MIF rs5996635 and MIF transcription (β = 0.37; 95%CI: 

0.30, 0.44; P =6.34e-7). A multiple linear regression model was used to test the association between MIF expression 

levels and nearby GWAS loci within ±1 Mbp region. Age, gender, body mass index, and the first two genetic 

principal components were used as covariates. Numbers of individuals with AA, AG, and GG genotypes are 88, 32, 

and 1, respectively. α-SMA=alpha-smooth muscle actin, MIF=macrophage migration inhibitory factor, SNP=single 

nucleotide polymorphism. 
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Figure 3.4 Correlation between MIF gene expression and 𝛂-SMA expression and total collagen 

content.  

(A) Negative correlation (r = -0.21, P = 0.026) between MIF gene expression and α-SMA expression. (B) 

Correlation (r = -0.10, P = 0.29) between MIF gene expression and total collagen content. P values were calculated 

by Pearson correlation test. α-SMA=alpha-smooth muscle actin, MIF=macrophage migration inhibitory factor. 

 

 

To further confirm this pathway enrichment, and to explore the possible mechanisms through 

which eQTL-controlling genes are involved in the development of fibrosis, we searched for the 

gene-gene interactions among candidate genes for α-SMA expression and total collagen content 

based on a text-mining based gene interaction database. Two genes were considered to be 

interacted as long as this relationship has been supported by either curated gene interactions 

databases or text-mining evidence. As shown in Figure 3.5 A, nitric oxide synthase 3 (NOS3) and 

MIF are the two genes that have the largest number of connections with other α-SMA 

expression-related genes. PTGS2, which mediates the MIF induced apoptosis suppression, is one 

of the most highly connected genes for the total collagen content-related gene network (Figure 

3.5 B).  
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Figure 3.5 Gene interaction networks for eQTL-controlling genes.  

(A) Gene interactions for α-SMA expression-related genes. (B) Gene interactions for total collagen content-related 

genes. The grayscale intensity of the node represents the number of its edges. The darker the node is, the more 

connections it has. α-SMA=alpha-smooth muscle actin, eQTL=expression quantitative trait loci. 

3.5 Discussions 

Hepatic collagens accumulation and 𝛂-SMA activation are reliable and quantitative markers 

indicating the risk of developing liver fibrosis and cirrhosis (Y. Huang et al., 2013; Yamaoka, 

Nouchi, Marumo, & Sato, 1993), thus are important intermediate phenotypes for the disease. 

Interrogating the genetic susceptibility loci for these intermediate phenotypes will gain insight 

into the molecular mechanisms involved in the pathogenesis of hepatic fibrosis and provide 

potential targets for early diagnosis and treatment. Our study for the first time identifies 

candidate genetic variants, genes, and pathways contributing to human liver fibrogenesis and 

fibrosis in a general population. 

 

GWAS have been widely used to investigate the genetic basis of human complex diseases, and 

thousands of susceptibility loci have been identified thus far (Welter et al., 2014). However, to 
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date most GWAS identified alleles only account for a modest proportion of total variance in 

traits. This is mainly because of the polygenic nature of complex traits and at least in part due to 

the multiple testing burden in test statistics (Visscher, Brown, McCarthy, & Yang, 2012). A 

growing body of knowledge acknowledges that there are causal variants remain undetected owe 

to the adoption of stringent genome-wide significance threshold level (P <5e-8)(Amin, van 

Duijn, & Janssens, 2009; Sveinbjornsson et al., 2016). Therefore, we set a relatively moderate 

threshold at P <1e-4 for GWAS to systematically evaluate the overall effects of candidate genetic 

variants on the two phenotypes. In addition, incorporating the information of eQTLs and 

evaluating them in a network way is beneficial to interpret the biological mechanisms underlying 

the discovered loci, thus potentially identifying causal alleles underlying the genetic association. 

As such, although our study did not identify any SNP that reaches the typical GWAS 

significance level, which could be largely attributed to the small sample size, our combined 

analyses indeed narrowed down a few interesting genes and pathways that are broadly supported 

by many previous studies. 

 

Our analyses firstly demonstrated that a few genes involved in inflammation and immune 

response as top GWAS hits for 𝛂-SMA activation. This is consistent with the known relationship 

between 𝛂-SMA expression and hepatic stellate cell activation as a key step for liver 

fibrogenesis. One notable loci is IL2RA (CD25) across which multiple SNPs were previously 

associated with various inflammatory disorders and traits including allergy (Hinds et al., 2013), 

Epstein-Barr virus nuclear antigen-1 (EBNA-1) IgG level (Y. Zhou et al., 2016), diisocyanate-

induced asthma (Yucesoy et al., 2015), inflammatory bowel disease (J. Z. Liu et al., 2015), 

autoimmune diseases (Jin et al., 2010; Y. R. Li et al., 2015), rheumatoid arthritis (Orozco et al., 
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2014), multiple sclerosis (International Multiple Sclerosis Genetics Consortium et al., 2011; 

Patsopoulos et al., 2011), and levels of autoantibodies in type 1 diabetes (Plagnol et al., 2011). 

The top hit rs12722561 identified in our study is in complete linkage disequilibrium with 

rs12722489, a polymorphism previously identified in a genome-wide meta-analyses as a 

susceptibility locus to multiple sclerosis (Patsopoulos et al., 2011) and Crohn’s disease (Franke 

et al., 2010). A recent study has shown that variant in IL2RA was also significantly associated 

with the concentration of circulating IL2RA (Ahola-Olli et al., 2017). Importantly, the IL-2 

signaling pathway was also enriched as one of the top pathways associated advanced fibrosis and 

cirrhosis in a genome-wide pathway analysis for non-alcoholic fatty liver disease (Q. R. Chen et 

al., 2013). Mechanistically, the IL-2/IL2RA signaling has been indicated to be involved in the 

liver fibrosis as well. The stellate cell-lymphocyte interaction in the liver plays a pivotal role in 

stellate cell activation and liver fibrogenesis, and the IL2RA (CD25) and CD4 positive 

regulatory T cells (CD4+/CD25+) has been demonstrated to be anti-fibrotic by suppression the 

pro-fibrotic effect of CD8 cells on stellate cells (Horani et al., 2007).  

 

It is also not surprising that top GWAS hits for total collagen content are associated with 

multiple genes involved in cytoskeletal structure, extracellular matrix, cell migration and 

adhesion. In addition, two highly linked intronic SNPs at the COL11A2 (collagen type XI alpha 2 

chain) locus are strongly associated with the total collagen content as well. Interestingly, these 

two SNPs are also significantly associated with mRNA expression of multiple genes within a 

~250 kb region in our liver tissue set including COL11A2 and multiple HLA genes. We further 

searched the genotype-tissue expression portal for these two SNPs, which turns out that they are 

also strong eQTLs for the similar set of the genes within the region among multiple tissues. 
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Notably, this HLA locus has been previously linked with hepatitis B virus/hepatitis C virus-

related liver cirrhosis (Mangia et al., 1999; Zhang et al., 2015) as well as primary biliary 

cirrhosis (Almasio et al., 2016), suggesting an essential role of these genes in increasing the 

susceptibility to liver fibrosis.  

 

It is known that the typical GWAS approach may miss important genetic loci as only the very 

top significant SNPs are selected. We therefore further performed a pathway enrichment analysis 

by focusing on the genes whose mRNA expression is likely to be affected by the candidate SNPs 

that are associated with the two markers using a liberal cut-off of P <1e-4. Interestingly, the 

glutathione-related genes and MIF-related pathways are the two common major pathways 

enriched for both markers. It should be noted that there is only a minimal overlap between the 

candidate genes associated with each of the two markers, suggesting that despite different genes, 

the underlying pathways still stand out. While it is known that GSTs are protective for oxidative 

stress-mediated liver damage (S. Li et al., 2015). MIF related signaling pathway has been 

strongly linked to liver fibrosis as well. A recent study demonstrated that MIF-deleted mice (Mif-

/-) tend to show exaggerated fibrogenic phenotypes in two chronic liver injury models (Heinrichs 

et al., 2011). This study is consistent with our finding that MIF may exert anti-fibrotic effects in 

human livers. Moreover, other eQTL-controlling genes in MIF pathway, including PLA2 and 

PTGS2, are key mediators of MIF induced apoptosis suppression signaling, indicating apoptosis 

repression might be one of the mechanisms for the antifibrotic effects of MIF (Elsharkawy, 

Oakley, & Mann, 2005).  
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In addition, angiogenesis has been significantly involved in liver fibrosis (Srivastava et al., 2018; 

Thomas, 2018). Indeed, our pathway enrichment analysis identified that NOS3 and vascular 

endothelial growth factor signaling pathways are significantly associated with α-SMA 

expression, while the endothelin-1 signaling pathway is significantly pathway is associated with 

total collagen level. A considerable body of evidence demonstrates that vascular endothelial 

growth factor signaling promotes liver fibrogenesis by stimulating activated stellate cells growth, 

migration, and collagen production (Novo et al., 2007; Yoshiji et al., 2003). It has been also 

shown that NOS3 expression and activation plays a critical role in the development of FLD and 

liver fibrosis (Leung et al., 2008; Persico et al., 2017; Sheldon, Laughlin, & Rector, 2014). 

We further explore the potential interaction network between the key genes and pathways. 

Again, the NOS3 and MIF are the most highly connected genes for the α-SMA expression gene 

network. Our results suggested that the two hub genes, NOS3 and MIF, and their related genes 

were connected through MutS homolog 4 (MSH4), suggesting that the crosstalk between NOS3 

and MIF signaling pathways might be critical for the liver fibrogenesis. However, this hypothesis 

needs to be validated through further investigations. As for the gene interaction network of the 

total collagen content related genes, PTGS2 has the largest number of connections. Again, it is 

notable that PTGS2 is also involved in both the MIF and endothelin-1 signaling pathway, which 

may further indicate that the MIF and angiogenesis signaling are both involved in liver fibrosis. 

It should be noted again that the interaction networks for both phenotypes highlighted the MIF 

signaling pathway although there is limited overlap between eQTL-controlling genes for the two 

phenotypes. Therefore, the role of MIF signaling, especially its potential interaction with the 

angiogenesis pathway needs to be further investigated. 
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There are also several limitations of our study. Due to the moderate sample size, our analyses are 

limited in its power for identifying genetic risk loci. In addition, we adopted a generous threshold 

to incorporate more potential causal variants into analysis. This will inevitably increase the false 

positive rate of our test. Therefore, the susceptibility loci identified in our study should be 

considered as suggestive and need to be validated independently and within more diverse 

cohorts.  

 

In conclusion, our study identified candidate genetic variants and pathways significantly 

associated with intermediate markers for liver fibrogenesis and fibrosis. Our findings would be 

helpful to elucidate the genetic basis underlying the inter-individual differences in the 

development of liver fibrosis and provide candidate targets for developing therapeutic strategies. 
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CHAPTER 4. MENDELIAN RANDOMIZATION ANALYSIS 

DISSECTS THE RELATIONSHIP BETWEEN NAFLD, T2D, AND 

OBESITY AND PROVIDES IMPLICATIONS TO PRECISION 

MEDICINE 

4.1 Disclaimer 

The materials of this chapter were adapted from the author’s preprint at the bioRxiv database 

(https://www.biorxiv.org/content/10.1101/657734v1) (Z. Liu, Zhang, et al., 2019). The copyright 

holds by the author. The GWAS analysis in the UK biobank samples (section 4.3.2.2) were 

performed by Sarah Graham from the University of Michigan, the transgenic animal experiments 

(section 4.4.5) were finished by Yang Zhang from the Wayne State University.  

4.2 Introduction 

Non–alcoholic Fatty Liver Disease (NAFLD) is characterized by the presence of excess hepatic 

fat accumulation (≥ 5%) without significant alcohol use, hepatitis virus infection, or other 

secondary causes of hepatic fat accumulation (Chalasani et al., 2018). The spectrum of NAFLD 

ranges from simple non–alcoholic fatty liver (NAFL) to non–alcoholic steatohepatitis (NASH), 

which over time can lead to cirrhosis, hepatocellular carcinoma, and organ failure(Hardy, 

Oakley, Anstee, & Day, 2016). Compelling observational epidemiological studies have shown 

that NAFLD is highly correlated with metabolic disorders such as type 2 diabetes (T2D)(M. Hu, 

Phan, Bourron, Ferre, & Foufelle, 2017; Lonardo et al., 2019; Mantovani, Byrne, Bonora, & 

Targher, 2018) and obesity (Chalasani et al., 2018; Fabbrini, Sullivan, & Klein, 2010; Loomis et 

al., 2016). All three diseases together affect over 50% of the U.S. population (Hruby & Hu, 

2015; Xu et al., 2018; Younossi et al., 2018). 

https://www.biorxiv.org/content/10.1101/657734v1
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Dissecting the causal relationship between the three diseases is crucial for both understanding the 

disease etiology and developing effective therapeutic or preventive strategies. However, 

observational associations are limited in elucidating the causality due to various confounding 

factors (e.g. lifestyle, socioeconomic status) or reverse causation bias (Lawlor, Harbord, Sterne, 

Timpson, & Smith, 2008). As a result, the three diseases are often treated as comorbidities for 

each other in various biomedical research settings. On the other hand, current prevention and 

treatment strategies focus on each of the three diseases individually. Without clearly knowing the 

causality among the three diseases, treatments of preventive interventions may often lead to 

conflicting research findings and inconsistent responses to disease prevention and treatment 

among patients.  

 

Mendelian randomization (MR) analysis, which uses genetic variants as proxies for the risk 

factors of interest, has been widely applied in understanding the causal relationship between 

various risks factors and human diseases, e.g. estimation of the causal effect of plasma HDL 

cholesterol on myocardial infarction risk (Voight et al., 2012). Since during the process of 

meiosis the alleles of the parents are randomly segregated to the offspring, the MR method is 

considered to be analogous to a randomized controlled trial (RCT) but less likely to be 

influenced by confounding factors and reverse causation (Paternoster, Tilling, & Smith, 2017).  

Bidirectional MR is an extension of traditional MR in which the exposure–outcome causal 

relationship was explored from both sides. The bidirectional framework provides an efficient 

way to ascertain the direction of a causal relationship, which helps alleviate the potential bias 

from reverse causation (Welsh et al., 2010).  
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Recent MR studies have partially explored the causal relationships among the three diseases. 

Dongiovanni et al. showed genetically instrumented hepatic steatosis was associated with insulin 

resistance and a small increase in T2D risk (Dongiovanni et al., 2018). A study by De Silva et al. 

indicated that genetically raised circulating ALT and AST increased the risk for T2D (De Silva 

et al., 2019). Stender et al. found that the genetic predictors of BMI were associated with 

increased hepatic triglyceride content (Stender et al., 2017). However, a systematic bidirectional 

MR study leveraging the latest GWAS data is particularly needed to elucidate the causal 

relationships among the three metabolic diseases under a uniformed setting. In addition, 

experimental analysis e.g. animal models with a characterized natural history under controlled 

conditions would also help further establish the causality. 

 

In this study, we first aimed to explore whether NAFLD casually increases risks for T2D, obesity 

and their related intermediate traits. We then investigated the reverse relationships, i.e. whether 

T2D and obesity causally affect NAFLD risk. Further, we constructed a transgenic mice model 

expressing human PNPLA3 isoforms, a known genetic NAFLD model to test the causal effects 

of hepatic perturbations on T2D and obesity. 

4.3 Methods and materials 

4.3.1 Ethics statement 

The summary–level GWAS data used for mendelian randomization analyses are publicly 

available (Figure 4.1 and Table 4.1) (Dupuis et al., 2010; Mahajan et al., 2018; Manning et al., 

2012; Prokopenko et al., 2014; Pulit et al., 2019; Saxena et al., 2010; Speliotes et al., 2011; 

Strawbridge et al., 2011; Wheeler et al., 2017; Willer et al., 2013). Therefore, no specific ethical 
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approval is required. The study of the transgenic mice experiments has been reviewed and 

approved by the IACUC of the Indiana University School of Medicine. This research has been 

conducted using the UK Biobank Resource under application number 24460.   

4.3.2 MR analyses 

4.3.2.1 GWAS summary data 

The summary statistics of association with computerized tomography (CT) measured hepatic 

steatosis were taken from a meta–analysis of 7,176 individuals by the Genetics of Obesity–

related Liver Disease (GOLD) consortium (Speliotes et al., 2011). The results of the association 

with histologic NAFLD were taken from the same study, in which 592 biopsy proven NAFLD 

patients from NASH Clinical Research Network (NASH CRN) and 1,405 controls from 

Myocardial Infarction Genetics Consortium (MIGen) were involved. The full GWAS summary 

data of this study are not publicly available, therefore only the results of the top GWAS loci 

associated with steatosis and histologic NAFLD were extracted. The full GWAS summary 

statistics of NAFLD were generated in UK Biobank (UKBB) samples consisting of 1,122 cases 

and 399,900 controls. The details of the GWAS of NAFLD in UKBB are described in the section 

below.  

 

We downloaded full GWAS summary data of 22 glycemic and obesity traits from the largest 

published studies as of March 2019. These traits include T2D, glycated hemoglobin A1c 

(HbA1c), fasting glucose, fasting insulin, fasting proinsulin, 2–h glucose, homeostatic model 

assessment of insulin resistance (HOMA–IR), β–cell function (HOMA–B) and seven insulin 

secretion and action indices during oral glucose tolerance test (OGTT) including area under the 

curve of insulin levels (AUCins), ratio of AUC insulin and AUC glucose (AUCins/AUCgluc), 
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incremental insulin at 30 min (Incre30), insulin response to glucose during the first 30 min 

adjusted for BMI (Ins30adjBMI), insulin sensitivity index (ISI), corrected insulin response 

(CIRadjISI), disposition index (DI), body mass index (BMI), waist–hip ratio (WHR), WHR 

adjusted for BMI (WHRadjBMI), and four plasma lipid levels. Only association results from 

participants of European descent were used in the present study. The details on the phenotype 

information, sample size, and PubMed ID of the original study are summarized in Table 4.1.  

 

Table 4.1 Characteristics of the GWAS summary data 

Phenotype Participants Data source Phenotype 

transformation 

Units 

of 

effect 

size 

Phenotype description PubMed 

ID 

NAFLD  
      

 Steatosis 7,176 GOLD inverse 

normally 

transformation 

SD Computerized 

tomography measured 

hepatic steatosis 

21423719 

 Histologic 

NAFLD 

592 cases 

and 1,405 

controls 

NASH 

CRN/MIGen 

none OR Biopsy–proven NAFLD  21423719 

 NAFLD* 1,122 cases 

399,900 

controls 

UKBB none OR NAFLD from UK 

Biobank database 

Not 

published  

T2D and 

glycemic traits 

      

 T2D 74,124 cases 

and 824,006 

controls 

DIAGRAM none OR Type 2 diabetes 

adjusted for body mass 

index (BMI) 

30297969 

 HbA1c 123,665 MAGIC none % Glycated hemoglobin 28898252 

 Fasting 

glucose 

58,074 MAGIC none mmol/L Fasting glucose adjusted 

for BMI 

22581228 

 Fasting 

insulin 

51,750 MAGIC log 

transformation 

pmol/L Fasting insulin adjusted 

for BMI 

22581228 

 Fasting 

proinsulin 

10,701 MAGIC log 

transformation 

pmol/L Fasting proinsulin 

adjusted for fasting 

insulin 

21873549 

 2h glucose 15,234 MAGIC none mmol/L 2 h glucose levels after 

an oral glucose 

challenge adjusted for 

BMI 

20081857 
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Table 4.1 continued 
 HOMA–IR 37,037 MAGIC log 

transformation 

original The homeostatic model 

assessment (HOMA) 

insulin resistance 

20081858 

 HOMA–B 36,466 MAGIC log 

transformation 

original HOMA beta cell 

function  

20081858 

 AUCins 4,324 MAGIC log 

transformation 

mU*min/L Area under the curve 

(AUC) of insulin levels 

during OGTT 

24699409 

 AUCins/AUCgluc 4,213 MAGIC log 

transformation 

mU/mmol Ratio of AUC insulin 

and AUC glucose 

24699409 

 Incre30 4,447 MAGIC log 

transformation 

mU/L Incremental insulin at 

30 min 

24699409 

 Ins30adjBMI 4,409 MAGIC log 

transformation 

original Insulin response to 

glucose during the first 

30 min adjusted for 

BMI = insulin at 30 

min/ (glucose at 30 

min×BMI) 

24699409 

 ISI 4,769 MAGIC log 

transformation 

mg/dL Insulin sensitivity 

index = 10,000/square 

root (fasting plasma 

glucose (mg/dl) 

×fasting insulin×mean 

glucose during OGTT 

(mg/dl) ×mean insulin 

during OGTT) 

24699409 

 CIRadjISI 4,789 MAGIC log 

transformation 

original Corrected Insulin 

Response = (100 × 

insulin at 30 min)/ 

(glucose at 30 min × 

(glucose at 30 min–

3.89)), adjusted for ISI 

24699409 

 DI 5,130 MAGIC log 

transformation 

original Disposition index 

= CIR×ISI 

24699409 

Obesity traits 
      

 BMI 806,834 GIANT inverse normally 

transformation 

SD Body mass index  30239722 

 WHR 697,734 GIANT inverse normally 

transformation 

SD Waist–hip ratio 30239722 

 WHRadjBMI 694,649 GIANT inverse normally 

transformation 

SD Waist–hip ratio 

adjusted for BMI 

30239722 

 HDL 188,577 GLGC quantile 

normalization 

SD Plasma high–density 

lipoprotein cholesterol 

24097068 

 LDL 188,577 GLGC quantile 

normalization 

SD Plasma low–density 

lipoprotein cholesterol 

24097068 

 



97 

 

Table 4.1 continued 

 TC 188,577 GLGC quantile 

normalizatio

n 

SD Plasma total cholesterol 2409706

8 

 TG 188,577 GLGC quantile 

normalizatio

n 

SD Plasma triglycerides  2409706

8 

*NAFLD was defined based on ICD–9 571.8 “Other chronic nonalcoholic liver disease”) and ICD– 10 K76.0 

[“Fatty (change of) liver, not elsewhere classified”] from inpatient hospital diagnosis within the UK Biobank 

dataset. Individuals with Hepatitis B or C or with other known liver diseases (e.g. liver transplant, hepatomegaly, 

jaundice, or abnormal liver function study results) were excluded from the analysis.  

GOLD: Genetics of Obesity–related Liver Disease; NASH CRN: NASH Clinical Research Network; MIGen: 

Myocardial Infarction Genetics consortium; UKBB: UK Biobank; DIAGRAM: DIAbetes Genetics Replication And 

Meta–analysis; MAGIC: Meta–Analyses of Glucose and Insulin–related traits Consortium; GIANT: The Genetic 

Investigation of ANthropometric Traits consortium; GLGC: The Global Lipids Genetics Consortium; OR: odds 

ratio; SD: standard deviation. 

 

4.3.2.2 GWAS of NAFLD and T2D in UK Biobank 

NAFLD was defined based on ICD–9 571.8 “Other chronic nonalcoholic liver disease” and 

ICD–10 K76.0 [“Fatty (change of) liver, not elsewhere classified”] from inpatient hospital 

diagnosis within the UK Biobank dataset. Individuals with Hepatitis B or C or with other known 

liver diseases (e.g. liver transplant, hepatomegaly, jaundice, or abnormal liver function study 

results) were excluded from the analysis.  The white British subset of UK Biobank was used for 

analysis in SAIGE (W. Zhou et al., 2018) with sex, birth year, and 4 principle components as 

covariates.   

4.3.2.3 Genetic predictors selection 

We used the two strongest genetic predictors of NAFLD, Patatin–like phospholipase domain–

containing protein 3 (PNPLA3) rs738409 and Transmembrane 6 superfamily member 2 

(TM6SF2) rs58542926, as the proxy for hepatic steatosis and histologic NAFLD. These two 

variants have been consistently shown to be associated with the whole spectrum of the NAFLD 

(Eslam, Valenti, & Romeo, 2018; Kozlitina et al., 2014; Y. L. Liu et al., 2014; Romeo et al., 

2008; Speliotes et al., 2011; X. Wang et al., 2016). Multiple MR analyses have previously been 
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performed using these two variants to test the causal relationship between NAFLD and diseases 

such as Vitamin D deficiency(N. Wang et al., 2018), ischaemic heart disease (Lauridsen et al., 

2018), and liver damage (Dongiovanni et al., 2018). As TM6SF2 rs58542926 is not genotyped in 

most of the GWAS summary data used in this study, rs2228603 at the NCAN gene locus, which 

is in strong linkage disequilibrium with TM6SF2 rs58542926 (pairwise R2 = 0.76 based on the 

Phase 3 data of the 1000 Genomes Project in European individuals) and significantly associated 

with both hepatic fat content and NAFLD histology (Gorden et al., 2013), was used as the proxy 

for TM6SF2 rs58542926.   

 

For the 22 glycemic and obesity traits, we selected the significant and independent genetic 

predictors in two steps: we first obtained all the variants that passed the genome–wide 

association significance level of p<5e–8. Then the independent genetic predictors were identified 

by clumping the top GWAS loci through PLINK 1.9 (https://www.cog–genomics.org/plink2) 

with the threshold of R^2 < 0.1 in a 500–kb window. The linkage disequilibrium was estimated 

based on the European samples in phase 3 of the 1000 Genomes Project (Genomes Project et al., 

2015). We omitted 10 traits including 2h glucose, HOMA–IR, HOMA–B, and seven OGTT 

traits due to lack of enough significant and independent genetic variants (number of valid 

variants < 3). Therefore, 12 traits were analyzed for the causal effects on NAFLD. 

 

The instrument strength of each genetic predictor was assessed by F statistics = (
𝑛−𝑘−1

𝑘
)(

𝑅2

1−𝑅2), 

where n represents sample size, k represents the number of genetic variants, and R2 is the 

proportion of phenotypic variance explained by the genetic variants. The F statistics of all the 

https://www.cog-genomics.org/plink2
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genetic predictors in the present study were larger than the empirical threshold of 10 (Table 

4.2)(Staiger & Stock, 1997). 

Table 4.2 Characteristics of the associations of PNPLA3 rs738409, NCAN rs2228603 with 

phenotype 

Phenotype Participants PNPLA3 rs738409 G allele  NCAN rs2228603 T allele 

 
  

Effect SE p  Effect SE p 

NAFLD  
    

 
   

 Steatosis (SD) 7,176 0.26 0.021 4.3E–34  0.24 0.035 1.22E–11 

 Histologic NAFLD 

(logOR) 

592 cases and 

1,405 controls 

1.18 0.31 3.6E–43  0.5 0.23 5.29E–05 

T2D and glycemic traits 
    

 
   

 T2D (OR) 74,124 cases 

and 824,006 

controls 

0.062 0.0089 3.5E–12  0.086 0.014 1.30E–09 

 HbA1c (%) 123,665 –0.0037 0.003 2.2E–01  0.0007 0.0033 8.33E–01 

 Fasting glucose 

(mmol/L) 

58,074 0.0029 0.0038 4.4E–01  0.02 0.0063 1.77E–03 

 Fasting insulin 

(pmol/L) 

51,750 0.0077 0.0032 1.6E–02  0.0024 0.0053 6.49E–01 

 Fasting proinsulin 

(pmol/L) 

10,701 0.004 0.0087 6.4E–01  0.02 0.014 1.44E–01 

 2h glucose (mmol/L) 15,234 –0.016 0.022 4.7E–01  –0.019 0.036 6.09E–01 

 HOMA–IR 

((mU/L)*(mmol/L)) 

37,037 0.007 0.0047 1.4E–01  0.0097 0.0081 2.33E–01 

 HOMA–B 

((mU/L)/(mmol/L)) 

36,466 0.0007 0.0039 8.5E–01  0.0053 0.0066 4.26E–01 

 AUCins (mU*min/L) 4,324 –0.0066 0.026 8.00E–01  0.0079 0.044 8.56E–01 

 AUCins/AUCgluc 

(mU/mmol) 

4,213 –0.0057 0.026 8.30E–01  0.0073 0.044 8.69E–01 

 Incre30 (mU/L) 4,447 –

0.00015 

0.025 9.95E–01  –

0.0018 

0.043 9.66E–01 

 Ins30adjBMI  4,409 –0.0027 0.026 9.16E–01  0.026 0.043 5.50E–01 

 ISI (mg/dL) 4,769 0.03 0.029 2.94E–01  –0.066 0.043 1.27E–01 

 CIRadjISI 4,789 –0.0062 0.026 8.09E–01  0.013 0.043 7.60E–01 

 DI 5,130 0.03 0.024 2.15E–01  –0.012 0.041 7.62E–01 

Obesity traits 
    

 
   

 BMI (SD) 806,834 –0.0082 0.0021 7.2E–05  –0.004 0.0031 1.98E–01 

 WHR (SD) 697,734 0.0029 0.0022 1.8E–01  0.0134 0.0033 3.60E–05 
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Table 4.2 continued 

 WHRadjBMI (SD) 694,649 0.0078 0.0022 3.5E–04  0.0178 0.0033 5.95E–08 

 HDL (SD) 188,577 –0.016 0.0058 9.8E–03  0.0054 0.0067 4.51E–01 

 LDL (SD) 188,577 –0.0151 0.0063 2.0E–02  –0.104 0.0072 4.43E–44 

 TC (SD) 188,577 –0.0219 0.0062 6.0E–04  –0.12 0.0069 1.05E–62 

 TG (SD) 188,577 0.0051 0.0056 2.5E–01  –0.11 0.0065 1.74E–57 

 

T2D: type 2 diabetes; HOMA–IR: The homeostatic model assessment (HOMA) insulin resistance; HOMA–B: 

HOMA beta cell function; AUCins: area under the curve (AUC) of insulin levels during oral glucose tolerance 

test (OGTT); AUCins/AUCgluc: ratio of AUC insulin and AUC glucose; Incre30: incremental insulin at 30 min;  

Ins30adjBMI: Insulin response to glucose during the first 30 min adjusted for BMI; ISI: insulin sensitivity index; 

CIRadjBMI: Corrected Insulin Response adjusted for ISI; DI: disposition index; BMI: body mass index; WHR: 

waist–hip ratio; WHRadjBMI: WHR adjusted for BMI; HDL: high–density lipoprotein cholesterol; LDL: low–

density lipoprotein cholesterol; TC: total cholesterol; TG: triglycerides; OR: odds ratio; SD: standard deviation; SE: 

standard error. 

 

4.3.2.4 MR estimation 

We set the exposure increasing allele as the effect allele. If the effect size was reported on the 

alternative allele in the original study, we multiplied the reported effect size by –1 for 

harmonization of the effect allele. For palindromic SNPs, we checked the reported allele 

frequency to avoid potential strand flipping issues (Hartwig, Davies, Hemani, & Davey Smith, 

2016). Palindromic SNPs with minor allele frequency larger than 0.42 or lack of allele frequency 

information were considered as ambiguous and thus removed for MR estimation. We only kept 

SNPs that had association results in both exposure and outcome GWAS studies.  

 

For MR estimation with NAFLD as the exposure, we used the inverse variance weighted (IVW) 

method to estimate the combined causal effect of PNPLA3 and TM6SF2 (NCAN) variants by 

assuming a fixed–effect model (Burgess, Butterworth, & Thompson, 2013). As a sensitivity 

analysis, Wald's method (Wald, 1940) was used to estimate the causal effect with each of the 

genetic variant respectively. We considered a significant causal relationship if the directions of 
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the estimates by PNPLA3, TM6SF2 (NCAN), and the two variants combined were consistent, and 

the combined estimate passed the Bonferroni–adjusted significance of p<0.05.  

 

For the MR estimation with NAFLD as the outcome, besides the IVW method, we estimated the 

causal effects using additional methods including weighted median estimator (Bowden, Davey 

Smith, Haycock, & Burgess, 2016) and MR–Egger (Bowden, Davey Smith, & Burgess, 2015) as 

a sensitivity analysis. IVW method provides greater precision in MR estimates in the absence of 

directional pleiotropy (Bowden, Del Greco, et al., 2016). Weighted median estimator relaxes the 

assumption by requiring at least 50% of the genetic variants to be valid instruments. MR–Egger 

provides unbiased MR estimates even if the genetic variants exhibit pleiotropic effects given the 

impendence between instrument strength and pleiotropic effects. 

 

To assess the heterogeneity and identify horizontal pleiotropic outliers, we used the Q’ statistics 

(Bowden, Del Greco, et al., 2018) with modified second order weights and MR–PRESSO global 

test (Verbanck, Chen, Neale, & Do, 2018). If the horizontal pleiotropy is significant, MR–

PRESSO was used to identify outliers at p<0.05. We then removed the outliers and retested if the 

causal relationship and pleiotropic effects were significant.  

 

We considered as significant if the directions of the estimates by three methods (IVW, weighted 

median, and MR–Egger) were consistent, IVW method passed the Bonferroni–adjusted 

significance of p<0.05, and no significant pleiotropy tested by MR–PRESSO global test and 

modified Q’ statistics. MR analyses were performed with “MendelianRandomization” (Yavorska 
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& Burgess, 2017), “MRPRESSO” (Verbanck et al., 2018), and “RadialMR” (Bowden, Spiller, et 

al., 2018) packages in R version 3.5.0 (http://www.r–project.org/).  

4.3.2.5 Sample overlap 

Participant overlap in two–sample MR might lead to inflated Type 1 error rates due to the weak 

instrument bias (Burgess, Davies, & Thompson, 2016). We examined the samples used to 

estimate the genetic correlations with exposure and outcome, respectively. The maximum sample 

overlapping rate was then calculated as the percentage of overlapped samples in the larger 

dataset (Burgess et al., 2016). For example, if sample size of study 1 is n1, sample size of study 2 

is n2, sample size of the overlapped cohorts in study 1 is m1, sample size of the overlapped 

cohorts in study 2 is m2, then the maximum overlapping rate = min(m1,m2) / max(n1, n2). As 

shown in Table 4.3, the degree of overlap in most MR analyses is very low (<1%). For the 

analyses with substantial overlap (>1%), we have used robust instruments (F statistics ranges 

from 53 to 110) for MR estimate. Based on a simulation study (Burgess et al., 2016), overlapping 

bias is unlikely to affect the results given instruments of this degree of strength.

http://www.r-project.org/
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Table 4.3 Sample overlap 

Phenotype Steatosis (GOLD)  Histologic NAFLD (NASH 

CRN/MIGen) 

 NAFLD (UKBB) 

Overlapping 

cohort 

Overlapping 

percentage 

 Overlapping 

cohort 

Overlapping 

percentage 

 Overlapping 

cohort 

Overlapping 

percentage 

T2D 

(DIAGRAM) 

FHS 0.13%  None None  UKBB 0.12% 

HbA1c 

(MAGIC) 

FHS 1.61%  None None  None None 

Fasting glucose 

(MAGIC) 

FHS 5.04%  None None  None None 

Fasting insulin 

(MAGIC) 

FHS 5.67%  None None  None None 

Fasting 

proinsulin 

(MAGIC) 

FHS 27.38%  None None  None None 

2h glucose 

(MAGIC) 

FHS 17.87%  None None  None None 

HOMA–IR 

(MAGIC) 

FHS 7.92%  None None  None None 

HOMA–B 

(MAGIC) 

FHS 8.04%  None None  None None 

Seven oGTT 

traits (MAGIC) 

None None  None None  None None 

BMI (GIANT) None None  None None  UKBB 49.70% 

WHR (GIANT) None None  None None  UKBB 57.47% 

WHRadjBMI 

(GIANT) 

None None  None None  UKBB 57.73% 

Four plasma 

lipids (GLGC) 

Amish 0.57%  None None  None None 

The sample overlapping rate was calculated as the percentage of overlapped samples in the larger dataset. For 

example, if sample size of study 1 is n1, sample size of study 2 is n2, sample size of the overlapped cohorts in study 

1 is m1, sample size of the overlapped cohorts in study 2 is m2, then the maximum overlapping rate = min(m1,m2) / 

max(n1, n2). GOLD: Genetics of Obesity–related Liver Disease; NASH CRN: NASH Clinical Research Network; 

MIGen: Myocardial Infarction Genetics consortium; UKBB: UK Biobank; DIAGRAM: DIAbetes Genetics 

Replication And Meta–analysis; MAGIC: Meta–Analyses of Glucose and Insulin–related traits Consortium; 

GIANT: The Genetic Investigation of ANthropometric Traits consortium; GLGC: The Global Lipids Genetics 

Consortium; FHS: Framingham Heart Study
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4.3.3 Animal experiments 

4.3.3.1 Construction of transgenic mice and induction of the NAFLD phenotypes 

The human PNPLA3–I148I or PNPLA3–I148M transgenic mice (TghPNPLA3–I148I or 

TghPNPLA3–I148M) were generated by using the PiggyBac transgenic technology at Cyagen 

(USA). The human BAC clone CTD–2316P10 were modified to generate the PNPLA3–I148I 

and PNPLA3148M isoforms and transduced into the embryo stem cell of the C57BL/6 mouse, 

respectively, without knocking out the mPNPLA3. All animal experiments were carried out at 

the animal facility with the approval from the Institutional Animal Care and Use Committee of 

Indiana University School of Medicine in accordance with National Institutes of Health 

guidelines for the care and use of laboratory animals. Six– to eight–week–old male mice were 

allowed for free access to water and fed regular chow (Teklad Diets 2018SX: 24% calories from 

protein, 18% calories from fat, and 58% calories from carbohydrate) in a 12–h/12–h light/dark 

cycle. For the dietary challenge studies, transgenic (TghPNPLA3–I148I and TghPNPLA3–

I148M) and nontransgenic wild type (WT) mice were fed  either a high–sucrose (Research Diets, 

D17070603: 73·5 kcal%, NJ, USA) diet which has been demonstrated to strongly induce hepatic 

steatosis (but not NASH) as widely reported in the literature including a report on the Pnpla3 

I148M knock in mice(Smagris et al., 2015) for 4 weeks, or a high–fat, high–fructose, high–

cholesterol diet (HFFC) (Research Diets D18021203: 20% calories from protein, 40% calories 

from fat, 40% calories from carbohydrate and 1% cholesterol, NJ, USA) for 20 weeks. The 

HFFC diet mimics the modern Western diet and has been widely demonstrated inductive to 

induce NASH (Clapper et al., 2013; Denk, Abuja, & Zatloukal, 2018; Panasevich et al., 2018; 

Van Herck, Vonghia, & Francque, 2017). 
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4.3.3.2 Glucose and insulin tolerance test 

After 16 weeks of HFFC diet feeding, glucose tolerance test (GTT) and insulin tolerance test 

(ITT) for TghPNPLA3–I148I, TghPNPLA3–I148M, and WT were performed by intraperitoneal 

(i.p.) injection of 2 g/kg glucose ((Millipore–Sigma, MO, USA) or 0·75 unit/kg insulin (Lily, IN, 

USA). All of the mice were fasted for 5 hours for GTT or 4 hours for ITT prior to intraperitoneal 

injection. Plasma glucose levels were determined before the injection of glucose or insulin and at 

15, 30, 60 and 120 min after the injection by a Contour glucometer (Bayer HealthCare, IN, 

USA). 

4.3.3.3 Glycemic and lipids profile and fat composition measurement 

Fasting blood samples were collected biweekly after fasting for 4 h. A 16–hour fasting was 

performed for blood glucose measurement at the 16th week for the mice fed with the HFFC diet. 

Plasma glucose levels were measured by a Contour glucometer. The fasting plasma insulin 

concentration were determined by a mouse ultrasensitive insulin ELISA kit (ALPCO, NH, USA) 

according to the manufacturer's protocol. 

 

Hepatic lipid was extracted as previously described (Tao, Xiong, DePinho, Deng, & Dong, 

2013). Total cholesterol and triglycerides concentrations in hepatic or plasma were measured 

according to manufacturer instruction from commercial assay kits (Wako Chemicals, VA, USA), 

respectively. Mouse body weights were measured weekly. Total body fat mass and lean mass 

were evaluated using magnetic resonance imaging (MRI) with an EchoMRI 500–Analyzer 

(EchoMRI, TX, USA) at the Islet and Physiology Core of Indiana University Center for Diabetes 

and Metabolic Diseases. The tests were performed at week 20 prior to mice sacrifice. At the end 



106 

 

of treatment, mice were sacrificed, and blood, liver, and fat tissue were collected for various 

analyses.  

4.3.3.4 Histological analysis 

The liver specimens were fixed in 10% formalin solution and routinely processed for paraffin–

embedding, sectioning (5 μm thickness) and hematoxylin and eosin (H&E) staining were 

performed at the Histology Core of Indiana University School of Medicine following the 

standard protocol. For Sirius red staining, sections were incubated with a 0·1% direct red 80 

(Sigma–Aldrich, MO, USA) plus 0·1% fast green FCF (Fisher Scientific, MA, USA) solution 

dissolved in saturated aqueous picric acid (1.2% picric acid in water) for 1 hour at room 

temperature, dehydrated, and mounted with a Permount™ mounting medium (Fisher Scientific, 

MA, USA). The images of H&E and Sirius red staining were captured using a Leica DM750 

microscope equipped with an EC3 digital camera (100× magnifications). The lipid droplets area 

and Sirius red positive area were quantified using ImageJ software.  

4.3.3.5 Immunofluorescence (IF) 

Sections were deparaffinized, rehydrated by washes in graded alcohols (ethanol 100%, 95%, 

70%, 50%) and distilled water, and retrieved in 0·01 M sodium citrate buffer (10 mM Sodium 

Citrate, 0.05% Tween 20, pH 6.0) for 20 minutes at 98°C by microwave heating. Sections were 

blocked with blocking buffer (10% normal serum, 1% bovine serum albumin (BSA) and 0·1% 

Triton X–100 in PBS) for 2 h at room temperature and incubated overnight at 4°C with rabbit 

polyclonal anti–myeloperoxidase (MPO, 1:100, Invitrogen, CA, USA) or rabbit monoclonal 

anti–F4/80 (1:100, Invitrogen, CA, USA) antibody, respectively. After washing with 0·025% 

Triton X–100 in PBS, sections were incubation with Alexa–Fluor–488 secondary antibodies 

(Molecular Probes, OR, USA) for 1 h at room temperature, and then mounted with 
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VECTASHIELD® antifade mounting media with DAPI (Vector Laboratories, CA, USA). 

Immunofluorescence images were captured by a ZEISS fluorescence microscope using an 

AxionVison Rel 4·8 software (200× magnification). The positive cells were counted in randomly 

selected fields (five fields per section).    

4.3.3.6 Statistical analyses 

Two–way repeated measures ANOVA was used to assess the effects of genotype, time, and 

genotype–time interaction on body weight, glucose, insulin, cholesterol, and triglycerides levels. 

Tukey’s multiple comparisons test was used to determine the significance of pair–wise 

comparisons at each time point. Tukey corrected p value<0.05 was considered significant. All 

the statistical analyses for animal experiments were performed using GraphPad Prism Version 

6·00 (GraphPad Software, CA, USA). 

4.4 Results 

4.4.1 Study overview 

The design of this study consists of three steps (Figure 4.1). We first aimed to explore whether 

NAFLD (both CT measured hepatic steatosis and biopsy–proven histologic NASH) casually 

affects T2D, obesity and their related intermediate traits. To this end, we used the summary 

GWAS data for CT scan–measured steatosis (GOLD) as well as the histologic NASH 

progression (NASH CRN/MIGen) presented in Speliotes et al.(Speliotes et al., 2011), which is 

thus far the largest GWAS comprehensively covering multiple phenotypes of NAFLD. We also 

use the summary GWAS meta–analysis data for T2D (DIAGRAM),(Mahajan et al., 2018) 

obesity (GIANT)(Pulit et al., 2019), glycemic (MAGIC)(Dupuis et al., 2010; Manning et al., 

2012; Prokopenko et al., 2014; Saxena et al., 2010; Strawbridge et al., 2011; Wheeler et al., 
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2017), and lipid (GLGC)(Willer et al., 2013) traits as outcomes (Step 1), which are the largest–

to–date GWAS data on these phenotypes. The causal role of NAFLD on T2D and obesity was 

conducted by using two well–established NAFLD–associated polymorphisms in PNPLA3 and 

TM6SF2/NCAN loci as a proxy for hepatic steatosis and NASH progression. We further 

performed a GWAS on “fatty liver disease” in UK biobank. Using the aforementioned summary 

level data of DIAGRAM and GIANT, we then investigated the reverse relationships, i.e. whether 

T2D or obesity causally affect NAFLD risk in the UK Biobank samples (Step 2). Finally, we 

constructed a transgenic mouse model expressing human PNPLA3–I148I or PNPLA3–I148M 

isoform to test the causal effects of hepatic steatosis on T2D and obesity (Step 3). To test the 

effect of steatosis and NASH disease progression on the susceptibility to T2D and obesity, we 

used a high sucrose diet (HSD) known to induce steatosis in PNPLA3148M mice (Smagris et al., 

2015), as well as a high fat, high fructose and high cholesterol diet (HFFC) known to induce 

NASH in mice (Clapper et al., 2013; Denk et al., 2018; Panasevich et al., 2018; Van Herck et al., 

2017). A schematic representation of the three assumptions for an MR analysis was shown in 

Figure 4.2 A, and the MR methods and heterogeneity tests used in the study were listed in Figure 

4.2 B.
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Figure 4.1 Flowchart of the study design 

The summary–level associations were taken from the following genomics consortium: GOLD (Genetics of Obesity–

related Liver Disease) for computerized tomography (CT) measured hepatic steatosis (Speliotes et al., 2011); NASH 

Clinical Research Network (NASH CRN) and Myocardial Infarction Genetics Consortium (MIGen) for biopsy–

proven NAFLD (Speliotes et al., 2011); DIAbetes Genetics Replication And Meta–analysis (DIAGRAM) for T2D 

(Mahajan et al., 2018); Meta–Analyses of Glucose and Insulin–related traits (MAGIC) consortium for glycemic 

traits including HbA1c (Wheeler et al., 2017), fasting glucose (Manning et al., 2012), fasting insulin (Manning et al., 

2012), fasting proinsulin (Strawbridge et al., 2011), 2–h glucose (Saxena et al., 2010), homeostatic model 

assessment of insulin resistance (HOMA–IR)(Dupuis et al., 2010) and β–cell function (HOMA–B) (Dupuis et al., 

2010), and seven insulin secretion and action indices during oral glucose tolerance test (OGTT)(Prokopenko et al., 

2014); The Genetic Investigation of ANthropometric Traits (GIANT) consortium for body mass index (BMI), 

waist–hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI)(Pulit et al., 2019); The Global Lipids Genetics 

Consortium (GLGC) for plasma high–density lipoprotein cholesterol (HDL), low–density lipoprotein cholesterol 

(LDL), total cholesterol (TC), and triglycerides (TG) levels (Willer et al., 2013). 

Genetic predictors
of NAFLD

Step 1: Whether NAFLD causally affects T2D, obesity and their related traits?

Steatosis (GOLD, n=7,176)
Histologic NAFLD (NASH
CRN/MIGen, n=592 cases

and 1,405 controls)

Step 2: Whether T2D, obesity and their related traits causally affect NAFLD?

T2D (DIAGRAM, n= 74,124 cases and 
824,006 controls)

Glycemic traits (MAGIC)

HbA1c (n=123,665), fasting glucose

(n=58,074), fasting insulin (n=51,750), fasting 

proinsulin (n=10,701), 2-h glucose (n=15,234),
HOMA-IR (n=37,037), HOMA-B (n=36,466), 

Seven OGTT indexes (n=4,583) 

Anthropometric traits (GIANT)

BMI (n=806,834), WHR (n=697,734), 

WHRadjBMI (n=694,649)
Plasma lipids (GLGC, n=188,577 )

HDL, LDL, TC, TG

Genetic predictors of

T2D, obesity, and central 
obesity

NAFLD (UKBB,

n=1,122 cases and
399,900 control)

T2D (DIAGRAM)

Glycemic traits (MAGIC)
Anthropometric traits (GIANT)

Plasma Lipids (GLGC)

Step 3: Whether the causal relationships between NAFLD and T2D and obesity can be replicated in transgenic mice model?

TghPNPLA3-Mut (I148M)

TghPNPLA3-WT(I148I)

20 weeks follow-up

HFFC diet
T2D
Glycemic traits

GTT and ITT tests

Obesity
Body/fat weight

Lipidemic traits

Steatosis

NASH

T2D
Glycemic traits

Obesity
Body weight
Lipidemic traits

HSD diet

4 weeks follow-up
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Figure 4.2 Diagram of the two–sample MR design, three assumptions, and methods used. 

(A) MR analysis was used to explore the causal relationships among NAFLD, T2D and obesity. Three assumptions 

of the genetic instrumental variable are as follows: 1) The genetic variant (e.g. PNPLA3 rs738409) is robustly 

associated with the exposure of interest (e.g. NAFLD), 2) the genetic variant is not associated with confounding factors 

(e.g. life style), and 3) there is no alternative pathway through which the genetic variant affects the outcomes (e.g. 

T2D) other than via the exposure. (B) MR methods and heterogeneity tests used in the study. IVW: inverse variance 

weighted; Median: weighted median estimator; MR–PRESSO: MR pleiotropy residual sum and outlier; Q’: Q’ 

statistics with modified second order weights. 

4.4.2 The causal effect of NAFLD on T2D risk and glycemic traits 

Using two well–established NAFLD–associated variants in PNPLA3 (rs738409) and 

TM6SF2/NCAN (rs2228603) gene loci as the genetic predictors of steatosis and histologic 

NASH progression, we tested the causal effect of NAFLD on T2D and glycemic traits in the 

latest publicly available GWAS data. As listed in Table 4.4, we observed a significant 

Instrument
e.g. PNPLA3 rs738409

Confounders
e.g. life style 

Outcomes
e.g.T2D

Exposure
e.g. NAFLD

X

?

Pleiotropic effects
X X

MR I

MR II

MR III

NAFLD as exposure

MR tests

IVW

NAFLD as outcome
IVW,
Median,
MR-Egger

Heterogeneity

MR-PRESSO, Q’

A

B

Wald test for each of the variants
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association between genetically instrumented hepatic steatosis and T2D risk, in which a one–

standard deviation (SD) increase in CT measured hepatic steatosis caused a 30% increased risk 

of T2D (OR: 1.3, 95% CI: [1.2, 1.4], p=8.3e–14). As for glycemic traits, we detected nominal 

associations of steatosis with increased fasting glucose (β: 0.026 mmol/L, 95% CI: [8.5e–5, 

0.051], p=0·049), fasting insulin (β: 0.025 pmol/L, 95% CI: [0.0035, 0.046], p=0.022), and 

insulin resistance (HOMA–IR) (β: 0·03 (mU/L)*(mmol/L), 95% CI: [–0.0016, 0·061], p=0.063) 

levels. However, these results were not significant after adjusted with Bonferroni correction 

(p<2·3e–3, correction for 22 traits). Other tested glycemic traits including HbA1c, fasting 

proinsulin, 2–h glucose, HOMA–IR, HOMA–B, and seven insulin secretion and action indices 

during OGTT did not show any significance.  

 

We then tested if genetically increased risk for the disease progression of NASH also has causal 

effect on T2D susceptibility and glycemic traits. Consistent with the result of hepatic steatosis, 

there was evidence of a significant effect of histologically characterized NAFLD severity on an 

increased risk of T2D (OR: 1·06, 95% CI: [1·03, 1·09], p=2·8e–4). No significant causal 

relationship was found between genetically driven NAFLD and glycemic traits except a nominal 

association with increased fasting insulin levels (β: 0·0064 pmol/L, 95% CI: [0·00034, 0·012], 

p=0·038) (Table 4.4).  
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Table 4.4 MR estimate with NAFLD as exposure 

 
 

Hepatic steatosis (per SD)  Histologic NAFLD (per logOR) 

T2D and glycemic traits Effect (95% CI) p   Effect (95% CI) p 

 T2D (OR) 1.30 (1.21, 1.39) 8.30E–14  1.06 (1.03, 1.09) 2.80E–04 

 HbA1c (%) –0.0072 (–0.025, 0.01) 4.20E–01  –0.0025 (–0.0074, 0.0024) 3.10E–01 

 Fasting glucose (mmol/L) 0.026 (8.5E–05, 0.051) 4.90E–02  0.0032 (–0.0031, 0.0096) 3.20E–01 

 Fasting insulin (pmol/L) 0.025 (0.0035, 0.046) 2.20E–02  0.0064 (0.00034, 0.012) 3.80E–02 

 Fasting proinsulin (pmol/L) 0.032 (–0.026, 0.089) 2.80E–01  0.0051 (–0.0091, 0.019) 4.80E–01 

 2h glucose (mmol/L) –0.066 (–0.21, 0.079) 3.70E–01  –0.015 (–0.051, 0.021) 4.10E–01 

 HOMA–IR 

((mU/L)*(mmol/L)) 

0.03 (–0.0016, 0.061) 6.30E–02  0.0066 (–0.0016, 0.015) 1.10E–01 

 HOMA–B 

((mU/L)/(mmol/L)) 

0.007 (–0.019, 0.033) 5.90E–01  0.0011 (–0.0052, 0.0074) 7.30E–01 

 AUCins (mU*min/L) –0.012 (–0.18, 0.16) 8.90E–01  –0.0043 (–0.046, 0.038) 8.40E–01 

 AUCins/AUCgluc 

(mU/mmol) 

–0.01 (–0.18, 0.16) 9.10E–01  –0.0037 (–0.046, 0.038) 8.60E–01 

 Incre30 (mU/L) –0.0021 (–0.17, 0.16) 9.80E–01  –0.00033 (–0.041, 0.04) 9.90E–01 

 Ins30adjBMI  0.017 (–0.15, 0.19) 8.40E–01  0.00083 (–0.041, 0.043) 9.70E–01 

 ISI (mg/dL) 0.011 (–0.18, 0.2) 9.10E–01  0.017 (–0.032, 0.065) 5.00E–01 

 CIRadjBMI –0.0055 (–0.18, 0.17) 9.50E–01  –0.0034 (–0.045, 0.039) 8.80E–01 

 DI 0.078 (–0.082, 0.24) 3.40E–01  0.022 (–0.018, 0.063) 2.80E–01 

Obesity traits 
  

 
  

 BMI (SD) –0.027 (–0.041, –0.013) 1.30E–04  –0.0071 (–0.012, –0.0023) 3.40E–03 

 WHR (SD) 0.021 (0.0062, 0.036) 5.40E–03  0.0029 (–0.00091, 0.0067) 1.30E–01 

 WHRadjBMI (SD) 0.039 (0.023, 0.054) 8.20E–07  0.0072 (0.0022, 0.012) 4.50E–03 

 HDL* (SD) –0.06 (–0.1, –0.016) 8.20E–03  –0.013 (–0.025, –0.0014) 2.80E–02 

 LDL* (SD) –0.058 (–0.11, –0.0097) 1.90E–02  –0.013 (–0.025, –4E–04) 4.30E–02 

 TC* (SD) –0.084 (–0.13, –0.036) 6.80E–04  –0.019 (–0.033, –0.0044) 9.90E–03 

 TG* (SD) 0.02 (–0.023, 0.062) 3.60E–01  0.0043 (–0.0052, 0.014) 3.80E–01 

Effect was estimated by a combined genetic vector of PNPLA3 and TM6SF2(NCAN) variants through inverse variance weighted 

(IVW) method. The F statistics of the genetic predictors of hepatic steatosis and histologic NAFLD are 110 and 10, respectively. 

Significant results at the Bonferroni–adjusted level of significance (p<0.05/22=2.3e–3) were highlighted in bold. *estimate was 

made using PNPLA3 variant only due to the pleiotropic effect of TM6SF2(NCAN). T2D: type 2 diabetes; HOMA–IR: The 

homeostatic model assessment (HOMA) insulin resistance; HOMA–B: HOMA beta cell function; AUCins: area under the curve 

(AUC) of insulin levels during oral glucose tolerance test (OGTT); AUCins/AUCgluc: ratio of AUC insulin and AUC glucose; 

Incre30: incremental insulin at 30 min; Ins30adjBMI: Insulin response to glucose during the first 30 min adjusted for BMI; ISI: 

insulin sensitivity index; CIRadjBMI: Corrected Insulin Response adjusted for ISI; DI: disposition index; BMI: body mass index; 

WHR: waist–hip ratio; WHRadjBMI: WHR adjusted for BMI; HDL: high–density lipoprotein cholesterol; LDL: low–density 

lipoprotein cholesterol; TC: total cholesterol; TG: triglycerides; OR: odds ratio; CI: confidence interval; SD: standard deviation.  
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In order to avoid potential biases on the selection of genetic instrument, a post–hoc analysis by 

separately examining the causal role of PNPLA3 and TM6SF2/NCAN polymorphisms was also 

performed and generated similar results (Table 4.5).  

Table 4.5 Full results of MR estimate with NAFLD as exposure 

Phenotype Hepatic steatosis (per SD)  Histologic NAFLD (per logOR) 

 
 

PNPLA3 

rs738409 

 NCAN 

rs2228603 

 PNPLA3 

rs738409 + 

NCAN 

rs2228603 

 PNPLA3 

rs738409 

 NCAN 

rs2228603 

 PNPLA3 

rs738409 + 

NCAN 

rs2228603 

T2D and 

glycemic 

traits 

Effect 

(95% 

CI) 

p  Effect 

(95% 

CI) 

p  Effect 

(95% 

CI) 

p  Effect 

(95% 

CI) 

p  Effect 

(95% 

CI) 

p  Effect 

(95% 

CI) 

p 

 T2D (OR) 1.27 

(1.17, 

1.36) 

1.2

0E

–

09 

  1.43 

(1.23, 

1.68) 

5.2

0E

–

06 

 1.30 

(1.21, 

1.39) 

8.3

0E

–14 

 1.05 

(1.02, 

1.09) 

9.1

0E

–

04 

 1.19 

(1.02, 

1.39) 

4.3

0E

–

02 

 1.06 

(1.03, 

1.09) 

2.8

0E

–

04 

 HbA1c 

(%) 

–0.014 

(–

0.037, 

0.0085) 

2.2

0E

–

01 

 0.0029 

(–

0.024, 

0.03) 

8.3

0E

–

01 

 –0.0072 

(–0.025, 

0.01) 

4.2

0E

–01 

 –0.0031 

(–

0.0084, 

0.0021) 

2.4

0E

–

01 

 0.0014 

(–

0.026, 

0.029) 

8.3

0E

–

01 

 –0.0025 

(–

0.0074, 

0.0024) 

3.1

0E

–

01 

 Fasting 

glucose 

(mmol/L) 

0.011 

(–

0.017, 

0.04) 

4.5

0E

–

01 

 0.084 

(0.027, 

0.14) 

4.0

0E

–

03 

 0.026 

(8.5e–

05, 

0.051) 

4.9

0E

–02 

 0.0025 

(–0.004, 

0.0089) 

4.5

0E

–

01 

 0.04 (–

0.017, 

0.097) 

7.5

0E

–

02 

 0.0032 

(–

0.0031, 

0.0096) 

3.2

0E

–

01 

 Fasting 

insulin 

(pmol/L) 

0.03 

(0.005, 

0.054) 

1.8

0E

–

02 

 0.01 (–

0.034, 

0.054) 

6.5

0E

–

01 

 0.025 

(0.0035, 

0.046) 

2.2

0E

–02 

 0.0065 

(0.00022

, 0.013) 

4.3

0E

–

02 

 0.0048 

(–

0.039, 

0.049) 

6.6

0E

–

01 

 0.0064 

(0.00034

, 0.012) 

3.8

0E

–

02 

 Fasting 

proinsulin 

(pmol/L) 

0.015 

(–0.05, 

0.081) 

6.5

0E

–

01 

 0.084 

(–

0.034, 

0.2) 

1.6

0E

–

01 

 0.032 (–

0.026, 

0.089) 

2.8

0E

–01 

 0.0034 

(–0.011, 

0.018) 

6.5

0E

–

01 

 0.04 (–

0.078, 

0.16) 

2.3

0E

–

01 

 0.0051 

(–

0.0091, 

0.019) 

4.8

0E

–

01 

 2h glucose 

(mmol/L) 

–0.061 

(–0.23, 

0.1) 

4.7

0E

–

01 

 –0.08 

(–0.38, 

0.22) 

6.0

0E

–

01 

 –0.066 

(–0.21, 

0.079) 

3.7

0E

–01 

 –0.014 

(–0.051, 

0.024) 

4.8

0E

–

01 

 –0.038 

(–0.34, 

0.26) 

6.1

0E

–

01 

 –0.015 

(–0.051, 

0.021) 

4.1

0E

–

01 

 HOMA–

IR 

((mU/L)*(

mmol/L)) 

0.027 

(–

0.0087, 

0.062) 

1.4

0E

–

01 

 0.041 

(–

0.027, 

0.11) 

2.4

0E

–

01 

 0.03 (–

0.0016, 

0.061) 

6.3

0E

–02 

 0.0059 

(–

0.0025, 

0.014) 

1.7

0E

–

01 

 0.019 

(–

0.048, 

0.087) 

3.0

0E

–

01 

 0.0066 

(–

0.0016, 

0.015) 

1.1

0E

–

01 

 HOMA–B 

((mU/L)/(

mmol/L)) 

0.0027 

(–

0.027, 

0.032) 

8.6

0E

–

01 

 0.022 

(–

0.032, 

0.077) 

4.3

0E

–

01 

 0.007 (–

0.019, 

0.033) 

5.9

0E

–01 

 0.00059 

(–

0.0059, 

0.0071) 

8.6

0E

–

01 

 0.011 

(–

0.044, 

0.065) 

4.5

0E

–

01 

 0.0011 

(–

0.0052, 

0.0074) 

7.3

0E

–

01 

 AUCins 

(mU*min/

L) 

–0.025 

(–0.22, 

0.17) 

8.0

0E

–

01 

 0.033 

(–0.33, 

0.4) 

8.6

0E

–

01 

 –0.012 

(–0.18, 

0.16) 

8.9

0E

–01 

 –0.0056 

(–0.049, 

0.038) 

8.0

0E

–

01 

 0.016 

(–0.35, 

0.38) 

8.6

0E

–

01 

 –0.0043 

(–0.046, 

0.038) 

8.4

0E

–

01 

 AUCins/A

UCgluc 

(mU/mmo

l) 

–0.022 

(–0.22, 

0.17) 

8.3

0E

–

01 

 0.031 

(–0.33, 

0.39) 

8.7

0E

–

01 

 –0.01 (–

0.18, 

0.16) 

9.1

0E

–01 

 –0.0048 

(–0.048, 

0.038) 

8.3

0E

–

01 

 0.015 

(–0.35, 

0.38) 

8.7

0E

–

01 

 –0.0037 

(–0.046, 

0.038) 

8.6

0E

–

01 

 Incre30 

(mU/L) 

–

0.00057 

(–0.19, 

0.19) 

1.0

0E

+0

0 

 –

0.0076 

(–0.36, 

0.35) 

9.7

0E

–

01 

 –0.0021 

(–0.17, 

0.16) 

9.8

0E

–01 

 –

0.00013 

(–0.042, 

0.041) 

1.0

0E

+0

0 

 –

0.0036 

(–0.36, 

0.35) 

9.7

0E

–

01 

 –

0.00033 

(–0.041, 

0.04) 

9.9

0E

–

01 
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Table 4.5 continued 

 Ins30a

djBMI  

–0.01 (–

0.21, 

0.18) 

9.2

0E

–

01 

 0.11 (–

0.25, 

0.46) 

5.5

0E

–

01 

 0.017 (–

0.15, 

0.19) 

8.4

0E

–

01 

 –0.0023 

(–0.045, 

0.041) 

9.2

0E

–

01 

 0.052 

(–0.3, 

0.41) 

5.6

0E

–

01 

 0.00083 

(–0.041, 

0.043) 

9.7

0E

–

01 

 ISI 

(mg/d

L) 

0.11 (–

0.1, 

0.33) 

3.0

0E

–

01 

 –0.28 (–

0.64, 

0.086) 

1.3

0E

–

01 

 0.011 (–

0.18, 

0.2) 

9.1

0E

–

01 

 0.025 (–

0.024, 

0.075) 

3.2

0E

–

01 

 –0.13 

(–0.49, 

0.23) 

2.1

0E

–

01 

 0.017 (–

0.032, 

0.065) 

5.0

0E

–

01 

 CIRad

jBMI 

–0.024 

(–0.22, 

0.17) 

8.1

0E

–

01 

 0.055 (–

0.3, 

0.41) 

7.6

0E

–

01 

 –0.0055 

(–0.18, 

0.17) 

9.5

0E

–

01 

 –0.0052 

(–0.048, 

0.038) 

8.1

0E

–

01 

 0.026 

(–0.33, 

0.38) 

7.6

0E

–

01 

 –0.0034 

(–0.045, 

0.039) 

8.8

0E

–

01 

 DI 0.11 (–

0.066, 

0.3) 

2.1

0E

–

01 

 –0.05 (–

0.39, 

0.29) 

7.7

0E

–

01 

 0.078 (–

0.082, 

0.24) 

3.4

0E

–

01 

 0.025 (–

0.017, 

0.067) 

2.4

0E

–

01 

 –0.024 

(–0.36, 

0.31) 

7.7

0E

–

01 

 0.022 (–

0.018, 

0.063) 

2.8

0E

–

01 

Obesity 

traits 

  
 

  
 

  
 

  
 

  
 

  

 BMI 

(SD) 

–0.031 

(–0.048, 

–0.015) 

2.0

0E

–

04 

 –0.017 

(–0.043, 

0.0092) 

2.0

0E

–

01 

 –0.027 

(–0.041, 

–0.013) 

1.3

0E

–

04 

 –0.0069 

(–0.012, 

–0.0019) 

6.7

0E

–

03 

 –0.008 

(–

0.034, 

0.018) 

2.7

0E

–

01 

 –0.0071 

(–0.012, 

–0.0023) 

3.4

0E

–

03 

 WHR 

(SD) 

0.011 (–

0.0055, 

0.028) 

1.9

0E

–

01 

 0.056 

(0.025, 

0.088) 

4.9

0E

–

04 

 0.021 

(0.0062, 

0.036) 

5.4

0E

–

03 

 0.0025 (–

0.0014, 

0.0063) 

2.1

0E

–

01 

 0.027 

(–

0.0049, 

0.058) 

5.8

0E

–

02 

 0.0029 (–

0.00091, 

0.0067) 

1.3

0E

–

01 

 WHRa

djBMI 

(SD) 

0.03 

(0.013, 

0.047) 

6.5

0E

–

04 

 0.075 

(0.04, 

0.11) 

2.4

0E

–

05 

 0.039 

(0.023, 

0.054) 

8.2

0E

–

07 

 0.0066 

(0.0016, 

0.012) 

9.8

0E

–

03 

 0.036 

(0.0008

6, 0.07) 

4.6

0E

–

02 

 0.0072 

(0.0022, 

0.012) 

4.5

0E

–

03 

 HDL 

(SD) 

–0.06 (–

0.1, –

0.016) 

8.2

0E

–

03 

 0.023 (–

0.033, 

0.078) 

4.2

0E

–

01 

 –0.028 

(–0.062, 

0.0071) 

1.2

0E

–

01 

 –0.013 (–

0.025, –

0.0014) 

2.8

0E

–

02 

 0.011 

(–

0.045, 

0.066) 

4.5

0E

–

01 

 –0.0096 

(–0.021, 

0.0013) 

8.3

0E

–

02 

 LDL 

(SD) 

–0.058 

(–0.11, 

–

0.0097) 

1.9

0E

–

02 

 –0.44 (–

0.58, –

0.3) 

7.6

0E

–

10 

 –0.098 

(–0.14, 

–0.053) 

2.3

0E

–

05 

 –0.013 (–

0.025, –

4e–04) 

4.3

0E

–

02 

 –0.21 

(–0.35, 

–0.068) 

3.4

0E

–

02 

 –0.014 (–

0.026, –

0.0012) 

3.1

0E

–

02 

 TC 

(SD) 

–0.084 

(–0.13, 

–0.036) 

6.8

0E

–

04 

 –0.51 (–

0.67, –

0.35) 

2.2

0E

–

10 

 –0.12 (–

0.17, –

0.074) 

3.3

0E

–

07 

 –0.019 (–

0.033, –

0.0044) 

9.9

0E

–

03 

 –0.24 

(–0.4, –

0.085) 

3.3

0E

–

02 

 –0.019 (–

0.033, –

0.0054) 

6.8

0E

–

03 

 TG 

(SD) 

0.02 (–

0.023, 

0.062) 

3.6

0E

–

01 

 –0.44 (–

0.58, –

0.31) 

3.5

0E

–

10 

 –0.02 (–

0.06, 

0.021) 

3.4

0E

–

01 

 0.0043 (–

0.0052, 

0.014) 

3.8

0E

–

01 

 –0.21 

(–0.35, 

–0.072) 

3.3

0E

–

02 

 0.0038 (–

0.0057, 

0.013) 

4.4

0E

–

01 

Effect was estimated by Wald’s method and inverse variance weighted (IVW) method for single variant, combined variants, 

respectively.  

T2D: type 2 diabetes; HOMA–IR: The homeostatic model assessment (HOMA) insulin resistance; HOMA–B: HOMA beta cell 

function; AUCins: area under the curve (AUC) of insulin levels during oral glucose tolerance test (OGTT); AUCins/AUCgluc: 

ratio of AUC insulin and AUC glucose; Incre30: incremental insulin at 30 min;  

Ins30adjBMI: Insulin response to glucose during the first 30 min adjusted for BMI; ISI: insulin sensitivity index; CIRadjBMI: 

Corrected Insulin Response adjusted for ISI; DI: disposition index; BMI: body mass index; WHR: waist–hip ratio; WHRadjBMI: 

WHR adjusted for BMI; HDL: high–density lipoprotein cholesterol; LDL: low–density lipoprotein cholesterol; TC: total 

cholesterol; TG: triglycerides; OR: odds ratio; CI: confidence interval; SD: standard deviation.  

4.4.3 The causal effect of NAFLD on obesity 

While obesity is a well–known risk factor for NAFLD, the reverse relationship, i.e. the causal 

effect of NAFLD on obesity, has not been explored before. Using the same genetic predictors of 
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steatosis and histologic NAFLD, we implemented MR and observed a significant causal 

association of a one–SD increase in hepatic fat with a 0.027–SD decrease in BMI (β:–0·027, 

95%CI: [–0·043, –0·013], p=1·3e–4), but a 0·039–SD increase in WHRadjBMI (WHR adjusted 

for BMI) (β:0·039, 95%CI: [0·023, 0·054], p=8·2e–7), an established marker for abdominal or 

central obesity. Similar relationships were found between genetically raised histologic NAFLD 

with BMI (β:–0·0071, 95%CI: [–0·012, –0·0023], p=3·4e–3) and WHRadjBMI (β:0·0072, 

95%CI: [0·0022, 0·012], p=4·5e–3). Taken together, our analyses suggested a consistent 

negative causal relationship between NAFLD and overall obesity (measured by BMI), but a 

positive correlation with central or visceral obesity (measured by WHRadjBMI).  

We next investigated the causal effect of NAFLD on blood lipid levels including HDL, LDL, 

total cholesterol (TC), and triglycerides (TG). Since TM6SF2/NCAN plays a role in plasma lipid 

regulation and might lead to the invalidity of the MR assumptions, we used PNPLA3 rs738409 

variant only with regard to estimating the causal effect on blood lipid profile. Our analyses 

demonstrated a significant negative correlation between genetically raised hepatic fat and TC 

levels (β:–0·084 SD, 95%CI: [–0·13, –0·036], p=6·8e–4). This negative relationship also exists 

for histologic NAFLD (β:–0·019 SD, 95%CI: [–0·033, –0·0044], p=9·9e–3). No significant 

causal relationship was found with other lipids (Table 4.4). 

4.4.4 Reverse MR investigating the causal effects of T2D, obesity, and their related secondary 

traits on NAFLD 

To understand the causal relationships among the three diseases, we implemented MR analyses 

to test the existence of the reverse or bidirectional causal relationships between T2D or obesity 

and NAFLD. We used the data from our newly performed GWAS on NAFLD as an outcome, 

while the DIAGRAM and GIANT summary data for T2D and obesity as predictor, respectively. 
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We found that genetic predictors of T2D exert positive effects on NAFLD (OR: 1·1, 95% CI: 

[1·0, 1·2], p=1·67e–3) without evidence of significant heterogeneity (PMR–PRESSOGlobal=0·31, 

Pmodified Q=0·33) after removing outlier variants identified by MR–PRESSO (Table 4.6). Initial 

MR estimates without removing outliers were shown in Table 4.7.  

Consistent with the previous MR estimate (Stender et al., 2017), we found BMI causally 

increased the NAFLD risk (OR: 2·3, 95% CI: [2·0, 2·7], p=1·4e–25), but with remaining 

heterogeneity (PMR–PRESSOGlobal<2·5e–3, Pmodified Q=3·9e–3) after removing outliers. BMI adjusted 

WHR also significantly aggravated NAFLD risk (OR: 1·5 95% CI: [1·3, 1·8], p=1·1e–6) without 

evident heterogeneity (PMR–PRESSOGlobal=0·46, Pmodified Q=0·45). 



 

 

 1
1
7
 

Table 4.6 MR estimate with NAFLD as outcome 

 
   

IVW  Weighted median  MR–Egger  Pleiotropy test 

T2D and glycemic 

traits# 

#SN

Ps 

F OR (95% 

CI) 

p  OR (95% 

CI) 

p  OR (95% CI) p  MR–PRESSO global 

test p 

modified 

Q' p 

 T2D (logOR)* 315 69 1.1 (1, 1.2) 1.67E–

03 

 1.1 (0.93, 

1.2) 

3.54E–

01 

 0.99 (0.84, 1.2) 8.59E–

01 

 3.11E–01 3.26E–01 

 HbA1c (%) 67 69 0.33 (0.17, 

0.66) 

1.76E–

03 

 0.33 (0.11, 

1.11) 

7.44E–

02 

 0.17 (0.04, 0.68) 1.28E–

02 

 3.85E–01 3.69E–01 

 Fasting glucose 

(mmol/L) 

33 68 0.42 (0.25, 

0.73) 

1.60E–

03 

 0.33 (0.15, 

0.80) 

1.34E–

02 

 0.44 (0.12, 1.52) 1.93E–

01 

 8.78E–02 8.29E–02 

 Fasting insulin 

(pmol/L)* 

9 36 7.7 (1.3, 46) 2.40E–

02 

 4.6 (0.42, 51) 2.11E–

01 

 4.2 (0.00035, 

51000) 

7.64E–

01 

 3.18E–01 2.82E–01 

 Fasting proinsulin 

(pmol/L) 

15 72 1.13 (0.79, 

1.62) 

4.94E–

01 

 0.99 (0.58, 

1.67) 

9.55E–

01 

 1.57 (0.49, 4.95) 4.51E–

01 

 4.60E–02 4.74E–02 

Obesity traits 
    

 
  

 
  

 
  

 BMI (SD)* 1839 60 2.3 (2, 2.7) 1.41E–

25 

 2.1 (1.6, 2.8) 1.02E–

07 

 1.7 (1.1, 2.7) 1.58E–

02 

 2.50E–03 3.89E–03 

 WHR (SD) 951 53 2.10 (1.72, 

2.59) 

2.85E–

12 

 2.34 (1.67, 

3.32) 

6.91E–

07 

 1.62 (0.94, 2.72) 8.14E–

02 

 3.62E–01 3.64E–01 

 WHRadjBMI (SD) 1156 63 1.54 (1.30, 

1.82) 
1.11E–

06 

 1.60 (1.20, 

2.14) 

1.53E–

03 

 1.57 (1.06, 2.34) 2.37E–

02 

 4.55E–01 4.54E–01 

 HDL (SD)* 226 12

3 

0.88 (0.76, 1) 8.78E–

02 

 0.83 (0.64, 

1.1) 

1.57E–

01 

 0.93 (0.69, 1.3) 6.62E–

01 

 2.00E–03 1.26E–03 

 LDL (SD)* 192 14

8 

0.96 (0.84, 

1.1) 

5.47E–

01 

 1 (0.79, 1.3) 9.69E–

01 

 0.84 (0.64, 1.1) 2.11E–

01 

 <5.00E–04 7.29E–06 

 TC (SD)* 239 11

0 

0.94 (0.82, 

1.1) 

4.18E–

01 

 0.95 (0.71, 

1.3) 

7.13E–

01 

 0.88 (0.66, 1.2) 3.85E–

01 

 1.00E–03 6.33E–04 

 TG (SD)* 149 11

9 

1.6 (1.3, 1.9) 5.10E–

07 

 1.7 (1.2, 2.4) 1.45E–

03 

 1.7 (1.1, 2.4) 8.92E–

03 

 7.00E–03 7.83E–03 
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Table 4.7 MR estimates following outlier removal 
 

Initial Estimate  After outlier removal 

Trait # 

SNP

s 

F IVW  Pleiotropy test  # 

SNP

s 

F IVW  Pleiotropy test 

   
Effect 

(95% CI) 

p  MR–PRESSO 

global test p 

modified 

Q' p 

 
  

Effect 

(95% CI) 

p  MR–PRESSO 

global test p 

modified 

Q' p 

T2D (logOR) 318 69 1.14 (1.05, 

1.22) 

9.60E

–04 

 1.50E–03 7.34E–04  315 69 1.1 (1, 1.2) 1.67E

–03 

 3.11E–01 3.26E–01 

Fasting insulin 

(pmol/L) 

10 37 2.36 (0.44, 

12.18) 

3.15E

–01 

 2.00E–04 3.14E–04  9 36 7.7 (1.3, 

46) 

2.40E

–02 

 3.18E–01 2.82E–01 

BMI (SD) 1843 60 2.27 (1.95, 

2.66) 

4.31E

–25 

 <2E–04 1.55E–04  1839 60 2.3 (2, 2.7) 1.41E

–25 

 2.50E–03 3.89E–03 

HDL (SD) 228 12

3 

0.88 (0.76, 

1.02) 

7.78E

–02 

 <2E–04 2.18E–05  226 12

3 

0.88 (0.76, 

1) 

8.78E

–02 

 2.00E–03 1.26E–03 

LDL (SD) 193 14

9 

0.93 (0.81 

1.07) 

2.95E

–01 

 <2E–04 1.11E–07  192 14

8 

0.96 (0.84, 

1.1) 

5.47E

–01 

 <5.00E–04 7.29E–06 

TC (SD) 242 11

2 

0.92 (0.80, 

1.06) 

2.38E

–01 

 <2E–04 4.23E–07  239 11

0 

0.94 (0.82, 

1.1) 

4.18E

–01 

 1.00E–03 6.33E–04 

TG (SD) 151 12

0 

1.48 (1.22 

1.77) 

3.74E

–05 

 <2E–04 7.04E–06  149 11

9 

1.6 (1.3, 

1.9) 

5.10E

–07 

 7.00E–03 7.83E–03 

IVW: inverse variance weighted; F: F statistics for the strength of correlation between instrument and exposure; MR–PRESSO: MR pleiotropy residual sum and outlier; Q’: Q’ 

statistics with modified second order weights; T2D: type 2 diabetes; BMI: body mass index; HDL: high–density lipoprotein cholesterol; LDL: low–density lipoprotein cholesterol; 

TC: total cholesterol; TG: triglycerides; OR: odds ratio; CI: confidence interval; SD: standard deviation.
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4.4.5 Transgenic mice study on the relationship between NAFLD and susceptibility to T2D and 

obesity. 

To further examine the causal effect of NAFLD on T2D and obesity, we set out to induce 

hepatosteatosis and NASH using transgenic animal models expressing human PNPLA3 

isoforms, and during which, to observe the development of T2D and obesity phenotypes. To do 

so, we constructed mice models transduced with the bacterial artificial chromosome (BAC)–

containing the PNPLA3–I148I isoform or that was engineered to the PNPLA3–I148M isoform. 

The mice were then fed with a previously established high sucrose diet (HSD) for 4 weeks to 

induce hepatosteatosis (Smagris et al., 2015). To examine the effect of NASH progression on 

T2D or obesity phenotypes, we also fed the mice with the “Western diet” characterized with high 

fat, high fructose and high cholesterol (HFFC) for 20 weeks, which has been an established 

NASH–inductive diet as demonstrated before(Clapper et al., 2013; Denk et al., 2018; Panasevich 

et al., 2018; Van Herck et al., 2017). 

 

After 4 weeks of HSD diet, the TghPNPLA3–I148M mice developed severe hepatosteatosis as 

compared to their TghPNPLA3–I148I littermates or the non–transgenic controls, characterized 

with significantly increased lipid droplets formation in the liver (Figure 4.3 A) as well as hepatic 

triglycerides (TG) accumulation (Figure 4.3 B). Meanwhile, as compared to the TghPNPLA3–

I148I controls, the TghPNPLA3–I148M mice also demonstrated a trend of increased circulating 

glucose (Figure 4.4 A), but the insulin level remained unchanged (Figure 4.4 B). After 4 weeks 

of HSD diet feeding, the TghPNPLA3–I148M mice demonstrated no significant change in total 

body weight (Figure 4.4 C), but a marginal trend to a reduced total circulating cholesterol 



120 

 

(Figure 3D, p=0·038), but not the circulating TG levels (Figure 4.4 E), as compared to their 

TghPNPLA3–I148I littermates. 

 

 

Figure 4.3 Lipid droplets and TG accumulation of mice fed with an HSD diet for 4 weeks 

(A) Lipid droplets area of TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type mice fed with an 

HSD diet for 4 weeks. (B) Liver triglycerides levels of the three groups after 4 weeks. (C) H&E staining of liver 

sections. Error bar represents standard deviation (SD). The significance level of the comparison between 

TghPNPLA3–I148I and TghPNPLA3–I148M was indicated as follows: *: Tukey adjusted p<0.05; **: Tukey adjusted 

p<0.01; ***: Tukey adjusted p<0.001. 
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Figure 4.4 Effect of PNPLA3 I148M mutant on T2D and obesity with an HSD diet. 

(A) Glucose levels of TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type mice fed with a high 

sucrose diet (HSD) for 4 weeks. (B) Insulin levels. We normalized the insulin level to the body weight since the age 

of the TghPNPLA3–I148M group is younger than the TgHPNPLA3–I148I and non–transgenic control groups. We 

found that the insulin level, especially at the baseline, is highly correlated with body weight (Figure 4.5 A). The non–

normalized data were also presented in Figure 4.5 B. (C) Body weight (D) Serum total cholesterol levels (E) Serum 

total triglycerides levels of the three groups fed with an HSD diet for 4 weeks. Error bar represents standard deviation 

(SD). *: Tukey adjusted p<0.05; **: Tukey adjusted p<0.01, ns: not significant.  

 

 

Figure 4.5 Insulin levels and body weight of the mice fed with an HSD diet 

(A) Pearson correlation between insulin levels and body weight at the baseline of the HSD diet. (B) Insulin levels of 

TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type mice without normalizing to the body 

weight. Error bar represents standard deviation (SD). *: Tukey adjusted p<0.05; **: Tukey adjusted p<0.01; ns: not 

significant. 
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To examine the effect of NASH progression on the susceptibility to T2D and obesity, we fed the 

mice with the NASH–inducing HFFC diet for 20 weeks. The TghPNPLA3–I148M mice 

developed significantly more severe NAFLD/NASH phenotypes as compared to the 

TghPNPLA3–I148I littermates, as characterized by increased inflammation and fibrosis (Figures 

4.6–4.8), confirming that PNPLA3 I148M possesses a strong genetic predisposition to NAFLD 

and NASH. H&E staining results indicated that all the three groups have developed 

hepatosteatosis after 20 weeks of HFFC diet (Figure 4.9). 
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Figure 4.6 MPO staining of mice fed with an HFFC diet for 20 weeks 

(A) Representative images of MPO immunofluorescence staining. (B) Counts of MPO positive cells in TghPNPLA3–

I148I, TghPNPLA3–I148M, and non–transgenic wide type controls. The positive cells were counted in randomly 

selected fields (five fields per section).  Error bar represents standard deviation (SD). *: Tukey adjusted p<0.05; ***: 

Tukey adjusted p<0.001. 
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Figure 4.7 F4/80 staining of mice fed with an HFFC diet for 20 weeks 

(A) Representative images of F4/80 immunofluorescence staining. (B) Counts of F4/80 positive cells in TghPNPLA3–

I148I, TghPNPLA3–I148M, and non–transgenic wide type controls. The positive cells were counted in randomly 

selected fields (five fields per section).  Error bar represents standard deviation (SD). *: Tukey adjusted p<0.05; ***: 

Tukey adjusted p<0.001. 
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Figure 4.8 Sirius red staining of mice fed with an HFFC diet for 20 weeks 

(A) Representative images of Sirius red staining. (B) Percentage of fibrosis positive area in TghPNPLA3–I148I, 

TghPNPLA3–I148M, and non–transgenic wide type mice. Error bar represents standard deviation (SD). *: Tukey 

adjusted p<0.05; **: Tukey adjusted p<0.01. 

 

 

Figure 4.9 H&E staining of mice fed with an HFFC diet for 20 weeks 

H&E staining of liver sections of TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type mice. 
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We next evaluated the effect of PNPLA3 I148M on glucose homeostasis over a 20–week 

follow–up. As shown in Figure 4.10 A, we observed a significant genotype–time interaction on 

the fasting glucose level (two–way repeated measure ANOVA, p<0·0001), suggesting that the 

effect of PNPLA3 I148M on glucose levels depended on disease progression. At week 16 and 

18, the TghPNPLA3–I148M mice displayed significantly higher fasting glucose levels than their 

TghPNPLA3–I148I littermates (p=0·0048 and 0·0082, respectively). There is also a significant 

interaction between genotype and time on fasting insulin levels between the TghPNPLA3 I148I 

and TghPNPLA3 I148M groups (p=0·0009). However, there is no significant difference between 

the TghPNPLA3–I148M and non–transgenic wildtype mice. Beginning at week 12, the insulin 

levels between the latter two groups remain unchanged (Figure 4.10 B). Results of Glucose 

tolerance test (GTT) showed that TghPNPLA3–I148M mice experienced a reduced clearance of 

blood glucose as compared to the TghPNPLA3–I148I controls (p=0·012) (Figure 4.10 C). 

However, we did not observe a significant difference in the response to insulin challenge in the 

Insulin tolerance test (ITT) (Figure 4.10 D).  
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Figure 4.10 Effect of PNPLA3 I148M mutant on glucose and insulin levels with an HFFC diet 

(A) Change in glucose levels over time of TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type 

mice fed with a high–fat, high–fructose, high–cholesterol (HFFC) diet for 20 weeks. (B) Change in insulin levels for 

20 weeks. (C) glucose tolerance test (GTT) and (D) insulin tolerance test (ITT) were performed at the 16th week of 

HFFC diet feeding. Error bar represents standard deviation (SD). The significance level of the comparison between 

TghPNPLA3–I148I and TghPNPLA3–I148M was indicated as follows: *: Tukey adjusted p<0.05; **: Tukey adjusted 

p<0.01; ***: Tukey adjusted p<0.001. 

 

The body weight change of the mice on HFFC diet over time was shown in Figure 4.11 A. The 

TghPNPLA3–I148M mice were significantly lighter than the TghPNPLA3–I148I controls 

beginning at week 15 (all p<0·05). Magnetic resonance imaging (MRI) examination at week 20 

showed that less total fat was accumulated in the TghPNPLA3–I148M mice than the 

TghPNPLA3–I148I controls (p=0·012), while the lean mass of non–fat tissues was not 

significantly different (Figure 4.11 B). Further investigation on the composition of the isolated 

fat showed that there was a significantly more epididymal white adipose tissue (EWAT) 

accumulation relative to the total peripheral adipose tissue in the TghPNPLA3–I148M mice than 

their TghPNPLA3–I148I littermates or non–transgenic controls (p=0·034 and 0·0015, 

respectively) (Figure 4.11 C). Examining the plasma lipid profile showed a significant decrease 

in total cholesterol levels beginning at week 16 for TghPNPLA3–I148M mice as compared to the 
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TghPNPLA3–I148I controls (Figure 4.11 D). No significant difference in TG levels between the 

three groups was observed (Figure 4.11 E). 

 

 

Figure 4.11 Effect of PNPLA3 I148M mutant on body weight, fat composition, and lipid profiles 

with an HFFC diet 

(A) Change in body weight of TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type mice fed with 

a high–fat, high–fructose, high–cholesterol (HFFC) diet for 20 weeks. (B) Body composition analysis by magnetic 

resonance imaging (MRI). Fat tissue weight and non–fat lean mass were normalized by the body weight (C) 

Epididymal white adipose tissue (EWAT) accumulation at the 20th week of HFFC diet feeding. EWAT accumulation 

was calculated as weight of EWAT divided the total peripheral adipose tissue weight and then normalized by the body 

weight. (D) Change in serum total cholesterol levels over 20 weeks (E) Change in serum total triglycerides levels over 

20 weeks. (D) The representative image of TghPNPLA3–I148I, TghPNPLA3–I148M, and non–transgenic wide type 

mouse at the 20th week of HFFC diet feeding. Error bar represents standard deviation (SD). The significance level of 

the comparison between TghPNPLA3–I148I and TghPNPLA3–I148M was indicated as follows: *: Tukey adjusted 

P<0.05; **: Tukey adjusted P<0.01; ns: not significant.  

4.5 Discussion 

This is the first study to delineate the causal inter–relationship between NAFLD, T2D, and 

obesity using bidirectional MR. This relationship was also experimentally validated using murine 

models, which further demonstrated a causal relationship between hepatic steatosis or NASH and 

the susceptibility to T2D and obesity. We found that while genetically driven NAFLD is a causal 
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risk factor for T2D, it protects against overall obesity (indexed by BMI). However, NAFLD 

SNPs causally increase the risk for central obesity. On the other hand, genetically driven T2D 

and central or general obesity are all causal for fatty liver disease. Our study thus suggests that 

genetically driven NAFLD (likely “lean NAFLD”) and the “metabolic NAFLD” attributed to 

T2D and/or obesity may be different diseases. Similarly, “NAFLD–driven T2D” may be 

different from T2D caused by other factors as well. Given the active drug development in these 

areas, it is important to clarify the right disease subtypes to be targeted. Our findings hence have 

important implications to clinical management, biomedical research and the development of 

precision medicine for the three diseases.   

 

It has been long regarded that NAFLD and NASH are the central manifestations of T2D and 

obesity. Due to the lack of data in the natural history of NAFLD/NASH in humans, it remains 

largely unclear with regard to the causal relationship between NAFLD and T2D or obesity. 

Without addressing this issue, it is difficult to answer many key questions, e.g. shall we manage 

the NAFLD in preventing/treating T2D and obesity or vice versa? More importantly, while there 

is significant heterogeneity in the etiology of each of the three diseases, what would be the right 

management strategy for the right patient? Delineating this causal relationship is key to precision 

disease prevention and treatment. With the findings in our study, it is now possible to further 

dissect the three diseases into important subtypes. First, we observed that genetically driven 

NAFLD is a causal risk factor for T2D. Our study confirmed the findings of a previous small–

scale MR analysis (Dongiovanni et al., 2018), and is in line with the results from numerous 

observational studies, including a recent meta–analysis of 19 observational studies with 296,439 

individuals which indicated that patients with NAFLD had a two–fold risk of developing T2D 
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than those without NAFLD (Mantovani et al., 2018). More importantly, our animal model study 

on two different diets also consistently validated that PNPLA3–I148M–driven hepatosteatosis or 

NASH increases the risk for hyperglycemia. Therefore, based on our study T2D is likely to be 

divided into at least two subgroups, i.e. a genetically driven NAFLD–associated T2D (“NAFLD 

driven–T2D”) and T2D due to other etiologies. This suggests that at least a significant proportion 

of T2D patients or pre–diabetic individuals, i.e. those who carry the PNPLA3–I148M or 

TM6SF2 variants and develop NAFLD should benefit from an intervention aiming at reducing 

hepatic steatosis or more advanced liver perturbations. This is particularly consistent with 

findings of multiple longitudinal studies in Asian populations where nondiabetic individuals with 

hepatic steatosis at baseline have 2.78–fold increased risk for T2D after 5 years of follow–up; 

while nondiabetic individuals with steatosis at baseline but not at the follow–up did not 

demonstrate an increased risk for T2D (Lee et al., 2019; Sung, Wild, & Byrne, 2013). On the 

other hand, our findings also demonstrated that T2D is a risk factor for at least a subset of 

NAFLD, hence, a “T2D–driven NAFLD” that may be a comorbidity of diabetes mellitus. 

Previous population–based studies suggested that hyperglycemia could be a factor for 

progression to liver fibrosis, and T2D can enhance the liver stiffness (see review(Lee et al., 

2019)). T2D may also modify the genetic risk of PNPLA3 I148M for NAFLD as well.  High 

glucose level can increase the expression of PNPLA3 via regulating carbohydrate–response 

element–binding protein (ChREBP) (Y. Huang et al., 2010), which is a necessary step for the 

accumulation of PNPLA3–I148M protein on the surface of lipid droplet in hepatocytes (J. Z. Li 

et al., 2012; W. Liu et al., 2016; Smagris et al., 2015). This accumulation further alters the 

dynamics of hydrolysis of triglycerides and lead to hepatic steatosis (Y. Wang, Kory, BasuRay, 
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Cohen, & Hobbs, 2019). Therefore, individuals who have a high risk for T2D should consider 

early intervention to further prevent liver injuries.  

 

Our study also revealed an interesting relationship between NAFLD and obesity. Our analysis 

suggests that genetically driven liver–specific fat storage or deposition may remodel the fat 

distribution in the whole body. Although epidemiologically obesity is highly correlated with 

NAFLD, the genetically instrumented NAFLD is actually not a causal risk factor for overall 

obesity. Rather, it protects against the overall BMI elevation. However, genetically driven 

NAFLD causally increases risks for central obesity, characterized by an increased waist–to–hip 

ratio in humans. Our observation is consistent with numerous observational studies on the 

associations between NAFLD, visceral fat or WHR and BMI (Pang et al., 2019; Radmard et al., 

2016). Our mouse study also accurately recapitulated these relationships. Interestingly, both MR 

and animal studies indicated that genetic NAFLD causally leads to decreased total cholesterol 

(TC) but not triglycerides (TG). Therefore, central obesity, at least in part, may possess a subtype 

attributed to genetically–driven NAFLD. This is particularly significant, as both TC and TG are 

generally correlated with visceral fat as demonstrated in many studies (Luo et al., 2014; Odamaki 

et al., 1999; Sadeghi et al., 2013). The dissociation in our study suggesting that the NAFLD–

driven central obesity is likely a unique subtype.  

 

More importantly, our study corroborates the widely discussed hypothesis about “lean NAFLD” 

and “obese NAFLD”. Both cross–sectional and longitudinal analyses over the past few years 

have observed significant differences in disease manifestation, progression and clinical outcomes 

between lean NAFLD and obese NAFLD (Feldman et al., 2017; Hagstrom et al., 2018; Lu et al., 
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2018). Our study echoes this observation and indicates that genetically driven NAFLD may be 

more likely progressed to lean NAFLD (but not necessarily reduces visceral fat accumulation) 

while does not promote the development of overall obesity. This is also consistent with the 

observation that PNPLA3 I148M allele is more significantly associated with lean NAFLD 

(Feldman et al., 2017; Lu et al., 2018). Taken together, our study suggests that so–called "lean 

NAFLD” is not just a phenomenon, but is a disease phenotype based on a certain causal 

mechanism. On the other hand, our MR analysis demonstrated that both genetically instrumented 

BMI and WHRadjBMI causally increase the risk for NAFLD, suggesting adiposity can be a risk 

factor for at least a subset of NAFLD, i.e. “obese NAFLD”, which may synergize the effects of 

genetic risk factors on the development of NASH or more severe liver injuries (Stender et al., 

2017), but could also play an independent role. In the latter case, NAFLD is thus more likely a 

comorbidity of obesity. Therefore, while the management of the lean NAFLD may require more 

attention to the liver, reducing weight and BMI would be critical to the prevention of obese 

NAFLD. Collectively, it is now clearer that, depending on the contributing load of genetic risk to 

each of NAFLD, T2D, and obesity, these diseases should be further dissected into subgroups 

based on their causal inter–relationship: e.g. NAFLD should be further classified into 

"genetically–driven NAFLD" or "hepatic NAFLD", and “metabolic NAFLD” or “systemic 

NAFLD, while T2D should be also considered at least to be divided into subgroups that are 

attributed to the hepatic perturbations and extrahepatic modifications (e.g. pancreas), 

respectively. There should be a NAFLD–driven central obesity as well. The causal relationships 

among the three diseases and main findings of the study were summarized in Figure 4.12. In 

future studies, it would be critical to explore how to distinguish these subgroups and identify the 
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high–risk individuals, so that prevention or treatment strategies for each condition can be 

developed accordingly.  

 

Figure 4.12 Schematic presentation of the causal relationships among NAFLD, T2D, and obesity.  

 “+": positive relationship; “–": negative relationship; dashed line represents the suggestive causal relationship. 

 

Despite the significance of our findings, the detailed molecular mechanism underlying these 

causal relationships remains to be further investigated. For the causal role of NAFLD in 

increasing the T2D risk, our MR analysis found a weak causal relationship between genetic 

NAFLD and fasting glucose and fasting insulin levels. A few hypotheses underlying this 

NAFLD–T2D relationship were proposed recently, for example, Fetuin–B can cause glucose 

intolerance, which was deemed as a very convincing mediating mechanism (El-Ashmawy & 

Ahmed, 2019; Lin et al., 2019; Lonardo et al., 2019; Meex & Watt, 2017; Peter et al., 2018). In 

addition, recent MR analyses have demonstrated that central obesity, indexed by increased 

WHR, is causal to hyperglycemia, whereas the overall obesity is causal to hyperinsulinemia (T. 

Wang et al., 2016; T. Wang et al., 2018), further highlighting the complex interrelationship 

among these three diseases, as well as their etiological heterogeneity. Whether genetically 

instrumented NAFLD independently increases the susceptibility to T2D and central obesity or 

actually affects one after another remains further investigation. Inversely, the mechanisms 

underlying the causal role of T2D in increasing risk for NAFLD are also incompletely 

understood, with gut microbiota and expanded, inflamed, dysfunctional adipose tissue as popular 
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hypotheses at present (Lonardo et al., 2019). However, it remains to be further explored whether 

these potential mechanisms involve the PNPLA3 or TM6SF2 related signaling. Similarly, the 

causal mechanism underlying the association between genetically driven NAFLD and reduced 

BMI and total cholesterol but increased abdominal fat accumulation is also largely unclear. Our 

study warrants continued investigation into these mechanisms.   

 

Our study also has important indications to biomedical research for the three diseases, which is 

especially pivotal to targets identification and drug development. For instance, the causal 

pathways leading to "hepatic" or lean NAFLD perhaps are distinct from those of the "metabolic 

NAFLD". Selecting the right model would be hence very critical to the success of drug 

development. Similarly, as mentioned above, determining the correct model for T2D or obesity 

based on the potential causes may be also key to warrant effective research.  

 

Our study has several limitations. First, we only selected individuals of European descent to 

avoid the potential confounding effects of population structure. Thus, the findings in our study 

need to be validated in other ethnic groups; Second, although PNPLA3 and TM6SF2 (NCAN) 

were two strongest and the most compelling causal variants for NAFLD, the limited number of 

SNPs prohibits the use of MR–PRESSO and modified Q’ statistics to test the presence of 

pleiotropic effects. In fact, TM6SF2 variant has been found to be associated with multiple 

metabolic factors especially lipoprotein lipid profile, therefore may possess potential pleiotropy 

effects. In addition, TM6SF2 rs58542926 has a relatively lower allele frequency (7% in 

Europeans) and is also missed from multiple commonly used genotyping platforms. These facts 

limit its potential as an ideal proxy for an MR analysis. Although our GWAS using the UK 
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Biobank produced more loci that are potentially associated with NAFLD, after a stringent 

selection, the PNPLA3 and TM6SF2/NCAN loci polymorphisms remain to be the most reliable 

markers as an instrument for NAFLD. Therefore, it is possible that the causal relationships we 

have identified in this analysis are only limited to these two genes. In addition, the UK biobank 

samples only have limited clinical information. We can only focus on the ICD codes for “fatty 

liver disease” as a phenotype. Although we tried our best to remove other potential confounding 

factors, e.g. individuals with other known liver disease or hepatitis, the phenotype may not 

exactly reflect the strictly defined “non–alcoholic fatty liver disease”. However, both PNPLA3 

and TM6SF2 loci were successfully identified as top hits in this study (Table 4.8), suggesting it 

does reflect the genetic patterns underlying NAFLD. Therefore, the reverse MR to test the causal 

role of T2D or obesity in increasing risks for NAFLD are likely reliable. Future studies should 

consider using a large sample set with well–defined NAFLD/NASH phenotypes to further 

validate these relationships. Moreover, due to the complexity of the biological systems, the 

existence of the reciprocal feedback loops might mask the truly bidirectional causal relationship. 

Future studies should consider using alternative approaches such as structural equation modeling 

to estimate the effect of feedback loops (Evans & Davey Smith, 2015). Further studies on the 

contributing load of genetic risk to each of the three diseases and their interactions with the 

environmental factors are necessary to apply the findings at the individual level. 

In summary, our study combined both a bidirectional MR analysis with the largest–to–date 

sample sets and animal models to delineate the causal relationships between NAFLD, T2D, and 

obesity. Our findings provided strong evidence for disease subphenotyping and corroborated key 

hypotheses previously generated from observational studies on these three important diseases. 
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These identifications warranted new directions to the development of precision preventive and 

therapeutic strategies for the three diseases.  

Table 4.8 Characteristics of the associations of PNPLA3 rs738409, NCAN rs2228603, and 

TM6SF2 rs58542926 with NAFLD in UKBB samples 

Gene SNP logOR SE P value 

PNPLA3  rs738409 0.33 0.053 2.09E–10 

NCAN rs2228603 0.32 0.081 6.83E–05 

TM6SF2 rs58542926  0.39 0.082 2.69E–06 

OR: Odds ratio; SE: standard error. 
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